1 /* GDB routines for manipulating objfiles. 2 3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 4 2001, 2002, 2003, 2004 Free Software Foundation, Inc. 5 6 Contributed by Cygnus Support, using pieces from other GDB modules. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program; if not, write to the Free Software 22 Foundation, Inc., 59 Temple Place - Suite 330, 23 Boston, MA 02111-1307, USA. */ 24 25 /* This file contains support routines for creating, manipulating, and 26 destroying objfile structures. */ 27 28 #include "defs.h" 29 #include "bfd.h" /* Binary File Description */ 30 #include "symtab.h" 31 #include "symfile.h" 32 #include "objfiles.h" 33 #include "gdb-stabs.h" 34 #include "target.h" 35 #include "bcache.h" 36 37 #include "gdb_assert.h" 38 #include <sys/types.h> 39 #include "gdb_stat.h" 40 #include <fcntl.h> 41 #include "gdb_obstack.h" 42 #include "gdb_string.h" 43 #include "hashtab.h" 44 45 #include "breakpoint.h" 46 #include "block.h" 47 #include "dictionary.h" 48 49 /* Prototypes for local functions */ 50 51 static void objfile_alloc_data (struct objfile *objfile); 52 static void objfile_free_data (struct objfile *objfile); 53 54 /* Externally visible variables that are owned by this module. 55 See declarations in objfile.h for more info. */ 56 57 struct objfile *object_files; /* Linked list of all objfiles */ 58 struct objfile *current_objfile; /* For symbol file being read in */ 59 struct objfile *symfile_objfile; /* Main symbol table loaded from */ 60 struct objfile *rt_common_objfile; /* For runtime common symbols */ 61 62 /* Locate all mappable sections of a BFD file. 63 objfile_p_char is a char * to get it through 64 bfd_map_over_sections; we cast it back to its proper type. */ 65 66 #ifndef TARGET_KEEP_SECTION 67 #define TARGET_KEEP_SECTION(ASECT) 0 68 #endif 69 70 /* Called via bfd_map_over_sections to build up the section table that 71 the objfile references. The objfile contains pointers to the start 72 of the table (objfile->sections) and to the first location after 73 the end of the table (objfile->sections_end). */ 74 75 static void 76 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect, 77 void *objfile_p_char) 78 { 79 struct objfile *objfile = (struct objfile *) objfile_p_char; 80 struct obj_section section; 81 flagword aflag; 82 83 aflag = bfd_get_section_flags (abfd, asect); 84 85 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect))) 86 return; 87 88 if (0 == bfd_section_size (abfd, asect)) 89 return; 90 section.offset = 0; 91 section.objfile = objfile; 92 section.the_bfd_section = asect; 93 section.ovly_mapped = 0; 94 section.addr = bfd_section_vma (abfd, asect); 95 section.endaddr = section.addr + bfd_section_size (abfd, asect); 96 obstack_grow (&objfile->objfile_obstack, (char *) §ion, sizeof (section)); 97 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); 98 } 99 100 /* Builds a section table for OBJFILE. 101 Returns 0 if OK, 1 on error (in which case bfd_error contains the 102 error). 103 104 Note that while we are building the table, which goes into the 105 psymbol obstack, we hijack the sections_end pointer to instead hold 106 a count of the number of sections. When bfd_map_over_sections 107 returns, this count is used to compute the pointer to the end of 108 the sections table, which then overwrites the count. 109 110 Also note that the OFFSET and OVLY_MAPPED in each table entry 111 are initialized to zero. 112 113 Also note that if anything else writes to the psymbol obstack while 114 we are building the table, we're pretty much hosed. */ 115 116 int 117 build_objfile_section_table (struct objfile *objfile) 118 { 119 /* objfile->sections can be already set when reading a mapped symbol 120 file. I believe that we do need to rebuild the section table in 121 this case (we rebuild other things derived from the bfd), but we 122 can't free the old one (it's in the objfile_obstack). So we just 123 waste some memory. */ 124 125 objfile->sections_end = 0; 126 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile); 127 objfile->sections = (struct obj_section *) 128 obstack_finish (&objfile->objfile_obstack); 129 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; 130 return (0); 131 } 132 133 /* Given a pointer to an initialized bfd (ABFD) and some flag bits 134 allocate a new objfile struct, fill it in as best we can, link it 135 into the list of all known objfiles, and return a pointer to the 136 new objfile struct. 137 138 The FLAGS word contains various bits (OBJF_*) that can be taken as 139 requests for specific operations. Other bits like OBJF_SHARED are 140 simply copied through to the new objfile flags member. */ 141 142 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0 143 by jv-lang.c, to create an artificial objfile used to hold 144 information about dynamically-loaded Java classes. Unfortunately, 145 that branch of this function doesn't get tested very frequently, so 146 it's prone to breakage. (E.g. at one time the name was set to NULL 147 in that situation, which broke a loop over all names in the dynamic 148 library loader.) If you change this function, please try to leave 149 things in a consistent state even if abfd is NULL. */ 150 151 struct objfile * 152 allocate_objfile (bfd *abfd, int flags) 153 { 154 struct objfile *objfile = NULL; 155 struct objfile *last_one = NULL; 156 157 /* If we don't support mapped symbol files, didn't ask for the file to be 158 mapped, or failed to open the mapped file for some reason, then revert 159 back to an unmapped objfile. */ 160 161 if (objfile == NULL) 162 { 163 objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); 164 memset (objfile, 0, sizeof (struct objfile)); 165 objfile->md = NULL; 166 objfile->psymbol_cache = bcache_xmalloc (); 167 objfile->macro_cache = bcache_xmalloc (); 168 /* We could use obstack_specify_allocation here instead, but 169 gdb_obstack.h specifies the alloc/dealloc functions. */ 170 obstack_init (&objfile->objfile_obstack); 171 terminate_minimal_symbol_table (objfile); 172 } 173 174 objfile_alloc_data (objfile); 175 176 /* Update the per-objfile information that comes from the bfd, ensuring 177 that any data that is reference is saved in the per-objfile data 178 region. */ 179 180 objfile->obfd = abfd; 181 if (objfile->name != NULL) 182 { 183 xfree (objfile->name); 184 } 185 if (abfd != NULL) 186 { 187 objfile->name = xstrdup (bfd_get_filename (abfd)); 188 objfile->mtime = bfd_get_mtime (abfd); 189 190 /* Build section table. */ 191 192 if (build_objfile_section_table (objfile)) 193 { 194 error ("Can't find the file sections in `%s': %s", 195 objfile->name, bfd_errmsg (bfd_get_error ())); 196 } 197 } 198 else 199 { 200 objfile->name = xstrdup ("<<anonymous objfile>>"); 201 } 202 203 /* Initialize the section indexes for this objfile, so that we can 204 later detect if they are used w/o being properly assigned to. */ 205 206 objfile->sect_index_text = -1; 207 objfile->sect_index_data = -1; 208 objfile->sect_index_bss = -1; 209 objfile->sect_index_rodata = -1; 210 211 /* We don't yet have a C++-specific namespace symtab. */ 212 213 objfile->cp_namespace_symtab = NULL; 214 215 /* Add this file onto the tail of the linked list of other such files. */ 216 217 objfile->next = NULL; 218 if (object_files == NULL) 219 object_files = objfile; 220 else 221 { 222 for (last_one = object_files; 223 last_one->next; 224 last_one = last_one->next); 225 last_one->next = objfile; 226 } 227 228 /* Save passed in flag bits. */ 229 objfile->flags |= flags; 230 231 return (objfile); 232 } 233 234 /* Initialize entry point information for this objfile. */ 235 236 void 237 init_entry_point_info (struct objfile *objfile) 238 { 239 /* Save startup file's range of PC addresses to help blockframe.c 240 decide where the bottom of the stack is. */ 241 242 if (bfd_get_file_flags (objfile->obfd) & EXEC_P) 243 { 244 /* Executable file -- record its entry point so we'll recognize 245 the startup file because it contains the entry point. */ 246 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd); 247 } 248 else 249 { 250 /* Examination of non-executable.o files. Short-circuit this stuff. */ 251 objfile->ei.entry_point = INVALID_ENTRY_POINT; 252 } 253 } 254 255 /* Get current entry point address. */ 256 257 CORE_ADDR 258 entry_point_address (void) 259 { 260 return symfile_objfile ? symfile_objfile->ei.entry_point : 0; 261 } 262 263 /* Create the terminating entry of OBJFILE's minimal symbol table. 264 If OBJFILE->msymbols is zero, allocate a single entry from 265 OBJFILE->objfile_obstack; otherwise, just initialize 266 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */ 267 void 268 terminate_minimal_symbol_table (struct objfile *objfile) 269 { 270 if (! objfile->msymbols) 271 objfile->msymbols = ((struct minimal_symbol *) 272 obstack_alloc (&objfile->objfile_obstack, 273 sizeof (objfile->msymbols[0]))); 274 275 { 276 struct minimal_symbol *m 277 = &objfile->msymbols[objfile->minimal_symbol_count]; 278 279 memset (m, 0, sizeof (*m)); 280 /* Don't rely on these enumeration values being 0's. */ 281 MSYMBOL_TYPE (m) = mst_unknown; 282 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown); 283 } 284 } 285 286 287 /* Put one object file before a specified on in the global list. 288 This can be used to make sure an object file is destroyed before 289 another when using ALL_OBJFILES_SAFE to free all objfiles. */ 290 void 291 put_objfile_before (struct objfile *objfile, struct objfile *before_this) 292 { 293 struct objfile **objp; 294 295 unlink_objfile (objfile); 296 297 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 298 { 299 if (*objp == before_this) 300 { 301 objfile->next = *objp; 302 *objp = objfile; 303 return; 304 } 305 } 306 307 internal_error (__FILE__, __LINE__, 308 "put_objfile_before: before objfile not in list"); 309 } 310 311 /* Put OBJFILE at the front of the list. */ 312 313 void 314 objfile_to_front (struct objfile *objfile) 315 { 316 struct objfile **objp; 317 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 318 { 319 if (*objp == objfile) 320 { 321 /* Unhook it from where it is. */ 322 *objp = objfile->next; 323 /* Put it in the front. */ 324 objfile->next = object_files; 325 object_files = objfile; 326 break; 327 } 328 } 329 } 330 331 /* Unlink OBJFILE from the list of known objfiles, if it is found in the 332 list. 333 334 It is not a bug, or error, to call this function if OBJFILE is not known 335 to be in the current list. This is done in the case of mapped objfiles, 336 for example, just to ensure that the mapped objfile doesn't appear twice 337 in the list. Since the list is threaded, linking in a mapped objfile 338 twice would create a circular list. 339 340 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after 341 unlinking it, just to ensure that we have completely severed any linkages 342 between the OBJFILE and the list. */ 343 344 void 345 unlink_objfile (struct objfile *objfile) 346 { 347 struct objfile **objpp; 348 349 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next)) 350 { 351 if (*objpp == objfile) 352 { 353 *objpp = (*objpp)->next; 354 objfile->next = NULL; 355 return; 356 } 357 } 358 359 internal_error (__FILE__, __LINE__, 360 "unlink_objfile: objfile already unlinked"); 361 } 362 363 364 /* Destroy an objfile and all the symtabs and psymtabs under it. Note 365 that as much as possible is allocated on the objfile_obstack 366 so that the memory can be efficiently freed. 367 368 Things which we do NOT free because they are not in malloc'd memory 369 or not in memory specific to the objfile include: 370 371 objfile -> sf 372 373 FIXME: If the objfile is using reusable symbol information (via mmalloc), 374 then we need to take into account the fact that more than one process 375 may be using the symbol information at the same time (when mmalloc is 376 extended to support cooperative locking). When more than one process 377 is using the mapped symbol info, we need to be more careful about when 378 we free objects in the reusable area. */ 379 380 void 381 free_objfile (struct objfile *objfile) 382 { 383 if (objfile->separate_debug_objfile) 384 { 385 free_objfile (objfile->separate_debug_objfile); 386 } 387 388 if (objfile->separate_debug_objfile_backlink) 389 { 390 /* We freed the separate debug file, make sure the base objfile 391 doesn't reference it. */ 392 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL; 393 } 394 395 /* First do any symbol file specific actions required when we are 396 finished with a particular symbol file. Note that if the objfile 397 is using reusable symbol information (via mmalloc) then each of 398 these routines is responsible for doing the correct thing, either 399 freeing things which are valid only during this particular gdb 400 execution, or leaving them to be reused during the next one. */ 401 402 if (objfile->sf != NULL) 403 { 404 (*objfile->sf->sym_finish) (objfile); 405 } 406 407 /* We always close the bfd. */ 408 409 if (objfile->obfd != NULL) 410 { 411 char *name = bfd_get_filename (objfile->obfd); 412 if (!bfd_close (objfile->obfd)) 413 warning ("cannot close \"%s\": %s", 414 name, bfd_errmsg (bfd_get_error ())); 415 xfree (name); 416 } 417 418 /* Remove it from the chain of all objfiles. */ 419 420 unlink_objfile (objfile); 421 422 /* If we are going to free the runtime common objfile, mark it 423 as unallocated. */ 424 425 if (objfile == rt_common_objfile) 426 rt_common_objfile = NULL; 427 428 /* Before the symbol table code was redone to make it easier to 429 selectively load and remove information particular to a specific 430 linkage unit, gdb used to do these things whenever the monolithic 431 symbol table was blown away. How much still needs to be done 432 is unknown, but we play it safe for now and keep each action until 433 it is shown to be no longer needed. */ 434 435 /* I *think* all our callers call clear_symtab_users. If so, no need 436 to call this here. */ 437 clear_pc_function_cache (); 438 439 /* The last thing we do is free the objfile struct itself. */ 440 441 objfile_free_data (objfile); 442 if (objfile->name != NULL) 443 { 444 xfree (objfile->name); 445 } 446 if (objfile->global_psymbols.list) 447 xfree (objfile->global_psymbols.list); 448 if (objfile->static_psymbols.list) 449 xfree (objfile->static_psymbols.list); 450 /* Free the obstacks for non-reusable objfiles */ 451 bcache_xfree (objfile->psymbol_cache); 452 bcache_xfree (objfile->macro_cache); 453 if (objfile->demangled_names_hash) 454 htab_delete (objfile->demangled_names_hash); 455 obstack_free (&objfile->objfile_obstack, 0); 456 xfree (objfile); 457 objfile = NULL; 458 } 459 460 static void 461 do_free_objfile_cleanup (void *obj) 462 { 463 free_objfile (obj); 464 } 465 466 struct cleanup * 467 make_cleanup_free_objfile (struct objfile *obj) 468 { 469 return make_cleanup (do_free_objfile_cleanup, obj); 470 } 471 472 /* Free all the object files at once and clean up their users. */ 473 474 void 475 free_all_objfiles (void) 476 { 477 struct objfile *objfile, *temp; 478 479 ALL_OBJFILES_SAFE (objfile, temp) 480 { 481 free_objfile (objfile); 482 } 483 clear_symtab_users (); 484 } 485 486 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 487 entries in new_offsets. */ 488 void 489 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets) 490 { 491 struct section_offsets *delta = 492 ((struct section_offsets *) 493 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections))); 494 495 { 496 int i; 497 int something_changed = 0; 498 for (i = 0; i < objfile->num_sections; ++i) 499 { 500 delta->offsets[i] = 501 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); 502 if (ANOFFSET (delta, i) != 0) 503 something_changed = 1; 504 } 505 if (!something_changed) 506 return; 507 } 508 509 /* OK, get all the symtabs. */ 510 { 511 struct symtab *s; 512 513 ALL_OBJFILE_SYMTABS (objfile, s) 514 { 515 struct linetable *l; 516 struct blockvector *bv; 517 int i; 518 519 /* First the line table. */ 520 l = LINETABLE (s); 521 if (l) 522 { 523 for (i = 0; i < l->nitems; ++i) 524 l->item[i].pc += ANOFFSET (delta, s->block_line_section); 525 } 526 527 /* Don't relocate a shared blockvector more than once. */ 528 if (!s->primary) 529 continue; 530 531 bv = BLOCKVECTOR (s); 532 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) 533 { 534 struct block *b; 535 struct symbol *sym; 536 struct dict_iterator iter; 537 538 b = BLOCKVECTOR_BLOCK (bv, i); 539 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); 540 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); 541 542 ALL_BLOCK_SYMBOLS (b, iter, sym) 543 { 544 fixup_symbol_section (sym, objfile); 545 546 /* The RS6000 code from which this was taken skipped 547 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN. 548 But I'm leaving out that test, on the theory that 549 they can't possibly pass the tests below. */ 550 if ((SYMBOL_CLASS (sym) == LOC_LABEL 551 || SYMBOL_CLASS (sym) == LOC_STATIC 552 || SYMBOL_CLASS (sym) == LOC_INDIRECT) 553 && SYMBOL_SECTION (sym) >= 0) 554 { 555 SYMBOL_VALUE_ADDRESS (sym) += 556 ANOFFSET (delta, SYMBOL_SECTION (sym)); 557 } 558 #ifdef MIPS_EFI_SYMBOL_NAME 559 /* Relocate Extra Function Info for ecoff. */ 560 561 else if (SYMBOL_CLASS (sym) == LOC_CONST 562 && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN 563 && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) 564 ecoff_relocate_efi (sym, ANOFFSET (delta, 565 s->block_line_section)); 566 #endif 567 } 568 } 569 } 570 } 571 572 { 573 struct partial_symtab *p; 574 575 ALL_OBJFILE_PSYMTABS (objfile, p) 576 { 577 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); 578 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); 579 } 580 } 581 582 { 583 struct partial_symbol **psym; 584 585 for (psym = objfile->global_psymbols.list; 586 psym < objfile->global_psymbols.next; 587 psym++) 588 { 589 fixup_psymbol_section (*psym, objfile); 590 if (SYMBOL_SECTION (*psym) >= 0) 591 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, 592 SYMBOL_SECTION (*psym)); 593 } 594 for (psym = objfile->static_psymbols.list; 595 psym < objfile->static_psymbols.next; 596 psym++) 597 { 598 fixup_psymbol_section (*psym, objfile); 599 if (SYMBOL_SECTION (*psym) >= 0) 600 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, 601 SYMBOL_SECTION (*psym)); 602 } 603 } 604 605 { 606 struct minimal_symbol *msym; 607 ALL_OBJFILE_MSYMBOLS (objfile, msym) 608 if (SYMBOL_SECTION (msym) >= 0) 609 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); 610 } 611 /* Relocating different sections by different amounts may cause the symbols 612 to be out of order. */ 613 msymbols_sort (objfile); 614 615 { 616 int i; 617 for (i = 0; i < objfile->num_sections; ++i) 618 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i); 619 } 620 621 if (objfile->ei.entry_point != ~(CORE_ADDR) 0) 622 { 623 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT 624 only as a fallback. */ 625 struct obj_section *s; 626 s = find_pc_section (objfile->ei.entry_point); 627 if (s) 628 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index); 629 else 630 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); 631 } 632 633 { 634 struct obj_section *s; 635 bfd *abfd; 636 637 abfd = objfile->obfd; 638 639 ALL_OBJFILE_OSECTIONS (objfile, s) 640 { 641 int idx = s->the_bfd_section->index; 642 643 s->addr += ANOFFSET (delta, idx); 644 s->endaddr += ANOFFSET (delta, idx); 645 } 646 } 647 648 /* Relocate breakpoints as necessary, after things are relocated. */ 649 breakpoint_re_set (); 650 } 651 652 /* Many places in gdb want to test just to see if we have any partial 653 symbols available. This function returns zero if none are currently 654 available, nonzero otherwise. */ 655 656 int 657 have_partial_symbols (void) 658 { 659 struct objfile *ofp; 660 661 ALL_OBJFILES (ofp) 662 { 663 if (ofp->psymtabs != NULL) 664 { 665 return 1; 666 } 667 } 668 return 0; 669 } 670 671 /* Many places in gdb want to test just to see if we have any full 672 symbols available. This function returns zero if none are currently 673 available, nonzero otherwise. */ 674 675 int 676 have_full_symbols (void) 677 { 678 struct objfile *ofp; 679 680 ALL_OBJFILES (ofp) 681 { 682 if (ofp->symtabs != NULL) 683 { 684 return 1; 685 } 686 } 687 return 0; 688 } 689 690 691 /* This operations deletes all objfile entries that represent solibs that 692 weren't explicitly loaded by the user, via e.g., the add-symbol-file 693 command. 694 */ 695 void 696 objfile_purge_solibs (void) 697 { 698 struct objfile *objf; 699 struct objfile *temp; 700 701 ALL_OBJFILES_SAFE (objf, temp) 702 { 703 /* We assume that the solib package has been purged already, or will 704 be soon. 705 */ 706 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) 707 free_objfile (objf); 708 } 709 } 710 711 712 /* Many places in gdb want to test just to see if we have any minimal 713 symbols available. This function returns zero if none are currently 714 available, nonzero otherwise. */ 715 716 int 717 have_minimal_symbols (void) 718 { 719 struct objfile *ofp; 720 721 ALL_OBJFILES (ofp) 722 { 723 if (ofp->minimal_symbol_count > 0) 724 { 725 return 1; 726 } 727 } 728 return 0; 729 } 730 731 /* Returns a section whose range includes PC and SECTION, or NULL if 732 none found. Note the distinction between the return type, struct 733 obj_section (which is defined in gdb), and the input type "struct 734 bfd_section" (which is a bfd-defined data type). The obj_section 735 contains a pointer to the "struct bfd_section". */ 736 737 struct obj_section * 738 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section) 739 { 740 struct obj_section *s; 741 struct objfile *objfile; 742 743 ALL_OBJSECTIONS (objfile, s) 744 if ((section == 0 || section == s->the_bfd_section) && 745 s->addr <= pc && pc < s->endaddr) 746 return (s); 747 748 return (NULL); 749 } 750 751 /* Returns a section whose range includes PC or NULL if none found. 752 Backward compatibility, no section. */ 753 754 struct obj_section * 755 find_pc_section (CORE_ADDR pc) 756 { 757 return find_pc_sect_section (pc, find_pc_mapped_section (pc)); 758 } 759 760 761 /* In SVR4, we recognize a trampoline by it's section name. 762 That is, if the pc is in a section named ".plt" then we are in 763 a trampoline. */ 764 765 int 766 in_plt_section (CORE_ADDR pc, char *name) 767 { 768 struct obj_section *s; 769 int retval = 0; 770 771 s = find_pc_section (pc); 772 773 retval = (s != NULL 774 && s->the_bfd_section->name != NULL 775 && strcmp (s->the_bfd_section->name, ".plt") == 0); 776 return (retval); 777 } 778 779 /* Return nonzero if NAME is in the import list of OBJFILE. Else 780 return zero. */ 781 782 int 783 is_in_import_list (char *name, struct objfile *objfile) 784 { 785 int i; 786 787 if (!objfile || !name || !*name) 788 return 0; 789 790 for (i = 0; i < objfile->import_list_size; i++) 791 if (objfile->import_list[i] && DEPRECATED_STREQ (name, objfile->import_list[i])) 792 return 1; 793 return 0; 794 } 795 796 797 /* Keep a registry of per-objfile data-pointers required by other GDB 798 modules. */ 799 800 struct objfile_data 801 { 802 unsigned index; 803 }; 804 805 struct objfile_data_registration 806 { 807 struct objfile_data *data; 808 struct objfile_data_registration *next; 809 }; 810 811 struct objfile_data_registry 812 { 813 struct objfile_data_registration *registrations; 814 unsigned num_registrations; 815 }; 816 817 static struct objfile_data_registry objfile_data_registry = { NULL, 0 }; 818 819 const struct objfile_data * 820 register_objfile_data (void) 821 { 822 struct objfile_data_registration **curr; 823 824 /* Append new registration. */ 825 for (curr = &objfile_data_registry.registrations; 826 *curr != NULL; curr = &(*curr)->next); 827 828 *curr = XMALLOC (struct objfile_data_registration); 829 (*curr)->next = NULL; 830 (*curr)->data = XMALLOC (struct objfile_data); 831 (*curr)->data->index = objfile_data_registry.num_registrations++; 832 833 return (*curr)->data; 834 } 835 836 static void 837 objfile_alloc_data (struct objfile *objfile) 838 { 839 gdb_assert (objfile->data == NULL); 840 objfile->num_data = objfile_data_registry.num_registrations; 841 objfile->data = XCALLOC (objfile->num_data, void *); 842 } 843 844 static void 845 objfile_free_data (struct objfile *objfile) 846 { 847 gdb_assert (objfile->data != NULL); 848 xfree (objfile->data); 849 objfile->data = NULL; 850 } 851 852 void 853 clear_objfile_data (struct objfile *objfile) 854 { 855 gdb_assert (objfile->data != NULL); 856 memset (objfile->data, 0, objfile->num_data * sizeof (void *)); 857 } 858 859 void 860 set_objfile_data (struct objfile *objfile, const struct objfile_data *data, 861 void *value) 862 { 863 gdb_assert (data->index < objfile->num_data); 864 objfile->data[data->index] = value; 865 } 866 867 void * 868 objfile_data (struct objfile *objfile, const struct objfile_data *data) 869 { 870 gdb_assert (data->index < objfile->num_data); 871 return objfile->data[data->index]; 872 } 873