xref: /openbsd-src/gnu/usr.bin/binutils/gdb/infrun.c (revision 850e275390052b330d93020bf619a739a3c277ac)
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3 
4    Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5    1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6    Software Foundation, Inc.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program; if not, write to the Free Software
22    Foundation, Inc., 59 Temple Place - Suite 330,
23    Boston, MA 02111-1307, USA.  */
24 
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48 
49 /* Prototypes for local functions */
50 
51 static void signals_info (char *, int);
52 
53 static void handle_command (char *, int);
54 
55 static void sig_print_info (enum target_signal);
56 
57 static void sig_print_header (void);
58 
59 static void resume_cleanups (void *);
60 
61 static int hook_stop_stub (void *);
62 
63 static int restore_selected_frame (void *);
64 
65 static void build_infrun (void);
66 
67 static int follow_fork (void);
68 
69 static void set_schedlock_func (char *args, int from_tty,
70 				struct cmd_list_element *c);
71 
72 struct execution_control_state;
73 
74 static int currently_stepping (struct execution_control_state *ecs);
75 
76 static void xdb_handle_command (char *args, int from_tty);
77 
78 static int prepare_to_proceed (void);
79 
80 void _initialize_infrun (void);
81 
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84 
85 /* When set, stop the 'step' command if we enter a function which has
86    no line number information.  The normal behavior is that we step
87    over such function.  */
88 int step_stop_if_no_debug = 0;
89 
90 /* In asynchronous mode, but simulating synchronous execution. */
91 
92 int sync_execution = 0;
93 
94 /* wait_for_inferior and normal_stop use this to notify the user
95    when the inferior stopped in a different thread than it had been
96    running in.  */
97 
98 static ptid_t previous_inferior_ptid;
99 
100 /* This is true for configurations that may follow through execl() and
101    similar functions.  At present this is only true for HP-UX native.  */
102 
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106 
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108 
109 /* If the program uses ELF-style shared libraries, then calls to
110    functions in shared libraries go through stubs, which live in a
111    table called the PLT (Procedure Linkage Table).  The first time the
112    function is called, the stub sends control to the dynamic linker,
113    which looks up the function's real address, patches the stub so
114    that future calls will go directly to the function, and then passes
115    control to the function.
116 
117    If we are stepping at the source level, we don't want to see any of
118    this --- we just want to skip over the stub and the dynamic linker.
119    The simple approach is to single-step until control leaves the
120    dynamic linker.
121 
122    However, on some systems (e.g., Red Hat's 5.2 distribution) the
123    dynamic linker calls functions in the shared C library, so you
124    can't tell from the PC alone whether the dynamic linker is still
125    running.  In this case, we use a step-resume breakpoint to get us
126    past the dynamic linker, as if we were using "next" to step over a
127    function call.
128 
129    IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130    linker code or not.  Normally, this means we single-step.  However,
131    if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132    address where we can place a step-resume breakpoint to get past the
133    linker's symbol resolution function.
134 
135    IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136    pretty portable way, by comparing the PC against the address ranges
137    of the dynamic linker's sections.
138 
139    SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140    it depends on internal details of the dynamic linker.  It's usually
141    not too hard to figure out where to put a breakpoint, but it
142    certainly isn't portable.  SKIP_SOLIB_RESOLVER should do plenty of
143    sanity checking.  If it can't figure things out, returning zero and
144    getting the (possibly confusing) stepping behavior is better than
145    signalling an error, which will obscure the change in the
146    inferior's state.  */
147 
148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150 #endif
151 
152 /* This function returns TRUE if pc is the address of an instruction
153    that lies within the dynamic linker (such as the event hook, or the
154    dld itself).
155 
156    This function must be used only when a dynamic linker event has
157    been caught, and the inferior is being stepped out of the hook, or
158    undefined results are guaranteed.  */
159 
160 #ifndef SOLIB_IN_DYNAMIC_LINKER
161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162 #endif
163 
164 /* On some systems, the PC may be left pointing at an instruction that  won't
165    actually be executed.  This is usually indicated by a bit in the PSW.  If
166    we find ourselves in such a state, then we step the target beyond the
167    nullified instruction before returning control to the user so as to avoid
168    confusion. */
169 
170 #ifndef INSTRUCTION_NULLIFIED
171 #define INSTRUCTION_NULLIFIED 0
172 #endif
173 
174 /* We can't step off a permanent breakpoint in the ordinary way, because we
175    can't remove it.  Instead, we have to advance the PC to the next
176    instruction.  This macro should expand to a pointer to a function that
177    does that, or zero if we have no such function.  If we don't have a
178    definition for it, we have to report an error.  */
179 #ifndef SKIP_PERMANENT_BREAKPOINT
180 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
181 static void
182 default_skip_permanent_breakpoint (void)
183 {
184   error ("\
185 The program is stopped at a permanent breakpoint, but GDB does not know\n\
186 how to step past a permanent breakpoint on this architecture.  Try using\n\
187 a command like `return' or `jump' to continue execution.");
188 }
189 #endif
190 
191 
192 /* Convert the #defines into values.  This is temporary until wfi control
193    flow is completely sorted out.  */
194 
195 #ifndef HAVE_STEPPABLE_WATCHPOINT
196 #define HAVE_STEPPABLE_WATCHPOINT 0
197 #else
198 #undef  HAVE_STEPPABLE_WATCHPOINT
199 #define HAVE_STEPPABLE_WATCHPOINT 1
200 #endif
201 
202 #ifndef CANNOT_STEP_HW_WATCHPOINTS
203 #define CANNOT_STEP_HW_WATCHPOINTS 0
204 #else
205 #undef  CANNOT_STEP_HW_WATCHPOINTS
206 #define CANNOT_STEP_HW_WATCHPOINTS 1
207 #endif
208 
209 /* Tables of how to react to signals; the user sets them.  */
210 
211 static unsigned char *signal_stop;
212 static unsigned char *signal_print;
213 static unsigned char *signal_program;
214 
215 #define SET_SIGS(nsigs,sigs,flags) \
216   do { \
217     int signum = (nsigs); \
218     while (signum-- > 0) \
219       if ((sigs)[signum]) \
220 	(flags)[signum] = 1; \
221   } while (0)
222 
223 #define UNSET_SIGS(nsigs,sigs,flags) \
224   do { \
225     int signum = (nsigs); \
226     while (signum-- > 0) \
227       if ((sigs)[signum]) \
228 	(flags)[signum] = 0; \
229   } while (0)
230 
231 /* Value to pass to target_resume() to cause all threads to resume */
232 
233 #define RESUME_ALL (pid_to_ptid (-1))
234 
235 /* Command list pointer for the "stop" placeholder.  */
236 
237 static struct cmd_list_element *stop_command;
238 
239 /* Nonzero if breakpoints are now inserted in the inferior.  */
240 
241 static int breakpoints_inserted;
242 
243 /* Function inferior was in as of last step command.  */
244 
245 static struct symbol *step_start_function;
246 
247 /* Nonzero if we are expecting a trace trap and should proceed from it.  */
248 
249 static int trap_expected;
250 
251 #ifdef SOLIB_ADD
252 /* Nonzero if we want to give control to the user when we're notified
253    of shared library events by the dynamic linker.  */
254 static int stop_on_solib_events;
255 #endif
256 
257 /* Nonzero means expecting a trace trap
258    and should stop the inferior and return silently when it happens.  */
259 
260 int stop_after_trap;
261 
262 /* Nonzero means expecting a trap and caller will handle it themselves.
263    It is used after attach, due to attaching to a process;
264    when running in the shell before the child program has been exec'd;
265    and when running some kinds of remote stuff (FIXME?).  */
266 
267 enum stop_kind stop_soon;
268 
269 /* Nonzero if proceed is being used for a "finish" command or a similar
270    situation when stop_registers should be saved.  */
271 
272 int proceed_to_finish;
273 
274 /* Save register contents here when about to pop a stack dummy frame,
275    if-and-only-if proceed_to_finish is set.
276    Thus this contains the return value from the called function (assuming
277    values are returned in a register).  */
278 
279 struct regcache *stop_registers;
280 
281 /* Nonzero if program stopped due to error trying to insert breakpoints.  */
282 
283 static int breakpoints_failed;
284 
285 /* Nonzero after stop if current stack frame should be printed.  */
286 
287 static int stop_print_frame;
288 
289 static struct breakpoint *step_resume_breakpoint = NULL;
290 
291 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
292    interactions with an inferior that is running a kernel function
293    (aka, a system call or "syscall").  wait_for_inferior therefore
294    may have a need to know when the inferior is in a syscall.  This
295    is a count of the number of inferior threads which are known to
296    currently be running in a syscall. */
297 static int number_of_threads_in_syscalls;
298 
299 /* This is a cached copy of the pid/waitstatus of the last event
300    returned by target_wait()/deprecated_target_wait_hook().  This
301    information is returned by get_last_target_status().  */
302 static ptid_t target_last_wait_ptid;
303 static struct target_waitstatus target_last_waitstatus;
304 
305 /* This is used to remember when a fork, vfork or exec event
306    was caught by a catchpoint, and thus the event is to be
307    followed at the next resume of the inferior, and not
308    immediately. */
309 static struct
310 {
311   enum target_waitkind kind;
312   struct
313   {
314     int parent_pid;
315     int child_pid;
316   }
317   fork_event;
318   char *execd_pathname;
319 }
320 pending_follow;
321 
322 static const char follow_fork_mode_child[] = "child";
323 static const char follow_fork_mode_parent[] = "parent";
324 
325 static const char *follow_fork_mode_kind_names[] = {
326   follow_fork_mode_child,
327   follow_fork_mode_parent,
328   NULL
329 };
330 
331 static const char *follow_fork_mode_string = follow_fork_mode_parent;
332 
333 
334 static int
335 follow_fork (void)
336 {
337   int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
338 
339   return target_follow_fork (follow_child);
340 }
341 
342 void
343 follow_inferior_reset_breakpoints (void)
344 {
345   /* Was there a step_resume breakpoint?  (There was if the user
346      did a "next" at the fork() call.)  If so, explicitly reset its
347      thread number.
348 
349      step_resumes are a form of bp that are made to be per-thread.
350      Since we created the step_resume bp when the parent process
351      was being debugged, and now are switching to the child process,
352      from the breakpoint package's viewpoint, that's a switch of
353      "threads".  We must update the bp's notion of which thread
354      it is for, or it'll be ignored when it triggers.  */
355 
356   if (step_resume_breakpoint)
357     breakpoint_re_set_thread (step_resume_breakpoint);
358 
359   /* Reinsert all breakpoints in the child.  The user may have set
360      breakpoints after catching the fork, in which case those
361      were never set in the child, but only in the parent.  This makes
362      sure the inserted breakpoints match the breakpoint list.  */
363 
364   breakpoint_re_set ();
365   insert_breakpoints ();
366 }
367 
368 /* EXECD_PATHNAME is assumed to be non-NULL. */
369 
370 static void
371 follow_exec (int pid, char *execd_pathname)
372 {
373   int saved_pid = pid;
374   struct target_ops *tgt;
375 
376   if (!may_follow_exec)
377     return;
378 
379   /* This is an exec event that we actually wish to pay attention to.
380      Refresh our symbol table to the newly exec'd program, remove any
381      momentary bp's, etc.
382 
383      If there are breakpoints, they aren't really inserted now,
384      since the exec() transformed our inferior into a fresh set
385      of instructions.
386 
387      We want to preserve symbolic breakpoints on the list, since
388      we have hopes that they can be reset after the new a.out's
389      symbol table is read.
390 
391      However, any "raw" breakpoints must be removed from the list
392      (e.g., the solib bp's), since their address is probably invalid
393      now.
394 
395      And, we DON'T want to call delete_breakpoints() here, since
396      that may write the bp's "shadow contents" (the instruction
397      value that was overwritten witha TRAP instruction).  Since
398      we now have a new a.out, those shadow contents aren't valid. */
399   update_breakpoints_after_exec ();
400 
401   /* If there was one, it's gone now.  We cannot truly step-to-next
402      statement through an exec(). */
403   step_resume_breakpoint = NULL;
404   step_range_start = 0;
405   step_range_end = 0;
406 
407   /* What is this a.out's name? */
408   printf_unfiltered ("Executing new program: %s\n", execd_pathname);
409 
410   /* We've followed the inferior through an exec.  Therefore, the
411      inferior has essentially been killed & reborn. */
412 
413   /* First collect the run target in effect.  */
414   tgt = find_run_target ();
415   /* If we can't find one, things are in a very strange state...  */
416   if (tgt == NULL)
417     error ("Could find run target to save before following exec");
418 
419   gdb_flush (gdb_stdout);
420   target_mourn_inferior ();
421   inferior_ptid = pid_to_ptid (saved_pid);
422   /* Because mourn_inferior resets inferior_ptid. */
423   push_target (tgt);
424 
425   /* That a.out is now the one to use. */
426   exec_file_attach (execd_pathname, 0);
427 
428   /* And also is where symbols can be found. */
429   symbol_file_add_main (execd_pathname, 0);
430 
431   /* Reset the shared library package.  This ensures that we get
432      a shlib event when the child reaches "_start", at which point
433      the dld will have had a chance to initialize the child. */
434 #if defined(SOLIB_RESTART)
435   SOLIB_RESTART ();
436 #endif
437 #ifdef SOLIB_CREATE_INFERIOR_HOOK
438   SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
439 #endif
440 
441   /* Reinsert all breakpoints.  (Those which were symbolic have
442      been reset to the proper address in the new a.out, thanks
443      to symbol_file_command...) */
444   insert_breakpoints ();
445 
446   /* The next resume of this inferior should bring it to the shlib
447      startup breakpoints.  (If the user had also set bp's on
448      "main" from the old (parent) process, then they'll auto-
449      matically get reset there in the new process.) */
450 }
451 
452 /* Non-zero if we just simulating a single-step.  This is needed
453    because we cannot remove the breakpoints in the inferior process
454    until after the `wait' in `wait_for_inferior'.  */
455 static int singlestep_breakpoints_inserted_p = 0;
456 
457 /* The thread we inserted single-step breakpoints for.  */
458 static ptid_t singlestep_ptid;
459 
460 /* If another thread hit the singlestep breakpoint, we save the original
461    thread here so that we can resume single-stepping it later.  */
462 static ptid_t saved_singlestep_ptid;
463 static int stepping_past_singlestep_breakpoint;
464 
465 
466 /* Things to clean up if we QUIT out of resume ().  */
467 static void
468 resume_cleanups (void *ignore)
469 {
470   normal_stop ();
471 }
472 
473 static const char schedlock_off[] = "off";
474 static const char schedlock_on[] = "on";
475 static const char schedlock_step[] = "step";
476 static const char *scheduler_mode = schedlock_off;
477 static const char *scheduler_enums[] = {
478   schedlock_off,
479   schedlock_on,
480   schedlock_step,
481   NULL
482 };
483 
484 static void
485 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
486 {
487   /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
488      function clones the set command passed as a parameter.  The clone
489      operation will include (BUG?) any ``set'' command callback, if
490      present.  Commands like ``info set'' call all the ``show''
491      command callbacks.  Unfortunately, for ``show'' commands cloned
492      from ``set'', this includes callbacks belonging to ``set''
493      commands.  Making this worse, this only occures if
494      deprecated_add_show_from_set() is called after add_cmd_sfunc()
495      (BUG?).  */
496   if (cmd_type (c) == set_cmd)
497     if (!target_can_lock_scheduler)
498       {
499 	scheduler_mode = schedlock_off;
500 	error ("Target '%s' cannot support this command.", target_shortname);
501       }
502 }
503 
504 
505 /* Resume the inferior, but allow a QUIT.  This is useful if the user
506    wants to interrupt some lengthy single-stepping operation
507    (for child processes, the SIGINT goes to the inferior, and so
508    we get a SIGINT random_signal, but for remote debugging and perhaps
509    other targets, that's not true).
510 
511    STEP nonzero if we should step (zero to continue instead).
512    SIG is the signal to give the inferior (zero for none).  */
513 void
514 resume (int step, enum target_signal sig)
515 {
516   int should_resume = 1;
517   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
518   QUIT;
519 
520   /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
521 
522 
523   /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
524      over an instruction that causes a page fault without triggering
525      a hardware watchpoint. The kernel properly notices that it shouldn't
526      stop, because the hardware watchpoint is not triggered, but it forgets
527      the step request and continues the program normally.
528      Work around the problem by removing hardware watchpoints if a step is
529      requested, GDB will check for a hardware watchpoint trigger after the
530      step anyway.  */
531   if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
532     remove_hw_watchpoints ();
533 
534 
535   /* Normally, by the time we reach `resume', the breakpoints are either
536      removed or inserted, as appropriate.  The exception is if we're sitting
537      at a permanent breakpoint; we need to step over it, but permanent
538      breakpoints can't be removed.  So we have to test for it here.  */
539   if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
540     SKIP_PERMANENT_BREAKPOINT ();
541 
542   if (SOFTWARE_SINGLE_STEP_P () && step)
543     {
544       /* Do it the hard way, w/temp breakpoints */
545       SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
546       /* ...and don't ask hardware to do it.  */
547       step = 0;
548       /* and do not pull these breakpoints until after a `wait' in
549          `wait_for_inferior' */
550       singlestep_breakpoints_inserted_p = 1;
551       singlestep_ptid = inferior_ptid;
552     }
553 
554   /* If there were any forks/vforks/execs that were caught and are
555      now to be followed, then do so.  */
556   switch (pending_follow.kind)
557     {
558     case TARGET_WAITKIND_FORKED:
559     case TARGET_WAITKIND_VFORKED:
560       pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561       if (follow_fork ())
562 	should_resume = 0;
563       break;
564 
565     case TARGET_WAITKIND_EXECD:
566       /* follow_exec is called as soon as the exec event is seen. */
567       pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568       break;
569 
570     default:
571       break;
572     }
573 
574   /* Install inferior's terminal modes.  */
575   target_terminal_inferior ();
576 
577   if (should_resume)
578     {
579       ptid_t resume_ptid;
580 
581       resume_ptid = RESUME_ALL;	/* Default */
582 
583       if ((step || singlestep_breakpoints_inserted_p)
584 	  && (stepping_past_singlestep_breakpoint
585 	      || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 	{
587 	  /* Stepping past a breakpoint without inserting breakpoints.
588 	     Make sure only the current thread gets to step, so that
589 	     other threads don't sneak past breakpoints while they are
590 	     not inserted. */
591 
592 	  resume_ptid = inferior_ptid;
593 	}
594 
595       if ((scheduler_mode == schedlock_on)
596 	  || (scheduler_mode == schedlock_step
597 	      && (step || singlestep_breakpoints_inserted_p)))
598 	{
599 	  /* User-settable 'scheduler' mode requires solo thread resume. */
600 	  resume_ptid = inferior_ptid;
601 	}
602 
603       if (CANNOT_STEP_BREAKPOINT)
604 	{
605 	  /* Most targets can step a breakpoint instruction, thus
606 	     executing it normally.  But if this one cannot, just
607 	     continue and we will hit it anyway.  */
608 	  if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 	    step = 0;
610 	}
611       target_resume (resume_ptid, step, sig);
612     }
613 
614   discard_cleanups (old_cleanups);
615 }
616 
617 
618 /* Clear out all variables saying what to do when inferior is continued.
619    First do this, then set the ones you want, then call `proceed'.  */
620 
621 void
622 clear_proceed_status (void)
623 {
624   trap_expected = 0;
625   step_range_start = 0;
626   step_range_end = 0;
627   step_frame_id = null_frame_id;
628   step_over_calls = STEP_OVER_UNDEBUGGABLE;
629   stop_after_trap = 0;
630   stop_soon = NO_STOP_QUIETLY;
631   proceed_to_finish = 0;
632   breakpoint_proceeded = 1;	/* We're about to proceed... */
633 
634   /* Discard any remaining commands or status from previous stop.  */
635   bpstat_clear (&stop_bpstat);
636 }
637 
638 /* This should be suitable for any targets that support threads. */
639 
640 static int
641 prepare_to_proceed (void)
642 {
643   ptid_t wait_ptid;
644   struct target_waitstatus wait_status;
645 
646   /* Get the last target status returned by target_wait().  */
647   get_last_target_status (&wait_ptid, &wait_status);
648 
649   /* Make sure we were stopped either at a breakpoint, or because
650      of a Ctrl-C.  */
651   if (wait_status.kind != TARGET_WAITKIND_STOPPED
652       || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 	  && wait_status.value.sig != TARGET_SIGNAL_INT))
654     {
655       return 0;
656     }
657 
658   if (!ptid_equal (wait_ptid, minus_one_ptid)
659       && !ptid_equal (inferior_ptid, wait_ptid))
660     {
661       /* Switched over from WAIT_PID.  */
662       CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663 
664       if (wait_pc != read_pc ())
665 	{
666 	  /* Switch back to WAIT_PID thread.  */
667 	  inferior_ptid = wait_ptid;
668 
669 	  /* FIXME: This stuff came from switch_to_thread() in
670 	     thread.c (which should probably be a public function).  */
671 	  flush_cached_frames ();
672 	  registers_changed ();
673 	  stop_pc = wait_pc;
674 	  select_frame (get_current_frame ());
675 	}
676 
677       /* We return 1 to indicate that there is a breakpoint here,
678          so we need to step over it before continuing to avoid
679          hitting it straight away. */
680       if (breakpoint_here_p (wait_pc))
681 	return 1;
682     }
683 
684   return 0;
685 
686 }
687 
688 /* Record the pc of the program the last time it stopped.  This is
689    just used internally by wait_for_inferior, but need to be preserved
690    over calls to it and cleared when the inferior is started.  */
691 static CORE_ADDR prev_pc;
692 
693 /* Basic routine for continuing the program in various fashions.
694 
695    ADDR is the address to resume at, or -1 for resume where stopped.
696    SIGGNAL is the signal to give it, or 0 for none,
697    or -1 for act according to how it stopped.
698    STEP is nonzero if should trap after one instruction.
699    -1 means return after that and print nothing.
700    You should probably set various step_... variables
701    before calling here, if you are stepping.
702 
703    You should call clear_proceed_status before calling proceed.  */
704 
705 void
706 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
707 {
708   int oneproc = 0;
709 
710   if (step > 0)
711     step_start_function = find_pc_function (read_pc ());
712   if (step < 0)
713     stop_after_trap = 1;
714 
715   if (addr == (CORE_ADDR) -1)
716     {
717       /* If there is a breakpoint at the address we will resume at,
718          step one instruction before inserting breakpoints
719          so that we do not stop right away (and report a second
720          hit at this breakpoint).  */
721 
722       if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
723 	oneproc = 1;
724 
725 #ifndef STEP_SKIPS_DELAY
726 #define STEP_SKIPS_DELAY(pc) (0)
727 #define STEP_SKIPS_DELAY_P (0)
728 #endif
729       /* Check breakpoint_here_p first, because breakpoint_here_p is fast
730          (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
731          is slow (it needs to read memory from the target).  */
732       if (STEP_SKIPS_DELAY_P
733 	  && breakpoint_here_p (read_pc () + 4)
734 	  && STEP_SKIPS_DELAY (read_pc ()))
735 	oneproc = 1;
736     }
737   else
738     {
739       write_pc (addr);
740     }
741 
742   /* In a multi-threaded task we may select another thread
743      and then continue or step.
744 
745      But if the old thread was stopped at a breakpoint, it
746      will immediately cause another breakpoint stop without
747      any execution (i.e. it will report a breakpoint hit
748      incorrectly).  So we must step over it first.
749 
750      prepare_to_proceed checks the current thread against the thread
751      that reported the most recent event.  If a step-over is required
752      it returns TRUE and sets the current thread to the old thread. */
753   if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
754     oneproc = 1;
755 
756   if (oneproc)
757     /* We will get a trace trap after one instruction.
758        Continue it automatically and insert breakpoints then.  */
759     trap_expected = 1;
760   else
761     {
762       insert_breakpoints ();
763       /* If we get here there was no call to error() in
764          insert breakpoints -- so they were inserted.  */
765       breakpoints_inserted = 1;
766     }
767 
768   if (siggnal != TARGET_SIGNAL_DEFAULT)
769     stop_signal = siggnal;
770   /* If this signal should not be seen by program,
771      give it zero.  Used for debugging signals.  */
772   else if (!signal_program[stop_signal])
773     stop_signal = TARGET_SIGNAL_0;
774 
775   annotate_starting ();
776 
777   /* Make sure that output from GDB appears before output from the
778      inferior.  */
779   gdb_flush (gdb_stdout);
780 
781   /* Refresh prev_pc value just prior to resuming.  This used to be
782      done in stop_stepping, however, setting prev_pc there did not handle
783      scenarios such as inferior function calls or returning from
784      a function via the return command.  In those cases, the prev_pc
785      value was not set properly for subsequent commands.  The prev_pc value
786      is used to initialize the starting line number in the ecs.  With an
787      invalid value, the gdb next command ends up stopping at the position
788      represented by the next line table entry past our start position.
789      On platforms that generate one line table entry per line, this
790      is not a problem.  However, on the ia64, the compiler generates
791      extraneous line table entries that do not increase the line number.
792      When we issue the gdb next command on the ia64 after an inferior call
793      or a return command, we often end up a few instructions forward, still
794      within the original line we started.
795 
796      An attempt was made to have init_execution_control_state () refresh
797      the prev_pc value before calculating the line number.  This approach
798      did not work because on platforms that use ptrace, the pc register
799      cannot be read unless the inferior is stopped.  At that point, we
800      are not guaranteed the inferior is stopped and so the read_pc ()
801      call can fail.  Setting the prev_pc value here ensures the value is
802      updated correctly when the inferior is stopped.  */
803   prev_pc = read_pc ();
804 
805   /* Resume inferior.  */
806   resume (oneproc || step || bpstat_should_step (), stop_signal);
807 
808   /* Wait for it to stop (if not standalone)
809      and in any case decode why it stopped, and act accordingly.  */
810   /* Do this only if we are not using the event loop, or if the target
811      does not support asynchronous execution. */
812   if (!target_can_async_p ())
813     {
814       wait_for_inferior ();
815       normal_stop ();
816     }
817 }
818 
819 
820 /* Start remote-debugging of a machine over a serial link.  */
821 
822 void
823 start_remote (void)
824 {
825   init_thread_list ();
826   init_wait_for_inferior ();
827   stop_soon = STOP_QUIETLY;
828   trap_expected = 0;
829 
830   /* Always go on waiting for the target, regardless of the mode. */
831   /* FIXME: cagney/1999-09-23: At present it isn't possible to
832      indicate to wait_for_inferior that a target should timeout if
833      nothing is returned (instead of just blocking).  Because of this,
834      targets expecting an immediate response need to, internally, set
835      things up so that the target_wait() is forced to eventually
836      timeout. */
837   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
838      differentiate to its caller what the state of the target is after
839      the initial open has been performed.  Here we're assuming that
840      the target has stopped.  It should be possible to eventually have
841      target_open() return to the caller an indication that the target
842      is currently running and GDB state should be set to the same as
843      for an async run. */
844   wait_for_inferior ();
845   normal_stop ();
846 }
847 
848 /* Initialize static vars when a new inferior begins.  */
849 
850 void
851 init_wait_for_inferior (void)
852 {
853   /* These are meaningless until the first time through wait_for_inferior.  */
854   prev_pc = 0;
855 
856   breakpoints_inserted = 0;
857   breakpoint_init_inferior (inf_starting);
858 
859   /* Don't confuse first call to proceed(). */
860   stop_signal = TARGET_SIGNAL_0;
861 
862   /* The first resume is not following a fork/vfork/exec. */
863   pending_follow.kind = TARGET_WAITKIND_SPURIOUS;	/* I.e., none. */
864 
865   /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
866   number_of_threads_in_syscalls = 0;
867 
868   clear_proceed_status ();
869 
870   stepping_past_singlestep_breakpoint = 0;
871 }
872 
873 /* This enum encodes possible reasons for doing a target_wait, so that
874    wfi can call target_wait in one place.  (Ultimately the call will be
875    moved out of the infinite loop entirely.) */
876 
877 enum infwait_states
878 {
879   infwait_normal_state,
880   infwait_thread_hop_state,
881   infwait_nullified_state,
882   infwait_nonstep_watch_state
883 };
884 
885 /* Why did the inferior stop? Used to print the appropriate messages
886    to the interface from within handle_inferior_event(). */
887 enum inferior_stop_reason
888 {
889   /* We don't know why. */
890   STOP_UNKNOWN,
891   /* Step, next, nexti, stepi finished. */
892   END_STEPPING_RANGE,
893   /* Found breakpoint. */
894   BREAKPOINT_HIT,
895   /* Inferior terminated by signal. */
896   SIGNAL_EXITED,
897   /* Inferior exited. */
898   EXITED,
899   /* Inferior received signal, and user asked to be notified. */
900   SIGNAL_RECEIVED
901 };
902 
903 /* This structure contains what used to be local variables in
904    wait_for_inferior.  Probably many of them can return to being
905    locals in handle_inferior_event.  */
906 
907 struct execution_control_state
908 {
909   struct target_waitstatus ws;
910   struct target_waitstatus *wp;
911   int another_trap;
912   int random_signal;
913   CORE_ADDR stop_func_start;
914   CORE_ADDR stop_func_end;
915   char *stop_func_name;
916   struct symtab_and_line sal;
917   int current_line;
918   struct symtab *current_symtab;
919   int handling_longjmp;		/* FIXME */
920   ptid_t ptid;
921   ptid_t saved_inferior_ptid;
922   int step_after_step_resume_breakpoint;
923   int stepping_through_solib_after_catch;
924   bpstat stepping_through_solib_catchpoints;
925   int enable_hw_watchpoints_after_wait;
926   int new_thread_event;
927   struct target_waitstatus tmpstatus;
928   enum infwait_states infwait_state;
929   ptid_t waiton_ptid;
930   int wait_some_more;
931 };
932 
933 void init_execution_control_state (struct execution_control_state *ecs);
934 
935 void handle_inferior_event (struct execution_control_state *ecs);
936 
937 static void step_into_function (struct execution_control_state *ecs);
938 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
939 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
940 						  struct frame_id sr_id);
941 static void stop_stepping (struct execution_control_state *ecs);
942 static void prepare_to_wait (struct execution_control_state *ecs);
943 static void keep_going (struct execution_control_state *ecs);
944 static void print_stop_reason (enum inferior_stop_reason stop_reason,
945 			       int stop_info);
946 
947 /* Wait for control to return from inferior to debugger.
948    If inferior gets a signal, we may decide to start it up again
949    instead of returning.  That is why there is a loop in this function.
950    When this function actually returns it means the inferior
951    should be left stopped and GDB should read more commands.  */
952 
953 void
954 wait_for_inferior (void)
955 {
956   struct cleanup *old_cleanups;
957   struct execution_control_state ecss;
958   struct execution_control_state *ecs;
959 
960   old_cleanups = make_cleanup (delete_step_resume_breakpoint,
961 			       &step_resume_breakpoint);
962 
963   /* wfi still stays in a loop, so it's OK just to take the address of
964      a local to get the ecs pointer.  */
965   ecs = &ecss;
966 
967   /* Fill in with reasonable starting values.  */
968   init_execution_control_state (ecs);
969 
970   /* We'll update this if & when we switch to a new thread. */
971   previous_inferior_ptid = inferior_ptid;
972 
973   overlay_cache_invalid = 1;
974 
975   /* We have to invalidate the registers BEFORE calling target_wait
976      because they can be loaded from the target while in target_wait.
977      This makes remote debugging a bit more efficient for those
978      targets that provide critical registers as part of their normal
979      status mechanism. */
980 
981   registers_changed ();
982 
983   while (1)
984     {
985       if (deprecated_target_wait_hook)
986 	ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
987       else
988 	ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
989 
990       /* Now figure out what to do with the result of the result.  */
991       handle_inferior_event (ecs);
992 
993       if (!ecs->wait_some_more)
994 	break;
995     }
996   do_cleanups (old_cleanups);
997 }
998 
999 /* Asynchronous version of wait_for_inferior. It is called by the
1000    event loop whenever a change of state is detected on the file
1001    descriptor corresponding to the target. It can be called more than
1002    once to complete a single execution command. In such cases we need
1003    to keep the state in a global variable ASYNC_ECSS. If it is the
1004    last time that this function is called for a single execution
1005    command, then report to the user that the inferior has stopped, and
1006    do the necessary cleanups. */
1007 
1008 struct execution_control_state async_ecss;
1009 struct execution_control_state *async_ecs;
1010 
1011 void
1012 fetch_inferior_event (void *client_data)
1013 {
1014   static struct cleanup *old_cleanups;
1015 
1016   async_ecs = &async_ecss;
1017 
1018   if (!async_ecs->wait_some_more)
1019     {
1020       old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1021 					&step_resume_breakpoint);
1022 
1023       /* Fill in with reasonable starting values.  */
1024       init_execution_control_state (async_ecs);
1025 
1026       /* We'll update this if & when we switch to a new thread. */
1027       previous_inferior_ptid = inferior_ptid;
1028 
1029       overlay_cache_invalid = 1;
1030 
1031       /* We have to invalidate the registers BEFORE calling target_wait
1032          because they can be loaded from the target while in target_wait.
1033          This makes remote debugging a bit more efficient for those
1034          targets that provide critical registers as part of their normal
1035          status mechanism. */
1036 
1037       registers_changed ();
1038     }
1039 
1040   if (deprecated_target_wait_hook)
1041     async_ecs->ptid =
1042       deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1043   else
1044     async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1045 
1046   /* Now figure out what to do with the result of the result.  */
1047   handle_inferior_event (async_ecs);
1048 
1049   if (!async_ecs->wait_some_more)
1050     {
1051       /* Do only the cleanups that have been added by this
1052          function. Let the continuations for the commands do the rest,
1053          if there are any. */
1054       do_exec_cleanups (old_cleanups);
1055       normal_stop ();
1056       if (step_multi && stop_step)
1057 	inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1058       else
1059 	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1060     }
1061 }
1062 
1063 /* Prepare an execution control state for looping through a
1064    wait_for_inferior-type loop.  */
1065 
1066 void
1067 init_execution_control_state (struct execution_control_state *ecs)
1068 {
1069   /* ecs->another_trap? */
1070   ecs->random_signal = 0;
1071   ecs->step_after_step_resume_breakpoint = 0;
1072   ecs->handling_longjmp = 0;	/* FIXME */
1073   ecs->stepping_through_solib_after_catch = 0;
1074   ecs->stepping_through_solib_catchpoints = NULL;
1075   ecs->enable_hw_watchpoints_after_wait = 0;
1076   ecs->sal = find_pc_line (prev_pc, 0);
1077   ecs->current_line = ecs->sal.line;
1078   ecs->current_symtab = ecs->sal.symtab;
1079   ecs->infwait_state = infwait_normal_state;
1080   ecs->waiton_ptid = pid_to_ptid (-1);
1081   ecs->wp = &(ecs->ws);
1082 }
1083 
1084 /* Return the cached copy of the last pid/waitstatus returned by
1085    target_wait()/deprecated_target_wait_hook().  The data is actually
1086    cached by handle_inferior_event(), which gets called immediately
1087    after target_wait()/deprecated_target_wait_hook().  */
1088 
1089 void
1090 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1091 {
1092   *ptidp = target_last_wait_ptid;
1093   *status = target_last_waitstatus;
1094 }
1095 
1096 /* Switch thread contexts, maintaining "infrun state". */
1097 
1098 static void
1099 context_switch (struct execution_control_state *ecs)
1100 {
1101   /* Caution: it may happen that the new thread (or the old one!)
1102      is not in the thread list.  In this case we must not attempt
1103      to "switch context", or we run the risk that our context may
1104      be lost.  This may happen as a result of the target module
1105      mishandling thread creation.  */
1106 
1107   if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1108     {				/* Perform infrun state context switch: */
1109       /* Save infrun state for the old thread.  */
1110       save_infrun_state (inferior_ptid, prev_pc,
1111 			 trap_expected, step_resume_breakpoint,
1112 			 step_range_start,
1113 			 step_range_end, &step_frame_id,
1114 			 ecs->handling_longjmp, ecs->another_trap,
1115 			 ecs->stepping_through_solib_after_catch,
1116 			 ecs->stepping_through_solib_catchpoints,
1117 			 ecs->current_line, ecs->current_symtab);
1118 
1119       /* Load infrun state for the new thread.  */
1120       load_infrun_state (ecs->ptid, &prev_pc,
1121 			 &trap_expected, &step_resume_breakpoint,
1122 			 &step_range_start,
1123 			 &step_range_end, &step_frame_id,
1124 			 &ecs->handling_longjmp, &ecs->another_trap,
1125 			 &ecs->stepping_through_solib_after_catch,
1126 			 &ecs->stepping_through_solib_catchpoints,
1127 			 &ecs->current_line, &ecs->current_symtab);
1128     }
1129   inferior_ptid = ecs->ptid;
1130 }
1131 
1132 static void
1133 adjust_pc_after_break (struct execution_control_state *ecs)
1134 {
1135   CORE_ADDR breakpoint_pc;
1136 
1137   /* If this target does not decrement the PC after breakpoints, then
1138      we have nothing to do.  */
1139   if (DECR_PC_AFTER_BREAK == 0)
1140     return;
1141 
1142   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
1143      we aren't, just return.
1144 
1145      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1146      affected by DECR_PC_AFTER_BREAK.  Other waitkinds which are implemented
1147      by software breakpoints should be handled through the normal breakpoint
1148      layer.
1149 
1150      NOTE drow/2004-01-31: On some targets, breakpoints may generate
1151      different signals (SIGILL or SIGEMT for instance), but it is less
1152      clear where the PC is pointing afterwards.  It may not match
1153      DECR_PC_AFTER_BREAK.  I don't know any specific target that generates
1154      these signals at breakpoints (the code has been in GDB since at least
1155      1992) so I can not guess how to handle them here.
1156 
1157      In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1158      would have the PC after hitting a watchpoint affected by
1159      DECR_PC_AFTER_BREAK.  I haven't found any target with both of these set
1160      in GDB history, and it seems unlikely to be correct, so
1161      HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here.  */
1162 
1163   if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1164     return;
1165 
1166   if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1167     return;
1168 
1169   /* Find the location where (if we've hit a breakpoint) the
1170      breakpoint would be.  */
1171   breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1172 
1173   if (SOFTWARE_SINGLE_STEP_P ())
1174     {
1175       /* When using software single-step, a SIGTRAP can only indicate
1176          an inserted breakpoint.  This actually makes things
1177          easier.  */
1178       if (singlestep_breakpoints_inserted_p)
1179 	/* When software single stepping, the instruction at [prev_pc]
1180 	   is never a breakpoint, but the instruction following
1181 	   [prev_pc] (in program execution order) always is.  Assume
1182 	   that following instruction was reached and hence a software
1183 	   breakpoint was hit.  */
1184 	write_pc_pid (breakpoint_pc, ecs->ptid);
1185       else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1186 	/* The inferior was free running (i.e., no single-step
1187 	   breakpoints inserted) and it hit a software breakpoint.  */
1188 	write_pc_pid (breakpoint_pc, ecs->ptid);
1189     }
1190   else
1191     {
1192       /* When using hardware single-step, a SIGTRAP is reported for
1193          both a completed single-step and a software breakpoint.  Need
1194          to differentiate between the two as the latter needs
1195          adjusting but the former does not.  */
1196       if (currently_stepping (ecs))
1197 	{
1198 	  if (prev_pc == breakpoint_pc
1199 	      && software_breakpoint_inserted_here_p (breakpoint_pc))
1200 	    /* Hardware single-stepped a software breakpoint (as
1201 	       occures when the inferior is resumed with PC pointing
1202 	       at not-yet-hit software breakpoint).  Since the
1203 	       breakpoint really is executed, the inferior needs to be
1204 	       backed up to the breakpoint address.  */
1205 	    write_pc_pid (breakpoint_pc, ecs->ptid);
1206 	}
1207       else
1208 	{
1209 	  if (software_breakpoint_inserted_here_p (breakpoint_pc))
1210 	    /* The inferior was free running (i.e., no hardware
1211 	       single-step and no possibility of a false SIGTRAP) and
1212 	       hit a software breakpoint.  */
1213 	    write_pc_pid (breakpoint_pc, ecs->ptid);
1214 	}
1215     }
1216 }
1217 
1218 /* Given an execution control state that has been freshly filled in
1219    by an event from the inferior, figure out what it means and take
1220    appropriate action.  */
1221 
1222 int stepped_after_stopped_by_watchpoint;
1223 
1224 void
1225 handle_inferior_event (struct execution_control_state *ecs)
1226 {
1227   /* NOTE: cagney/2003-03-28: If you're looking at this code and
1228      thinking that the variable stepped_after_stopped_by_watchpoint
1229      isn't used, then you're wrong!  The macro STOPPED_BY_WATCHPOINT,
1230      defined in the file "config/pa/nm-hppah.h", accesses the variable
1231      indirectly.  Mutter something rude about the HP merge.  */
1232   int sw_single_step_trap_p = 0;
1233   int stopped_by_watchpoint = -1;	/* Mark as unknown.  */
1234 
1235   /* Cache the last pid/waitstatus. */
1236   target_last_wait_ptid = ecs->ptid;
1237   target_last_waitstatus = *ecs->wp;
1238 
1239   adjust_pc_after_break (ecs);
1240 
1241   switch (ecs->infwait_state)
1242     {
1243     case infwait_thread_hop_state:
1244       /* Cancel the waiton_ptid. */
1245       ecs->waiton_ptid = pid_to_ptid (-1);
1246       /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1247          is serviced in this loop, below. */
1248       if (ecs->enable_hw_watchpoints_after_wait)
1249 	{
1250 	  TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1251 	  ecs->enable_hw_watchpoints_after_wait = 0;
1252 	}
1253       stepped_after_stopped_by_watchpoint = 0;
1254       break;
1255 
1256     case infwait_normal_state:
1257       /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1258          is serviced in this loop, below. */
1259       if (ecs->enable_hw_watchpoints_after_wait)
1260 	{
1261 	  TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1262 	  ecs->enable_hw_watchpoints_after_wait = 0;
1263 	}
1264       stepped_after_stopped_by_watchpoint = 0;
1265       break;
1266 
1267     case infwait_nullified_state:
1268       stepped_after_stopped_by_watchpoint = 0;
1269       break;
1270 
1271     case infwait_nonstep_watch_state:
1272       insert_breakpoints ();
1273 
1274       /* FIXME-maybe: is this cleaner than setting a flag?  Does it
1275          handle things like signals arriving and other things happening
1276          in combination correctly?  */
1277       stepped_after_stopped_by_watchpoint = 1;
1278       break;
1279 
1280     default:
1281       internal_error (__FILE__, __LINE__, "bad switch");
1282     }
1283   ecs->infwait_state = infwait_normal_state;
1284 
1285   flush_cached_frames ();
1286 
1287   /* If it's a new process, add it to the thread database */
1288 
1289   ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1290 			   && !ptid_equal (ecs->ptid, minus_one_ptid)
1291 			   && !in_thread_list (ecs->ptid));
1292 
1293   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1294       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1295     {
1296       add_thread (ecs->ptid);
1297 
1298       ui_out_text (uiout, "[New ");
1299       ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1300       ui_out_text (uiout, "]\n");
1301     }
1302 
1303   switch (ecs->ws.kind)
1304     {
1305     case TARGET_WAITKIND_LOADED:
1306       /* Ignore gracefully during startup of the inferior, as it
1307          might be the shell which has just loaded some objects,
1308          otherwise add the symbols for the newly loaded objects.  */
1309 #ifdef SOLIB_ADD
1310       if (stop_soon == NO_STOP_QUIETLY)
1311 	{
1312 	  /* Remove breakpoints, SOLIB_ADD might adjust
1313 	     breakpoint addresses via breakpoint_re_set.  */
1314 	  if (breakpoints_inserted)
1315 	    remove_breakpoints ();
1316 
1317 	  /* Check for any newly added shared libraries if we're
1318 	     supposed to be adding them automatically.  Switch
1319 	     terminal for any messages produced by
1320 	     breakpoint_re_set.  */
1321 	  target_terminal_ours_for_output ();
1322 	  /* NOTE: cagney/2003-11-25: Make certain that the target
1323 	     stack's section table is kept up-to-date.  Architectures,
1324 	     (e.g., PPC64), use the section table to perform
1325 	     operations such as address => section name and hence
1326 	     require the table to contain all sections (including
1327 	     those found in shared libraries).  */
1328 	  /* NOTE: cagney/2003-11-25: Pass current_target and not
1329 	     exec_ops to SOLIB_ADD.  This is because current GDB is
1330 	     only tooled to propagate section_table changes out from
1331 	     the "current_target" (see target_resize_to_sections), and
1332 	     not up from the exec stratum.  This, of course, isn't
1333 	     right.  "infrun.c" should only interact with the
1334 	     exec/process stratum, instead relying on the target stack
1335 	     to propagate relevant changes (stop, section table
1336 	     changed, ...) up to other layers.  */
1337 	  SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1338 	  target_terminal_inferior ();
1339 
1340 	  /* Reinsert breakpoints and continue.  */
1341 	  if (breakpoints_inserted)
1342 	    insert_breakpoints ();
1343 	}
1344 #endif
1345       resume (0, TARGET_SIGNAL_0);
1346       prepare_to_wait (ecs);
1347       return;
1348 
1349     case TARGET_WAITKIND_SPURIOUS:
1350       resume (0, TARGET_SIGNAL_0);
1351       prepare_to_wait (ecs);
1352       return;
1353 
1354     case TARGET_WAITKIND_EXITED:
1355       target_terminal_ours ();	/* Must do this before mourn anyway */
1356       print_stop_reason (EXITED, ecs->ws.value.integer);
1357 
1358       /* Record the exit code in the convenience variable $_exitcode, so
1359          that the user can inspect this again later.  */
1360       set_internalvar (lookup_internalvar ("_exitcode"),
1361 		       value_from_longest (builtin_type_int,
1362 					   (LONGEST) ecs->ws.value.integer));
1363       gdb_flush (gdb_stdout);
1364       target_mourn_inferior ();
1365       singlestep_breakpoints_inserted_p = 0;	/*SOFTWARE_SINGLE_STEP_P() */
1366       stop_print_frame = 0;
1367       stop_stepping (ecs);
1368       return;
1369 
1370     case TARGET_WAITKIND_SIGNALLED:
1371       stop_print_frame = 0;
1372       stop_signal = ecs->ws.value.sig;
1373       target_terminal_ours ();	/* Must do this before mourn anyway */
1374 
1375       /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1376          reach here unless the inferior is dead.  However, for years
1377          target_kill() was called here, which hints that fatal signals aren't
1378          really fatal on some systems.  If that's true, then some changes
1379          may be needed. */
1380       target_mourn_inferior ();
1381 
1382       print_stop_reason (SIGNAL_EXITED, stop_signal);
1383       singlestep_breakpoints_inserted_p = 0;	/*SOFTWARE_SINGLE_STEP_P() */
1384       stop_stepping (ecs);
1385       return;
1386 
1387       /* The following are the only cases in which we keep going;
1388          the above cases end in a continue or goto. */
1389     case TARGET_WAITKIND_FORKED:
1390     case TARGET_WAITKIND_VFORKED:
1391       stop_signal = TARGET_SIGNAL_TRAP;
1392       pending_follow.kind = ecs->ws.kind;
1393 
1394       pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1395       pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1396 
1397       stop_pc = read_pc ();
1398 
1399       stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1400 
1401       ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1402 
1403       /* If no catchpoint triggered for this, then keep going.  */
1404       if (ecs->random_signal)
1405 	{
1406 	  stop_signal = TARGET_SIGNAL_0;
1407 	  keep_going (ecs);
1408 	  return;
1409 	}
1410       goto process_event_stop_test;
1411 
1412     case TARGET_WAITKIND_EXECD:
1413       stop_signal = TARGET_SIGNAL_TRAP;
1414 
1415       /* NOTE drow/2002-12-05: This code should be pushed down into the
1416          target_wait function.  Until then following vfork on HP/UX 10.20
1417          is probably broken by this.  Of course, it's broken anyway.  */
1418       /* Is this a target which reports multiple exec events per actual
1419          call to exec()?  (HP-UX using ptrace does, for example.)  If so,
1420          ignore all but the last one.  Just resume the exec'r, and wait
1421          for the next exec event. */
1422       if (inferior_ignoring_leading_exec_events)
1423 	{
1424 	  inferior_ignoring_leading_exec_events--;
1425 	  if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1426 	    ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1427 						    parent_pid);
1428 	  target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1429 	  prepare_to_wait (ecs);
1430 	  return;
1431 	}
1432       inferior_ignoring_leading_exec_events =
1433 	target_reported_exec_events_per_exec_call () - 1;
1434 
1435       pending_follow.execd_pathname =
1436 	savestring (ecs->ws.value.execd_pathname,
1437 		    strlen (ecs->ws.value.execd_pathname));
1438 
1439       /* This causes the eventpoints and symbol table to be reset.  Must
1440          do this now, before trying to determine whether to stop. */
1441       follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1442       xfree (pending_follow.execd_pathname);
1443 
1444       stop_pc = read_pc_pid (ecs->ptid);
1445       ecs->saved_inferior_ptid = inferior_ptid;
1446       inferior_ptid = ecs->ptid;
1447 
1448       stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1449 
1450       ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1451       inferior_ptid = ecs->saved_inferior_ptid;
1452 
1453       /* If no catchpoint triggered for this, then keep going.  */
1454       if (ecs->random_signal)
1455 	{
1456 	  stop_signal = TARGET_SIGNAL_0;
1457 	  keep_going (ecs);
1458 	  return;
1459 	}
1460       goto process_event_stop_test;
1461 
1462       /* These syscall events are returned on HP-UX, as part of its
1463          implementation of page-protection-based "hardware" watchpoints.
1464          HP-UX has unfortunate interactions between page-protections and
1465          some system calls.  Our solution is to disable hardware watches
1466          when a system call is entered, and reenable them when the syscall
1467          completes.  The downside of this is that we may miss the precise
1468          point at which a watched piece of memory is modified.  "Oh well."
1469 
1470          Note that we may have multiple threads running, which may each
1471          enter syscalls at roughly the same time.  Since we don't have a
1472          good notion currently of whether a watched piece of memory is
1473          thread-private, we'd best not have any page-protections active
1474          when any thread is in a syscall.  Thus, we only want to reenable
1475          hardware watches when no threads are in a syscall.
1476 
1477          Also, be careful not to try to gather much state about a thread
1478          that's in a syscall.  It's frequently a losing proposition. */
1479     case TARGET_WAITKIND_SYSCALL_ENTRY:
1480       number_of_threads_in_syscalls++;
1481       if (number_of_threads_in_syscalls == 1)
1482 	{
1483 	  TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1484 	}
1485       resume (0, TARGET_SIGNAL_0);
1486       prepare_to_wait (ecs);
1487       return;
1488 
1489       /* Before examining the threads further, step this thread to
1490          get it entirely out of the syscall.  (We get notice of the
1491          event when the thread is just on the verge of exiting a
1492          syscall.  Stepping one instruction seems to get it back
1493          into user code.)
1494 
1495          Note that although the logical place to reenable h/w watches
1496          is here, we cannot.  We cannot reenable them before stepping
1497          the thread (this causes the next wait on the thread to hang).
1498 
1499          Nor can we enable them after stepping until we've done a wait.
1500          Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1501          here, which will be serviced immediately after the target
1502          is waited on. */
1503     case TARGET_WAITKIND_SYSCALL_RETURN:
1504       target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1505 
1506       if (number_of_threads_in_syscalls > 0)
1507 	{
1508 	  number_of_threads_in_syscalls--;
1509 	  ecs->enable_hw_watchpoints_after_wait =
1510 	    (number_of_threads_in_syscalls == 0);
1511 	}
1512       prepare_to_wait (ecs);
1513       return;
1514 
1515     case TARGET_WAITKIND_STOPPED:
1516       stop_signal = ecs->ws.value.sig;
1517       break;
1518 
1519       /* We had an event in the inferior, but we are not interested
1520          in handling it at this level. The lower layers have already
1521          done what needs to be done, if anything.
1522 
1523          One of the possible circumstances for this is when the
1524          inferior produces output for the console. The inferior has
1525          not stopped, and we are ignoring the event.  Another possible
1526          circumstance is any event which the lower level knows will be
1527          reported multiple times without an intervening resume.  */
1528     case TARGET_WAITKIND_IGNORE:
1529       prepare_to_wait (ecs);
1530       return;
1531     }
1532 
1533   /* We may want to consider not doing a resume here in order to give
1534      the user a chance to play with the new thread.  It might be good
1535      to make that a user-settable option.  */
1536 
1537   /* At this point, all threads are stopped (happens automatically in
1538      either the OS or the native code).  Therefore we need to continue
1539      all threads in order to make progress.  */
1540   if (ecs->new_thread_event)
1541     {
1542       target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1543       prepare_to_wait (ecs);
1544       return;
1545     }
1546 
1547   stop_pc = read_pc_pid (ecs->ptid);
1548 
1549   if (stepping_past_singlestep_breakpoint)
1550     {
1551       gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1552 		  && singlestep_breakpoints_inserted_p);
1553       gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1554       gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1555 
1556       stepping_past_singlestep_breakpoint = 0;
1557 
1558       /* We've either finished single-stepping past the single-step
1559          breakpoint, or stopped for some other reason.  It would be nice if
1560          we could tell, but we can't reliably.  */
1561       if (stop_signal == TARGET_SIGNAL_TRAP)
1562 	{
1563 	  /* Pull the single step breakpoints out of the target.  */
1564 	  SOFTWARE_SINGLE_STEP (0, 0);
1565 	  singlestep_breakpoints_inserted_p = 0;
1566 
1567 	  ecs->random_signal = 0;
1568 
1569 	  ecs->ptid = saved_singlestep_ptid;
1570 	  context_switch (ecs);
1571 	  if (deprecated_context_hook)
1572 	    deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1573 
1574 	  resume (1, TARGET_SIGNAL_0);
1575 	  prepare_to_wait (ecs);
1576 	  return;
1577 	}
1578     }
1579 
1580   stepping_past_singlestep_breakpoint = 0;
1581 
1582   /* See if a thread hit a thread-specific breakpoint that was meant for
1583      another thread.  If so, then step that thread past the breakpoint,
1584      and continue it.  */
1585 
1586   if (stop_signal == TARGET_SIGNAL_TRAP)
1587     {
1588       int thread_hop_needed = 0;
1589 
1590       /* Check if a regular breakpoint has been hit before checking
1591          for a potential single step breakpoint. Otherwise, GDB will
1592          not see this breakpoint hit when stepping onto breakpoints.  */
1593       if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1594 	{
1595 	  ecs->random_signal = 0;
1596 	  if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1597 	    thread_hop_needed = 1;
1598 	}
1599       else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1600 	{
1601 	  ecs->random_signal = 0;
1602 	  /* The call to in_thread_list is necessary because PTIDs sometimes
1603 	     change when we go from single-threaded to multi-threaded.  If
1604 	     the singlestep_ptid is still in the list, assume that it is
1605 	     really different from ecs->ptid.  */
1606 	  if (!ptid_equal (singlestep_ptid, ecs->ptid)
1607 	      && in_thread_list (singlestep_ptid))
1608 	    {
1609 	      thread_hop_needed = 1;
1610 	      stepping_past_singlestep_breakpoint = 1;
1611 	      saved_singlestep_ptid = singlestep_ptid;
1612 	    }
1613 	}
1614 
1615       if (thread_hop_needed)
1616 	{
1617 	  int remove_status;
1618 
1619 	  /* Saw a breakpoint, but it was hit by the wrong thread.
1620 	     Just continue. */
1621 
1622 	  if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1623 	    {
1624 	      /* Pull the single step breakpoints out of the target. */
1625 	      SOFTWARE_SINGLE_STEP (0, 0);
1626 	      singlestep_breakpoints_inserted_p = 0;
1627 	    }
1628 
1629 	  remove_status = remove_breakpoints ();
1630 	  /* Did we fail to remove breakpoints?  If so, try
1631 	     to set the PC past the bp.  (There's at least
1632 	     one situation in which we can fail to remove
1633 	     the bp's: On HP-UX's that use ttrace, we can't
1634 	     change the address space of a vforking child
1635 	     process until the child exits (well, okay, not
1636 	     then either :-) or execs. */
1637 	  if (remove_status != 0)
1638 	    {
1639 	      /* FIXME!  This is obviously non-portable! */
1640 	      write_pc_pid (stop_pc + 4, ecs->ptid);
1641 	      /* We need to restart all the threads now,
1642 	       * unles we're running in scheduler-locked mode.
1643 	       * Use currently_stepping to determine whether to
1644 	       * step or continue.
1645 	       */
1646 	      /* FIXME MVS: is there any reason not to call resume()? */
1647 	      if (scheduler_mode == schedlock_on)
1648 		target_resume (ecs->ptid,
1649 			       currently_stepping (ecs), TARGET_SIGNAL_0);
1650 	      else
1651 		target_resume (RESUME_ALL,
1652 			       currently_stepping (ecs), TARGET_SIGNAL_0);
1653 	      prepare_to_wait (ecs);
1654 	      return;
1655 	    }
1656 	  else
1657 	    {			/* Single step */
1658 	      breakpoints_inserted = 0;
1659 	      if (!ptid_equal (inferior_ptid, ecs->ptid))
1660 		context_switch (ecs);
1661 	      ecs->waiton_ptid = ecs->ptid;
1662 	      ecs->wp = &(ecs->ws);
1663 	      ecs->another_trap = 1;
1664 
1665 	      ecs->infwait_state = infwait_thread_hop_state;
1666 	      keep_going (ecs);
1667 	      registers_changed ();
1668 	      return;
1669 	    }
1670 	}
1671       else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1672 	{
1673 	  sw_single_step_trap_p = 1;
1674 	  ecs->random_signal = 0;
1675 	}
1676     }
1677   else
1678     ecs->random_signal = 1;
1679 
1680   /* See if something interesting happened to the non-current thread.  If
1681      so, then switch to that thread.  */
1682   if (!ptid_equal (ecs->ptid, inferior_ptid))
1683     {
1684       context_switch (ecs);
1685 
1686       if (deprecated_context_hook)
1687 	deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1688 
1689       flush_cached_frames ();
1690     }
1691 
1692   if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1693     {
1694       /* Pull the single step breakpoints out of the target. */
1695       SOFTWARE_SINGLE_STEP (0, 0);
1696       singlestep_breakpoints_inserted_p = 0;
1697     }
1698 
1699   /* If PC is pointing at a nullified instruction, then step beyond
1700      it so that the user won't be confused when GDB appears to be ready
1701      to execute it. */
1702 
1703   /*      if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1704   if (INSTRUCTION_NULLIFIED)
1705     {
1706       registers_changed ();
1707       target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1708 
1709       /* We may have received a signal that we want to pass to
1710          the inferior; therefore, we must not clobber the waitstatus
1711          in WS. */
1712 
1713       ecs->infwait_state = infwait_nullified_state;
1714       ecs->waiton_ptid = ecs->ptid;
1715       ecs->wp = &(ecs->tmpstatus);
1716       prepare_to_wait (ecs);
1717       return;
1718     }
1719 
1720   /* It may not be necessary to disable the watchpoint to stop over
1721      it.  For example, the PA can (with some kernel cooperation)
1722      single step over a watchpoint without disabling the watchpoint.  */
1723   if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1724     {
1725       resume (1, 0);
1726       prepare_to_wait (ecs);
1727       return;
1728     }
1729 
1730   /* It is far more common to need to disable a watchpoint to step
1731      the inferior over it.  FIXME.  What else might a debug
1732      register or page protection watchpoint scheme need here?  */
1733   if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1734     {
1735       /* At this point, we are stopped at an instruction which has
1736          attempted to write to a piece of memory under control of
1737          a watchpoint.  The instruction hasn't actually executed
1738          yet.  If we were to evaluate the watchpoint expression
1739          now, we would get the old value, and therefore no change
1740          would seem to have occurred.
1741 
1742          In order to make watchpoints work `right', we really need
1743          to complete the memory write, and then evaluate the
1744          watchpoint expression.  The following code does that by
1745          removing the watchpoint (actually, all watchpoints and
1746          breakpoints), single-stepping the target, re-inserting
1747          watchpoints, and then falling through to let normal
1748          single-step processing handle proceed.  Since this
1749          includes evaluating watchpoints, things will come to a
1750          stop in the correct manner.  */
1751 
1752       remove_breakpoints ();
1753       registers_changed ();
1754       target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);	/* Single step */
1755 
1756       ecs->waiton_ptid = ecs->ptid;
1757       ecs->wp = &(ecs->ws);
1758       ecs->infwait_state = infwait_nonstep_watch_state;
1759       prepare_to_wait (ecs);
1760       return;
1761     }
1762 
1763   /* It may be possible to simply continue after a watchpoint.  */
1764   if (HAVE_CONTINUABLE_WATCHPOINT)
1765     stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1766 
1767   ecs->stop_func_start = 0;
1768   ecs->stop_func_end = 0;
1769   ecs->stop_func_name = 0;
1770   /* Don't care about return value; stop_func_start and stop_func_name
1771      will both be 0 if it doesn't work.  */
1772   find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1773 			    &ecs->stop_func_start, &ecs->stop_func_end);
1774   ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1775   ecs->another_trap = 0;
1776   bpstat_clear (&stop_bpstat);
1777   stop_step = 0;
1778   stop_stack_dummy = 0;
1779   stop_print_frame = 1;
1780   ecs->random_signal = 0;
1781   stopped_by_random_signal = 0;
1782   breakpoints_failed = 0;
1783 
1784   /* Look at the cause of the stop, and decide what to do.
1785      The alternatives are:
1786      1) break; to really stop and return to the debugger,
1787      2) drop through to start up again
1788      (set ecs->another_trap to 1 to single step once)
1789      3) set ecs->random_signal to 1, and the decision between 1 and 2
1790      will be made according to the signal handling tables.  */
1791 
1792   /* First, distinguish signals caused by the debugger from signals
1793      that have to do with the program's own actions.  Note that
1794      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1795      on the operating system version.  Here we detect when a SIGILL or
1796      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
1797      something similar for SIGSEGV, since a SIGSEGV will be generated
1798      when we're trying to execute a breakpoint instruction on a
1799      non-executable stack.  This happens for call dummy breakpoints
1800      for architectures like SPARC that place call dummies on the
1801      stack.  */
1802 
1803   if (stop_signal == TARGET_SIGNAL_TRAP
1804       || (breakpoints_inserted
1805 	  && (stop_signal == TARGET_SIGNAL_ILL
1806 	      || stop_signal == TARGET_SIGNAL_SEGV
1807 	      || stop_signal == TARGET_SIGNAL_EMT))
1808       || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1809     {
1810       if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1811 	{
1812 	  stop_print_frame = 0;
1813 	  stop_stepping (ecs);
1814 	  return;
1815 	}
1816 
1817       /* This is originated from start_remote(), start_inferior() and
1818          shared libraries hook functions.  */
1819       if (stop_soon == STOP_QUIETLY)
1820 	{
1821 	  stop_stepping (ecs);
1822 	  return;
1823 	}
1824 
1825       /* This originates from attach_command().  We need to overwrite
1826          the stop_signal here, because some kernels don't ignore a
1827          SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1828          See more comments in inferior.h.  */
1829       if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1830 	{
1831 	  stop_stepping (ecs);
1832 	  if (stop_signal == TARGET_SIGNAL_STOP)
1833 	    stop_signal = TARGET_SIGNAL_0;
1834 	  return;
1835 	}
1836 
1837       /* Don't even think about breakpoints if just proceeded over a
1838          breakpoint.  */
1839       if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1840 	bpstat_clear (&stop_bpstat);
1841       else
1842 	{
1843 	  /* See if there is a breakpoint at the current PC.  */
1844 	  stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1845 					    stopped_by_watchpoint);
1846 
1847 	  /* Following in case break condition called a
1848 	     function.  */
1849 	  stop_print_frame = 1;
1850 	}
1851 
1852       /* NOTE: cagney/2003-03-29: These two checks for a random signal
1853          at one stage in the past included checks for an inferior
1854          function call's call dummy's return breakpoint.  The original
1855          comment, that went with the test, read:
1856 
1857          ``End of a stack dummy.  Some systems (e.g. Sony news) give
1858          another signal besides SIGTRAP, so check here as well as
1859          above.''
1860 
1861          If someone ever tries to get get call dummys on a
1862          non-executable stack to work (where the target would stop
1863          with something like a SIGSEGV), then those tests might need
1864          to be re-instated.  Given, however, that the tests were only
1865          enabled when momentary breakpoints were not being used, I
1866          suspect that it won't be the case.
1867 
1868          NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1869          be necessary for call dummies on a non-executable stack on
1870          SPARC.  */
1871 
1872       if (stop_signal == TARGET_SIGNAL_TRAP)
1873 	ecs->random_signal
1874 	  = !(bpstat_explains_signal (stop_bpstat)
1875 	      || trap_expected
1876 	      || (step_range_end && step_resume_breakpoint == NULL));
1877       else
1878 	{
1879 	  ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1880 	  if (!ecs->random_signal)
1881 	    stop_signal = TARGET_SIGNAL_TRAP;
1882 	}
1883     }
1884 
1885   /* When we reach this point, we've pretty much decided
1886      that the reason for stopping must've been a random
1887      (unexpected) signal. */
1888 
1889   else
1890     ecs->random_signal = 1;
1891 
1892 process_event_stop_test:
1893   /* For the program's own signals, act according to
1894      the signal handling tables.  */
1895 
1896   if (ecs->random_signal)
1897     {
1898       /* Signal not for debugging purposes.  */
1899       int printed = 0;
1900 
1901       stopped_by_random_signal = 1;
1902 
1903       if (signal_print[stop_signal])
1904 	{
1905 	  printed = 1;
1906 	  target_terminal_ours_for_output ();
1907 	  print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1908 	}
1909       if (signal_stop[stop_signal])
1910 	{
1911 	  stop_stepping (ecs);
1912 	  return;
1913 	}
1914       /* If not going to stop, give terminal back
1915          if we took it away.  */
1916       else if (printed)
1917 	target_terminal_inferior ();
1918 
1919       /* Clear the signal if it should not be passed.  */
1920       if (signal_program[stop_signal] == 0)
1921 	stop_signal = TARGET_SIGNAL_0;
1922 
1923       if (prev_pc == read_pc ()
1924 	  && !breakpoints_inserted
1925 	  && breakpoint_here_p (read_pc ())
1926 	  && step_resume_breakpoint == NULL)
1927 	{
1928 	  /* We were just starting a new sequence, attempting to
1929 	     single-step off of a breakpoint and expecting a SIGTRAP.
1930 	     Intead this signal arrives.  This signal will take us out
1931 	     of the stepping range so GDB needs to remember to, when
1932 	     the signal handler returns, resume stepping off that
1933 	     breakpoint.  */
1934 	  /* To simplify things, "continue" is forced to use the same
1935 	     code paths as single-step - set a breakpoint at the
1936 	     signal return address and then, once hit, step off that
1937 	     breakpoint.  */
1938 	  insert_step_resume_breakpoint_at_frame (get_current_frame ());
1939 	  ecs->step_after_step_resume_breakpoint = 1;
1940 	}
1941       else if (step_range_end != 0
1942 	       && stop_signal != TARGET_SIGNAL_0
1943 	       && stop_pc >= step_range_start && stop_pc < step_range_end
1944 	       && frame_id_eq (get_frame_id (get_current_frame ()),
1945 			       step_frame_id))
1946 	{
1947 	  /* The inferior is about to take a signal that will take it
1948 	     out of the single step range.  Set a breakpoint at the
1949 	     current PC (which is presumably where the signal handler
1950 	     will eventually return) and then allow the inferior to
1951 	     run free.
1952 
1953 	     Note that this is only needed for a signal delivered
1954 	     while in the single-step range.  Nested signals aren't a
1955 	     problem as they eventually all return.  */
1956 	  insert_step_resume_breakpoint_at_frame (get_current_frame ());
1957 	}
1958       keep_going (ecs);
1959       return;
1960     }
1961 
1962   /* Handle cases caused by hitting a breakpoint.  */
1963   {
1964     CORE_ADDR jmp_buf_pc;
1965     struct bpstat_what what;
1966 
1967     what = bpstat_what (stop_bpstat);
1968 
1969     if (what.call_dummy)
1970       {
1971 	stop_stack_dummy = 1;
1972       }
1973 
1974     switch (what.main_action)
1975       {
1976       case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1977 	/* If we hit the breakpoint at longjmp, disable it for the
1978 	   duration of this command.  Then, install a temporary
1979 	   breakpoint at the target of the jmp_buf. */
1980 	disable_longjmp_breakpoint ();
1981 	remove_breakpoints ();
1982 	breakpoints_inserted = 0;
1983 	if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
1984 	  {
1985 	    keep_going (ecs);
1986 	    return;
1987 	  }
1988 
1989 	/* Need to blow away step-resume breakpoint, as it
1990 	   interferes with us */
1991 	if (step_resume_breakpoint != NULL)
1992 	  {
1993 	    delete_step_resume_breakpoint (&step_resume_breakpoint);
1994 	  }
1995 
1996 	set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
1997 	ecs->handling_longjmp = 1;	/* FIXME */
1998 	keep_going (ecs);
1999 	return;
2000 
2001       case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2002       case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2003 	remove_breakpoints ();
2004 	breakpoints_inserted = 0;
2005 	disable_longjmp_breakpoint ();
2006 	ecs->handling_longjmp = 0;	/* FIXME */
2007 	if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2008 	  break;
2009 	/* else fallthrough */
2010 
2011       case BPSTAT_WHAT_SINGLE:
2012 	if (breakpoints_inserted)
2013 	  {
2014 	    remove_breakpoints ();
2015 	  }
2016 	breakpoints_inserted = 0;
2017 	ecs->another_trap = 1;
2018 	/* Still need to check other stuff, at least the case
2019 	   where we are stepping and step out of the right range.  */
2020 	break;
2021 
2022       case BPSTAT_WHAT_STOP_NOISY:
2023 	stop_print_frame = 1;
2024 
2025 	/* We are about to nuke the step_resume_breakpointt via the
2026 	   cleanup chain, so no need to worry about it here.  */
2027 
2028 	stop_stepping (ecs);
2029 	return;
2030 
2031       case BPSTAT_WHAT_STOP_SILENT:
2032 	stop_print_frame = 0;
2033 
2034 	/* We are about to nuke the step_resume_breakpoin via the
2035 	   cleanup chain, so no need to worry about it here.  */
2036 
2037 	stop_stepping (ecs);
2038 	return;
2039 
2040       case BPSTAT_WHAT_STEP_RESUME:
2041 	/* This proably demands a more elegant solution, but, yeah
2042 	   right...
2043 
2044 	   This function's use of the simple variable
2045 	   step_resume_breakpoint doesn't seem to accomodate
2046 	   simultaneously active step-resume bp's, although the
2047 	   breakpoint list certainly can.
2048 
2049 	   If we reach here and step_resume_breakpoint is already
2050 	   NULL, then apparently we have multiple active
2051 	   step-resume bp's.  We'll just delete the breakpoint we
2052 	   stopped at, and carry on.
2053 
2054 	   Correction: what the code currently does is delete a
2055 	   step-resume bp, but it makes no effort to ensure that
2056 	   the one deleted is the one currently stopped at.  MVS  */
2057 
2058 	if (step_resume_breakpoint == NULL)
2059 	  {
2060 	    step_resume_breakpoint =
2061 	      bpstat_find_step_resume_breakpoint (stop_bpstat);
2062 	  }
2063 	delete_step_resume_breakpoint (&step_resume_breakpoint);
2064 	if (ecs->step_after_step_resume_breakpoint)
2065 	  {
2066 	    /* Back when the step-resume breakpoint was inserted, we
2067 	       were trying to single-step off a breakpoint.  Go back
2068 	       to doing that.  */
2069 	    ecs->step_after_step_resume_breakpoint = 0;
2070 	    remove_breakpoints ();
2071 	    breakpoints_inserted = 0;
2072 	    ecs->another_trap = 1;
2073 	    keep_going (ecs);
2074 	    return;
2075 	  }
2076 	break;
2077 
2078       case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2079 	/* If were waiting for a trap, hitting the step_resume_break
2080 	   doesn't count as getting it.  */
2081 	if (trap_expected)
2082 	  ecs->another_trap = 1;
2083 	break;
2084 
2085       case BPSTAT_WHAT_CHECK_SHLIBS:
2086       case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2087 #ifdef SOLIB_ADD
2088 	{
2089 	  /* Remove breakpoints, we eventually want to step over the
2090 	     shlib event breakpoint, and SOLIB_ADD might adjust
2091 	     breakpoint addresses via breakpoint_re_set.  */
2092 	  if (breakpoints_inserted)
2093 	    remove_breakpoints ();
2094 	  breakpoints_inserted = 0;
2095 
2096 	  /* Check for any newly added shared libraries if we're
2097 	     supposed to be adding them automatically.  Switch
2098 	     terminal for any messages produced by
2099 	     breakpoint_re_set.  */
2100 	  target_terminal_ours_for_output ();
2101 	  /* NOTE: cagney/2003-11-25: Make certain that the target
2102 	     stack's section table is kept up-to-date.  Architectures,
2103 	     (e.g., PPC64), use the section table to perform
2104 	     operations such as address => section name and hence
2105 	     require the table to contain all sections (including
2106 	     those found in shared libraries).  */
2107 	  /* NOTE: cagney/2003-11-25: Pass current_target and not
2108 	     exec_ops to SOLIB_ADD.  This is because current GDB is
2109 	     only tooled to propagate section_table changes out from
2110 	     the "current_target" (see target_resize_to_sections), and
2111 	     not up from the exec stratum.  This, of course, isn't
2112 	     right.  "infrun.c" should only interact with the
2113 	     exec/process stratum, instead relying on the target stack
2114 	     to propagate relevant changes (stop, section table
2115 	     changed, ...) up to other layers.  */
2116 	  SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2117 	  target_terminal_inferior ();
2118 
2119 	  /* Try to reenable shared library breakpoints, additional
2120 	     code segments in shared libraries might be mapped in now. */
2121 	  re_enable_breakpoints_in_shlibs ();
2122 
2123 	  /* If requested, stop when the dynamic linker notifies
2124 	     gdb of events.  This allows the user to get control
2125 	     and place breakpoints in initializer routines for
2126 	     dynamically loaded objects (among other things).  */
2127 	  if (stop_on_solib_events || stop_stack_dummy)
2128 	    {
2129 	      stop_stepping (ecs);
2130 	      return;
2131 	    }
2132 
2133 	  /* If we stopped due to an explicit catchpoint, then the
2134 	     (see above) call to SOLIB_ADD pulled in any symbols
2135 	     from a newly-loaded library, if appropriate.
2136 
2137 	     We do want the inferior to stop, but not where it is
2138 	     now, which is in the dynamic linker callback.  Rather,
2139 	     we would like it stop in the user's program, just after
2140 	     the call that caused this catchpoint to trigger.  That
2141 	     gives the user a more useful vantage from which to
2142 	     examine their program's state. */
2143 	  else if (what.main_action
2144 		   == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2145 	    {
2146 	      /* ??rehrauer: If I could figure out how to get the
2147 	         right return PC from here, we could just set a temp
2148 	         breakpoint and resume.  I'm not sure we can without
2149 	         cracking open the dld's shared libraries and sniffing
2150 	         their unwind tables and text/data ranges, and that's
2151 	         not a terribly portable notion.
2152 
2153 	         Until that time, we must step the inferior out of the
2154 	         dld callback, and also out of the dld itself (and any
2155 	         code or stubs in libdld.sl, such as "shl_load" and
2156 	         friends) until we reach non-dld code.  At that point,
2157 	         we can stop stepping. */
2158 	      bpstat_get_triggered_catchpoints (stop_bpstat,
2159 						&ecs->
2160 						stepping_through_solib_catchpoints);
2161 	      ecs->stepping_through_solib_after_catch = 1;
2162 
2163 	      /* Be sure to lift all breakpoints, so the inferior does
2164 	         actually step past this point... */
2165 	      ecs->another_trap = 1;
2166 	      break;
2167 	    }
2168 	  else
2169 	    {
2170 	      /* We want to step over this breakpoint, then keep going.  */
2171 	      ecs->another_trap = 1;
2172 	      break;
2173 	    }
2174 	}
2175 #endif
2176 	break;
2177 
2178       case BPSTAT_WHAT_LAST:
2179 	/* Not a real code, but listed here to shut up gcc -Wall.  */
2180 
2181       case BPSTAT_WHAT_KEEP_CHECKING:
2182 	break;
2183       }
2184   }
2185 
2186   /* We come here if we hit a breakpoint but should not
2187      stop for it.  Possibly we also were stepping
2188      and should stop for that.  So fall through and
2189      test for stepping.  But, if not stepping,
2190      do not stop.  */
2191 
2192   /* Are we stepping to get the inferior out of the dynamic
2193      linker's hook (and possibly the dld itself) after catching
2194      a shlib event? */
2195   if (ecs->stepping_through_solib_after_catch)
2196     {
2197 #if defined(SOLIB_ADD)
2198       /* Have we reached our destination?  If not, keep going. */
2199       if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2200 	{
2201 	  ecs->another_trap = 1;
2202 	  keep_going (ecs);
2203 	  return;
2204 	}
2205 #endif
2206       /* Else, stop and report the catchpoint(s) whose triggering
2207          caused us to begin stepping. */
2208       ecs->stepping_through_solib_after_catch = 0;
2209       bpstat_clear (&stop_bpstat);
2210       stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2211       bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2212       stop_print_frame = 1;
2213       stop_stepping (ecs);
2214       return;
2215     }
2216 
2217   if (step_resume_breakpoint)
2218     {
2219       /* Having a step-resume breakpoint overrides anything
2220          else having to do with stepping commands until
2221          that breakpoint is reached.  */
2222       keep_going (ecs);
2223       return;
2224     }
2225 
2226   if (step_range_end == 0)
2227     {
2228       /* Likewise if we aren't even stepping.  */
2229       keep_going (ecs);
2230       return;
2231     }
2232 
2233   /* If stepping through a line, keep going if still within it.
2234 
2235      Note that step_range_end is the address of the first instruction
2236      beyond the step range, and NOT the address of the last instruction
2237      within it! */
2238   if (stop_pc >= step_range_start && stop_pc < step_range_end)
2239     {
2240       keep_going (ecs);
2241       return;
2242     }
2243 
2244   /* We stepped out of the stepping range.  */
2245 
2246   /* If we are stepping at the source level and entered the runtime
2247      loader dynamic symbol resolution code, we keep on single stepping
2248      until we exit the run time loader code and reach the callee's
2249      address.  */
2250   if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2251       && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2252     {
2253       CORE_ADDR pc_after_resolver =
2254 	gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2255 
2256       if (pc_after_resolver)
2257 	{
2258 	  /* Set up a step-resume breakpoint at the address
2259 	     indicated by SKIP_SOLIB_RESOLVER.  */
2260 	  struct symtab_and_line sr_sal;
2261 	  init_sal (&sr_sal);
2262 	  sr_sal.pc = pc_after_resolver;
2263 
2264 	  insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2265 	}
2266 
2267       keep_going (ecs);
2268       return;
2269     }
2270 
2271   if (step_range_end != 1
2272       && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2273 	  || step_over_calls == STEP_OVER_ALL)
2274       && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2275     {
2276       /* The inferior, while doing a "step" or "next", has ended up in
2277          a signal trampoline (either by a signal being delivered or by
2278          the signal handler returning).  Just single-step until the
2279          inferior leaves the trampoline (either by calling the handler
2280          or returning).  */
2281       keep_going (ecs);
2282       return;
2283     }
2284 
2285   if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2286     {
2287       /* It's a subroutine call.  */
2288       CORE_ADDR real_stop_pc;
2289 
2290       if ((step_over_calls == STEP_OVER_NONE)
2291 	  || ((step_range_end == 1)
2292 	      && in_prologue (prev_pc, ecs->stop_func_start)))
2293 	{
2294 	  /* I presume that step_over_calls is only 0 when we're
2295 	     supposed to be stepping at the assembly language level
2296 	     ("stepi").  Just stop.  */
2297 	  /* Also, maybe we just did a "nexti" inside a prolog, so we
2298 	     thought it was a subroutine call but it was not.  Stop as
2299 	     well.  FENN */
2300 	  stop_step = 1;
2301 	  print_stop_reason (END_STEPPING_RANGE, 0);
2302 	  stop_stepping (ecs);
2303 	  return;
2304 	}
2305 
2306 #ifdef DEPRECATED_IGNORE_HELPER_CALL
2307       /* On MIPS16, a function that returns a floating point value may
2308          call a library helper function to copy the return value to a
2309          floating point register.  The DEPRECATED_IGNORE_HELPER_CALL
2310          macro returns non-zero if we should ignore (i.e. step over)
2311          this function call.  */
2312       /* FIXME: cagney/2004-07-21: These custom ``ignore frame when
2313          stepping'' function attributes (SIGTRAMP_FRAME,
2314          DEPRECATED_IGNORE_HELPER_CALL, SKIP_TRAMPOLINE_CODE,
2315          skip_language_trampoline frame, et.al.) need to be replaced
2316          with generic attributes bound to the frame's function.  */
2317       if (DEPRECATED_IGNORE_HELPER_CALL (stop_pc))
2318 	{
2319 	  /* We're doing a "next", set a breakpoint at callee's return
2320 	     address (the address at which the caller will
2321 	     resume).  */
2322 	  insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2323 	  keep_going (ecs);
2324 	  return;
2325 	}
2326 #endif
2327       if (step_over_calls == STEP_OVER_ALL)
2328 	{
2329 	  /* We're doing a "next", set a breakpoint at callee's return
2330 	     address (the address at which the caller will
2331 	     resume).  */
2332 	  insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2333 	  keep_going (ecs);
2334 	  return;
2335 	}
2336 
2337       /* If we are in a function call trampoline (a stub between the
2338          calling routine and the real function), locate the real
2339          function.  That's what tells us (a) whether we want to step
2340          into it at all, and (b) what prologue we want to run to the
2341          end of, if we do step into it.  */
2342       real_stop_pc = skip_language_trampoline (stop_pc);
2343       if (real_stop_pc == 0)
2344 	real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2345       if (real_stop_pc != 0)
2346 	ecs->stop_func_start = real_stop_pc;
2347 
2348       if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2349 	{
2350 	  struct symtab_and_line sr_sal;
2351 	  init_sal (&sr_sal);
2352 	  sr_sal.pc = ecs->stop_func_start;
2353 
2354 	  insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2355 	  keep_going (ecs);
2356 	  return;
2357 	}
2358 
2359       /* If we have line number information for the function we are
2360          thinking of stepping into, step into it.
2361 
2362          If there are several symtabs at that PC (e.g. with include
2363          files), just want to know whether *any* of them have line
2364          numbers.  find_pc_line handles this.  */
2365       {
2366 	struct symtab_and_line tmp_sal;
2367 
2368 	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2369 	if (tmp_sal.line != 0)
2370 	  {
2371 	    step_into_function (ecs);
2372 	    return;
2373 	  }
2374       }
2375 
2376       /* If we have no line number and the step-stop-if-no-debug is
2377          set, we stop the step so that the user has a chance to switch
2378          in assembly mode.  */
2379       if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2380 	{
2381 	  stop_step = 1;
2382 	  print_stop_reason (END_STEPPING_RANGE, 0);
2383 	  stop_stepping (ecs);
2384 	  return;
2385 	}
2386 
2387       /* Set a breakpoint at callee's return address (the address at
2388          which the caller will resume).  */
2389       insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2390       keep_going (ecs);
2391       return;
2392     }
2393 
2394   /* If we're in the return path from a shared library trampoline,
2395      we want to proceed through the trampoline when stepping.  */
2396   if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2397     {
2398       /* Determine where this trampoline returns.  */
2399       CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2400 
2401       /* Only proceed through if we know where it's going.  */
2402       if (real_stop_pc)
2403 	{
2404 	  /* And put the step-breakpoint there and go until there. */
2405 	  struct symtab_and_line sr_sal;
2406 
2407 	  init_sal (&sr_sal);	/* initialize to zeroes */
2408 	  sr_sal.pc = real_stop_pc;
2409 	  sr_sal.section = find_pc_overlay (sr_sal.pc);
2410 
2411 	  /* Do not specify what the fp should be when we stop since
2412 	     on some machines the prologue is where the new fp value
2413 	     is established.  */
2414 	  insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2415 
2416 	  /* Restart without fiddling with the step ranges or
2417 	     other state.  */
2418 	  keep_going (ecs);
2419 	  return;
2420 	}
2421     }
2422 
2423   /* NOTE: tausq/2004-05-24: This if block used to be done before all
2424      the trampoline processing logic, however, there are some trampolines
2425      that have no names, so we should do trampoline handling first.  */
2426   if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2427       && ecs->stop_func_name == NULL)
2428     {
2429       /* The inferior just stepped into, or returned to, an
2430          undebuggable function (where there is no symbol, not even a
2431          minimal symbol, corresponding to the address where the
2432          inferior stopped).  Since we want to skip this kind of code,
2433          we keep going until the inferior returns from this
2434          function.  */
2435       if (step_stop_if_no_debug)
2436 	{
2437 	  /* If we have no line number and the step-stop-if-no-debug
2438 	     is set, we stop the step so that the user has a chance to
2439 	     switch in assembly mode.  */
2440 	  stop_step = 1;
2441 	  print_stop_reason (END_STEPPING_RANGE, 0);
2442 	  stop_stepping (ecs);
2443 	  return;
2444 	}
2445       else
2446 	{
2447 	  /* Set a breakpoint at callee's return address (the address
2448 	     at which the caller will resume).  */
2449 	  insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2450 	  keep_going (ecs);
2451 	  return;
2452 	}
2453     }
2454 
2455   if (step_range_end == 1)
2456     {
2457       /* It is stepi or nexti.  We always want to stop stepping after
2458          one instruction.  */
2459       stop_step = 1;
2460       print_stop_reason (END_STEPPING_RANGE, 0);
2461       stop_stepping (ecs);
2462       return;
2463     }
2464 
2465   ecs->sal = find_pc_line (stop_pc, 0);
2466 
2467   if (ecs->sal.line == 0)
2468     {
2469       /* We have no line number information.  That means to stop
2470          stepping (does this always happen right after one instruction,
2471          when we do "s" in a function with no line numbers,
2472          or can this happen as a result of a return or longjmp?).  */
2473       stop_step = 1;
2474       print_stop_reason (END_STEPPING_RANGE, 0);
2475       stop_stepping (ecs);
2476       return;
2477     }
2478 
2479   if ((stop_pc == ecs->sal.pc)
2480       && (ecs->current_line != ecs->sal.line
2481 	  || ecs->current_symtab != ecs->sal.symtab))
2482     {
2483       /* We are at the start of a different line.  So stop.  Note that
2484          we don't stop if we step into the middle of a different line.
2485          That is said to make things like for (;;) statements work
2486          better.  */
2487       stop_step = 1;
2488       print_stop_reason (END_STEPPING_RANGE, 0);
2489       stop_stepping (ecs);
2490       return;
2491     }
2492 
2493   /* We aren't done stepping.
2494 
2495      Optimize by setting the stepping range to the line.
2496      (We might not be in the original line, but if we entered a
2497      new line in mid-statement, we continue stepping.  This makes
2498      things like for(;;) statements work better.)  */
2499 
2500   if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2501     {
2502       /* If this is the last line of the function, don't keep stepping
2503          (it would probably step us out of the function).
2504          This is particularly necessary for a one-line function,
2505          in which after skipping the prologue we better stop even though
2506          we will be in mid-line.  */
2507       stop_step = 1;
2508       print_stop_reason (END_STEPPING_RANGE, 0);
2509       stop_stepping (ecs);
2510       return;
2511     }
2512   step_range_start = ecs->sal.pc;
2513   step_range_end = ecs->sal.end;
2514   step_frame_id = get_frame_id (get_current_frame ());
2515   ecs->current_line = ecs->sal.line;
2516   ecs->current_symtab = ecs->sal.symtab;
2517 
2518   /* In the case where we just stepped out of a function into the
2519      middle of a line of the caller, continue stepping, but
2520      step_frame_id must be modified to current frame */
2521 #if 0
2522   /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2523      generous.  It will trigger on things like a step into a frameless
2524      stackless leaf function.  I think the logic should instead look
2525      at the unwound frame ID has that should give a more robust
2526      indication of what happened.  */
2527   if (step - ID == current - ID)
2528     still stepping in same function;
2529   else if (step - ID == unwind (current - ID))
2530     stepped into a function;
2531   else
2532     stepped out of a function;
2533   /* Of course this assumes that the frame ID unwind code is robust
2534      and we're willing to introduce frame unwind logic into this
2535      function.  Fortunately, those days are nearly upon us.  */
2536 #endif
2537   {
2538     struct frame_id current_frame = get_frame_id (get_current_frame ());
2539     if (!(frame_id_inner (current_frame, step_frame_id)))
2540       step_frame_id = current_frame;
2541   }
2542 
2543   keep_going (ecs);
2544 }
2545 
2546 /* Are we in the middle of stepping?  */
2547 
2548 static int
2549 currently_stepping (struct execution_control_state *ecs)
2550 {
2551   return ((!ecs->handling_longjmp
2552 	   && ((step_range_end && step_resume_breakpoint == NULL)
2553 	       || trap_expected))
2554 	  || ecs->stepping_through_solib_after_catch
2555 	  || bpstat_should_step ());
2556 }
2557 
2558 /* Subroutine call with source code we should not step over.  Do step
2559    to the first line of code in it.  */
2560 
2561 static void
2562 step_into_function (struct execution_control_state *ecs)
2563 {
2564   struct symtab *s;
2565   struct symtab_and_line sr_sal;
2566 
2567   s = find_pc_symtab (stop_pc);
2568   if (s && s->language != language_asm)
2569     ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2570 
2571   ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2572   /* Use the step_resume_break to step until the end of the prologue,
2573      even if that involves jumps (as it seems to on the vax under
2574      4.2).  */
2575   /* If the prologue ends in the middle of a source line, continue to
2576      the end of that source line (if it is still within the function).
2577      Otherwise, just go to end of prologue.  */
2578   if (ecs->sal.end
2579       && ecs->sal.pc != ecs->stop_func_start
2580       && ecs->sal.end < ecs->stop_func_end)
2581     ecs->stop_func_start = ecs->sal.end;
2582 
2583   /* Architectures which require breakpoint adjustment might not be able
2584      to place a breakpoint at the computed address.  If so, the test
2585      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
2586      ecs->stop_func_start to an address at which a breakpoint may be
2587      legitimately placed.
2588 
2589      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
2590      made, GDB will enter an infinite loop when stepping through
2591      optimized code consisting of VLIW instructions which contain
2592      subinstructions corresponding to different source lines.  On
2593      FR-V, it's not permitted to place a breakpoint on any but the
2594      first subinstruction of a VLIW instruction.  When a breakpoint is
2595      set, GDB will adjust the breakpoint address to the beginning of
2596      the VLIW instruction.  Thus, we need to make the corresponding
2597      adjustment here when computing the stop address.  */
2598 
2599   if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2600     {
2601       ecs->stop_func_start
2602 	= gdbarch_adjust_breakpoint_address (current_gdbarch,
2603 					     ecs->stop_func_start);
2604     }
2605 
2606   if (ecs->stop_func_start == stop_pc)
2607     {
2608       /* We are already there: stop now.  */
2609       stop_step = 1;
2610       print_stop_reason (END_STEPPING_RANGE, 0);
2611       stop_stepping (ecs);
2612       return;
2613     }
2614   else
2615     {
2616       /* Put the step-breakpoint there and go until there.  */
2617       init_sal (&sr_sal);	/* initialize to zeroes */
2618       sr_sal.pc = ecs->stop_func_start;
2619       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2620 
2621       /* Do not specify what the fp should be when we stop since on
2622          some machines the prologue is where the new fp value is
2623          established.  */
2624       insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2625 
2626       /* And make sure stepping stops right away then.  */
2627       step_range_end = step_range_start;
2628     }
2629   keep_going (ecs);
2630 }
2631 
2632 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2633    This is used to both functions and to skip over code.  */
2634 
2635 static void
2636 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2637 				      struct frame_id sr_id)
2638 {
2639   /* There should never be more than one step-resume breakpoint per
2640      thread, so we should never be setting a new
2641      step_resume_breakpoint when one is already active.  */
2642   gdb_assert (step_resume_breakpoint == NULL);
2643   step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2644 						     bp_step_resume);
2645   if (breakpoints_inserted)
2646     insert_breakpoints ();
2647 }
2648 
2649 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc.  This is used
2650    to skip a function (next, skip-no-debug) or signal.  It's assumed
2651    that the function/signal handler being skipped eventually returns
2652    to the breakpoint inserted at RETURN_FRAME.pc.
2653 
2654    For the skip-function case, the function may have been reached by
2655    either single stepping a call / return / signal-return instruction,
2656    or by hitting a breakpoint.  In all cases, the RETURN_FRAME belongs
2657    to the skip-function's caller.
2658 
2659    For the signals case, this is called with the interrupted
2660    function's frame.  The signal handler, when it returns, will resume
2661    the interrupted function at RETURN_FRAME.pc.  */
2662 
2663 static void
2664 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2665 {
2666   struct symtab_and_line sr_sal;
2667 
2668   init_sal (&sr_sal);		/* initialize to zeros */
2669 
2670   sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2671   sr_sal.section = find_pc_overlay (sr_sal.pc);
2672 
2673   insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2674 }
2675 
2676 static void
2677 stop_stepping (struct execution_control_state *ecs)
2678 {
2679   /* Let callers know we don't want to wait for the inferior anymore.  */
2680   ecs->wait_some_more = 0;
2681 }
2682 
2683 /* This function handles various cases where we need to continue
2684    waiting for the inferior.  */
2685 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2686 
2687 static void
2688 keep_going (struct execution_control_state *ecs)
2689 {
2690   /* Save the pc before execution, to compare with pc after stop.  */
2691   prev_pc = read_pc ();		/* Might have been DECR_AFTER_BREAK */
2692 
2693   /* If we did not do break;, it means we should keep running the
2694      inferior and not return to debugger.  */
2695 
2696   if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2697     {
2698       /* We took a signal (which we are supposed to pass through to
2699          the inferior, else we'd have done a break above) and we
2700          haven't yet gotten our trap.  Simply continue.  */
2701       resume (currently_stepping (ecs), stop_signal);
2702     }
2703   else
2704     {
2705       /* Either the trap was not expected, but we are continuing
2706          anyway (the user asked that this signal be passed to the
2707          child)
2708          -- or --
2709          The signal was SIGTRAP, e.g. it was our signal, but we
2710          decided we should resume from it.
2711 
2712          We're going to run this baby now!  */
2713 
2714       if (!breakpoints_inserted && !ecs->another_trap)
2715 	{
2716 	  breakpoints_failed = insert_breakpoints ();
2717 	  if (breakpoints_failed)
2718 	    {
2719 	      stop_stepping (ecs);
2720 	      return;
2721 	    }
2722 	  breakpoints_inserted = 1;
2723 	}
2724 
2725       trap_expected = ecs->another_trap;
2726 
2727       /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2728          specifies that such a signal should be delivered to the
2729          target program).
2730 
2731          Typically, this would occure when a user is debugging a
2732          target monitor on a simulator: the target monitor sets a
2733          breakpoint; the simulator encounters this break-point and
2734          halts the simulation handing control to GDB; GDB, noteing
2735          that the break-point isn't valid, returns control back to the
2736          simulator; the simulator then delivers the hardware
2737          equivalent of a SIGNAL_TRAP to the program being debugged. */
2738 
2739       if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2740 	stop_signal = TARGET_SIGNAL_0;
2741 
2742 
2743       resume (currently_stepping (ecs), stop_signal);
2744     }
2745 
2746   prepare_to_wait (ecs);
2747 }
2748 
2749 /* This function normally comes after a resume, before
2750    handle_inferior_event exits.  It takes care of any last bits of
2751    housekeeping, and sets the all-important wait_some_more flag.  */
2752 
2753 static void
2754 prepare_to_wait (struct execution_control_state *ecs)
2755 {
2756   if (ecs->infwait_state == infwait_normal_state)
2757     {
2758       overlay_cache_invalid = 1;
2759 
2760       /* We have to invalidate the registers BEFORE calling
2761          target_wait because they can be loaded from the target while
2762          in target_wait.  This makes remote debugging a bit more
2763          efficient for those targets that provide critical registers
2764          as part of their normal status mechanism. */
2765 
2766       registers_changed ();
2767       ecs->waiton_ptid = pid_to_ptid (-1);
2768       ecs->wp = &(ecs->ws);
2769     }
2770   /* This is the old end of the while loop.  Let everybody know we
2771      want to wait for the inferior some more and get called again
2772      soon.  */
2773   ecs->wait_some_more = 1;
2774 }
2775 
2776 /* Print why the inferior has stopped. We always print something when
2777    the inferior exits, or receives a signal. The rest of the cases are
2778    dealt with later on in normal_stop() and print_it_typical().  Ideally
2779    there should be a call to this function from handle_inferior_event()
2780    each time stop_stepping() is called.*/
2781 static void
2782 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2783 {
2784   switch (stop_reason)
2785     {
2786     case STOP_UNKNOWN:
2787       /* We don't deal with these cases from handle_inferior_event()
2788          yet. */
2789       break;
2790     case END_STEPPING_RANGE:
2791       /* We are done with a step/next/si/ni command. */
2792       /* For now print nothing. */
2793       /* Print a message only if not in the middle of doing a "step n"
2794          operation for n > 1 */
2795       if (!step_multi || !stop_step)
2796 	if (ui_out_is_mi_like_p (uiout))
2797 	  ui_out_field_string (uiout, "reason", "end-stepping-range");
2798       break;
2799     case BREAKPOINT_HIT:
2800       /* We found a breakpoint. */
2801       /* For now print nothing. */
2802       break;
2803     case SIGNAL_EXITED:
2804       /* The inferior was terminated by a signal. */
2805       annotate_signalled ();
2806       if (ui_out_is_mi_like_p (uiout))
2807 	ui_out_field_string (uiout, "reason", "exited-signalled");
2808       ui_out_text (uiout, "\nProgram terminated with signal ");
2809       annotate_signal_name ();
2810       ui_out_field_string (uiout, "signal-name",
2811 			   target_signal_to_name (stop_info));
2812       annotate_signal_name_end ();
2813       ui_out_text (uiout, ", ");
2814       annotate_signal_string ();
2815       ui_out_field_string (uiout, "signal-meaning",
2816 			   target_signal_to_string (stop_info));
2817       annotate_signal_string_end ();
2818       ui_out_text (uiout, ".\n");
2819       ui_out_text (uiout, "The program no longer exists.\n");
2820       break;
2821     case EXITED:
2822       /* The inferior program is finished. */
2823       annotate_exited (stop_info);
2824       if (stop_info)
2825 	{
2826 	  if (ui_out_is_mi_like_p (uiout))
2827 	    ui_out_field_string (uiout, "reason", "exited");
2828 	  ui_out_text (uiout, "\nProgram exited with code ");
2829 	  ui_out_field_fmt (uiout, "exit-code", "0%o",
2830 			    (unsigned int) stop_info);
2831 	  ui_out_text (uiout, ".\n");
2832 	}
2833       else
2834 	{
2835 	  if (ui_out_is_mi_like_p (uiout))
2836 	    ui_out_field_string (uiout, "reason", "exited-normally");
2837 	  ui_out_text (uiout, "\nProgram exited normally.\n");
2838 	}
2839       break;
2840     case SIGNAL_RECEIVED:
2841       /* Signal received. The signal table tells us to print about
2842          it. */
2843       annotate_signal ();
2844       ui_out_text (uiout, "\nProgram received signal ");
2845       annotate_signal_name ();
2846       if (ui_out_is_mi_like_p (uiout))
2847 	ui_out_field_string (uiout, "reason", "signal-received");
2848       ui_out_field_string (uiout, "signal-name",
2849 			   target_signal_to_name (stop_info));
2850       annotate_signal_name_end ();
2851       ui_out_text (uiout, ", ");
2852       annotate_signal_string ();
2853       ui_out_field_string (uiout, "signal-meaning",
2854 			   target_signal_to_string (stop_info));
2855       annotate_signal_string_end ();
2856       ui_out_text (uiout, ".\n");
2857       break;
2858     default:
2859       internal_error (__FILE__, __LINE__,
2860 		      "print_stop_reason: unrecognized enum value");
2861       break;
2862     }
2863 }
2864 
2865 
2866 /* Here to return control to GDB when the inferior stops for real.
2867    Print appropriate messages, remove breakpoints, give terminal our modes.
2868 
2869    STOP_PRINT_FRAME nonzero means print the executing frame
2870    (pc, function, args, file, line number and line text).
2871    BREAKPOINTS_FAILED nonzero means stop was due to error
2872    attempting to insert breakpoints.  */
2873 
2874 void
2875 normal_stop (void)
2876 {
2877   struct target_waitstatus last;
2878   ptid_t last_ptid;
2879 
2880   get_last_target_status (&last_ptid, &last);
2881 
2882   /* As with the notification of thread events, we want to delay
2883      notifying the user that we've switched thread context until
2884      the inferior actually stops.
2885 
2886      There's no point in saying anything if the inferior has exited.
2887      Note that SIGNALLED here means "exited with a signal", not
2888      "received a signal".  */
2889   if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2890       && target_has_execution
2891       && last.kind != TARGET_WAITKIND_SIGNALLED
2892       && last.kind != TARGET_WAITKIND_EXITED)
2893     {
2894       target_terminal_ours_for_output ();
2895       printf_filtered ("[Switching to %s]\n",
2896 		       target_pid_or_tid_to_str (inferior_ptid));
2897       previous_inferior_ptid = inferior_ptid;
2898     }
2899 
2900   /* NOTE drow/2004-01-17: Is this still necessary?  */
2901   /* Make sure that the current_frame's pc is correct.  This
2902      is a correction for setting up the frame info before doing
2903      DECR_PC_AFTER_BREAK */
2904   if (target_has_execution)
2905     /* FIXME: cagney/2002-12-06: Has the PC changed?  Thanks to
2906        DECR_PC_AFTER_BREAK, the program counter can change.  Ask the
2907        frame code to check for this and sort out any resultant mess.
2908        DECR_PC_AFTER_BREAK needs to just go away.  */
2909     deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2910 
2911   if (target_has_execution && breakpoints_inserted)
2912     {
2913       if (remove_breakpoints ())
2914 	{
2915 	  target_terminal_ours_for_output ();
2916 	  printf_filtered ("Cannot remove breakpoints because ");
2917 	  printf_filtered ("program is no longer writable.\n");
2918 	  printf_filtered ("It might be running in another process.\n");
2919 	  printf_filtered ("Further execution is probably impossible.\n");
2920 	}
2921     }
2922   breakpoints_inserted = 0;
2923 
2924   /* Delete the breakpoint we stopped at, if it wants to be deleted.
2925      Delete any breakpoint that is to be deleted at the next stop.  */
2926 
2927   breakpoint_auto_delete (stop_bpstat);
2928 
2929   /* If an auto-display called a function and that got a signal,
2930      delete that auto-display to avoid an infinite recursion.  */
2931 
2932   if (stopped_by_random_signal)
2933     disable_current_display ();
2934 
2935   /* Don't print a message if in the middle of doing a "step n"
2936      operation for n > 1 */
2937   if (step_multi && stop_step)
2938     goto done;
2939 
2940   target_terminal_ours ();
2941 
2942   /* Look up the hook_stop and run it (CLI internally handles problem
2943      of stop_command's pre-hook not existing).  */
2944   if (stop_command)
2945     catch_errors (hook_stop_stub, stop_command,
2946 		  "Error while running hook_stop:\n", RETURN_MASK_ALL);
2947 
2948   if (!target_has_stack)
2949     {
2950 
2951       goto done;
2952     }
2953 
2954   /* Select innermost stack frame - i.e., current frame is frame 0,
2955      and current location is based on that.
2956      Don't do this on return from a stack dummy routine,
2957      or if the program has exited. */
2958 
2959   if (!stop_stack_dummy)
2960     {
2961       select_frame (get_current_frame ());
2962 
2963       /* Print current location without a level number, if
2964          we have changed functions or hit a breakpoint.
2965          Print source line if we have one.
2966          bpstat_print() contains the logic deciding in detail
2967          what to print, based on the event(s) that just occurred. */
2968 
2969       if (stop_print_frame && deprecated_selected_frame)
2970 	{
2971 	  int bpstat_ret;
2972 	  int source_flag;
2973 	  int do_frame_printing = 1;
2974 
2975 	  bpstat_ret = bpstat_print (stop_bpstat);
2976 	  switch (bpstat_ret)
2977 	    {
2978 	    case PRINT_UNKNOWN:
2979 	      /* FIXME: cagney/2002-12-01: Given that a frame ID does
2980 	         (or should) carry around the function and does (or
2981 	         should) use that when doing a frame comparison.  */
2982 	      if (stop_step
2983 		  && frame_id_eq (step_frame_id,
2984 				  get_frame_id (get_current_frame ()))
2985 		  && step_start_function == find_pc_function (stop_pc))
2986 		source_flag = SRC_LINE;	/* finished step, just print source line */
2987 	      else
2988 		source_flag = SRC_AND_LOC;	/* print location and source line */
2989 	      break;
2990 	    case PRINT_SRC_AND_LOC:
2991 	      source_flag = SRC_AND_LOC;	/* print location and source line */
2992 	      break;
2993 	    case PRINT_SRC_ONLY:
2994 	      source_flag = SRC_LINE;
2995 	      break;
2996 	    case PRINT_NOTHING:
2997 	      source_flag = SRC_LINE;	/* something bogus */
2998 	      do_frame_printing = 0;
2999 	      break;
3000 	    default:
3001 	      internal_error (__FILE__, __LINE__, "Unknown value.");
3002 	    }
3003 	  /* For mi, have the same behavior every time we stop:
3004 	     print everything but the source line. */
3005 	  if (ui_out_is_mi_like_p (uiout))
3006 	    source_flag = LOC_AND_ADDRESS;
3007 
3008 	  if (ui_out_is_mi_like_p (uiout))
3009 	    ui_out_field_int (uiout, "thread-id",
3010 			      pid_to_thread_id (inferior_ptid));
3011 	  /* The behavior of this routine with respect to the source
3012 	     flag is:
3013 	     SRC_LINE: Print only source line
3014 	     LOCATION: Print only location
3015 	     SRC_AND_LOC: Print location and source line */
3016 	  if (do_frame_printing)
3017 	    print_stack_frame (get_selected_frame (), 0, source_flag);
3018 
3019 	  /* Display the auto-display expressions.  */
3020 	  do_displays ();
3021 	}
3022     }
3023 
3024   /* Save the function value return registers, if we care.
3025      We might be about to restore their previous contents.  */
3026   if (proceed_to_finish)
3027     /* NB: The copy goes through to the target picking up the value of
3028        all the registers.  */
3029     regcache_cpy (stop_registers, current_regcache);
3030 
3031   if (stop_stack_dummy)
3032     {
3033       /* Pop the empty frame that contains the stack dummy.  POP_FRAME
3034          ends with a setting of the current frame, so we can use that
3035          next. */
3036       frame_pop (get_current_frame ());
3037       /* Set stop_pc to what it was before we called the function.
3038          Can't rely on restore_inferior_status because that only gets
3039          called if we don't stop in the called function.  */
3040       stop_pc = read_pc ();
3041       select_frame (get_current_frame ());
3042     }
3043 
3044 done:
3045   annotate_stopped ();
3046   observer_notify_normal_stop (stop_bpstat);
3047 }
3048 
3049 static int
3050 hook_stop_stub (void *cmd)
3051 {
3052   execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3053   return (0);
3054 }
3055 
3056 int
3057 signal_stop_state (int signo)
3058 {
3059   return signal_stop[signo];
3060 }
3061 
3062 int
3063 signal_print_state (int signo)
3064 {
3065   return signal_print[signo];
3066 }
3067 
3068 int
3069 signal_pass_state (int signo)
3070 {
3071   return signal_program[signo];
3072 }
3073 
3074 int
3075 signal_stop_update (int signo, int state)
3076 {
3077   int ret = signal_stop[signo];
3078   signal_stop[signo] = state;
3079   return ret;
3080 }
3081 
3082 int
3083 signal_print_update (int signo, int state)
3084 {
3085   int ret = signal_print[signo];
3086   signal_print[signo] = state;
3087   return ret;
3088 }
3089 
3090 int
3091 signal_pass_update (int signo, int state)
3092 {
3093   int ret = signal_program[signo];
3094   signal_program[signo] = state;
3095   return ret;
3096 }
3097 
3098 static void
3099 sig_print_header (void)
3100 {
3101   printf_filtered ("\
3102 Signal        Stop\tPrint\tPass to program\tDescription\n");
3103 }
3104 
3105 static void
3106 sig_print_info (enum target_signal oursig)
3107 {
3108   char *name = target_signal_to_name (oursig);
3109   int name_padding = 13 - strlen (name);
3110 
3111   if (name_padding <= 0)
3112     name_padding = 0;
3113 
3114   printf_filtered ("%s", name);
3115   printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
3116   printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3117   printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3118   printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3119   printf_filtered ("%s\n", target_signal_to_string (oursig));
3120 }
3121 
3122 /* Specify how various signals in the inferior should be handled.  */
3123 
3124 static void
3125 handle_command (char *args, int from_tty)
3126 {
3127   char **argv;
3128   int digits, wordlen;
3129   int sigfirst, signum, siglast;
3130   enum target_signal oursig;
3131   int allsigs;
3132   int nsigs;
3133   unsigned char *sigs;
3134   struct cleanup *old_chain;
3135 
3136   if (args == NULL)
3137     {
3138       error_no_arg ("signal to handle");
3139     }
3140 
3141   /* Allocate and zero an array of flags for which signals to handle. */
3142 
3143   nsigs = (int) TARGET_SIGNAL_LAST;
3144   sigs = (unsigned char *) alloca (nsigs);
3145   memset (sigs, 0, nsigs);
3146 
3147   /* Break the command line up into args. */
3148 
3149   argv = buildargv (args);
3150   if (argv == NULL)
3151     {
3152       nomem (0);
3153     }
3154   old_chain = make_cleanup_freeargv (argv);
3155 
3156   /* Walk through the args, looking for signal oursigs, signal names, and
3157      actions.  Signal numbers and signal names may be interspersed with
3158      actions, with the actions being performed for all signals cumulatively
3159      specified.  Signal ranges can be specified as <LOW>-<HIGH>. */
3160 
3161   while (*argv != NULL)
3162     {
3163       wordlen = strlen (*argv);
3164       for (digits = 0; isdigit ((*argv)[digits]); digits++)
3165 	{;
3166 	}
3167       allsigs = 0;
3168       sigfirst = siglast = -1;
3169 
3170       if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3171 	{
3172 	  /* Apply action to all signals except those used by the
3173 	     debugger.  Silently skip those. */
3174 	  allsigs = 1;
3175 	  sigfirst = 0;
3176 	  siglast = nsigs - 1;
3177 	}
3178       else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3179 	{
3180 	  SET_SIGS (nsigs, sigs, signal_stop);
3181 	  SET_SIGS (nsigs, sigs, signal_print);
3182 	}
3183       else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3184 	{
3185 	  UNSET_SIGS (nsigs, sigs, signal_program);
3186 	}
3187       else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3188 	{
3189 	  SET_SIGS (nsigs, sigs, signal_print);
3190 	}
3191       else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3192 	{
3193 	  SET_SIGS (nsigs, sigs, signal_program);
3194 	}
3195       else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3196 	{
3197 	  UNSET_SIGS (nsigs, sigs, signal_stop);
3198 	}
3199       else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3200 	{
3201 	  SET_SIGS (nsigs, sigs, signal_program);
3202 	}
3203       else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3204 	{
3205 	  UNSET_SIGS (nsigs, sigs, signal_print);
3206 	  UNSET_SIGS (nsigs, sigs, signal_stop);
3207 	}
3208       else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3209 	{
3210 	  UNSET_SIGS (nsigs, sigs, signal_program);
3211 	}
3212       else if (digits > 0)
3213 	{
3214 	  /* It is numeric.  The numeric signal refers to our own
3215 	     internal signal numbering from target.h, not to host/target
3216 	     signal  number.  This is a feature; users really should be
3217 	     using symbolic names anyway, and the common ones like
3218 	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
3219 
3220 	  sigfirst = siglast = (int)
3221 	    target_signal_from_command (atoi (*argv));
3222 	  if ((*argv)[digits] == '-')
3223 	    {
3224 	      siglast = (int)
3225 		target_signal_from_command (atoi ((*argv) + digits + 1));
3226 	    }
3227 	  if (sigfirst > siglast)
3228 	    {
3229 	      /* Bet he didn't figure we'd think of this case... */
3230 	      signum = sigfirst;
3231 	      sigfirst = siglast;
3232 	      siglast = signum;
3233 	    }
3234 	}
3235       else
3236 	{
3237 	  oursig = target_signal_from_name (*argv);
3238 	  if (oursig != TARGET_SIGNAL_UNKNOWN)
3239 	    {
3240 	      sigfirst = siglast = (int) oursig;
3241 	    }
3242 	  else
3243 	    {
3244 	      /* Not a number and not a recognized flag word => complain.  */
3245 	      error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3246 	    }
3247 	}
3248 
3249       /* If any signal numbers or symbol names were found, set flags for
3250          which signals to apply actions to. */
3251 
3252       for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3253 	{
3254 	  switch ((enum target_signal) signum)
3255 	    {
3256 	    case TARGET_SIGNAL_TRAP:
3257 	    case TARGET_SIGNAL_INT:
3258 	      if (!allsigs && !sigs[signum])
3259 		{
3260 		  if (query ("%s is used by the debugger.\n\
3261 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3262 		    {
3263 		      sigs[signum] = 1;
3264 		    }
3265 		  else
3266 		    {
3267 		      printf_unfiltered ("Not confirmed, unchanged.\n");
3268 		      gdb_flush (gdb_stdout);
3269 		    }
3270 		}
3271 	      break;
3272 	    case TARGET_SIGNAL_0:
3273 	    case TARGET_SIGNAL_DEFAULT:
3274 	    case TARGET_SIGNAL_UNKNOWN:
3275 	      /* Make sure that "all" doesn't print these.  */
3276 	      break;
3277 	    default:
3278 	      sigs[signum] = 1;
3279 	      break;
3280 	    }
3281 	}
3282 
3283       argv++;
3284     }
3285 
3286   target_notice_signals (inferior_ptid);
3287 
3288   if (from_tty)
3289     {
3290       /* Show the results.  */
3291       sig_print_header ();
3292       for (signum = 0; signum < nsigs; signum++)
3293 	{
3294 	  if (sigs[signum])
3295 	    {
3296 	      sig_print_info (signum);
3297 	    }
3298 	}
3299     }
3300 
3301   do_cleanups (old_chain);
3302 }
3303 
3304 static void
3305 xdb_handle_command (char *args, int from_tty)
3306 {
3307   char **argv;
3308   struct cleanup *old_chain;
3309 
3310   /* Break the command line up into args. */
3311 
3312   argv = buildargv (args);
3313   if (argv == NULL)
3314     {
3315       nomem (0);
3316     }
3317   old_chain = make_cleanup_freeargv (argv);
3318   if (argv[1] != (char *) NULL)
3319     {
3320       char *argBuf;
3321       int bufLen;
3322 
3323       bufLen = strlen (argv[0]) + 20;
3324       argBuf = (char *) xmalloc (bufLen);
3325       if (argBuf)
3326 	{
3327 	  int validFlag = 1;
3328 	  enum target_signal oursig;
3329 
3330 	  oursig = target_signal_from_name (argv[0]);
3331 	  memset (argBuf, 0, bufLen);
3332 	  if (strcmp (argv[1], "Q") == 0)
3333 	    sprintf (argBuf, "%s %s", argv[0], "noprint");
3334 	  else
3335 	    {
3336 	      if (strcmp (argv[1], "s") == 0)
3337 		{
3338 		  if (!signal_stop[oursig])
3339 		    sprintf (argBuf, "%s %s", argv[0], "stop");
3340 		  else
3341 		    sprintf (argBuf, "%s %s", argv[0], "nostop");
3342 		}
3343 	      else if (strcmp (argv[1], "i") == 0)
3344 		{
3345 		  if (!signal_program[oursig])
3346 		    sprintf (argBuf, "%s %s", argv[0], "pass");
3347 		  else
3348 		    sprintf (argBuf, "%s %s", argv[0], "nopass");
3349 		}
3350 	      else if (strcmp (argv[1], "r") == 0)
3351 		{
3352 		  if (!signal_print[oursig])
3353 		    sprintf (argBuf, "%s %s", argv[0], "print");
3354 		  else
3355 		    sprintf (argBuf, "%s %s", argv[0], "noprint");
3356 		}
3357 	      else
3358 		validFlag = 0;
3359 	    }
3360 	  if (validFlag)
3361 	    handle_command (argBuf, from_tty);
3362 	  else
3363 	    printf_filtered ("Invalid signal handling flag.\n");
3364 	  if (argBuf)
3365 	    xfree (argBuf);
3366 	}
3367     }
3368   do_cleanups (old_chain);
3369 }
3370 
3371 /* Print current contents of the tables set by the handle command.
3372    It is possible we should just be printing signals actually used
3373    by the current target (but for things to work right when switching
3374    targets, all signals should be in the signal tables).  */
3375 
3376 static void
3377 signals_info (char *signum_exp, int from_tty)
3378 {
3379   enum target_signal oursig;
3380   sig_print_header ();
3381 
3382   if (signum_exp)
3383     {
3384       /* First see if this is a symbol name.  */
3385       oursig = target_signal_from_name (signum_exp);
3386       if (oursig == TARGET_SIGNAL_UNKNOWN)
3387 	{
3388 	  /* No, try numeric.  */
3389 	  oursig =
3390 	    target_signal_from_command (parse_and_eval_long (signum_exp));
3391 	}
3392       sig_print_info (oursig);
3393       return;
3394     }
3395 
3396   printf_filtered ("\n");
3397   /* These ugly casts brought to you by the native VAX compiler.  */
3398   for (oursig = TARGET_SIGNAL_FIRST;
3399        (int) oursig < (int) TARGET_SIGNAL_LAST;
3400        oursig = (enum target_signal) ((int) oursig + 1))
3401     {
3402       QUIT;
3403 
3404       if (oursig != TARGET_SIGNAL_UNKNOWN
3405 	  && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3406 	sig_print_info (oursig);
3407     }
3408 
3409   printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3410 }
3411 
3412 struct inferior_status
3413 {
3414   enum target_signal stop_signal;
3415   CORE_ADDR stop_pc;
3416   bpstat stop_bpstat;
3417   int stop_step;
3418   int stop_stack_dummy;
3419   int stopped_by_random_signal;
3420   int trap_expected;
3421   CORE_ADDR step_range_start;
3422   CORE_ADDR step_range_end;
3423   struct frame_id step_frame_id;
3424   enum step_over_calls_kind step_over_calls;
3425   CORE_ADDR step_resume_break_address;
3426   int stop_after_trap;
3427   int stop_soon;
3428   struct regcache *stop_registers;
3429 
3430   /* These are here because if call_function_by_hand has written some
3431      registers and then decides to call error(), we better not have changed
3432      any registers.  */
3433   struct regcache *registers;
3434 
3435   /* A frame unique identifier.  */
3436   struct frame_id selected_frame_id;
3437 
3438   int breakpoint_proceeded;
3439   int restore_stack_info;
3440   int proceed_to_finish;
3441 };
3442 
3443 void
3444 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3445 				LONGEST val)
3446 {
3447   int size = register_size (current_gdbarch, regno);
3448   void *buf = alloca (size);
3449   store_signed_integer (buf, size, val);
3450   regcache_raw_write (inf_status->registers, regno, buf);
3451 }
3452 
3453 /* Save all of the information associated with the inferior<==>gdb
3454    connection.  INF_STATUS is a pointer to a "struct inferior_status"
3455    (defined in inferior.h).  */
3456 
3457 struct inferior_status *
3458 save_inferior_status (int restore_stack_info)
3459 {
3460   struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3461 
3462   inf_status->stop_signal = stop_signal;
3463   inf_status->stop_pc = stop_pc;
3464   inf_status->stop_step = stop_step;
3465   inf_status->stop_stack_dummy = stop_stack_dummy;
3466   inf_status->stopped_by_random_signal = stopped_by_random_signal;
3467   inf_status->trap_expected = trap_expected;
3468   inf_status->step_range_start = step_range_start;
3469   inf_status->step_range_end = step_range_end;
3470   inf_status->step_frame_id = step_frame_id;
3471   inf_status->step_over_calls = step_over_calls;
3472   inf_status->stop_after_trap = stop_after_trap;
3473   inf_status->stop_soon = stop_soon;
3474   /* Save original bpstat chain here; replace it with copy of chain.
3475      If caller's caller is walking the chain, they'll be happier if we
3476      hand them back the original chain when restore_inferior_status is
3477      called.  */
3478   inf_status->stop_bpstat = stop_bpstat;
3479   stop_bpstat = bpstat_copy (stop_bpstat);
3480   inf_status->breakpoint_proceeded = breakpoint_proceeded;
3481   inf_status->restore_stack_info = restore_stack_info;
3482   inf_status->proceed_to_finish = proceed_to_finish;
3483 
3484   inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3485 
3486   inf_status->registers = regcache_dup (current_regcache);
3487 
3488   inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3489   return inf_status;
3490 }
3491 
3492 static int
3493 restore_selected_frame (void *args)
3494 {
3495   struct frame_id *fid = (struct frame_id *) args;
3496   struct frame_info *frame;
3497 
3498   frame = frame_find_by_id (*fid);
3499 
3500   /* If inf_status->selected_frame_id is NULL, there was no previously
3501      selected frame.  */
3502   if (frame == NULL)
3503     {
3504       warning ("Unable to restore previously selected frame.\n");
3505       return 0;
3506     }
3507 
3508   select_frame (frame);
3509 
3510   return (1);
3511 }
3512 
3513 void
3514 restore_inferior_status (struct inferior_status *inf_status)
3515 {
3516   stop_signal = inf_status->stop_signal;
3517   stop_pc = inf_status->stop_pc;
3518   stop_step = inf_status->stop_step;
3519   stop_stack_dummy = inf_status->stop_stack_dummy;
3520   stopped_by_random_signal = inf_status->stopped_by_random_signal;
3521   trap_expected = inf_status->trap_expected;
3522   step_range_start = inf_status->step_range_start;
3523   step_range_end = inf_status->step_range_end;
3524   step_frame_id = inf_status->step_frame_id;
3525   step_over_calls = inf_status->step_over_calls;
3526   stop_after_trap = inf_status->stop_after_trap;
3527   stop_soon = inf_status->stop_soon;
3528   bpstat_clear (&stop_bpstat);
3529   stop_bpstat = inf_status->stop_bpstat;
3530   breakpoint_proceeded = inf_status->breakpoint_proceeded;
3531   proceed_to_finish = inf_status->proceed_to_finish;
3532 
3533   /* FIXME: Is the restore of stop_registers always needed. */
3534   regcache_xfree (stop_registers);
3535   stop_registers = inf_status->stop_registers;
3536 
3537   /* The inferior can be gone if the user types "print exit(0)"
3538      (and perhaps other times).  */
3539   if (target_has_execution)
3540     /* NB: The register write goes through to the target.  */
3541     regcache_cpy (current_regcache, inf_status->registers);
3542   regcache_xfree (inf_status->registers);
3543 
3544   /* FIXME: If we are being called after stopping in a function which
3545      is called from gdb, we should not be trying to restore the
3546      selected frame; it just prints a spurious error message (The
3547      message is useful, however, in detecting bugs in gdb (like if gdb
3548      clobbers the stack)).  In fact, should we be restoring the
3549      inferior status at all in that case?  .  */
3550 
3551   if (target_has_stack && inf_status->restore_stack_info)
3552     {
3553       /* The point of catch_errors is that if the stack is clobbered,
3554          walking the stack might encounter a garbage pointer and
3555          error() trying to dereference it.  */
3556       if (catch_errors
3557 	  (restore_selected_frame, &inf_status->selected_frame_id,
3558 	   "Unable to restore previously selected frame:\n",
3559 	   RETURN_MASK_ERROR) == 0)
3560 	/* Error in restoring the selected frame.  Select the innermost
3561 	   frame.  */
3562 	select_frame (get_current_frame ());
3563 
3564     }
3565 
3566   xfree (inf_status);
3567 }
3568 
3569 static void
3570 do_restore_inferior_status_cleanup (void *sts)
3571 {
3572   restore_inferior_status (sts);
3573 }
3574 
3575 struct cleanup *
3576 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3577 {
3578   return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3579 }
3580 
3581 void
3582 discard_inferior_status (struct inferior_status *inf_status)
3583 {
3584   /* See save_inferior_status for info on stop_bpstat. */
3585   bpstat_clear (&inf_status->stop_bpstat);
3586   regcache_xfree (inf_status->registers);
3587   regcache_xfree (inf_status->stop_registers);
3588   xfree (inf_status);
3589 }
3590 
3591 int
3592 inferior_has_forked (int pid, int *child_pid)
3593 {
3594   struct target_waitstatus last;
3595   ptid_t last_ptid;
3596 
3597   get_last_target_status (&last_ptid, &last);
3598 
3599   if (last.kind != TARGET_WAITKIND_FORKED)
3600     return 0;
3601 
3602   if (ptid_get_pid (last_ptid) != pid)
3603     return 0;
3604 
3605   *child_pid = last.value.related_pid;
3606   return 1;
3607 }
3608 
3609 int
3610 inferior_has_vforked (int pid, int *child_pid)
3611 {
3612   struct target_waitstatus last;
3613   ptid_t last_ptid;
3614 
3615   get_last_target_status (&last_ptid, &last);
3616 
3617   if (last.kind != TARGET_WAITKIND_VFORKED)
3618     return 0;
3619 
3620   if (ptid_get_pid (last_ptid) != pid)
3621     return 0;
3622 
3623   *child_pid = last.value.related_pid;
3624   return 1;
3625 }
3626 
3627 int
3628 inferior_has_execd (int pid, char **execd_pathname)
3629 {
3630   struct target_waitstatus last;
3631   ptid_t last_ptid;
3632 
3633   get_last_target_status (&last_ptid, &last);
3634 
3635   if (last.kind != TARGET_WAITKIND_EXECD)
3636     return 0;
3637 
3638   if (ptid_get_pid (last_ptid) != pid)
3639     return 0;
3640 
3641   *execd_pathname = xstrdup (last.value.execd_pathname);
3642   return 1;
3643 }
3644 
3645 /* Oft used ptids */
3646 ptid_t null_ptid;
3647 ptid_t minus_one_ptid;
3648 
3649 /* Create a ptid given the necessary PID, LWP, and TID components.  */
3650 
3651 ptid_t
3652 ptid_build (int pid, long lwp, long tid)
3653 {
3654   ptid_t ptid;
3655 
3656   ptid.pid = pid;
3657   ptid.lwp = lwp;
3658   ptid.tid = tid;
3659   return ptid;
3660 }
3661 
3662 /* Create a ptid from just a pid.  */
3663 
3664 ptid_t
3665 pid_to_ptid (int pid)
3666 {
3667   return ptid_build (pid, 0, 0);
3668 }
3669 
3670 /* Fetch the pid (process id) component from a ptid.  */
3671 
3672 int
3673 ptid_get_pid (ptid_t ptid)
3674 {
3675   return ptid.pid;
3676 }
3677 
3678 /* Fetch the lwp (lightweight process) component from a ptid.  */
3679 
3680 long
3681 ptid_get_lwp (ptid_t ptid)
3682 {
3683   return ptid.lwp;
3684 }
3685 
3686 /* Fetch the tid (thread id) component from a ptid.  */
3687 
3688 long
3689 ptid_get_tid (ptid_t ptid)
3690 {
3691   return ptid.tid;
3692 }
3693 
3694 /* ptid_equal() is used to test equality of two ptids.  */
3695 
3696 int
3697 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3698 {
3699   return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3700 	  && ptid1.tid == ptid2.tid);
3701 }
3702 
3703 /* restore_inferior_ptid() will be used by the cleanup machinery
3704    to restore the inferior_ptid value saved in a call to
3705    save_inferior_ptid().  */
3706 
3707 static void
3708 restore_inferior_ptid (void *arg)
3709 {
3710   ptid_t *saved_ptid_ptr = arg;
3711   inferior_ptid = *saved_ptid_ptr;
3712   xfree (arg);
3713 }
3714 
3715 /* Save the value of inferior_ptid so that it may be restored by a
3716    later call to do_cleanups().  Returns the struct cleanup pointer
3717    needed for later doing the cleanup.  */
3718 
3719 struct cleanup *
3720 save_inferior_ptid (void)
3721 {
3722   ptid_t *saved_ptid_ptr;
3723 
3724   saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3725   *saved_ptid_ptr = inferior_ptid;
3726   return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3727 }
3728 
3729 
3730 static void
3731 build_infrun (void)
3732 {
3733   stop_registers = regcache_xmalloc (current_gdbarch);
3734 }
3735 
3736 void
3737 _initialize_infrun (void)
3738 {
3739   int i;
3740   int numsigs;
3741   struct cmd_list_element *c;
3742 
3743   DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3744   deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3745 
3746   add_info ("signals", signals_info,
3747 	    "What debugger does when program gets various signals.\n\
3748 Specify a signal as argument to print info on that signal only.");
3749   add_info_alias ("handle", "signals", 0);
3750 
3751   add_com ("handle", class_run, handle_command,
3752 	   concat ("Specify how to handle a signal.\n\
3753 Args are signals and actions to apply to those signals.\n\
3754 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3755 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3756 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3757 The special arg \"all\" is recognized to mean all signals except those\n\
3758 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3759 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3760 Stop means reenter debugger if this signal happens (implies print).\n\
3761 Print means print a message if this signal happens.\n\
3762 Pass means let program see this signal; otherwise program doesn't know.\n\
3763 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3764 Pass and Stop may be combined.", NULL));
3765   if (xdb_commands)
3766     {
3767       add_com ("lz", class_info, signals_info,
3768 	       "What debugger does when program gets various signals.\n\
3769 Specify a signal as argument to print info on that signal only.");
3770       add_com ("z", class_run, xdb_handle_command,
3771 	       concat ("Specify how to handle a signal.\n\
3772 Args are signals and actions to apply to those signals.\n\
3773 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3774 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3775 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3776 The special arg \"all\" is recognized to mean all signals except those\n\
3777 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3778 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3779 nopass), \"Q\" (noprint)\n\
3780 Stop means reenter debugger if this signal happens (implies print).\n\
3781 Print means print a message if this signal happens.\n\
3782 Pass means let program see this signal; otherwise program doesn't know.\n\
3783 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3784 Pass and Stop may be combined.", NULL));
3785     }
3786 
3787   if (!dbx_commands)
3788     stop_command =
3789       add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3790 This allows you to set a list of commands to be run each time execution\n\
3791 of the program stops.", &cmdlist);
3792 
3793   numsigs = (int) TARGET_SIGNAL_LAST;
3794   signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3795   signal_print = (unsigned char *)
3796     xmalloc (sizeof (signal_print[0]) * numsigs);
3797   signal_program = (unsigned char *)
3798     xmalloc (sizeof (signal_program[0]) * numsigs);
3799   for (i = 0; i < numsigs; i++)
3800     {
3801       signal_stop[i] = 1;
3802       signal_print[i] = 1;
3803       signal_program[i] = 1;
3804     }
3805 
3806   /* Signals caused by debugger's own actions
3807      should not be given to the program afterwards.  */
3808   signal_program[TARGET_SIGNAL_TRAP] = 0;
3809   signal_program[TARGET_SIGNAL_INT] = 0;
3810 
3811   /* Signals that are not errors should not normally enter the debugger.  */
3812   signal_stop[TARGET_SIGNAL_ALRM] = 0;
3813   signal_print[TARGET_SIGNAL_ALRM] = 0;
3814   signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3815   signal_print[TARGET_SIGNAL_VTALRM] = 0;
3816   signal_stop[TARGET_SIGNAL_PROF] = 0;
3817   signal_print[TARGET_SIGNAL_PROF] = 0;
3818   signal_stop[TARGET_SIGNAL_CHLD] = 0;
3819   signal_print[TARGET_SIGNAL_CHLD] = 0;
3820   signal_stop[TARGET_SIGNAL_IO] = 0;
3821   signal_print[TARGET_SIGNAL_IO] = 0;
3822   signal_stop[TARGET_SIGNAL_POLL] = 0;
3823   signal_print[TARGET_SIGNAL_POLL] = 0;
3824   signal_stop[TARGET_SIGNAL_URG] = 0;
3825   signal_print[TARGET_SIGNAL_URG] = 0;
3826   signal_stop[TARGET_SIGNAL_WINCH] = 0;
3827   signal_print[TARGET_SIGNAL_WINCH] = 0;
3828 
3829   /* These signals are used internally by user-level thread
3830      implementations.  (See signal(5) on Solaris.)  Like the above
3831      signals, a healthy program receives and handles them as part of
3832      its normal operation.  */
3833   signal_stop[TARGET_SIGNAL_LWP] = 0;
3834   signal_print[TARGET_SIGNAL_LWP] = 0;
3835   signal_stop[TARGET_SIGNAL_WAITING] = 0;
3836   signal_print[TARGET_SIGNAL_WAITING] = 0;
3837   signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3838   signal_print[TARGET_SIGNAL_CANCEL] = 0;
3839 
3840 #ifdef SOLIB_ADD
3841   deprecated_add_show_from_set
3842     (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3843 		  (char *) &stop_on_solib_events,
3844 		  "Set stopping for shared library events.\n\
3845 If nonzero, gdb will give control to the user when the dynamic linker\n\
3846 notifies gdb of shared library events.  The most common event of interest\n\
3847 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3848 #endif
3849 
3850   c = add_set_enum_cmd ("follow-fork-mode",
3851 			class_run,
3852 			follow_fork_mode_kind_names, &follow_fork_mode_string,
3853 			"Set debugger response to a program call of fork \
3854 or vfork.\n\
3855 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
3856   parent  - the original process is debugged after a fork\n\
3857   child   - the new process is debugged after a fork\n\
3858 The unfollowed process will continue to run.\n\
3859 By default, the debugger will follow the parent process.", &setlist);
3860   deprecated_add_show_from_set (c, &showlist);
3861 
3862   c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums,	/* array of string names */
3863 			&scheduler_mode,	/* current mode  */
3864 			"Set mode for locking scheduler during execution.\n\
3865 off  == no locking (threads may preempt at any time)\n\
3866 on   == full locking (no thread except the current thread may run)\n\
3867 step == scheduler locked during every single-step operation.\n\
3868 	In this mode, no other thread may run during a step command.\n\
3869 	Other threads may run while stepping over a function call ('next').", &setlist);
3870 
3871   set_cmd_sfunc (c, set_schedlock_func);	/* traps on target vector */
3872   deprecated_add_show_from_set (c, &showlist);
3873 
3874   c = add_set_cmd ("step-mode", class_run,
3875 		   var_boolean, (char *) &step_stop_if_no_debug,
3876 		   "Set mode of the step operation. When set, doing a step over a\n\
3877 function without debug line information will stop at the first\n\
3878 instruction of that function. Otherwise, the function is skipped and\n\
3879 the step command stops at a different source line.", &setlist);
3880   deprecated_add_show_from_set (c, &showlist);
3881 
3882   /* ptid initializations */
3883   null_ptid = ptid_build (0, 0, 0);
3884   minus_one_ptid = ptid_build (-1, 0, 0);
3885   inferior_ptid = null_ptid;
3886   target_last_wait_ptid = minus_one_ptid;
3887 }
3888