xref: /openbsd-src/gnu/usr.bin/binutils/gdb/dwarfread.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /* DWARF debugging format support for GDB.
2    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996
3    Free Software Foundation, Inc.
4    Written by Fred Fish at Cygnus Support.  Portions based on dbxread.c,
5    mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6 
7 This file is part of GDB.
8 
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13 
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
22 
23 /*
24 
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
27 
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in.  For example, we don't yet
30 put enum constants there.  And dbxread seems to invent a lot of typedefs
31 we never see.  Use the new printpsym command to see the partial symbol table
32 contents.
33 
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
36 
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
39 
40 */
41 
42 #include "defs.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "elf/dwarf.h"
48 #include "buildsym.h"
49 #include "demangle.h"
50 #include "expression.h"	/* Needed for enum exp_opcode in language.h, sigh... */
51 #include "language.h"
52 #include "complaints.h"
53 
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 
57 /* Some macros to provide DIE info for complaints. */
58 
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61 
62 /* Complaints that can be issued during DWARF debug info reading. */
63 
64 struct complaint no_bfd_get_N =
65 {
66   "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67 };
68 
69 struct complaint malformed_die =
70 {
71   "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72 };
73 
74 struct complaint bad_die_ref =
75 {
76   "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77 };
78 
79 struct complaint unknown_attribute_form =
80 {
81   "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82 };
83 
84 struct complaint unknown_attribute_length =
85 {
86   "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87 };
88 
89 struct complaint unexpected_fund_type =
90 {
91   "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92 };
93 
94 struct complaint unknown_type_modifier =
95 {
96   "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97 };
98 
99 struct complaint volatile_ignored =
100 {
101   "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102 };
103 
104 struct complaint const_ignored =
105 {
106   "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107 };
108 
109 struct complaint botched_modified_type =
110 {
111   "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112 };
113 
114 struct complaint op_deref2 =
115 {
116   "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117 };
118 
119 struct complaint op_deref4 =
120 {
121   "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122 };
123 
124 struct complaint basereg_not_handled =
125 {
126   "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127 };
128 
129 struct complaint dup_user_type_allocation =
130 {
131   "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132 };
133 
134 struct complaint dup_user_type_definition =
135 {
136   "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137 };
138 
139 struct complaint missing_tag =
140 {
141   "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142 };
143 
144 struct complaint bad_array_element_type =
145 {
146   "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147 };
148 
149 struct complaint subscript_data_items =
150 {
151   "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152 };
153 
154 struct complaint unhandled_array_subscript_format =
155 {
156   "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157 };
158 
159 struct complaint unknown_array_subscript_format =
160 {
161   "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162 };
163 
164 struct complaint not_row_major =
165 {
166   "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167 };
168 
169 struct complaint missing_at_name =
170 {
171   "DIE @ 0x%x, AT_name tag missing", 0, 0
172 };
173 
174 typedef unsigned int DIE_REF;	/* Reference to a DIE */
175 
176 #ifndef GCC_PRODUCER
177 #define GCC_PRODUCER "GNU C "
178 #endif
179 
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
182 #endif
183 
184 #ifndef LCC_PRODUCER
185 #define LCC_PRODUCER "NCR C/C++"
186 #endif
187 
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
190 #endif
191 
192 /* Provide a default mapping from a DWARF register number to a gdb REGNUM.  */
193 #ifndef DWARF_REG_TO_REGNUM
194 #define DWARF_REG_TO_REGNUM(num) (num)
195 #endif
196 
197 /* Flags to target_to_host() that tell whether or not the data object is
198    expected to be signed.  Used, for example, when fetching a signed
199    integer in the target environment which is used as a signed integer
200    in the host environment, and the two environments have different sized
201    ints.  In this case, *somebody* has to sign extend the smaller sized
202    int. */
203 
204 #define GET_UNSIGNED	0	/* No sign extension required */
205 #define GET_SIGNED	1	/* Sign extension required */
206 
207 /* Defines for things which are specified in the document "DWARF Debugging
208    Information Format" published by UNIX International, Programming Languages
209    SIG.  These defines are based on revision 1.0.0, Jan 20, 1992. */
210 
211 #define SIZEOF_DIE_LENGTH	4
212 #define SIZEOF_DIE_TAG		2
213 #define SIZEOF_ATTRIBUTE	2
214 #define SIZEOF_FORMAT_SPECIFIER	1
215 #define SIZEOF_FMT_FT		2
216 #define SIZEOF_LINETBL_LENGTH	4
217 #define SIZEOF_LINETBL_LINENO	4
218 #define SIZEOF_LINETBL_STMT	2
219 #define SIZEOF_LINETBL_DELTA	4
220 #define SIZEOF_LOC_ATOM_CODE	1
221 
222 #define FORM_FROM_ATTR(attr)	((attr) & 0xF)	/* Implicitly specified */
223 
224 /* Macros that return the sizes of various types of data in the target
225    environment.
226 
227    FIXME:  Currently these are just compile time constants (as they are in
228    other parts of gdb as well).  They need to be able to get the right size
229    either from the bfd or possibly from the DWARF info.  It would be nice if
230    the DWARF producer inserted DIES that describe the fundamental types in
231    the target environment into the DWARF info, similar to the way dbx stabs
232    producers produce information about their fundamental types. */
233 
234 #define TARGET_FT_POINTER_SIZE(objfile)	(TARGET_PTR_BIT / TARGET_CHAR_BIT)
235 #define TARGET_FT_LONG_SIZE(objfile)	(TARGET_LONG_BIT / TARGET_CHAR_BIT)
236 
237 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238    FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239    However, the Issue 2 DWARF specification from AT&T defines it as
240    a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241    For backwards compatibility with the AT&T compiler produced executables
242    we define AT_short_element_list for this variant. */
243 
244 #define	AT_short_element_list	 (0x00f0|FORM_BLOCK2)
245 
246 /* External variables referenced. */
247 
248 extern int info_verbose;		/* From main.c; nonzero => verbose */
249 extern char *warning_pre_print;		/* From utils.c */
250 
251 /* The DWARF debugging information consists of two major pieces,
252    one is a block of DWARF Information Entries (DIE's) and the other
253    is a line number table.  The "struct dieinfo" structure contains
254    the information for a single DIE, the one currently being processed.
255 
256    In order to make it easier to randomly access the attribute fields
257    of the current DIE, which are specifically unordered within the DIE,
258    each DIE is scanned and an instance of the "struct dieinfo"
259    structure is initialized.
260 
261    Initialization is done in two levels.  The first, done by basicdieinfo(),
262    just initializes those fields that are vital to deciding whether or not
263    to use this DIE, how to skip past it, etc.  The second, done by the
264    function completedieinfo(), fills in the rest of the information.
265 
266    Attributes which have block forms are not interpreted at the time
267    the DIE is scanned, instead we just save pointers to the start
268    of their value fields.
269 
270    Some fields have a flag <name>_p that is set when the value of the
271    field is valid (I.E. we found a matching attribute in the DIE).  Since
272    we may want to test for the presence of some attributes in the DIE,
273    such as AT_low_pc, without restricting the values of the field,
274    we need someway to note that we found such an attribute.
275 
276  */
277 
278 typedef char BLOCK;
279 
280 struct dieinfo {
281   char *		die;		/* Pointer to the raw DIE data */
282   unsigned long 	die_length;	/* Length of the raw DIE data */
283   DIE_REF		die_ref;	/* Offset of this DIE */
284   unsigned short	die_tag;	/* Tag for this DIE */
285   unsigned long		at_padding;
286   unsigned long		at_sibling;
287   BLOCK *		at_location;
288   char *		at_name;
289   unsigned short	at_fund_type;
290   BLOCK *		at_mod_fund_type;
291   unsigned long		at_user_def_type;
292   BLOCK *		at_mod_u_d_type;
293   unsigned short	at_ordering;
294   BLOCK *		at_subscr_data;
295   unsigned long		at_byte_size;
296   unsigned short	at_bit_offset;
297   unsigned long		at_bit_size;
298   BLOCK *		at_element_list;
299   unsigned long		at_stmt_list;
300   CORE_ADDR		at_low_pc;
301   CORE_ADDR		at_high_pc;
302   unsigned long		at_language;
303   unsigned long		at_member;
304   unsigned long		at_discr;
305   BLOCK *		at_discr_value;
306   BLOCK *		at_string_length;
307   char *		at_comp_dir;
308   char *		at_producer;
309   unsigned long		at_start_scope;
310   unsigned long		at_stride_size;
311   unsigned long		at_src_info;
312   char *		at_prototyped;
313   unsigned int		has_at_low_pc:1;
314   unsigned int		has_at_stmt_list:1;
315   unsigned int		has_at_byte_size:1;
316   unsigned int		short_element_list:1;
317 };
318 
319 static int diecount;	/* Approximate count of dies for compilation unit */
320 static struct dieinfo *curdie;	/* For warnings and such */
321 
322 static char *dbbase;	/* Base pointer to dwarf info */
323 static int dbsize;	/* Size of dwarf info in bytes */
324 static int dbroff;	/* Relative offset from start of .debug section */
325 static char *lnbase;	/* Base pointer to line section */
326 static int isreg;	/* Kludge to identify register variables */
327 static int optimized_out;  /* Kludge to identify optimized out variables */
328 /* Kludge to identify basereg references.  Nonzero if we have an offset
329    relative to a basereg.  */
330 static int offreg;
331 /* Which base register is it relative to?  */
332 static int basereg;
333 
334 /* This value is added to each symbol value.  FIXME:  Generalize to
335    the section_offsets structure used by dbxread (once this is done,
336    pass the appropriate section number to end_symtab).  */
337 static CORE_ADDR baseaddr;	/* Add to each symbol value */
338 
339 /* The section offsets used in the current psymtab or symtab.  FIXME,
340    only used to pass one value (baseaddr) at the moment.  */
341 static struct section_offsets *base_section_offsets;
342 
343 /* We put a pointer to this structure in the read_symtab_private field
344    of the psymtab.  */
345 
346 struct dwfinfo {
347   /* Always the absolute file offset to the start of the ".debug"
348      section for the file containing the DIE's being accessed.  */
349   file_ptr dbfoff;
350   /* Relative offset from the start of the ".debug" section to the
351      first DIE to be accessed.  When building the partial symbol
352      table, this value will be zero since we are accessing the
353      entire ".debug" section.  When expanding a partial symbol
354      table entry, this value will be the offset to the first
355      DIE for the compilation unit containing the symbol that
356      triggers the expansion.  */
357   int dbroff;
358   /* The size of the chunk of DIE's being examined, in bytes.  */
359   int dblength;
360   /* The absolute file offset to the line table fragment.  Ignored
361      when building partial symbol tables, but used when expanding
362      them, and contains the absolute file offset to the fragment
363      of the ".line" section containing the line numbers for the
364      current compilation unit.  */
365   file_ptr lnfoff;
366 };
367 
368 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
369 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
370 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
371 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
372 
373 /* The generic symbol table building routines have separate lists for
374    file scope symbols and all all other scopes (local scopes).  So
375    we need to select the right one to pass to add_symbol_to_list().
376    We do it by keeping a pointer to the correct list in list_in_scope.
377 
378    FIXME:  The original dwarf code just treated the file scope as the first
379    local scope, and all other local scopes as nested local scopes, and worked
380    fine.  Check to see if we really need to distinguish these in buildsym.c */
381 
382 struct pending **list_in_scope = &file_symbols;
383 
384 /* DIES which have user defined types or modified user defined types refer to
385    other DIES for the type information.  Thus we need to associate the offset
386    of a DIE for a user defined type with a pointer to the type information.
387 
388    Originally this was done using a simple but expensive algorithm, with an
389    array of unsorted structures, each containing an offset/type-pointer pair.
390    This array was scanned linearly each time a lookup was done.  The result
391    was that gdb was spending over half it's startup time munging through this
392    array of pointers looking for a structure that had the right offset member.
393 
394    The second attempt used the same array of structures, but the array was
395    sorted using qsort each time a new offset/type was recorded, and a binary
396    search was used to find the type pointer for a given DIE offset.  This was
397    even slower, due to the overhead of sorting the array each time a new
398    offset/type pair was entered.
399 
400    The third attempt uses a fixed size array of type pointers, indexed by a
401    value derived from the DIE offset.  Since the minimum DIE size is 4 bytes,
402    we can divide any DIE offset by 4 to obtain a unique index into this fixed
403    size array.  Since each element is a 4 byte pointer, it takes exactly as
404    much memory to hold this array as to hold the DWARF info for a given
405    compilation unit.  But it gets freed as soon as we are done with it.
406    This has worked well in practice, as a reasonable tradeoff between memory
407    consumption and speed, without having to resort to much more complicated
408    algorithms. */
409 
410 static struct type **utypes;	/* Pointer to array of user type pointers */
411 static int numutypes;		/* Max number of user type pointers */
412 
413 /* Maintain an array of referenced fundamental types for the current
414    compilation unit being read.  For DWARF version 1, we have to construct
415    the fundamental types on the fly, since no information about the
416    fundamental types is supplied.  Each such fundamental type is created by
417    calling a language dependent routine to create the type, and then a
418    pointer to that type is then placed in the array at the index specified
419    by it's FT_<TYPENAME> value.  The array has a fixed size set by the
420    FT_NUM_MEMBERS compile time constant, which is the number of predefined
421    fundamental types gdb knows how to construct. */
422 
423 static struct type *ftypes[FT_NUM_MEMBERS];  /* Fundamental types */
424 
425 /* Record the language for the compilation unit which is currently being
426    processed.  We know it once we have seen the TAG_compile_unit DIE,
427    and we need it while processing the DIE's for that compilation unit.
428    It is eventually saved in the symtab structure, but we don't finalize
429    the symtab struct until we have processed all the DIE's for the
430    compilation unit.  We also need to get and save a pointer to the
431    language struct for this language, so we can call the language
432    dependent routines for doing things such as creating fundamental
433    types. */
434 
435 static enum language cu_language;
436 static const struct language_defn *cu_language_defn;
437 
438 /* Forward declarations of static functions so we don't have to worry
439    about ordering within this file.  */
440 
441 static void
442 free_utypes PARAMS ((PTR));
443 
444 static int
445 attribute_size PARAMS ((unsigned int));
446 
447 static CORE_ADDR
448 target_to_host PARAMS ((char *, int, int, struct objfile *));
449 
450 static void
451 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
452 
453 static void
454 handle_producer PARAMS ((char *));
455 
456 static void
457 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
458 
459 static void
460 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
461 
462 static void
463 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
464 				  struct objfile *));
465 
466 static void
467 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
468 
469 static void
470 scan_compilation_units PARAMS ((char *, char *, file_ptr,
471 				file_ptr, struct objfile *));
472 
473 static void
474 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
475 
476 static void
477 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
478 
479 static void
480 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
481 
482 static void
483 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
484 
485 static void
486 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
487 
488 static void
489 read_ofile_symtab PARAMS ((struct partial_symtab *));
490 
491 static void
492 process_dies PARAMS ((char *, char *, struct objfile *));
493 
494 static void
495 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
496 			      struct objfile *));
497 
498 static struct type *
499 decode_array_element_type PARAMS ((char *));
500 
501 static struct type *
502 decode_subscript_data_item PARAMS ((char *, char *));
503 
504 static void
505 dwarf_read_array_type PARAMS ((struct dieinfo *));
506 
507 static void
508 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
509 
510 static void
511 read_tag_string_type PARAMS ((struct dieinfo *dip));
512 
513 static void
514 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
515 
516 static void
517 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
518 
519 static struct type *
520 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
521 
522 static struct type *
523 enum_type PARAMS ((struct dieinfo *, struct objfile *));
524 
525 static void
526 decode_line_numbers PARAMS ((char *));
527 
528 static struct type *
529 decode_die_type PARAMS ((struct dieinfo *));
530 
531 static struct type *
532 decode_mod_fund_type PARAMS ((char *));
533 
534 static struct type *
535 decode_mod_u_d_type PARAMS ((char *));
536 
537 static struct type *
538 decode_modified_type PARAMS ((char *, unsigned int, int));
539 
540 static struct type *
541 decode_fund_type PARAMS ((unsigned int));
542 
543 static char *
544 create_name PARAMS ((char *, struct obstack *));
545 
546 static struct type *
547 lookup_utype PARAMS ((DIE_REF));
548 
549 static struct type *
550 alloc_utype PARAMS ((DIE_REF, struct type *));
551 
552 static struct symbol *
553 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
554 
555 static void
556 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
557 			    struct type *));
558 
559 static int
560 locval PARAMS ((char *));
561 
562 static void
563 set_cu_language PARAMS ((struct dieinfo *));
564 
565 static struct type *
566 dwarf_fundamental_type PARAMS ((struct objfile *, int));
567 
568 
569 /*
570 
571 LOCAL FUNCTION
572 
573 	dwarf_fundamental_type -- lookup or create a fundamental type
574 
575 SYNOPSIS
576 
577 	struct type *
578 	dwarf_fundamental_type (struct objfile *objfile, int typeid)
579 
580 DESCRIPTION
581 
582 	DWARF version 1 doesn't supply any fundamental type information,
583 	so gdb has to construct such types.  It has a fixed number of
584 	fundamental types that it knows how to construct, which is the
585 	union of all types that it knows how to construct for all languages
586 	that it knows about.  These are enumerated in gdbtypes.h.
587 
588 	As an example, assume we find a DIE that references a DWARF
589 	fundamental type of FT_integer.  We first look in the ftypes
590 	array to see if we already have such a type, indexed by the
591 	gdb internal value of FT_INTEGER.  If so, we simply return a
592 	pointer to that type.  If not, then we ask an appropriate
593 	language dependent routine to create a type FT_INTEGER, using
594 	defaults reasonable for the current target machine, and install
595 	that type in ftypes for future reference.
596 
597 RETURNS
598 
599 	Pointer to a fundamental type.
600 
601 */
602 
603 static struct type *
604 dwarf_fundamental_type (objfile, typeid)
605      struct objfile *objfile;
606      int typeid;
607 {
608   if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
609     {
610       error ("internal error - invalid fundamental type id %d", typeid);
611     }
612 
613   /* Look for this particular type in the fundamental type vector.  If one is
614      not found, create and install one appropriate for the current language
615      and the current target machine. */
616 
617   if (ftypes[typeid] == NULL)
618     {
619       ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
620     }
621 
622   return (ftypes[typeid]);
623 }
624 
625 /*
626 
627 LOCAL FUNCTION
628 
629 	set_cu_language -- set local copy of language for compilation unit
630 
631 SYNOPSIS
632 
633 	void
634 	set_cu_language (struct dieinfo *dip)
635 
636 DESCRIPTION
637 
638 	Decode the language attribute for a compilation unit DIE and
639 	remember what the language was.  We use this at various times
640 	when processing DIE's for a given compilation unit.
641 
642 RETURNS
643 
644 	No return value.
645 
646  */
647 
648 static void
649 set_cu_language (dip)
650      struct dieinfo *dip;
651 {
652   switch (dip -> at_language)
653     {
654       case LANG_C89:
655       case LANG_C:
656         cu_language = language_c;
657 	break;
658       case LANG_C_PLUS_PLUS:
659 	cu_language = language_cplus;
660 	break;
661       case LANG_CHILL:
662 	cu_language = language_chill;
663 	break;
664       case LANG_MODULA2:
665 	cu_language = language_m2;
666 	break;
667       case LANG_ADA83:
668       case LANG_COBOL74:
669       case LANG_COBOL85:
670       case LANG_FORTRAN77:
671       case LANG_FORTRAN90:
672       case LANG_PASCAL83:
673 	/* We don't know anything special about these yet. */
674 	cu_language = language_unknown;
675 	break;
676       default:
677 	/* If no at_language, try to deduce one from the filename */
678 	cu_language = deduce_language_from_filename (dip -> at_name);
679 	break;
680     }
681   cu_language_defn = language_def (cu_language);
682 }
683 
684 /*
685 
686 GLOBAL FUNCTION
687 
688 	dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
689 
690 SYNOPSIS
691 
692 	void dwarf_build_psymtabs (struct objfile *objfile,
693 	     struct section_offsets *section_offsets,
694 	     int mainline, file_ptr dbfoff, unsigned int dbfsize,
695 	     file_ptr lnoffset, unsigned int lnsize)
696 
697 DESCRIPTION
698 
699 	This function is called upon to build partial symtabs from files
700 	containing DIE's (Dwarf Information Entries) and DWARF line numbers.
701 
702 	It is passed a bfd* containing the DIES
703 	and line number information, the corresponding filename for that
704 	file, a base address for relocating the symbols, a flag indicating
705 	whether or not this debugging information is from a "main symbol
706 	table" rather than a shared library or dynamically linked file,
707 	and file offset/size pairs for the DIE information and line number
708 	information.
709 
710 RETURNS
711 
712 	No return value.
713 
714  */
715 
716 void
717 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
718 		      lnoffset, lnsize)
719      struct objfile *objfile;
720      struct section_offsets *section_offsets;
721      int mainline;
722      file_ptr dbfoff;
723      unsigned int dbfsize;
724      file_ptr lnoffset;
725      unsigned int lnsize;
726 {
727   bfd *abfd = objfile->obfd;
728   struct cleanup *back_to;
729 
730   current_objfile = objfile;
731   dbsize = dbfsize;
732   dbbase = xmalloc (dbsize);
733   dbroff = 0;
734   if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
735       (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
736     {
737       free (dbbase);
738       error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
739     }
740   back_to = make_cleanup (free, dbbase);
741 
742   /* If we are reinitializing, or if we have never loaded syms yet, init.
743      Since we have no idea how many DIES we are looking at, we just guess
744      some arbitrary value. */
745 
746   if (mainline || objfile -> global_psymbols.size == 0 ||
747       objfile -> static_psymbols.size == 0)
748     {
749       init_psymbol_list (objfile, 1024);
750     }
751 
752   /* Save the relocation factor where everybody can see it.  */
753 
754   base_section_offsets = section_offsets;
755   baseaddr = ANOFFSET (section_offsets, 0);
756 
757   /* Follow the compilation unit sibling chain, building a partial symbol
758      table entry for each one.  Save enough information about each compilation
759      unit to locate the full DWARF information later. */
760 
761   scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
762 
763   do_cleanups (back_to);
764   current_objfile = NULL;
765 }
766 
767 /*
768 
769 LOCAL FUNCTION
770 
771 	read_lexical_block_scope -- process all dies in a lexical block
772 
773 SYNOPSIS
774 
775 	static void read_lexical_block_scope (struct dieinfo *dip,
776 		char *thisdie, char *enddie)
777 
778 DESCRIPTION
779 
780 	Process all the DIES contained within a lexical block scope.
781 	Start a new scope, process the dies, and then close the scope.
782 
783  */
784 
785 static void
786 read_lexical_block_scope (dip, thisdie, enddie, objfile)
787      struct dieinfo *dip;
788      char *thisdie;
789      char *enddie;
790      struct objfile *objfile;
791 {
792   register struct context_stack *new;
793 
794   push_context (0, dip -> at_low_pc);
795   process_dies (thisdie + dip -> die_length, enddie, objfile);
796   new = pop_context ();
797   if (local_symbols != NULL)
798     {
799       finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
800 		    dip -> at_high_pc, objfile);
801     }
802   local_symbols = new -> locals;
803 }
804 
805 /*
806 
807 LOCAL FUNCTION
808 
809 	lookup_utype -- look up a user defined type from die reference
810 
811 SYNOPSIS
812 
813 	static type *lookup_utype (DIE_REF die_ref)
814 
815 DESCRIPTION
816 
817 	Given a DIE reference, lookup the user defined type associated with
818 	that DIE, if it has been registered already.  If not registered, then
819 	return NULL.  Alloc_utype() can be called to register an empty
820 	type for this reference, which will be filled in later when the
821 	actual referenced DIE is processed.
822  */
823 
824 static struct type *
825 lookup_utype (die_ref)
826      DIE_REF die_ref;
827 {
828   struct type *type = NULL;
829   int utypeidx;
830 
831   utypeidx = (die_ref - dbroff) / 4;
832   if ((utypeidx < 0) || (utypeidx >= numutypes))
833     {
834       complain (&bad_die_ref, DIE_ID, DIE_NAME);
835     }
836   else
837     {
838       type = *(utypes + utypeidx);
839     }
840   return (type);
841 }
842 
843 
844 /*
845 
846 LOCAL FUNCTION
847 
848 	alloc_utype  -- add a user defined type for die reference
849 
850 SYNOPSIS
851 
852 	static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
853 
854 DESCRIPTION
855 
856 	Given a die reference DIE_REF, and a possible pointer to a user
857 	defined type UTYPEP, register that this reference has a user
858 	defined type and either use the specified type in UTYPEP or
859 	make a new empty type that will be filled in later.
860 
861 	We should only be called after calling lookup_utype() to verify that
862 	there is not currently a type registered for DIE_REF.
863  */
864 
865 static struct type *
866 alloc_utype (die_ref, utypep)
867      DIE_REF die_ref;
868      struct type *utypep;
869 {
870   struct type **typep;
871   int utypeidx;
872 
873   utypeidx = (die_ref - dbroff) / 4;
874   typep = utypes + utypeidx;
875   if ((utypeidx < 0) || (utypeidx >= numutypes))
876     {
877       utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
878       complain (&bad_die_ref, DIE_ID, DIE_NAME);
879     }
880   else if (*typep != NULL)
881     {
882       utypep = *typep;
883       complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
884     }
885   else
886     {
887       if (utypep == NULL)
888 	{
889 	  utypep = alloc_type (current_objfile);
890 	}
891       *typep = utypep;
892     }
893   return (utypep);
894 }
895 
896 /*
897 
898 LOCAL FUNCTION
899 
900 	free_utypes -- free the utypes array and reset pointer & count
901 
902 SYNOPSIS
903 
904 	static void free_utypes (PTR dummy)
905 
906 DESCRIPTION
907 
908 	Called via do_cleanups to free the utypes array, reset the pointer to NULL,
909 	and set numutypes back to zero.  This ensures that the utypes does not get
910 	referenced after being freed.
911  */
912 
913 static void
914 free_utypes (dummy)
915      PTR dummy;
916 {
917   free (utypes);
918   utypes = NULL;
919   numutypes = 0;
920 }
921 
922 
923 /*
924 
925 LOCAL FUNCTION
926 
927 	decode_die_type -- return a type for a specified die
928 
929 SYNOPSIS
930 
931 	static struct type *decode_die_type (struct dieinfo *dip)
932 
933 DESCRIPTION
934 
935 	Given a pointer to a die information structure DIP, decode the
936 	type of the die and return a pointer to the decoded type.  All
937 	dies without specific types default to type int.
938  */
939 
940 static struct type *
941 decode_die_type (dip)
942      struct dieinfo *dip;
943 {
944   struct type *type = NULL;
945 
946   if (dip -> at_fund_type != 0)
947     {
948       type = decode_fund_type (dip -> at_fund_type);
949     }
950   else if (dip -> at_mod_fund_type != NULL)
951     {
952       type = decode_mod_fund_type (dip -> at_mod_fund_type);
953     }
954   else if (dip -> at_user_def_type)
955     {
956       if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
957 	{
958 	  type = alloc_utype (dip -> at_user_def_type, NULL);
959 	}
960     }
961   else if (dip -> at_mod_u_d_type)
962     {
963       type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
964     }
965   else
966     {
967       type = dwarf_fundamental_type (current_objfile, FT_VOID);
968     }
969   return (type);
970 }
971 
972 /*
973 
974 LOCAL FUNCTION
975 
976 	struct_type -- compute and return the type for a struct or union
977 
978 SYNOPSIS
979 
980 	static struct type *struct_type (struct dieinfo *dip, char *thisdie,
981 	    char *enddie, struct objfile *objfile)
982 
983 DESCRIPTION
984 
985 	Given pointer to a die information structure for a die which
986 	defines a union or structure (and MUST define one or the other),
987 	and pointers to the raw die data that define the range of dies which
988 	define the members, compute and return the user defined type for the
989 	structure or union.
990  */
991 
992 static struct type *
993 struct_type (dip, thisdie, enddie, objfile)
994      struct dieinfo *dip;
995      char *thisdie;
996      char *enddie;
997      struct objfile *objfile;
998 {
999   struct type *type;
1000   struct nextfield {
1001     struct nextfield *next;
1002     struct field field;
1003   };
1004   struct nextfield *list = NULL;
1005   struct nextfield *new;
1006   int nfields = 0;
1007   int n;
1008   struct dieinfo mbr;
1009   char *nextdie;
1010   int anonymous_size;
1011 
1012   if ((type = lookup_utype (dip -> die_ref)) == NULL)
1013     {
1014       /* No forward references created an empty type, so install one now */
1015       type = alloc_utype (dip -> die_ref, NULL);
1016     }
1017   INIT_CPLUS_SPECIFIC(type);
1018   switch (dip -> die_tag)
1019     {
1020       case TAG_class_type:
1021         TYPE_CODE (type) = TYPE_CODE_CLASS;
1022 	break;
1023       case TAG_structure_type:
1024         TYPE_CODE (type) = TYPE_CODE_STRUCT;
1025 	break;
1026       case TAG_union_type:
1027 	TYPE_CODE (type) = TYPE_CODE_UNION;
1028 	break;
1029       default:
1030 	/* Should never happen */
1031 	TYPE_CODE (type) = TYPE_CODE_UNDEF;
1032 	complain (&missing_tag, DIE_ID, DIE_NAME);
1033 	break;
1034     }
1035   /* Some compilers try to be helpful by inventing "fake" names for
1036      anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1037      Thanks, but no thanks... */
1038   if (dip -> at_name != NULL
1039       && *dip -> at_name != '~'
1040       && *dip -> at_name != '.')
1041     {
1042       TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1043 				       "", "", dip -> at_name);
1044     }
1045   /* Use whatever size is known.  Zero is a valid size.  We might however
1046      wish to check has_at_byte_size to make sure that some byte size was
1047      given explicitly, but DWARF doesn't specify that explicit sizes of
1048      zero have to present, so complaining about missing sizes should
1049      probably not be the default. */
1050   TYPE_LENGTH (type) = dip -> at_byte_size;
1051   thisdie += dip -> die_length;
1052   while (thisdie < enddie)
1053     {
1054       basicdieinfo (&mbr, thisdie, objfile);
1055       completedieinfo (&mbr, objfile);
1056       if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1057 	{
1058 	  break;
1059 	}
1060       else if (mbr.at_sibling != 0)
1061 	{
1062 	  nextdie = dbbase + mbr.at_sibling - dbroff;
1063 	}
1064       else
1065 	{
1066 	  nextdie = thisdie + mbr.die_length;
1067 	}
1068       switch (mbr.die_tag)
1069 	{
1070 	case TAG_member:
1071 	  /* Get space to record the next field's data.  */
1072 	  new = (struct nextfield *) alloca (sizeof (struct nextfield));
1073 	  new -> next = list;
1074 	  list = new;
1075 	  /* Save the data.  */
1076 	  list -> field.name =
1077 	      obsavestring (mbr.at_name, strlen (mbr.at_name),
1078 			    &objfile -> type_obstack);
1079 	  list -> field.type = decode_die_type (&mbr);
1080 	  list -> field.bitpos = 8 * locval (mbr.at_location);
1081 	  /* Handle bit fields. */
1082 	  list -> field.bitsize = mbr.at_bit_size;
1083 	  if (BITS_BIG_ENDIAN)
1084 	    {
1085 	      /* For big endian bits, the at_bit_offset gives the
1086 		 additional bit offset from the MSB of the containing
1087 		 anonymous object to the MSB of the field.  We don't
1088 		 have to do anything special since we don't need to
1089 		 know the size of the anonymous object. */
1090 	      list -> field.bitpos += mbr.at_bit_offset;
1091 	    }
1092 	  else
1093 	    {
1094 	      /* For little endian bits, we need to have a non-zero
1095 		 at_bit_size, so that we know we are in fact dealing
1096 		 with a bitfield.  Compute the bit offset to the MSB
1097 		 of the anonymous object, subtract off the number of
1098 		 bits from the MSB of the field to the MSB of the
1099 		 object, and then subtract off the number of bits of
1100 		 the field itself.  The result is the bit offset of
1101 		 the LSB of the field. */
1102 	      if (mbr.at_bit_size > 0)
1103 		{
1104 		  if (mbr.has_at_byte_size)
1105 		    {
1106 		      /* The size of the anonymous object containing
1107 			 the bit field is explicit, so use the
1108 			 indicated size (in bytes). */
1109 		      anonymous_size = mbr.at_byte_size;
1110 		    }
1111 		  else
1112 		    {
1113 		      /* The size of the anonymous object containing
1114 			 the bit field matches the size of an object
1115 			 of the bit field's type.  DWARF allows
1116 			 at_byte_size to be left out in such cases, as
1117 			 a debug information size optimization. */
1118 		      anonymous_size = TYPE_LENGTH (list -> field.type);
1119 		    }
1120 		  list -> field.bitpos +=
1121 		    anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1122 		}
1123 	    }
1124 	  nfields++;
1125 	  break;
1126 	default:
1127 	  process_dies (thisdie, nextdie, objfile);
1128 	  break;
1129 	}
1130       thisdie = nextdie;
1131     }
1132   /* Now create the vector of fields, and record how big it is.  We may
1133      not even have any fields, if this DIE was generated due to a reference
1134      to an anonymous structure or union.  In this case, TYPE_FLAG_STUB is
1135      set, which clues gdb in to the fact that it needs to search elsewhere
1136      for the full structure definition. */
1137   if (nfields == 0)
1138     {
1139       TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1140     }
1141   else
1142     {
1143       TYPE_NFIELDS (type) = nfields;
1144       TYPE_FIELDS (type) = (struct field *)
1145 	TYPE_ALLOC (type, sizeof (struct field) * nfields);
1146       /* Copy the saved-up fields into the field vector.  */
1147       for (n = nfields; list; list = list -> next)
1148 	{
1149 	  TYPE_FIELD (type, --n) = list -> field;
1150 	}
1151     }
1152   return (type);
1153 }
1154 
1155 /*
1156 
1157 LOCAL FUNCTION
1158 
1159 	read_structure_scope -- process all dies within struct or union
1160 
1161 SYNOPSIS
1162 
1163 	static void read_structure_scope (struct dieinfo *dip,
1164 		char *thisdie, char *enddie, struct objfile *objfile)
1165 
1166 DESCRIPTION
1167 
1168 	Called when we find the DIE that starts a structure or union
1169 	scope (definition) to process all dies that define the members
1170 	of the structure or union.  DIP is a pointer to the die info
1171 	struct for the DIE that names the structure or union.
1172 
1173 NOTES
1174 
1175 	Note that we need to call struct_type regardless of whether or not
1176 	the DIE has an at_name attribute, since it might be an anonymous
1177 	structure or union.  This gets the type entered into our set of
1178 	user defined types.
1179 
1180 	However, if the structure is incomplete (an opaque struct/union)
1181 	then suppress creating a symbol table entry for it since gdb only
1182 	wants to find the one with the complete definition.  Note that if
1183 	it is complete, we just call new_symbol, which does it's own
1184 	checking about whether the struct/union is anonymous or not (and
1185 	suppresses creating a symbol table entry itself).
1186 
1187  */
1188 
1189 static void
1190 read_structure_scope (dip, thisdie, enddie, objfile)
1191      struct dieinfo *dip;
1192      char *thisdie;
1193      char *enddie;
1194      struct objfile *objfile;
1195 {
1196   struct type *type;
1197   struct symbol *sym;
1198 
1199   type = struct_type (dip, thisdie, enddie, objfile);
1200   if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1201     {
1202       sym = new_symbol (dip, objfile);
1203       if (sym != NULL)
1204 	{
1205 	  SYMBOL_TYPE (sym) = type;
1206 	  if (cu_language == language_cplus)
1207 	    {
1208 	      synthesize_typedef (dip, objfile, type);
1209 	    }
1210 	}
1211     }
1212 }
1213 
1214 /*
1215 
1216 LOCAL FUNCTION
1217 
1218 	decode_array_element_type -- decode type of the array elements
1219 
1220 SYNOPSIS
1221 
1222 	static struct type *decode_array_element_type (char *scan, char *end)
1223 
1224 DESCRIPTION
1225 
1226 	As the last step in decoding the array subscript information for an
1227 	array DIE, we need to decode the type of the array elements.  We are
1228 	passed a pointer to this last part of the subscript information and
1229 	must return the appropriate type.  If the type attribute is not
1230 	recognized, just warn about the problem and return type int.
1231  */
1232 
1233 static struct type *
1234 decode_array_element_type (scan)
1235      char *scan;
1236 {
1237   struct type *typep;
1238   DIE_REF die_ref;
1239   unsigned short attribute;
1240   unsigned short fundtype;
1241   int nbytes;
1242 
1243   attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1244 			      current_objfile);
1245   scan += SIZEOF_ATTRIBUTE;
1246   if ((nbytes = attribute_size (attribute)) == -1)
1247     {
1248       complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1249       typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1250     }
1251   else
1252     {
1253       switch (attribute)
1254 	{
1255 	  case AT_fund_type:
1256 	    fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1257 				       current_objfile);
1258 	    typep = decode_fund_type (fundtype);
1259 	    break;
1260 	  case AT_mod_fund_type:
1261 	    typep = decode_mod_fund_type (scan);
1262 	    break;
1263 	  case AT_user_def_type:
1264 	    die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1265 				      current_objfile);
1266 	    if ((typep = lookup_utype (die_ref)) == NULL)
1267 	      {
1268 		typep = alloc_utype (die_ref, NULL);
1269 	      }
1270 	    break;
1271 	  case AT_mod_u_d_type:
1272 	    typep = decode_mod_u_d_type (scan);
1273 	    break;
1274 	  default:
1275 	    complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1276 	    typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1277 	    break;
1278 	  }
1279     }
1280   return (typep);
1281 }
1282 
1283 /*
1284 
1285 LOCAL FUNCTION
1286 
1287 	decode_subscript_data_item -- decode array subscript item
1288 
1289 SYNOPSIS
1290 
1291 	static struct type *
1292 	decode_subscript_data_item (char *scan, char *end)
1293 
1294 DESCRIPTION
1295 
1296 	The array subscripts and the data type of the elements of an
1297 	array are described by a list of data items, stored as a block
1298 	of contiguous bytes.  There is a data item describing each array
1299 	dimension, and a final data item describing the element type.
1300 	The data items are ordered the same as their appearance in the
1301 	source (I.E. leftmost dimension first, next to leftmost second,
1302 	etc).
1303 
1304 	The data items describing each array dimension consist of four
1305 	parts: (1) a format specifier, (2) type type of the subscript
1306 	index, (3) a description of the low bound of the array dimension,
1307 	and (4) a description of the high bound of the array dimension.
1308 
1309 	The last data item is the description of the type of each of
1310 	the array elements.
1311 
1312 	We are passed a pointer to the start of the block of bytes
1313 	containing the remaining data items, and a pointer to the first
1314 	byte past the data.  This function recursively decodes the
1315 	remaining data items and returns a type.
1316 
1317 	If we somehow fail to decode some data, we complain about it
1318 	and return a type "array of int".
1319 
1320 BUGS
1321 	FIXME:  This code only implements the forms currently used
1322 	by the AT&T and GNU C compilers.
1323 
1324 	The end pointer is supplied for error checking, maybe we should
1325 	use it for that...
1326  */
1327 
1328 static struct type *
1329 decode_subscript_data_item (scan, end)
1330      char *scan;
1331      char *end;
1332 {
1333   struct type *typep = NULL;	/* Array type we are building */
1334   struct type *nexttype;	/* Type of each element (may be array) */
1335   struct type *indextype;	/* Type of this index */
1336   struct type *rangetype;
1337   unsigned int format;
1338   unsigned short fundtype;
1339   unsigned long lowbound;
1340   unsigned long highbound;
1341   int nbytes;
1342 
1343   format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1344 			   current_objfile);
1345   scan += SIZEOF_FORMAT_SPECIFIER;
1346   switch (format)
1347     {
1348     case FMT_ET:
1349       typep = decode_array_element_type (scan);
1350       break;
1351     case FMT_FT_C_C:
1352       fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1353 				 current_objfile);
1354       indextype = decode_fund_type (fundtype);
1355       scan += SIZEOF_FMT_FT;
1356       nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1357       lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1358       scan += nbytes;
1359       highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1360       scan += nbytes;
1361       nexttype = decode_subscript_data_item (scan, end);
1362       if (nexttype == NULL)
1363 	{
1364 	  /* Munged subscript data or other problem, fake it. */
1365 	  complain (&subscript_data_items, DIE_ID, DIE_NAME);
1366 	  nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1367 	}
1368       rangetype = create_range_type ((struct type *) NULL, indextype,
1369 				      lowbound, highbound);
1370       typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1371       break;
1372     case FMT_FT_C_X:
1373     case FMT_FT_X_C:
1374     case FMT_FT_X_X:
1375     case FMT_UT_C_C:
1376     case FMT_UT_C_X:
1377     case FMT_UT_X_C:
1378     case FMT_UT_X_X:
1379       complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1380       nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1381       rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1382       typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1383       break;
1384     default:
1385       complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1386       nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1387       rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1388       typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1389       break;
1390     }
1391   return (typep);
1392 }
1393 
1394 /*
1395 
1396 LOCAL FUNCTION
1397 
1398 	dwarf_read_array_type -- read TAG_array_type DIE
1399 
1400 SYNOPSIS
1401 
1402 	static void dwarf_read_array_type (struct dieinfo *dip)
1403 
1404 DESCRIPTION
1405 
1406 	Extract all information from a TAG_array_type DIE and add to
1407 	the user defined type vector.
1408  */
1409 
1410 static void
1411 dwarf_read_array_type (dip)
1412      struct dieinfo *dip;
1413 {
1414   struct type *type;
1415   struct type *utype;
1416   char *sub;
1417   char *subend;
1418   unsigned short blocksz;
1419   int nbytes;
1420 
1421   if (dip -> at_ordering != ORD_row_major)
1422     {
1423       /* FIXME:  Can gdb even handle column major arrays? */
1424       complain (&not_row_major, DIE_ID, DIE_NAME);
1425     }
1426   if ((sub = dip -> at_subscr_data) != NULL)
1427     {
1428       nbytes = attribute_size (AT_subscr_data);
1429       blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1430       subend = sub + nbytes + blocksz;
1431       sub += nbytes;
1432       type = decode_subscript_data_item (sub, subend);
1433       if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1434 	{
1435 	  /* Install user defined type that has not been referenced yet. */
1436 	  alloc_utype (dip -> die_ref, type);
1437 	}
1438       else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1439 	{
1440 	  /* Ick!  A forward ref has already generated a blank type in our
1441 	     slot, and this type probably already has things pointing to it
1442 	     (which is what caused it to be created in the first place).
1443 	     If it's just a place holder we can plop our fully defined type
1444 	     on top of it.  We can't recover the space allocated for our
1445 	     new type since it might be on an obstack, but we could reuse
1446 	     it if we kept a list of them, but it might not be worth it
1447 	     (FIXME). */
1448 	  *utype = *type;
1449 	}
1450       else
1451 	{
1452 	  /* Double ick!  Not only is a type already in our slot, but
1453 	     someone has decorated it.  Complain and leave it alone. */
1454 	  complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1455 	}
1456     }
1457 }
1458 
1459 /*
1460 
1461 LOCAL FUNCTION
1462 
1463 	read_tag_pointer_type -- read TAG_pointer_type DIE
1464 
1465 SYNOPSIS
1466 
1467 	static void read_tag_pointer_type (struct dieinfo *dip)
1468 
1469 DESCRIPTION
1470 
1471 	Extract all information from a TAG_pointer_type DIE and add to
1472 	the user defined type vector.
1473  */
1474 
1475 static void
1476 read_tag_pointer_type (dip)
1477      struct dieinfo *dip;
1478 {
1479   struct type *type;
1480   struct type *utype;
1481 
1482   type = decode_die_type (dip);
1483   if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1484     {
1485       utype = lookup_pointer_type (type);
1486       alloc_utype (dip -> die_ref, utype);
1487     }
1488   else
1489     {
1490       TYPE_TARGET_TYPE (utype) = type;
1491       TYPE_POINTER_TYPE (type) = utype;
1492 
1493       /* We assume the machine has only one representation for pointers!  */
1494       /* FIXME:  This confuses host<->target data representations, and is a
1495 	 poor assumption besides. */
1496 
1497       TYPE_LENGTH (utype) = sizeof (char *);
1498       TYPE_CODE (utype) = TYPE_CODE_PTR;
1499     }
1500 }
1501 
1502 /*
1503 
1504 LOCAL FUNCTION
1505 
1506 	read_tag_string_type -- read TAG_string_type DIE
1507 
1508 SYNOPSIS
1509 
1510 	static void read_tag_string_type (struct dieinfo *dip)
1511 
1512 DESCRIPTION
1513 
1514 	Extract all information from a TAG_string_type DIE and add to
1515 	the user defined type vector.  It isn't really a user defined
1516 	type, but it behaves like one, with other DIE's using an
1517 	AT_user_def_type attribute to reference it.
1518  */
1519 
1520 static void
1521 read_tag_string_type (dip)
1522      struct dieinfo *dip;
1523 {
1524   struct type *utype;
1525   struct type *indextype;
1526   struct type *rangetype;
1527   unsigned long lowbound = 0;
1528   unsigned long highbound;
1529 
1530   if (dip -> has_at_byte_size)
1531     {
1532       /* A fixed bounds string */
1533       highbound = dip -> at_byte_size - 1;
1534     }
1535   else
1536     {
1537       /* A varying length string.  Stub for now.  (FIXME) */
1538       highbound = 1;
1539     }
1540   indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1541   rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1542 				 highbound);
1543 
1544   utype = lookup_utype (dip -> die_ref);
1545   if (utype == NULL)
1546     {
1547       /* No type defined, go ahead and create a blank one to use. */
1548       utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1549     }
1550   else
1551     {
1552       /* Already a type in our slot due to a forward reference. Make sure it
1553 	 is a blank one.  If not, complain and leave it alone. */
1554       if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1555 	{
1556 	  complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1557 	  return;
1558 	}
1559     }
1560 
1561   /* Create the string type using the blank type we either found or created. */
1562   utype = create_string_type (utype, rangetype);
1563 }
1564 
1565 /*
1566 
1567 LOCAL FUNCTION
1568 
1569 	read_subroutine_type -- process TAG_subroutine_type dies
1570 
1571 SYNOPSIS
1572 
1573 	static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1574 		char *enddie)
1575 
1576 DESCRIPTION
1577 
1578 	Handle DIES due to C code like:
1579 
1580 	struct foo {
1581 	    int (*funcp)(int a, long l);  (Generates TAG_subroutine_type DIE)
1582 	    int b;
1583 	};
1584 
1585 NOTES
1586 
1587 	The parameter DIES are currently ignored.  See if gdb has a way to
1588 	include this info in it's type system, and decode them if so.  Is
1589 	this what the type structure's "arg_types" field is for?  (FIXME)
1590  */
1591 
1592 static void
1593 read_subroutine_type (dip, thisdie, enddie)
1594      struct dieinfo *dip;
1595      char *thisdie;
1596      char *enddie;
1597 {
1598   struct type *type;		/* Type that this function returns */
1599   struct type *ftype;		/* Function that returns above type */
1600 
1601   /* Decode the type that this subroutine returns */
1602 
1603   type = decode_die_type (dip);
1604 
1605   /* Check to see if we already have a partially constructed user
1606      defined type for this DIE, from a forward reference. */
1607 
1608   if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1609     {
1610       /* This is the first reference to one of these types.  Make
1611 	 a new one and place it in the user defined types. */
1612       ftype = lookup_function_type (type);
1613       alloc_utype (dip -> die_ref, ftype);
1614     }
1615   else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1616     {
1617       /* We have an existing partially constructed type, so bash it
1618 	 into the correct type. */
1619       TYPE_TARGET_TYPE (ftype) = type;
1620       TYPE_LENGTH (ftype) = 1;
1621       TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1622     }
1623   else
1624     {
1625       complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1626     }
1627 }
1628 
1629 /*
1630 
1631 LOCAL FUNCTION
1632 
1633 	read_enumeration -- process dies which define an enumeration
1634 
1635 SYNOPSIS
1636 
1637 	static void read_enumeration (struct dieinfo *dip, char *thisdie,
1638 		char *enddie, struct objfile *objfile)
1639 
1640 DESCRIPTION
1641 
1642 	Given a pointer to a die which begins an enumeration, process all
1643 	the dies that define the members of the enumeration.
1644 
1645 NOTES
1646 
1647 	Note that we need to call enum_type regardless of whether or not we
1648 	have a symbol, since we might have an enum without a tag name (thus
1649 	no symbol for the tagname).
1650  */
1651 
1652 static void
1653 read_enumeration (dip, thisdie, enddie, objfile)
1654      struct dieinfo *dip;
1655      char *thisdie;
1656      char *enddie;
1657      struct objfile *objfile;
1658 {
1659   struct type *type;
1660   struct symbol *sym;
1661 
1662   type = enum_type (dip, objfile);
1663   sym = new_symbol (dip, objfile);
1664   if (sym != NULL)
1665     {
1666       SYMBOL_TYPE (sym) = type;
1667       if (cu_language == language_cplus)
1668 	{
1669 	  synthesize_typedef (dip, objfile, type);
1670 	}
1671     }
1672 }
1673 
1674 /*
1675 
1676 LOCAL FUNCTION
1677 
1678 	enum_type -- decode and return a type for an enumeration
1679 
1680 SYNOPSIS
1681 
1682 	static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1683 
1684 DESCRIPTION
1685 
1686 	Given a pointer to a die information structure for the die which
1687 	starts an enumeration, process all the dies that define the members
1688 	of the enumeration and return a type pointer for the enumeration.
1689 
1690 	At the same time, for each member of the enumeration, create a
1691 	symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1692 	and give it the type of the enumeration itself.
1693 
1694 NOTES
1695 
1696 	Note that the DWARF specification explicitly mandates that enum
1697 	constants occur in reverse order from the source program order,
1698 	for "consistency" and because this ordering is easier for many
1699 	compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1700 	Entries).  Because gdb wants to see the enum members in program
1701 	source order, we have to ensure that the order gets reversed while
1702 	we are processing them.
1703  */
1704 
1705 static struct type *
1706 enum_type (dip, objfile)
1707      struct dieinfo *dip;
1708      struct objfile *objfile;
1709 {
1710   struct type *type;
1711   struct nextfield {
1712     struct nextfield *next;
1713     struct field field;
1714   };
1715   struct nextfield *list = NULL;
1716   struct nextfield *new;
1717   int nfields = 0;
1718   int n;
1719   char *scan;
1720   char *listend;
1721   unsigned short blocksz;
1722   struct symbol *sym;
1723   int nbytes;
1724   int unsigned_enum = 1;
1725 
1726   if ((type = lookup_utype (dip -> die_ref)) == NULL)
1727     {
1728       /* No forward references created an empty type, so install one now */
1729       type = alloc_utype (dip -> die_ref, NULL);
1730     }
1731   TYPE_CODE (type) = TYPE_CODE_ENUM;
1732   /* Some compilers try to be helpful by inventing "fake" names for
1733      anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1734      Thanks, but no thanks... */
1735   if (dip -> at_name != NULL
1736       && *dip -> at_name != '~'
1737       && *dip -> at_name != '.')
1738     {
1739       TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1740 				       "", "", dip -> at_name);
1741     }
1742   if (dip -> at_byte_size != 0)
1743     {
1744       TYPE_LENGTH (type) = dip -> at_byte_size;
1745     }
1746   if ((scan = dip -> at_element_list) != NULL)
1747     {
1748       if (dip -> short_element_list)
1749 	{
1750 	  nbytes = attribute_size (AT_short_element_list);
1751 	}
1752       else
1753 	{
1754 	  nbytes = attribute_size (AT_element_list);
1755 	}
1756       blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1757       listend = scan + nbytes + blocksz;
1758       scan += nbytes;
1759       while (scan < listend)
1760 	{
1761 	  new = (struct nextfield *) alloca (sizeof (struct nextfield));
1762 	  new -> next = list;
1763 	  list = new;
1764 	  list -> field.type = NULL;
1765 	  list -> field.bitsize = 0;
1766 	  list -> field.bitpos =
1767 	    target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1768 			    objfile);
1769 	  scan += TARGET_FT_LONG_SIZE (objfile);
1770 	  list -> field.name = obsavestring (scan, strlen (scan),
1771 					     &objfile -> type_obstack);
1772 	  scan += strlen (scan) + 1;
1773 	  nfields++;
1774 	  /* Handcraft a new symbol for this enum member. */
1775 	  sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1776 						 sizeof (struct symbol));
1777 	  memset (sym, 0, sizeof (struct symbol));
1778 	  SYMBOL_NAME (sym) = create_name (list -> field.name,
1779 					   &objfile->symbol_obstack);
1780 	  SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1781 	  SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1782 	  SYMBOL_CLASS (sym) = LOC_CONST;
1783 	  SYMBOL_TYPE (sym) = type;
1784 	  SYMBOL_VALUE (sym) = list -> field.bitpos;
1785 	  if (SYMBOL_VALUE (sym) < 0)
1786 	    unsigned_enum = 0;
1787 	  add_symbol_to_list (sym, list_in_scope);
1788 	}
1789       /* Now create the vector of fields, and record how big it is. This is
1790 	 where we reverse the order, by pulling the members off the list in
1791 	 reverse order from how they were inserted.  If we have no fields
1792 	 (this is apparently possible in C++) then skip building a field
1793 	 vector. */
1794       if (nfields > 0)
1795 	{
1796 	  if (unsigned_enum)
1797 	    TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1798 	  TYPE_NFIELDS (type) = nfields;
1799 	  TYPE_FIELDS (type) = (struct field *)
1800 	    obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1801 	  /* Copy the saved-up fields into the field vector.  */
1802 	  for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1803 	    {
1804 	      TYPE_FIELD (type, n++) = list -> field;
1805 	    }
1806 	}
1807     }
1808   return (type);
1809 }
1810 
1811 /*
1812 
1813 LOCAL FUNCTION
1814 
1815 	read_func_scope -- process all dies within a function scope
1816 
1817 DESCRIPTION
1818 
1819 	Process all dies within a given function scope.  We are passed
1820 	a die information structure pointer DIP for the die which
1821 	starts the function scope, and pointers into the raw die data
1822 	that define the dies within the function scope.
1823 
1824 	For now, we ignore lexical block scopes within the function.
1825 	The problem is that AT&T cc does not define a DWARF lexical
1826 	block scope for the function itself, while gcc defines a
1827 	lexical block scope for the function.  We need to think about
1828 	how to handle this difference, or if it is even a problem.
1829 	(FIXME)
1830  */
1831 
1832 static void
1833 read_func_scope (dip, thisdie, enddie, objfile)
1834      struct dieinfo *dip;
1835      char *thisdie;
1836      char *enddie;
1837      struct objfile *objfile;
1838 {
1839   register struct context_stack *new;
1840 
1841   /* AT_name is absent if the function is described with an
1842      AT_abstract_origin tag.
1843      Ignore the function description for now to avoid GDB core dumps.
1844      FIXME: Add code to handle AT_abstract_origin tags properly.  */
1845   if (dip -> at_name == NULL)
1846     {
1847       complain (&missing_at_name, DIE_ID);
1848       return;
1849     }
1850 
1851   if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1852       objfile -> ei.entry_point <  dip -> at_high_pc)
1853     {
1854       objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1855       objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1856     }
1857   if (STREQ (dip -> at_name, "main"))	/* FIXME: hardwired name */
1858     {
1859       objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1860       objfile -> ei.main_func_highpc = dip -> at_high_pc;
1861     }
1862   new = push_context (0, dip -> at_low_pc);
1863   new -> name = new_symbol (dip, objfile);
1864   list_in_scope = &local_symbols;
1865   process_dies (thisdie + dip -> die_length, enddie, objfile);
1866   new = pop_context ();
1867   /* Make a block for the local symbols within.  */
1868   finish_block (new -> name, &local_symbols, new -> old_blocks,
1869 		new -> start_addr, dip -> at_high_pc, objfile);
1870   list_in_scope = &file_symbols;
1871 }
1872 
1873 
1874 /*
1875 
1876 LOCAL FUNCTION
1877 
1878 	handle_producer -- process the AT_producer attribute
1879 
1880 DESCRIPTION
1881 
1882 	Perform any operations that depend on finding a particular
1883 	AT_producer attribute.
1884 
1885  */
1886 
1887 static void
1888 handle_producer (producer)
1889      char *producer;
1890 {
1891 
1892   /* If this compilation unit was compiled with g++ or gcc, then set the
1893      processing_gcc_compilation flag. */
1894 
1895   processing_gcc_compilation =
1896     STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1897       || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1898       || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1899 
1900   /* Select a demangling style if we can identify the producer and if
1901      the current style is auto.  We leave the current style alone if it
1902      is not auto.  We also leave the demangling style alone if we find a
1903      gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1904 
1905   if (AUTO_DEMANGLING)
1906     {
1907       if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1908 	{
1909 	  set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1910 	}
1911       else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1912 	{
1913 	  set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1914 	}
1915     }
1916 }
1917 
1918 
1919 /*
1920 
1921 LOCAL FUNCTION
1922 
1923 	read_file_scope -- process all dies within a file scope
1924 
1925 DESCRIPTION
1926 
1927 	Process all dies within a given file scope.  We are passed a
1928 	pointer to the die information structure for the die which
1929 	starts the file scope, and pointers into the raw die data which
1930 	mark the range of dies within the file scope.
1931 
1932 	When the partial symbol table is built, the file offset for the line
1933 	number table for each compilation unit is saved in the partial symbol
1934 	table entry for that compilation unit.  As the symbols for each
1935 	compilation unit are read, the line number table is read into memory
1936 	and the variable lnbase is set to point to it.  Thus all we have to
1937 	do is use lnbase to access the line number table for the current
1938 	compilation unit.
1939  */
1940 
1941 static void
1942 read_file_scope (dip, thisdie, enddie, objfile)
1943      struct dieinfo *dip;
1944      char *thisdie;
1945      char *enddie;
1946      struct objfile *objfile;
1947 {
1948   struct cleanup *back_to;
1949   struct symtab *symtab;
1950 
1951   if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1952       objfile -> ei.entry_point <  dip -> at_high_pc)
1953     {
1954       objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1955       objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1956     }
1957   set_cu_language (dip);
1958   if (dip -> at_producer != NULL)
1959     {
1960       handle_producer (dip -> at_producer);
1961     }
1962   numutypes = (enddie - thisdie) / 4;
1963   utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1964   back_to = make_cleanup (free_utypes, NULL);
1965   memset (utypes, 0, numutypes * sizeof (struct type *));
1966   memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1967   start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1968   decode_line_numbers (lnbase);
1969   process_dies (thisdie + dip -> die_length, enddie, objfile);
1970 
1971   symtab = end_symtab (dip -> at_high_pc, objfile, 0);
1972   if (symtab != NULL)
1973     {
1974       symtab -> language = cu_language;
1975     }
1976   do_cleanups (back_to);
1977 }
1978 
1979 /*
1980 
1981 LOCAL FUNCTION
1982 
1983 	process_dies -- process a range of DWARF Information Entries
1984 
1985 SYNOPSIS
1986 
1987 	static void process_dies (char *thisdie, char *enddie,
1988 				  struct objfile *objfile)
1989 
1990 DESCRIPTION
1991 
1992 	Process all DIE's in a specified range.  May be (and almost
1993 	certainly will be) called recursively.
1994  */
1995 
1996 static void
1997 process_dies (thisdie, enddie, objfile)
1998      char *thisdie;
1999      char *enddie;
2000      struct objfile *objfile;
2001 {
2002   char *nextdie;
2003   struct dieinfo di;
2004 
2005   while (thisdie < enddie)
2006     {
2007       basicdieinfo (&di, thisdie, objfile);
2008       if (di.die_length < SIZEOF_DIE_LENGTH)
2009 	{
2010 	  break;
2011 	}
2012       else if (di.die_tag == TAG_padding)
2013 	{
2014 	  nextdie = thisdie + di.die_length;
2015 	}
2016       else
2017 	{
2018 	  completedieinfo (&di, objfile);
2019 	  if (di.at_sibling != 0)
2020 	    {
2021 	      nextdie = dbbase + di.at_sibling - dbroff;
2022 	    }
2023 	  else
2024 	    {
2025 	      nextdie = thisdie + di.die_length;
2026 	    }
2027 #ifdef SMASH_TEXT_ADDRESS
2028 	  /* I think that these are always text, not data, addresses.  */
2029 	  SMASH_TEXT_ADDRESS (di.at_low_pc);
2030 	  SMASH_TEXT_ADDRESS (di.at_high_pc);
2031 #endif
2032 	  switch (di.die_tag)
2033 	    {
2034 	    case TAG_compile_unit:
2035 	      /* Skip Tag_compile_unit if we are already inside a compilation
2036 		 unit, we are unable to handle nested compilation units
2037 		 properly (FIXME).  */
2038 	      if (current_subfile == NULL)
2039 		read_file_scope (&di, thisdie, nextdie, objfile);
2040 	      else
2041 		nextdie = thisdie + di.die_length;
2042 	      break;
2043 	    case TAG_global_subroutine:
2044 	    case TAG_subroutine:
2045 	      if (di.has_at_low_pc)
2046 		{
2047 		  read_func_scope (&di, thisdie, nextdie, objfile);
2048 		}
2049 	      break;
2050 	    case TAG_lexical_block:
2051 	      read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2052 	      break;
2053 	    case TAG_class_type:
2054 	    case TAG_structure_type:
2055 	    case TAG_union_type:
2056 	      read_structure_scope (&di, thisdie, nextdie, objfile);
2057 	      break;
2058 	    case TAG_enumeration_type:
2059 	      read_enumeration (&di, thisdie, nextdie, objfile);
2060 	      break;
2061 	    case TAG_subroutine_type:
2062 	      read_subroutine_type (&di, thisdie, nextdie);
2063 	      break;
2064 	    case TAG_array_type:
2065 	      dwarf_read_array_type (&di);
2066 	      break;
2067 	    case TAG_pointer_type:
2068 	      read_tag_pointer_type (&di);
2069 	      break;
2070 	    case TAG_string_type:
2071 	      read_tag_string_type (&di);
2072 	      break;
2073 	    default:
2074 	      new_symbol (&di, objfile);
2075 	      break;
2076 	    }
2077 	}
2078       thisdie = nextdie;
2079     }
2080 }
2081 
2082 /*
2083 
2084 LOCAL FUNCTION
2085 
2086 	decode_line_numbers -- decode a line number table fragment
2087 
2088 SYNOPSIS
2089 
2090 	static void decode_line_numbers (char *tblscan, char *tblend,
2091 		long length, long base, long line, long pc)
2092 
2093 DESCRIPTION
2094 
2095 	Translate the DWARF line number information to gdb form.
2096 
2097 	The ".line" section contains one or more line number tables, one for
2098 	each ".line" section from the objects that were linked.
2099 
2100 	The AT_stmt_list attribute for each TAG_source_file entry in the
2101 	".debug" section contains the offset into the ".line" section for the
2102 	start of the table for that file.
2103 
2104 	The table itself has the following structure:
2105 
2106 	<table length><base address><source statement entry>
2107 	4 bytes       4 bytes       10 bytes
2108 
2109 	The table length is the total size of the table, including the 4 bytes
2110 	for the length information.
2111 
2112 	The base address is the address of the first instruction generated
2113 	for the source file.
2114 
2115 	Each source statement entry has the following structure:
2116 
2117 	<line number><statement position><address delta>
2118 	4 bytes      2 bytes             4 bytes
2119 
2120 	The line number is relative to the start of the file, starting with
2121 	line 1.
2122 
2123 	The statement position either -1 (0xFFFF) or the number of characters
2124 	from the beginning of the line to the beginning of the statement.
2125 
2126 	The address delta is the difference between the base address and
2127 	the address of the first instruction for the statement.
2128 
2129 	Note that we must copy the bytes from the packed table to our local
2130 	variables before attempting to use them, to avoid alignment problems
2131 	on some machines, particularly RISC processors.
2132 
2133 BUGS
2134 
2135 	Does gdb expect the line numbers to be sorted?  They are now by
2136 	chance/luck, but are not required to be.  (FIXME)
2137 
2138 	The line with number 0 is unused, gdb apparently can discover the
2139 	span of the last line some other way. How?  (FIXME)
2140  */
2141 
2142 static void
2143 decode_line_numbers (linetable)
2144      char *linetable;
2145 {
2146   char *tblscan;
2147   char *tblend;
2148   unsigned long length;
2149   unsigned long base;
2150   unsigned long line;
2151   unsigned long pc;
2152 
2153   if (linetable != NULL)
2154     {
2155       tblscan = tblend = linetable;
2156       length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2157 			       current_objfile);
2158       tblscan += SIZEOF_LINETBL_LENGTH;
2159       tblend += length;
2160       base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2161 			     GET_UNSIGNED, current_objfile);
2162       tblscan += TARGET_FT_POINTER_SIZE (objfile);
2163       base += baseaddr;
2164       while (tblscan < tblend)
2165 	{
2166 	  line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2167 				 current_objfile);
2168 	  tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2169 	  pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2170 			       current_objfile);
2171 	  tblscan += SIZEOF_LINETBL_DELTA;
2172 	  pc += base;
2173 	  if (line != 0)
2174 	    {
2175 	      record_line (current_subfile, line, pc);
2176 	    }
2177 	}
2178     }
2179 }
2180 
2181 /*
2182 
2183 LOCAL FUNCTION
2184 
2185 	locval -- compute the value of a location attribute
2186 
2187 SYNOPSIS
2188 
2189 	static int locval (char *loc)
2190 
2191 DESCRIPTION
2192 
2193 	Given pointer to a string of bytes that define a location, compute
2194 	the location and return the value.
2195 	A location description containing no atoms indicates that the
2196 	object is optimized out. The global optimized_out flag is set for
2197 	those, the return value is meaningless.
2198 
2199 	When computing values involving the current value of the frame pointer,
2200 	the value zero is used, which results in a value relative to the frame
2201 	pointer, rather than the absolute value.  This is what GDB wants
2202 	anyway.
2203 
2204 	When the result is a register number, the global isreg flag is set,
2205 	otherwise it is cleared.  This is a kludge until we figure out a better
2206 	way to handle the problem.  Gdb's design does not mesh well with the
2207 	DWARF notion of a location computing interpreter, which is a shame
2208 	because the flexibility goes unused.
2209 
2210 NOTES
2211 
2212 	Note that stack[0] is unused except as a default error return.
2213 	Note that stack overflow is not yet handled.
2214  */
2215 
2216 static int
2217 locval (loc)
2218      char *loc;
2219 {
2220   unsigned short nbytes;
2221   unsigned short locsize;
2222   auto long stack[64];
2223   int stacki;
2224   char *end;
2225   int loc_atom_code;
2226   int loc_value_size;
2227 
2228   nbytes = attribute_size (AT_location);
2229   locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2230   loc += nbytes;
2231   end = loc + locsize;
2232   stacki = 0;
2233   stack[stacki] = 0;
2234   isreg = 0;
2235   offreg = 0;
2236   optimized_out = 1;
2237   loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2238   while (loc < end)
2239     {
2240       optimized_out = 0;
2241       loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2242 				      current_objfile);
2243       loc += SIZEOF_LOC_ATOM_CODE;
2244       switch (loc_atom_code)
2245 	{
2246 	  case 0:
2247 	    /* error */
2248 	    loc = end;
2249 	    break;
2250 	  case OP_REG:
2251 	    /* push register (number) */
2252 	    stack[++stacki]
2253 	      = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2254 						     GET_UNSIGNED,
2255 						     current_objfile));
2256 	    loc += loc_value_size;
2257 	    isreg = 1;
2258 	    break;
2259 	  case OP_BASEREG:
2260 	    /* push value of register (number) */
2261 	    /* Actually, we compute the value as if register has 0, so the
2262 	       value ends up being the offset from that register.  */
2263 	    offreg = 1;
2264 	    basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2265 				      current_objfile);
2266 	    loc += loc_value_size;
2267 	    stack[++stacki] = 0;
2268 	    break;
2269 	  case OP_ADDR:
2270 	    /* push address (relocated address) */
2271 	    stack[++stacki] = target_to_host (loc, loc_value_size,
2272 					      GET_UNSIGNED, current_objfile);
2273 	    loc += loc_value_size;
2274 	    break;
2275 	  case OP_CONST:
2276 	    /* push constant (number)   FIXME: signed or unsigned! */
2277 	    stack[++stacki] = target_to_host (loc, loc_value_size,
2278 					      GET_SIGNED, current_objfile);
2279 	    loc += loc_value_size;
2280 	    break;
2281 	  case OP_DEREF2:
2282 	    /* pop, deref and push 2 bytes (as a long) */
2283 	    complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2284 	    break;
2285 	  case OP_DEREF4:	/* pop, deref and push 4 bytes (as a long) */
2286 	    complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2287 	    break;
2288 	  case OP_ADD:	/* pop top 2 items, add, push result */
2289 	    stack[stacki - 1] += stack[stacki];
2290 	    stacki--;
2291 	    break;
2292 	}
2293     }
2294   return (stack[stacki]);
2295 }
2296 
2297 /*
2298 
2299 LOCAL FUNCTION
2300 
2301 	read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2302 
2303 SYNOPSIS
2304 
2305 	static void read_ofile_symtab (struct partial_symtab *pst)
2306 
2307 DESCRIPTION
2308 
2309 	When expanding a partial symbol table entry to a full symbol table
2310 	entry, this is the function that gets called to read in the symbols
2311 	for the compilation unit.  A pointer to the newly constructed symtab,
2312 	which is now the new first one on the objfile's symtab list, is
2313 	stashed in the partial symbol table entry.
2314  */
2315 
2316 static void
2317 read_ofile_symtab (pst)
2318      struct partial_symtab *pst;
2319 {
2320   struct cleanup *back_to;
2321   unsigned long lnsize;
2322   file_ptr foffset;
2323   bfd *abfd;
2324   char lnsizedata[SIZEOF_LINETBL_LENGTH];
2325 
2326   abfd = pst -> objfile -> obfd;
2327   current_objfile = pst -> objfile;
2328 
2329   /* Allocate a buffer for the entire chunk of DIE's for this compilation
2330      unit, seek to the location in the file, and read in all the DIE's. */
2331 
2332   diecount = 0;
2333   dbsize = DBLENGTH (pst);
2334   dbbase = xmalloc (dbsize);
2335   dbroff = DBROFF(pst);
2336   foffset = DBFOFF(pst) + dbroff;
2337   base_section_offsets = pst->section_offsets;
2338   baseaddr = ANOFFSET (pst->section_offsets, 0);
2339   if (bfd_seek (abfd, foffset, SEEK_SET) ||
2340       (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2341     {
2342       free (dbbase);
2343       error ("can't read DWARF data");
2344     }
2345   back_to = make_cleanup (free, dbbase);
2346 
2347   /* If there is a line number table associated with this compilation unit
2348      then read the size of this fragment in bytes, from the fragment itself.
2349      Allocate a buffer for the fragment and read it in for future
2350      processing. */
2351 
2352   lnbase = NULL;
2353   if (LNFOFF (pst))
2354     {
2355       if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2356 	  (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2357 	   sizeof (lnsizedata)))
2358 	{
2359 	  error ("can't read DWARF line number table size");
2360 	}
2361       lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2362 			       GET_UNSIGNED, pst -> objfile);
2363       lnbase = xmalloc (lnsize);
2364       if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2365 	  (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2366 	{
2367 	  free (lnbase);
2368 	  error ("can't read DWARF line numbers");
2369 	}
2370       make_cleanup (free, lnbase);
2371     }
2372 
2373   process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2374   do_cleanups (back_to);
2375   current_objfile = NULL;
2376   pst -> symtab = pst -> objfile -> symtabs;
2377 }
2378 
2379 /*
2380 
2381 LOCAL FUNCTION
2382 
2383 	psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2384 
2385 SYNOPSIS
2386 
2387 	static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2388 
2389 DESCRIPTION
2390 
2391 	Called once for each partial symbol table entry that needs to be
2392 	expanded into a full symbol table entry.
2393 
2394 */
2395 
2396 static void
2397 psymtab_to_symtab_1 (pst)
2398      struct partial_symtab *pst;
2399 {
2400   int i;
2401   struct cleanup *old_chain;
2402 
2403   if (pst != NULL)
2404     {
2405       if (pst->readin)
2406 	{
2407 	  warning ("psymtab for %s already read in.  Shouldn't happen.",
2408 		   pst -> filename);
2409 	}
2410       else
2411 	{
2412 	  /* Read in all partial symtabs on which this one is dependent */
2413 	  for (i = 0; i < pst -> number_of_dependencies; i++)
2414 	    {
2415 	      if (!pst -> dependencies[i] -> readin)
2416 		{
2417 		  /* Inform about additional files that need to be read in. */
2418 		  if (info_verbose)
2419 		    {
2420 		      fputs_filtered (" ", gdb_stdout);
2421 		      wrap_here ("");
2422 		      fputs_filtered ("and ", gdb_stdout);
2423 		      wrap_here ("");
2424 		      printf_filtered ("%s...",
2425 				       pst -> dependencies[i] -> filename);
2426 		      wrap_here ("");
2427 		      gdb_flush (gdb_stdout);		/* Flush output */
2428 		    }
2429 		  psymtab_to_symtab_1 (pst -> dependencies[i]);
2430 		}
2431 	    }
2432 	  if (DBLENGTH (pst))		/* Otherwise it's a dummy */
2433 	    {
2434 	      buildsym_init ();
2435 	      old_chain = make_cleanup (really_free_pendings, 0);
2436 	      read_ofile_symtab (pst);
2437 	      if (info_verbose)
2438 		{
2439 		  printf_filtered ("%d DIE's, sorting...", diecount);
2440 		  wrap_here ("");
2441 		  gdb_flush (gdb_stdout);
2442 		}
2443 	      sort_symtab_syms (pst -> symtab);
2444 	      do_cleanups (old_chain);
2445 	    }
2446 	  pst -> readin = 1;
2447 	}
2448     }
2449 }
2450 
2451 /*
2452 
2453 LOCAL FUNCTION
2454 
2455 	dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2456 
2457 SYNOPSIS
2458 
2459 	static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2460 
2461 DESCRIPTION
2462 
2463 	This is the DWARF support entry point for building a full symbol
2464 	table entry from a partial symbol table entry.  We are passed a
2465 	pointer to the partial symbol table entry that needs to be expanded.
2466 
2467 */
2468 
2469 static void
2470 dwarf_psymtab_to_symtab (pst)
2471      struct partial_symtab *pst;
2472 {
2473 
2474   if (pst != NULL)
2475     {
2476       if (pst -> readin)
2477 	{
2478 	  warning ("psymtab for %s already read in.  Shouldn't happen.",
2479 		   pst -> filename);
2480 	}
2481       else
2482 	{
2483 	  if (DBLENGTH (pst) || pst -> number_of_dependencies)
2484 	    {
2485 	      /* Print the message now, before starting serious work, to avoid
2486 		 disconcerting pauses.  */
2487 	      if (info_verbose)
2488 		{
2489 		  printf_filtered ("Reading in symbols for %s...",
2490 				   pst -> filename);
2491 		  gdb_flush (gdb_stdout);
2492 		}
2493 
2494 	      psymtab_to_symtab_1 (pst);
2495 
2496 #if 0	      /* FIXME:  Check to see what dbxread is doing here and see if
2497 		 we need to do an equivalent or is this something peculiar to
2498 		 stabs/a.out format.
2499 		 Match with global symbols.  This only needs to be done once,
2500 		 after all of the symtabs and dependencies have been read in.
2501 		 */
2502 	      scan_file_globals (pst -> objfile);
2503 #endif
2504 
2505 	      /* Finish up the verbose info message.  */
2506 	      if (info_verbose)
2507 		{
2508 		  printf_filtered ("done.\n");
2509 		  gdb_flush (gdb_stdout);
2510 		}
2511 	    }
2512 	}
2513     }
2514 }
2515 
2516 /*
2517 
2518 LOCAL FUNCTION
2519 
2520 	add_enum_psymbol -- add enumeration members to partial symbol table
2521 
2522 DESCRIPTION
2523 
2524 	Given pointer to a DIE that is known to be for an enumeration,
2525 	extract the symbolic names of the enumeration members and add
2526 	partial symbols for them.
2527 */
2528 
2529 static void
2530 add_enum_psymbol (dip, objfile)
2531      struct dieinfo *dip;
2532      struct objfile *objfile;
2533 {
2534   char *scan;
2535   char *listend;
2536   unsigned short blocksz;
2537   int nbytes;
2538 
2539   if ((scan = dip -> at_element_list) != NULL)
2540     {
2541       if (dip -> short_element_list)
2542 	{
2543 	  nbytes = attribute_size (AT_short_element_list);
2544 	}
2545       else
2546 	{
2547 	  nbytes = attribute_size (AT_element_list);
2548 	}
2549       blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2550       scan += nbytes;
2551       listend = scan + blocksz;
2552       while (scan < listend)
2553 	{
2554 	  scan += TARGET_FT_LONG_SIZE (objfile);
2555 	  add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2556 			       &objfile -> static_psymbols, 0, 0, cu_language,
2557 			       objfile);
2558 	  scan += strlen (scan) + 1;
2559 	}
2560     }
2561 }
2562 
2563 /*
2564 
2565 LOCAL FUNCTION
2566 
2567 	add_partial_symbol -- add symbol to partial symbol table
2568 
2569 DESCRIPTION
2570 
2571 	Given a DIE, if it is one of the types that we want to
2572 	add to a partial symbol table, finish filling in the die info
2573 	and then add a partial symbol table entry for it.
2574 
2575 NOTES
2576 
2577 	The caller must ensure that the DIE has a valid name attribute.
2578 */
2579 
2580 static void
2581 add_partial_symbol (dip, objfile)
2582      struct dieinfo *dip;
2583      struct objfile *objfile;
2584 {
2585   switch (dip -> die_tag)
2586     {
2587     case TAG_global_subroutine:
2588       add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2589 				VAR_NAMESPACE, LOC_BLOCK,
2590 				&objfile -> global_psymbols,
2591 				0, dip -> at_low_pc, cu_language, objfile);
2592       break;
2593     case TAG_global_variable:
2594       add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2595 			   VAR_NAMESPACE, LOC_STATIC,
2596 			   &objfile -> global_psymbols,
2597 			   0, 0, cu_language, objfile);
2598       break;
2599     case TAG_subroutine:
2600       add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2601 				VAR_NAMESPACE, LOC_BLOCK,
2602 				&objfile -> static_psymbols,
2603 				0, dip -> at_low_pc, cu_language, objfile);
2604       break;
2605     case TAG_local_variable:
2606       add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2607 			   VAR_NAMESPACE, LOC_STATIC,
2608 			   &objfile -> static_psymbols,
2609 			   0, 0, cu_language, objfile);
2610       break;
2611     case TAG_typedef:
2612       add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2613 			   VAR_NAMESPACE, LOC_TYPEDEF,
2614 			   &objfile -> static_psymbols,
2615 			   0, 0, cu_language, objfile);
2616       break;
2617     case TAG_class_type:
2618     case TAG_structure_type:
2619     case TAG_union_type:
2620     case TAG_enumeration_type:
2621       /* Do not add opaque aggregate definitions to the psymtab.  */
2622       if (!dip -> has_at_byte_size)
2623 	break;
2624       add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2625 			   STRUCT_NAMESPACE, LOC_TYPEDEF,
2626 			   &objfile -> static_psymbols,
2627 			   0, 0, cu_language, objfile);
2628       if (cu_language == language_cplus)
2629 	{
2630 	  /* For C++, these implicitly act as typedefs as well. */
2631 	  add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2632 			       VAR_NAMESPACE, LOC_TYPEDEF,
2633 			       &objfile -> static_psymbols,
2634 			       0, 0, cu_language, objfile);
2635 	}
2636       break;
2637     }
2638 }
2639 
2640 /*
2641 
2642 LOCAL FUNCTION
2643 
2644 	scan_partial_symbols -- scan DIE's within a single compilation unit
2645 
2646 DESCRIPTION
2647 
2648 	Process the DIE's within a single compilation unit, looking for
2649 	interesting DIE's that contribute to the partial symbol table entry
2650 	for this compilation unit.
2651 
2652 NOTES
2653 
2654 	There are some DIE's that may appear both at file scope and within
2655 	the scope of a function.  We are only interested in the ones at file
2656 	scope, and the only way to tell them apart is to keep track of the
2657 	scope.  For example, consider the test case:
2658 
2659 		static int i;
2660 		main () { int j; }
2661 
2662 	for which the relevant DWARF segment has the structure:
2663 
2664 		0x51:
2665 		0x23   global subrtn   sibling     0x9b
2666 		                       name        main
2667 		                       fund_type   FT_integer
2668 		                       low_pc      0x800004cc
2669 		                       high_pc     0x800004d4
2670 
2671 		0x74:
2672 		0x23   local var       sibling     0x97
2673 		                       name        j
2674 		                       fund_type   FT_integer
2675 		                       location    OP_BASEREG 0xe
2676 		                                   OP_CONST 0xfffffffc
2677 		                                   OP_ADD
2678 		0x97:
2679 		0x4
2680 
2681 		0x9b:
2682 		0x1d   local var       sibling     0xb8
2683 		                       name        i
2684 		                       fund_type   FT_integer
2685 		                       location    OP_ADDR 0x800025dc
2686 
2687 		0xb8:
2688 		0x4
2689 
2690 	We want to include the symbol 'i' in the partial symbol table, but
2691 	not the symbol 'j'.  In essence, we want to skip all the dies within
2692 	the scope of a TAG_global_subroutine DIE.
2693 
2694 	Don't attempt to add anonymous structures or unions since they have
2695 	no name.  Anonymous enumerations however are processed, because we
2696 	want to extract their member names (the check for a tag name is
2697 	done later).
2698 
2699 	Also, for variables and subroutines, check that this is the place
2700 	where the actual definition occurs, rather than just a reference
2701 	to an external.
2702  */
2703 
2704 static void
2705 scan_partial_symbols (thisdie, enddie, objfile)
2706      char *thisdie;
2707      char *enddie;
2708      struct objfile *objfile;
2709 {
2710   char *nextdie;
2711   char *temp;
2712   struct dieinfo di;
2713 
2714   while (thisdie < enddie)
2715     {
2716       basicdieinfo (&di, thisdie, objfile);
2717       if (di.die_length < SIZEOF_DIE_LENGTH)
2718 	{
2719 	  break;
2720 	}
2721       else
2722 	{
2723 	  nextdie = thisdie + di.die_length;
2724 	  /* To avoid getting complete die information for every die, we
2725 	     only do it (below) for the cases we are interested in. */
2726 	  switch (di.die_tag)
2727 	    {
2728 	    case TAG_global_subroutine:
2729 	    case TAG_subroutine:
2730 	      completedieinfo (&di, objfile);
2731 	      if (di.at_name && (di.has_at_low_pc || di.at_location))
2732 		{
2733 		  add_partial_symbol (&di, objfile);
2734 		  /* If there is a sibling attribute, adjust the nextdie
2735 		     pointer to skip the entire scope of the subroutine.
2736 		     Apply some sanity checking to make sure we don't
2737 		     overrun or underrun the range of remaining DIE's */
2738 		  if (di.at_sibling != 0)
2739 		    {
2740 		      temp = dbbase + di.at_sibling - dbroff;
2741 		      if ((temp < thisdie) || (temp >= enddie))
2742 			{
2743 			  complain (&bad_die_ref, DIE_ID, DIE_NAME,
2744 				    di.at_sibling);
2745 			}
2746 		      else
2747 			{
2748 			  nextdie = temp;
2749 			}
2750 		    }
2751 		}
2752 	      break;
2753 	    case TAG_global_variable:
2754 	    case TAG_local_variable:
2755 	      completedieinfo (&di, objfile);
2756 	      if (di.at_name && (di.has_at_low_pc || di.at_location))
2757 		{
2758 		  add_partial_symbol (&di, objfile);
2759 		}
2760 	      break;
2761 	    case TAG_typedef:
2762 	    case TAG_class_type:
2763 	    case TAG_structure_type:
2764 	    case TAG_union_type:
2765 	      completedieinfo (&di, objfile);
2766 	      if (di.at_name)
2767 		{
2768 		  add_partial_symbol (&di, objfile);
2769 		}
2770 	      break;
2771 	    case TAG_enumeration_type:
2772 	      completedieinfo (&di, objfile);
2773 	      if (di.at_name)
2774 		{
2775 		  add_partial_symbol (&di, objfile);
2776 		}
2777 	      add_enum_psymbol (&di, objfile);
2778 	      break;
2779 	    }
2780 	}
2781       thisdie = nextdie;
2782     }
2783 }
2784 
2785 /*
2786 
2787 LOCAL FUNCTION
2788 
2789 	scan_compilation_units -- build a psymtab entry for each compilation
2790 
2791 DESCRIPTION
2792 
2793 	This is the top level dwarf parsing routine for building partial
2794 	symbol tables.
2795 
2796 	It scans from the beginning of the DWARF table looking for the first
2797 	TAG_compile_unit DIE, and then follows the sibling chain to locate
2798 	each additional TAG_compile_unit DIE.
2799 
2800 	For each TAG_compile_unit DIE it creates a partial symtab structure,
2801 	calls a subordinate routine to collect all the compilation unit's
2802 	global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2803 	new partial symtab structure into the partial symbol table.  It also
2804 	records the appropriate information in the partial symbol table entry
2805 	to allow the chunk of DIE's and line number table for this compilation
2806 	unit to be located and re-read later, to generate a complete symbol
2807 	table entry for the compilation unit.
2808 
2809 	Thus it effectively partitions up a chunk of DIE's for multiple
2810 	compilation units into smaller DIE chunks and line number tables,
2811 	and associates them with a partial symbol table entry.
2812 
2813 NOTES
2814 
2815 	If any compilation unit has no line number table associated with
2816 	it for some reason (a missing at_stmt_list attribute, rather than
2817 	just one with a value of zero, which is valid) then we ensure that
2818 	the recorded file offset is zero so that the routine which later
2819 	reads line number table fragments knows that there is no fragment
2820 	to read.
2821 
2822 RETURNS
2823 
2824 	Returns no value.
2825 
2826  */
2827 
2828 static void
2829 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2830      char *thisdie;
2831      char *enddie;
2832      file_ptr dbfoff;
2833      file_ptr lnoffset;
2834      struct objfile *objfile;
2835 {
2836   char *nextdie;
2837   struct dieinfo di;
2838   struct partial_symtab *pst;
2839   int culength;
2840   int curoff;
2841   file_ptr curlnoffset;
2842 
2843   while (thisdie < enddie)
2844     {
2845       basicdieinfo (&di, thisdie, objfile);
2846       if (di.die_length < SIZEOF_DIE_LENGTH)
2847 	{
2848 	  break;
2849 	}
2850       else if (di.die_tag != TAG_compile_unit)
2851 	{
2852 	  nextdie = thisdie + di.die_length;
2853 	}
2854       else
2855 	{
2856 	  completedieinfo (&di, objfile);
2857 	  set_cu_language (&di);
2858 	  if (di.at_sibling != 0)
2859 	    {
2860 	      nextdie = dbbase + di.at_sibling - dbroff;
2861 	    }
2862 	  else
2863 	    {
2864 	      nextdie = thisdie + di.die_length;
2865 	    }
2866 	  curoff = thisdie - dbbase;
2867 	  culength = nextdie - thisdie;
2868 	  curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2869 
2870 	  /* First allocate a new partial symbol table structure */
2871 
2872 	  pst = start_psymtab_common (objfile, base_section_offsets,
2873 				      di.at_name, di.at_low_pc,
2874 				      objfile -> global_psymbols.next,
2875 				      objfile -> static_psymbols.next);
2876 
2877 	  pst -> texthigh = di.at_high_pc;
2878 	  pst -> read_symtab_private = (char *)
2879 	      obstack_alloc (&objfile -> psymbol_obstack,
2880 			     sizeof (struct dwfinfo));
2881 	  DBFOFF (pst) = dbfoff;
2882 	  DBROFF (pst) = curoff;
2883 	  DBLENGTH (pst) = culength;
2884 	  LNFOFF (pst)  = curlnoffset;
2885 	  pst -> read_symtab = dwarf_psymtab_to_symtab;
2886 
2887 	  /* Now look for partial symbols */
2888 
2889 	  scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2890 
2891 	  pst -> n_global_syms = objfile -> global_psymbols.next -
2892 	    (objfile -> global_psymbols.list + pst -> globals_offset);
2893 	  pst -> n_static_syms = objfile -> static_psymbols.next -
2894 	    (objfile -> static_psymbols.list + pst -> statics_offset);
2895 	  sort_pst_symbols (pst);
2896 	  /* If there is already a psymtab or symtab for a file of this name,
2897 	     remove it. (If there is a symtab, more drastic things also
2898 	     happen.)  This happens in VxWorks.  */
2899 	  free_named_symtabs (pst -> filename);
2900 	}
2901       thisdie = nextdie;
2902     }
2903 }
2904 
2905 /*
2906 
2907 LOCAL FUNCTION
2908 
2909 	new_symbol -- make a symbol table entry for a new symbol
2910 
2911 SYNOPSIS
2912 
2913 	static struct symbol *new_symbol (struct dieinfo *dip,
2914 					  struct objfile *objfile)
2915 
2916 DESCRIPTION
2917 
2918 	Given a pointer to a DWARF information entry, figure out if we need
2919 	to make a symbol table entry for it, and if so, create a new entry
2920 	and return a pointer to it.
2921  */
2922 
2923 static struct symbol *
2924 new_symbol (dip, objfile)
2925      struct dieinfo *dip;
2926      struct objfile *objfile;
2927 {
2928   struct symbol *sym = NULL;
2929 
2930   if (dip -> at_name != NULL)
2931     {
2932       sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2933 					     sizeof (struct symbol));
2934       OBJSTAT (objfile, n_syms++);
2935       memset (sym, 0, sizeof (struct symbol));
2936       SYMBOL_NAME (sym) = create_name (dip -> at_name,
2937 				       &objfile->symbol_obstack);
2938       /* default assumptions */
2939       SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2940       SYMBOL_CLASS (sym) = LOC_STATIC;
2941       SYMBOL_TYPE (sym) = decode_die_type (dip);
2942 
2943       /* If this symbol is from a C++ compilation, then attempt to cache the
2944 	 demangled form for future reference.  This is a typical time versus
2945 	 space tradeoff, that was decided in favor of time because it sped up
2946 	 C++ symbol lookups by a factor of about 20. */
2947 
2948       SYMBOL_LANGUAGE (sym) = cu_language;
2949       SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2950       switch (dip -> die_tag)
2951 	{
2952 	case TAG_label:
2953 	  SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2954 	  SYMBOL_CLASS (sym) = LOC_LABEL;
2955 	  break;
2956 	case TAG_global_subroutine:
2957 	case TAG_subroutine:
2958 	  SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2959 	  SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2960 	  if (dip -> at_prototyped)
2961 	    TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2962 	  SYMBOL_CLASS (sym) = LOC_BLOCK;
2963 	  if (dip -> die_tag == TAG_global_subroutine)
2964 	    {
2965 	      add_symbol_to_list (sym, &global_symbols);
2966 	    }
2967 	  else
2968 	    {
2969 	      add_symbol_to_list (sym, list_in_scope);
2970 	    }
2971 	  break;
2972 	case TAG_global_variable:
2973 	  if (dip -> at_location != NULL)
2974 	    {
2975 	      SYMBOL_VALUE (sym) = locval (dip -> at_location);
2976 	      add_symbol_to_list (sym, &global_symbols);
2977 	      SYMBOL_CLASS (sym) = LOC_STATIC;
2978 	      SYMBOL_VALUE (sym) += baseaddr;
2979 	    }
2980 	  break;
2981 	case TAG_local_variable:
2982 	  if (dip -> at_location != NULL)
2983 	    {
2984 	      SYMBOL_VALUE (sym) = locval (dip -> at_location);
2985 	      add_symbol_to_list (sym, list_in_scope);
2986 	      if (optimized_out)
2987 		{
2988 		  SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2989 		}
2990 	      else if (isreg)
2991 		{
2992 		  SYMBOL_CLASS (sym) = LOC_REGISTER;
2993 		}
2994 	      else if (offreg)
2995 		{
2996 		  SYMBOL_CLASS (sym) = LOC_BASEREG;
2997 		  SYMBOL_BASEREG (sym) = basereg;
2998 		}
2999 	      else
3000 		{
3001 		  SYMBOL_CLASS (sym) = LOC_STATIC;
3002 		  SYMBOL_VALUE (sym) += baseaddr;
3003 		}
3004 	    }
3005 	  break;
3006 	case TAG_formal_parameter:
3007 	  if (dip -> at_location != NULL)
3008 	    {
3009 	      SYMBOL_VALUE (sym) = locval (dip -> at_location);
3010 	    }
3011 	  add_symbol_to_list (sym, list_in_scope);
3012 	  if (isreg)
3013 	    {
3014 	      SYMBOL_CLASS (sym) = LOC_REGPARM;
3015 	    }
3016 	  else if (offreg)
3017 	    {
3018 	      SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3019 	      SYMBOL_BASEREG (sym) = basereg;
3020 	    }
3021 	  else
3022 	    {
3023 	      SYMBOL_CLASS (sym) = LOC_ARG;
3024 	    }
3025 	  break;
3026 	case TAG_unspecified_parameters:
3027 	  /* From varargs functions; gdb doesn't seem to have any interest in
3028 	     this information, so just ignore it for now. (FIXME?) */
3029 	  break;
3030 	case TAG_class_type:
3031 	case TAG_structure_type:
3032 	case TAG_union_type:
3033 	case TAG_enumeration_type:
3034 	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3035 	  SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3036 	  add_symbol_to_list (sym, list_in_scope);
3037 	  break;
3038 	case TAG_typedef:
3039 	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3040 	  SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3041 	  add_symbol_to_list (sym, list_in_scope);
3042 	  break;
3043 	default:
3044 	  /* Not a tag we recognize.  Hopefully we aren't processing trash
3045 	     data, but since we must specifically ignore things we don't
3046 	     recognize, there is nothing else we should do at this point. */
3047 	  break;
3048 	}
3049     }
3050   return (sym);
3051 }
3052 
3053 /*
3054 
3055 LOCAL FUNCTION
3056 
3057 	synthesize_typedef -- make a symbol table entry for a "fake" typedef
3058 
3059 SYNOPSIS
3060 
3061 	static void synthesize_typedef (struct dieinfo *dip,
3062 					struct objfile *objfile,
3063 					struct type *type);
3064 
3065 DESCRIPTION
3066 
3067 	Given a pointer to a DWARF information entry, synthesize a typedef
3068 	for the name in the DIE, using the specified type.
3069 
3070 	This is used for C++ class, structs, unions, and enumerations to
3071 	set up the tag name as a type.
3072 
3073  */
3074 
3075 static void
3076 synthesize_typedef (dip, objfile, type)
3077      struct dieinfo *dip;
3078      struct objfile *objfile;
3079      struct type *type;
3080 {
3081   struct symbol *sym = NULL;
3082 
3083   if (dip -> at_name != NULL)
3084     {
3085       sym = (struct symbol *)
3086 	obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3087       OBJSTAT (objfile, n_syms++);
3088       memset (sym, 0, sizeof (struct symbol));
3089       SYMBOL_NAME (sym) = create_name (dip -> at_name,
3090 				       &objfile->symbol_obstack);
3091       SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3092       SYMBOL_TYPE (sym) = type;
3093       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3094       SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3095       add_symbol_to_list (sym, list_in_scope);
3096     }
3097 }
3098 
3099 /*
3100 
3101 LOCAL FUNCTION
3102 
3103 	decode_mod_fund_type -- decode a modified fundamental type
3104 
3105 SYNOPSIS
3106 
3107 	static struct type *decode_mod_fund_type (char *typedata)
3108 
3109 DESCRIPTION
3110 
3111 	Decode a block of data containing a modified fundamental
3112 	type specification.  TYPEDATA is a pointer to the block,
3113 	which starts with a length containing the size of the rest
3114 	of the block.  At the end of the block is a fundmental type
3115 	code value that gives the fundamental type.  Everything
3116 	in between are type modifiers.
3117 
3118 	We simply compute the number of modifiers and call the general
3119 	function decode_modified_type to do the actual work.
3120 */
3121 
3122 static struct type *
3123 decode_mod_fund_type (typedata)
3124      char *typedata;
3125 {
3126   struct type *typep = NULL;
3127   unsigned short modcount;
3128   int nbytes;
3129 
3130   /* Get the total size of the block, exclusive of the size itself */
3131 
3132   nbytes = attribute_size (AT_mod_fund_type);
3133   modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3134   typedata += nbytes;
3135 
3136   /* Deduct the size of the fundamental type bytes at the end of the block. */
3137 
3138   modcount -= attribute_size (AT_fund_type);
3139 
3140   /* Now do the actual decoding */
3141 
3142   typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3143   return (typep);
3144 }
3145 
3146 /*
3147 
3148 LOCAL FUNCTION
3149 
3150 	decode_mod_u_d_type -- decode a modified user defined type
3151 
3152 SYNOPSIS
3153 
3154 	static struct type *decode_mod_u_d_type (char *typedata)
3155 
3156 DESCRIPTION
3157 
3158 	Decode a block of data containing a modified user defined
3159 	type specification.  TYPEDATA is a pointer to the block,
3160 	which consists of a two byte length, containing the size
3161 	of the rest of the block.  At the end of the block is a
3162 	four byte value that gives a reference to a user defined type.
3163 	Everything in between are type modifiers.
3164 
3165 	We simply compute the number of modifiers and call the general
3166 	function decode_modified_type to do the actual work.
3167 */
3168 
3169 static struct type *
3170 decode_mod_u_d_type (typedata)
3171      char *typedata;
3172 {
3173   struct type *typep = NULL;
3174   unsigned short modcount;
3175   int nbytes;
3176 
3177   /* Get the total size of the block, exclusive of the size itself */
3178 
3179   nbytes = attribute_size (AT_mod_u_d_type);
3180   modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3181   typedata += nbytes;
3182 
3183   /* Deduct the size of the reference type bytes at the end of the block. */
3184 
3185   modcount -= attribute_size (AT_user_def_type);
3186 
3187   /* Now do the actual decoding */
3188 
3189   typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3190   return (typep);
3191 }
3192 
3193 /*
3194 
3195 LOCAL FUNCTION
3196 
3197 	decode_modified_type -- decode modified user or fundamental type
3198 
3199 SYNOPSIS
3200 
3201 	static struct type *decode_modified_type (char *modifiers,
3202 	    unsigned short modcount, int mtype)
3203 
3204 DESCRIPTION
3205 
3206 	Decode a modified type, either a modified fundamental type or
3207 	a modified user defined type.  MODIFIERS is a pointer to the
3208 	block of bytes that define MODCOUNT modifiers.  Immediately
3209 	following the last modifier is a short containing the fundamental
3210 	type or a long containing the reference to the user defined
3211 	type.  Which one is determined by MTYPE, which is either
3212 	AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3213 	type we are generating.
3214 
3215 	We call ourself recursively to generate each modified type,`
3216 	until MODCOUNT reaches zero, at which point we have consumed
3217 	all the modifiers and generate either the fundamental type or
3218 	user defined type.  When the recursion unwinds, each modifier
3219 	is applied in turn to generate the full modified type.
3220 
3221 NOTES
3222 
3223 	If we find a modifier that we don't recognize, and it is not one
3224 	of those reserved for application specific use, then we issue a
3225 	warning and simply ignore the modifier.
3226 
3227 BUGS
3228 
3229 	We currently ignore MOD_const and MOD_volatile.  (FIXME)
3230 
3231  */
3232 
3233 static struct type *
3234 decode_modified_type (modifiers, modcount, mtype)
3235      char *modifiers;
3236      unsigned int modcount;
3237      int mtype;
3238 {
3239   struct type *typep = NULL;
3240   unsigned short fundtype;
3241   DIE_REF die_ref;
3242   char modifier;
3243   int nbytes;
3244 
3245   if (modcount == 0)
3246     {
3247       switch (mtype)
3248 	{
3249 	case AT_mod_fund_type:
3250 	  nbytes = attribute_size (AT_fund_type);
3251 	  fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3252 				     current_objfile);
3253 	  typep = decode_fund_type (fundtype);
3254 	  break;
3255 	case AT_mod_u_d_type:
3256 	  nbytes = attribute_size (AT_user_def_type);
3257 	  die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3258 				    current_objfile);
3259 	  if ((typep = lookup_utype (die_ref)) == NULL)
3260 	    {
3261 	      typep = alloc_utype (die_ref, NULL);
3262 	    }
3263 	  break;
3264 	default:
3265 	  complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3266 	  typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3267 	  break;
3268 	}
3269     }
3270   else
3271     {
3272       modifier = *modifiers++;
3273       typep = decode_modified_type (modifiers, --modcount, mtype);
3274       switch (modifier)
3275 	{
3276 	  case MOD_pointer_to:
3277 	    typep = lookup_pointer_type (typep);
3278 	    break;
3279 	  case MOD_reference_to:
3280 	    typep = lookup_reference_type (typep);
3281 	    break;
3282 	  case MOD_const:
3283 	    complain (&const_ignored, DIE_ID, DIE_NAME);  /* FIXME */
3284 	    break;
3285 	  case MOD_volatile:
3286 	    complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3287 	    break;
3288 	  default:
3289 	    if (!(MOD_lo_user <= (unsigned char) modifier
3290 		  && (unsigned char) modifier <= MOD_hi_user))
3291 	      {
3292 		complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3293 	      }
3294 	    break;
3295 	}
3296     }
3297   return (typep);
3298 }
3299 
3300 /*
3301 
3302 LOCAL FUNCTION
3303 
3304 	decode_fund_type -- translate basic DWARF type to gdb base type
3305 
3306 DESCRIPTION
3307 
3308 	Given an integer that is one of the fundamental DWARF types,
3309 	translate it to one of the basic internal gdb types and return
3310 	a pointer to the appropriate gdb type (a "struct type *").
3311 
3312 NOTES
3313 
3314 	For robustness, if we are asked to translate a fundamental
3315 	type that we are unprepared to deal with, we return int so
3316 	callers can always depend upon a valid type being returned,
3317 	and so gdb may at least do something reasonable by default.
3318 	If the type is not in the range of those types defined as
3319 	application specific types, we also issue a warning.
3320 */
3321 
3322 static struct type *
3323 decode_fund_type (fundtype)
3324      unsigned int fundtype;
3325 {
3326   struct type *typep = NULL;
3327 
3328   switch (fundtype)
3329     {
3330 
3331     case FT_void:
3332       typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3333       break;
3334 
3335     case FT_boolean:		/* Was FT_set in AT&T version */
3336       typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3337       break;
3338 
3339     case FT_pointer:		/* (void *) */
3340       typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3341       typep = lookup_pointer_type (typep);
3342       break;
3343 
3344     case FT_char:
3345       typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3346       break;
3347 
3348     case FT_signed_char:
3349       typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3350       break;
3351 
3352     case FT_unsigned_char:
3353       typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3354       break;
3355 
3356     case FT_short:
3357       typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3358       break;
3359 
3360     case FT_signed_short:
3361       typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3362       break;
3363 
3364     case FT_unsigned_short:
3365       typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3366       break;
3367 
3368     case FT_integer:
3369       typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3370       break;
3371 
3372     case FT_signed_integer:
3373       typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3374       break;
3375 
3376     case FT_unsigned_integer:
3377       typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3378       break;
3379 
3380     case FT_long:
3381       typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3382       break;
3383 
3384     case FT_signed_long:
3385       typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3386       break;
3387 
3388     case FT_unsigned_long:
3389       typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3390       break;
3391 
3392     case FT_long_long:
3393       typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3394       break;
3395 
3396     case FT_signed_long_long:
3397       typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3398       break;
3399 
3400     case FT_unsigned_long_long:
3401       typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3402       break;
3403 
3404     case FT_float:
3405       typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3406       break;
3407 
3408     case FT_dbl_prec_float:
3409       typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3410       break;
3411 
3412     case FT_ext_prec_float:
3413       typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3414       break;
3415 
3416     case FT_complex:
3417       typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3418       break;
3419 
3420     case FT_dbl_prec_complex:
3421       typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3422       break;
3423 
3424     case FT_ext_prec_complex:
3425       typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3426       break;
3427 
3428     }
3429 
3430   if (typep == NULL)
3431     {
3432       typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3433       if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3434 	{
3435 	  complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3436 	}
3437     }
3438 
3439   return (typep);
3440 }
3441 
3442 /*
3443 
3444 LOCAL FUNCTION
3445 
3446 	create_name -- allocate a fresh copy of a string on an obstack
3447 
3448 DESCRIPTION
3449 
3450 	Given a pointer to a string and a pointer to an obstack, allocates
3451 	a fresh copy of the string on the specified obstack.
3452 
3453 */
3454 
3455 static char *
3456 create_name (name, obstackp)
3457      char *name;
3458      struct obstack *obstackp;
3459 {
3460   int length;
3461   char *newname;
3462 
3463   length = strlen (name) + 1;
3464   newname = (char *) obstack_alloc (obstackp, length);
3465   strcpy (newname, name);
3466   return (newname);
3467 }
3468 
3469 /*
3470 
3471 LOCAL FUNCTION
3472 
3473 	basicdieinfo -- extract the minimal die info from raw die data
3474 
3475 SYNOPSIS
3476 
3477 	void basicdieinfo (char *diep, struct dieinfo *dip,
3478 			   struct objfile *objfile)
3479 
3480 DESCRIPTION
3481 
3482 	Given a pointer to raw DIE data, and a pointer to an instance of a
3483 	die info structure, this function extracts the basic information
3484 	from the DIE data required to continue processing this DIE, along
3485 	with some bookkeeping information about the DIE.
3486 
3487 	The information we absolutely must have includes the DIE tag,
3488 	and the DIE length.  If we need the sibling reference, then we
3489 	will have to call completedieinfo() to process all the remaining
3490 	DIE information.
3491 
3492 	Note that since there is no guarantee that the data is properly
3493 	aligned in memory for the type of access required (indirection
3494 	through anything other than a char pointer), and there is no
3495 	guarantee that it is in the same byte order as the gdb host,
3496 	we call a function which deals with both alignment and byte
3497 	swapping issues.  Possibly inefficient, but quite portable.
3498 
3499 	We also take care of some other basic things at this point, such
3500 	as ensuring that the instance of the die info structure starts
3501 	out completely zero'd and that curdie is initialized for use
3502 	in error reporting if we have a problem with the current die.
3503 
3504 NOTES
3505 
3506 	All DIE's must have at least a valid length, thus the minimum
3507 	DIE size is SIZEOF_DIE_LENGTH.  In order to have a valid tag, the
3508 	DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3509 	are forced to be TAG_padding DIES.
3510 
3511 	Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3512 	that if a padding DIE is used for alignment and the amount needed is
3513 	less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3514 	enough to align to the next alignment boundry.
3515 
3516 	We do some basic sanity checking here, such as verifying that the
3517 	length of the die would not cause it to overrun the recorded end of
3518 	the buffer holding the DIE info.  If we find a DIE that is either
3519 	too small or too large, we force it's length to zero which should
3520 	cause the caller to take appropriate action.
3521  */
3522 
3523 static void
3524 basicdieinfo (dip, diep, objfile)
3525      struct dieinfo *dip;
3526      char *diep;
3527      struct objfile *objfile;
3528 {
3529   curdie = dip;
3530   memset (dip, 0, sizeof (struct dieinfo));
3531   dip -> die = diep;
3532   dip -> die_ref = dbroff + (diep - dbbase);
3533   dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3534 				      objfile);
3535   if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3536       ((diep + dip -> die_length) > (dbbase + dbsize)))
3537     {
3538       complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3539       dip -> die_length = 0;
3540     }
3541   else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3542     {
3543       dip -> die_tag = TAG_padding;
3544     }
3545   else
3546     {
3547       diep += SIZEOF_DIE_LENGTH;
3548       dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3549 				       objfile);
3550     }
3551 }
3552 
3553 /*
3554 
3555 LOCAL FUNCTION
3556 
3557 	completedieinfo -- finish reading the information for a given DIE
3558 
3559 SYNOPSIS
3560 
3561 	void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3562 
3563 DESCRIPTION
3564 
3565 	Given a pointer to an already partially initialized die info structure,
3566 	scan the raw DIE data and finish filling in the die info structure
3567 	from the various attributes found.
3568 
3569 	Note that since there is no guarantee that the data is properly
3570 	aligned in memory for the type of access required (indirection
3571 	through anything other than a char pointer), and there is no
3572 	guarantee that it is in the same byte order as the gdb host,
3573 	we call a function which deals with both alignment and byte
3574 	swapping issues.  Possibly inefficient, but quite portable.
3575 
3576 NOTES
3577 
3578 	Each time we are called, we increment the diecount variable, which
3579 	keeps an approximate count of the number of dies processed for
3580 	each compilation unit.  This information is presented to the user
3581 	if the info_verbose flag is set.
3582 
3583  */
3584 
3585 static void
3586 completedieinfo (dip, objfile)
3587      struct dieinfo *dip;
3588      struct objfile *objfile;
3589 {
3590   char *diep;			/* Current pointer into raw DIE data */
3591   char *end;			/* Terminate DIE scan here */
3592   unsigned short attr;		/* Current attribute being scanned */
3593   unsigned short form;		/* Form of the attribute */
3594   int nbytes;			/* Size of next field to read */
3595 
3596   diecount++;
3597   diep = dip -> die;
3598   end = diep + dip -> die_length;
3599   diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3600   while (diep < end)
3601     {
3602       attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3603       diep += SIZEOF_ATTRIBUTE;
3604       if ((nbytes = attribute_size (attr)) == -1)
3605 	{
3606 	  complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3607 	  diep = end;
3608 	  continue;
3609 	}
3610       switch (attr)
3611 	{
3612 	case AT_fund_type:
3613 	  dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3614 						objfile);
3615 	  break;
3616 	case AT_ordering:
3617 	  dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3618 					       objfile);
3619 	  break;
3620 	case AT_bit_offset:
3621 	  dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3622 						 objfile);
3623 	  break;
3624 	case AT_sibling:
3625 	  dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3626 					      objfile);
3627 	  break;
3628 	case AT_stmt_list:
3629 	  dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 						objfile);
3631 	  dip -> has_at_stmt_list = 1;
3632 	  break;
3633 	case AT_low_pc:
3634 	  dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3635 					     objfile);
3636 	  dip -> at_low_pc += baseaddr;
3637 	  dip -> has_at_low_pc = 1;
3638 	  break;
3639 	case AT_high_pc:
3640 	  dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3641 					      objfile);
3642 	  dip -> at_high_pc += baseaddr;
3643 	  break;
3644 	case AT_language:
3645 	  dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3646 					       objfile);
3647 	  break;
3648 	case AT_user_def_type:
3649 	  dip -> at_user_def_type = target_to_host (diep, nbytes,
3650 						    GET_UNSIGNED, objfile);
3651 	  break;
3652 	case AT_byte_size:
3653 	  dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3654 						objfile);
3655 	  dip -> has_at_byte_size = 1;
3656 	  break;
3657 	case AT_bit_size:
3658 	  dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 					       objfile);
3660 	  break;
3661 	case AT_member:
3662 	  dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3663 					     objfile);
3664 	  break;
3665 	case AT_discr:
3666 	  dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3667 					    objfile);
3668 	  break;
3669 	case AT_location:
3670 	  dip -> at_location = diep;
3671 	  break;
3672 	case AT_mod_fund_type:
3673 	  dip -> at_mod_fund_type = diep;
3674 	  break;
3675 	case AT_subscr_data:
3676 	  dip -> at_subscr_data = diep;
3677 	  break;
3678 	case AT_mod_u_d_type:
3679 	  dip -> at_mod_u_d_type = diep;
3680 	  break;
3681 	case AT_element_list:
3682 	  dip -> at_element_list = diep;
3683 	  dip -> short_element_list = 0;
3684 	  break;
3685 	case AT_short_element_list:
3686 	  dip -> at_element_list = diep;
3687 	  dip -> short_element_list = 1;
3688 	  break;
3689 	case AT_discr_value:
3690 	  dip -> at_discr_value = diep;
3691 	  break;
3692 	case AT_string_length:
3693 	  dip -> at_string_length = diep;
3694 	  break;
3695 	case AT_name:
3696 	  dip -> at_name = diep;
3697 	  break;
3698 	case AT_comp_dir:
3699 	  /* For now, ignore any "hostname:" portion, since gdb doesn't
3700 	     know how to deal with it.  (FIXME). */
3701 	  dip -> at_comp_dir = strrchr (diep, ':');
3702 	  if (dip -> at_comp_dir != NULL)
3703 	    {
3704 	      dip -> at_comp_dir++;
3705 	    }
3706 	  else
3707 	    {
3708 	      dip -> at_comp_dir = diep;
3709 	    }
3710 	  break;
3711 	case AT_producer:
3712 	  dip -> at_producer = diep;
3713 	  break;
3714 	case AT_start_scope:
3715 	  dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3716 						  objfile);
3717 	  break;
3718 	case AT_stride_size:
3719 	  dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3720 						  objfile);
3721 	  break;
3722 	case AT_src_info:
3723 	  dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3724 					       objfile);
3725 	  break;
3726 	case AT_prototyped:
3727 	  dip -> at_prototyped = diep;
3728 	  break;
3729 	default:
3730 	  /* Found an attribute that we are unprepared to handle.  However
3731 	     it is specifically one of the design goals of DWARF that
3732 	     consumers should ignore unknown attributes.  As long as the
3733 	     form is one that we recognize (so we know how to skip it),
3734 	     we can just ignore the unknown attribute. */
3735 	  break;
3736 	}
3737       form = FORM_FROM_ATTR (attr);
3738       switch (form)
3739 	{
3740 	case FORM_DATA2:
3741 	  diep += 2;
3742 	  break;
3743 	case FORM_DATA4:
3744 	case FORM_REF:
3745 	  diep += 4;
3746 	  break;
3747 	case FORM_DATA8:
3748 	  diep += 8;
3749 	  break;
3750 	case FORM_ADDR:
3751 	  diep += TARGET_FT_POINTER_SIZE (objfile);
3752 	  break;
3753 	case FORM_BLOCK2:
3754 	  diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3755 	  break;
3756 	case FORM_BLOCK4:
3757 	  diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3758 	  break;
3759 	case FORM_STRING:
3760 	  diep += strlen (diep) + 1;
3761 	  break;
3762 	default:
3763 	  complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3764 	  diep = end;
3765 	  break;
3766 	}
3767     }
3768 }
3769 
3770 /*
3771 
3772 LOCAL FUNCTION
3773 
3774 	target_to_host -- swap in target data to host
3775 
3776 SYNOPSIS
3777 
3778 	target_to_host (char *from, int nbytes, int signextend,
3779 			struct objfile *objfile)
3780 
3781 DESCRIPTION
3782 
3783 	Given pointer to data in target format in FROM, a byte count for
3784 	the size of the data in NBYTES, a flag indicating whether or not
3785 	the data is signed in SIGNEXTEND, and a pointer to the current
3786 	objfile in OBJFILE, convert the data to host format and return
3787 	the converted value.
3788 
3789 NOTES
3790 
3791 	FIXME:  If we read data that is known to be signed, and expect to
3792 	use it as signed data, then we need to explicitly sign extend the
3793 	result until the bfd library is able to do this for us.
3794 
3795 	FIXME: Would a 32 bit target ever need an 8 byte result?
3796 
3797  */
3798 
3799 static CORE_ADDR
3800 target_to_host (from, nbytes, signextend, objfile)
3801      char *from;
3802      int nbytes;
3803      int signextend;		/* FIXME:  Unused */
3804      struct objfile *objfile;
3805 {
3806   CORE_ADDR rtnval;
3807 
3808   switch (nbytes)
3809     {
3810       case 8:
3811         rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3812 	break;
3813       case 4:
3814 	rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3815 	break;
3816       case 2:
3817 	rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3818 	break;
3819       case 1:
3820 	rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3821 	break;
3822       default:
3823 	complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3824 	rtnval = 0;
3825 	break;
3826     }
3827   return (rtnval);
3828 }
3829 
3830 /*
3831 
3832 LOCAL FUNCTION
3833 
3834 	attribute_size -- compute size of data for a DWARF attribute
3835 
3836 SYNOPSIS
3837 
3838 	static int attribute_size (unsigned int attr)
3839 
3840 DESCRIPTION
3841 
3842 	Given a DWARF attribute in ATTR, compute the size of the first
3843 	piece of data associated with this attribute and return that
3844 	size.
3845 
3846 	Returns -1 for unrecognized attributes.
3847 
3848  */
3849 
3850 static int
3851 attribute_size (attr)
3852      unsigned int attr;
3853 {
3854   int nbytes;			/* Size of next data for this attribute */
3855   unsigned short form;		/* Form of the attribute */
3856 
3857   form = FORM_FROM_ATTR (attr);
3858   switch (form)
3859     {
3860       case FORM_STRING:		/* A variable length field is next */
3861         nbytes = 0;
3862 	break;
3863       case FORM_DATA2:		/* Next 2 byte field is the data itself */
3864       case FORM_BLOCK2:		/* Next 2 byte field is a block length */
3865 	nbytes = 2;
3866 	break;
3867       case FORM_DATA4:		/* Next 4 byte field is the data itself */
3868       case FORM_BLOCK4:		/* Next 4 byte field is a block length */
3869       case FORM_REF:		/* Next 4 byte field is a DIE offset */
3870 	nbytes = 4;
3871 	break;
3872       case FORM_DATA8:		/* Next 8 byte field is the data itself */
3873 	nbytes = 8;
3874 	break;
3875       case FORM_ADDR:		/* Next field size is target sizeof(void *) */
3876 	nbytes = TARGET_FT_POINTER_SIZE (objfile);
3877 	break;
3878       default:
3879 	complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3880 	nbytes = -1;
3881 	break;
3882       }
3883   return (nbytes);
3884 }
3885