1 /* Parse expressions for GDB. 2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc. 3 Modified from expread.y by the Department of Computer Science at the 4 State University of New York at Buffalo, 1991. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 21 22 /* Parse an expression from text in a string, 23 and return the result as a struct expression pointer. 24 That structure contains arithmetic operations in reverse polish, 25 with constants represented by operations that are followed by special data. 26 See expression.h for the details of the format. 27 What is important here is that it can be built up sequentially 28 during the process of parsing; the lower levels of the tree always 29 come first in the result. */ 30 31 #include "defs.h" 32 #include "gdb_string.h" 33 #include "symtab.h" 34 #include "gdbtypes.h" 35 #include "frame.h" 36 #include "expression.h" 37 #include "value.h" 38 #include "command.h" 39 #include "language.h" 40 #include "parser-defs.h" 41 42 /* Global variables declared in parser-defs.h (and commented there). */ 43 struct expression *expout; 44 int expout_size; 45 int expout_ptr; 46 struct block *expression_context_block; 47 struct block *innermost_block; 48 int arglist_len; 49 union type_stack_elt *type_stack; 50 int type_stack_depth, type_stack_size; 51 char *lexptr; 52 char *namecopy; 53 int paren_depth; 54 int comma_terminates; 55 56 static void 57 free_funcalls PARAMS ((void)); 58 59 static void 60 prefixify_expression PARAMS ((struct expression *)); 61 62 static int 63 length_of_subexp PARAMS ((struct expression *, int)); 64 65 static void 66 prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int)); 67 68 /* Data structure for saving values of arglist_len for function calls whose 69 arguments contain other function calls. */ 70 71 struct funcall 72 { 73 struct funcall *next; 74 int arglist_len; 75 }; 76 77 static struct funcall *funcall_chain; 78 79 /* Assign machine-independent names to certain registers 80 (unless overridden by the REGISTER_NAMES table) */ 81 82 #ifdef NO_STD_REGS 83 unsigned num_std_regs = 0; 84 struct std_regs std_regs[1]; 85 #else 86 struct std_regs std_regs[] = { 87 88 #ifdef PC_REGNUM 89 { "pc", PC_REGNUM }, 90 #endif 91 #ifdef FP_REGNUM 92 { "fp", FP_REGNUM }, 93 #endif 94 #ifdef SP_REGNUM 95 { "sp", SP_REGNUM }, 96 #endif 97 #ifdef PS_REGNUM 98 { "ps", PS_REGNUM }, 99 #endif 100 101 }; 102 103 unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]); 104 105 #endif 106 107 108 /* Begin counting arguments for a function call, 109 saving the data about any containing call. */ 110 111 void 112 start_arglist () 113 { 114 register struct funcall *new; 115 116 new = (struct funcall *) xmalloc (sizeof (struct funcall)); 117 new->next = funcall_chain; 118 new->arglist_len = arglist_len; 119 arglist_len = 0; 120 funcall_chain = new; 121 } 122 123 /* Return the number of arguments in a function call just terminated, 124 and restore the data for the containing function call. */ 125 126 int 127 end_arglist () 128 { 129 register int val = arglist_len; 130 register struct funcall *call = funcall_chain; 131 funcall_chain = call->next; 132 arglist_len = call->arglist_len; 133 free ((PTR)call); 134 return val; 135 } 136 137 /* Free everything in the funcall chain. 138 Used when there is an error inside parsing. */ 139 140 static void 141 free_funcalls () 142 { 143 register struct funcall *call, *next; 144 145 for (call = funcall_chain; call; call = next) 146 { 147 next = call->next; 148 free ((PTR)call); 149 } 150 } 151 152 /* This page contains the functions for adding data to the struct expression 153 being constructed. */ 154 155 /* Add one element to the end of the expression. */ 156 157 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into 158 a register through here */ 159 160 void 161 write_exp_elt (expelt) 162 union exp_element expelt; 163 { 164 if (expout_ptr >= expout_size) 165 { 166 expout_size *= 2; 167 expout = (struct expression *) 168 xrealloc ((char *) expout, sizeof (struct expression) 169 + EXP_ELEM_TO_BYTES (expout_size)); 170 } 171 expout->elts[expout_ptr++] = expelt; 172 } 173 174 void 175 write_exp_elt_opcode (expelt) 176 enum exp_opcode expelt; 177 { 178 union exp_element tmp; 179 180 tmp.opcode = expelt; 181 182 write_exp_elt (tmp); 183 } 184 185 void 186 write_exp_elt_sym (expelt) 187 struct symbol *expelt; 188 { 189 union exp_element tmp; 190 191 tmp.symbol = expelt; 192 193 write_exp_elt (tmp); 194 } 195 196 void 197 write_exp_elt_block (b) 198 struct block *b; 199 { 200 union exp_element tmp; 201 tmp.block = b; 202 write_exp_elt (tmp); 203 } 204 205 void 206 write_exp_elt_longcst (expelt) 207 LONGEST expelt; 208 { 209 union exp_element tmp; 210 211 tmp.longconst = expelt; 212 213 write_exp_elt (tmp); 214 } 215 216 void 217 write_exp_elt_dblcst (expelt) 218 DOUBLEST expelt; 219 { 220 union exp_element tmp; 221 222 tmp.doubleconst = expelt; 223 224 write_exp_elt (tmp); 225 } 226 227 void 228 write_exp_elt_type (expelt) 229 struct type *expelt; 230 { 231 union exp_element tmp; 232 233 tmp.type = expelt; 234 235 write_exp_elt (tmp); 236 } 237 238 void 239 write_exp_elt_intern (expelt) 240 struct internalvar *expelt; 241 { 242 union exp_element tmp; 243 244 tmp.internalvar = expelt; 245 246 write_exp_elt (tmp); 247 } 248 249 /* Add a string constant to the end of the expression. 250 251 String constants are stored by first writing an expression element 252 that contains the length of the string, then stuffing the string 253 constant itself into however many expression elements are needed 254 to hold it, and then writing another expression element that contains 255 the length of the string. I.E. an expression element at each end of 256 the string records the string length, so you can skip over the 257 expression elements containing the actual string bytes from either 258 end of the string. Note that this also allows gdb to handle 259 strings with embedded null bytes, as is required for some languages. 260 261 Don't be fooled by the fact that the string is null byte terminated, 262 this is strictly for the convenience of debugging gdb itself. Gdb 263 Gdb does not depend up the string being null terminated, since the 264 actual length is recorded in expression elements at each end of the 265 string. The null byte is taken into consideration when computing how 266 many expression elements are required to hold the string constant, of 267 course. */ 268 269 270 void 271 write_exp_string (str) 272 struct stoken str; 273 { 274 register int len = str.length; 275 register int lenelt; 276 register char *strdata; 277 278 /* Compute the number of expression elements required to hold the string 279 (including a null byte terminator), along with one expression element 280 at each end to record the actual string length (not including the 281 null byte terminator). */ 282 283 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); 284 285 /* Ensure that we have enough available expression elements to store 286 everything. */ 287 288 if ((expout_ptr + lenelt) >= expout_size) 289 { 290 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); 291 expout = (struct expression *) 292 xrealloc ((char *) expout, (sizeof (struct expression) 293 + EXP_ELEM_TO_BYTES (expout_size))); 294 } 295 296 /* Write the leading length expression element (which advances the current 297 expression element index), then write the string constant followed by a 298 terminating null byte, and then write the trailing length expression 299 element. */ 300 301 write_exp_elt_longcst ((LONGEST) len); 302 strdata = (char *) &expout->elts[expout_ptr]; 303 memcpy (strdata, str.ptr, len); 304 *(strdata + len) = '\0'; 305 expout_ptr += lenelt - 2; 306 write_exp_elt_longcst ((LONGEST) len); 307 } 308 309 /* Add a bitstring constant to the end of the expression. 310 311 Bitstring constants are stored by first writing an expression element 312 that contains the length of the bitstring (in bits), then stuffing the 313 bitstring constant itself into however many expression elements are 314 needed to hold it, and then writing another expression element that 315 contains the length of the bitstring. I.E. an expression element at 316 each end of the bitstring records the bitstring length, so you can skip 317 over the expression elements containing the actual bitstring bytes from 318 either end of the bitstring. */ 319 320 void 321 write_exp_bitstring (str) 322 struct stoken str; 323 { 324 register int bits = str.length; /* length in bits */ 325 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 326 register int lenelt; 327 register char *strdata; 328 329 /* Compute the number of expression elements required to hold the bitstring, 330 along with one expression element at each end to record the actual 331 bitstring length in bits. */ 332 333 lenelt = 2 + BYTES_TO_EXP_ELEM (len); 334 335 /* Ensure that we have enough available expression elements to store 336 everything. */ 337 338 if ((expout_ptr + lenelt) >= expout_size) 339 { 340 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); 341 expout = (struct expression *) 342 xrealloc ((char *) expout, (sizeof (struct expression) 343 + EXP_ELEM_TO_BYTES (expout_size))); 344 } 345 346 /* Write the leading length expression element (which advances the current 347 expression element index), then write the bitstring constant, and then 348 write the trailing length expression element. */ 349 350 write_exp_elt_longcst ((LONGEST) bits); 351 strdata = (char *) &expout->elts[expout_ptr]; 352 memcpy (strdata, str.ptr, len); 353 expout_ptr += lenelt - 2; 354 write_exp_elt_longcst ((LONGEST) bits); 355 } 356 357 /* Add the appropriate elements for a minimal symbol to the end of 358 the expression. The rationale behind passing in text_symbol_type and 359 data_symbol_type was so that Modula-2 could pass in WORD for 360 data_symbol_type. Perhaps it still is useful to have those types vary 361 based on the language, but they no longer have names like "int", so 362 the initial rationale is gone. */ 363 364 static struct type *msym_text_symbol_type; 365 static struct type *msym_data_symbol_type; 366 static struct type *msym_unknown_symbol_type; 367 368 void 369 write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type) 370 struct minimal_symbol *msymbol; 371 struct type *text_symbol_type; 372 struct type *data_symbol_type; 373 { 374 write_exp_elt_opcode (OP_LONG); 375 write_exp_elt_type (lookup_pointer_type (builtin_type_void)); 376 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol)); 377 write_exp_elt_opcode (OP_LONG); 378 379 write_exp_elt_opcode (UNOP_MEMVAL); 380 switch (msymbol -> type) 381 { 382 case mst_text: 383 case mst_file_text: 384 case mst_solib_trampoline: 385 write_exp_elt_type (msym_text_symbol_type); 386 break; 387 388 case mst_data: 389 case mst_file_data: 390 case mst_bss: 391 case mst_file_bss: 392 write_exp_elt_type (msym_data_symbol_type); 393 break; 394 395 default: 396 write_exp_elt_type (msym_unknown_symbol_type); 397 break; 398 } 399 write_exp_elt_opcode (UNOP_MEMVAL); 400 } 401 402 /* Recognize tokens that start with '$'. These include: 403 404 $regname A native register name or a "standard 405 register name". 406 407 $variable A convenience variable with a name chosen 408 by the user. 409 410 $digits Value history with index <digits>, starting 411 from the first value which has index 1. 412 413 $$digits Value history with index <digits> relative 414 to the last value. I.E. $$0 is the last 415 value, $$1 is the one previous to that, $$2 416 is the one previous to $$1, etc. 417 418 $ | $0 | $$0 The last value in the value history. 419 420 $$ An abbreviation for the second to the last 421 value in the value history, I.E. $$1 422 423 */ 424 425 void 426 write_dollar_variable (str) 427 struct stoken str; 428 { 429 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) 430 and $$digits (equivalent to $<-digits> if you could type that). */ 431 432 int negate = 0; 433 int i = 1; 434 /* Double dollar means negate the number and add -1 as well. 435 Thus $$ alone means -1. */ 436 if (str.length >= 2 && str.ptr[1] == '$') 437 { 438 negate = 1; 439 i = 2; 440 } 441 if (i == str.length) 442 { 443 /* Just dollars (one or two) */ 444 i = - negate; 445 goto handle_last; 446 } 447 /* Is the rest of the token digits? */ 448 for (; i < str.length; i++) 449 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) 450 break; 451 if (i == str.length) 452 { 453 i = atoi (str.ptr + 1 + negate); 454 if (negate) 455 i = - i; 456 goto handle_last; 457 } 458 459 /* Handle tokens that refer to machine registers: 460 $ followed by a register name. */ 461 for (i = 0; i < NUM_REGS; i++) 462 if (reg_names[i] && str.length - 1 == strlen (reg_names[i]) 463 && STREQN (str.ptr + 1, reg_names[i], str.length - 1)) 464 { 465 goto handle_register; 466 } 467 for (i = 0; i < num_std_regs; i++) 468 if (std_regs[i].name && str.length - 1 == strlen (std_regs[i].name) 469 && STREQN (str.ptr + 1, std_regs[i].name, str.length - 1)) 470 { 471 i = std_regs[i].regnum; 472 goto handle_register; 473 } 474 475 /* Any other names starting in $ are debugger internal variables. */ 476 477 write_exp_elt_opcode (OP_INTERNALVAR); 478 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1)); 479 write_exp_elt_opcode (OP_INTERNALVAR); 480 return; 481 handle_last: 482 write_exp_elt_opcode (OP_LAST); 483 write_exp_elt_longcst ((LONGEST) i); 484 write_exp_elt_opcode (OP_LAST); 485 return; 486 handle_register: 487 write_exp_elt_opcode (OP_REGISTER); 488 write_exp_elt_longcst (i); 489 write_exp_elt_opcode (OP_REGISTER); 490 return; 491 } 492 493 /* Return a null-terminated temporary copy of the name 494 of a string token. */ 495 496 char * 497 copy_name (token) 498 struct stoken token; 499 { 500 memcpy (namecopy, token.ptr, token.length); 501 namecopy[token.length] = 0; 502 return namecopy; 503 } 504 505 /* Reverse an expression from suffix form (in which it is constructed) 506 to prefix form (in which we can conveniently print or execute it). */ 507 508 static void 509 prefixify_expression (expr) 510 register struct expression *expr; 511 { 512 register int len = 513 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); 514 register struct expression *temp; 515 register int inpos = expr->nelts, outpos = 0; 516 517 temp = (struct expression *) alloca (len); 518 519 /* Copy the original expression into temp. */ 520 memcpy (temp, expr, len); 521 522 prefixify_subexp (temp, expr, inpos, outpos); 523 } 524 525 /* Return the number of exp_elements in the subexpression of EXPR 526 whose last exp_element is at index ENDPOS - 1 in EXPR. */ 527 528 static int 529 length_of_subexp (expr, endpos) 530 register struct expression *expr; 531 register int endpos; 532 { 533 register int oplen = 1; 534 register int args = 0; 535 register int i; 536 537 if (endpos < 1) 538 error ("?error in length_of_subexp"); 539 540 i = (int) expr->elts[endpos - 1].opcode; 541 542 switch (i) 543 { 544 /* C++ */ 545 case OP_SCOPE: 546 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 547 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); 548 break; 549 550 case OP_LONG: 551 case OP_DOUBLE: 552 case OP_VAR_VALUE: 553 oplen = 4; 554 break; 555 556 case OP_TYPE: 557 case OP_BOOL: 558 case OP_LAST: 559 case OP_REGISTER: 560 case OP_INTERNALVAR: 561 oplen = 3; 562 break; 563 564 case OP_COMPLEX: 565 oplen = 1; 566 args = 2; 567 break; 568 569 case OP_FUNCALL: 570 case OP_F77_UNDETERMINED_ARGLIST: 571 oplen = 3; 572 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 573 break; 574 575 case UNOP_MAX: 576 case UNOP_MIN: 577 oplen = 3; 578 break; 579 580 case BINOP_VAL: 581 case UNOP_CAST: 582 case UNOP_MEMVAL: 583 oplen = 3; 584 args = 1; 585 break; 586 587 case UNOP_ABS: 588 case UNOP_CAP: 589 case UNOP_CHR: 590 case UNOP_FLOAT: 591 case UNOP_HIGH: 592 case UNOP_ODD: 593 case UNOP_ORD: 594 case UNOP_TRUNC: 595 oplen = 1; 596 args = 1; 597 break; 598 599 case OP_LABELED: 600 case STRUCTOP_STRUCT: 601 case STRUCTOP_PTR: 602 args = 1; 603 /* fall through */ 604 case OP_M2_STRING: 605 case OP_STRING: 606 case OP_NAME: 607 case OP_EXPRSTRING: 608 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 609 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 610 break; 611 612 case OP_BITSTRING: 613 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 614 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 615 oplen = 4 + BYTES_TO_EXP_ELEM (oplen); 616 break; 617 618 case OP_ARRAY: 619 oplen = 4; 620 args = longest_to_int (expr->elts[endpos - 2].longconst); 621 args -= longest_to_int (expr->elts[endpos - 3].longconst); 622 args += 1; 623 break; 624 625 case TERNOP_COND: 626 case TERNOP_SLICE: 627 case TERNOP_SLICE_COUNT: 628 args = 3; 629 break; 630 631 /* Modula-2 */ 632 case MULTI_SUBSCRIPT: 633 oplen = 3; 634 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst); 635 break; 636 637 case BINOP_ASSIGN_MODIFY: 638 oplen = 3; 639 args = 2; 640 break; 641 642 /* C++ */ 643 case OP_THIS: 644 oplen = 2; 645 break; 646 647 default: 648 args = 1 + (i < (int) BINOP_END); 649 } 650 651 while (args > 0) 652 { 653 oplen += length_of_subexp (expr, endpos - oplen); 654 args--; 655 } 656 657 return oplen; 658 } 659 660 /* Copy the subexpression ending just before index INEND in INEXPR 661 into OUTEXPR, starting at index OUTBEG. 662 In the process, convert it from suffix to prefix form. */ 663 664 static void 665 prefixify_subexp (inexpr, outexpr, inend, outbeg) 666 register struct expression *inexpr; 667 struct expression *outexpr; 668 register int inend; 669 int outbeg; 670 { 671 register int oplen = 1; 672 register int args = 0; 673 register int i; 674 int *arglens; 675 enum exp_opcode opcode; 676 677 /* Compute how long the last operation is (in OPLEN), 678 and also how many preceding subexpressions serve as 679 arguments for it (in ARGS). */ 680 681 opcode = inexpr->elts[inend - 1].opcode; 682 switch (opcode) 683 { 684 /* C++ */ 685 case OP_SCOPE: 686 oplen = longest_to_int (inexpr->elts[inend - 2].longconst); 687 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); 688 break; 689 690 case OP_LONG: 691 case OP_DOUBLE: 692 case OP_VAR_VALUE: 693 oplen = 4; 694 break; 695 696 case OP_TYPE: 697 case OP_BOOL: 698 case OP_LAST: 699 case OP_REGISTER: 700 case OP_INTERNALVAR: 701 oplen = 3; 702 break; 703 704 case OP_COMPLEX: 705 oplen = 1; 706 args = 2; 707 break; 708 709 case OP_FUNCALL: 710 case OP_F77_UNDETERMINED_ARGLIST: 711 oplen = 3; 712 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); 713 break; 714 715 case UNOP_MIN: 716 case UNOP_MAX: 717 oplen = 3; 718 break; 719 720 case UNOP_CAST: 721 case UNOP_MEMVAL: 722 oplen = 3; 723 args = 1; 724 break; 725 726 case UNOP_ABS: 727 case UNOP_CAP: 728 case UNOP_CHR: 729 case UNOP_FLOAT: 730 case UNOP_HIGH: 731 case UNOP_ODD: 732 case UNOP_ORD: 733 case UNOP_TRUNC: 734 oplen=1; 735 args=1; 736 break; 737 738 case STRUCTOP_STRUCT: 739 case STRUCTOP_PTR: 740 case OP_LABELED: 741 args = 1; 742 /* fall through */ 743 case OP_M2_STRING: 744 case OP_STRING: 745 case OP_NAME: 746 case OP_EXPRSTRING: 747 oplen = longest_to_int (inexpr->elts[inend - 2].longconst); 748 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 749 break; 750 751 case OP_BITSTRING: 752 oplen = longest_to_int (inexpr->elts[inend - 2].longconst); 753 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 754 oplen = 4 + BYTES_TO_EXP_ELEM (oplen); 755 break; 756 757 case OP_ARRAY: 758 oplen = 4; 759 args = longest_to_int (inexpr->elts[inend - 2].longconst); 760 args -= longest_to_int (inexpr->elts[inend - 3].longconst); 761 args += 1; 762 break; 763 764 case TERNOP_COND: 765 case TERNOP_SLICE: 766 case TERNOP_SLICE_COUNT: 767 args = 3; 768 break; 769 770 case BINOP_ASSIGN_MODIFY: 771 oplen = 3; 772 args = 2; 773 break; 774 775 /* Modula-2 */ 776 case MULTI_SUBSCRIPT: 777 oplen = 3; 778 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); 779 break; 780 781 /* C++ */ 782 case OP_THIS: 783 oplen = 2; 784 break; 785 786 default: 787 args = 1 + ((int) opcode < (int) BINOP_END); 788 } 789 790 /* Copy the final operator itself, from the end of the input 791 to the beginning of the output. */ 792 inend -= oplen; 793 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], 794 EXP_ELEM_TO_BYTES (oplen)); 795 outbeg += oplen; 796 797 /* Find the lengths of the arg subexpressions. */ 798 arglens = (int *) alloca (args * sizeof (int)); 799 for (i = args - 1; i >= 0; i--) 800 { 801 oplen = length_of_subexp (inexpr, inend); 802 arglens[i] = oplen; 803 inend -= oplen; 804 } 805 806 /* Now copy each subexpression, preserving the order of 807 the subexpressions, but prefixifying each one. 808 In this loop, inend starts at the beginning of 809 the expression this level is working on 810 and marches forward over the arguments. 811 outbeg does similarly in the output. */ 812 for (i = 0; i < args; i++) 813 { 814 oplen = arglens[i]; 815 inend += oplen; 816 prefixify_subexp (inexpr, outexpr, inend, outbeg); 817 outbeg += oplen; 818 } 819 } 820 821 /* This page contains the two entry points to this file. */ 822 823 /* Read an expression from the string *STRINGPTR points to, 824 parse it, and return a pointer to a struct expression that we malloc. 825 Use block BLOCK as the lexical context for variable names; 826 if BLOCK is zero, use the block of the selected stack frame. 827 Meanwhile, advance *STRINGPTR to point after the expression, 828 at the first nonwhite character that is not part of the expression 829 (possibly a null character). 830 831 If COMMA is nonzero, stop if a comma is reached. */ 832 833 struct expression * 834 parse_exp_1 (stringptr, block, comma) 835 char **stringptr; 836 struct block *block; 837 int comma; 838 { 839 struct cleanup *old_chain; 840 841 lexptr = *stringptr; 842 843 paren_depth = 0; 844 type_stack_depth = 0; 845 846 comma_terminates = comma; 847 848 if (lexptr == 0 || *lexptr == 0) 849 error_no_arg ("expression to compute"); 850 851 old_chain = make_cleanup (free_funcalls, 0); 852 funcall_chain = 0; 853 854 expression_context_block = block ? block : get_selected_block (); 855 856 namecopy = (char *) alloca (strlen (lexptr) + 1); 857 expout_size = 10; 858 expout_ptr = 0; 859 expout = (struct expression *) 860 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size)); 861 expout->language_defn = current_language; 862 make_cleanup (free_current_contents, &expout); 863 864 if (current_language->la_parser ()) 865 current_language->la_error (NULL); 866 867 discard_cleanups (old_chain); 868 869 /* Record the actual number of expression elements, and then 870 reallocate the expression memory so that we free up any 871 excess elements. */ 872 873 expout->nelts = expout_ptr; 874 expout = (struct expression *) 875 xrealloc ((char *) expout, 876 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));; 877 878 /* Convert expression from postfix form as generated by yacc 879 parser, to a prefix form. */ 880 881 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form"); 882 prefixify_expression (expout); 883 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form"); 884 885 *stringptr = lexptr; 886 return expout; 887 } 888 889 /* Parse STRING as an expression, and complain if this fails 890 to use up all of the contents of STRING. */ 891 892 struct expression * 893 parse_expression (string) 894 char *string; 895 { 896 register struct expression *exp; 897 exp = parse_exp_1 (&string, 0, 0); 898 if (*string) 899 error ("Junk after end of expression."); 900 return exp; 901 } 902 903 /* Stuff for maintaining a stack of types. Currently just used by C, but 904 probably useful for any language which declares its types "backwards". */ 905 906 void 907 push_type (tp) 908 enum type_pieces tp; 909 { 910 if (type_stack_depth == type_stack_size) 911 { 912 type_stack_size *= 2; 913 type_stack = (union type_stack_elt *) 914 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); 915 } 916 type_stack[type_stack_depth++].piece = tp; 917 } 918 919 void 920 push_type_int (n) 921 int n; 922 { 923 if (type_stack_depth == type_stack_size) 924 { 925 type_stack_size *= 2; 926 type_stack = (union type_stack_elt *) 927 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); 928 } 929 type_stack[type_stack_depth++].int_val = n; 930 } 931 932 enum type_pieces 933 pop_type () 934 { 935 if (type_stack_depth) 936 return type_stack[--type_stack_depth].piece; 937 return tp_end; 938 } 939 940 int 941 pop_type_int () 942 { 943 if (type_stack_depth) 944 return type_stack[--type_stack_depth].int_val; 945 /* "Can't happen". */ 946 return 0; 947 } 948 949 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE 950 as modified by all the stuff on the stack. */ 951 struct type * 952 follow_types (follow_type) 953 struct type *follow_type; 954 { 955 int done = 0; 956 int array_size; 957 struct type *range_type; 958 959 while (!done) 960 switch (pop_type ()) 961 { 962 case tp_end: 963 done = 1; 964 break; 965 case tp_pointer: 966 follow_type = lookup_pointer_type (follow_type); 967 break; 968 case tp_reference: 969 follow_type = lookup_reference_type (follow_type); 970 break; 971 case tp_array: 972 array_size = pop_type_int (); 973 /* FIXME-type-allocation: need a way to free this type when we are 974 done with it. */ 975 range_type = 976 create_range_type ((struct type *) NULL, 977 builtin_type_int, 0, 978 array_size >= 0 ? array_size - 1 : 0); 979 follow_type = 980 create_array_type ((struct type *) NULL, 981 follow_type, range_type); 982 if (array_size < 0) 983 TYPE_ARRAY_UPPER_BOUND_TYPE(follow_type) 984 = BOUND_CANNOT_BE_DETERMINED; 985 break; 986 case tp_function: 987 /* FIXME-type-allocation: need a way to free this type when we are 988 done with it. */ 989 follow_type = lookup_function_type (follow_type); 990 break; 991 } 992 return follow_type; 993 } 994 995 void 996 _initialize_parse () 997 { 998 type_stack_size = 80; 999 type_stack_depth = 0; 1000 type_stack = (union type_stack_elt *) 1001 xmalloc (type_stack_size * sizeof (*type_stack)); 1002 1003 msym_text_symbol_type = 1004 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL); 1005 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int; 1006 msym_data_symbol_type = 1007 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0, 1008 "<data variable, no debug info>", NULL); 1009 msym_unknown_symbol_type = 1010 init_type (TYPE_CODE_INT, 1, 0, 1011 "<variable (not text or data), no debug info>", 1012 NULL); 1013 } 1014