1 /* Native support for the SGI Iris running IRIX version 5, for GDB. 2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 3 Free Software Foundation, Inc. 4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU 5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin. 6 Implemented for Irix 4.x by Garrett A. Wollman. 7 Modified for Irix 5.x by Ian Lance Taylor. 8 9 This file is part of GDB. 10 11 This program is free software; you can redistribute it and/or modify 12 it under the terms of the GNU General Public License as published by 13 the Free Software Foundation; either version 2 of the License, or 14 (at your option) any later version. 15 16 This program is distributed in the hope that it will be useful, 17 but WITHOUT ANY WARRANTY; without even the implied warranty of 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 GNU General Public License for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with this program; if not, write to the Free Software 23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 24 25 #include "defs.h" 26 #include "inferior.h" 27 #include "gdbcore.h" 28 #include "target.h" 29 30 #include "gdb_string.h" 31 #include <sys/time.h> 32 #include <sys/procfs.h> 33 #include <setjmp.h> /* For JB_XXX. */ 34 35 static void 36 fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR)); 37 38 /* Size of elements in jmpbuf */ 39 40 #define JB_ELEMENT_SIZE 4 41 42 /* 43 * See the comment in m68k-tdep.c regarding the utility of these functions. 44 * 45 * These definitions are from the MIPS SVR4 ABI, so they may work for 46 * any MIPS SVR4 target. 47 */ 48 49 void 50 supply_gregset (gregsetp) 51 gregset_t *gregsetp; 52 { 53 register int regi; 54 register greg_t *regp = &(*gregsetp)[0]; 55 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; 56 57 for(regi = 0; regi <= CTX_RA; regi++) 58 supply_register (regi, (char *)(regp + regi)); 59 60 supply_register (PC_REGNUM, (char *)(regp + CTX_EPC)); 61 supply_register (HI_REGNUM, (char *)(regp + CTX_MDHI)); 62 supply_register (LO_REGNUM, (char *)(regp + CTX_MDLO)); 63 supply_register (CAUSE_REGNUM, (char *)(regp + CTX_CAUSE)); 64 65 /* Fill inaccessible registers with zero. */ 66 supply_register (BADVADDR_REGNUM, zerobuf); 67 } 68 69 void 70 fill_gregset (gregsetp, regno) 71 gregset_t *gregsetp; 72 int regno; 73 { 74 int regi; 75 register greg_t *regp = &(*gregsetp)[0]; 76 77 for (regi = 0; regi <= CTX_RA; regi++) 78 if ((regno == -1) || (regno == regi)) 79 *(regp + regi) = *(greg_t *) ®isters[REGISTER_BYTE (regi)]; 80 81 if ((regno == -1) || (regno == PC_REGNUM)) 82 *(regp + CTX_EPC) = *(greg_t *) ®isters[REGISTER_BYTE (PC_REGNUM)]; 83 84 if ((regno == -1) || (regno == CAUSE_REGNUM)) 85 *(regp + CTX_CAUSE) = *(greg_t *) ®isters[REGISTER_BYTE (CAUSE_REGNUM)]; 86 87 if ((regno == -1) || (regno == HI_REGNUM)) 88 *(regp + CTX_MDHI) = *(greg_t *) ®isters[REGISTER_BYTE (HI_REGNUM)]; 89 90 if ((regno == -1) || (regno == LO_REGNUM)) 91 *(regp + CTX_MDLO) = *(greg_t *) ®isters[REGISTER_BYTE (LO_REGNUM)]; 92 } 93 94 /* 95 * Now we do the same thing for floating-point registers. 96 * We don't bother to condition on FP0_REGNUM since any 97 * reasonable MIPS configuration has an R3010 in it. 98 * 99 * Again, see the comments in m68k-tdep.c. 100 */ 101 102 void 103 supply_fpregset (fpregsetp) 104 fpregset_t *fpregsetp; 105 { 106 register int regi; 107 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; 108 109 for (regi = 0; regi < 32; regi++) 110 supply_register (FP0_REGNUM + regi, 111 (char *)&fpregsetp->fp_r.fp_regs[regi]); 112 113 supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr); 114 115 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */ 116 supply_register (FCRIR_REGNUM, zerobuf); 117 } 118 119 void 120 fill_fpregset (fpregsetp, regno) 121 fpregset_t *fpregsetp; 122 int regno; 123 { 124 int regi; 125 char *from, *to; 126 127 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++) 128 { 129 if ((regno == -1) || (regno == regi)) 130 { 131 from = (char *) ®isters[REGISTER_BYTE (regi)]; 132 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]); 133 memcpy(to, from, REGISTER_RAW_SIZE (regi)); 134 } 135 } 136 137 if ((regno == -1) || (regno == FCRCS_REGNUM)) 138 fpregsetp->fp_csr = *(unsigned *) ®isters[REGISTER_BYTE(FCRCS_REGNUM)]; 139 } 140 141 142 /* Figure out where the longjmp will land. 143 We expect the first arg to be a pointer to the jmp_buf structure from which 144 we extract the pc (JB_PC) that we will land at. The pc is copied into PC. 145 This routine returns true on success. */ 146 147 int 148 get_longjmp_target (pc) 149 CORE_ADDR *pc; 150 { 151 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT]; 152 CORE_ADDR jb_addr; 153 154 jb_addr = read_register (A0_REGNUM); 155 156 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, 157 TARGET_PTR_BIT / TARGET_CHAR_BIT)) 158 return 0; 159 160 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT); 161 162 return 1; 163 } 164 165 static void 166 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr) 167 char *core_reg_sect; 168 unsigned core_reg_size; 169 int which; /* Unused */ 170 CORE_ADDR reg_addr; /* Unused */ 171 { 172 if (core_reg_size != REGISTER_BYTES) 173 { 174 warning ("wrong size gregset struct in core file"); 175 return; 176 } 177 178 memcpy ((char *)registers, core_reg_sect, core_reg_size); 179 } 180 181 /* Irix 5 uses what appears to be a unique form of shared library 182 support. This is a copy of solib.c modified for Irix 5. */ 183 184 #include <sys/types.h> 185 #include <signal.h> 186 #include <sys/param.h> 187 #include <fcntl.h> 188 189 /* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts 190 with our versions of those files included by tm-mips.h. Prevent 191 <obj.h> from including them with some appropriate defines. */ 192 #define __SYM_H__ 193 #define __SYMCONST_H__ 194 #include <obj.h> 195 196 #include "symtab.h" 197 #include "bfd.h" 198 #include "symfile.h" 199 #include "objfiles.h" 200 #include "command.h" 201 #include "frame.h" 202 #include "gnu-regex.h" 203 #include "inferior.h" 204 #include "language.h" 205 #include "gdbcmd.h" 206 207 /* The symbol which starts off the list of shared libraries. */ 208 #define DEBUG_BASE "__rld_obj_head" 209 210 /* How to get the loaded address of a shared library. */ 211 #define LM_ADDR(so) ((so)->lm.o_praw) 212 213 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */ 214 215 struct so_list { 216 struct so_list *next; /* next structure in linked list */ 217 struct obj_list ll; 218 struct obj lm; /* copy of link map from inferior */ 219 struct obj_list *lladdr; /* addr in inferior lm was read from */ 220 CORE_ADDR lmend; /* upper addr bound of mapped object */ 221 char symbols_loaded; /* flag: symbols read in yet? */ 222 char from_tty; /* flag: print msgs? */ 223 struct objfile *objfile; /* objfile for loaded lib */ 224 struct section_table *sections; 225 struct section_table *sections_end; 226 struct section_table *textsection; 227 bfd *abfd; 228 }; 229 230 static struct so_list *so_list_head; /* List of known shared objects */ 231 static CORE_ADDR debug_base; /* Base of dynamic linker structures */ 232 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */ 233 234 /* Local function prototypes */ 235 236 static void 237 sharedlibrary_command PARAMS ((char *, int)); 238 239 static int 240 enable_break PARAMS ((void)); 241 242 static int 243 disable_break PARAMS ((void)); 244 245 static void 246 info_sharedlibrary_command PARAMS ((char *, int)); 247 248 static int 249 symbol_add_stub PARAMS ((char *)); 250 251 static struct so_list * 252 find_solib PARAMS ((struct so_list *)); 253 254 static struct obj_list * 255 first_link_map_member PARAMS ((void)); 256 257 static CORE_ADDR 258 locate_base PARAMS ((void)); 259 260 static void 261 solib_map_sections PARAMS ((struct so_list *)); 262 263 /* 264 265 LOCAL FUNCTION 266 267 solib_map_sections -- open bfd and build sections for shared lib 268 269 SYNOPSIS 270 271 static void solib_map_sections (struct so_list *so) 272 273 DESCRIPTION 274 275 Given a pointer to one of the shared objects in our list 276 of mapped objects, use the recorded name to open a bfd 277 descriptor for the object, build a section table, and then 278 relocate all the section addresses by the base address at 279 which the shared object was mapped. 280 281 FIXMES 282 283 In most (all?) cases the shared object file name recorded in the 284 dynamic linkage tables will be a fully qualified pathname. For 285 cases where it isn't, do we really mimic the systems search 286 mechanism correctly in the below code (particularly the tilde 287 expansion stuff?). 288 */ 289 290 static void 291 solib_map_sections (so) 292 struct so_list *so; 293 { 294 char *filename; 295 char *scratch_pathname; 296 int scratch_chan; 297 struct section_table *p; 298 struct cleanup *old_chain; 299 bfd *abfd; 300 CORE_ADDR offset; 301 302 filename = tilde_expand (so -> lm.o_path); 303 old_chain = make_cleanup (free, filename); 304 305 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0, 306 &scratch_pathname); 307 if (scratch_chan < 0) 308 { 309 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename, 310 O_RDONLY, 0, &scratch_pathname); 311 } 312 if (scratch_chan < 0) 313 { 314 perror_with_name (filename); 315 } 316 /* Leave scratch_pathname allocated. abfd->name will point to it. */ 317 318 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan); 319 if (!abfd) 320 { 321 close (scratch_chan); 322 error ("Could not open `%s' as an executable file: %s", 323 scratch_pathname, bfd_errmsg (bfd_get_error ())); 324 } 325 /* Leave bfd open, core_xfer_memory and "info files" need it. */ 326 so -> abfd = abfd; 327 abfd -> cacheable = true; 328 329 if (!bfd_check_format (abfd, bfd_object)) 330 { 331 error ("\"%s\": not in executable format: %s.", 332 scratch_pathname, bfd_errmsg (bfd_get_error ())); 333 } 334 if (build_section_table (abfd, &so -> sections, &so -> sections_end)) 335 { 336 error ("Can't find the file sections in `%s': %s", 337 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ())); 338 } 339 340 /* Irix 5 shared objects are pre-linked to particular addresses 341 although the dynamic linker may have to relocate them if the 342 address ranges of the libraries used by the main program clash. 343 The offset is the difference between the address where the object 344 is mapped and the binding address of the shared library. */ 345 offset = (CORE_ADDR) LM_ADDR (so) - so -> lm.o_base_address; 346 347 for (p = so -> sections; p < so -> sections_end; p++) 348 { 349 /* Relocate the section binding addresses as recorded in the shared 350 object's file by the offset to get the address to which the 351 object was actually mapped. */ 352 p -> addr += offset; 353 p -> endaddr += offset; 354 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend); 355 if (STREQ (p -> the_bfd_section -> name, ".text")) 356 { 357 so -> textsection = p; 358 } 359 } 360 361 /* Free the file names, close the file now. */ 362 do_cleanups (old_chain); 363 } 364 365 /* 366 367 LOCAL FUNCTION 368 369 locate_base -- locate the base address of dynamic linker structs 370 371 SYNOPSIS 372 373 CORE_ADDR locate_base (void) 374 375 DESCRIPTION 376 377 For both the SunOS and SVR4 shared library implementations, if the 378 inferior executable has been linked dynamically, there is a single 379 address somewhere in the inferior's data space which is the key to 380 locating all of the dynamic linker's runtime structures. This 381 address is the value of the symbol defined by the macro DEBUG_BASE. 382 The job of this function is to find and return that address, or to 383 return 0 if there is no such address (the executable is statically 384 linked for example). 385 386 For SunOS, the job is almost trivial, since the dynamic linker and 387 all of it's structures are statically linked to the executable at 388 link time. Thus the symbol for the address we are looking for has 389 already been added to the minimal symbol table for the executable's 390 objfile at the time the symbol file's symbols were read, and all we 391 have to do is look it up there. Note that we explicitly do NOT want 392 to find the copies in the shared library. 393 394 The SVR4 version is much more complicated because the dynamic linker 395 and it's structures are located in the shared C library, which gets 396 run as the executable's "interpreter" by the kernel. We have to go 397 to a lot more work to discover the address of DEBUG_BASE. Because 398 of this complexity, we cache the value we find and return that value 399 on subsequent invocations. Note there is no copy in the executable 400 symbol tables. 401 402 Irix 5 is basically like SunOS. 403 404 Note that we can assume nothing about the process state at the time 405 we need to find this address. We may be stopped on the first instruc- 406 tion of the interpreter (C shared library), the first instruction of 407 the executable itself, or somewhere else entirely (if we attached 408 to the process for example). 409 410 */ 411 412 static CORE_ADDR 413 locate_base () 414 { 415 struct minimal_symbol *msymbol; 416 CORE_ADDR address = 0; 417 418 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile); 419 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) 420 { 421 address = SYMBOL_VALUE_ADDRESS (msymbol); 422 } 423 return (address); 424 } 425 426 /* 427 428 LOCAL FUNCTION 429 430 first_link_map_member -- locate first member in dynamic linker's map 431 432 SYNOPSIS 433 434 static struct link_map *first_link_map_member (void) 435 436 DESCRIPTION 437 438 Read in a copy of the first member in the inferior's dynamic 439 link map from the inferior's dynamic linker structures, and return 440 a pointer to the copy in our address space. 441 */ 442 443 static struct obj_list * 444 first_link_map_member () 445 { 446 struct obj_list *lm; 447 struct obj_list s; 448 449 read_memory (debug_base, (char *) &lm, sizeof (struct obj_list *)); 450 451 if (lm == NULL) 452 return NULL; 453 454 /* The first entry in the list is the object file we are debugging, 455 so skip it. */ 456 read_memory ((CORE_ADDR) lm, (char *) &s, sizeof (struct obj_list)); 457 458 return s.next; 459 } 460 461 /* 462 463 LOCAL FUNCTION 464 465 find_solib -- step through list of shared objects 466 467 SYNOPSIS 468 469 struct so_list *find_solib (struct so_list *so_list_ptr) 470 471 DESCRIPTION 472 473 This module contains the routine which finds the names of any 474 loaded "images" in the current process. The argument in must be 475 NULL on the first call, and then the returned value must be passed 476 in on subsequent calls. This provides the capability to "step" down 477 the list of loaded objects. On the last object, a NULL value is 478 returned. 479 */ 480 481 static struct so_list * 482 find_solib (so_list_ptr) 483 struct so_list *so_list_ptr; /* Last lm or NULL for first one */ 484 { 485 struct so_list *so_list_next = NULL; 486 struct obj_list *lm = NULL; 487 struct so_list *new; 488 489 if (so_list_ptr == NULL) 490 { 491 /* We are setting up for a new scan through the loaded images. */ 492 if ((so_list_next = so_list_head) == NULL) 493 { 494 /* We have not already read in the dynamic linking structures 495 from the inferior, lookup the address of the base structure. */ 496 debug_base = locate_base (); 497 if (debug_base != 0) 498 { 499 /* Read the base structure in and find the address of the first 500 link map list member. */ 501 lm = first_link_map_member (); 502 } 503 } 504 } 505 else 506 { 507 /* We have been called before, and are in the process of walking 508 the shared library list. Advance to the next shared object. */ 509 if ((lm = so_list_ptr->ll.next) == NULL) 510 { 511 /* We have hit the end of the list, so check to see if any were 512 added, but be quiet if we can't read from the target any more. */ 513 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lladdr, 514 (char *) &(so_list_ptr -> ll), 515 sizeof (struct obj_list)); 516 if (status == 0) 517 { 518 lm = so_list_ptr->ll.next; 519 } 520 else 521 { 522 lm = NULL; 523 } 524 } 525 so_list_next = so_list_ptr -> next; 526 } 527 if ((so_list_next == NULL) && (lm != NULL)) 528 { 529 int errcode; 530 char *buffer; 531 532 /* Get next link map structure from inferior image and build a local 533 abbreviated load_map structure */ 534 new = (struct so_list *) xmalloc (sizeof (struct so_list)); 535 memset ((char *) new, 0, sizeof (struct so_list)); 536 new -> lladdr = lm; 537 /* Add the new node as the next node in the list, or as the root 538 node if this is the first one. */ 539 if (so_list_ptr != NULL) 540 { 541 so_list_ptr -> next = new; 542 } 543 else 544 { 545 so_list_head = new; 546 } 547 so_list_next = new; 548 read_memory ((CORE_ADDR) lm, (char *) &(new -> ll), 549 sizeof (struct obj_list)); 550 read_memory ((CORE_ADDR) new->ll.data, (char *) &(new -> lm), 551 sizeof (struct obj)); 552 target_read_string ((CORE_ADDR)new->lm.o_path, &buffer, 553 INT_MAX, &errcode); 554 if (errcode != 0) 555 memory_error (errcode, (CORE_ADDR)new->lm.o_path); 556 new->lm.o_path = buffer; 557 solib_map_sections (new); 558 } 559 return (so_list_next); 560 } 561 562 /* A small stub to get us past the arg-passing pinhole of catch_errors. */ 563 564 static int 565 symbol_add_stub (arg) 566 char *arg; 567 { 568 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */ 569 CORE_ADDR text_addr = 0; 570 571 if (so -> textsection) 572 text_addr = so -> textsection -> addr; 573 else 574 { 575 asection *lowest_sect; 576 577 /* If we didn't find a mapped non zero sized .text section, set up 578 text_addr so that the relocation in symbol_file_add does no harm. */ 579 580 lowest_sect = bfd_get_section_by_name (so -> abfd, ".text"); 581 if (lowest_sect == NULL) 582 bfd_map_over_sections (so -> abfd, find_lowest_section, 583 (PTR) &lowest_sect); 584 if (lowest_sect) 585 text_addr = bfd_section_vma (so -> abfd, lowest_sect) 586 + (CORE_ADDR) LM_ADDR (so) - so -> lm.o_base_address; 587 } 588 589 so -> objfile = symbol_file_add (so -> lm.o_path, so -> from_tty, 590 text_addr, 591 0, 0, 0); 592 return (1); 593 } 594 595 /* 596 597 GLOBAL FUNCTION 598 599 solib_add -- add a shared library file to the symtab and section list 600 601 SYNOPSIS 602 603 void solib_add (char *arg_string, int from_tty, 604 struct target_ops *target) 605 606 DESCRIPTION 607 608 */ 609 610 void 611 solib_add (arg_string, from_tty, target) 612 char *arg_string; 613 int from_tty; 614 struct target_ops *target; 615 { 616 register struct so_list *so = NULL; /* link map state variable */ 617 618 /* Last shared library that we read. */ 619 struct so_list *so_last = NULL; 620 621 char *re_err; 622 int count; 623 int old; 624 625 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL) 626 { 627 error ("Invalid regexp: %s", re_err); 628 } 629 630 /* Add the shared library sections to the section table of the 631 specified target, if any. */ 632 if (target) 633 { 634 /* Count how many new section_table entries there are. */ 635 so = NULL; 636 count = 0; 637 while ((so = find_solib (so)) != NULL) 638 { 639 if (so -> lm.o_path[0]) 640 { 641 count += so -> sections_end - so -> sections; 642 } 643 } 644 645 if (count) 646 { 647 int update_coreops; 648 649 /* We must update the to_sections field in the core_ops structure 650 here, otherwise we dereference a potential dangling pointer 651 for each call to target_read/write_memory within this routine. */ 652 update_coreops = core_ops.to_sections == target->to_sections; 653 654 /* Reallocate the target's section table including the new size. */ 655 if (target -> to_sections) 656 { 657 old = target -> to_sections_end - target -> to_sections; 658 target -> to_sections = (struct section_table *) 659 xrealloc ((char *)target -> to_sections, 660 (sizeof (struct section_table)) * (count + old)); 661 } 662 else 663 { 664 old = 0; 665 target -> to_sections = (struct section_table *) 666 xmalloc ((sizeof (struct section_table)) * count); 667 } 668 target -> to_sections_end = target -> to_sections + (count + old); 669 670 /* Update the to_sections field in the core_ops structure 671 if needed. */ 672 if (update_coreops) 673 { 674 core_ops.to_sections = target->to_sections; 675 core_ops.to_sections_end = target->to_sections_end; 676 } 677 678 /* Add these section table entries to the target's table. */ 679 while ((so = find_solib (so)) != NULL) 680 { 681 if (so -> lm.o_path[0]) 682 { 683 count = so -> sections_end - so -> sections; 684 memcpy ((char *) (target -> to_sections + old), 685 so -> sections, 686 (sizeof (struct section_table)) * count); 687 old += count; 688 } 689 } 690 } 691 } 692 693 /* Now add the symbol files. */ 694 while ((so = find_solib (so)) != NULL) 695 { 696 if (so -> lm.o_path[0] && re_exec (so -> lm.o_path)) 697 { 698 so -> from_tty = from_tty; 699 if (so -> symbols_loaded) 700 { 701 if (from_tty) 702 { 703 printf_unfiltered ("Symbols already loaded for %s\n", so -> lm.o_path); 704 } 705 } 706 else if (catch_errors 707 (symbol_add_stub, (char *) so, 708 "Error while reading shared library symbols:\n", 709 RETURN_MASK_ALL)) 710 { 711 so_last = so; 712 so -> symbols_loaded = 1; 713 } 714 } 715 } 716 717 /* Getting new symbols may change our opinion about what is 718 frameless. */ 719 if (so_last) 720 reinit_frame_cache (); 721 } 722 723 /* 724 725 LOCAL FUNCTION 726 727 info_sharedlibrary_command -- code for "info sharedlibrary" 728 729 SYNOPSIS 730 731 static void info_sharedlibrary_command () 732 733 DESCRIPTION 734 735 Walk through the shared library list and print information 736 about each attached library. 737 */ 738 739 static void 740 info_sharedlibrary_command (ignore, from_tty) 741 char *ignore; 742 int from_tty; 743 { 744 register struct so_list *so = NULL; /* link map state variable */ 745 int header_done = 0; 746 747 if (exec_bfd == NULL) 748 { 749 printf_unfiltered ("No exec file.\n"); 750 return; 751 } 752 while ((so = find_solib (so)) != NULL) 753 { 754 if (so -> lm.o_path[0]) 755 { 756 if (!header_done) 757 { 758 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read", 759 "Shared Object Library"); 760 header_done++; 761 } 762 printf_unfiltered ("%-12s", 763 local_hex_string_custom ((unsigned long) LM_ADDR (so), 764 "08l")); 765 printf_unfiltered ("%-12s", 766 local_hex_string_custom ((unsigned long) so -> lmend, 767 "08l")); 768 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No"); 769 printf_unfiltered ("%s\n", so -> lm.o_path); 770 } 771 } 772 if (so_list_head == NULL) 773 { 774 printf_unfiltered ("No shared libraries loaded at this time.\n"); 775 } 776 } 777 778 /* 779 780 GLOBAL FUNCTION 781 782 solib_address -- check to see if an address is in a shared lib 783 784 SYNOPSIS 785 786 char *solib_address (CORE_ADDR address) 787 788 DESCRIPTION 789 790 Provides a hook for other gdb routines to discover whether or 791 not a particular address is within the mapped address space of 792 a shared library. Any address between the base mapping address 793 and the first address beyond the end of the last mapping, is 794 considered to be within the shared library address space, for 795 our purposes. 796 797 For example, this routine is called at one point to disable 798 breakpoints which are in shared libraries that are not currently 799 mapped in. 800 */ 801 802 char * 803 solib_address (address) 804 CORE_ADDR address; 805 { 806 register struct so_list *so = 0; /* link map state variable */ 807 808 while ((so = find_solib (so)) != NULL) 809 { 810 if (so -> lm.o_path[0]) 811 { 812 if ((address >= (CORE_ADDR) LM_ADDR (so)) && 813 (address < (CORE_ADDR) so -> lmend)) 814 return (so->lm.o_path); 815 } 816 } 817 return (0); 818 } 819 820 /* Called by free_all_symtabs */ 821 822 void 823 clear_solib() 824 { 825 struct so_list *next; 826 char *bfd_filename; 827 828 while (so_list_head) 829 { 830 if (so_list_head -> sections) 831 { 832 free ((PTR)so_list_head -> sections); 833 } 834 if (so_list_head -> abfd) 835 { 836 bfd_filename = bfd_get_filename (so_list_head -> abfd); 837 if (!bfd_close (so_list_head -> abfd)) 838 warning ("cannot close \"%s\": %s", 839 bfd_filename, bfd_errmsg (bfd_get_error ())); 840 } 841 else 842 /* This happens for the executable on SVR4. */ 843 bfd_filename = NULL; 844 845 next = so_list_head -> next; 846 if (bfd_filename) 847 free ((PTR)bfd_filename); 848 free (so_list_head->lm.o_path); 849 free ((PTR)so_list_head); 850 so_list_head = next; 851 } 852 debug_base = 0; 853 } 854 855 /* 856 857 LOCAL FUNCTION 858 859 disable_break -- remove the "mapping changed" breakpoint 860 861 SYNOPSIS 862 863 static int disable_break () 864 865 DESCRIPTION 866 867 Removes the breakpoint that gets hit when the dynamic linker 868 completes a mapping change. 869 870 */ 871 872 static int 873 disable_break () 874 { 875 int status = 1; 876 877 878 /* Note that breakpoint address and original contents are in our address 879 space, so we just need to write the original contents back. */ 880 881 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0) 882 { 883 status = 0; 884 } 885 886 /* For the SVR4 version, we always know the breakpoint address. For the 887 SunOS version we don't know it until the above code is executed. 888 Grumble if we are stopped anywhere besides the breakpoint address. */ 889 890 if (stop_pc != breakpoint_addr) 891 { 892 warning ("stopped at unknown breakpoint while handling shared libraries"); 893 } 894 895 return (status); 896 } 897 898 /* 899 900 LOCAL FUNCTION 901 902 enable_break -- arrange for dynamic linker to hit breakpoint 903 904 SYNOPSIS 905 906 int enable_break (void) 907 908 DESCRIPTION 909 910 This functions inserts a breakpoint at the entry point of the 911 main executable, where all shared libraries are mapped in. 912 */ 913 914 static int 915 enable_break () 916 { 917 if (symfile_objfile != NULL 918 && target_insert_breakpoint (symfile_objfile->ei.entry_point, 919 shadow_contents) == 0) 920 { 921 breakpoint_addr = symfile_objfile->ei.entry_point; 922 return 1; 923 } 924 925 return 0; 926 } 927 928 /* 929 930 GLOBAL FUNCTION 931 932 solib_create_inferior_hook -- shared library startup support 933 934 SYNOPSIS 935 936 void solib_create_inferior_hook() 937 938 DESCRIPTION 939 940 When gdb starts up the inferior, it nurses it along (through the 941 shell) until it is ready to execute it's first instruction. At this 942 point, this function gets called via expansion of the macro 943 SOLIB_CREATE_INFERIOR_HOOK. 944 945 For SunOS executables, this first instruction is typically the 946 one at "_start", or a similar text label, regardless of whether 947 the executable is statically or dynamically linked. The runtime 948 startup code takes care of dynamically linking in any shared 949 libraries, once gdb allows the inferior to continue. 950 951 For SVR4 executables, this first instruction is either the first 952 instruction in the dynamic linker (for dynamically linked 953 executables) or the instruction at "start" for statically linked 954 executables. For dynamically linked executables, the system 955 first exec's /lib/libc.so.N, which contains the dynamic linker, 956 and starts it running. The dynamic linker maps in any needed 957 shared libraries, maps in the actual user executable, and then 958 jumps to "start" in the user executable. 959 960 For both SunOS shared libraries, and SVR4 shared libraries, we 961 can arrange to cooperate with the dynamic linker to discover the 962 names of shared libraries that are dynamically linked, and the 963 base addresses to which they are linked. 964 965 This function is responsible for discovering those names and 966 addresses, and saving sufficient information about them to allow 967 their symbols to be read at a later time. 968 969 FIXME 970 971 Between enable_break() and disable_break(), this code does not 972 properly handle hitting breakpoints which the user might have 973 set in the startup code or in the dynamic linker itself. Proper 974 handling will probably have to wait until the implementation is 975 changed to use the "breakpoint handler function" method. 976 977 Also, what if child has exit()ed? Must exit loop somehow. 978 */ 979 980 void 981 solib_create_inferior_hook() 982 { 983 if (!enable_break ()) 984 { 985 warning ("shared library handler failed to enable breakpoint"); 986 return; 987 } 988 989 /* Now run the target. It will eventually hit the breakpoint, at 990 which point all of the libraries will have been mapped in and we 991 can go groveling around in the dynamic linker structures to find 992 out what we need to know about them. */ 993 994 clear_proceed_status (); 995 stop_soon_quietly = 1; 996 stop_signal = 0; 997 do 998 { 999 target_resume (-1, 0, stop_signal); 1000 wait_for_inferior (); 1001 } 1002 while (stop_signal != SIGTRAP); 1003 1004 /* We are now either at the "mapping complete" breakpoint (or somewhere 1005 else, a condition we aren't prepared to deal with anyway), so adjust 1006 the PC as necessary after a breakpoint, disable the breakpoint, and 1007 add any shared libraries that were mapped in. */ 1008 1009 if (DECR_PC_AFTER_BREAK) 1010 { 1011 stop_pc -= DECR_PC_AFTER_BREAK; 1012 write_register (PC_REGNUM, stop_pc); 1013 } 1014 1015 if (!disable_break ()) 1016 { 1017 warning ("shared library handler failed to disable breakpoint"); 1018 } 1019 1020 /* solib_add will call reinit_frame_cache. 1021 But we are stopped in the startup code and we might not have symbols 1022 for the startup code, so heuristic_proc_start could be called 1023 and will put out an annoying warning. 1024 Delaying the resetting of stop_soon_quietly until after symbol loading 1025 suppresses the warning. */ 1026 if (auto_solib_add) 1027 solib_add ((char *) 0, 0, (struct target_ops *) 0); 1028 stop_soon_quietly = 0; 1029 } 1030 1031 /* 1032 1033 LOCAL FUNCTION 1034 1035 sharedlibrary_command -- handle command to explicitly add library 1036 1037 SYNOPSIS 1038 1039 static void sharedlibrary_command (char *args, int from_tty) 1040 1041 DESCRIPTION 1042 1043 */ 1044 1045 static void 1046 sharedlibrary_command (args, from_tty) 1047 char *args; 1048 int from_tty; 1049 { 1050 dont_repeat (); 1051 solib_add (args, from_tty, (struct target_ops *) 0); 1052 } 1053 1054 void 1055 _initialize_solib() 1056 { 1057 add_com ("sharedlibrary", class_files, sharedlibrary_command, 1058 "Load shared object library symbols for files matching REGEXP."); 1059 add_info ("sharedlibrary", info_sharedlibrary_command, 1060 "Status of loaded shared object libraries."); 1061 1062 add_show_from_set 1063 (add_set_cmd ("auto-solib-add", class_support, var_zinteger, 1064 (char *) &auto_solib_add, 1065 "Set autoloading of shared library symbols.\n\ 1066 If nonzero, symbols from all shared object libraries will be loaded\n\ 1067 automatically when the inferior begins execution or when the dynamic linker\n\ 1068 informs gdb that a new library has been loaded. Otherwise, symbols\n\ 1069 must be loaded manually, using `sharedlibrary'.", 1070 &setlist), 1071 &showlist); 1072 } 1073 1074 1075 /* Register that we are able to handle irix5 core file formats. 1076 This really is bfd_target_unknown_flavour */ 1077 1078 static struct core_fns irix5_core_fns = 1079 { 1080 bfd_target_unknown_flavour, 1081 fetch_core_registers, 1082 NULL 1083 }; 1084 1085 void 1086 _initialize_core_irix5 () 1087 { 1088 add_core_fns (&irix5_core_fns); 1089 } 1090