1 /* GDB routines for manipulating objfiles. 2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc. 3 Contributed by Cygnus Support, using pieces from other GDB modules. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 20 21 /* This file contains support routines for creating, manipulating, and 22 destroying objfile structures. */ 23 24 #include "defs.h" 25 #include "bfd.h" /* Binary File Description */ 26 #include "symtab.h" 27 #include "symfile.h" 28 #include "objfiles.h" 29 #include "gdb-stabs.h" 30 #include "target.h" 31 32 #include <sys/types.h> 33 #include "gdb_stat.h" 34 #include <fcntl.h> 35 #include "obstack.h" 36 #include "gdb_string.h" 37 38 /* Prototypes for local functions */ 39 40 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) 41 42 static int 43 open_existing_mapped_file PARAMS ((char *, long, int)); 44 45 static int 46 open_mapped_file PARAMS ((char *filename, long mtime, int mapped)); 47 48 static PTR 49 map_to_file PARAMS ((int)); 50 51 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ 52 53 static void 54 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR)); 55 56 /* Externally visible variables that are owned by this module. 57 See declarations in objfile.h for more info. */ 58 59 struct objfile *object_files; /* Linked list of all objfiles */ 60 struct objfile *current_objfile; /* For symbol file being read in */ 61 struct objfile *symfile_objfile; /* Main symbol table loaded from */ 62 struct objfile *rt_common_objfile; /* For runtime common symbols */ 63 64 int mapped_symbol_files; /* Try to use mapped symbol files */ 65 66 /* Locate all mappable sections of a BFD file. 67 objfile_p_char is a char * to get it through 68 bfd_map_over_sections; we cast it back to its proper type. */ 69 70 static void 71 add_to_objfile_sections (abfd, asect, objfile_p_char) 72 bfd *abfd; 73 sec_ptr asect; 74 PTR objfile_p_char; 75 { 76 struct objfile *objfile = (struct objfile *) objfile_p_char; 77 struct obj_section section; 78 flagword aflag; 79 80 aflag = bfd_get_section_flags (abfd, asect); 81 if (!(aflag & SEC_ALLOC)) 82 return; 83 if (0 == bfd_section_size (abfd, asect)) 84 return; 85 section.offset = 0; 86 section.objfile = objfile; 87 section.the_bfd_section = asect; 88 section.addr = bfd_section_vma (abfd, asect); 89 section.endaddr = section.addr + bfd_section_size (abfd, asect); 90 obstack_grow (&objfile->psymbol_obstack, (char *) §ion, sizeof(section)); 91 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); 92 } 93 94 /* Builds a section table for OBJFILE. 95 Returns 0 if OK, 1 on error (in which case bfd_error contains the 96 error). */ 97 98 int 99 build_objfile_section_table (objfile) 100 struct objfile *objfile; 101 { 102 /* objfile->sections can be already set when reading a mapped symbol 103 file. I believe that we do need to rebuild the section table in 104 this case (we rebuild other things derived from the bfd), but we 105 can't free the old one (it's in the psymbol_obstack). So we just 106 waste some memory. */ 107 108 objfile->sections_end = 0; 109 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile); 110 objfile->sections = (struct obj_section *) 111 obstack_finish (&objfile->psymbol_obstack); 112 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; 113 return(0); 114 } 115 116 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates 117 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile 118 struct, fill it in as best we can, link it into the list of all known 119 objfiles, and return a pointer to the new objfile struct. */ 120 121 struct objfile * 122 allocate_objfile (abfd, mapped) 123 bfd *abfd; 124 int mapped; 125 { 126 struct objfile *objfile = NULL; 127 struct objfile *last_one = NULL; 128 129 mapped |= mapped_symbol_files; 130 131 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) 132 { 133 134 /* If we can support mapped symbol files, try to open/reopen the 135 mapped file that corresponds to the file from which we wish to 136 read symbols. If the objfile is to be mapped, we must malloc 137 the structure itself using the mmap version, and arrange that 138 all memory allocation for the objfile uses the mmap routines. 139 If we are reusing an existing mapped file, from which we get 140 our objfile pointer, we have to make sure that we update the 141 pointers to the alloc/free functions in the obstack, in case 142 these functions have moved within the current gdb. */ 143 144 int fd; 145 146 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd), 147 mapped); 148 if (fd >= 0) 149 { 150 PTR md; 151 152 if ((md = map_to_file (fd)) == NULL) 153 { 154 close (fd); 155 } 156 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL) 157 { 158 /* Update memory corruption handler function addresses. */ 159 init_malloc (md); 160 objfile -> md = md; 161 objfile -> mmfd = fd; 162 /* Update pointers to functions to *our* copies */ 163 obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc); 164 obstack_freefun (&objfile -> psymbol_cache.cache, mfree); 165 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc); 166 obstack_freefun (&objfile -> psymbol_obstack, mfree); 167 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc); 168 obstack_freefun (&objfile -> symbol_obstack, mfree); 169 obstack_chunkfun (&objfile -> type_obstack, xmmalloc); 170 obstack_freefun (&objfile -> type_obstack, mfree); 171 /* If already in objfile list, unlink it. */ 172 unlink_objfile (objfile); 173 /* Forget things specific to a particular gdb, may have changed. */ 174 objfile -> sf = NULL; 175 } 176 else 177 { 178 179 /* Set up to detect internal memory corruption. MUST be 180 done before the first malloc. See comments in 181 init_malloc() and mmcheck(). */ 182 183 init_malloc (md); 184 185 objfile = (struct objfile *) 186 xmmalloc (md, sizeof (struct objfile)); 187 memset (objfile, 0, sizeof (struct objfile)); 188 objfile -> md = md; 189 objfile -> mmfd = fd; 190 objfile -> flags |= OBJF_MAPPED; 191 mmalloc_setkey (objfile -> md, 0, objfile); 192 obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache, 193 0, 0, xmmalloc, mfree, 194 objfile -> md); 195 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack, 196 0, 0, xmmalloc, mfree, 197 objfile -> md); 198 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack, 199 0, 0, xmmalloc, mfree, 200 objfile -> md); 201 obstack_specify_allocation_with_arg (&objfile -> type_obstack, 202 0, 0, xmmalloc, mfree, 203 objfile -> md); 204 } 205 } 206 207 if (mapped && (objfile == NULL)) 208 { 209 warning ("symbol table for '%s' will not be mapped", 210 bfd_get_filename (abfd)); 211 } 212 } 213 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */ 214 215 if (mapped) 216 { 217 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap()."); 218 219 /* Turn off the global flag so we don't try to do mapped symbol tables 220 any more, which shuts up gdb unless the user specifically gives the 221 "mapped" keyword again. */ 222 223 mapped_symbol_files = 0; 224 } 225 226 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ 227 228 /* If we don't support mapped symbol files, didn't ask for the file to be 229 mapped, or failed to open the mapped file for some reason, then revert 230 back to an unmapped objfile. */ 231 232 if (objfile == NULL) 233 { 234 objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); 235 memset (objfile, 0, sizeof (struct objfile)); 236 objfile -> md = NULL; 237 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0, 238 xmalloc, free); 239 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc, 240 free); 241 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc, 242 free); 243 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc, 244 free); 245 } 246 247 /* Update the per-objfile information that comes from the bfd, ensuring 248 that any data that is reference is saved in the per-objfile data 249 region. */ 250 251 objfile -> obfd = abfd; 252 if (objfile -> name != NULL) 253 { 254 mfree (objfile -> md, objfile -> name); 255 } 256 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd)); 257 objfile -> mtime = bfd_get_mtime (abfd); 258 259 /* Build section table. */ 260 261 if (build_objfile_section_table (objfile)) 262 { 263 error ("Can't find the file sections in `%s': %s", 264 objfile -> name, bfd_errmsg (bfd_get_error ())); 265 } 266 267 /* Add this file onto the tail of the linked list of other such files. */ 268 269 objfile -> next = NULL; 270 if (object_files == NULL) 271 object_files = objfile; 272 else 273 { 274 for (last_one = object_files; 275 last_one -> next; 276 last_one = last_one -> next); 277 last_one -> next = objfile; 278 } 279 return (objfile); 280 } 281 282 /* Put OBJFILE at the front of the list. */ 283 284 void 285 objfile_to_front (objfile) 286 struct objfile *objfile; 287 { 288 struct objfile **objp; 289 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 290 { 291 if (*objp == objfile) 292 { 293 /* Unhook it from where it is. */ 294 *objp = objfile->next; 295 /* Put it in the front. */ 296 objfile->next = object_files; 297 object_files = objfile; 298 break; 299 } 300 } 301 } 302 303 /* Unlink OBJFILE from the list of known objfiles, if it is found in the 304 list. 305 306 It is not a bug, or error, to call this function if OBJFILE is not known 307 to be in the current list. This is done in the case of mapped objfiles, 308 for example, just to ensure that the mapped objfile doesn't appear twice 309 in the list. Since the list is threaded, linking in a mapped objfile 310 twice would create a circular list. 311 312 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after 313 unlinking it, just to ensure that we have completely severed any linkages 314 between the OBJFILE and the list. */ 315 316 void 317 unlink_objfile (objfile) 318 struct objfile *objfile; 319 { 320 struct objfile** objpp; 321 322 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next)) 323 { 324 if (*objpp == objfile) 325 { 326 *objpp = (*objpp) -> next; 327 objfile -> next = NULL; 328 break; 329 } 330 } 331 } 332 333 334 /* Destroy an objfile and all the symtabs and psymtabs under it. Note 335 that as much as possible is allocated on the symbol_obstack and 336 psymbol_obstack, so that the memory can be efficiently freed. 337 338 Things which we do NOT free because they are not in malloc'd memory 339 or not in memory specific to the objfile include: 340 341 objfile -> sf 342 343 FIXME: If the objfile is using reusable symbol information (via mmalloc), 344 then we need to take into account the fact that more than one process 345 may be using the symbol information at the same time (when mmalloc is 346 extended to support cooperative locking). When more than one process 347 is using the mapped symbol info, we need to be more careful about when 348 we free objects in the reusable area. */ 349 350 void 351 free_objfile (objfile) 352 struct objfile *objfile; 353 { 354 /* First do any symbol file specific actions required when we are 355 finished with a particular symbol file. Note that if the objfile 356 is using reusable symbol information (via mmalloc) then each of 357 these routines is responsible for doing the correct thing, either 358 freeing things which are valid only during this particular gdb 359 execution, or leaving them to be reused during the next one. */ 360 361 if (objfile -> sf != NULL) 362 { 363 (*objfile -> sf -> sym_finish) (objfile); 364 } 365 366 /* We always close the bfd. */ 367 368 if (objfile -> obfd != NULL) 369 { 370 char *name = bfd_get_filename (objfile->obfd); 371 if (!bfd_close (objfile -> obfd)) 372 warning ("cannot close \"%s\": %s", 373 name, bfd_errmsg (bfd_get_error ())); 374 free (name); 375 } 376 377 /* Remove it from the chain of all objfiles. */ 378 379 unlink_objfile (objfile); 380 381 /* If we are going to free the runtime common objfile, mark it 382 as unallocated. */ 383 384 if (objfile == rt_common_objfile) 385 rt_common_objfile = NULL; 386 387 /* Before the symbol table code was redone to make it easier to 388 selectively load and remove information particular to a specific 389 linkage unit, gdb used to do these things whenever the monolithic 390 symbol table was blown away. How much still needs to be done 391 is unknown, but we play it safe for now and keep each action until 392 it is shown to be no longer needed. */ 393 394 #if defined (CLEAR_SOLIB) 395 CLEAR_SOLIB (); 396 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But 397 the to_sections for a core file might refer to those bfd's. So 398 detach any core file. */ 399 { 400 struct target_ops *t = find_core_target (); 401 if (t != NULL) 402 (t->to_detach) (NULL, 0); 403 } 404 #endif 405 /* I *think* all our callers call clear_symtab_users. If so, no need 406 to call this here. */ 407 clear_pc_function_cache (); 408 409 /* The last thing we do is free the objfile struct itself for the 410 non-reusable case, or detach from the mapped file for the reusable 411 case. Note that the mmalloc_detach or the mfree is the last thing 412 we can do with this objfile. */ 413 414 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) 415 416 if (objfile -> flags & OBJF_MAPPED) 417 { 418 /* Remember the fd so we can close it. We can't close it before 419 doing the detach, and after the detach the objfile is gone. */ 420 int mmfd; 421 422 mmfd = objfile -> mmfd; 423 mmalloc_detach (objfile -> md); 424 objfile = NULL; 425 close (mmfd); 426 } 427 428 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ 429 430 /* If we still have an objfile, then either we don't support reusable 431 objfiles or this one was not reusable. So free it normally. */ 432 433 if (objfile != NULL) 434 { 435 if (objfile -> name != NULL) 436 { 437 mfree (objfile -> md, objfile -> name); 438 } 439 if (objfile->global_psymbols.list) 440 mfree (objfile->md, objfile->global_psymbols.list); 441 if (objfile->static_psymbols.list) 442 mfree (objfile->md, objfile->static_psymbols.list); 443 /* Free the obstacks for non-reusable objfiles */ 444 obstack_free (&objfile -> psymbol_cache.cache, 0); 445 obstack_free (&objfile -> psymbol_obstack, 0); 446 obstack_free (&objfile -> symbol_obstack, 0); 447 obstack_free (&objfile -> type_obstack, 0); 448 mfree (objfile -> md, objfile); 449 objfile = NULL; 450 } 451 } 452 453 454 /* Free all the object files at once and clean up their users. */ 455 456 void 457 free_all_objfiles () 458 { 459 struct objfile *objfile, *temp; 460 461 ALL_OBJFILES_SAFE (objfile, temp) 462 { 463 free_objfile (objfile); 464 } 465 clear_symtab_users (); 466 } 467 468 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 469 entries in new_offsets. */ 470 void 471 objfile_relocate (objfile, new_offsets) 472 struct objfile *objfile; 473 struct section_offsets *new_offsets; 474 { 475 struct section_offsets *delta = (struct section_offsets *) alloca 476 (sizeof (struct section_offsets) 477 + objfile->num_sections * sizeof (delta->offsets)); 478 479 { 480 int i; 481 int something_changed = 0; 482 for (i = 0; i < objfile->num_sections; ++i) 483 { 484 ANOFFSET (delta, i) = 485 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); 486 if (ANOFFSET (delta, i) != 0) 487 something_changed = 1; 488 } 489 if (!something_changed) 490 return; 491 } 492 493 /* OK, get all the symtabs. */ 494 { 495 struct symtab *s; 496 497 ALL_OBJFILE_SYMTABS (objfile, s) 498 { 499 struct linetable *l; 500 struct blockvector *bv; 501 int i; 502 503 /* First the line table. */ 504 l = LINETABLE (s); 505 if (l) 506 { 507 for (i = 0; i < l->nitems; ++i) 508 l->item[i].pc += ANOFFSET (delta, s->block_line_section); 509 } 510 511 /* Don't relocate a shared blockvector more than once. */ 512 if (!s->primary) 513 continue; 514 515 bv = BLOCKVECTOR (s); 516 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) 517 { 518 struct block *b; 519 int j; 520 521 b = BLOCKVECTOR_BLOCK (bv, i); 522 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); 523 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); 524 525 for (j = 0; j < BLOCK_NSYMS (b); ++j) 526 { 527 struct symbol *sym = BLOCK_SYM (b, j); 528 /* The RS6000 code from which this was taken skipped 529 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE. 530 But I'm leaving out that test, on the theory that 531 they can't possibly pass the tests below. */ 532 if ((SYMBOL_CLASS (sym) == LOC_LABEL 533 || SYMBOL_CLASS (sym) == LOC_STATIC) 534 && SYMBOL_SECTION (sym) >= 0) 535 { 536 SYMBOL_VALUE_ADDRESS (sym) += 537 ANOFFSET (delta, SYMBOL_SECTION (sym)); 538 } 539 #ifdef MIPS_EFI_SYMBOL_NAME 540 /* Relocate Extra Function Info for ecoff. */ 541 542 else 543 if (SYMBOL_CLASS (sym) == LOC_CONST 544 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE 545 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) 546 ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section)); 547 #endif 548 } 549 } 550 } 551 } 552 553 { 554 struct partial_symtab *p; 555 556 ALL_OBJFILE_PSYMTABS (objfile, p) 557 { 558 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT); 559 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT); 560 } 561 } 562 563 { 564 struct partial_symbol **psym; 565 566 for (psym = objfile->global_psymbols.list; 567 psym < objfile->global_psymbols.next; 568 psym++) 569 if (SYMBOL_SECTION (*psym) >= 0) 570 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym)); 571 for (psym = objfile->static_psymbols.list; 572 psym < objfile->static_psymbols.next; 573 psym++) 574 if (SYMBOL_SECTION (*psym) >= 0) 575 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, SYMBOL_SECTION (*psym)); 576 } 577 578 { 579 struct minimal_symbol *msym; 580 ALL_OBJFILE_MSYMBOLS (objfile, msym) 581 if (SYMBOL_SECTION (msym) >= 0) 582 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); 583 } 584 /* Relocating different sections by different amounts may cause the symbols 585 to be out of order. */ 586 msymbols_sort (objfile); 587 588 { 589 int i; 590 for (i = 0; i < objfile->num_sections; ++i) 591 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i); 592 } 593 594 { 595 struct obj_section *s; 596 bfd *abfd; 597 598 abfd = objfile->obfd; 599 600 for (s = objfile->sections; 601 s < objfile->sections_end; ++s) 602 { 603 flagword flags; 604 605 flags = bfd_get_section_flags (abfd, s->the_bfd_section); 606 607 if (flags & SEC_CODE) 608 { 609 s->addr += ANOFFSET (delta, SECT_OFF_TEXT); 610 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT); 611 } 612 else if (flags & (SEC_DATA | SEC_LOAD)) 613 { 614 s->addr += ANOFFSET (delta, SECT_OFF_DATA); 615 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA); 616 } 617 else if (flags & SEC_ALLOC) 618 { 619 s->addr += ANOFFSET (delta, SECT_OFF_BSS); 620 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS); 621 } 622 } 623 } 624 625 if (objfile->ei.entry_point != ~0) 626 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT); 627 628 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC) 629 { 630 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); 631 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); 632 } 633 634 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC) 635 { 636 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); 637 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT); 638 } 639 640 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC) 641 { 642 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); 643 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); 644 } 645 } 646 647 /* Many places in gdb want to test just to see if we have any partial 648 symbols available. This function returns zero if none are currently 649 available, nonzero otherwise. */ 650 651 int 652 have_partial_symbols () 653 { 654 struct objfile *ofp; 655 656 ALL_OBJFILES (ofp) 657 { 658 if (ofp -> psymtabs != NULL) 659 { 660 return 1; 661 } 662 } 663 return 0; 664 } 665 666 /* Many places in gdb want to test just to see if we have any full 667 symbols available. This function returns zero if none are currently 668 available, nonzero otherwise. */ 669 670 int 671 have_full_symbols () 672 { 673 struct objfile *ofp; 674 675 ALL_OBJFILES (ofp) 676 { 677 if (ofp -> symtabs != NULL) 678 { 679 return 1; 680 } 681 } 682 return 0; 683 } 684 685 /* Many places in gdb want to test just to see if we have any minimal 686 symbols available. This function returns zero if none are currently 687 available, nonzero otherwise. */ 688 689 int 690 have_minimal_symbols () 691 { 692 struct objfile *ofp; 693 694 ALL_OBJFILES (ofp) 695 { 696 if (ofp -> msymbols != NULL) 697 { 698 return 1; 699 } 700 } 701 return 0; 702 } 703 704 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) 705 706 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp 707 of the corresponding symbol file in MTIME, try to open an existing file 708 with the name SYMSFILENAME and verify it is more recent than the base 709 file by checking it's timestamp against MTIME. 710 711 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1. 712 713 If SYMSFILENAME does exist, but is out of date, we check to see if the 714 user has specified creation of a mapped file. If so, we don't issue 715 any warning message because we will be creating a new mapped file anyway, 716 overwriting the old one. If not, then we issue a warning message so that 717 the user will know why we aren't using this existing mapped symbol file. 718 In either case, we return -1. 719 720 If SYMSFILENAME does exist and is not out of date, but can't be opened for 721 some reason, then prints an appropriate system error message and returns -1. 722 723 Otherwise, returns the open file descriptor. */ 724 725 static int 726 open_existing_mapped_file (symsfilename, mtime, mapped) 727 char *symsfilename; 728 long mtime; 729 int mapped; 730 { 731 int fd = -1; 732 struct stat sbuf; 733 734 if (stat (symsfilename, &sbuf) == 0) 735 { 736 if (sbuf.st_mtime < mtime) 737 { 738 if (!mapped) 739 { 740 warning ("mapped symbol file `%s' is out of date, ignored it", 741 symsfilename); 742 } 743 } 744 else if ((fd = open (symsfilename, O_RDWR)) < 0) 745 { 746 if (error_pre_print) 747 { 748 printf_unfiltered (error_pre_print); 749 } 750 print_sys_errmsg (symsfilename, errno); 751 } 752 } 753 return (fd); 754 } 755 756 /* Look for a mapped symbol file that corresponds to FILENAME and is more 757 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb 758 use a mapped symbol file for this file, so create a new one if one does 759 not currently exist. 760 761 If found, then return an open file descriptor for the file, otherwise 762 return -1. 763 764 This routine is responsible for implementing the policy that generates 765 the name of the mapped symbol file from the name of a file containing 766 symbols that gdb would like to read. Currently this policy is to append 767 ".syms" to the name of the file. 768 769 This routine is also responsible for implementing the policy that 770 determines where the mapped symbol file is found (the search path). 771 This policy is that when reading an existing mapped file, a file of 772 the correct name in the current directory takes precedence over a 773 file of the correct name in the same directory as the symbol file. 774 When creating a new mapped file, it is always created in the current 775 directory. This helps to minimize the chances of a user unknowingly 776 creating big mapped files in places like /bin and /usr/local/bin, and 777 allows a local copy to override a manually installed global copy (in 778 /bin for example). */ 779 780 static int 781 open_mapped_file (filename, mtime, mapped) 782 char *filename; 783 long mtime; 784 int mapped; 785 { 786 int fd; 787 char *symsfilename; 788 789 /* First try to open an existing file in the current directory, and 790 then try the directory where the symbol file is located. */ 791 792 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL); 793 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0) 794 { 795 free (symsfilename); 796 symsfilename = concat (filename, ".syms", (char *) NULL); 797 fd = open_existing_mapped_file (symsfilename, mtime, mapped); 798 } 799 800 /* If we don't have an open file by now, then either the file does not 801 already exist, or the base file has changed since it was created. In 802 either case, if the user has specified use of a mapped file, then 803 create a new mapped file, truncating any existing one. If we can't 804 create one, print a system error message saying why we can't. 805 806 By default the file is rw for everyone, with the user's umask taking 807 care of turning off the permissions the user wants off. */ 808 809 if ((fd < 0) && mapped) 810 { 811 free (symsfilename); 812 symsfilename = concat ("./", basename (filename), ".syms", 813 (char *) NULL); 814 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) 815 { 816 if (error_pre_print) 817 { 818 printf_unfiltered (error_pre_print); 819 } 820 print_sys_errmsg (symsfilename, errno); 821 } 822 } 823 824 free (symsfilename); 825 return (fd); 826 } 827 828 static PTR 829 map_to_file (fd) 830 int fd; 831 { 832 PTR md; 833 CORE_ADDR mapto; 834 835 md = mmalloc_attach (fd, (PTR) 0); 836 if (md != NULL) 837 { 838 mapto = (CORE_ADDR) mmalloc_getkey (md, 1); 839 md = mmalloc_detach (md); 840 if (md != NULL) 841 { 842 /* FIXME: should figure out why detach failed */ 843 md = NULL; 844 } 845 else if (mapto != (CORE_ADDR) NULL) 846 { 847 /* This mapping file needs to be remapped at "mapto" */ 848 md = mmalloc_attach (fd, (PTR) mapto); 849 } 850 else 851 { 852 /* This is a freshly created mapping file. */ 853 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024); 854 if (mapto != 0) 855 { 856 /* To avoid reusing the freshly created mapping file, at the 857 address selected by mmap, we must truncate it before trying 858 to do an attach at the address we want. */ 859 ftruncate (fd, 0); 860 md = mmalloc_attach (fd, (PTR) mapto); 861 if (md != NULL) 862 { 863 mmalloc_setkey (md, 1, (PTR) mapto); 864 } 865 } 866 } 867 } 868 return (md); 869 } 870 871 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ 872 873 /* Returns a section whose range includes PC or NULL if none found. */ 874 875 struct obj_section * 876 find_pc_section(pc) 877 CORE_ADDR pc; 878 { 879 struct obj_section *s; 880 struct objfile *objfile; 881 882 ALL_OBJFILES (objfile) 883 for (s = objfile->sections; s < objfile->sections_end; ++s) 884 if (s->addr <= pc 885 && pc < s->endaddr) 886 return(s); 887 888 return(NULL); 889 } 890 891 /* In SVR4, we recognize a trampoline by it's section name. 892 That is, if the pc is in a section named ".plt" then we are in 893 a trampoline. */ 894 895 int 896 in_plt_section(pc, name) 897 CORE_ADDR pc; 898 char *name; 899 { 900 struct obj_section *s; 901 int retval = 0; 902 903 s = find_pc_section(pc); 904 905 retval = (s != NULL 906 && s->the_bfd_section->name != NULL 907 && STREQ (s->the_bfd_section->name, ".plt")); 908 return(retval); 909 } 910