xref: /openbsd-src/gnu/usr.bin/binutils/gdb/objfiles.c (revision e93f7393d476ad1c5192174ea92f14ecc97182e7)
1 /* GDB routines for manipulating objfiles.
2    Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3    Contributed by Cygnus Support, using pieces from other GDB modules.
4 
5 This file is part of GDB.
6 
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20 
21 /* This file contains support routines for creating, manipulating, and
22    destroying objfile structures. */
23 
24 #include "defs.h"
25 #include "bfd.h"		/* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31 
32 #include <sys/types.h>
33 #include "gdb_stat.h"
34 #include <fcntl.h>
35 #include "obstack.h"
36 #include "gdb_string.h"
37 
38 /* Prototypes for local functions */
39 
40 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
41 
42 static int
43 open_existing_mapped_file PARAMS ((char *, long, int));
44 
45 static int
46 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
47 
48 static PTR
49 map_to_file PARAMS ((int));
50 
51 #endif  /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
52 
53 static void
54 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
55 
56 /* Externally visible variables that are owned by this module.
57    See declarations in objfile.h for more info. */
58 
59 struct objfile *object_files;		/* Linked list of all objfiles */
60 struct objfile *current_objfile;	/* For symbol file being read in */
61 struct objfile *symfile_objfile;	/* Main symbol table loaded from */
62 struct objfile *rt_common_objfile;	/* For runtime common symbols */
63 
64 int mapped_symbol_files;		/* Try to use mapped symbol files */
65 
66 /* Locate all mappable sections of a BFD file.
67    objfile_p_char is a char * to get it through
68    bfd_map_over_sections; we cast it back to its proper type.  */
69 
70 static void
71 add_to_objfile_sections (abfd, asect, objfile_p_char)
72      bfd *abfd;
73      sec_ptr asect;
74      PTR objfile_p_char;
75 {
76   struct objfile *objfile = (struct objfile *) objfile_p_char;
77   struct obj_section section;
78   flagword aflag;
79 
80   aflag = bfd_get_section_flags (abfd, asect);
81   if (!(aflag & SEC_ALLOC))
82     return;
83   if (0 == bfd_section_size (abfd, asect))
84     return;
85   section.offset = 0;
86   section.objfile = objfile;
87   section.the_bfd_section = asect;
88   section.addr = bfd_section_vma (abfd, asect);
89   section.endaddr = section.addr + bfd_section_size (abfd, asect);
90   obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof(section));
91   objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
92 }
93 
94 /* Builds a section table for OBJFILE.
95    Returns 0 if OK, 1 on error (in which case bfd_error contains the
96    error).  */
97 
98 int
99 build_objfile_section_table (objfile)
100      struct objfile *objfile;
101 {
102   /* objfile->sections can be already set when reading a mapped symbol
103      file.  I believe that we do need to rebuild the section table in
104      this case (we rebuild other things derived from the bfd), but we
105      can't free the old one (it's in the psymbol_obstack).  So we just
106      waste some memory.  */
107 
108   objfile->sections_end = 0;
109   bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
110   objfile->sections = (struct obj_section *)
111     obstack_finish (&objfile->psymbol_obstack);
112   objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
113   return(0);
114 }
115 
116 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
117    whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
118    struct, fill it in as best we can, link it into the list of all known
119    objfiles, and return a pointer to the new objfile struct. */
120 
121 struct objfile *
122 allocate_objfile (abfd, mapped)
123      bfd *abfd;
124      int mapped;
125 {
126   struct objfile *objfile = NULL;
127   struct objfile *last_one = NULL;
128 
129   mapped |= mapped_symbol_files;
130 
131 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
132   {
133 
134     /* If we can support mapped symbol files, try to open/reopen the
135        mapped file that corresponds to the file from which we wish to
136        read symbols.  If the objfile is to be mapped, we must malloc
137        the structure itself using the mmap version, and arrange that
138        all memory allocation for the objfile uses the mmap routines.
139        If we are reusing an existing mapped file, from which we get
140        our objfile pointer, we have to make sure that we update the
141        pointers to the alloc/free functions in the obstack, in case
142        these functions have moved within the current gdb.  */
143 
144     int fd;
145 
146     fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
147 			   mapped);
148     if (fd >= 0)
149       {
150 	PTR md;
151 
152 	if ((md = map_to_file (fd)) == NULL)
153 	  {
154 	    close (fd);
155 	  }
156 	else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
157 	  {
158 	    /* Update memory corruption handler function addresses. */
159 	    init_malloc (md);
160 	    objfile -> md = md;
161 	    objfile -> mmfd = fd;
162 	    /* Update pointers to functions to *our* copies */
163 	    obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
164 	    obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
165 	    obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
166 	    obstack_freefun (&objfile -> psymbol_obstack, mfree);
167 	    obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
168 	    obstack_freefun (&objfile -> symbol_obstack, mfree);
169 	    obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
170 	    obstack_freefun (&objfile -> type_obstack, mfree);
171 	    /* If already in objfile list, unlink it. */
172 	    unlink_objfile (objfile);
173 	    /* Forget things specific to a particular gdb, may have changed. */
174 	    objfile -> sf = NULL;
175 	  }
176 	else
177 	  {
178 
179 	    /* Set up to detect internal memory corruption.  MUST be
180 	       done before the first malloc.  See comments in
181 	       init_malloc() and mmcheck().  */
182 
183 	    init_malloc (md);
184 
185 	    objfile = (struct objfile *)
186 	      xmmalloc (md, sizeof (struct objfile));
187 	    memset (objfile, 0, sizeof (struct objfile));
188 	    objfile -> md = md;
189 	    objfile -> mmfd = fd;
190 	    objfile -> flags |= OBJF_MAPPED;
191 	    mmalloc_setkey (objfile -> md, 0, objfile);
192 	    obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
193 						 0, 0, xmmalloc, mfree,
194 						 objfile -> md);
195 	    obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
196 						 0, 0, xmmalloc, mfree,
197 						 objfile -> md);
198 	    obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
199 						 0, 0, xmmalloc, mfree,
200 						 objfile -> md);
201 	    obstack_specify_allocation_with_arg (&objfile -> type_obstack,
202 						 0, 0, xmmalloc, mfree,
203 						 objfile -> md);
204 	  }
205       }
206 
207     if (mapped && (objfile == NULL))
208       {
209 	warning ("symbol table for '%s' will not be mapped",
210 		 bfd_get_filename (abfd));
211       }
212   }
213 #else	/* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
214 
215   if (mapped)
216     {
217       warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
218 
219       /* Turn off the global flag so we don't try to do mapped symbol tables
220 	 any more, which shuts up gdb unless the user specifically gives the
221 	 "mapped" keyword again. */
222 
223       mapped_symbol_files = 0;
224     }
225 
226 #endif	/* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
227 
228   /* If we don't support mapped symbol files, didn't ask for the file to be
229      mapped, or failed to open the mapped file for some reason, then revert
230      back to an unmapped objfile. */
231 
232   if (objfile == NULL)
233     {
234       objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
235       memset (objfile, 0, sizeof (struct objfile));
236       objfile -> md = NULL;
237       obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
238 				  xmalloc, free);
239       obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
240 				  free);
241       obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
242 				  free);
243       obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
244 				  free);
245     }
246 
247   /* Update the per-objfile information that comes from the bfd, ensuring
248      that any data that is reference is saved in the per-objfile data
249      region. */
250 
251   objfile -> obfd = abfd;
252   if (objfile -> name != NULL)
253     {
254       mfree (objfile -> md, objfile -> name);
255     }
256   objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
257   objfile -> mtime = bfd_get_mtime (abfd);
258 
259   /* Build section table.  */
260 
261   if (build_objfile_section_table (objfile))
262     {
263       error ("Can't find the file sections in `%s': %s",
264 	     objfile -> name, bfd_errmsg (bfd_get_error ()));
265     }
266 
267   /* Add this file onto the tail of the linked list of other such files. */
268 
269   objfile -> next = NULL;
270   if (object_files == NULL)
271     object_files = objfile;
272   else
273     {
274       for (last_one = object_files;
275 	   last_one -> next;
276 	   last_one = last_one -> next);
277       last_one -> next = objfile;
278     }
279   return (objfile);
280 }
281 
282 /* Put OBJFILE at the front of the list.  */
283 
284 void
285 objfile_to_front (objfile)
286      struct objfile *objfile;
287 {
288   struct objfile **objp;
289   for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
290     {
291       if (*objp == objfile)
292 	{
293 	  /* Unhook it from where it is.  */
294 	  *objp = objfile->next;
295 	  /* Put it in the front.  */
296 	  objfile->next = object_files;
297 	  object_files = objfile;
298 	  break;
299 	}
300     }
301 }
302 
303 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
304    list.
305 
306    It is not a bug, or error, to call this function if OBJFILE is not known
307    to be in the current list.  This is done in the case of mapped objfiles,
308    for example, just to ensure that the mapped objfile doesn't appear twice
309    in the list.  Since the list is threaded, linking in a mapped objfile
310    twice would create a circular list.
311 
312    If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
313    unlinking it, just to ensure that we have completely severed any linkages
314    between the OBJFILE and the list. */
315 
316 void
317 unlink_objfile (objfile)
318      struct objfile *objfile;
319 {
320   struct objfile** objpp;
321 
322   for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
323     {
324       if (*objpp == objfile)
325 	{
326 	  *objpp = (*objpp) -> next;
327 	  objfile -> next = NULL;
328 	  break;
329 	}
330     }
331 }
332 
333 
334 /* Destroy an objfile and all the symtabs and psymtabs under it.  Note
335    that as much as possible is allocated on the symbol_obstack and
336    psymbol_obstack, so that the memory can be efficiently freed.
337 
338    Things which we do NOT free because they are not in malloc'd memory
339    or not in memory specific to the objfile include:
340 
341    	objfile -> sf
342 
343    FIXME:  If the objfile is using reusable symbol information (via mmalloc),
344    then we need to take into account the fact that more than one process
345    may be using the symbol information at the same time (when mmalloc is
346    extended to support cooperative locking).  When more than one process
347    is using the mapped symbol info, we need to be more careful about when
348    we free objects in the reusable area. */
349 
350 void
351 free_objfile (objfile)
352      struct objfile *objfile;
353 {
354   /* First do any symbol file specific actions required when we are
355      finished with a particular symbol file.  Note that if the objfile
356      is using reusable symbol information (via mmalloc) then each of
357      these routines is responsible for doing the correct thing, either
358      freeing things which are valid only during this particular gdb
359      execution, or leaving them to be reused during the next one. */
360 
361   if (objfile -> sf != NULL)
362     {
363       (*objfile -> sf -> sym_finish) (objfile);
364     }
365 
366   /* We always close the bfd. */
367 
368   if (objfile -> obfd != NULL)
369     {
370       char *name = bfd_get_filename (objfile->obfd);
371       if (!bfd_close (objfile -> obfd))
372 	warning ("cannot close \"%s\": %s",
373 		 name, bfd_errmsg (bfd_get_error ()));
374       free (name);
375     }
376 
377   /* Remove it from the chain of all objfiles. */
378 
379   unlink_objfile (objfile);
380 
381   /* If we are going to free the runtime common objfile, mark it
382      as unallocated.  */
383 
384   if (objfile == rt_common_objfile)
385     rt_common_objfile = NULL;
386 
387   /* Before the symbol table code was redone to make it easier to
388      selectively load and remove information particular to a specific
389      linkage unit, gdb used to do these things whenever the monolithic
390      symbol table was blown away.  How much still needs to be done
391      is unknown, but we play it safe for now and keep each action until
392      it is shown to be no longer needed. */
393 
394 #if defined (CLEAR_SOLIB)
395   CLEAR_SOLIB ();
396   /* CLEAR_SOLIB closes the bfd's for any shared libraries.  But
397      the to_sections for a core file might refer to those bfd's.  So
398      detach any core file.  */
399   {
400     struct target_ops *t = find_core_target ();
401     if (t != NULL)
402       (t->to_detach) (NULL, 0);
403   }
404 #endif
405   /* I *think* all our callers call clear_symtab_users.  If so, no need
406      to call this here.  */
407   clear_pc_function_cache ();
408 
409   /* The last thing we do is free the objfile struct itself for the
410      non-reusable case, or detach from the mapped file for the reusable
411      case.  Note that the mmalloc_detach or the mfree is the last thing
412      we can do with this objfile. */
413 
414 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
415 
416   if (objfile -> flags & OBJF_MAPPED)
417     {
418       /* Remember the fd so we can close it.  We can't close it before
419 	 doing the detach, and after the detach the objfile is gone. */
420       int mmfd;
421 
422       mmfd = objfile -> mmfd;
423       mmalloc_detach (objfile -> md);
424       objfile = NULL;
425       close (mmfd);
426     }
427 
428 #endif	/* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
429 
430   /* If we still have an objfile, then either we don't support reusable
431      objfiles or this one was not reusable.  So free it normally. */
432 
433   if (objfile != NULL)
434     {
435       if (objfile -> name != NULL)
436 	{
437 	  mfree (objfile -> md, objfile -> name);
438 	}
439       if (objfile->global_psymbols.list)
440 	mfree (objfile->md, objfile->global_psymbols.list);
441       if (objfile->static_psymbols.list)
442 	mfree (objfile->md, objfile->static_psymbols.list);
443       /* Free the obstacks for non-reusable objfiles */
444       obstack_free (&objfile -> psymbol_cache.cache, 0);
445       obstack_free (&objfile -> psymbol_obstack, 0);
446       obstack_free (&objfile -> symbol_obstack, 0);
447       obstack_free (&objfile -> type_obstack, 0);
448       mfree (objfile -> md, objfile);
449       objfile = NULL;
450     }
451 }
452 
453 
454 /* Free all the object files at once and clean up their users.  */
455 
456 void
457 free_all_objfiles ()
458 {
459   struct objfile *objfile, *temp;
460 
461   ALL_OBJFILES_SAFE (objfile, temp)
462     {
463       free_objfile (objfile);
464     }
465   clear_symtab_users ();
466 }
467 
468 /* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
469    entries in new_offsets.  */
470 void
471 objfile_relocate (objfile, new_offsets)
472      struct objfile *objfile;
473      struct section_offsets *new_offsets;
474 {
475   struct section_offsets *delta = (struct section_offsets *) alloca
476     (sizeof (struct section_offsets)
477      + objfile->num_sections * sizeof (delta->offsets));
478 
479   {
480     int i;
481     int something_changed = 0;
482     for (i = 0; i < objfile->num_sections; ++i)
483       {
484 	ANOFFSET (delta, i) =
485 	  ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
486 	if (ANOFFSET (delta, i) != 0)
487 	  something_changed = 1;
488       }
489     if (!something_changed)
490       return;
491   }
492 
493   /* OK, get all the symtabs.  */
494   {
495     struct symtab *s;
496 
497     ALL_OBJFILE_SYMTABS (objfile, s)
498       {
499 	struct linetable *l;
500 	struct blockvector *bv;
501 	int i;
502 
503 	/* First the line table.  */
504 	l = LINETABLE (s);
505 	if (l)
506 	  {
507 	    for (i = 0; i < l->nitems; ++i)
508 	      l->item[i].pc += ANOFFSET (delta, s->block_line_section);
509 	  }
510 
511 	/* Don't relocate a shared blockvector more than once.  */
512 	if (!s->primary)
513 	  continue;
514 
515 	bv = BLOCKVECTOR (s);
516 	for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
517 	  {
518 	    struct block *b;
519 	    int j;
520 
521 	    b = BLOCKVECTOR_BLOCK (bv, i);
522 	    BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
523 	    BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
524 
525 	    for (j = 0; j < BLOCK_NSYMS (b); ++j)
526 	      {
527 		struct symbol *sym = BLOCK_SYM (b, j);
528 		/* The RS6000 code from which this was taken skipped
529 		   any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
530 		   But I'm leaving out that test, on the theory that
531 		   they can't possibly pass the tests below.  */
532 		if ((SYMBOL_CLASS (sym) == LOC_LABEL
533 		     || SYMBOL_CLASS (sym) == LOC_STATIC)
534 		    && SYMBOL_SECTION (sym) >= 0)
535 		  {
536 		    SYMBOL_VALUE_ADDRESS (sym) +=
537 		      ANOFFSET (delta, SYMBOL_SECTION (sym));
538 		  }
539 #ifdef MIPS_EFI_SYMBOL_NAME
540 		/* Relocate Extra Function Info for ecoff.  */
541 
542 		else
543 		  if (SYMBOL_CLASS (sym) == LOC_CONST
544 		      && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
545 		      && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
546 		ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section));
547 #endif
548 	      }
549 	  }
550       }
551   }
552 
553   {
554     struct partial_symtab *p;
555 
556     ALL_OBJFILE_PSYMTABS (objfile, p)
557       {
558 	p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
559 	p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
560       }
561   }
562 
563   {
564     struct partial_symbol **psym;
565 
566     for (psym = objfile->global_psymbols.list;
567 	 psym < objfile->global_psymbols.next;
568 	 psym++)
569       if (SYMBOL_SECTION (*psym) >= 0)
570 	SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym));
571     for (psym = objfile->static_psymbols.list;
572 	 psym < objfile->static_psymbols.next;
573 	 psym++)
574       if (SYMBOL_SECTION (*psym) >= 0)
575 	SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym));
576   }
577 
578   {
579     struct minimal_symbol *msym;
580     ALL_OBJFILE_MSYMBOLS (objfile, msym)
581       if (SYMBOL_SECTION (msym) >= 0)
582 	SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
583   }
584   /* Relocating different sections by different amounts may cause the symbols
585      to be out of order.  */
586   msymbols_sort (objfile);
587 
588   {
589     int i;
590     for (i = 0; i < objfile->num_sections; ++i)
591       ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
592   }
593 
594   {
595     struct obj_section *s;
596     bfd *abfd;
597 
598     abfd = objfile->obfd;
599 
600     for (s = objfile->sections;
601 	 s < objfile->sections_end; ++s)
602       {
603 	flagword flags;
604 
605 	flags = bfd_get_section_flags (abfd, s->the_bfd_section);
606 
607 	if (flags & SEC_CODE)
608 	  {
609 	    s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
610 	    s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
611 	  }
612 	else if (flags & (SEC_DATA | SEC_LOAD))
613 	  {
614 	    s->addr += ANOFFSET (delta, SECT_OFF_DATA);
615 	    s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
616 	  }
617 	else if (flags & SEC_ALLOC)
618 	  {
619 	    s->addr += ANOFFSET (delta, SECT_OFF_BSS);
620 	    s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
621 	  }
622       }
623   }
624 
625   if (objfile->ei.entry_point != ~0)
626     objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
627 
628   if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
629     {
630       objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
631       objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
632     }
633 
634   if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
635     {
636       objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
637       objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
638     }
639 
640   if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
641     {
642       objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
643       objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
644     }
645 }
646 
647 /* Many places in gdb want to test just to see if we have any partial
648    symbols available.  This function returns zero if none are currently
649    available, nonzero otherwise. */
650 
651 int
652 have_partial_symbols ()
653 {
654   struct objfile *ofp;
655 
656   ALL_OBJFILES (ofp)
657     {
658       if (ofp -> psymtabs != NULL)
659 	{
660 	  return 1;
661 	}
662     }
663   return 0;
664 }
665 
666 /* Many places in gdb want to test just to see if we have any full
667    symbols available.  This function returns zero if none are currently
668    available, nonzero otherwise. */
669 
670 int
671 have_full_symbols ()
672 {
673   struct objfile *ofp;
674 
675   ALL_OBJFILES (ofp)
676     {
677       if (ofp -> symtabs != NULL)
678 	{
679 	  return 1;
680 	}
681     }
682   return 0;
683 }
684 
685 /* Many places in gdb want to test just to see if we have any minimal
686    symbols available.  This function returns zero if none are currently
687    available, nonzero otherwise. */
688 
689 int
690 have_minimal_symbols ()
691 {
692   struct objfile *ofp;
693 
694   ALL_OBJFILES (ofp)
695     {
696       if (ofp -> msymbols != NULL)
697 	{
698 	  return 1;
699 	}
700     }
701   return 0;
702 }
703 
704 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
705 
706 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
707    of the corresponding symbol file in MTIME, try to open an existing file
708    with the name SYMSFILENAME and verify it is more recent than the base
709    file by checking it's timestamp against MTIME.
710 
711    If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
712 
713    If SYMSFILENAME does exist, but is out of date, we check to see if the
714    user has specified creation of a mapped file.  If so, we don't issue
715    any warning message because we will be creating a new mapped file anyway,
716    overwriting the old one.  If not, then we issue a warning message so that
717    the user will know why we aren't using this existing mapped symbol file.
718    In either case, we return -1.
719 
720    If SYMSFILENAME does exist and is not out of date, but can't be opened for
721    some reason, then prints an appropriate system error message and returns -1.
722 
723    Otherwise, returns the open file descriptor.  */
724 
725 static int
726 open_existing_mapped_file (symsfilename, mtime, mapped)
727      char *symsfilename;
728      long mtime;
729      int mapped;
730 {
731   int fd = -1;
732   struct stat sbuf;
733 
734   if (stat (symsfilename, &sbuf) == 0)
735     {
736       if (sbuf.st_mtime < mtime)
737 	{
738 	  if (!mapped)
739 	    {
740 	      warning ("mapped symbol file `%s' is out of date, ignored it",
741 		       symsfilename);
742 	    }
743 	}
744       else if ((fd = open (symsfilename, O_RDWR)) < 0)
745 	{
746 	  if (error_pre_print)
747 	    {
748 	      printf_unfiltered (error_pre_print);
749 	    }
750 	  print_sys_errmsg (symsfilename, errno);
751 	}
752     }
753   return (fd);
754 }
755 
756 /* Look for a mapped symbol file that corresponds to FILENAME and is more
757    recent than MTIME.  If MAPPED is nonzero, the user has asked that gdb
758    use a mapped symbol file for this file, so create a new one if one does
759    not currently exist.
760 
761    If found, then return an open file descriptor for the file, otherwise
762    return -1.
763 
764    This routine is responsible for implementing the policy that generates
765    the name of the mapped symbol file from the name of a file containing
766    symbols that gdb would like to read.  Currently this policy is to append
767    ".syms" to the name of the file.
768 
769    This routine is also responsible for implementing the policy that
770    determines where the mapped symbol file is found (the search path).
771    This policy is that when reading an existing mapped file, a file of
772    the correct name in the current directory takes precedence over a
773    file of the correct name in the same directory as the symbol file.
774    When creating a new mapped file, it is always created in the current
775    directory.  This helps to minimize the chances of a user unknowingly
776    creating big mapped files in places like /bin and /usr/local/bin, and
777    allows a local copy to override a manually installed global copy (in
778    /bin for example).  */
779 
780 static int
781 open_mapped_file (filename, mtime, mapped)
782      char *filename;
783      long mtime;
784      int mapped;
785 {
786   int fd;
787   char *symsfilename;
788 
789   /* First try to open an existing file in the current directory, and
790      then try the directory where the symbol file is located. */
791 
792   symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
793   if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
794     {
795       free (symsfilename);
796       symsfilename = concat (filename, ".syms", (char *) NULL);
797       fd = open_existing_mapped_file (symsfilename, mtime, mapped);
798     }
799 
800   /* If we don't have an open file by now, then either the file does not
801      already exist, or the base file has changed since it was created.  In
802      either case, if the user has specified use of a mapped file, then
803      create a new mapped file, truncating any existing one.  If we can't
804      create one, print a system error message saying why we can't.
805 
806      By default the file is rw for everyone, with the user's umask taking
807      care of turning off the permissions the user wants off. */
808 
809   if ((fd < 0) && mapped)
810     {
811       free (symsfilename);
812       symsfilename = concat ("./", basename (filename), ".syms",
813 			     (char *) NULL);
814       if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
815 	{
816 	  if (error_pre_print)
817 	    {
818 	      printf_unfiltered (error_pre_print);
819 	    }
820 	  print_sys_errmsg (symsfilename, errno);
821 	}
822     }
823 
824   free (symsfilename);
825   return (fd);
826 }
827 
828 static PTR
829 map_to_file (fd)
830      int fd;
831 {
832   PTR md;
833   CORE_ADDR mapto;
834 
835   md = mmalloc_attach (fd, (PTR) 0);
836   if (md != NULL)
837     {
838       mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
839       md = mmalloc_detach (md);
840       if (md != NULL)
841 	{
842 	  /* FIXME: should figure out why detach failed */
843 	  md = NULL;
844 	}
845       else if (mapto != (CORE_ADDR) NULL)
846 	{
847 	  /* This mapping file needs to be remapped at "mapto" */
848 	  md = mmalloc_attach (fd, (PTR) mapto);
849 	}
850       else
851 	{
852 	  /* This is a freshly created mapping file. */
853 	  mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
854 	  if (mapto != 0)
855 	    {
856 	      /* To avoid reusing the freshly created mapping file, at the
857 		 address selected by mmap, we must truncate it before trying
858 		 to do an attach at the address we want. */
859 	      ftruncate (fd, 0);
860 	      md = mmalloc_attach (fd, (PTR) mapto);
861 	      if (md != NULL)
862 		{
863 		  mmalloc_setkey (md, 1, (PTR) mapto);
864 		}
865 	    }
866 	}
867     }
868   return (md);
869 }
870 
871 #endif	/* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
872 
873 /* Returns a section whose range includes PC or NULL if none found. */
874 
875 struct obj_section *
876 find_pc_section(pc)
877      CORE_ADDR pc;
878 {
879   struct obj_section *s;
880   struct objfile *objfile;
881 
882   ALL_OBJFILES (objfile)
883     for (s = objfile->sections; s < objfile->sections_end; ++s)
884       if (s->addr <= pc
885 	  && pc < s->endaddr)
886 	return(s);
887 
888   return(NULL);
889 }
890 
891 /* In SVR4, we recognize a trampoline by it's section name.
892    That is, if the pc is in a section named ".plt" then we are in
893    a trampoline.  */
894 
895 int
896 in_plt_section(pc, name)
897      CORE_ADDR pc;
898      char *name;
899 {
900   struct obj_section *s;
901   int retval = 0;
902 
903   s = find_pc_section(pc);
904 
905   retval = (s != NULL
906 	    && s->the_bfd_section->name != NULL
907 	    && STREQ (s->the_bfd_section->name, ".plt"));
908   return(retval);
909 }
910