xref: /openbsd-src/gnu/usr.bin/binutils/bfd/linker.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /* linker.c -- BFD linker routines
2    Copyright (C) 1993, 94, 95, 96, 97, 98, 1999
3    Free Software Foundation, Inc.
4    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5 
6 This file is part of BFD, the Binary File Descriptor library.
7 
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12 
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
21 
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27 
28 /*
29 SECTION
30 	Linker Functions
31 
32 @cindex Linker
33 	The linker uses three special entry points in the BFD target
34 	vector.  It is not necessary to write special routines for
35 	these entry points when creating a new BFD back end, since
36 	generic versions are provided.  However, writing them can
37 	speed up linking and make it use significantly less runtime
38 	memory.
39 
40 	The first routine creates a hash table used by the other
41 	routines.  The second routine adds the symbols from an object
42 	file to the hash table.  The third routine takes all the
43 	object files and links them together to create the output
44 	file.  These routines are designed so that the linker proper
45 	does not need to know anything about the symbols in the object
46 	files that it is linking.  The linker merely arranges the
47 	sections as directed by the linker script and lets BFD handle
48 	the details of symbols and relocs.
49 
50 	The second routine and third routines are passed a pointer to
51 	a <<struct bfd_link_info>> structure (defined in
52 	<<bfdlink.h>>) which holds information relevant to the link,
53 	including the linker hash table (which was created by the
54 	first routine) and a set of callback functions to the linker
55 	proper.
56 
57 	The generic linker routines are in <<linker.c>>, and use the
58 	header file <<genlink.h>>.  As of this writing, the only back
59 	ends which have implemented versions of these routines are
60 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61 	routines are used as examples throughout this section.
62 
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68 
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 	Creating a linker hash table
73 
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 	The linker routines must create a hash table, which must be
77 	derived from <<struct bfd_link_hash_table>> described in
78 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79 	create a derived hash table.  This entry point is called using
80 	the target vector of the linker output file.
81 
82 	The <<_bfd_link_hash_table_create>> entry point must allocate
83 	and initialize an instance of the desired hash table.  If the
84 	back end does not require any additional information to be
85 	stored with the entries in the hash table, the entry point may
86 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87 	however, some additional information will be needed.
88 
89 	For example, with each entry in the hash table the a.out
90 	linker keeps the index the symbol has in the final output file
91 	(this index number is used so that when doing a relocateable
92 	link the symbol index used in the output file can be quickly
93 	filled in when copying over a reloc).  The a.out linker code
94 	defines the required structures and functions for a hash table
95 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96 	hash table is created by the function
97 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98 	space for the hash table, initializes it, and returns a
99 	pointer to it.
100 
101 	When writing the linker routines for a new back end, you will
102 	generally not know exactly which fields will be required until
103 	you have finished.  You should simply create a new hash table
104 	which defines no additional fields, and then simply add fields
105 	as they become necessary.
106 
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 	Adding symbols to the hash table
111 
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 	The linker proper will call the <<_bfd_link_add_symbols>>
115 	entry point for each object file or archive which is to be
116 	linked (typically these are the files named on the command
117 	line, but some may also come from the linker script).  The
118 	entry point is responsible for examining the file.  For an
119 	object file, BFD must add any relevant symbol information to
120 	the hash table.  For an archive, BFD must determine which
121 	elements of the archive should be used and adding them to the
122 	link.
123 
124 	The a.out version of this entry point is
125 	<<NAME(aout,link_add_symbols)>>.
126 
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132 
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 	Differing file formats
137 
138 	Normally all the files involved in a link will be of the same
139 	format, but it is also possible to link together different
140 	format object files, and the back end must support that.  The
141 	<<_bfd_link_add_symbols>> entry point is called via the target
142 	vector of the file to be added.  This has an important
143 	consequence: the function may not assume that the hash table
144 	is the type created by the corresponding
145 	<<_bfd_link_hash_table_create>> vector.  All the
146 	<<_bfd_link_add_symbols>> function can assume about the hash
147 	table is that it is derived from <<struct
148 	bfd_link_hash_table>>.
149 
150 	Sometimes the <<_bfd_link_add_symbols>> function must store
151 	some information in the hash table entry to be used by the
152 	<<_bfd_final_link>> function.  In such a case the <<creator>>
153 	field of the hash table must be checked to make sure that the
154 	hash table was created by an object file of the same format.
155 
156 	The <<_bfd_final_link>> routine must be prepared to handle a
157 	hash entry without any extra information added by the
158 	<<_bfd_link_add_symbols>> function.  A hash entry without
159 	extra information will also occur when the linker script
160 	directs the linker to create a symbol.  Note that, regardless
161 	of how a hash table entry is added, all the fields will be
162 	initialized to some sort of null value by the hash table entry
163 	initialization function.
164 
165 	See <<ecoff_link_add_externals>> for an example of how to
166 	check the <<creator>> field before saving information (in this
167 	case, the ECOFF external symbol debugging information) in a
168 	hash table entry.
169 
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 	Adding symbols from an object file
174 
175 	When the <<_bfd_link_add_symbols>> routine is passed an object
176 	file, it must add all externally visible symbols in that
177 	object file to the hash table.  The actual work of adding the
178 	symbol to the hash table is normally handled by the function
179 	<<_bfd_generic_link_add_one_symbol>>.  The
180 	<<_bfd_link_add_symbols>> routine is responsible for reading
181 	all the symbols from the object file and passing the correct
182 	information to <<_bfd_generic_link_add_one_symbol>>.
183 
184 	The <<_bfd_link_add_symbols>> routine should not use
185 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186 	providing this routine is to avoid the overhead of converting
187 	the symbols into generic <<asymbol>> structures.
188 
189 @findex _bfd_generic_link_add_one_symbol
190 	<<_bfd_generic_link_add_one_symbol>> handles the details of
191 	combining common symbols, warning about multiple definitions,
192 	and so forth.  It takes arguments which describe the symbol to
193 	add, notably symbol flags, a section, and an offset.  The
194 	symbol flags include such things as <<BSF_WEAK>> or
195 	<<BSF_INDIRECT>>.  The section is a section in the object
196 	file, or something like <<bfd_und_section_ptr>> for an undefined
197 	symbol or <<bfd_com_section_ptr>> for a common symbol.
198 
199 	If the <<_bfd_final_link>> routine is also going to need to
200 	read the symbol information, the <<_bfd_link_add_symbols>>
201 	routine should save it somewhere attached to the object file
202 	BFD.  However, the information should only be saved if the
203 	<<keep_memory>> field of the <<info>> argument is true, so
204 	that the <<-no-keep-memory>> linker switch is effective.
205 
206 	The a.out function which adds symbols from an object file is
207 	<<aout_link_add_object_symbols>>, and most of the interesting
208 	work is in <<aout_link_add_symbols>>.  The latter saves
209 	pointers to the hash tables entries created by
210 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 	so that the <<_bfd_final_link>> routine does not have to call
212 	the hash table lookup routine to locate the entry.
213 
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 	Adding symbols from an archive
218 
219 	When the <<_bfd_link_add_symbols>> routine is passed an
220 	archive, it must look through the symbols defined by the
221 	archive and decide which elements of the archive should be
222 	included in the link.  For each such element it must call the
223 	<<add_archive_element>> linker callback, and it must add the
224 	symbols from the object file to the linker hash table.
225 
226 @findex _bfd_generic_link_add_archive_symbols
227 	In most cases the work of looking through the symbols in the
228 	archive should be done by the
229 	<<_bfd_generic_link_add_archive_symbols>> function.  This
230 	function builds a hash table from the archive symbol table and
231 	looks through the list of undefined symbols to see which
232 	elements should be included.
233 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234 	to call to make the final decision about adding an archive
235 	element to the link and to do the actual work of adding the
236 	symbols to the linker hash table.
237 
238 	The function passed to
239 	<<_bfd_generic_link_add_archive_symbols>> must read the
240 	symbols of the archive element and decide whether the archive
241 	element should be included in the link.  If the element is to
242 	be included, the <<add_archive_element>> linker callback
243 	routine must be called with the element as an argument, and
244 	the elements symbols must be added to the linker hash table
245 	just as though the element had itself been passed to the
246 	<<_bfd_link_add_symbols>> function.
247 
248 	When the a.out <<_bfd_link_add_symbols>> function receives an
249 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 	passing <<aout_link_check_archive_element>> as the function
251 	argument. <<aout_link_check_archive_element>> calls
252 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
253 	the element (an element is only added if it provides a real,
254 	non-common, definition for a previously undefined or common
255 	symbol) it calls the <<add_archive_element>> callback and then
256 	<<aout_link_check_archive_element>> calls
257 	<<aout_link_add_symbols>> to actually add the symbols to the
258 	linker hash table.
259 
260 	The ECOFF back end is unusual in that it does not normally
261 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 	archives already contain a hash table of symbols.  The ECOFF
263 	back end searches the archive itself to avoid the overhead of
264 	creating a new hash table.
265 
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 	Performing the final link
270 
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 	When all the input files have been processed, the linker calls
274 	the <<_bfd_final_link>> entry point of the output BFD.  This
275 	routine is responsible for producing the final output file,
276 	which has several aspects.  It must relocate the contents of
277 	the input sections and copy the data into the output sections.
278 	It must build an output symbol table including any local
279 	symbols from the input files and the global symbols from the
280 	hash table.  When producing relocateable output, it must
281 	modify the input relocs and write them into the output file.
282 	There may also be object format dependent work to be done.
283 
284 	The linker will also call the <<write_object_contents>> entry
285 	point when the BFD is closed.  The two entry points must work
286 	together in order to produce the correct output file.
287 
288 	The details of how this works are inevitably dependent upon
289 	the specific object file format.  The a.out
290 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291 
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
297 
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 	Information provided by the linker
302 
303 	Before the linker calls the <<_bfd_final_link>> entry point,
304 	it sets up some data structures for the function to use.
305 
306 	The <<input_bfds>> field of the <<bfd_link_info>> structure
307 	will point to a list of all the input files included in the
308 	link.  These files are linked through the <<link_next>> field
309 	of the <<bfd>> structure.
310 
311 	Each section in the output file will have a list of
312 	<<link_order>> structures attached to the <<link_order_head>>
313 	field (the <<link_order>> structure is defined in
314 	<<bfdlink.h>>).  These structures describe how to create the
315 	contents of the output section in terms of the contents of
316 	various input sections, fill constants, and, eventually, other
317 	types of information.  They also describe relocs that must be
318 	created by the BFD backend, but do not correspond to any input
319 	file; this is used to support -Ur, which builds constructors
320 	while generating a relocateable object file.
321 
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 	Relocating the section contents
326 
327 	The <<_bfd_final_link>> function should look through the
328 	<<link_order>> structures attached to each section of the
329 	output file.  Each <<link_order>> structure should either be
330 	handled specially, or it should be passed to the function
331 	<<_bfd_default_link_order>> which will do the right thing
332 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
333 
334 	For efficiency, a <<link_order>> of type
335 	<<bfd_indirect_link_order>> whose associated section belongs
336 	to a BFD of the same format as the output BFD must be handled
337 	specially.  This type of <<link_order>> describes part of an
338 	output section in terms of a section belonging to one of the
339 	input files.  The <<_bfd_final_link>> function should read the
340 	contents of the section and any associated relocs, apply the
341 	relocs to the section contents, and write out the modified
342 	section contents.  If performing a relocateable link, the
343 	relocs themselves must also be modified and written out.
344 
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 	The functions <<_bfd_relocate_contents>> and
348 	<<_bfd_final_link_relocate>> provide some general support for
349 	performing the actual relocations, notably overflow checking.
350 	Their arguments include information about the symbol the
351 	relocation is against and a <<reloc_howto_type>> argument
352 	which describes the relocation to perform.  These functions
353 	are defined in <<reloc.c>>.
354 
355 	The a.out function which handles reading, relocating, and
356 	writing section contents is <<aout_link_input_section>>.  The
357 	actual relocation is done in <<aout_link_input_section_std>>
358 	and <<aout_link_input_section_ext>>.
359 
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 	Writing the symbol table
364 
365 	The <<_bfd_final_link>> function must gather all the symbols
366 	in the input files and write them out.  It must also write out
367 	all the symbols in the global hash table.  This must be
368 	controlled by the <<strip>> and <<discard>> fields of the
369 	<<bfd_link_info>> structure.
370 
371 	The local symbols of the input files will not have been
372 	entered into the linker hash table.  The <<_bfd_final_link>>
373 	routine must consider each input file and include the symbols
374 	in the output file.  It may be convenient to do this when
375 	looking through the <<link_order>> structures, or it may be
376 	done by stepping through the <<input_bfds>> list.
377 
378 	The <<_bfd_final_link>> routine must also traverse the global
379 	hash table to gather all the externally visible symbols.  It
380 	is possible that most of the externally visible symbols may be
381 	written out when considering the symbols of each input file,
382 	but it is still necessary to traverse the hash table since the
383 	linker script may have defined some symbols that are not in
384 	any of the input files.
385 
386 	The <<strip>> field of the <<bfd_link_info>> structure
387 	controls which symbols are written out.  The possible values
388 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
389 	then the <<keep_hash>> field of the <<bfd_link_info>>
390 	structure is a hash table of symbols to keep; each symbol
391 	should be looked up in this hash table, and only symbols which
392 	are present should be included in the output file.
393 
394 	If the <<strip>> field of the <<bfd_link_info>> structure
395 	permits local symbols to be written out, the <<discard>> field
396 	is used to further controls which local symbols are included
397 	in the output file.  If the value is <<discard_l>>, then all
398 	local symbols which begin with a certain prefix are discarded;
399 	this is controlled by the <<bfd_is_local_label_name>> entry point.
400 
401 	The a.out backend handles symbols by calling
402 	<<aout_link_write_symbols>> on each input BFD and then
403 	traversing the global hash table with the function
404 	<<aout_link_write_other_symbol>>.  It builds a string table
405 	while writing out the symbols, which is written to the output
406 	file at the end of <<NAME(aout,final_link)>>.
407 */
408 
409 static boolean generic_link_read_symbols
410   PARAMS ((bfd *));
411 static boolean generic_link_add_symbols
412   PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
413 static boolean generic_link_add_object_symbols
414   PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
415 static boolean generic_link_check_archive_element_no_collect
416   PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
417 static boolean generic_link_check_archive_element_collect
418   PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
419 static boolean generic_link_check_archive_element
420   PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
421 static boolean generic_link_add_symbol_list
422   PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423 	   boolean collect));
424 static bfd *hash_entry_bfd PARAMS ((struct bfd_link_hash_entry *));
425 static void set_symbol_from_hash
426   PARAMS ((asymbol *, struct bfd_link_hash_entry *));
427 static boolean generic_add_output_symbol
428   PARAMS ((bfd *, size_t *psymalloc, asymbol *));
429 static boolean default_fill_link_order
430   PARAMS ((bfd *, struct bfd_link_info *, asection *,
431 	   struct bfd_link_order *));
432 static boolean default_indirect_link_order
433   PARAMS ((bfd *, struct bfd_link_info *, asection *,
434 	   struct bfd_link_order *, boolean));
435 
436 /* The link hash table structure is defined in bfdlink.h.  It provides
437    a base hash table which the backend specific hash tables are built
438    upon.  */
439 
440 /* Routine to create an entry in the link hash table.  */
441 
442 struct bfd_hash_entry *
443 _bfd_link_hash_newfunc (entry, table, string)
444      struct bfd_hash_entry *entry;
445      struct bfd_hash_table *table;
446      const char *string;
447 {
448   struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
449 
450   /* Allocate the structure if it has not already been allocated by a
451      subclass.  */
452   if (ret == (struct bfd_link_hash_entry *) NULL)
453     ret = ((struct bfd_link_hash_entry *)
454 	   bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
455   if (ret == (struct bfd_link_hash_entry *) NULL)
456     return NULL;
457 
458   /* Call the allocation method of the superclass.  */
459   ret = ((struct bfd_link_hash_entry *)
460 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
461 
462   if (ret)
463     {
464       /* Initialize the local fields.  */
465       ret->type = bfd_link_hash_new;
466       ret->next = NULL;
467     }
468 
469   return (struct bfd_hash_entry *) ret;
470 }
471 
472 /* Initialize a link hash table.  The BFD argument is the one
473    responsible for creating this table.  */
474 
475 boolean
476 _bfd_link_hash_table_init (table, abfd, newfunc)
477      struct bfd_link_hash_table *table;
478      bfd *abfd;
479      struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
480 						struct bfd_hash_table *,
481 						const char *));
482 {
483   table->creator = abfd->xvec;
484   table->undefs = NULL;
485   table->undefs_tail = NULL;
486   return bfd_hash_table_init (&table->table, newfunc);
487 }
488 
489 /* Look up a symbol in a link hash table.  If follow is true, we
490    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
491    the real symbol.  */
492 
493 struct bfd_link_hash_entry *
494 bfd_link_hash_lookup (table, string, create, copy, follow)
495      struct bfd_link_hash_table *table;
496      const char *string;
497      boolean create;
498      boolean copy;
499      boolean follow;
500 {
501   struct bfd_link_hash_entry *ret;
502 
503   ret = ((struct bfd_link_hash_entry *)
504 	 bfd_hash_lookup (&table->table, string, create, copy));
505 
506   if (follow && ret != (struct bfd_link_hash_entry *) NULL)
507     {
508       while (ret->type == bfd_link_hash_indirect
509 	     || ret->type == bfd_link_hash_warning)
510 	ret = ret->u.i.link;
511     }
512 
513   return ret;
514 }
515 
516 /* Look up a symbol in the main linker hash table if the symbol might
517    be wrapped.  This should only be used for references to an
518    undefined symbol, not for definitions of a symbol.  */
519 
520 struct bfd_link_hash_entry *
521 bfd_wrapped_link_hash_lookup (abfd, info, string, create, copy, follow)
522      bfd *abfd;
523      struct bfd_link_info *info;
524      const char *string;
525      boolean create;
526      boolean copy;
527      boolean follow;
528 {
529   if (info->wrap_hash != NULL)
530     {
531       const char *l;
532 
533       l = string;
534       if (*l == bfd_get_symbol_leading_char (abfd))
535 	++l;
536 
537 #undef WRAP
538 #define WRAP "__wrap_"
539 
540       if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
541 	{
542 	  char *n;
543 	  struct bfd_link_hash_entry *h;
544 
545 	  /* This symbol is being wrapped.  We want to replace all
546              references to SYM with references to __wrap_SYM.  */
547 
548 	  n = (char *) bfd_malloc (strlen (l) + sizeof WRAP + 1);
549 	  if (n == NULL)
550 	    return NULL;
551 
552 	  /* Note that symbol_leading_char may be '\0'.  */
553 	  n[0] = bfd_get_symbol_leading_char (abfd);
554 	  n[1] = '\0';
555 	  strcat (n, WRAP);
556 	  strcat (n, l);
557 	  h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
558 	  free (n);
559 	  return h;
560 	}
561 
562 #undef WRAP
563 
564 #undef REAL
565 #define REAL "__real_"
566 
567       if (*l == '_'
568 	  && strncmp (l, REAL, sizeof REAL - 1) == 0
569 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
570 			      false, false) != NULL)
571 	{
572 	  char *n;
573 	  struct bfd_link_hash_entry *h;
574 
575 	  /* This is a reference to __real_SYM, where SYM is being
576              wrapped.  We want to replace all references to __real_SYM
577              with references to SYM.  */
578 
579 	  n = (char *) bfd_malloc (strlen (l + sizeof REAL - 1) + 2);
580 	  if (n == NULL)
581 	    return NULL;
582 
583 	  /* Note that symbol_leading_char may be '\0'.  */
584 	  n[0] = bfd_get_symbol_leading_char (abfd);
585 	  n[1] = '\0';
586 	  strcat (n, l + sizeof REAL - 1);
587 	  h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
588 	  free (n);
589 	  return h;
590 	}
591 
592 #undef REAL
593     }
594 
595   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
596 }
597 
598 /* Traverse a generic link hash table.  The only reason this is not a
599    macro is to do better type checking.  This code presumes that an
600    argument passed as a struct bfd_hash_entry * may be caught as a
601    struct bfd_link_hash_entry * with no explicit cast required on the
602    call.  */
603 
604 void
605 bfd_link_hash_traverse (table, func, info)
606      struct bfd_link_hash_table *table;
607      boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
608      PTR info;
609 {
610   bfd_hash_traverse (&table->table,
611 		     ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
612 		      func),
613 		     info);
614 }
615 
616 /* Add a symbol to the linker hash table undefs list.  */
617 
618 INLINE void
619 bfd_link_add_undef (table, h)
620      struct bfd_link_hash_table *table;
621      struct bfd_link_hash_entry *h;
622 {
623   BFD_ASSERT (h->next == NULL);
624   if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
625     table->undefs_tail->next = h;
626   if (table->undefs == (struct bfd_link_hash_entry *) NULL)
627     table->undefs = h;
628   table->undefs_tail = h;
629 }
630 
631 /* Routine to create an entry in an generic link hash table.  */
632 
633 struct bfd_hash_entry *
634 _bfd_generic_link_hash_newfunc (entry, table, string)
635      struct bfd_hash_entry *entry;
636      struct bfd_hash_table *table;
637      const char *string;
638 {
639   struct generic_link_hash_entry *ret =
640     (struct generic_link_hash_entry *) entry;
641 
642   /* Allocate the structure if it has not already been allocated by a
643      subclass.  */
644   if (ret == (struct generic_link_hash_entry *) NULL)
645     ret = ((struct generic_link_hash_entry *)
646 	   bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
647   if (ret == (struct generic_link_hash_entry *) NULL)
648     return NULL;
649 
650   /* Call the allocation method of the superclass.  */
651   ret = ((struct generic_link_hash_entry *)
652 	 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
653 				 table, string));
654 
655   if (ret)
656     {
657       /* Set local fields.  */
658       ret->written = false;
659       ret->sym = NULL;
660     }
661 
662   return (struct bfd_hash_entry *) ret;
663 }
664 
665 /* Create an generic link hash table.  */
666 
667 struct bfd_link_hash_table *
668 _bfd_generic_link_hash_table_create (abfd)
669      bfd *abfd;
670 {
671   struct generic_link_hash_table *ret;
672 
673   ret = ((struct generic_link_hash_table *)
674 	 bfd_alloc (abfd, sizeof (struct generic_link_hash_table)));
675   if (ret == NULL)
676     return (struct bfd_link_hash_table *) NULL;
677   if (! _bfd_link_hash_table_init (&ret->root, abfd,
678 				   _bfd_generic_link_hash_newfunc))
679     {
680       free (ret);
681       return (struct bfd_link_hash_table *) NULL;
682     }
683   return &ret->root;
684 }
685 
686 /* Grab the symbols for an object file when doing a generic link.  We
687    store the symbols in the outsymbols field.  We need to keep them
688    around for the entire link to ensure that we only read them once.
689    If we read them multiple times, we might wind up with relocs and
690    the hash table pointing to different instances of the symbol
691    structure.  */
692 
693 static boolean
694 generic_link_read_symbols (abfd)
695      bfd *abfd;
696 {
697   if (bfd_get_outsymbols (abfd) == (asymbol **) NULL)
698     {
699       long symsize;
700       long symcount;
701 
702       symsize = bfd_get_symtab_upper_bound (abfd);
703       if (symsize < 0)
704 	return false;
705       bfd_get_outsymbols (abfd) = (asymbol **) bfd_alloc (abfd, symsize);
706       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
707 	return false;
708       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
709       if (symcount < 0)
710 	return false;
711       bfd_get_symcount (abfd) = symcount;
712     }
713 
714   return true;
715 }
716 
717 /* Generic function to add symbols to from an object file to the
718    global hash table.  This version does not automatically collect
719    constructors by name.  */
720 
721 boolean
722 _bfd_generic_link_add_symbols (abfd, info)
723      bfd *abfd;
724      struct bfd_link_info *info;
725 {
726   return generic_link_add_symbols (abfd, info, false);
727 }
728 
729 /* Generic function to add symbols from an object file to the global
730    hash table.  This version automatically collects constructors by
731    name, as the collect2 program does.  It should be used for any
732    target which does not provide some other mechanism for setting up
733    constructors and destructors; these are approximately those targets
734    for which gcc uses collect2 and do not support stabs.  */
735 
736 boolean
737 _bfd_generic_link_add_symbols_collect (abfd, info)
738      bfd *abfd;
739      struct bfd_link_info *info;
740 {
741   return generic_link_add_symbols (abfd, info, true);
742 }
743 
744 /* Add symbols from an object file to the global hash table.  */
745 
746 static boolean
747 generic_link_add_symbols (abfd, info, collect)
748      bfd *abfd;
749      struct bfd_link_info *info;
750      boolean collect;
751 {
752   boolean ret;
753 
754   switch (bfd_get_format (abfd))
755     {
756     case bfd_object:
757       ret = generic_link_add_object_symbols (abfd, info, collect);
758       break;
759     case bfd_archive:
760       ret = (_bfd_generic_link_add_archive_symbols
761 	     (abfd, info,
762 	      (collect
763 	       ? generic_link_check_archive_element_collect
764 	       : generic_link_check_archive_element_no_collect)));
765       break;
766     default:
767       bfd_set_error (bfd_error_wrong_format);
768       ret = false;
769     }
770 
771   return ret;
772 }
773 
774 /* Add symbols from an object file to the global hash table.  */
775 
776 static boolean
777 generic_link_add_object_symbols (abfd, info, collect)
778      bfd *abfd;
779      struct bfd_link_info *info;
780      boolean collect;
781 {
782   if (! generic_link_read_symbols (abfd))
783     return false;
784   return generic_link_add_symbol_list (abfd, info,
785 				       _bfd_generic_link_get_symcount (abfd),
786 				       _bfd_generic_link_get_symbols (abfd),
787 				       collect);
788 }
789 
790 /* We build a hash table of all symbols defined in an archive.  */
791 
792 /* An archive symbol may be defined by multiple archive elements.
793    This linked list is used to hold the elements.  */
794 
795 struct archive_list
796 {
797   struct archive_list *next;
798   int indx;
799 };
800 
801 /* An entry in an archive hash table.  */
802 
803 struct archive_hash_entry
804 {
805   struct bfd_hash_entry root;
806   /* Where the symbol is defined.  */
807   struct archive_list *defs;
808 };
809 
810 /* An archive hash table itself.  */
811 
812 struct archive_hash_table
813 {
814   struct bfd_hash_table table;
815 };
816 
817 static struct bfd_hash_entry *archive_hash_newfunc
818   PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
819 static boolean archive_hash_table_init
820   PARAMS ((struct archive_hash_table *,
821 	   struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
822 				       struct bfd_hash_table *,
823 				       const char *)));
824 
825 /* Create a new entry for an archive hash table.  */
826 
827 static struct bfd_hash_entry *
828 archive_hash_newfunc (entry, table, string)
829      struct bfd_hash_entry *entry;
830      struct bfd_hash_table *table;
831      const char *string;
832 {
833   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
834 
835   /* Allocate the structure if it has not already been allocated by a
836      subclass.  */
837   if (ret == (struct archive_hash_entry *) NULL)
838     ret = ((struct archive_hash_entry *)
839 	   bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
840   if (ret == (struct archive_hash_entry *) NULL)
841     return NULL;
842 
843   /* Call the allocation method of the superclass.  */
844   ret = ((struct archive_hash_entry *)
845 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
846 
847   if (ret)
848     {
849       /* Initialize the local fields.  */
850       ret->defs = (struct archive_list *) NULL;
851     }
852 
853   return (struct bfd_hash_entry *) ret;
854 }
855 
856 /* Initialize an archive hash table.  */
857 
858 static boolean
859 archive_hash_table_init (table, newfunc)
860      struct archive_hash_table *table;
861      struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
862 						struct bfd_hash_table *,
863 						const char *));
864 {
865   return bfd_hash_table_init (&table->table, newfunc);
866 }
867 
868 /* Look up an entry in an archive hash table.  */
869 
870 #define archive_hash_lookup(t, string, create, copy) \
871   ((struct archive_hash_entry *) \
872    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
873 
874 /* Allocate space in an archive hash table.  */
875 
876 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
877 
878 /* Free an archive hash table.  */
879 
880 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
881 
882 /* Generic function to add symbols from an archive file to the global
883    hash file.  This function presumes that the archive symbol table
884    has already been read in (this is normally done by the
885    bfd_check_format entry point).  It looks through the undefined and
886    common symbols and searches the archive symbol table for them.  If
887    it finds an entry, it includes the associated object file in the
888    link.
889 
890    The old linker looked through the archive symbol table for
891    undefined symbols.  We do it the other way around, looking through
892    undefined symbols for symbols defined in the archive.  The
893    advantage of the newer scheme is that we only have to look through
894    the list of undefined symbols once, whereas the old method had to
895    re-search the symbol table each time a new object file was added.
896 
897    The CHECKFN argument is used to see if an object file should be
898    included.  CHECKFN should set *PNEEDED to true if the object file
899    should be included, and must also call the bfd_link_info
900    add_archive_element callback function and handle adding the symbols
901    to the global hash table.  CHECKFN should only return false if some
902    sort of error occurs.
903 
904    For some formats, such as a.out, it is possible to look through an
905    object file but not actually include it in the link.  The
906    archive_pass field in a BFD is used to avoid checking the symbols
907    of an object files too many times.  When an object is included in
908    the link, archive_pass is set to -1.  If an object is scanned but
909    not included, archive_pass is set to the pass number.  The pass
910    number is incremented each time a new object file is included.  The
911    pass number is used because when a new object file is included it
912    may create new undefined symbols which cause a previously examined
913    object file to be included.  */
914 
915 boolean
916 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
917      bfd *abfd;
918      struct bfd_link_info *info;
919      boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
920 				 boolean *pneeded));
921 {
922   carsym *arsyms;
923   carsym *arsym_end;
924   register carsym *arsym;
925   int pass;
926   struct archive_hash_table arsym_hash;
927   int indx;
928   struct bfd_link_hash_entry **pundef;
929 
930   if (! bfd_has_map (abfd))
931     {
932       /* An empty archive is a special case.  */
933       if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
934 	return true;
935       bfd_set_error (bfd_error_no_armap);
936       return false;
937     }
938 
939   arsyms = bfd_ardata (abfd)->symdefs;
940   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
941 
942   /* In order to quickly determine whether an symbol is defined in
943      this archive, we build a hash table of the symbols.  */
944   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
945     return false;
946   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
947     {
948       struct archive_hash_entry *arh;
949       struct archive_list *l, **pp;
950 
951       arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
952       if (arh == (struct archive_hash_entry *) NULL)
953 	goto error_return;
954       l = ((struct archive_list *)
955 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
956       if (l == NULL)
957 	goto error_return;
958       l->indx = indx;
959       for (pp = &arh->defs;
960 	   *pp != (struct archive_list *) NULL;
961 	   pp = &(*pp)->next)
962 	;
963       *pp = l;
964       l->next = NULL;
965     }
966 
967   /* The archive_pass field in the archive itself is used to
968      initialize PASS, sine we may search the same archive multiple
969      times.  */
970   pass = abfd->archive_pass + 1;
971 
972   /* New undefined symbols are added to the end of the list, so we
973      only need to look through it once.  */
974   pundef = &info->hash->undefs;
975   while (*pundef != (struct bfd_link_hash_entry *) NULL)
976     {
977       struct bfd_link_hash_entry *h;
978       struct archive_hash_entry *arh;
979       struct archive_list *l;
980 
981       h = *pundef;
982 
983       /* When a symbol is defined, it is not necessarily removed from
984 	 the list.  */
985       if (h->type != bfd_link_hash_undefined
986 	  && h->type != bfd_link_hash_common)
987 	{
988 	  /* Remove this entry from the list, for general cleanliness
989 	     and because we are going to look through the list again
990 	     if we search any more libraries.  We can't remove the
991 	     entry if it is the tail, because that would lose any
992 	     entries we add to the list later on (it would also cause
993 	     us to lose track of whether the symbol has been
994 	     referenced).  */
995 	  if (*pundef != info->hash->undefs_tail)
996 	    *pundef = (*pundef)->next;
997 	  else
998 	    pundef = &(*pundef)->next;
999 	  continue;
1000 	}
1001 
1002       /* Look for this symbol in the archive symbol map.  */
1003       arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
1004       if (arh == (struct archive_hash_entry *) NULL)
1005 	{
1006 	  pundef = &(*pundef)->next;
1007 	  continue;
1008 	}
1009 
1010       /* Look at all the objects which define this symbol.  */
1011       for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
1012 	{
1013 	  bfd *element;
1014 	  boolean needed;
1015 
1016 	  /* If the symbol has gotten defined along the way, quit.  */
1017 	  if (h->type != bfd_link_hash_undefined
1018 	      && h->type != bfd_link_hash_common)
1019 	    break;
1020 
1021 	  element = bfd_get_elt_at_index (abfd, l->indx);
1022 	  if (element == (bfd *) NULL)
1023 	    goto error_return;
1024 
1025 	  /* If we've already included this element, or if we've
1026 	     already checked it on this pass, continue.  */
1027 	  if (element->archive_pass == -1
1028 	      || element->archive_pass == pass)
1029 	    continue;
1030 
1031 	  /* If we can't figure this element out, just ignore it.  */
1032 	  if (! bfd_check_format (element, bfd_object))
1033 	    {
1034 	      element->archive_pass = -1;
1035 	      continue;
1036 	    }
1037 
1038 	  /* CHECKFN will see if this element should be included, and
1039 	     go ahead and include it if appropriate.  */
1040 	  if (! (*checkfn) (element, info, &needed))
1041 	    goto error_return;
1042 
1043 	  if (! needed)
1044 	    element->archive_pass = pass;
1045 	  else
1046 	    {
1047 	      element->archive_pass = -1;
1048 
1049 	      /* Increment the pass count to show that we may need to
1050 		 recheck object files which were already checked.  */
1051 	      ++pass;
1052 	    }
1053 	}
1054 
1055       pundef = &(*pundef)->next;
1056     }
1057 
1058   archive_hash_table_free (&arsym_hash);
1059 
1060   /* Save PASS in case we are called again.  */
1061   abfd->archive_pass = pass;
1062 
1063   return true;
1064 
1065  error_return:
1066   archive_hash_table_free (&arsym_hash);
1067   return false;
1068 }
1069 
1070 /* See if we should include an archive element.  This version is used
1071    when we do not want to automatically collect constructors based on
1072    the symbol name, presumably because we have some other mechanism
1073    for finding them.  */
1074 
1075 static boolean
1076 generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1077      bfd *abfd;
1078      struct bfd_link_info *info;
1079      boolean *pneeded;
1080 {
1081   return generic_link_check_archive_element (abfd, info, pneeded, false);
1082 }
1083 
1084 /* See if we should include an archive element.  This version is used
1085    when we want to automatically collect constructors based on the
1086    symbol name, as collect2 does.  */
1087 
1088 static boolean
1089 generic_link_check_archive_element_collect (abfd, info, pneeded)
1090      bfd *abfd;
1091      struct bfd_link_info *info;
1092      boolean *pneeded;
1093 {
1094   return generic_link_check_archive_element (abfd, info, pneeded, true);
1095 }
1096 
1097 /* See if we should include an archive element.  Optionally collect
1098    constructors.  */
1099 
1100 static boolean
1101 generic_link_check_archive_element (abfd, info, pneeded, collect)
1102      bfd *abfd;
1103      struct bfd_link_info *info;
1104      boolean *pneeded;
1105      boolean collect;
1106 {
1107   asymbol **pp, **ppend;
1108 
1109   *pneeded = false;
1110 
1111   if (! generic_link_read_symbols (abfd))
1112     return false;
1113 
1114   pp = _bfd_generic_link_get_symbols (abfd);
1115   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1116   for (; pp < ppend; pp++)
1117     {
1118       asymbol *p;
1119       struct bfd_link_hash_entry *h;
1120 
1121       p = *pp;
1122 
1123       /* We are only interested in globally visible symbols.  */
1124       if (! bfd_is_com_section (p->section)
1125 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1126 	continue;
1127 
1128       /* We are only interested if we know something about this
1129 	 symbol, and it is undefined or common.  An undefined weak
1130 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1131 	 a reference when pulling files out of an archive.  See the
1132 	 SVR4 ABI, p. 4-27.  */
1133       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1134 				false, true);
1135       if (h == (struct bfd_link_hash_entry *) NULL
1136 	  || (h->type != bfd_link_hash_undefined
1137 	      && h->type != bfd_link_hash_common))
1138 	continue;
1139 
1140       /* P is a symbol we are looking for.  */
1141 
1142       if (! bfd_is_com_section (p->section))
1143 	{
1144 	  bfd_size_type symcount;
1145 	  asymbol **symbols;
1146 
1147 	  /* This object file defines this symbol, so pull it in.  */
1148 	  if (! (*info->callbacks->add_archive_element) (info, abfd,
1149 							 bfd_asymbol_name (p)))
1150 	    return false;
1151 	  symcount = _bfd_generic_link_get_symcount (abfd);
1152 	  symbols = _bfd_generic_link_get_symbols (abfd);
1153 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1154 					      symbols, collect))
1155 	    return false;
1156 	  *pneeded = true;
1157 	  return true;
1158 	}
1159 
1160       /* P is a common symbol.  */
1161 
1162       if (h->type == bfd_link_hash_undefined)
1163 	{
1164 	  bfd *symbfd;
1165 	  bfd_vma size;
1166 	  unsigned int power;
1167 
1168 	  symbfd = h->u.undef.abfd;
1169 	  if (symbfd == (bfd *) NULL)
1170 	    {
1171 	      /* This symbol was created as undefined from outside
1172 		 BFD.  We assume that we should link in the object
1173 		 file.  This is for the -u option in the linker.  */
1174 	      if (! (*info->callbacks->add_archive_element)
1175 		  (info, abfd, bfd_asymbol_name (p)))
1176 		return false;
1177 	      *pneeded = true;
1178 	      return true;
1179 	    }
1180 
1181 	  /* Turn the symbol into a common symbol but do not link in
1182 	     the object file.  This is how a.out works.  Object
1183 	     formats that require different semantics must implement
1184 	     this function differently.  This symbol is already on the
1185 	     undefs list.  We add the section to a common section
1186 	     attached to symbfd to ensure that it is in a BFD which
1187 	     will be linked in.  */
1188 	  h->type = bfd_link_hash_common;
1189 	  h->u.c.p =
1190 	    ((struct bfd_link_hash_common_entry *)
1191 	     bfd_hash_allocate (&info->hash->table,
1192 				sizeof (struct bfd_link_hash_common_entry)));
1193 	  if (h->u.c.p == NULL)
1194 	    return false;
1195 
1196 	  size = bfd_asymbol_value (p);
1197 	  h->u.c.size = size;
1198 
1199 	  power = bfd_log2 (size);
1200 	  if (power > 4)
1201 	    power = 4;
1202 	  h->u.c.p->alignment_power = power;
1203 
1204 	  if (p->section == bfd_com_section_ptr)
1205 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1206 	  else
1207 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1208 							  p->section->name);
1209 	  h->u.c.p->section->flags = SEC_ALLOC;
1210 	}
1211       else
1212 	{
1213 	  /* Adjust the size of the common symbol if necessary.  This
1214 	     is how a.out works.  Object formats that require
1215 	     different semantics must implement this function
1216 	     differently.  */
1217 	  if (bfd_asymbol_value (p) > h->u.c.size)
1218 	    h->u.c.size = bfd_asymbol_value (p);
1219 	}
1220     }
1221 
1222   /* This archive element is not needed.  */
1223   return true;
1224 }
1225 
1226 /* Add the symbols from an object file to the global hash table.  ABFD
1227    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1228    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1229    is true if constructors should be automatically collected by name
1230    as is done by collect2.  */
1231 
1232 static boolean
1233 generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1234      bfd *abfd;
1235      struct bfd_link_info *info;
1236      bfd_size_type symbol_count;
1237      asymbol **symbols;
1238      boolean collect;
1239 {
1240   asymbol **pp, **ppend;
1241 
1242   pp = symbols;
1243   ppend = symbols + symbol_count;
1244   for (; pp < ppend; pp++)
1245     {
1246       asymbol *p;
1247 
1248       p = *pp;
1249 
1250       if ((p->flags & (BSF_INDIRECT
1251 		       | BSF_WARNING
1252 		       | BSF_GLOBAL
1253 		       | BSF_CONSTRUCTOR
1254 		       | BSF_WEAK)) != 0
1255 	  || bfd_is_und_section (bfd_get_section (p))
1256 	  || bfd_is_com_section (bfd_get_section (p))
1257 	  || bfd_is_ind_section (bfd_get_section (p)))
1258 	{
1259 	  const char *name;
1260 	  const char *string;
1261 	  struct generic_link_hash_entry *h;
1262 
1263 	  name = bfd_asymbol_name (p);
1264 	  if (((p->flags & BSF_INDIRECT) != 0
1265 	       || bfd_is_ind_section (p->section))
1266 	      && pp + 1 < ppend)
1267 	    {
1268 	      pp++;
1269 	      string = bfd_asymbol_name (*pp);
1270 	    }
1271 	  else if ((p->flags & BSF_WARNING) != 0
1272 		   && pp + 1 < ppend)
1273 	    {
1274 	      /* The name of P is actually the warning string, and the
1275 		 next symbol is the one to warn about.  */
1276 	      string = name;
1277 	      pp++;
1278 	      name = bfd_asymbol_name (*pp);
1279 	    }
1280 	  else
1281 	    string = NULL;
1282 
1283 	  h = NULL;
1284 	  if (! (_bfd_generic_link_add_one_symbol
1285 		 (info, abfd, name, p->flags, bfd_get_section (p),
1286 		  p->value, string, false, collect,
1287 		  (struct bfd_link_hash_entry **) &h)))
1288 	    return false;
1289 
1290 	  /* If this is a constructor symbol, and the linker didn't do
1291              anything with it, then we want to just pass the symbol
1292              through to the output file.  This will happen when
1293              linking with -r.  */
1294 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1295 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1296 	    {
1297 	      p->udata.p = NULL;
1298 	      continue;
1299 	    }
1300 
1301 	  /* Save the BFD symbol so that we don't lose any backend
1302 	     specific information that may be attached to it.  We only
1303 	     want this one if it gives more information than the
1304 	     existing one; we don't want to replace a defined symbol
1305 	     with an undefined one.  This routine may be called with a
1306 	     hash table other than the generic hash table, so we only
1307 	     do this if we are certain that the hash table is a
1308 	     generic one.  */
1309 	  if (info->hash->creator == abfd->xvec)
1310 	    {
1311 	      if (h->sym == (asymbol *) NULL
1312 		  || (! bfd_is_und_section (bfd_get_section (p))
1313 		      && (! bfd_is_com_section (bfd_get_section (p))
1314 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1315 		{
1316 		  h->sym = p;
1317 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1318 		     reading, and it should go away when the COFF
1319 		     linker is switched to the new version.  */
1320 		  if (bfd_is_com_section (bfd_get_section (p)))
1321 		    p->flags |= BSF_OLD_COMMON;
1322 		}
1323 	    }
1324 
1325 	  /* Store a back pointer from the symbol to the hash
1326 	     table entry for the benefit of relaxation code until
1327 	     it gets rewritten to not use asymbol structures.
1328 	     Setting this is also used to check whether these
1329 	     symbols were set up by the generic linker.  */
1330 	  p->udata.p = (PTR) h;
1331 	}
1332     }
1333 
1334   return true;
1335 }
1336 
1337 /* We use a state table to deal with adding symbols from an object
1338    file.  The first index into the state table describes the symbol
1339    from the object file.  The second index into the state table is the
1340    type of the symbol in the hash table.  */
1341 
1342 /* The symbol from the object file is turned into one of these row
1343    values.  */
1344 
1345 enum link_row
1346 {
1347   UNDEF_ROW,		/* Undefined.  */
1348   UNDEFW_ROW,		/* Weak undefined.  */
1349   DEF_ROW,		/* Defined.  */
1350   DEFW_ROW,		/* Weak defined.  */
1351   COMMON_ROW,		/* Common.  */
1352   INDR_ROW,		/* Indirect.  */
1353   WARN_ROW,		/* Warning.  */
1354   SET_ROW		/* Member of set.  */
1355 };
1356 
1357 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1358 #undef FAIL
1359 
1360 /* The actions to take in the state table.  */
1361 
1362 enum link_action
1363 {
1364   FAIL,		/* Abort. */
1365   UND,		/* Mark symbol undefined.  */
1366   WEAK,		/* Mark symbol weak undefined.  */
1367   DEF,		/* Mark symbol defined.  */
1368   DEFW,		/* Mark symbol weak defined.  */
1369   COM,		/* Mark symbol common.  */
1370   REF,		/* Mark defined symbol referenced.  */
1371   CREF,		/* Possibly warn about common reference to defined symbol.  */
1372   CDEF,		/* Define existing common symbol.  */
1373   NOACT,	/* No action.  */
1374   BIG,		/* Mark symbol common using largest size.  */
1375   MDEF,		/* Multiple definition error.  */
1376   MIND,		/* Multiple indirect symbols.  */
1377   IND,		/* Make indirect symbol.  */
1378   CIND,		/* Make indirect symbol from existing common symbol.  */
1379   SET,		/* Add value to set.  */
1380   MWARN,	/* Make warning symbol.  */
1381   WARN,		/* Issue warning.  */
1382   CWARN,	/* Warn if referenced, else MWARN.  */
1383   CYCLE,	/* Repeat with symbol pointed to.  */
1384   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1385   WARNC		/* Issue warning and then CYCLE.  */
1386 };
1387 
1388 /* The state table itself.  The first index is a link_row and the
1389    second index is a bfd_link_hash_type.  */
1390 
1391 static const enum link_action link_action[8][8] =
1392 {
1393   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1394   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1395   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1396   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1397   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1398   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  CREF,  BIG,   REFC,  WARNC },
1399   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1400   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, MWARN },
1401   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1402 };
1403 
1404 /* Most of the entries in the LINK_ACTION table are straightforward,
1405    but a few are somewhat subtle.
1406 
1407    A reference to an indirect symbol (UNDEF_ROW/indr or
1408    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1409    symbol and to the symbol the indirect symbol points to.
1410 
1411    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1412    causes the warning to be issued.
1413 
1414    A common definition of an indirect symbol (COMMON_ROW/indr) is
1415    treated as a multiple definition error.  Likewise for an indirect
1416    definition of a common symbol (INDR_ROW/com).
1417 
1418    An indirect definition of a warning (INDR_ROW/warn) does not cause
1419    the warning to be issued.
1420 
1421    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1422    warning is created for the symbol the indirect symbol points to.
1423 
1424    Adding an entry to a set does not count as a reference to a set,
1425    and no warning is issued (SET_ROW/warn).  */
1426 
1427 /* Return the BFD in which a hash entry has been defined, if known.  */
1428 
1429 static bfd *
1430 hash_entry_bfd (h)
1431      struct bfd_link_hash_entry *h;
1432 {
1433   while (h->type == bfd_link_hash_warning)
1434     h = h->u.i.link;
1435   switch (h->type)
1436     {
1437     default:
1438       return NULL;
1439     case bfd_link_hash_undefined:
1440     case bfd_link_hash_undefweak:
1441       return h->u.undef.abfd;
1442     case bfd_link_hash_defined:
1443     case bfd_link_hash_defweak:
1444       return h->u.def.section->owner;
1445     case bfd_link_hash_common:
1446       return h->u.c.p->section->owner;
1447     }
1448   /*NOTREACHED*/
1449 }
1450 
1451 /* Add a symbol to the global hash table.
1452    ABFD is the BFD the symbol comes from.
1453    NAME is the name of the symbol.
1454    FLAGS is the BSF_* bits associated with the symbol.
1455    SECTION is the section in which the symbol is defined; this may be
1456      bfd_und_section_ptr or bfd_com_section_ptr.
1457    VALUE is the value of the symbol, relative to the section.
1458    STRING is used for either an indirect symbol, in which case it is
1459      the name of the symbol to indirect to, or a warning symbol, in
1460      which case it is the warning string.
1461    COPY is true if NAME or STRING must be copied into locally
1462      allocated memory if they need to be saved.
1463    COLLECT is true if we should automatically collect gcc constructor
1464      or destructor names as collect2 does.
1465    HASHP, if not NULL, is a place to store the created hash table
1466      entry; if *HASHP is not NULL, the caller has already looked up
1467      the hash table entry, and stored it in *HASHP. */
1468 
1469 boolean
1470 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1471 				  string, copy, collect, hashp)
1472      struct bfd_link_info *info;
1473      bfd *abfd;
1474      const char *name;
1475      flagword flags;
1476      asection *section;
1477      bfd_vma value;
1478      const char *string;
1479      boolean copy;
1480      boolean collect;
1481      struct bfd_link_hash_entry **hashp;
1482 {
1483   enum link_row row;
1484   struct bfd_link_hash_entry *h;
1485   boolean cycle;
1486 
1487   if (bfd_is_ind_section (section)
1488       || (flags & BSF_INDIRECT) != 0)
1489     row = INDR_ROW;
1490   else if ((flags & BSF_WARNING) != 0)
1491     row = WARN_ROW;
1492   else if ((flags & BSF_CONSTRUCTOR) != 0)
1493     row = SET_ROW;
1494   else if (bfd_is_und_section (section))
1495     {
1496       if ((flags & BSF_WEAK) != 0)
1497 	row = UNDEFW_ROW;
1498       else
1499 	row = UNDEF_ROW;
1500     }
1501   else if ((flags & BSF_WEAK) != 0)
1502     row = DEFW_ROW;
1503   else if (bfd_is_com_section (section))
1504     row = COMMON_ROW;
1505   else
1506     row = DEF_ROW;
1507 
1508   if (hashp != NULL && *hashp != NULL)
1509     h = *hashp;
1510   else
1511     {
1512       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1513 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1514       else
1515 	h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1516       if (h == NULL)
1517 	{
1518 	  if (hashp != NULL)
1519 	    *hashp = NULL;
1520 	  return false;
1521 	}
1522     }
1523 
1524   if (info->notice_all
1525       || (info->notice_hash != (struct bfd_hash_table *) NULL
1526 	  && (bfd_hash_lookup (info->notice_hash, name, false, false)
1527 	      != (struct bfd_hash_entry *) NULL)))
1528     {
1529       if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1530 					value))
1531 	return false;
1532     }
1533 
1534   if (hashp != (struct bfd_link_hash_entry **) NULL)
1535     *hashp = h;
1536 
1537   do
1538     {
1539       enum link_action action;
1540 
1541       cycle = false;
1542       action = link_action[(int) row][(int) h->type];
1543       switch (action)
1544 	{
1545 	case FAIL:
1546 	  abort ();
1547 
1548 	case NOACT:
1549 	  /* Do nothing.  */
1550 	  break;
1551 
1552 	case UND:
1553 	  /* Make a new undefined symbol.  */
1554 	  h->type = bfd_link_hash_undefined;
1555 	  h->u.undef.abfd = abfd;
1556 	  bfd_link_add_undef (info->hash, h);
1557 	  break;
1558 
1559 	case WEAK:
1560 	  /* Make a new weak undefined symbol.  */
1561 	  h->type = bfd_link_hash_undefweak;
1562 	  h->u.undef.abfd = abfd;
1563 	  break;
1564 
1565 	case CDEF:
1566 	  /* We have found a definition for a symbol which was
1567 	     previously common.  */
1568 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1569 	  if (! ((*info->callbacks->multiple_common)
1570 		 (info, h->root.string,
1571 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1572 		  abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1573 	    return false;
1574 	  /* Fall through.  */
1575 	case DEF:
1576 	case DEFW:
1577 	  {
1578 	    enum bfd_link_hash_type oldtype;
1579 
1580 	    /* Define a symbol.  */
1581 	    oldtype = h->type;
1582 	    if (action == DEFW)
1583 	      h->type = bfd_link_hash_defweak;
1584 	    else
1585 	      h->type = bfd_link_hash_defined;
1586 	    h->u.def.section = section;
1587 	    h->u.def.value = value;
1588 
1589 	    /* If we have been asked to, we act like collect2 and
1590 	       identify all functions that might be global
1591 	       constructors and destructors and pass them up in a
1592 	       callback.  We only do this for certain object file
1593 	       types, since many object file types can handle this
1594 	       automatically.  */
1595 	    if (collect && name[0] == '_')
1596 	      {
1597 		const char *s;
1598 
1599 		/* A constructor or destructor name starts like this:
1600 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1601 		   the second are the same character (we accept any
1602 		   character there, in case a new object file format
1603 		   comes along with even worse naming restrictions).  */
1604 
1605 #define CONS_PREFIX "GLOBAL_"
1606 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1607 
1608 		s = name + 1;
1609 		while (*s == '_')
1610 		  ++s;
1611 		if (s[0] == 'G'
1612 		    && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1613 		  {
1614 		    char c;
1615 
1616 		    c = s[CONS_PREFIX_LEN + 1];
1617 		    if ((c == 'I' || c == 'D')
1618 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1619 		      {
1620 			/* If this is a definition of a symbol which
1621                            was previously weakly defined, we are in
1622                            trouble.  We have already added a
1623                            constructor entry for the weak defined
1624                            symbol, and now we are trying to add one
1625                            for the new symbol.  Fortunately, this case
1626                            should never arise in practice.  */
1627 			if (oldtype == bfd_link_hash_defweak)
1628 			  abort ();
1629 
1630 			if (! ((*info->callbacks->constructor)
1631 			       (info,
1632 				c == 'I' ? true : false,
1633 				h->root.string, abfd, section, value)))
1634 			  return false;
1635 		      }
1636 		  }
1637 	      }
1638 	  }
1639 
1640 	  break;
1641 
1642 	case COM:
1643 	  /* We have found a common definition for a symbol.  */
1644 	  if (h->type == bfd_link_hash_new)
1645 	    bfd_link_add_undef (info->hash, h);
1646 	  h->type = bfd_link_hash_common;
1647 	  h->u.c.p =
1648 	    ((struct bfd_link_hash_common_entry *)
1649 	     bfd_hash_allocate (&info->hash->table,
1650 				sizeof (struct bfd_link_hash_common_entry)));
1651 	  if (h->u.c.p == NULL)
1652 	    return false;
1653 
1654 	  h->u.c.size = value;
1655 
1656 	  /* Select a default alignment based on the size.  This may
1657              be overridden by the caller.  */
1658 	  {
1659 	    unsigned int power;
1660 
1661 	    power = bfd_log2 (value);
1662 	    if (power > 4)
1663 	      power = 4;
1664 	    h->u.c.p->alignment_power = power;
1665 	  }
1666 
1667 	  /* The section of a common symbol is only used if the common
1668              symbol is actually allocated.  It basically provides a
1669              hook for the linker script to decide which output section
1670              the common symbols should be put in.  In most cases, the
1671              section of a common symbol will be bfd_com_section_ptr,
1672              the code here will choose a common symbol section named
1673              "COMMON", and the linker script will contain *(COMMON) in
1674              the appropriate place.  A few targets use separate common
1675              sections for small symbols, and they require special
1676              handling.  */
1677 	  if (section == bfd_com_section_ptr)
1678 	    {
1679 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1680 	      h->u.c.p->section->flags = SEC_ALLOC;
1681 	    }
1682 	  else if (section->owner != abfd)
1683 	    {
1684 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1685 							    section->name);
1686 	      h->u.c.p->section->flags = SEC_ALLOC;
1687 	    }
1688 	  else
1689 	    h->u.c.p->section = section;
1690 	  break;
1691 
1692 	case REF:
1693 	  /* A reference to a defined symbol.  */
1694 	  if (h->next == NULL && info->hash->undefs_tail != h)
1695 	    h->next = h;
1696 	  break;
1697 
1698 	case BIG:
1699 	  /* We have found a common definition for a symbol which
1700 	     already had a common definition.  Use the maximum of the
1701 	     two sizes.  */
1702 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1703 	  if (! ((*info->callbacks->multiple_common)
1704 		 (info, h->root.string,
1705 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1706 		  abfd, bfd_link_hash_common, value)))
1707 	    return false;
1708 	  if (value > h->u.c.size)
1709 	    {
1710 	      unsigned int power;
1711 
1712 	      h->u.c.size = value;
1713 
1714 	      /* Select a default alignment based on the size.  This may
1715 		 be overridden by the caller.  */
1716 	      power = bfd_log2 (value);
1717 	      if (power > 4)
1718 		power = 4;
1719 	      h->u.c.p->alignment_power = power;
1720 	    }
1721 	  break;
1722 
1723 	case CREF:
1724 	  {
1725 	    bfd *obfd;
1726 
1727 	    /* We have found a common definition for a symbol which
1728 	       was already defined.  FIXME: It would nice if we could
1729 	       report the BFD which defined an indirect symbol, but we
1730 	       don't have anywhere to store the information.  */
1731 	    if (h->type == bfd_link_hash_defined
1732 		|| h->type == bfd_link_hash_defweak)
1733 	      obfd = h->u.def.section->owner;
1734 	    else
1735 	      obfd = NULL;
1736 	    if (! ((*info->callbacks->multiple_common)
1737 		   (info, h->root.string, obfd, h->type, (bfd_vma) 0,
1738 		    abfd, bfd_link_hash_common, value)))
1739 	      return false;
1740 	  }
1741 	  break;
1742 
1743 	case MIND:
1744 	  /* Multiple indirect symbols.  This is OK if they both point
1745 	     to the same symbol.  */
1746 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1747 	    break;
1748 	  /* Fall through.  */
1749 	case MDEF:
1750 	  /* Handle a multiple definition.  */
1751 	  {
1752 	    asection *msec = NULL;
1753 	    bfd_vma mval = 0;
1754 
1755 	    switch (h->type)
1756 	      {
1757 	      case bfd_link_hash_defined:
1758 		msec = h->u.def.section;
1759 		mval = h->u.def.value;
1760 		break;
1761 	      case bfd_link_hash_indirect:
1762 		msec = bfd_ind_section_ptr;
1763 		mval = 0;
1764 		break;
1765 	      default:
1766 		abort ();
1767 	      }
1768 
1769 	    /* Ignore a redefinition of an absolute symbol to the same
1770                value; it's harmless.  */
1771 	    if (h->type == bfd_link_hash_defined
1772 		&& bfd_is_abs_section (msec)
1773 		&& bfd_is_abs_section (section)
1774 		&& value == mval)
1775 	      break;
1776 
1777 	    if (! ((*info->callbacks->multiple_definition)
1778 		   (info, h->root.string, msec->owner, msec, mval, abfd,
1779 		    section, value)))
1780 	      return false;
1781 	  }
1782 	  break;
1783 
1784 	case CIND:
1785 	  /* Create an indirect symbol from an existing common symbol.  */
1786 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1787 	  if (! ((*info->callbacks->multiple_common)
1788 		 (info, h->root.string,
1789 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1790 		  abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1791 	    return false;
1792 	  /* Fall through.  */
1793 	case IND:
1794 	  /* Create an indirect symbol.  */
1795 	  {
1796 	    struct bfd_link_hash_entry *inh;
1797 
1798 	    /* STRING is the name of the symbol we want to indirect
1799 	       to.  */
1800 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1801 						copy, false);
1802 	    if (inh == (struct bfd_link_hash_entry *) NULL)
1803 	      return false;
1804 	    if (inh->type == bfd_link_hash_new)
1805 	      {
1806 		inh->type = bfd_link_hash_undefined;
1807 		inh->u.undef.abfd = abfd;
1808 		bfd_link_add_undef (info->hash, inh);
1809 	      }
1810 
1811 	    /* If the indirect symbol has been referenced, we need to
1812 	       push the reference down to the symbol we are
1813 	       referencing.  */
1814 	    if (h->type != bfd_link_hash_new)
1815 	      {
1816 		row = UNDEF_ROW;
1817 		cycle = true;
1818 	      }
1819 
1820 	    h->type = bfd_link_hash_indirect;
1821 	    h->u.i.link = inh;
1822 	  }
1823 	  break;
1824 
1825 	case SET:
1826 	  /* Add an entry to a set.  */
1827 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1828 						abfd, section, value))
1829 	    return false;
1830 	  break;
1831 
1832 	case WARNC:
1833 	  /* Issue a warning and cycle.  */
1834 	  if (h->u.i.warning != NULL)
1835 	    {
1836 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1837 						 h->root.string, abfd,
1838 						 (asection *) NULL,
1839 						 (bfd_vma) 0))
1840 		return false;
1841 	      /* Only issue a warning once.  */
1842 	      h->u.i.warning = NULL;
1843 	    }
1844 	  /* Fall through.  */
1845 	case CYCLE:
1846 	  /* Try again with the referenced symbol.  */
1847 	  h = h->u.i.link;
1848 	  cycle = true;
1849 	  break;
1850 
1851 	case REFC:
1852 	  /* A reference to an indirect symbol.  */
1853 	  if (h->next == NULL && info->hash->undefs_tail != h)
1854 	    h->next = h;
1855 	  h = h->u.i.link;
1856 	  cycle = true;
1857 	  break;
1858 
1859 	case WARN:
1860 	  /* Issue a warning.  */
1861 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1862 					     hash_entry_bfd (h),
1863 					     (asection *) NULL, (bfd_vma) 0))
1864 	    return false;
1865 	  break;
1866 
1867 	case CWARN:
1868 	  /* Warn if this symbol has been referenced already,
1869 	     otherwise add a warning.  A symbol has been referenced if
1870 	     the next field is not NULL, or it is the tail of the
1871 	     undefined symbol list.  The REF case above helps to
1872 	     ensure this.  */
1873 	  if (h->next != NULL || info->hash->undefs_tail == h)
1874 	    {
1875 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1876 						 hash_entry_bfd (h),
1877 						 (asection *) NULL,
1878 						 (bfd_vma) 0))
1879 		return false;
1880 	      break;
1881 	    }
1882 	  /* Fall through.  */
1883 	case MWARN:
1884 	  /* Make a warning symbol.  */
1885 	  {
1886 	    struct bfd_link_hash_entry *sub;
1887 
1888 	    /* STRING is the warning to give.  */
1889 	    sub = ((struct bfd_link_hash_entry *)
1890 		   ((*info->hash->table.newfunc)
1891 		    ((struct bfd_hash_entry *) NULL, &info->hash->table,
1892 		     h->root.string)));
1893 	    if (sub == NULL)
1894 	      return false;
1895 	    *sub = *h;
1896 	    sub->type = bfd_link_hash_warning;
1897 	    sub->u.i.link = h;
1898 	    if (! copy)
1899 	      sub->u.i.warning = string;
1900 	    else
1901 	      {
1902 		char *w;
1903 
1904 		w = bfd_hash_allocate (&info->hash->table,
1905 				       strlen (string) + 1);
1906 		if (w == NULL)
1907 		  return false;
1908 		strcpy (w, string);
1909 		sub->u.i.warning = w;
1910 	      }
1911 
1912 	    bfd_hash_replace (&info->hash->table,
1913 			      (struct bfd_hash_entry *) h,
1914 			      (struct bfd_hash_entry *) sub);
1915 	    if (hashp != NULL)
1916 	      *hashp = sub;
1917 	  }
1918 	  break;
1919 	}
1920     }
1921   while (cycle);
1922 
1923   return true;
1924 }
1925 
1926 /* Generic final link routine.  */
1927 
1928 boolean
1929 _bfd_generic_final_link (abfd, info)
1930      bfd *abfd;
1931      struct bfd_link_info *info;
1932 {
1933   bfd *sub;
1934   asection *o;
1935   struct bfd_link_order *p;
1936   size_t outsymalloc;
1937   struct generic_write_global_symbol_info wginfo;
1938 
1939   bfd_get_outsymbols (abfd) = (asymbol **) NULL;
1940   bfd_get_symcount (abfd) = 0;
1941   outsymalloc = 0;
1942 
1943   /* Mark all sections which will be included in the output file.  */
1944   for (o = abfd->sections; o != NULL; o = o->next)
1945     for (p = o->link_order_head; p != NULL; p = p->next)
1946       if (p->type == bfd_indirect_link_order)
1947 	p->u.indirect.section->linker_mark = true;
1948 
1949   /* Build the output symbol table.  */
1950   for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1951     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1952       return false;
1953 
1954   /* Accumulate the global symbols.  */
1955   wginfo.info = info;
1956   wginfo.output_bfd = abfd;
1957   wginfo.psymalloc = &outsymalloc;
1958   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1959 				   _bfd_generic_link_write_global_symbol,
1960 				   (PTR) &wginfo);
1961 
1962   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1963      shouldn't really need one, since we have SYMCOUNT, but some old
1964      code still expects one.  */
1965   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1966     return false;
1967 
1968   if (info->relocateable)
1969     {
1970       /* Allocate space for the output relocs for each section.  */
1971       for (o = abfd->sections;
1972 	   o != (asection *) NULL;
1973 	   o = o->next)
1974 	{
1975 	  o->reloc_count = 0;
1976 	  for (p = o->link_order_head;
1977 	       p != (struct bfd_link_order *) NULL;
1978 	       p = p->next)
1979 	    {
1980 	      if (p->type == bfd_section_reloc_link_order
1981 		  || p->type == bfd_symbol_reloc_link_order)
1982 		++o->reloc_count;
1983 	      else if (p->type == bfd_indirect_link_order)
1984 		{
1985 		  asection *input_section;
1986 		  bfd *input_bfd;
1987 		  long relsize;
1988 		  arelent **relocs;
1989 		  asymbol **symbols;
1990 		  long reloc_count;
1991 
1992 		  input_section = p->u.indirect.section;
1993 		  input_bfd = input_section->owner;
1994 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
1995 						       input_section);
1996 		  if (relsize < 0)
1997 		    return false;
1998 		  relocs = (arelent **) bfd_malloc ((size_t) relsize);
1999 		  if (!relocs && relsize != 0)
2000 		    return false;
2001 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2002 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2003 							input_section,
2004 							relocs,
2005 							symbols);
2006 		  if (reloc_count < 0)
2007 		    return false;
2008 		  BFD_ASSERT ((unsigned long) reloc_count
2009 			      == input_section->reloc_count);
2010 		  o->reloc_count += reloc_count;
2011 		  free (relocs);
2012 		}
2013 	    }
2014 	  if (o->reloc_count > 0)
2015 	    {
2016 	      o->orelocation = ((arelent **)
2017 				bfd_alloc (abfd,
2018 					   (o->reloc_count
2019 					    * sizeof (arelent *))));
2020 	      if (!o->orelocation)
2021 		return false;
2022 	      o->flags |= SEC_RELOC;
2023 	      /* Reset the count so that it can be used as an index
2024 		 when putting in the output relocs.  */
2025 	      o->reloc_count = 0;
2026 	    }
2027 	}
2028     }
2029 
2030   /* Handle all the link order information for the sections.  */
2031   for (o = abfd->sections;
2032        o != (asection *) NULL;
2033        o = o->next)
2034     {
2035       for (p = o->link_order_head;
2036 	   p != (struct bfd_link_order *) NULL;
2037 	   p = p->next)
2038 	{
2039 	  switch (p->type)
2040 	    {
2041 	    case bfd_section_reloc_link_order:
2042 	    case bfd_symbol_reloc_link_order:
2043 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2044 		return false;
2045 	      break;
2046 	    case bfd_indirect_link_order:
2047 	      if (! default_indirect_link_order (abfd, info, o, p, true))
2048 		return false;
2049 	      break;
2050 	    default:
2051 	      if (! _bfd_default_link_order (abfd, info, o, p))
2052 		return false;
2053 	      break;
2054 	    }
2055 	}
2056     }
2057 
2058   return true;
2059 }
2060 
2061 /* Add an output symbol to the output BFD.  */
2062 
2063 static boolean
2064 generic_add_output_symbol (output_bfd, psymalloc, sym)
2065      bfd *output_bfd;
2066      size_t *psymalloc;
2067      asymbol *sym;
2068 {
2069   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2070     {
2071       asymbol **newsyms;
2072 
2073       if (*psymalloc == 0)
2074 	*psymalloc = 124;
2075       else
2076 	*psymalloc *= 2;
2077       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd),
2078 					  *psymalloc * sizeof (asymbol *));
2079       if (newsyms == (asymbol **) NULL)
2080 	return false;
2081       bfd_get_outsymbols (output_bfd) = newsyms;
2082     }
2083 
2084   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2085   if (sym != NULL)
2086     ++ bfd_get_symcount (output_bfd);
2087 
2088   return true;
2089 }
2090 
2091 /* Handle the symbols for an input BFD.  */
2092 
2093 boolean
2094 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
2095      bfd *output_bfd;
2096      bfd *input_bfd;
2097      struct bfd_link_info *info;
2098      size_t *psymalloc;
2099 {
2100   asymbol **sym_ptr;
2101   asymbol **sym_end;
2102 
2103   if (! generic_link_read_symbols (input_bfd))
2104     return false;
2105 
2106   /* Create a filename symbol if we are supposed to.  */
2107   if (info->create_object_symbols_section != (asection *) NULL)
2108     {
2109       asection *sec;
2110 
2111       for (sec = input_bfd->sections;
2112 	   sec != (asection *) NULL;
2113 	   sec = sec->next)
2114 	{
2115 	  if (sec->output_section == info->create_object_symbols_section)
2116 	    {
2117 	      asymbol *newsym;
2118 
2119 	      newsym = bfd_make_empty_symbol (input_bfd);
2120 	      if (!newsym)
2121 		return false;
2122 	      newsym->name = input_bfd->filename;
2123 	      newsym->value = 0;
2124 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2125 	      newsym->section = sec;
2126 
2127 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2128 					       newsym))
2129 		return false;
2130 
2131 	      break;
2132 	    }
2133 	}
2134     }
2135 
2136   /* Adjust the values of the globally visible symbols, and write out
2137      local symbols.  */
2138   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2139   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2140   for (; sym_ptr < sym_end; sym_ptr++)
2141     {
2142       asymbol *sym;
2143       struct generic_link_hash_entry *h;
2144       boolean output;
2145 
2146       h = (struct generic_link_hash_entry *) NULL;
2147       sym = *sym_ptr;
2148       if ((sym->flags & (BSF_INDIRECT
2149 			 | BSF_WARNING
2150 			 | BSF_GLOBAL
2151 			 | BSF_CONSTRUCTOR
2152 			 | BSF_WEAK)) != 0
2153 	  || bfd_is_und_section (bfd_get_section (sym))
2154 	  || bfd_is_com_section (bfd_get_section (sym))
2155 	  || bfd_is_ind_section (bfd_get_section (sym)))
2156 	{
2157 	  if (sym->udata.p != NULL)
2158 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2159 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2160 	    {
2161 	      /* This case normally means that the main linker code
2162                  deliberately ignored this constructor symbol.  We
2163                  should just pass it through.  This will screw up if
2164                  the constructor symbol is from a different,
2165                  non-generic, object file format, but the case will
2166                  only arise when linking with -r, which will probably
2167                  fail anyhow, since there will be no way to represent
2168                  the relocs in the output format being used.  */
2169 	      h = NULL;
2170 	    }
2171 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2172 	    h = ((struct generic_link_hash_entry *)
2173 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2174 					       bfd_asymbol_name (sym),
2175 					       false, false, true));
2176 	  else
2177 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2178 					       bfd_asymbol_name (sym),
2179 					       false, false, true);
2180 
2181 	  if (h != (struct generic_link_hash_entry *) NULL)
2182 	    {
2183 	      /* Force all references to this symbol to point to
2184 		 the same area in memory.  It is possible that
2185 		 this routine will be called with a hash table
2186 		 other than a generic hash table, so we double
2187 		 check that.  */
2188 	      if (info->hash->creator == input_bfd->xvec)
2189 		{
2190 		  if (h->sym != (asymbol *) NULL)
2191 		    *sym_ptr = sym = h->sym;
2192 		}
2193 
2194 	      switch (h->root.type)
2195 		{
2196 		default:
2197 		case bfd_link_hash_new:
2198 		  abort ();
2199 		case bfd_link_hash_undefined:
2200 		  break;
2201 		case bfd_link_hash_undefweak:
2202 		  sym->flags |= BSF_WEAK;
2203 		  break;
2204 		case bfd_link_hash_indirect:
2205 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2206 		  /* fall through */
2207 		case bfd_link_hash_defined:
2208 		  sym->flags |= BSF_GLOBAL;
2209 		  sym->flags &=~ BSF_CONSTRUCTOR;
2210 		  sym->value = h->root.u.def.value;
2211 		  sym->section = h->root.u.def.section;
2212 		  break;
2213 		case bfd_link_hash_defweak:
2214 		  sym->flags |= BSF_WEAK;
2215 		  sym->flags &=~ BSF_CONSTRUCTOR;
2216 		  sym->value = h->root.u.def.value;
2217 		  sym->section = h->root.u.def.section;
2218 		  break;
2219 		case bfd_link_hash_common:
2220 		  sym->value = h->root.u.c.size;
2221 		  sym->flags |= BSF_GLOBAL;
2222 		  if (! bfd_is_com_section (sym->section))
2223 		    {
2224 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2225 		      sym->section = bfd_com_section_ptr;
2226 		    }
2227 		  /* We do not set the section of the symbol to
2228 		     h->root.u.c.p->section.  That value was saved so
2229 		     that we would know where to allocate the symbol
2230 		     if it was defined.  In this case the type is
2231 		     still bfd_link_hash_common, so we did not define
2232 		     it, so we do not want to use that section.  */
2233 		  break;
2234 		}
2235 	    }
2236 	}
2237 
2238       /* This switch is straight from the old code in
2239 	 write_file_locals in ldsym.c.  */
2240       if (info->strip == strip_all
2241 	  || (info->strip == strip_some
2242 	      && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2243 				   false, false)
2244 		  == (struct bfd_hash_entry *) NULL)))
2245 	output = false;
2246       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2247 	{
2248 	  /* If this symbol is marked as occurring now, rather
2249 	     than at the end, output it now.  This is used for
2250 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2251 	     better way.  */
2252 	  if (bfd_asymbol_bfd (sym) == input_bfd
2253 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2254 	    output = true;
2255 	  else
2256 	    output = false;
2257 	}
2258       else if (bfd_is_ind_section (sym->section))
2259 	output = false;
2260       else if ((sym->flags & BSF_DEBUGGING) != 0)
2261 	{
2262 	  if (info->strip == strip_none)
2263 	    output = true;
2264 	  else
2265 	    output = false;
2266 	}
2267       else if (bfd_is_und_section (sym->section)
2268 	       || bfd_is_com_section (sym->section))
2269 	output = false;
2270       else if ((sym->flags & BSF_LOCAL) != 0)
2271 	{
2272 	  if ((sym->flags & BSF_WARNING) != 0)
2273 	    output = false;
2274 	  else
2275 	    {
2276 	      switch (info->discard)
2277 		{
2278 		default:
2279 		case discard_all:
2280 		  output = false;
2281 		  break;
2282 		case discard_l:
2283 		  if (bfd_is_local_label (input_bfd, sym))
2284 		    output = false;
2285 		  else
2286 		    output = true;
2287 		  break;
2288 		case discard_none:
2289 		  output = true;
2290 		  break;
2291 		}
2292 	    }
2293 	}
2294       else if ((sym->flags & BSF_CONSTRUCTOR))
2295 	{
2296 	  if (info->strip != strip_all)
2297 	    output = true;
2298 	  else
2299 	    output = false;
2300 	}
2301       else
2302 	abort ();
2303 
2304       /* If this symbol is in a section which is not being included
2305 	 in the output file, then we don't want to output the symbol.
2306 
2307 	 Gross.  .bss and similar sections won't have the linker_mark
2308 	 field set.  */
2309       if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2310 	  && sym->section->linker_mark == false)
2311 	output = false;
2312 
2313       if (output)
2314 	{
2315 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2316 	    return false;
2317 	  if (h != (struct generic_link_hash_entry *) NULL)
2318 	    h->written = true;
2319 	}
2320     }
2321 
2322   return true;
2323 }
2324 
2325 /* Set the section and value of a generic BFD symbol based on a linker
2326    hash table entry.  */
2327 
2328 static void
2329 set_symbol_from_hash (sym, h)
2330      asymbol *sym;
2331      struct bfd_link_hash_entry *h;
2332 {
2333   switch (h->type)
2334     {
2335     default:
2336       abort ();
2337       break;
2338     case bfd_link_hash_new:
2339       /* This can happen when a constructor symbol is seen but we are
2340          not building constructors.  */
2341       if (sym->section != NULL)
2342 	{
2343 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2344 	}
2345       else
2346 	{
2347 	  sym->flags |= BSF_CONSTRUCTOR;
2348 	  sym->section = bfd_abs_section_ptr;
2349 	  sym->value = 0;
2350 	}
2351       break;
2352     case bfd_link_hash_undefined:
2353       sym->section = bfd_und_section_ptr;
2354       sym->value = 0;
2355       break;
2356     case bfd_link_hash_undefweak:
2357       sym->section = bfd_und_section_ptr;
2358       sym->value = 0;
2359       sym->flags |= BSF_WEAK;
2360       break;
2361     case bfd_link_hash_defined:
2362       sym->section = h->u.def.section;
2363       sym->value = h->u.def.value;
2364       break;
2365     case bfd_link_hash_defweak:
2366       sym->flags |= BSF_WEAK;
2367       sym->section = h->u.def.section;
2368       sym->value = h->u.def.value;
2369       break;
2370     case bfd_link_hash_common:
2371       sym->value = h->u.c.size;
2372       if (sym->section == NULL)
2373 	sym->section = bfd_com_section_ptr;
2374       else if (! bfd_is_com_section (sym->section))
2375 	{
2376 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2377 	  sym->section = bfd_com_section_ptr;
2378 	}
2379       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2380       break;
2381     case bfd_link_hash_indirect:
2382     case bfd_link_hash_warning:
2383       /* FIXME: What should we do here?  */
2384       break;
2385     }
2386 }
2387 
2388 /* Write out a global symbol, if it hasn't already been written out.
2389    This is called for each symbol in the hash table.  */
2390 
2391 boolean
2392 _bfd_generic_link_write_global_symbol (h, data)
2393      struct generic_link_hash_entry *h;
2394      PTR data;
2395 {
2396   struct generic_write_global_symbol_info *wginfo =
2397     (struct generic_write_global_symbol_info *) data;
2398   asymbol *sym;
2399 
2400   if (h->written)
2401     return true;
2402 
2403   h->written = true;
2404 
2405   if (wginfo->info->strip == strip_all
2406       || (wginfo->info->strip == strip_some
2407 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2408 			      false, false) == NULL))
2409     return true;
2410 
2411   if (h->sym != (asymbol *) NULL)
2412     sym = h->sym;
2413   else
2414     {
2415       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2416       if (!sym)
2417 	return false;
2418       sym->name = h->root.root.string;
2419       sym->flags = 0;
2420     }
2421 
2422   set_symbol_from_hash (sym, &h->root);
2423 
2424   sym->flags |= BSF_GLOBAL;
2425 
2426   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2427 				   sym))
2428     {
2429       /* FIXME: No way to return failure.  */
2430       abort ();
2431     }
2432 
2433   return true;
2434 }
2435 
2436 /* Create a relocation.  */
2437 
2438 boolean
2439 _bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2440      bfd *abfd;
2441      struct bfd_link_info *info;
2442      asection *sec;
2443      struct bfd_link_order *link_order;
2444 {
2445   arelent *r;
2446 
2447   if (! info->relocateable)
2448     abort ();
2449   if (sec->orelocation == (arelent **) NULL)
2450     abort ();
2451 
2452   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2453   if (r == (arelent *) NULL)
2454     return false;
2455 
2456   r->address = link_order->offset;
2457   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2458   if (r->howto == 0)
2459     {
2460       bfd_set_error (bfd_error_bad_value);
2461       return false;
2462     }
2463 
2464   /* Get the symbol to use for the relocation.  */
2465   if (link_order->type == bfd_section_reloc_link_order)
2466     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2467   else
2468     {
2469       struct generic_link_hash_entry *h;
2470 
2471       h = ((struct generic_link_hash_entry *)
2472 	   bfd_wrapped_link_hash_lookup (abfd, info,
2473 					 link_order->u.reloc.p->u.name,
2474 					 false, false, true));
2475       if (h == (struct generic_link_hash_entry *) NULL
2476 	  || ! h->written)
2477 	{
2478 	  if (! ((*info->callbacks->unattached_reloc)
2479 		 (info, link_order->u.reloc.p->u.name,
2480 		  (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2481 	    return false;
2482 	  bfd_set_error (bfd_error_bad_value);
2483 	  return false;
2484 	}
2485       r->sym_ptr_ptr = &h->sym;
2486     }
2487 
2488   /* If this is an inplace reloc, write the addend to the object file.
2489      Otherwise, store it in the reloc addend.  */
2490   if (! r->howto->partial_inplace)
2491     r->addend = link_order->u.reloc.p->addend;
2492   else
2493     {
2494       bfd_size_type size;
2495       bfd_reloc_status_type rstat;
2496       bfd_byte *buf;
2497       boolean ok;
2498 
2499       size = bfd_get_reloc_size (r->howto);
2500       buf = (bfd_byte *) bfd_zmalloc (size);
2501       if (buf == (bfd_byte *) NULL)
2502 	return false;
2503       rstat = _bfd_relocate_contents (r->howto, abfd,
2504 				      link_order->u.reloc.p->addend, buf);
2505       switch (rstat)
2506 	{
2507 	case bfd_reloc_ok:
2508 	  break;
2509 	default:
2510 	case bfd_reloc_outofrange:
2511 	  abort ();
2512 	case bfd_reloc_overflow:
2513 	  if (! ((*info->callbacks->reloc_overflow)
2514 		 (info,
2515 		  (link_order->type == bfd_section_reloc_link_order
2516 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2517 		   : link_order->u.reloc.p->u.name),
2518 		  r->howto->name, link_order->u.reloc.p->addend,
2519 		  (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2520 	    {
2521 	      free (buf);
2522 	      return false;
2523 	    }
2524 	  break;
2525 	}
2526       ok = bfd_set_section_contents (abfd, sec, (PTR) buf,
2527 				     (file_ptr)
2528                                      (link_order->offset *
2529                                       bfd_octets_per_byte (abfd)), size);
2530       free (buf);
2531       if (! ok)
2532 	return false;
2533 
2534       r->addend = 0;
2535     }
2536 
2537   sec->orelocation[sec->reloc_count] = r;
2538   ++sec->reloc_count;
2539 
2540   return true;
2541 }
2542 
2543 /* Allocate a new link_order for a section.  */
2544 
2545 struct bfd_link_order *
2546 bfd_new_link_order (abfd, section)
2547      bfd *abfd;
2548      asection *section;
2549 {
2550   struct bfd_link_order *new;
2551 
2552   new = ((struct bfd_link_order *)
2553 	 bfd_alloc (abfd, sizeof (struct bfd_link_order)));
2554   if (!new)
2555     return NULL;
2556 
2557   new->type = bfd_undefined_link_order;
2558   new->offset = 0;
2559   new->size = 0;
2560   new->next = (struct bfd_link_order *) NULL;
2561 
2562   if (section->link_order_tail != (struct bfd_link_order *) NULL)
2563     section->link_order_tail->next = new;
2564   else
2565     section->link_order_head = new;
2566   section->link_order_tail = new;
2567 
2568   return new;
2569 }
2570 
2571 /* Default link order processing routine.  Note that we can not handle
2572    the reloc_link_order types here, since they depend upon the details
2573    of how the particular backends generates relocs.  */
2574 
2575 boolean
2576 _bfd_default_link_order (abfd, info, sec, link_order)
2577      bfd *abfd;
2578      struct bfd_link_info *info;
2579      asection *sec;
2580      struct bfd_link_order *link_order;
2581 {
2582   switch (link_order->type)
2583     {
2584     case bfd_undefined_link_order:
2585     case bfd_section_reloc_link_order:
2586     case bfd_symbol_reloc_link_order:
2587     default:
2588       abort ();
2589     case bfd_indirect_link_order:
2590       return default_indirect_link_order (abfd, info, sec, link_order,
2591 					  false);
2592     case bfd_fill_link_order:
2593       return default_fill_link_order (abfd, info, sec, link_order);
2594     case bfd_data_link_order:
2595       return bfd_set_section_contents (abfd, sec,
2596 				       (PTR) link_order->u.data.contents,
2597 				       (file_ptr)
2598                                        (link_order->offset *
2599                                         bfd_octets_per_byte (abfd)),
2600 				       link_order->size);
2601     }
2602 }
2603 
2604 /* Default routine to handle a bfd_fill_link_order.  */
2605 
2606 /*ARGSUSED*/
2607 static boolean
2608 default_fill_link_order (abfd, info, sec, link_order)
2609      bfd *abfd;
2610      struct bfd_link_info *info ATTRIBUTE_UNUSED;
2611      asection *sec;
2612      struct bfd_link_order *link_order;
2613 {
2614   size_t size;
2615   char *space;
2616   size_t i;
2617   int fill;
2618   boolean result;
2619 
2620   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2621 
2622   size = (size_t) link_order->size;
2623   space = (char *) bfd_malloc (size);
2624   if (space == NULL && size != 0)
2625     return false;
2626 
2627   fill = link_order->u.fill.value;
2628   for (i = 0; i < size; i += 2)
2629     space[i] = fill >> 8;
2630   for (i = 1; i < size; i += 2)
2631     space[i] = fill;
2632   result = bfd_set_section_contents (abfd, sec, space,
2633 				     (file_ptr)
2634                                      (link_order->offset *
2635                                       bfd_octets_per_byte (abfd)),
2636 				     link_order->size);
2637   free (space);
2638   return result;
2639 }
2640 
2641 /* Default routine to handle a bfd_indirect_link_order.  */
2642 
2643 static boolean
2644 default_indirect_link_order (output_bfd, info, output_section, link_order,
2645 			     generic_linker)
2646      bfd *output_bfd;
2647      struct bfd_link_info *info;
2648      asection *output_section;
2649      struct bfd_link_order *link_order;
2650      boolean generic_linker;
2651 {
2652   asection *input_section;
2653   bfd *input_bfd;
2654   bfd_byte *contents = NULL;
2655   bfd_byte *new_contents;
2656 
2657   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2658 
2659   if (link_order->size == 0)
2660     return true;
2661 
2662   input_section = link_order->u.indirect.section;
2663   input_bfd = input_section->owner;
2664 
2665   BFD_ASSERT (input_section->output_section == output_section);
2666   BFD_ASSERT (input_section->output_offset == link_order->offset);
2667   BFD_ASSERT (input_section->_cooked_size == link_order->size);
2668 
2669   if (info->relocateable
2670       && input_section->reloc_count > 0
2671       && output_section->orelocation == (arelent **) NULL)
2672     {
2673       /* Space has not been allocated for the output relocations.
2674 	 This can happen when we are called by a specific backend
2675 	 because somebody is attempting to link together different
2676 	 types of object files.  Handling this case correctly is
2677 	 difficult, and sometimes impossible.  */
2678       (*_bfd_error_handler)
2679 	(_("Attempt to do relocateable link with %s input and %s output"),
2680 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2681       bfd_set_error (bfd_error_wrong_format);
2682       return false;
2683     }
2684 
2685   if (! generic_linker)
2686     {
2687       asymbol **sympp;
2688       asymbol **symppend;
2689 
2690       /* Get the canonical symbols.  The generic linker will always
2691 	 have retrieved them by this point, but we are being called by
2692 	 a specific linker, presumably because we are linking
2693 	 different types of object files together.  */
2694       if (! generic_link_read_symbols (input_bfd))
2695 	return false;
2696 
2697       /* Since we have been called by a specific linker, rather than
2698 	 the generic linker, the values of the symbols will not be
2699 	 right.  They will be the values as seen in the input file,
2700 	 not the values of the final link.  We need to fix them up
2701 	 before we can relocate the section.  */
2702       sympp = _bfd_generic_link_get_symbols (input_bfd);
2703       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2704       for (; sympp < symppend; sympp++)
2705 	{
2706 	  asymbol *sym;
2707 	  struct bfd_link_hash_entry *h;
2708 
2709 	  sym = *sympp;
2710 
2711 	  if ((sym->flags & (BSF_INDIRECT
2712 			     | BSF_WARNING
2713 			     | BSF_GLOBAL
2714 			     | BSF_CONSTRUCTOR
2715 			     | BSF_WEAK)) != 0
2716 	      || bfd_is_und_section (bfd_get_section (sym))
2717 	      || bfd_is_com_section (bfd_get_section (sym))
2718 	      || bfd_is_ind_section (bfd_get_section (sym)))
2719 	    {
2720 	      /* sym->udata may have been set by
2721 		 generic_link_add_symbol_list.  */
2722 	      if (sym->udata.p != NULL)
2723 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2724 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2725 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2726 						  bfd_asymbol_name (sym),
2727 						  false, false, true);
2728 	      else
2729 		h = bfd_link_hash_lookup (info->hash,
2730 					  bfd_asymbol_name (sym),
2731 					  false, false, true);
2732 	      if (h != NULL)
2733 		set_symbol_from_hash (sym, h);
2734 	    }
2735 	}
2736     }
2737 
2738   /* Get and relocate the section contents.  */
2739   contents = ((bfd_byte *)
2740 	      bfd_malloc (bfd_section_size (input_bfd, input_section)));
2741   if (contents == NULL && bfd_section_size (input_bfd, input_section) != 0)
2742     goto error_return;
2743   new_contents = (bfd_get_relocated_section_contents
2744 		  (output_bfd, info, link_order, contents, info->relocateable,
2745 		   _bfd_generic_link_get_symbols (input_bfd)));
2746   if (!new_contents)
2747     goto error_return;
2748 
2749   /* Output the section contents.  */
2750   if (! bfd_set_section_contents (output_bfd, output_section,
2751 				  (PTR) new_contents,
2752 				  (file_ptr)
2753                                   (link_order->offset *
2754                                    bfd_octets_per_byte (output_bfd)),
2755                                   link_order->size))
2756     goto error_return;
2757 
2758   if (contents != NULL)
2759     free (contents);
2760   return true;
2761 
2762  error_return:
2763   if (contents != NULL)
2764     free (contents);
2765   return false;
2766 }
2767 
2768 /* A little routine to count the number of relocs in a link_order
2769    list.  */
2770 
2771 unsigned int
2772 _bfd_count_link_order_relocs (link_order)
2773      struct bfd_link_order *link_order;
2774 {
2775   register unsigned int c;
2776   register struct bfd_link_order *l;
2777 
2778   c = 0;
2779   for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2780     {
2781       if (l->type == bfd_section_reloc_link_order
2782 	  || l->type == bfd_symbol_reloc_link_order)
2783 	++c;
2784     }
2785 
2786   return c;
2787 }
2788 
2789 /*
2790 FUNCTION
2791 	bfd_link_split_section
2792 
2793 SYNOPSIS
2794         boolean bfd_link_split_section(bfd *abfd, asection *sec);
2795 
2796 DESCRIPTION
2797 	Return nonzero if @var{sec} should be split during a
2798 	reloceatable or final link.
2799 
2800 .#define bfd_link_split_section(abfd, sec) \
2801 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2802 .
2803 
2804 */
2805 
2806 
2807 
2808 boolean
2809 _bfd_generic_link_split_section (abfd, sec)
2810      bfd *abfd ATTRIBUTE_UNUSED;
2811      asection *sec ATTRIBUTE_UNUSED;
2812 {
2813   return false;
2814 }
2815