xref: /openbsd-src/gnu/usr.bin/binutils/gdb/hppa-tdep.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 
3    Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5    Foundation, Inc.
6 
7    Contributed by the Center for Software Science at the
8    University of Utah (pa-gdb-bugs@cs.utah.edu).
9 
10    This file is part of GDB.
11 
12    This program is free software; you can redistribute it and/or modify
13    it under the terms of the GNU General Public License as published by
14    the Free Software Foundation; either version 2 of the License, or
15    (at your option) any later version.
16 
17    This program is distributed in the hope that it will be useful,
18    but WITHOUT ANY WARRANTY; without even the implied warranty of
19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20    GNU General Public License for more details.
21 
22    You should have received a copy of the GNU General Public License
23    along with this program; if not, write to the Free Software
24    Foundation, Inc., 59 Temple Place - Suite 330,
25    Boston, MA 02111-1307, USA.  */
26 
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41 
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46 
47 static int hppa_debug = 0;
48 
49 /* Some local constants.  */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52 
53 /* hppa-specific object data -- unwind and solib info.
54    TODO/maybe: think about splitting this into two parts; the unwind data is
55    common to all hppa targets, but is only used in this file; we can register
56    that separately and make this static. The solib data is probably hpux-
57    specific, so we can create a separate extern objfile_data that is registered
58    by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c.  */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60 
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66 
67 /* Sizes (in bytes) of the native unwind entries.  */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70 
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72    following functions static, once we hppa is partially multiarched.  */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74 int hppa_instruction_nullified (void);
75 
76 /* Handle 32/64-bit struct return conventions.  */
77 
78 static enum return_value_convention
79 hppa32_return_value (struct gdbarch *gdbarch,
80 		     struct type *type, struct regcache *regcache,
81 		     void *readbuf, const void *writebuf)
82 {
83   if (TYPE_LENGTH (type) <= 2 * 4)
84     {
85       /* The value always lives in the right hand end of the register
86 	 (or register pair)?  */
87       int b;
88       int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
89       int part = TYPE_LENGTH (type) % 4;
90       /* The left hand register contains only part of the value,
91 	 transfer that first so that the rest can be xfered as entire
92 	 4-byte registers.  */
93       if (part > 0)
94 	{
95 	  if (readbuf != NULL)
96 	    regcache_cooked_read_part (regcache, reg, 4 - part,
97 				       part, readbuf);
98 	  if (writebuf != NULL)
99 	    regcache_cooked_write_part (regcache, reg, 4 - part,
100 					part, writebuf);
101 	  reg++;
102 	}
103       /* Now transfer the remaining register values.  */
104       for (b = part; b < TYPE_LENGTH (type); b += 4)
105 	{
106 	  if (readbuf != NULL)
107 	    regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 	  if (writebuf != NULL)
109 	    regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
110 	  reg++;
111 	}
112       return RETURN_VALUE_REGISTER_CONVENTION;
113     }
114   else
115     return RETURN_VALUE_STRUCT_CONVENTION;
116 }
117 
118 static enum return_value_convention
119 hppa64_return_value (struct gdbarch *gdbarch,
120 		     struct type *type, struct regcache *regcache,
121 		     void *readbuf, const void *writebuf)
122 {
123   /* RM: Floats are returned in FR4R, doubles in FR4.  Integral values
124      are in r28, padded on the left.  Aggregates less that 65 bits are
125      in r28, right padded.  Aggregates upto 128 bits are in r28 and
126      r29, right padded.  */
127   if (TYPE_CODE (type) == TYPE_CODE_FLT
128       && TYPE_LENGTH (type) <= 8)
129     {
130       /* Floats are right aligned?  */
131       int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
132       if (readbuf != NULL)
133 	regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
134 				   TYPE_LENGTH (type), readbuf);
135       if (writebuf != NULL)
136 	regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
137 				    TYPE_LENGTH (type), writebuf);
138       return RETURN_VALUE_REGISTER_CONVENTION;
139     }
140   else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
141     {
142       /* Integrals are right aligned.  */
143       int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
144       if (readbuf != NULL)
145 	regcache_cooked_read_part (regcache, 28, offset,
146 				   TYPE_LENGTH (type), readbuf);
147       if (writebuf != NULL)
148 	regcache_cooked_write_part (regcache, 28, offset,
149 				    TYPE_LENGTH (type), writebuf);
150       return RETURN_VALUE_REGISTER_CONVENTION;
151     }
152   else if (TYPE_LENGTH (type) <= 2 * 8)
153     {
154       /* Composite values are left aligned.  */
155       int b;
156       for (b = 0; b < TYPE_LENGTH (type); b += 8)
157 	{
158 	  int part = min (8, TYPE_LENGTH (type) - b);
159 	  if (readbuf != NULL)
160 	    regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
161 				       (char *) readbuf + b);
162 	  if (writebuf != NULL)
163 	    regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
164 					(const char *) writebuf + b);
165 	}
166       return RETURN_VALUE_REGISTER_CONVENTION;
167     }
168   else
169     return RETURN_VALUE_STRUCT_CONVENTION;
170 }
171 
172 /* Routines to extract various sized constants out of hppa
173    instructions. */
174 
175 /* This assumes that no garbage lies outside of the lower bits of
176    value. */
177 
178 int
179 hppa_sign_extend (unsigned val, unsigned bits)
180 {
181   return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
182 }
183 
184 /* For many immediate values the sign bit is the low bit! */
185 
186 int
187 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
188 {
189   return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
190 }
191 
192 /* Extract the bits at positions between FROM and TO, using HP's numbering
193    (MSB = 0). */
194 
195 int
196 hppa_get_field (unsigned word, int from, int to)
197 {
198   return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
199 }
200 
201 /* extract the immediate field from a ld{bhw}s instruction */
202 
203 int
204 hppa_extract_5_load (unsigned word)
205 {
206   return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
207 }
208 
209 /* extract the immediate field from a break instruction */
210 
211 unsigned
212 hppa_extract_5r_store (unsigned word)
213 {
214   return (word & MASK_5);
215 }
216 
217 /* extract the immediate field from a {sr}sm instruction */
218 
219 unsigned
220 hppa_extract_5R_store (unsigned word)
221 {
222   return (word >> 16 & MASK_5);
223 }
224 
225 /* extract a 14 bit immediate field */
226 
227 int
228 hppa_extract_14 (unsigned word)
229 {
230   return hppa_low_hppa_sign_extend (word & MASK_14, 14);
231 }
232 
233 /* extract a 21 bit constant */
234 
235 int
236 hppa_extract_21 (unsigned word)
237 {
238   int val;
239 
240   word &= MASK_21;
241   word <<= 11;
242   val = hppa_get_field (word, 20, 20);
243   val <<= 11;
244   val |= hppa_get_field (word, 9, 19);
245   val <<= 2;
246   val |= hppa_get_field (word, 5, 6);
247   val <<= 5;
248   val |= hppa_get_field (word, 0, 4);
249   val <<= 2;
250   val |= hppa_get_field (word, 7, 8);
251   return hppa_sign_extend (val, 21) << 11;
252 }
253 
254 /* extract a 17 bit constant from branch instructions, returning the
255    19 bit signed value. */
256 
257 int
258 hppa_extract_17 (unsigned word)
259 {
260   return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 		      hppa_get_field (word, 29, 29) << 10 |
262 		      hppa_get_field (word, 11, 15) << 11 |
263 		      (word & 0x1) << 16, 17) << 2;
264 }
265 
266 CORE_ADDR
267 hppa_symbol_address(const char *sym)
268 {
269   struct minimal_symbol *minsym;
270 
271   minsym = lookup_minimal_symbol (sym, NULL, NULL);
272   if (minsym)
273     return SYMBOL_VALUE_ADDRESS (minsym);
274   else
275     return (CORE_ADDR)-1;
276 }
277 
278 
279 /* Compare the start address for two unwind entries returning 1 if
280    the first address is larger than the second, -1 if the second is
281    larger than the first, and zero if they are equal.  */
282 
283 static int
284 compare_unwind_entries (const void *arg1, const void *arg2)
285 {
286   const struct unwind_table_entry *a = arg1;
287   const struct unwind_table_entry *b = arg2;
288 
289   if (a->region_start > b->region_start)
290     return 1;
291   else if (a->region_start < b->region_start)
292     return -1;
293   else
294     return 0;
295 }
296 
297 static void
298 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
299 {
300   if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
301        == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
302     {
303       bfd_vma value = section->vma - section->filepos;
304       CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
305 
306       if (value < *low_text_segment_address)
307           *low_text_segment_address = value;
308     }
309 }
310 
311 static void
312 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
313 		     asection *section, unsigned int entries, unsigned int size,
314 		     CORE_ADDR text_offset)
315 {
316   /* We will read the unwind entries into temporary memory, then
317      fill in the actual unwind table.  */
318 
319   if (size > 0)
320     {
321       unsigned long tmp;
322       unsigned i;
323       char *buf = alloca (size);
324       CORE_ADDR low_text_segment_address;
325 
326       /* For ELF targets, then unwinds are supposed to
327 	 be segment relative offsets instead of absolute addresses.
328 
329 	 Note that when loading a shared library (text_offset != 0) the
330 	 unwinds are already relative to the text_offset that will be
331 	 passed in.  */
332       if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
333 	{
334           low_text_segment_address = -1;
335 
336 	  bfd_map_over_sections (objfile->obfd,
337 				 record_text_segment_lowaddr,
338 				 &low_text_segment_address);
339 
340 	  text_offset = low_text_segment_address;
341 	}
342 
343       bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
344 
345       /* Now internalize the information being careful to handle host/target
346          endian issues.  */
347       for (i = 0; i < entries; i++)
348 	{
349 	  table[i].region_start = bfd_get_32 (objfile->obfd,
350 					      (bfd_byte *) buf);
351 	  table[i].region_start += text_offset;
352 	  buf += 4;
353 	  table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
354 	  table[i].region_end += text_offset;
355 	  buf += 4;
356 	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
357 	  buf += 4;
358 	  table[i].Cannot_unwind = (tmp >> 31) & 0x1;
359 	  table[i].Millicode = (tmp >> 30) & 0x1;
360 	  table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
361 	  table[i].Region_description = (tmp >> 27) & 0x3;
362 	  table[i].reserved1 = (tmp >> 26) & 0x1;
363 	  table[i].Entry_SR = (tmp >> 25) & 0x1;
364 	  table[i].Entry_FR = (tmp >> 21) & 0xf;
365 	  table[i].Entry_GR = (tmp >> 16) & 0x1f;
366 	  table[i].Args_stored = (tmp >> 15) & 0x1;
367 	  table[i].Variable_Frame = (tmp >> 14) & 0x1;
368 	  table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
369 	  table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
370 	  table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
371 	  table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
372 	  table[i].Ada_Region = (tmp >> 9) & 0x1;
373 	  table[i].cxx_info = (tmp >> 8) & 0x1;
374 	  table[i].cxx_try_catch = (tmp >> 7) & 0x1;
375 	  table[i].sched_entry_seq = (tmp >> 6) & 0x1;
376 	  table[i].reserved2 = (tmp >> 5) & 0x1;
377 	  table[i].Save_SP = (tmp >> 4) & 0x1;
378 	  table[i].Save_RP = (tmp >> 3) & 0x1;
379 	  table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
380 	  table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
381 	  table[i].Cleanup_defined = tmp & 0x1;
382 	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
383 	  buf += 4;
384 	  table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
385 	  table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
386 	  table[i].Large_frame = (tmp >> 29) & 0x1;
387 	  table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
388 	  table[i].reserved4 = (tmp >> 27) & 0x1;
389 	  table[i].Total_frame_size = tmp & 0x7ffffff;
390 
391 	  /* Stub unwinds are handled elsewhere. */
392 	  table[i].stub_unwind.stub_type = 0;
393 	  table[i].stub_unwind.padding = 0;
394 	}
395     }
396 }
397 
398 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
399    the object file.  This info is used mainly by find_unwind_entry() to find
400    out the stack frame size and frame pointer used by procedures.  We put
401    everything on the psymbol obstack in the objfile so that it automatically
402    gets freed when the objfile is destroyed.  */
403 
404 static void
405 read_unwind_info (struct objfile *objfile)
406 {
407   asection *unwind_sec, *stub_unwind_sec;
408   unsigned unwind_size, stub_unwind_size, total_size;
409   unsigned index, unwind_entries;
410   unsigned stub_entries, total_entries;
411   CORE_ADDR text_offset;
412   struct hppa_unwind_info *ui;
413   struct hppa_objfile_private *obj_private;
414 
415   text_offset = ANOFFSET (objfile->section_offsets, 0);
416   ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
417 					   sizeof (struct hppa_unwind_info));
418 
419   ui->table = NULL;
420   ui->cache = NULL;
421   ui->last = -1;
422 
423   /* For reasons unknown the HP PA64 tools generate multiple unwinder
424      sections in a single executable.  So we just iterate over every
425      section in the BFD looking for unwinder sections intead of trying
426      to do a lookup with bfd_get_section_by_name.
427 
428      First determine the total size of the unwind tables so that we
429      can allocate memory in a nice big hunk.  */
430   total_entries = 0;
431   for (unwind_sec = objfile->obfd->sections;
432        unwind_sec;
433        unwind_sec = unwind_sec->next)
434     {
435       if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
436 	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
437 	{
438 	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
439 	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
440 
441 	  total_entries += unwind_entries;
442 	}
443     }
444 
445   /* Now compute the size of the stub unwinds.  Note the ELF tools do not
446      use stub unwinds at the curren time.  */
447   stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
448 
449   if (stub_unwind_sec)
450     {
451       stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
452       stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
453     }
454   else
455     {
456       stub_unwind_size = 0;
457       stub_entries = 0;
458     }
459 
460   /* Compute total number of unwind entries and their total size.  */
461   total_entries += stub_entries;
462   total_size = total_entries * sizeof (struct unwind_table_entry);
463 
464   /* Allocate memory for the unwind table.  */
465   ui->table = (struct unwind_table_entry *)
466     obstack_alloc (&objfile->objfile_obstack, total_size);
467   ui->last = total_entries - 1;
468 
469   /* Now read in each unwind section and internalize the standard unwind
470      entries.  */
471   index = 0;
472   for (unwind_sec = objfile->obfd->sections;
473        unwind_sec;
474        unwind_sec = unwind_sec->next)
475     {
476       if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
477 	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
478 	{
479 	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
480 	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
481 
482 	  internalize_unwinds (objfile, &ui->table[index], unwind_sec,
483 			       unwind_entries, unwind_size, text_offset);
484 	  index += unwind_entries;
485 	}
486     }
487 
488   /* Now read in and internalize the stub unwind entries.  */
489   if (stub_unwind_size > 0)
490     {
491       unsigned int i;
492       char *buf = alloca (stub_unwind_size);
493 
494       /* Read in the stub unwind entries.  */
495       bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
496 				0, stub_unwind_size);
497 
498       /* Now convert them into regular unwind entries.  */
499       for (i = 0; i < stub_entries; i++, index++)
500 	{
501 	  /* Clear out the next unwind entry.  */
502 	  memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
503 
504 	  /* Convert offset & size into region_start and region_end.
505 	     Stuff away the stub type into "reserved" fields.  */
506 	  ui->table[index].region_start = bfd_get_32 (objfile->obfd,
507 						      (bfd_byte *) buf);
508 	  ui->table[index].region_start += text_offset;
509 	  buf += 4;
510 	  ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
511 							  (bfd_byte *) buf);
512 	  buf += 2;
513 	  ui->table[index].region_end
514 	    = ui->table[index].region_start + 4 *
515 	    (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
516 	  buf += 2;
517 	}
518 
519     }
520 
521   /* Unwind table needs to be kept sorted.  */
522   qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
523 	 compare_unwind_entries);
524 
525   /* Keep a pointer to the unwind information.  */
526   obj_private = (struct hppa_objfile_private *)
527 	        objfile_data (objfile, hppa_objfile_priv_data);
528   if (obj_private == NULL)
529     {
530       obj_private = (struct hppa_objfile_private *)
531 	obstack_alloc (&objfile->objfile_obstack,
532                        sizeof (struct hppa_objfile_private));
533       set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
534       obj_private->unwind_info = NULL;
535       obj_private->so_info = NULL;
536       obj_private->dp = 0;
537     }
538   obj_private->unwind_info = ui;
539 }
540 
541 /* Lookup the unwind (stack backtrace) info for the given PC.  We search all
542    of the objfiles seeking the unwind table entry for this PC.  Each objfile
543    contains a sorted list of struct unwind_table_entry.  Since we do a binary
544    search of the unwind tables, we depend upon them to be sorted.  */
545 
546 struct unwind_table_entry *
547 find_unwind_entry (CORE_ADDR pc)
548 {
549   int first, middle, last;
550   struct objfile *objfile;
551   struct hppa_objfile_private *priv;
552 
553   if (hppa_debug)
554     fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
555 		        paddr_nz (pc));
556 
557   /* A function at address 0?  Not in HP-UX! */
558   if (pc == (CORE_ADDR) 0)
559     {
560       if (hppa_debug)
561 	fprintf_unfiltered (gdb_stdlog, "NULL }\n");
562       return NULL;
563     }
564 
565   ALL_OBJFILES (objfile)
566   {
567     struct hppa_unwind_info *ui;
568     ui = NULL;
569     priv = objfile_data (objfile, hppa_objfile_priv_data);
570     if (priv)
571       ui = ((struct hppa_objfile_private *) priv)->unwind_info;
572 
573     if (!ui)
574       {
575 	read_unwind_info (objfile);
576         priv = objfile_data (objfile, hppa_objfile_priv_data);
577 	if (priv == NULL)
578 	  error ("Internal error reading unwind information.");
579         ui = ((struct hppa_objfile_private *) priv)->unwind_info;
580       }
581 
582     /* First, check the cache */
583 
584     if (ui->cache
585 	&& pc >= ui->cache->region_start
586 	&& pc <= ui->cache->region_end)
587       {
588 	if (hppa_debug)
589 	  fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
590             paddr_nz ((CORE_ADDR) ui->cache));
591         return ui->cache;
592       }
593 
594     /* Not in the cache, do a binary search */
595 
596     first = 0;
597     last = ui->last;
598 
599     while (first <= last)
600       {
601 	middle = (first + last) / 2;
602 	if (pc >= ui->table[middle].region_start
603 	    && pc <= ui->table[middle].region_end)
604 	  {
605 	    ui->cache = &ui->table[middle];
606 	    if (hppa_debug)
607 	      fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
608                 paddr_nz ((CORE_ADDR) ui->cache));
609 	    return &ui->table[middle];
610 	  }
611 
612 	if (pc < ui->table[middle].region_start)
613 	  last = middle - 1;
614 	else
615 	  first = middle + 1;
616       }
617   }				/* ALL_OBJFILES() */
618 
619   if (hppa_debug)
620     fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
621 
622   return NULL;
623 }
624 
625 static const unsigned char *
626 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
627 {
628   static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
629   (*len) = sizeof (breakpoint);
630   return breakpoint;
631 }
632 
633 /* Return the name of a register.  */
634 
635 const char *
636 hppa32_register_name (int i)
637 {
638   static char *names[] = {
639     "flags",  "r1",      "rp",     "r3",
640     "r4",     "r5",      "r6",     "r7",
641     "r8",     "r9",      "r10",    "r11",
642     "r12",    "r13",     "r14",    "r15",
643     "r16",    "r17",     "r18",    "r19",
644     "r20",    "r21",     "r22",    "r23",
645     "r24",    "r25",     "r26",    "dp",
646     "ret0",   "ret1",    "sp",     "r31",
647     "sar",    "pcoqh",   "pcsqh",  "pcoqt",
648     "pcsqt",  "eiem",    "iir",    "isr",
649     "ior",    "ipsw",    "goto",   "sr4",
650     "sr0",    "sr1",     "sr2",    "sr3",
651     "sr5",    "sr6",     "sr7",    "cr0",
652     "cr8",    "cr9",     "ccr",    "cr12",
653     "cr13",   "cr24",    "cr25",   "cr26",
654     "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
655     "fpsr",    "fpe1",   "fpe2",   "fpe3",
656     "fpe4",   "fpe5",    "fpe6",   "fpe7",
657     "fr4",     "fr4R",   "fr5",    "fr5R",
658     "fr6",    "fr6R",    "fr7",    "fr7R",
659     "fr8",     "fr8R",   "fr9",    "fr9R",
660     "fr10",   "fr10R",   "fr11",   "fr11R",
661     "fr12",    "fr12R",  "fr13",   "fr13R",
662     "fr14",   "fr14R",   "fr15",   "fr15R",
663     "fr16",    "fr16R",  "fr17",   "fr17R",
664     "fr18",   "fr18R",   "fr19",   "fr19R",
665     "fr20",    "fr20R",  "fr21",   "fr21R",
666     "fr22",   "fr22R",   "fr23",   "fr23R",
667     "fr24",    "fr24R",  "fr25",   "fr25R",
668     "fr26",   "fr26R",   "fr27",   "fr27R",
669     "fr28",    "fr28R",  "fr29",   "fr29R",
670     "fr30",   "fr30R",   "fr31",   "fr31R"
671   };
672   if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
673     return NULL;
674   else
675     return names[i];
676 }
677 
678 const char *
679 hppa64_register_name (int i)
680 {
681   static char *names[] = {
682     "flags",  "r1",      "rp",     "r3",
683     "r4",     "r5",      "r6",     "r7",
684     "r8",     "r9",      "r10",    "r11",
685     "r12",    "r13",     "r14",    "r15",
686     "r16",    "r17",     "r18",    "r19",
687     "r20",    "r21",     "r22",    "r23",
688     "r24",    "r25",     "r26",    "dp",
689     "ret0",   "ret1",    "sp",     "r31",
690     "sar",    "pcoqh",   "pcsqh",  "pcoqt",
691     "pcsqt",  "eiem",    "iir",    "isr",
692     "ior",    "ipsw",    "goto",   "sr4",
693     "sr0",    "sr1",     "sr2",    "sr3",
694     "sr5",    "sr6",     "sr7",    "cr0",
695     "cr8",    "cr9",     "ccr",    "cr12",
696     "cr13",   "cr24",    "cr25",   "cr26",
697     "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
698     "fpsr",    "fpe1",   "fpe2",   "fpe3",
699     "fr4",    "fr5",     "fr6",    "fr7",
700     "fr8",     "fr9",    "fr10",   "fr11",
701     "fr12",   "fr13",    "fr14",   "fr15",
702     "fr16",    "fr17",   "fr18",   "fr19",
703     "fr20",   "fr21",    "fr22",   "fr23",
704     "fr24",    "fr25",   "fr26",   "fr27",
705     "fr28",  "fr29",    "fr30",   "fr31"
706   };
707   if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
708     return NULL;
709   else
710     return names[i];
711 }
712 
713 /* This function pushes a stack frame with arguments as part of the
714    inferior function calling mechanism.
715 
716    This is the version of the function for the 32-bit PA machines, in
717    which later arguments appear at lower addresses.  (The stack always
718    grows towards higher addresses.)
719 
720    We simply allocate the appropriate amount of stack space and put
721    arguments into their proper slots.  */
722 
723 CORE_ADDR
724 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
725 			struct regcache *regcache, CORE_ADDR bp_addr,
726 			int nargs, struct value **args, CORE_ADDR sp,
727 			int struct_return, CORE_ADDR struct_addr)
728 {
729   /* Stack base address at which any pass-by-reference parameters are
730      stored.  */
731   CORE_ADDR struct_end = 0;
732   /* Stack base address at which the first parameter is stored.  */
733   CORE_ADDR param_end = 0;
734 
735   /* The inner most end of the stack after all the parameters have
736      been pushed.  */
737   CORE_ADDR new_sp = 0;
738 
739   /* Two passes.  First pass computes the location of everything,
740      second pass writes the bytes out.  */
741   int write_pass;
742 
743   /* Global pointer (r19) of the function we are trying to call.  */
744   CORE_ADDR gp;
745 
746   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
747 
748   for (write_pass = 0; write_pass < 2; write_pass++)
749     {
750       CORE_ADDR struct_ptr = 0;
751       /* The first parameter goes into sp-36, each stack slot is 4-bytes.
752          struct_ptr is adjusted for each argument below, so the first
753 	 argument will end up at sp-36.  */
754       CORE_ADDR param_ptr = 32;
755       int i;
756       int small_struct = 0;
757 
758       for (i = 0; i < nargs; i++)
759 	{
760 	  struct value *arg = args[i];
761 	  struct type *type = check_typedef (VALUE_TYPE (arg));
762 	  /* The corresponding parameter that is pushed onto the
763 	     stack, and [possibly] passed in a register.  */
764 	  char param_val[8];
765 	  int param_len;
766 	  memset (param_val, 0, sizeof param_val);
767 	  if (TYPE_LENGTH (type) > 8)
768 	    {
769 	      /* Large parameter, pass by reference.  Store the value
770 		 in "struct" area and then pass its address.  */
771 	      param_len = 4;
772 	      struct_ptr += align_up (TYPE_LENGTH (type), 8);
773 	      if (write_pass)
774 		write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
775 			      TYPE_LENGTH (type));
776 	      store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
777 	    }
778 	  else if (TYPE_CODE (type) == TYPE_CODE_INT
779 		   || TYPE_CODE (type) == TYPE_CODE_ENUM)
780 	    {
781 	      /* Integer value store, right aligned.  "unpack_long"
782 		 takes care of any sign-extension problems.  */
783 	      param_len = align_up (TYPE_LENGTH (type), 4);
784 	      store_unsigned_integer (param_val, param_len,
785 				      unpack_long (type,
786 						   VALUE_CONTENTS (arg)));
787 	    }
788 	  else if (TYPE_CODE (type) == TYPE_CODE_FLT)
789             {
790 	      /* Floating point value store, right aligned.  */
791 	      param_len = align_up (TYPE_LENGTH (type), 4);
792 	      memcpy (param_val, VALUE_CONTENTS (arg), param_len);
793             }
794 	  else
795 	    {
796 	      param_len = align_up (TYPE_LENGTH (type), 4);
797 
798 	      /* Small struct value are stored right-aligned.  */
799 	      memcpy (param_val + param_len - TYPE_LENGTH (type),
800 		      VALUE_CONTENTS (arg), TYPE_LENGTH (type));
801 
802 	      /* Structures of size 5, 6 and 7 bytes are special in that
803 	         the higher-ordered word is stored in the lower-ordered
804 		 argument, and even though it is a 8-byte quantity the
805 		 registers need not be 8-byte aligned.  */
806 	      if (param_len > 4 && param_len < 8)
807 		small_struct = 1;
808 	    }
809 
810 	  param_ptr += param_len;
811 	  if (param_len == 8 && !small_struct)
812             param_ptr = align_up (param_ptr, 8);
813 
814 	  /* First 4 non-FP arguments are passed in gr26-gr23.
815 	     First 4 32-bit FP arguments are passed in fr4L-fr7L.
816 	     First 2 64-bit FP arguments are passed in fr5 and fr7.
817 
818 	     The rest go on the stack, starting at sp-36, towards lower
819 	     addresses.  8-byte arguments must be aligned to a 8-byte
820 	     stack boundary.  */
821 	  if (write_pass)
822 	    {
823 	      write_memory (param_end - param_ptr, param_val, param_len);
824 
825 	      /* There are some cases when we don't know the type
826 		 expected by the callee (e.g. for variadic functions), so
827 		 pass the parameters in both general and fp regs.  */
828 	      if (param_ptr <= 48)
829 		{
830 		  int grreg = 26 - (param_ptr - 36) / 4;
831 		  int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
832 		  int fpreg = 74 + (param_ptr - 32) / 8 * 4;
833 
834 		  regcache_cooked_write (regcache, grreg, param_val);
835 		  regcache_cooked_write (regcache, fpLreg, param_val);
836 
837 		  if (param_len > 4)
838 		    {
839 		      regcache_cooked_write (regcache, grreg + 1,
840 					     param_val + 4);
841 
842 		      regcache_cooked_write (regcache, fpreg, param_val);
843 		      regcache_cooked_write (regcache, fpreg + 1,
844 					     param_val + 4);
845 		    }
846 		}
847 	    }
848 	}
849 
850       /* Update the various stack pointers.  */
851       if (!write_pass)
852 	{
853 	  struct_end = sp + align_up (struct_ptr, 64);
854 	  /* PARAM_PTR already accounts for all the arguments passed
855 	     by the user.  However, the ABI mandates minimum stack
856 	     space allocations for outgoing arguments.  The ABI also
857 	     mandates minimum stack alignments which we must
858 	     preserve.  */
859 	  param_end = struct_end + align_up (param_ptr, 64);
860 	}
861     }
862 
863   /* If a structure has to be returned, set up register 28 to hold its
864      address */
865   if (struct_return)
866     write_register (28, struct_addr);
867 
868   gp = tdep->find_global_pointer (function);
869 
870   if (gp != 0)
871     write_register (19, gp);
872 
873   /* Set the return address.  */
874   regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
875 
876   /* Update the Stack Pointer.  */
877   regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
878 
879   return param_end;
880 }
881 
882 /* This function pushes a stack frame with arguments as part of the
883    inferior function calling mechanism.
884 
885    This is the version for the PA64, in which later arguments appear
886    at higher addresses.  (The stack always grows towards higher
887    addresses.)
888 
889    We simply allocate the appropriate amount of stack space and put
890    arguments into their proper slots.
891 
892    This ABI also requires that the caller provide an argument pointer
893    to the callee, so we do that too.  */
894 
895 CORE_ADDR
896 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
897 			struct regcache *regcache, CORE_ADDR bp_addr,
898 			int nargs, struct value **args, CORE_ADDR sp,
899 			int struct_return, CORE_ADDR struct_addr)
900 {
901   /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
902      reverse engineering testsuite failures.  */
903 
904   /* Stack base address at which any pass-by-reference parameters are
905      stored.  */
906   CORE_ADDR struct_end = 0;
907   /* Stack base address at which the first parameter is stored.  */
908   CORE_ADDR param_end = 0;
909 
910   /* The inner most end of the stack after all the parameters have
911      been pushed.  */
912   CORE_ADDR new_sp = 0;
913 
914   /* Two passes.  First pass computes the location of everything,
915      second pass writes the bytes out.  */
916   int write_pass;
917   for (write_pass = 0; write_pass < 2; write_pass++)
918     {
919       CORE_ADDR struct_ptr = 0;
920       CORE_ADDR param_ptr = 0;
921       int i;
922       for (i = 0; i < nargs; i++)
923 	{
924 	  struct value *arg = args[i];
925 	  struct type *type = check_typedef (VALUE_TYPE (arg));
926 	  if ((TYPE_CODE (type) == TYPE_CODE_INT
927 	       || TYPE_CODE (type) == TYPE_CODE_ENUM)
928 	      && TYPE_LENGTH (type) <= 8)
929 	    {
930 	      /* Integer value store, right aligned.  "unpack_long"
931 		 takes care of any sign-extension problems.  */
932 	      param_ptr += 8;
933 	      if (write_pass)
934 		{
935 		  ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
936 		  int reg = 27 - param_ptr / 8;
937 		  write_memory_unsigned_integer (param_end - param_ptr,
938 						 val, 8);
939 		  if (reg >= 19)
940 		    regcache_cooked_write_unsigned (regcache, reg, val);
941 		}
942 	    }
943 	  else
944 	    {
945 	      /* Small struct value, store left aligned?  */
946 	      int reg;
947 	      if (TYPE_LENGTH (type) > 8)
948 		{
949 		  param_ptr = align_up (param_ptr, 16);
950 		  reg = 26 - param_ptr / 8;
951 		  param_ptr += align_up (TYPE_LENGTH (type), 16);
952 		}
953 	      else
954 		{
955 		  param_ptr = align_up (param_ptr, 8);
956 		  reg = 26 - param_ptr / 8;
957 		  param_ptr += align_up (TYPE_LENGTH (type), 8);
958 		}
959 	      if (write_pass)
960 		{
961 		  int byte;
962 		  write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
963 				TYPE_LENGTH (type));
964 		  for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
965 		    {
966 		      if (reg >= 19)
967 			{
968 			  int len = min (8, TYPE_LENGTH (type) - byte);
969 			  regcache_cooked_write_part (regcache, reg, 0, len,
970 						      VALUE_CONTENTS (arg) + byte);
971 			}
972 		      reg--;
973 		    }
974 		}
975 	    }
976 	}
977       /* Update the various stack pointers.  */
978       if (!write_pass)
979 	{
980 	  struct_end = sp + struct_ptr;
981 	  /* PARAM_PTR already accounts for all the arguments passed
982 	     by the user.  However, the ABI mandates minimum stack
983 	     space allocations for outgoing arguments.  The ABI also
984 	     mandates minimum stack alignments which we must
985 	     preserve.  */
986 	  param_end = struct_end + max (align_up (param_ptr, 16), 64);
987 	}
988     }
989 
990   /* If a structure has to be returned, set up register 28 to hold its
991      address */
992   if (struct_return)
993     write_register (28, struct_addr);
994 
995   /* Set the return address.  */
996   regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
997 
998   /* Update the Stack Pointer.  */
999   regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
1000 
1001   /* The stack will have 32 bytes of additional space for a frame marker.  */
1002   return param_end + 64;
1003 }
1004 
1005 static CORE_ADDR
1006 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1007 				   CORE_ADDR addr,
1008 				   struct target_ops *targ)
1009 {
1010   if (addr & 2)
1011     {
1012       CORE_ADDR plabel;
1013 
1014       plabel = addr & ~3;
1015       target_read_memory(plabel, (char *)&addr, 4);
1016     }
1017 
1018   return addr;
1019 }
1020 
1021 static CORE_ADDR
1022 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1023 {
1024   /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1025      and not _bit_)!  */
1026   return align_up (addr, 64);
1027 }
1028 
1029 /* Force all frames to 16-byte alignment.  Better safe than sorry.  */
1030 
1031 static CORE_ADDR
1032 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1033 {
1034   /* Just always 16-byte align.  */
1035   return align_up (addr, 16);
1036 }
1037 
1038 
1039 /* Get the PC from %r31 if currently in a syscall.  Also mask out privilege
1040    bits.  */
1041 
1042 static CORE_ADDR
1043 hppa_target_read_pc (ptid_t ptid)
1044 {
1045   int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1046 
1047   /* The following test does not belong here.  It is OS-specific, and belongs
1048      in native code.  */
1049   /* Test SS_INSYSCALL */
1050   if (flags & 2)
1051     return read_register_pid (31, ptid) & ~0x3;
1052 
1053   return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1054 }
1055 
1056 /* Write out the PC.  If currently in a syscall, then also write the new
1057    PC value into %r31.  */
1058 
1059 static void
1060 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1061 {
1062   int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1063 
1064   /* The following test does not belong here.  It is OS-specific, and belongs
1065      in native code.  */
1066   /* If in a syscall, then set %r31.  Also make sure to get the
1067      privilege bits set correctly.  */
1068   /* Test SS_INSYSCALL */
1069   if (flags & 2)
1070     write_register_pid (31, v | 0x3, ptid);
1071 
1072   write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1073   write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
1074 }
1075 
1076 /* return the alignment of a type in bytes. Structures have the maximum
1077    alignment required by their fields. */
1078 
1079 static int
1080 hppa_alignof (struct type *type)
1081 {
1082   int max_align, align, i;
1083   CHECK_TYPEDEF (type);
1084   switch (TYPE_CODE (type))
1085     {
1086     case TYPE_CODE_PTR:
1087     case TYPE_CODE_INT:
1088     case TYPE_CODE_FLT:
1089       return TYPE_LENGTH (type);
1090     case TYPE_CODE_ARRAY:
1091       return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1092     case TYPE_CODE_STRUCT:
1093     case TYPE_CODE_UNION:
1094       max_align = 1;
1095       for (i = 0; i < TYPE_NFIELDS (type); i++)
1096 	{
1097 	  /* Bit fields have no real alignment. */
1098 	  /* if (!TYPE_FIELD_BITPOS (type, i)) */
1099 	  if (!TYPE_FIELD_BITSIZE (type, i))	/* elz: this should be bitsize */
1100 	    {
1101 	      align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1102 	      max_align = max (max_align, align);
1103 	    }
1104 	}
1105       return max_align;
1106     default:
1107       return 4;
1108     }
1109 }
1110 
1111 /* For the given instruction (INST), return any adjustment it makes
1112    to the stack pointer or zero for no adjustment.
1113 
1114    This only handles instructions commonly found in prologues.  */
1115 
1116 static int
1117 prologue_inst_adjust_sp (unsigned long inst)
1118 {
1119   /* This must persist across calls.  */
1120   static int save_high21;
1121 
1122   /* The most common way to perform a stack adjustment ldo X(sp),sp */
1123   if ((inst & 0xffffc000) == 0x37de0000)
1124     return hppa_extract_14 (inst);
1125 
1126   /* stwm X,D(sp) */
1127   if ((inst & 0xffe00000) == 0x6fc00000)
1128     return hppa_extract_14 (inst);
1129 
1130   /* std,ma X,D(sp) */
1131   if ((inst & 0xffe00008) == 0x73c00008)
1132     return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1133 
1134   /* addil high21,%r1; ldo low11,(%r1),%r30)
1135      save high bits in save_high21 for later use.  */
1136   if ((inst & 0xffe00000) == 0x28200000)
1137     {
1138       save_high21 = hppa_extract_21 (inst);
1139       return 0;
1140     }
1141 
1142   if ((inst & 0xffff0000) == 0x343e0000)
1143     return save_high21 + hppa_extract_14 (inst);
1144 
1145   /* fstws as used by the HP compilers.  */
1146   if ((inst & 0xffffffe0) == 0x2fd01220)
1147     return hppa_extract_5_load (inst);
1148 
1149   /* No adjustment.  */
1150   return 0;
1151 }
1152 
1153 /* Return nonzero if INST is a branch of some kind, else return zero.  */
1154 
1155 static int
1156 is_branch (unsigned long inst)
1157 {
1158   switch (inst >> 26)
1159     {
1160     case 0x20:
1161     case 0x21:
1162     case 0x22:
1163     case 0x23:
1164     case 0x27:
1165     case 0x28:
1166     case 0x29:
1167     case 0x2a:
1168     case 0x2b:
1169     case 0x2f:
1170     case 0x30:
1171     case 0x31:
1172     case 0x32:
1173     case 0x33:
1174     case 0x38:
1175     case 0x39:
1176     case 0x3a:
1177     case 0x3b:
1178       return 1;
1179 
1180     default:
1181       return 0;
1182     }
1183 }
1184 
1185 /* Return the register number for a GR which is saved by INST or
1186    zero it INST does not save a GR.  */
1187 
1188 static int
1189 inst_saves_gr (unsigned long inst)
1190 {
1191   /* Does it look like a stw?  */
1192   if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1193       || (inst >> 26) == 0x1f
1194       || ((inst >> 26) == 0x1f
1195 	  && ((inst >> 6) == 0xa)))
1196     return hppa_extract_5R_store (inst);
1197 
1198   /* Does it look like a std?  */
1199   if ((inst >> 26) == 0x1c
1200       || ((inst >> 26) == 0x03
1201 	  && ((inst >> 6) & 0xf) == 0xb))
1202     return hppa_extract_5R_store (inst);
1203 
1204   /* Does it look like a stwm?  GCC & HPC may use this in prologues. */
1205   if ((inst >> 26) == 0x1b)
1206     return hppa_extract_5R_store (inst);
1207 
1208   /* Does it look like sth or stb?  HPC versions 9.0 and later use these
1209      too.  */
1210   if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1211       || ((inst >> 26) == 0x3
1212 	  && (((inst >> 6) & 0xf) == 0x8
1213 	      || (inst >> 6) & 0xf) == 0x9))
1214     return hppa_extract_5R_store (inst);
1215 
1216   return 0;
1217 }
1218 
1219 /* Return the register number for a FR which is saved by INST or
1220    zero it INST does not save a FR.
1221 
1222    Note we only care about full 64bit register stores (that's the only
1223    kind of stores the prologue will use).
1224 
1225    FIXME: What about argument stores with the HP compiler in ANSI mode? */
1226 
1227 static int
1228 inst_saves_fr (unsigned long inst)
1229 {
1230   /* is this an FSTD ? */
1231   if ((inst & 0xfc00dfc0) == 0x2c001200)
1232     return hppa_extract_5r_store (inst);
1233   if ((inst & 0xfc000002) == 0x70000002)
1234     return hppa_extract_5R_store (inst);
1235   /* is this an FSTW ? */
1236   if ((inst & 0xfc00df80) == 0x24001200)
1237     return hppa_extract_5r_store (inst);
1238   if ((inst & 0xfc000002) == 0x7c000000)
1239     return hppa_extract_5R_store (inst);
1240   return 0;
1241 }
1242 
1243 /* Advance PC across any function entry prologue instructions
1244    to reach some "real" code.
1245 
1246    Use information in the unwind table to determine what exactly should
1247    be in the prologue.  */
1248 
1249 
1250 CORE_ADDR
1251 skip_prologue_hard_way (CORE_ADDR pc)
1252 {
1253   char buf[4];
1254   CORE_ADDR orig_pc = pc;
1255   unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1256   unsigned long args_stored, status, i, restart_gr, restart_fr;
1257   struct unwind_table_entry *u;
1258 
1259   restart_gr = 0;
1260   restart_fr = 0;
1261 
1262 restart:
1263   u = find_unwind_entry (pc);
1264   if (!u)
1265     return pc;
1266 
1267   /* If we are not at the beginning of a function, then return now. */
1268   if ((pc & ~0x3) != u->region_start)
1269     return pc;
1270 
1271   /* This is how much of a frame adjustment we need to account for.  */
1272   stack_remaining = u->Total_frame_size << 3;
1273 
1274   /* Magic register saves we want to know about.  */
1275   save_rp = u->Save_RP;
1276   save_sp = u->Save_SP;
1277 
1278   /* An indication that args may be stored into the stack.  Unfortunately
1279      the HPUX compilers tend to set this in cases where no args were
1280      stored too!.  */
1281   args_stored = 1;
1282 
1283   /* Turn the Entry_GR field into a bitmask.  */
1284   save_gr = 0;
1285   for (i = 3; i < u->Entry_GR + 3; i++)
1286     {
1287       /* Frame pointer gets saved into a special location.  */
1288       if (u->Save_SP && i == HPPA_FP_REGNUM)
1289 	continue;
1290 
1291       save_gr |= (1 << i);
1292     }
1293   save_gr &= ~restart_gr;
1294 
1295   /* Turn the Entry_FR field into a bitmask too.  */
1296   save_fr = 0;
1297   for (i = 12; i < u->Entry_FR + 12; i++)
1298     save_fr |= (1 << i);
1299   save_fr &= ~restart_fr;
1300 
1301   /* Loop until we find everything of interest or hit a branch.
1302 
1303      For unoptimized GCC code and for any HP CC code this will never ever
1304      examine any user instructions.
1305 
1306      For optimzied GCC code we're faced with problems.  GCC will schedule
1307      its prologue and make prologue instructions available for delay slot
1308      filling.  The end result is user code gets mixed in with the prologue
1309      and a prologue instruction may be in the delay slot of the first branch
1310      or call.
1311 
1312      Some unexpected things are expected with debugging optimized code, so
1313      we allow this routine to walk past user instructions in optimized
1314      GCC code.  */
1315   while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1316 	 || args_stored)
1317     {
1318       unsigned int reg_num;
1319       unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1320       unsigned long old_save_rp, old_save_sp, next_inst;
1321 
1322       /* Save copies of all the triggers so we can compare them later
1323          (only for HPC).  */
1324       old_save_gr = save_gr;
1325       old_save_fr = save_fr;
1326       old_save_rp = save_rp;
1327       old_save_sp = save_sp;
1328       old_stack_remaining = stack_remaining;
1329 
1330       status = deprecated_read_memory_nobpt (pc, buf, 4);
1331       inst = extract_unsigned_integer (buf, 4);
1332 
1333       /* Yow! */
1334       if (status != 0)
1335 	return pc;
1336 
1337       /* Note the interesting effects of this instruction.  */
1338       stack_remaining -= prologue_inst_adjust_sp (inst);
1339 
1340       /* There are limited ways to store the return pointer into the
1341 	 stack.  */
1342       if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1343 	save_rp = 0;
1344 
1345       /* These are the only ways we save SP into the stack.  At this time
1346          the HP compilers never bother to save SP into the stack.  */
1347       if ((inst & 0xffffc000) == 0x6fc10000
1348 	  || (inst & 0xffffc00c) == 0x73c10008)
1349 	save_sp = 0;
1350 
1351       /* Are we loading some register with an offset from the argument
1352          pointer?  */
1353       if ((inst & 0xffe00000) == 0x37a00000
1354 	  || (inst & 0xffffffe0) == 0x081d0240)
1355 	{
1356 	  pc += 4;
1357 	  continue;
1358 	}
1359 
1360       /* Account for general and floating-point register saves.  */
1361       reg_num = inst_saves_gr (inst);
1362       save_gr &= ~(1 << reg_num);
1363 
1364       /* Ugh.  Also account for argument stores into the stack.
1365          Unfortunately args_stored only tells us that some arguments
1366          where stored into the stack.  Not how many or what kind!
1367 
1368          This is a kludge as on the HP compiler sets this bit and it
1369          never does prologue scheduling.  So once we see one, skip past
1370          all of them.   We have similar code for the fp arg stores below.
1371 
1372          FIXME.  Can still die if we have a mix of GR and FR argument
1373          stores!  */
1374       if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1375 	{
1376 	  while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1377 	    {
1378 	      pc += 4;
1379 	      status = deprecated_read_memory_nobpt (pc, buf, 4);
1380 	      inst = extract_unsigned_integer (buf, 4);
1381 	      if (status != 0)
1382 		return pc;
1383 	      reg_num = inst_saves_gr (inst);
1384 	    }
1385 	  args_stored = 0;
1386 	  continue;
1387 	}
1388 
1389       reg_num = inst_saves_fr (inst);
1390       save_fr &= ~(1 << reg_num);
1391 
1392       status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1393       next_inst = extract_unsigned_integer (buf, 4);
1394 
1395       /* Yow! */
1396       if (status != 0)
1397 	return pc;
1398 
1399       /* We've got to be read to handle the ldo before the fp register
1400          save.  */
1401       if ((inst & 0xfc000000) == 0x34000000
1402 	  && inst_saves_fr (next_inst) >= 4
1403 	  && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1404 	{
1405 	  /* So we drop into the code below in a reasonable state.  */
1406 	  reg_num = inst_saves_fr (next_inst);
1407 	  pc -= 4;
1408 	}
1409 
1410       /* Ugh.  Also account for argument stores into the stack.
1411          This is a kludge as on the HP compiler sets this bit and it
1412          never does prologue scheduling.  So once we see one, skip past
1413          all of them.  */
1414       if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1415 	{
1416 	  while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1417 	    {
1418 	      pc += 8;
1419 	      status = deprecated_read_memory_nobpt (pc, buf, 4);
1420 	      inst = extract_unsigned_integer (buf, 4);
1421 	      if (status != 0)
1422 		return pc;
1423 	      if ((inst & 0xfc000000) != 0x34000000)
1424 		break;
1425 	      status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1426 	      next_inst = extract_unsigned_integer (buf, 4);
1427 	      if (status != 0)
1428 		return pc;
1429 	      reg_num = inst_saves_fr (next_inst);
1430 	    }
1431 	  args_stored = 0;
1432 	  continue;
1433 	}
1434 
1435       /* Quit if we hit any kind of branch.  This can happen if a prologue
1436          instruction is in the delay slot of the first call/branch.  */
1437       if (is_branch (inst))
1438 	break;
1439 
1440       /* What a crock.  The HP compilers set args_stored even if no
1441          arguments were stored into the stack (boo hiss).  This could
1442          cause this code to then skip a bunch of user insns (up to the
1443          first branch).
1444 
1445          To combat this we try to identify when args_stored was bogusly
1446          set and clear it.   We only do this when args_stored is nonzero,
1447          all other resources are accounted for, and nothing changed on
1448          this pass.  */
1449       if (args_stored
1450        && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1451 	  && old_save_gr == save_gr && old_save_fr == save_fr
1452 	  && old_save_rp == save_rp && old_save_sp == save_sp
1453 	  && old_stack_remaining == stack_remaining)
1454 	break;
1455 
1456       /* Bump the PC.  */
1457       pc += 4;
1458     }
1459 
1460   /* We've got a tenative location for the end of the prologue.  However
1461      because of limitations in the unwind descriptor mechanism we may
1462      have went too far into user code looking for the save of a register
1463      that does not exist.  So, if there registers we expected to be saved
1464      but never were, mask them out and restart.
1465 
1466      This should only happen in optimized code, and should be very rare.  */
1467   if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1468     {
1469       pc = orig_pc;
1470       restart_gr = save_gr;
1471       restart_fr = save_fr;
1472       goto restart;
1473     }
1474 
1475   return pc;
1476 }
1477 
1478 
1479 /* Return the address of the PC after the last prologue instruction if
1480    we can determine it from the debug symbols.  Else return zero.  */
1481 
1482 static CORE_ADDR
1483 after_prologue (CORE_ADDR pc)
1484 {
1485   struct symtab_and_line sal;
1486   CORE_ADDR func_addr, func_end;
1487   struct symbol *f;
1488 
1489   /* If we can not find the symbol in the partial symbol table, then
1490      there is no hope we can determine the function's start address
1491      with this code.  */
1492   if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1493     return 0;
1494 
1495   /* Get the line associated with FUNC_ADDR.  */
1496   sal = find_pc_line (func_addr, 0);
1497 
1498   /* There are only two cases to consider.  First, the end of the source line
1499      is within the function bounds.  In that case we return the end of the
1500      source line.  Second is the end of the source line extends beyond the
1501      bounds of the current function.  We need to use the slow code to
1502      examine instructions in that case.
1503 
1504      Anything else is simply a bug elsewhere.  Fixing it here is absolutely
1505      the wrong thing to do.  In fact, it should be entirely possible for this
1506      function to always return zero since the slow instruction scanning code
1507      is supposed to *always* work.  If it does not, then it is a bug.  */
1508   if (sal.end < func_end)
1509     return sal.end;
1510   else
1511     return 0;
1512 }
1513 
1514 /* To skip prologues, I use this predicate.  Returns either PC itself
1515    if the code at PC does not look like a function prologue; otherwise
1516    returns an address that (if we're lucky) follows the prologue.  If
1517    LENIENT, then we must skip everything which is involved in setting
1518    up the frame (it's OK to skip more, just so long as we don't skip
1519    anything which might clobber the registers which are being saved.
1520    Currently we must not skip more on the alpha, but we might the lenient
1521    stuff some day.  */
1522 
1523 static CORE_ADDR
1524 hppa_skip_prologue (CORE_ADDR pc)
1525 {
1526   unsigned long inst;
1527   int offset;
1528   CORE_ADDR post_prologue_pc;
1529   char buf[4];
1530 
1531   /* See if we can determine the end of the prologue via the symbol table.
1532      If so, then return either PC, or the PC after the prologue, whichever
1533      is greater.  */
1534 
1535   post_prologue_pc = after_prologue (pc);
1536 
1537   /* If after_prologue returned a useful address, then use it.  Else
1538      fall back on the instruction skipping code.
1539 
1540      Some folks have claimed this causes problems because the breakpoint
1541      may be the first instruction of the prologue.  If that happens, then
1542      the instruction skipping code has a bug that needs to be fixed.  */
1543   if (post_prologue_pc != 0)
1544     return max (pc, post_prologue_pc);
1545   else
1546     return (skip_prologue_hard_way (pc));
1547 }
1548 
1549 struct hppa_frame_cache
1550 {
1551   CORE_ADDR base;
1552   struct trad_frame_saved_reg *saved_regs;
1553 };
1554 
1555 static struct hppa_frame_cache *
1556 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1557 {
1558   struct hppa_frame_cache *cache;
1559   long saved_gr_mask;
1560   long saved_fr_mask;
1561   CORE_ADDR this_sp;
1562   long frame_size;
1563   struct unwind_table_entry *u;
1564   CORE_ADDR prologue_end;
1565   int i;
1566 
1567   if (hppa_debug)
1568     fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1569       frame_relative_level(next_frame));
1570 
1571   if ((*this_cache) != NULL)
1572     {
1573       if (hppa_debug)
1574         fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1575           paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1576       return (*this_cache);
1577     }
1578   cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1579   (*this_cache) = cache;
1580   cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1581 
1582   /* Yow! */
1583   u = find_unwind_entry (frame_pc_unwind (next_frame));
1584   if (!u)
1585     {
1586       if (hppa_debug)
1587         fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1588       return (*this_cache);
1589     }
1590 
1591   /* Turn the Entry_GR field into a bitmask.  */
1592   saved_gr_mask = 0;
1593   for (i = 3; i < u->Entry_GR + 3; i++)
1594     {
1595       /* Frame pointer gets saved into a special location.  */
1596       if (u->Save_SP && i == HPPA_FP_REGNUM)
1597 	continue;
1598 
1599       saved_gr_mask |= (1 << i);
1600     }
1601 
1602   /* Turn the Entry_FR field into a bitmask too.  */
1603   saved_fr_mask = 0;
1604   for (i = 12; i < u->Entry_FR + 12; i++)
1605     saved_fr_mask |= (1 << i);
1606 
1607   /* Loop until we find everything of interest or hit a branch.
1608 
1609      For unoptimized GCC code and for any HP CC code this will never ever
1610      examine any user instructions.
1611 
1612      For optimized GCC code we're faced with problems.  GCC will schedule
1613      its prologue and make prologue instructions available for delay slot
1614      filling.  The end result is user code gets mixed in with the prologue
1615      and a prologue instruction may be in the delay slot of the first branch
1616      or call.
1617 
1618      Some unexpected things are expected with debugging optimized code, so
1619      we allow this routine to walk past user instructions in optimized
1620      GCC code.  */
1621   {
1622     int final_iteration = 0;
1623     CORE_ADDR pc, end_pc;
1624     int looking_for_sp = u->Save_SP;
1625     int looking_for_rp = u->Save_RP;
1626     int fp_loc = -1;
1627 
1628     /* We have to use hppa_skip_prologue instead of just
1629        skip_prologue_using_sal, in case we stepped into a function without
1630        symbol information.  hppa_skip_prologue also bounds the returned
1631        pc by the passed in pc, so it will not return a pc in the next
1632        function.  */
1633 
1634     /* We used to use frame_func_unwind () to locate the beginning of the
1635        function to pass to skip_prologue ().  However, when objects are
1636        compiled without debug symbols, frame_func_unwind can return the wrong
1637        function (or 0).  We can do better than that by using unwind records.  */
1638 
1639     prologue_end = hppa_skip_prologue (u->region_start);
1640     end_pc = frame_pc_unwind (next_frame);
1641 
1642     if (prologue_end != 0 && end_pc > prologue_end)
1643       end_pc = prologue_end;
1644 
1645     frame_size = 0;
1646 
1647     for (pc = u->region_start;
1648 	 ((saved_gr_mask || saved_fr_mask
1649 	   || looking_for_sp || looking_for_rp
1650 	   || frame_size < (u->Total_frame_size << 3))
1651 	  && pc < end_pc);
1652 	 pc += 4)
1653       {
1654 	int reg;
1655 	char buf4[4];
1656 	long status = deprecated_read_memory_nobpt (pc, buf4, sizeof buf4);
1657 	long inst = extract_unsigned_integer (buf4, sizeof buf4);
1658 
1659 	/* Note the interesting effects of this instruction.  */
1660 	frame_size += prologue_inst_adjust_sp (inst);
1661 
1662 	/* There are limited ways to store the return pointer into the
1663 	   stack.  */
1664 	if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1665 	  {
1666 	    looking_for_rp = 0;
1667 	    cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1668 	  }
1669 	else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1670 	  {
1671 	    looking_for_rp = 0;
1672 	    cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1673 	  }
1674 	else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1675 	  {
1676 	    looking_for_rp = 0;
1677 	    cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1678 	  }
1679 
1680 	/* Check to see if we saved SP into the stack.  This also
1681 	   happens to indicate the location of the saved frame
1682 	   pointer.  */
1683 	if ((inst & 0xffffc000) == 0x6fc10000  /* stw,ma r1,N(sr0,sp) */
1684 	    || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1685 	  {
1686 	    looking_for_sp = 0;
1687 	    cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1688 	  }
1689 
1690 	/* Account for general and floating-point register saves.  */
1691 	reg = inst_saves_gr (inst);
1692 	if (reg >= 3 && reg <= 18
1693 	    && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1694 	  {
1695 	    saved_gr_mask &= ~(1 << reg);
1696 	    if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1697 	      /* stwm with a positive displacement is a _post_
1698 		 _modify_.  */
1699 	      cache->saved_regs[reg].addr = 0;
1700 	    else if ((inst & 0xfc00000c) == 0x70000008)
1701 	      /* A std has explicit post_modify forms.  */
1702 	      cache->saved_regs[reg].addr = 0;
1703 	    else
1704 	      {
1705 		CORE_ADDR offset;
1706 
1707 		if ((inst >> 26) == 0x1c)
1708 		  offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1709 		else if ((inst >> 26) == 0x03)
1710 		  offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1711 		else
1712 		  offset = hppa_extract_14 (inst);
1713 
1714 		/* Handle code with and without frame pointers.  */
1715 		if (u->Save_SP)
1716 		  cache->saved_regs[reg].addr = offset;
1717 		else
1718 		  cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1719 	      }
1720 	  }
1721 
1722 	/* GCC handles callee saved FP regs a little differently.
1723 
1724 	   It emits an instruction to put the value of the start of
1725 	   the FP store area into %r1.  It then uses fstds,ma with a
1726 	   basereg of %r1 for the stores.
1727 
1728 	   HP CC emits them at the current stack pointer modifying the
1729 	   stack pointer as it stores each register.  */
1730 
1731 	/* ldo X(%r3),%r1 or ldo X(%r30),%r1.  */
1732 	if ((inst & 0xffffc000) == 0x34610000
1733 	    || (inst & 0xffffc000) == 0x37c10000)
1734 	  fp_loc = hppa_extract_14 (inst);
1735 
1736 	reg = inst_saves_fr (inst);
1737 	if (reg >= 12 && reg <= 21)
1738 	  {
1739 	    /* Note +4 braindamage below is necessary because the FP
1740 	       status registers are internally 8 registers rather than
1741 	       the expected 4 registers.  */
1742 	    saved_fr_mask &= ~(1 << reg);
1743 	    if (fp_loc == -1)
1744 	      {
1745 		/* 1st HP CC FP register store.  After this
1746 		   instruction we've set enough state that the GCC and
1747 		   HPCC code are both handled in the same manner.  */
1748 		cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1749 		fp_loc = 8;
1750 	      }
1751 	    else
1752 	      {
1753 		cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1754 		fp_loc += 8;
1755 	      }
1756 	  }
1757 
1758 	/* Quit if we hit any kind of branch the previous iteration. */
1759 	if (final_iteration)
1760 	  break;
1761 	/* We want to look precisely one instruction beyond the branch
1762 	   if we have not found everything yet.  */
1763 	if (is_branch (inst))
1764 	  final_iteration = 1;
1765       }
1766   }
1767 
1768   {
1769     /* The frame base always represents the value of %sp at entry to
1770        the current function (and is thus equivalent to the "saved"
1771        stack pointer.  */
1772     CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1773     CORE_ADDR fp;
1774 
1775     if (hppa_debug)
1776       fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1777 		          "prologue_end=0x%s) ",
1778 		          paddr_nz (this_sp),
1779 			  paddr_nz (frame_pc_unwind (next_frame)),
1780 			  paddr_nz (prologue_end));
1781 
1782      /* Check to see if a frame pointer is available, and use it for
1783         frame unwinding if it is.
1784 
1785         There are some situations where we need to rely on the frame
1786         pointer to do stack unwinding.  For example, if a function calls
1787         alloca (), the stack pointer can get adjusted inside the body of
1788         the function.  In this case, the ABI requires that the compiler
1789         maintain a frame pointer for the function.
1790 
1791         The unwind record has a flag (alloca_frame) that indicates that
1792         a function has a variable frame; unfortunately, gcc/binutils
1793         does not set this flag.  Instead, whenever a frame pointer is used
1794         and saved on the stack, the Save_SP flag is set.  We use this to
1795         decide whether to use the frame pointer for unwinding.
1796 
1797 	fp may be zero if it is not available in an inner frame because
1798 	it has been modified by not yet saved.
1799 
1800         TODO: For the HP compiler, maybe we should use the alloca_frame flag
1801 	instead of Save_SP.  */
1802 
1803      fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1804 
1805      if (frame_pc_unwind (next_frame) >= prologue_end
1806          && u->Save_SP && fp != 0)
1807       {
1808  	cache->base = fp;
1809 
1810  	if (hppa_debug)
1811 	  fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1812  	    paddr_nz (cache->base));
1813       }
1814      else if (u->Save_SP
1815 	      && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1816       {
1817             /* Both we're expecting the SP to be saved and the SP has been
1818 	       saved.  The entry SP value is saved at this frame's SP
1819 	       address.  */
1820             cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1821 
1822 	    if (hppa_debug)
1823 	      fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1824 			          paddr_nz (cache->base));
1825       }
1826     else
1827       {
1828         /* The prologue has been slowly allocating stack space.  Adjust
1829 	   the SP back.  */
1830         cache->base = this_sp - frame_size;
1831 	if (hppa_debug)
1832 	  fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1833 			      paddr_nz (cache->base));
1834 
1835       }
1836     trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1837   }
1838 
1839   /* The PC is found in the "return register", "Millicode" uses "r31"
1840      as the return register while normal code uses "rp".  */
1841   if (u->Millicode)
1842     {
1843       if (trad_frame_addr_p (cache->saved_regs, 31))
1844         cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1845       else
1846 	{
1847 	  ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1848 	  trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1849         }
1850     }
1851   else
1852     {
1853       if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1854         cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1855       else
1856 	{
1857 	  ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1858 	  trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1859 	}
1860     }
1861 
1862   /* If the frame pointer was not saved in this frame, but we should be saving
1863      it, set it to an invalid value so that another frame will not pick up the
1864      wrong frame pointer.  This can happen if we start unwinding after the
1865      frame pointer has been modified, but before we've saved it to the
1866      stack.  */
1867   if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM))
1868     trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, 0);
1869 
1870   {
1871     /* Convert all the offsets into addresses.  */
1872     int reg;
1873     for (reg = 0; reg < NUM_REGS; reg++)
1874       {
1875 	if (trad_frame_addr_p (cache->saved_regs, reg))
1876 	  cache->saved_regs[reg].addr += cache->base;
1877       }
1878   }
1879 
1880   if (hppa_debug)
1881     fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1882       paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1883   return (*this_cache);
1884 }
1885 
1886 static void
1887 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1888 			   struct frame_id *this_id)
1889 {
1890   struct hppa_frame_cache *info;
1891   CORE_ADDR pc = frame_pc_unwind (next_frame);
1892   struct unwind_table_entry *u;
1893 
1894   info = hppa_frame_cache (next_frame, this_cache);
1895   u = find_unwind_entry (pc);
1896 
1897   (*this_id) = frame_id_build (info->base, u->region_start);
1898 }
1899 
1900 static void
1901 hppa_frame_prev_register (struct frame_info *next_frame,
1902 			  void **this_cache,
1903 			  int regnum, int *optimizedp,
1904 			  enum lval_type *lvalp, CORE_ADDR *addrp,
1905 			  int *realnump, void *valuep)
1906 {
1907   struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1908   hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1909 		                   optimizedp, lvalp, addrp, realnump, valuep);
1910 }
1911 
1912 static const struct frame_unwind hppa_frame_unwind =
1913 {
1914   NORMAL_FRAME,
1915   hppa_frame_this_id,
1916   hppa_frame_prev_register
1917 };
1918 
1919 static const struct frame_unwind *
1920 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1921 {
1922   CORE_ADDR pc = frame_pc_unwind (next_frame);
1923 
1924   if (find_unwind_entry (pc))
1925     return &hppa_frame_unwind;
1926 
1927   return NULL;
1928 }
1929 
1930 /* This is a generic fallback frame unwinder that kicks in if we fail all
1931    the other ones.  Normally we would expect the stub and regular unwinder
1932    to work, but in some cases we might hit a function that just doesn't
1933    have any unwind information available.  In this case we try to do
1934    unwinding solely based on code reading.  This is obviously going to be
1935    slow, so only use this as a last resort.  Currently this will only
1936    identify the stack and pc for the frame.  */
1937 
1938 static struct hppa_frame_cache *
1939 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1940 {
1941   struct hppa_frame_cache *cache;
1942   unsigned int frame_size;
1943   int found_rp;
1944   CORE_ADDR pc, start_pc, end_pc, cur_pc;
1945 
1946   if (hppa_debug)
1947     fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1948       frame_relative_level(next_frame));
1949 
1950   cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1951   (*this_cache) = cache;
1952   cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1953 
1954   pc = frame_func_unwind (next_frame);
1955   cur_pc = frame_pc_unwind (next_frame);
1956   frame_size = 0;
1957   found_rp = 0;
1958 
1959   find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1960 
1961   if (start_pc == 0 || end_pc == 0)
1962     {
1963       error ("Cannot find bounds of current function (@0x%s), unwinding will "
1964 	     "fail.", paddr_nz (pc));
1965       return cache;
1966     }
1967 
1968   if (end_pc > cur_pc)
1969     end_pc = cur_pc;
1970 
1971   for (pc = start_pc; pc < end_pc; pc += 4)
1972     {
1973       unsigned int insn;
1974 
1975       insn = read_memory_unsigned_integer (pc, 4);
1976 
1977       frame_size += prologue_inst_adjust_sp (insn);
1978 
1979       /* There are limited ways to store the return pointer into the
1980 	 stack.  */
1981       if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1982 	 {
1983 	   cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1984 	   found_rp = 1;
1985 	 }
1986       else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1987 	 {
1988 	   cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1989 	   found_rp = 1;
1990 	 }
1991     }
1992 
1993   if (hppa_debug)
1994     fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
1995       frame_size, found_rp);
1996 
1997   cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
1998   trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1999 
2000   if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2001     {
2002       cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2003       cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2004     }
2005   else
2006     {
2007       ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2008       trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2009     }
2010 
2011   return cache;
2012 }
2013 
2014 static void
2015 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2016 			     struct frame_id *this_id)
2017 {
2018   struct hppa_frame_cache *info =
2019     hppa_fallback_frame_cache (next_frame, this_cache);
2020   (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2021 }
2022 
2023 static void
2024 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2025 			  void **this_cache,
2026 			  int regnum, int *optimizedp,
2027 			  enum lval_type *lvalp, CORE_ADDR *addrp,
2028 			  int *realnump, void *valuep)
2029 {
2030   struct hppa_frame_cache *info =
2031     hppa_fallback_frame_cache (next_frame, this_cache);
2032   hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2033 		                   optimizedp, lvalp, addrp, realnump, valuep);
2034 }
2035 
2036 static const struct frame_unwind hppa_fallback_frame_unwind =
2037 {
2038   NORMAL_FRAME,
2039   hppa_fallback_frame_this_id,
2040   hppa_fallback_frame_prev_register
2041 };
2042 
2043 static const struct frame_unwind *
2044 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2045 {
2046   return &hppa_fallback_frame_unwind;
2047 }
2048 
2049 /* Stub frames, used for all kinds of call stubs.  */
2050 struct hppa_stub_unwind_cache
2051 {
2052   CORE_ADDR base;
2053   struct trad_frame_saved_reg *saved_regs;
2054 };
2055 
2056 static struct hppa_stub_unwind_cache *
2057 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2058 			      void **this_cache)
2059 {
2060   struct gdbarch *gdbarch = get_frame_arch (next_frame);
2061   struct hppa_stub_unwind_cache *info;
2062   struct unwind_table_entry *u;
2063 
2064   if (*this_cache)
2065     return *this_cache;
2066 
2067   info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2068   *this_cache = info;
2069   info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2070 
2071   info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2072 
2073   if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2074     {
2075       /* HPUX uses export stubs in function calls; the export stub clobbers
2076          the return value of the caller, and, later restores it from the
2077 	 stack.  */
2078       u = find_unwind_entry (frame_pc_unwind (next_frame));
2079 
2080       if (u && u->stub_unwind.stub_type == EXPORT)
2081 	{
2082           info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2083 
2084 	  return info;
2085 	}
2086     }
2087 
2088   /* By default we assume that stubs do not change the rp.  */
2089   info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2090 
2091   return info;
2092 }
2093 
2094 static void
2095 hppa_stub_frame_this_id (struct frame_info *next_frame,
2096 			 void **this_prologue_cache,
2097 			 struct frame_id *this_id)
2098 {
2099   struct hppa_stub_unwind_cache *info
2100     = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2101   *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2102 }
2103 
2104 static void
2105 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2106 			       void **this_prologue_cache,
2107 			       int regnum, int *optimizedp,
2108 			       enum lval_type *lvalp, CORE_ADDR *addrp,
2109 			       int *realnump, void *valuep)
2110 {
2111   struct hppa_stub_unwind_cache *info
2112     = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2113   hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2114 		                   optimizedp, lvalp, addrp, realnump, valuep);
2115 }
2116 
2117 static const struct frame_unwind hppa_stub_frame_unwind = {
2118   NORMAL_FRAME,
2119   hppa_stub_frame_this_id,
2120   hppa_stub_frame_prev_register
2121 };
2122 
2123 static const struct frame_unwind *
2124 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2125 {
2126   CORE_ADDR pc = frame_pc_unwind (next_frame);
2127 
2128   if (pc == 0
2129       || IN_SOLIB_CALL_TRAMPOLINE (pc, NULL)
2130       || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2131     return &hppa_stub_frame_unwind;
2132   return NULL;
2133 }
2134 
2135 static struct frame_id
2136 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2137 {
2138   return frame_id_build (frame_unwind_register_unsigned (next_frame,
2139 							 HPPA_SP_REGNUM),
2140 			 frame_pc_unwind (next_frame));
2141 }
2142 
2143 static CORE_ADDR
2144 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2145 {
2146   return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2147 }
2148 
2149 /* Instead of this nasty cast, add a method pvoid() that prints out a
2150    host VOID data type (remember %p isn't portable).  */
2151 
2152 static CORE_ADDR
2153 hppa_pointer_to_address_hack (void *ptr)
2154 {
2155   gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2156   return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2157 }
2158 
2159 static void
2160 unwind_command (char *exp, int from_tty)
2161 {
2162   CORE_ADDR address;
2163   struct unwind_table_entry *u;
2164 
2165   /* If we have an expression, evaluate it and use it as the address.  */
2166 
2167   if (exp != 0 && *exp != 0)
2168     address = parse_and_eval_address (exp);
2169   else
2170     return;
2171 
2172   u = find_unwind_entry (address);
2173 
2174   if (!u)
2175     {
2176       printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2177       return;
2178     }
2179 
2180   printf_unfiltered ("unwind_table_entry (0x%s):\n",
2181 		     paddr_nz (hppa_pointer_to_address_hack (u)));
2182 
2183   printf_unfiltered ("\tregion_start = ");
2184   print_address (u->region_start, gdb_stdout);
2185   gdb_flush (gdb_stdout);
2186 
2187   printf_unfiltered ("\n\tregion_end = ");
2188   print_address (u->region_end, gdb_stdout);
2189   gdb_flush (gdb_stdout);
2190 
2191 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2192 
2193   printf_unfiltered ("\n\tflags =");
2194   pif (Cannot_unwind);
2195   pif (Millicode);
2196   pif (Millicode_save_sr0);
2197   pif (Entry_SR);
2198   pif (Args_stored);
2199   pif (Variable_Frame);
2200   pif (Separate_Package_Body);
2201   pif (Frame_Extension_Millicode);
2202   pif (Stack_Overflow_Check);
2203   pif (Two_Instruction_SP_Increment);
2204   pif (Ada_Region);
2205   pif (Save_SP);
2206   pif (Save_RP);
2207   pif (Save_MRP_in_frame);
2208   pif (extn_ptr_defined);
2209   pif (Cleanup_defined);
2210   pif (MPE_XL_interrupt_marker);
2211   pif (HP_UX_interrupt_marker);
2212   pif (Large_frame);
2213 
2214   putchar_unfiltered ('\n');
2215 
2216 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2217 
2218   pin (Region_description);
2219   pin (Entry_FR);
2220   pin (Entry_GR);
2221   pin (Total_frame_size);
2222 }
2223 
2224 void
2225 hppa_skip_permanent_breakpoint (void)
2226 {
2227   /* To step over a breakpoint instruction on the PA takes some
2228      fiddling with the instruction address queue.
2229 
2230      When we stop at a breakpoint, the IA queue front (the instruction
2231      we're executing now) points at the breakpoint instruction, and
2232      the IA queue back (the next instruction to execute) points to
2233      whatever instruction we would execute after the breakpoint, if it
2234      were an ordinary instruction.  This is the case even if the
2235      breakpoint is in the delay slot of a branch instruction.
2236 
2237      Clearly, to step past the breakpoint, we need to set the queue
2238      front to the back.  But what do we put in the back?  What
2239      instruction comes after that one?  Because of the branch delay
2240      slot, the next insn is always at the back + 4.  */
2241   write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2242   write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
2243 
2244   write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
2245   /* We can leave the tail's space the same, since there's no jump.  */
2246 }
2247 
2248 int
2249 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2250 {
2251   /* Sometimes we may pluck out a minimal symbol that has a negative address.
2252 
2253      An example of this occurs when an a.out is linked against a foo.sl.
2254      The foo.sl defines a global bar(), and the a.out declares a signature
2255      for bar().  However, the a.out doesn't directly call bar(), but passes
2256      its address in another call.
2257 
2258      If you have this scenario and attempt to "break bar" before running,
2259      gdb will find a minimal symbol for bar() in the a.out.  But that
2260      symbol's address will be negative.  What this appears to denote is
2261      an index backwards from the base of the procedure linkage table (PLT)
2262      into the data linkage table (DLT), the end of which is contiguous
2263      with the start of the PLT.  This is clearly not a valid address for
2264      us to set a breakpoint on.
2265 
2266      Note that one must be careful in how one checks for a negative address.
2267      0xc0000000 is a legitimate address of something in a shared text
2268      segment, for example.  Since I don't know what the possible range
2269      is of these "really, truly negative" addresses that come from the
2270      minimal symbols, I'm resorting to the gross hack of checking the
2271      top byte of the address for all 1's.  Sigh.  */
2272 
2273   return (!target_has_stack && (pc & 0xFF000000));
2274 }
2275 
2276 int
2277 hppa_instruction_nullified (void)
2278 {
2279   /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2280      avoid the type cast.  I'm leaving it as is for now as I'm doing
2281      semi-mechanical multiarching-related changes.  */
2282   const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2283   const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
2284 
2285   return ((ipsw & 0x00200000) && !(flags & 0x2));
2286 }
2287 
2288 /* Return the GDB type object for the "standard" data type of data
2289    in register N.  */
2290 
2291 static struct type *
2292 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2293 {
2294    if (reg_nr < HPPA_FP4_REGNUM)
2295      return builtin_type_uint32;
2296    else
2297      return builtin_type_ieee_single_big;
2298 }
2299 
2300 /* Return the GDB type object for the "standard" data type of data
2301    in register N.  hppa64 version.  */
2302 
2303 static struct type *
2304 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2305 {
2306    if (reg_nr < HPPA_FP4_REGNUM)
2307      return builtin_type_uint64;
2308    else
2309      return builtin_type_ieee_double_big;
2310 }
2311 
2312 /* Return True if REGNUM is not a register available to the user
2313    through ptrace().  */
2314 
2315 static int
2316 hppa_cannot_store_register (int regnum)
2317 {
2318   return (regnum == 0
2319           || regnum == HPPA_PCSQ_HEAD_REGNUM
2320           || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2321           || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2322 
2323 }
2324 
2325 static CORE_ADDR
2326 hppa_smash_text_address (CORE_ADDR addr)
2327 {
2328   /* The low two bits of the PC on the PA contain the privilege level.
2329      Some genius implementing a (non-GCC) compiler apparently decided
2330      this means that "addresses" in a text section therefore include a
2331      privilege level, and thus symbol tables should contain these bits.
2332      This seems like a bonehead thing to do--anyway, it seems to work
2333      for our purposes to just ignore those bits.  */
2334 
2335   return (addr &= ~0x3);
2336 }
2337 
2338 /* Get the ith function argument for the current function.  */
2339 CORE_ADDR
2340 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2341 			     struct type *type)
2342 {
2343   CORE_ADDR addr;
2344   get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2345   return addr;
2346 }
2347 
2348 static void
2349 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2350 			   int regnum, void *buf)
2351 {
2352     ULONGEST tmp;
2353 
2354     regcache_raw_read_unsigned (regcache, regnum, &tmp);
2355     if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2356       tmp &= ~0x3;
2357     store_unsigned_integer (buf, sizeof(tmp), tmp);
2358 }
2359 
2360 static CORE_ADDR
2361 hppa_find_global_pointer (struct value *function)
2362 {
2363   return 0;
2364 }
2365 
2366 void
2367 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2368 			         struct trad_frame_saved_reg saved_regs[],
2369 				 int regnum, int *optimizedp,
2370 				 enum lval_type *lvalp, CORE_ADDR *addrp,
2371 				 int *realnump, void *valuep)
2372 {
2373   if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2374     {
2375       if (valuep)
2376 	{
2377 	  CORE_ADDR pc;
2378 
2379 	  trad_frame_get_prev_register (next_frame, saved_regs,
2380 					HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2381 					lvalp, addrp, realnump, valuep);
2382 
2383 	  pc = extract_unsigned_integer (valuep, 4);
2384 	  store_unsigned_integer (valuep, 4, pc + 4);
2385 	}
2386 
2387       /* It's a computed value.  */
2388       *optimizedp = 0;
2389       *lvalp = not_lval;
2390       *addrp = 0;
2391       *realnump = -1;
2392       return;
2393     }
2394 
2395   trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2396 				optimizedp, lvalp, addrp, realnump, valuep);
2397 }
2398 
2399 
2400 /* Here is a table of C type sizes on hppa with various compiles
2401    and options.  I measured this on PA 9000/800 with HP-UX 11.11
2402    and these compilers:
2403 
2404      /usr/ccs/bin/cc    HP92453-01 A.11.01.21
2405      /opt/ansic/bin/cc  HP92453-01 B.11.11.28706.GP
2406      /opt/aCC/bin/aCC   B3910B A.03.45
2407      gcc                gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2408 
2409      cc            : 1 2 4 4 8 : 4 8 -- : 4 4
2410      ansic +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
2411      ansic +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
2412      ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2413      acc   +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
2414      acc   +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
2415      acc   +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2416      gcc           : 1 2 4 4 8 : 4 8 16 : 4 4
2417 
2418    Each line is:
2419 
2420      compiler and options
2421      char, short, int, long, long long
2422      float, double, long double
2423      char *, void (*)()
2424 
2425    So all these compilers use either ILP32 or LP64 model.
2426    TODO: gcc has more options so it needs more investigation.
2427 
2428    For floating point types, see:
2429 
2430      http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2431      HP-UX floating-point guide, hpux 11.00
2432 
2433    -- chastain 2003-12-18  */
2434 
2435 static struct gdbarch *
2436 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2437 {
2438   struct gdbarch_tdep *tdep;
2439   struct gdbarch *gdbarch;
2440 
2441   /* Try to determine the ABI of the object we are loading.  */
2442   if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2443     {
2444       /* If it's a SOM file, assume it's HP/UX SOM.  */
2445       if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2446 	info.osabi = GDB_OSABI_HPUX_SOM;
2447     }
2448 
2449   /* find a candidate among the list of pre-declared architectures.  */
2450   arches = gdbarch_list_lookup_by_info (arches, &info);
2451   if (arches != NULL)
2452     return (arches->gdbarch);
2453 
2454   /* If none found, then allocate and initialize one.  */
2455   tdep = XZALLOC (struct gdbarch_tdep);
2456   gdbarch = gdbarch_alloc (&info, tdep);
2457 
2458   /* Determine from the bfd_arch_info structure if we are dealing with
2459      a 32 or 64 bits architecture.  If the bfd_arch_info is not available,
2460      then default to a 32bit machine.  */
2461   if (info.bfd_arch_info != NULL)
2462     tdep->bytes_per_address =
2463       info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2464   else
2465     tdep->bytes_per_address = 4;
2466 
2467   tdep->find_global_pointer = hppa_find_global_pointer;
2468 
2469   /* Some parts of the gdbarch vector depend on whether we are running
2470      on a 32 bits or 64 bits target.  */
2471   switch (tdep->bytes_per_address)
2472     {
2473       case 4:
2474         set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2475         set_gdbarch_register_name (gdbarch, hppa32_register_name);
2476         set_gdbarch_register_type (gdbarch, hppa32_register_type);
2477         break;
2478       case 8:
2479         set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2480         set_gdbarch_register_name (gdbarch, hppa64_register_name);
2481         set_gdbarch_register_type (gdbarch, hppa64_register_type);
2482         break;
2483       default:
2484         internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2485                         tdep->bytes_per_address);
2486     }
2487 
2488   set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2489   set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2490 
2491   /* The following gdbarch vector elements are the same in both ILP32
2492      and LP64, but might show differences some day.  */
2493   set_gdbarch_long_long_bit (gdbarch, 64);
2494   set_gdbarch_long_double_bit (gdbarch, 128);
2495   set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2496 
2497   /* The following gdbarch vector elements do not depend on the address
2498      size, or in any other gdbarch element previously set.  */
2499   set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2500   set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2501   set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2502   set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2503   set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2504   set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2505   set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2506   set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2507   set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2508   set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2509   set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2510 
2511   /* Helper for function argument information.  */
2512   set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2513 
2514   set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2515 
2516   /* When a hardware watchpoint triggers, we'll move the inferior past
2517      it by removing all eventpoints; stepping past the instruction
2518      that caused the trigger; reinserting eventpoints; and checking
2519      whether any watched location changed.  */
2520   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2521 
2522   /* Inferior function call methods.  */
2523   switch (tdep->bytes_per_address)
2524     {
2525     case 4:
2526       set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2527       set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2528       set_gdbarch_convert_from_func_ptr_addr
2529         (gdbarch, hppa32_convert_from_func_ptr_addr);
2530       break;
2531     case 8:
2532       set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2533       set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2534       break;
2535     default:
2536       internal_error (__FILE__, __LINE__, "bad switch");
2537     }
2538 
2539   /* Struct return methods.  */
2540   switch (tdep->bytes_per_address)
2541     {
2542     case 4:
2543       set_gdbarch_return_value (gdbarch, hppa32_return_value);
2544       break;
2545     case 8:
2546       set_gdbarch_return_value (gdbarch, hppa64_return_value);
2547       break;
2548     default:
2549       internal_error (__FILE__, __LINE__, "bad switch");
2550     }
2551 
2552   set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2553   set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2554 
2555   /* Frame unwind methods.  */
2556   set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2557   set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2558 
2559   /* Hook in ABI-specific overrides, if they have been registered.  */
2560   gdbarch_init_osabi (info, gdbarch);
2561 
2562   /* Hook in the default unwinders.  */
2563   frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2564   frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2565   frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2566 
2567   return gdbarch;
2568 }
2569 
2570 static void
2571 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2572 {
2573   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2574 
2575   fprintf_unfiltered (file, "bytes_per_address = %d\n",
2576                       tdep->bytes_per_address);
2577   fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2578 }
2579 
2580 void
2581 _initialize_hppa_tdep (void)
2582 {
2583   struct cmd_list_element *c;
2584   void break_at_finish_command (char *arg, int from_tty);
2585   void tbreak_at_finish_command (char *arg, int from_tty);
2586   void break_at_finish_at_depth_command (char *arg, int from_tty);
2587 
2588   gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2589 
2590   hppa_objfile_priv_data = register_objfile_data ();
2591 
2592   add_cmd ("unwind", class_maintenance, unwind_command,
2593 	   "Print unwind table entry at given address.",
2594 	   &maintenanceprintlist);
2595 
2596   deprecate_cmd (add_com ("xbreak", class_breakpoint,
2597 			  break_at_finish_command,
2598 			  concat ("Set breakpoint at procedure exit. \n\
2599 Argument may be function name, or \"*\" and an address.\n\
2600 If function is specified, break at end of code for that function.\n\
2601 If an address is specified, break at the end of the function that contains \n\
2602 that exact address.\n",
2603 		   "With no arg, uses current execution address of selected stack frame.\n\
2604 This is useful for breaking on return to a stack frame.\n\
2605 \n\
2606 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2607 \n\
2608 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2609   deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2610   deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2611   deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2612   deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2613 
2614   deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2615 			      tbreak_at_finish_command,
2616 "Set temporary breakpoint at procedure exit.  Either there should\n\
2617 be no argument or the argument must be a depth.\n"), NULL);
2618   set_cmd_completer (c, location_completer);
2619 
2620   if (xdb_commands)
2621     deprecate_cmd (add_com ("bx", class_breakpoint,
2622 			    break_at_finish_at_depth_command,
2623 "Set breakpoint at procedure exit.  Either there should\n\
2624 be no argument or the argument must be a depth.\n"), NULL);
2625 
2626   /* Debug this files internals. */
2627   deprecated_add_show_from_set
2628     (add_set_cmd ("hppa", class_maintenance, var_zinteger,
2629 		  &hppa_debug, "Set hppa debugging.\n\
2630 When non-zero, hppa specific debugging is enabled.", &setdebuglist),
2631      &showdebuglist);
2632 }
2633