xref: /openbsd-src/gnu/usr.bin/binutils/gdb/m88k-tdep.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /* Target-machine dependent code for Motorola 88000 series, for GDB.
2    Copyright 1988, 1990, 1991, 1994, 1995 Free Software Foundation, Inc.
3 
4 This file is part of GDB.
5 
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10 
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "symtab.h"
26 #include "setjmp.h"
27 #include "value.h"
28 
29 /* Size of an instruction */
30 #define	BYTES_PER_88K_INSN	4
31 
32 void frame_find_saved_regs ();
33 
34 /* Is this target an m88110?  Otherwise assume m88100.  This has
35    relevance for the ways in which we screw with instruction pointers.  */
36 
37 int target_is_m88110 = 0;
38 
39 /* Given a GDB frame, determine the address of the calling function's frame.
40    This will be used to create a new GDB frame struct, and then
41    INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
42 
43    For us, the frame address is its stack pointer value, so we look up
44    the function prologue to determine the caller's sp value, and return it.  */
45 
46 CORE_ADDR
47 frame_chain (thisframe)
48      struct frame_info *thisframe;
49 {
50 
51   frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
52   /* NOTE:  this depends on frame_find_saved_regs returning the VALUE, not
53  	    the ADDRESS, of SP_REGNUM.  It also depends on the cache of
54 	    frame_find_saved_regs results.  */
55   if (thisframe->fsr->regs[SP_REGNUM])
56     return thisframe->fsr->regs[SP_REGNUM];
57   else
58     return thisframe->frame;	/* Leaf fn -- next frame up has same SP. */
59 }
60 
61 int
62 frameless_function_invocation (frame)
63      struct frame_info *frame;
64 {
65 
66   frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
67   /* NOTE:  this depends on frame_find_saved_regs returning the VALUE, not
68  	    the ADDRESS, of SP_REGNUM.  It also depends on the cache of
69 	    frame_find_saved_regs results.  */
70   if (frame->fsr->regs[SP_REGNUM])
71     return 0;			/* Frameful -- return addr saved somewhere */
72   else
73     return 1;			/* Frameless -- no saved return address */
74 }
75 
76 void
77 init_extra_frame_info (fromleaf, frame)
78      int fromleaf;
79      struct frame_info *frame;
80 {
81   frame->fsr = 0;			/* Not yet allocated */
82   frame->args_pointer = 0;		/* Unknown */
83   frame->locals_pointer = 0;	/* Unknown */
84 }
85 
86 /* Examine an m88k function prologue, recording the addresses at which
87    registers are saved explicitly by the prologue code, and returning
88    the address of the first instruction after the prologue (but not
89    after the instruction at address LIMIT, as explained below).
90 
91    LIMIT places an upper bound on addresses of the instructions to be
92    examined.  If the prologue code scan reaches LIMIT, the scan is
93    aborted and LIMIT is returned.  This is used, when examining the
94    prologue for the current frame, to keep examine_prologue () from
95    claiming that a given register has been saved when in fact the
96    instruction that saves it has not yet been executed.  LIMIT is used
97    at other times to stop the scan when we hit code after the true
98    function prologue (e.g. for the first source line) which might
99    otherwise be mistaken for function prologue.
100 
101    The format of the function prologue matched by this routine is
102    derived from examination of the source to gcc 1.95, particularly
103    the routine output_prologue () in config/out-m88k.c.
104 
105    subu r31,r31,n			# stack pointer update
106 
107    (st rn,r31,offset)?			# save incoming regs
108    (st.d rn,r31,offset)?
109 
110    (addu r30,r31,n)?			# frame pointer update
111 
112    (pic sequence)?			# PIC code prologue
113 
114    (or   rn,rm,0)?			# Move parameters to other regs
115 */
116 
117 /* Macros for extracting fields from instructions.  */
118 
119 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
120 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
121 #define	SUBU_OFFSET(x)	((unsigned)(x & 0xFFFF))
122 #define	ST_OFFSET(x)	((unsigned)((x) & 0xFFFF))
123 #define	ST_SRC(x)	EXTRACT_FIELD ((x), 21, 5)
124 #define	ADDU_OFFSET(x)	((unsigned)(x & 0xFFFF))
125 
126 /*
127  * prologue_insn_tbl is a table of instructions which may comprise a
128  * function prologue.  Associated with each table entry (corresponding
129  * to a single instruction or group of instructions), is an action.
130  * This action is used by examine_prologue (below) to determine
131  * the state of certain machine registers and where the stack frame lives.
132  */
133 
134 enum prologue_insn_action {
135   PIA_SKIP,			/* don't care what the instruction does */
136   PIA_NOTE_ST,			/* note register stored and where */
137   PIA_NOTE_STD,			/* note pair of registers stored and where */
138   PIA_NOTE_SP_ADJUSTMENT,	/* note stack pointer adjustment */
139   PIA_NOTE_FP_ASSIGNMENT,	/* note frame pointer assignment */
140   PIA_NOTE_PROLOGUE_END,	/* no more prologue */
141 };
142 
143 struct prologue_insns {
144     unsigned long insn;
145     unsigned long mask;
146     enum prologue_insn_action action;
147 };
148 
149 struct prologue_insns prologue_insn_tbl[] = {
150   /* Various register move instructions */
151   { 0x58000000, 0xf800ffff, PIA_SKIP },		/* or/or.u with immed of 0 */
152   { 0xf4005800, 0xfc1fffe0, PIA_SKIP },		/* or rd, r0, rs */
153   { 0xf4005800, 0xfc00ffff, PIA_SKIP },		/* or rd, rs, r0 */
154 
155   /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
156   { 0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT },
157 
158   /* Frame pointer assignment: "addu r30, r31, n" */
159   { 0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT },
160 
161   /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
162   { 0x241f0000, 0xfc1f0000, PIA_NOTE_ST },	/* st rx, sp, n */
163   { 0x201f0000, 0xfc1f0000, PIA_NOTE_STD },	/* st.d rs, sp, n */
164 
165   /* Instructions needed for setting up r25 for pic code. */
166   { 0x5f200000, 0xffff0000, PIA_SKIP },		/* or.u r25, r0, offset_high */
167   { 0xcc000002, 0xffffffff, PIA_SKIP },		/* bsr.n Lab */
168   { 0x5b390000, 0xffff0000, PIA_SKIP },		/* or r25, r25, offset_low */
169   { 0xf7396001, 0xffffffff, PIA_SKIP },		/* Lab: addu r25, r25, r1 */
170 
171   /* Various branch or jump instructions which have a delay slot -- these
172      do not form part of the prologue, but the instruction in the delay
173      slot might be a store instruction which should be noted. */
174   { 0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END },
175   					/* br.n, bsr.n, bb0.n, or bb1.n */
176   { 0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END }, /* bcnd.n */
177   { 0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END } /* jmp.n or jsr.n */
178 
179 };
180 
181 
182 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
183    is not the address of a valid instruction, the address of the next
184    instruction beyond ADDR otherwise.  *PWORD1 receives the first word
185    of the instruction. */
186 
187 #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
188   (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
189 
190 /* Read the m88k instruction at 'memaddr' and return the address of
191    the next instruction after that, or 0 if 'memaddr' is not the
192    address of a valid instruction.  The instruction
193    is stored at 'pword1'.  */
194 
195 CORE_ADDR
196 next_insn (memaddr, pword1)
197      unsigned long *pword1;
198      CORE_ADDR memaddr;
199 {
200   *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
201   return memaddr + BYTES_PER_88K_INSN;
202 }
203 
204 /* Read a register from frames called by us (or from the hardware regs).  */
205 
206 static int
207 read_next_frame_reg(frame, regno)
208      struct frame_info *frame;
209      int regno;
210 {
211   for (; frame; frame = frame->next) {
212       if (regno == SP_REGNUM)
213 	return FRAME_FP (frame);
214       else if (frame->fsr->regs[regno])
215 	return read_memory_integer(frame->fsr->regs[regno], 4);
216   }
217   return read_register(regno);
218 }
219 
220 /* Examine the prologue of a function.  `ip' points to the first instruction.
221    `limit' is the limit of the prologue (e.g. the addr of the first
222    linenumber, or perhaps the program counter if we're stepping through).
223    `frame_sp' is the stack pointer value in use in this frame.
224    `fsr' is a pointer to a frame_saved_regs structure into which we put
225    info about the registers saved by this frame.
226    `fi' is a struct frame_info pointer; we fill in various fields in it
227    to reflect the offsets of the arg pointer and the locals pointer.  */
228 
229 static CORE_ADDR
230 examine_prologue (ip, limit, frame_sp, fsr, fi)
231      register CORE_ADDR ip;
232      register CORE_ADDR limit;
233      CORE_ADDR frame_sp;
234      struct frame_saved_regs *fsr;
235      struct frame_info *fi;
236 {
237   register CORE_ADDR next_ip;
238   register int src;
239   unsigned int insn;
240   int size, offset;
241   char must_adjust[32];		/* If set, must adjust offsets in fsr */
242   int sp_offset = -1;		/* -1 means not set (valid must be mult of 8) */
243   int fp_offset = -1;		/* -1 means not set */
244   CORE_ADDR frame_fp;
245   CORE_ADDR prologue_end = 0;
246 
247   memset (must_adjust, '\0', sizeof (must_adjust));
248   next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
249 
250   while (next_ip)
251     {
252       struct prologue_insns *pip;
253 
254       for (pip=prologue_insn_tbl; (insn & pip->mask) != pip->insn; )
255 	  if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
256 	      goto end_of_prologue_found;	/* not a prologue insn */
257 
258       switch (pip->action)
259 	{
260 	  case PIA_NOTE_ST:
261 	  case PIA_NOTE_STD:
262 	    if (sp_offset != -1) {
263 		src = ST_SRC (insn);
264 		offset = ST_OFFSET (insn);
265 		must_adjust[src] = 1;
266 		fsr->regs[src++] = offset;	/* Will be adjusted later */
267 		if (pip->action == PIA_NOTE_STD && src < 32)
268 		  {
269 		    offset += 4;
270 		    must_adjust[src] = 1;
271 		    fsr->regs[src++] = offset;
272 		  }
273 	    }
274 	    else
275 		goto end_of_prologue_found;
276 	    break;
277 	  case PIA_NOTE_SP_ADJUSTMENT:
278 	    if (sp_offset == -1)
279 		sp_offset = -SUBU_OFFSET (insn);
280 	    else
281 		goto end_of_prologue_found;
282 	    break;
283 	  case PIA_NOTE_FP_ASSIGNMENT:
284 	    if (fp_offset == -1)
285 		fp_offset = ADDU_OFFSET (insn);
286 	    else
287 		goto end_of_prologue_found;
288 	    break;
289 	  case PIA_NOTE_PROLOGUE_END:
290 	    if (!prologue_end)
291 		prologue_end = ip;
292 	    break;
293 	  case PIA_SKIP:
294 	  default :
295 	    /* Do nothing */
296 	    break;
297 	}
298 
299       ip = next_ip;
300       next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
301     }
302 
303 end_of_prologue_found:
304 
305     if (prologue_end)
306 	ip = prologue_end;
307 
308   /* We're done with the prologue.  If we don't care about the stack
309      frame itself, just return.  (Note that fsr->regs has been trashed,
310      but the one caller who calls with fi==0 passes a dummy there.)  */
311 
312   if (fi == 0)
313     return ip;
314 
315   /*
316      OK, now we have:
317 
318      	sp_offset	original (before any alloca calls) displacement of SP
319 			(will be negative).
320 
321 	fp_offset	displacement from original SP to the FP for this frame
322 			or -1.
323 
324 	fsr->regs[0..31]	displacement from original SP to the stack
325 				location where reg[0..31] is stored.
326 
327 	must_adjust[0..31]	set if corresponding offset was set.
328 
329      If alloca has been called between the function prologue and the current
330      IP, then the current SP (frame_sp) will not be the original SP as set by
331      the function prologue.  If the current SP is not the original SP, then the
332      compiler will have allocated an FP for this frame, fp_offset will be set,
333      and we can use it to calculate the original SP.
334 
335      Then, we figure out where the arguments and locals are, and relocate the
336      offsets in fsr->regs to absolute addresses.  */
337 
338   if (fp_offset != -1) {
339     /* We have a frame pointer, so get it, and base our calc's on it.  */
340     frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
341     frame_sp = frame_fp - fp_offset;
342   } else {
343     /* We have no frame pointer, therefore frame_sp is still the same value
344        as set by prologue.  But where is the frame itself?  */
345     if (must_adjust[SRP_REGNUM]) {
346       /* Function header saved SRP (r1), the return address.  Frame starts
347 	 4 bytes down from where it was saved.  */
348       frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
349       fi->locals_pointer = frame_fp;
350     } else {
351       /* Function header didn't save SRP (r1), so we are in a leaf fn or
352 	 are otherwise confused.  */
353       frame_fp = -1;
354     }
355   }
356 
357   /* The locals are relative to the FP (whether it exists as an allocated
358      register, or just as an assumed offset from the SP) */
359   fi->locals_pointer = frame_fp;
360 
361   /* The arguments are just above the SP as it was before we adjusted it
362      on entry.  */
363   fi->args_pointer = frame_sp - sp_offset;
364 
365   /* Now that we know the SP value used by the prologue, we know where
366      it saved all the registers.  */
367   for (src = 0; src < 32; src++)
368     if (must_adjust[src])
369       fsr->regs[src] += frame_sp;
370 
371   /* The saved value of the SP is always known.  */
372   /* (we hope...) */
373   if (fsr->regs[SP_REGNUM] != 0
374    && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
375     fprintf_unfiltered(gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
376         fsr->regs[SP_REGNUM],
377 	frame_sp - sp_offset, sp_offset);
378 
379   fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
380 
381   return (ip);
382 }
383 
384 /* Given an ip value corresponding to the start of a function,
385    return the ip of the first instruction after the function
386    prologue.  */
387 
388 CORE_ADDR
389 skip_prologue (ip)
390      CORE_ADDR (ip);
391 {
392   struct frame_saved_regs saved_regs_dummy;
393   struct symtab_and_line sal;
394   CORE_ADDR limit;
395 
396   sal = find_pc_line (ip, 0);
397   limit = (sal.end) ? sal.end : 0xffffffff;
398 
399   return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
400 			    (struct frame_info *)0 ));
401 }
402 
403 /* Put here the code to store, into a struct frame_saved_regs,
404    the addresses of the saved registers of frame described by FRAME_INFO.
405    This includes special registers such as pc and fp saved in special
406    ways in the stack frame.  sp is even more special:
407    the address we return for it IS the sp for the next frame.
408 
409    We cache the result of doing this in the frame_cache_obstack, since
410    it is fairly expensive.  */
411 
412 void
413 frame_find_saved_regs (fi, fsr)
414      struct frame_info *fi;
415      struct frame_saved_regs *fsr;
416 {
417   register struct frame_saved_regs *cache_fsr;
418   extern struct obstack frame_cache_obstack;
419   CORE_ADDR ip;
420   struct symtab_and_line sal;
421   CORE_ADDR limit;
422 
423   if (!fi->fsr)
424     {
425       cache_fsr = (struct frame_saved_regs *)
426 		  obstack_alloc (&frame_cache_obstack,
427 				 sizeof (struct frame_saved_regs));
428       memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
429       fi->fsr = cache_fsr;
430 
431       /* Find the start and end of the function prologue.  If the PC
432 	 is in the function prologue, we only consider the part that
433 	 has executed already.  In the case where the PC is not in
434 	 the function prologue, we set limit to two instructions beyond
435 	 where the prologue ends in case if any of the prologue instructions
436 	 were moved into a delay slot of a branch instruction. */
437 
438       ip = get_pc_function_start (fi->pc);
439       sal = find_pc_line (ip, 0);
440       limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
441 					    : fi->pc;
442 
443       /* This will fill in fields in *fi as well as in cache_fsr.  */
444 #ifdef SIGTRAMP_FRAME_FIXUP
445       if (fi->signal_handler_caller)
446 	SIGTRAMP_FRAME_FIXUP(fi->frame);
447 #endif
448       examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
449 #ifdef SIGTRAMP_SP_FIXUP
450       if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
451 	SIGTRAMP_SP_FIXUP(fi->fsr->regs[SP_REGNUM]);
452 #endif
453     }
454 
455   if (fsr)
456     *fsr = *fi->fsr;
457 }
458 
459 /* Return the address of the locals block for the frame
460    described by FI.  Returns 0 if the address is unknown.
461    NOTE!  Frame locals are referred to by negative offsets from the
462    argument pointer, so this is the same as frame_args_address().  */
463 
464 CORE_ADDR
465 frame_locals_address (fi)
466      struct frame_info *fi;
467 {
468   struct frame_saved_regs fsr;
469 
470   if (fi->args_pointer)	/* Cached value is likely there.  */
471     return fi->args_pointer;
472 
473   /* Nope, generate it.  */
474 
475   get_frame_saved_regs (fi, &fsr);
476 
477   return fi->args_pointer;
478 }
479 
480 /* Return the address of the argument block for the frame
481    described by FI.  Returns 0 if the address is unknown.  */
482 
483 CORE_ADDR
484 frame_args_address (fi)
485      struct frame_info *fi;
486 {
487   struct frame_saved_regs fsr;
488 
489   if (fi->args_pointer)		/* Cached value is likely there.  */
490     return fi->args_pointer;
491 
492   /* Nope, generate it.  */
493 
494   get_frame_saved_regs (fi, &fsr);
495 
496   return fi->args_pointer;
497 }
498 
499 /* Return the saved PC from this frame.
500 
501    If the frame has a memory copy of SRP_REGNUM, use that.  If not,
502    just use the register SRP_REGNUM itself.  */
503 
504 CORE_ADDR
505 frame_saved_pc (frame)
506      struct frame_info *frame;
507 {
508   return read_next_frame_reg(frame, SRP_REGNUM);
509 }
510 
511 
512 #define DUMMY_FRAME_SIZE 192
513 
514 static void
515 write_word (sp, word)
516      CORE_ADDR sp;
517      unsigned LONGEST word;
518 {
519   register int len = REGISTER_SIZE;
520   char buffer[MAX_REGISTER_RAW_SIZE];
521 
522   store_unsigned_integer (buffer, len, word);
523   write_memory (sp, buffer, len);
524 }
525 
526 void
527 m88k_push_dummy_frame()
528 {
529   register CORE_ADDR sp = read_register (SP_REGNUM);
530   register int rn;
531   int offset;
532 
533   sp -= DUMMY_FRAME_SIZE;	/* allocate a bunch of space */
534 
535   for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset+=4)
536     write_word (sp+offset, read_register(rn));
537 
538   write_word (sp+offset, read_register (SXIP_REGNUM));
539   offset += 4;
540 
541   write_word (sp+offset, read_register (SNIP_REGNUM));
542   offset += 4;
543 
544   write_word (sp+offset, read_register (SFIP_REGNUM));
545   offset += 4;
546 
547   write_word (sp+offset, read_register (PSR_REGNUM));
548   offset += 4;
549 
550   write_word (sp+offset, read_register (FPSR_REGNUM));
551   offset += 4;
552 
553   write_word (sp+offset, read_register (FPCR_REGNUM));
554   offset += 4;
555 
556   write_register (SP_REGNUM, sp);
557   write_register (ACTUAL_FP_REGNUM, sp);
558 }
559 
560 void
561 pop_frame ()
562 {
563   register struct frame_info *frame = get_current_frame ();
564   register CORE_ADDR fp;
565   register int regnum;
566   struct frame_saved_regs fsr;
567 
568   fp = FRAME_FP (frame);
569   get_frame_saved_regs (frame, &fsr);
570 
571   if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), FRAME_FP (fi)))
572     {
573       /* FIXME: I think get_frame_saved_regs should be handling this so
574 	 that we can deal with the saved registers properly (e.g. frame
575 	 1 is a call dummy, the user types "frame 2" and then "print $ps").  */
576       register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
577       int offset;
578 
579       for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset+=4)
580 	(void) write_register (regnum, read_memory_integer (sp+offset, 4));
581 
582       write_register (SXIP_REGNUM, read_memory_integer (sp+offset, 4));
583       offset += 4;
584 
585       write_register (SNIP_REGNUM, read_memory_integer (sp+offset, 4));
586       offset += 4;
587 
588       write_register (SFIP_REGNUM, read_memory_integer (sp+offset, 4));
589       offset += 4;
590 
591       write_register (PSR_REGNUM, read_memory_integer (sp+offset, 4));
592       offset += 4;
593 
594       write_register (FPSR_REGNUM, read_memory_integer (sp+offset, 4));
595       offset += 4;
596 
597       write_register (FPCR_REGNUM, read_memory_integer (sp+offset, 4));
598       offset += 4;
599 
600     }
601   else
602     {
603       for (regnum = FP_REGNUM ; regnum > 0 ; regnum--)
604 	  if (fsr.regs[regnum])
605 	      write_register (regnum,
606 			      read_memory_integer (fsr.regs[regnum], 4));
607       write_pc (frame_saved_pc (frame));
608     }
609   reinit_frame_cache ();
610 }
611 
612 void
613 _initialize_m88k_tdep ()
614 {
615   tm_print_insn = print_insn_m88k;
616 }
617