1 /* ELF linking support for BFD. 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 3 Free Software Foundation, Inc. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 20 21 #include "bfd.h" 22 #include "sysdep.h" 23 #include "bfdlink.h" 24 #include "libbfd.h" 25 #define ARCH_SIZE 0 26 #include "elf-bfd.h" 27 #include "safe-ctype.h" 28 #include "libiberty.h" 29 30 bfd_boolean 31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 32 { 33 flagword flags; 34 asection *s; 35 struct elf_link_hash_entry *h; 36 struct bfd_link_hash_entry *bh; 37 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 38 int ptralign; 39 40 /* This function may be called more than once. */ 41 s = bfd_get_section_by_name (abfd, ".got"); 42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0) 43 return TRUE; 44 45 switch (bed->s->arch_size) 46 { 47 case 32: 48 ptralign = 2; 49 break; 50 51 case 64: 52 ptralign = 3; 53 break; 54 55 default: 56 bfd_set_error (bfd_error_bad_value); 57 return FALSE; 58 } 59 60 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 61 | SEC_LINKER_CREATED); 62 63 s = bfd_make_section (abfd, ".got"); 64 if (s == NULL 65 || !bfd_set_section_flags (abfd, s, flags) 66 || !bfd_set_section_alignment (abfd, s, ptralign)) 67 return FALSE; 68 69 if (bed->want_got_plt) 70 { 71 s = bfd_make_section (abfd, ".got.plt"); 72 if (s == NULL 73 || !bfd_set_section_flags (abfd, s, flags) 74 || !bfd_set_section_alignment (abfd, s, ptralign)) 75 return FALSE; 76 } 77 78 if (bed->want_got_sym) 79 { 80 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got 81 (or .got.plt) section. We don't do this in the linker script 82 because we don't want to define the symbol if we are not creating 83 a global offset table. */ 84 bh = NULL; 85 if (!(_bfd_generic_link_add_one_symbol 86 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, 87 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh))) 88 return FALSE; 89 h = (struct elf_link_hash_entry *) bh; 90 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; 91 h->type = STT_OBJECT; 92 93 if (! info->executable 94 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 95 return FALSE; 96 97 elf_hash_table (info)->hgot = h; 98 } 99 100 /* The first bit of the global offset table is the header. */ 101 s->_raw_size += bed->got_header_size + bed->got_symbol_offset; 102 103 return TRUE; 104 } 105 106 /* Create some sections which will be filled in with dynamic linking 107 information. ABFD is an input file which requires dynamic sections 108 to be created. The dynamic sections take up virtual memory space 109 when the final executable is run, so we need to create them before 110 addresses are assigned to the output sections. We work out the 111 actual contents and size of these sections later. */ 112 113 bfd_boolean 114 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 115 { 116 flagword flags; 117 register asection *s; 118 struct elf_link_hash_entry *h; 119 struct bfd_link_hash_entry *bh; 120 const struct elf_backend_data *bed; 121 122 if (! is_elf_hash_table (info->hash)) 123 return FALSE; 124 125 if (elf_hash_table (info)->dynamic_sections_created) 126 return TRUE; 127 128 /* Make sure that all dynamic sections use the same input BFD. */ 129 if (elf_hash_table (info)->dynobj == NULL) 130 elf_hash_table (info)->dynobj = abfd; 131 else 132 abfd = elf_hash_table (info)->dynobj; 133 134 /* Note that we set the SEC_IN_MEMORY flag for all of these 135 sections. */ 136 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS 137 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 138 139 /* A dynamically linked executable has a .interp section, but a 140 shared library does not. */ 141 if (info->executable) 142 { 143 s = bfd_make_section (abfd, ".interp"); 144 if (s == NULL 145 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) 146 return FALSE; 147 } 148 149 if (! info->traditional_format) 150 { 151 s = bfd_make_section (abfd, ".eh_frame_hdr"); 152 if (s == NULL 153 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) 154 || ! bfd_set_section_alignment (abfd, s, 2)) 155 return FALSE; 156 elf_hash_table (info)->eh_info.hdr_sec = s; 157 } 158 159 bed = get_elf_backend_data (abfd); 160 161 /* Create sections to hold version informations. These are removed 162 if they are not needed. */ 163 s = bfd_make_section (abfd, ".gnu.version_d"); 164 if (s == NULL 165 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) 166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 167 return FALSE; 168 169 s = bfd_make_section (abfd, ".gnu.version"); 170 if (s == NULL 171 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) 172 || ! bfd_set_section_alignment (abfd, s, 1)) 173 return FALSE; 174 175 s = bfd_make_section (abfd, ".gnu.version_r"); 176 if (s == NULL 177 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) 178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 179 return FALSE; 180 181 s = bfd_make_section (abfd, ".dynsym"); 182 if (s == NULL 183 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) 184 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 185 return FALSE; 186 187 s = bfd_make_section (abfd, ".dynstr"); 188 if (s == NULL 189 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) 190 return FALSE; 191 192 /* Create a strtab to hold the dynamic symbol names. */ 193 if (elf_hash_table (info)->dynstr == NULL) 194 { 195 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init (); 196 if (elf_hash_table (info)->dynstr == NULL) 197 return FALSE; 198 } 199 200 s = bfd_make_section (abfd, ".dynamic"); 201 if (s == NULL 202 || ! bfd_set_section_flags (abfd, s, flags) 203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 204 return FALSE; 205 206 /* The special symbol _DYNAMIC is always set to the start of the 207 .dynamic section. This call occurs before we have processed the 208 symbols for any dynamic object, so we don't have to worry about 209 overriding a dynamic definition. We could set _DYNAMIC in a 210 linker script, but we only want to define it if we are, in fact, 211 creating a .dynamic section. We don't want to define it if there 212 is no .dynamic section, since on some ELF platforms the start up 213 code examines it to decide how to initialize the process. */ 214 bh = NULL; 215 if (! (_bfd_generic_link_add_one_symbol 216 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE, 217 get_elf_backend_data (abfd)->collect, &bh))) 218 return FALSE; 219 h = (struct elf_link_hash_entry *) bh; 220 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; 221 h->type = STT_OBJECT; 222 223 if (! info->executable 224 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 225 return FALSE; 226 227 s = bfd_make_section (abfd, ".hash"); 228 if (s == NULL 229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) 230 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 231 return FALSE; 232 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; 233 234 /* Let the backend create the rest of the sections. This lets the 235 backend set the right flags. The backend will normally create 236 the .got and .plt sections. */ 237 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) 238 return FALSE; 239 240 elf_hash_table (info)->dynamic_sections_created = TRUE; 241 242 return TRUE; 243 } 244 245 /* Create dynamic sections when linking against a dynamic object. */ 246 247 bfd_boolean 248 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 249 { 250 flagword flags, pltflags; 251 asection *s; 252 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 253 254 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and 255 .rel[a].bss sections. */ 256 257 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 258 | SEC_LINKER_CREATED); 259 260 pltflags = flags; 261 pltflags |= SEC_CODE; 262 if (bed->plt_not_loaded) 263 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); 264 if (bed->plt_readonly) 265 pltflags |= SEC_READONLY; 266 267 s = bfd_make_section (abfd, ".plt"); 268 if (s == NULL 269 || ! bfd_set_section_flags (abfd, s, pltflags) 270 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) 271 return FALSE; 272 273 if (bed->want_plt_sym) 274 { 275 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the 276 .plt section. */ 277 struct elf_link_hash_entry *h; 278 struct bfd_link_hash_entry *bh = NULL; 279 280 if (! (_bfd_generic_link_add_one_symbol 281 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL, 282 FALSE, get_elf_backend_data (abfd)->collect, &bh))) 283 return FALSE; 284 h = (struct elf_link_hash_entry *) bh; 285 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; 286 h->type = STT_OBJECT; 287 288 if (! info->executable 289 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 290 return FALSE; 291 } 292 293 s = bfd_make_section (abfd, 294 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt"); 295 if (s == NULL 296 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) 297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 298 return FALSE; 299 300 if (! _bfd_elf_create_got_section (abfd, info)) 301 return FALSE; 302 303 if (bed->want_dynbss) 304 { 305 /* The .dynbss section is a place to put symbols which are defined 306 by dynamic objects, are referenced by regular objects, and are 307 not functions. We must allocate space for them in the process 308 image and use a R_*_COPY reloc to tell the dynamic linker to 309 initialize them at run time. The linker script puts the .dynbss 310 section into the .bss section of the final image. */ 311 s = bfd_make_section (abfd, ".dynbss"); 312 if (s == NULL 313 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED)) 314 return FALSE; 315 316 /* The .rel[a].bss section holds copy relocs. This section is not 317 normally needed. We need to create it here, though, so that the 318 linker will map it to an output section. We can't just create it 319 only if we need it, because we will not know whether we need it 320 until we have seen all the input files, and the first time the 321 main linker code calls BFD after examining all the input files 322 (size_dynamic_sections) the input sections have already been 323 mapped to the output sections. If the section turns out not to 324 be needed, we can discard it later. We will never need this 325 section when generating a shared object, since they do not use 326 copy relocs. */ 327 if (! info->shared) 328 { 329 s = bfd_make_section (abfd, 330 (bed->default_use_rela_p 331 ? ".rela.bss" : ".rel.bss")); 332 if (s == NULL 333 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) 334 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 335 return FALSE; 336 } 337 } 338 339 return TRUE; 340 } 341 342 /* Record a new dynamic symbol. We record the dynamic symbols as we 343 read the input files, since we need to have a list of all of them 344 before we can determine the final sizes of the output sections. 345 Note that we may actually call this function even though we are not 346 going to output any dynamic symbols; in some cases we know that a 347 symbol should be in the dynamic symbol table, but only if there is 348 one. */ 349 350 bfd_boolean 351 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, 352 struct elf_link_hash_entry *h) 353 { 354 if (h->dynindx == -1) 355 { 356 struct elf_strtab_hash *dynstr; 357 char *p; 358 const char *name; 359 bfd_size_type indx; 360 361 /* XXX: The ABI draft says the linker must turn hidden and 362 internal symbols into STB_LOCAL symbols when producing the 363 DSO. However, if ld.so honors st_other in the dynamic table, 364 this would not be necessary. */ 365 switch (ELF_ST_VISIBILITY (h->other)) 366 { 367 case STV_INTERNAL: 368 case STV_HIDDEN: 369 if (h->root.type != bfd_link_hash_undefined 370 && h->root.type != bfd_link_hash_undefweak) 371 { 372 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; 373 return TRUE; 374 } 375 376 default: 377 break; 378 } 379 380 h->dynindx = elf_hash_table (info)->dynsymcount; 381 ++elf_hash_table (info)->dynsymcount; 382 383 dynstr = elf_hash_table (info)->dynstr; 384 if (dynstr == NULL) 385 { 386 /* Create a strtab to hold the dynamic symbol names. */ 387 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 388 if (dynstr == NULL) 389 return FALSE; 390 } 391 392 /* We don't put any version information in the dynamic string 393 table. */ 394 name = h->root.root.string; 395 p = strchr (name, ELF_VER_CHR); 396 if (p != NULL) 397 /* We know that the p points into writable memory. In fact, 398 there are only a few symbols that have read-only names, being 399 those like _GLOBAL_OFFSET_TABLE_ that are created specially 400 by the backends. Most symbols will have names pointing into 401 an ELF string table read from a file, or to objalloc memory. */ 402 *p = 0; 403 404 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); 405 406 if (p != NULL) 407 *p = ELF_VER_CHR; 408 409 if (indx == (bfd_size_type) -1) 410 return FALSE; 411 h->dynstr_index = indx; 412 } 413 414 return TRUE; 415 } 416 417 /* Record an assignment to a symbol made by a linker script. We need 418 this in case some dynamic object refers to this symbol. */ 419 420 bfd_boolean 421 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED, 422 struct bfd_link_info *info, 423 const char *name, 424 bfd_boolean provide) 425 { 426 struct elf_link_hash_entry *h; 427 428 if (!is_elf_hash_table (info->hash)) 429 return TRUE; 430 431 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE); 432 if (h == NULL) 433 return FALSE; 434 435 /* Since we're defining the symbol, don't let it seem to have not 436 been defined. record_dynamic_symbol and size_dynamic_sections 437 may depend on this. */ 438 if (h->root.type == bfd_link_hash_undefweak 439 || h->root.type == bfd_link_hash_undefined) 440 h->root.type = bfd_link_hash_new; 441 442 if (h->root.type == bfd_link_hash_new) 443 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; 444 445 /* If this symbol is being provided by the linker script, and it is 446 currently defined by a dynamic object, but not by a regular 447 object, then mark it as undefined so that the generic linker will 448 force the correct value. */ 449 if (provide 450 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 451 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) 452 h->root.type = bfd_link_hash_undefined; 453 454 /* If this symbol is not being provided by the linker script, and it is 455 currently defined by a dynamic object, but not by a regular object, 456 then clear out any version information because the symbol will not be 457 associated with the dynamic object any more. */ 458 if (!provide 459 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 460 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) 461 h->verinfo.verdef = NULL; 462 463 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; 464 465 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC 466 | ELF_LINK_HASH_REF_DYNAMIC)) != 0 467 || info->shared) 468 && h->dynindx == -1) 469 { 470 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 471 return FALSE; 472 473 /* If this is a weak defined symbol, and we know a corresponding 474 real symbol from the same dynamic object, make sure the real 475 symbol is also made into a dynamic symbol. */ 476 if (h->weakdef != NULL 477 && h->weakdef->dynindx == -1) 478 { 479 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) 480 return FALSE; 481 } 482 } 483 484 return TRUE; 485 } 486 487 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on 488 success, and 2 on a failure caused by attempting to record a symbol 489 in a discarded section, eg. a discarded link-once section symbol. */ 490 491 int 492 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, 493 bfd *input_bfd, 494 long input_indx) 495 { 496 bfd_size_type amt; 497 struct elf_link_local_dynamic_entry *entry; 498 struct elf_link_hash_table *eht; 499 struct elf_strtab_hash *dynstr; 500 unsigned long dynstr_index; 501 char *name; 502 Elf_External_Sym_Shndx eshndx; 503 char esym[sizeof (Elf64_External_Sym)]; 504 505 if (! is_elf_hash_table (info->hash)) 506 return 0; 507 508 /* See if the entry exists already. */ 509 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) 510 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) 511 return 1; 512 513 amt = sizeof (*entry); 514 entry = bfd_alloc (input_bfd, amt); 515 if (entry == NULL) 516 return 0; 517 518 /* Go find the symbol, so that we can find it's name. */ 519 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, 520 1, input_indx, &entry->isym, esym, &eshndx)) 521 { 522 bfd_release (input_bfd, entry); 523 return 0; 524 } 525 526 if (entry->isym.st_shndx != SHN_UNDEF 527 && (entry->isym.st_shndx < SHN_LORESERVE 528 || entry->isym.st_shndx > SHN_HIRESERVE)) 529 { 530 asection *s; 531 532 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); 533 if (s == NULL || bfd_is_abs_section (s->output_section)) 534 { 535 /* We can still bfd_release here as nothing has done another 536 bfd_alloc. We can't do this later in this function. */ 537 bfd_release (input_bfd, entry); 538 return 2; 539 } 540 } 541 542 name = (bfd_elf_string_from_elf_section 543 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, 544 entry->isym.st_name)); 545 546 dynstr = elf_hash_table (info)->dynstr; 547 if (dynstr == NULL) 548 { 549 /* Create a strtab to hold the dynamic symbol names. */ 550 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 551 if (dynstr == NULL) 552 return 0; 553 } 554 555 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE); 556 if (dynstr_index == (unsigned long) -1) 557 return 0; 558 entry->isym.st_name = dynstr_index; 559 560 eht = elf_hash_table (info); 561 562 entry->next = eht->dynlocal; 563 eht->dynlocal = entry; 564 entry->input_bfd = input_bfd; 565 entry->input_indx = input_indx; 566 eht->dynsymcount++; 567 568 /* Whatever binding the symbol had before, it's now local. */ 569 entry->isym.st_info 570 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); 571 572 /* The dynindx will be set at the end of size_dynamic_sections. */ 573 574 return 1; 575 } 576 577 /* Return the dynindex of a local dynamic symbol. */ 578 579 long 580 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, 581 bfd *input_bfd, 582 long input_indx) 583 { 584 struct elf_link_local_dynamic_entry *e; 585 586 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) 587 if (e->input_bfd == input_bfd && e->input_indx == input_indx) 588 return e->dynindx; 589 return -1; 590 } 591 592 /* This function is used to renumber the dynamic symbols, if some of 593 them are removed because they are marked as local. This is called 594 via elf_link_hash_traverse. */ 595 596 static bfd_boolean 597 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, 598 void *data) 599 { 600 size_t *count = data; 601 602 if (h->root.type == bfd_link_hash_warning) 603 h = (struct elf_link_hash_entry *) h->root.u.i.link; 604 605 if (h->dynindx != -1) 606 h->dynindx = ++(*count); 607 608 return TRUE; 609 } 610 611 /* Assign dynsym indices. In a shared library we generate a section 612 symbol for each output section, which come first. Next come all of 613 the back-end allocated local dynamic syms, followed by the rest of 614 the global symbols. */ 615 616 unsigned long 617 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info) 618 { 619 unsigned long dynsymcount = 0; 620 621 if (info->shared) 622 { 623 asection *p; 624 for (p = output_bfd->sections; p ; p = p->next) 625 if ((p->flags & SEC_EXCLUDE) == 0) 626 elf_section_data (p)->dynindx = ++dynsymcount; 627 } 628 629 if (elf_hash_table (info)->dynlocal) 630 { 631 struct elf_link_local_dynamic_entry *p; 632 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) 633 p->dynindx = ++dynsymcount; 634 } 635 636 elf_link_hash_traverse (elf_hash_table (info), 637 elf_link_renumber_hash_table_dynsyms, 638 &dynsymcount); 639 640 /* There is an unused NULL entry at the head of the table which 641 we must account for in our count. Unless there weren't any 642 symbols, which means we'll have no table at all. */ 643 if (dynsymcount != 0) 644 ++dynsymcount; 645 646 return elf_hash_table (info)->dynsymcount = dynsymcount; 647 } 648 649 /* This function is called when we want to define a new symbol. It 650 handles the various cases which arise when we find a definition in 651 a dynamic object, or when there is already a definition in a 652 dynamic object. The new symbol is described by NAME, SYM, PSEC, 653 and PVALUE. We set SYM_HASH to the hash table entry. We set 654 OVERRIDE if the old symbol is overriding a new definition. We set 655 TYPE_CHANGE_OK if it is OK for the type to change. We set 656 SIZE_CHANGE_OK if it is OK for the size to change. By OK to 657 change, we mean that we shouldn't warn if the type or size does 658 change. */ 659 660 bfd_boolean 661 _bfd_elf_merge_symbol (bfd *abfd, 662 struct bfd_link_info *info, 663 const char *name, 664 Elf_Internal_Sym *sym, 665 asection **psec, 666 bfd_vma *pvalue, 667 struct elf_link_hash_entry **sym_hash, 668 bfd_boolean *skip, 669 bfd_boolean *override, 670 bfd_boolean *type_change_ok, 671 bfd_boolean *size_change_ok) 672 { 673 asection *sec; 674 struct elf_link_hash_entry *h; 675 struct elf_link_hash_entry *flip; 676 int bind; 677 bfd *oldbfd; 678 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; 679 bfd_boolean newweak, oldweak; 680 681 *skip = FALSE; 682 *override = FALSE; 683 684 sec = *psec; 685 bind = ELF_ST_BIND (sym->st_info); 686 687 if (! bfd_is_und_section (sec)) 688 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE); 689 else 690 h = ((struct elf_link_hash_entry *) 691 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE)); 692 if (h == NULL) 693 return FALSE; 694 *sym_hash = h; 695 696 /* This code is for coping with dynamic objects, and is only useful 697 if we are doing an ELF link. */ 698 if (info->hash->creator != abfd->xvec) 699 return TRUE; 700 701 /* For merging, we only care about real symbols. */ 702 703 while (h->root.type == bfd_link_hash_indirect 704 || h->root.type == bfd_link_hash_warning) 705 h = (struct elf_link_hash_entry *) h->root.u.i.link; 706 707 /* If we just created the symbol, mark it as being an ELF symbol. 708 Other than that, there is nothing to do--there is no merge issue 709 with a newly defined symbol--so we just return. */ 710 711 if (h->root.type == bfd_link_hash_new) 712 { 713 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; 714 return TRUE; 715 } 716 717 /* OLDBFD is a BFD associated with the existing symbol. */ 718 719 switch (h->root.type) 720 { 721 default: 722 oldbfd = NULL; 723 break; 724 725 case bfd_link_hash_undefined: 726 case bfd_link_hash_undefweak: 727 oldbfd = h->root.u.undef.abfd; 728 break; 729 730 case bfd_link_hash_defined: 731 case bfd_link_hash_defweak: 732 oldbfd = h->root.u.def.section->owner; 733 break; 734 735 case bfd_link_hash_common: 736 oldbfd = h->root.u.c.p->section->owner; 737 break; 738 } 739 740 /* In cases involving weak versioned symbols, we may wind up trying 741 to merge a symbol with itself. Catch that here, to avoid the 742 confusion that results if we try to override a symbol with 743 itself. The additional tests catch cases like 744 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a 745 dynamic object, which we do want to handle here. */ 746 if (abfd == oldbfd 747 && ((abfd->flags & DYNAMIC) == 0 748 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) 749 return TRUE; 750 751 /* NEWDYN and OLDDYN indicate whether the new or old symbol, 752 respectively, is from a dynamic object. */ 753 754 if ((abfd->flags & DYNAMIC) != 0) 755 newdyn = TRUE; 756 else 757 newdyn = FALSE; 758 759 if (oldbfd != NULL) 760 olddyn = (oldbfd->flags & DYNAMIC) != 0; 761 else 762 { 763 asection *hsec; 764 765 /* This code handles the special SHN_MIPS_{TEXT,DATA} section 766 indices used by MIPS ELF. */ 767 switch (h->root.type) 768 { 769 default: 770 hsec = NULL; 771 break; 772 773 case bfd_link_hash_defined: 774 case bfd_link_hash_defweak: 775 hsec = h->root.u.def.section; 776 break; 777 778 case bfd_link_hash_common: 779 hsec = h->root.u.c.p->section; 780 break; 781 } 782 783 if (hsec == NULL) 784 olddyn = FALSE; 785 else 786 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0; 787 } 788 789 /* NEWDEF and OLDDEF indicate whether the new or old symbol, 790 respectively, appear to be a definition rather than reference. */ 791 792 if (bfd_is_und_section (sec) || bfd_is_com_section (sec)) 793 newdef = FALSE; 794 else 795 newdef = TRUE; 796 797 if (h->root.type == bfd_link_hash_undefined 798 || h->root.type == bfd_link_hash_undefweak 799 || h->root.type == bfd_link_hash_common) 800 olddef = FALSE; 801 else 802 olddef = TRUE; 803 804 /* We need to remember if a symbol has a definition in a dynamic 805 object or is weak in all dynamic objects. Internal and hidden 806 visibility will make it unavailable to dynamic objects. */ 807 if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0) 808 { 809 if (!bfd_is_und_section (sec)) 810 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF; 811 else 812 { 813 /* Check if this symbol is weak in all dynamic objects. If it 814 is the first time we see it in a dynamic object, we mark 815 if it is weak. Otherwise, we clear it. */ 816 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0) 817 { 818 if (bind == STB_WEAK) 819 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK; 820 } 821 else if (bind != STB_WEAK) 822 h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK; 823 } 824 } 825 826 /* If the old symbol has non-default visibility, we ignore the new 827 definition from a dynamic object. */ 828 if (newdyn 829 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 830 && !bfd_is_und_section (sec)) 831 { 832 *skip = TRUE; 833 /* Make sure this symbol is dynamic. */ 834 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; 835 /* A protected symbol has external availability. Make sure it is 836 recorded as dynamic. 837 838 FIXME: Should we check type and size for protected symbol? */ 839 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) 840 return bfd_elf_link_record_dynamic_symbol (info, h); 841 else 842 return TRUE; 843 } 844 else if (!newdyn 845 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT 846 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) 847 { 848 /* If the new symbol with non-default visibility comes from a 849 relocatable file and the old definition comes from a dynamic 850 object, we remove the old definition. */ 851 if ((*sym_hash)->root.type == bfd_link_hash_indirect) 852 h = *sym_hash; 853 854 if ((h->root.und_next || info->hash->undefs_tail == &h->root) 855 && bfd_is_und_section (sec)) 856 { 857 /* If the new symbol is undefined and the old symbol was 858 also undefined before, we need to make sure 859 _bfd_generic_link_add_one_symbol doesn't mess 860 up the linker hash table undefs list. Since the old 861 definition came from a dynamic object, it is still on the 862 undefs list. */ 863 h->root.type = bfd_link_hash_undefined; 864 /* FIXME: What if the new symbol is weak undefined? */ 865 h->root.u.undef.abfd = abfd; 866 } 867 else 868 { 869 h->root.type = bfd_link_hash_new; 870 h->root.u.undef.abfd = NULL; 871 } 872 873 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) 874 { 875 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC; 876 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC 877 | ELF_LINK_DYNAMIC_DEF); 878 } 879 /* FIXME: Should we check type and size for protected symbol? */ 880 h->size = 0; 881 h->type = 0; 882 return TRUE; 883 } 884 885 /* Differentiate strong and weak symbols. */ 886 newweak = bind == STB_WEAK; 887 oldweak = (h->root.type == bfd_link_hash_defweak 888 || h->root.type == bfd_link_hash_undefweak); 889 890 /* If a new weak symbol definition comes from a regular file and the 891 old symbol comes from a dynamic library, we treat the new one as 892 strong. Similarly, an old weak symbol definition from a regular 893 file is treated as strong when the new symbol comes from a dynamic 894 library. Further, an old weak symbol from a dynamic library is 895 treated as strong if the new symbol is from a dynamic library. 896 This reflects the way glibc's ld.so works. 897 898 Do this before setting *type_change_ok or *size_change_ok so that 899 we warn properly when dynamic library symbols are overridden. */ 900 901 if (newdef && !newdyn && olddyn) 902 newweak = FALSE; 903 if (olddef && newdyn) 904 oldweak = FALSE; 905 906 /* It's OK to change the type if either the existing symbol or the 907 new symbol is weak. A type change is also OK if the old symbol 908 is undefined and the new symbol is defined. */ 909 910 if (oldweak 911 || newweak 912 || (newdef 913 && h->root.type == bfd_link_hash_undefined)) 914 *type_change_ok = TRUE; 915 916 /* It's OK to change the size if either the existing symbol or the 917 new symbol is weak, or if the old symbol is undefined. */ 918 919 if (*type_change_ok 920 || h->root.type == bfd_link_hash_undefined) 921 *size_change_ok = TRUE; 922 923 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old 924 symbol, respectively, appears to be a common symbol in a dynamic 925 object. If a symbol appears in an uninitialized section, and is 926 not weak, and is not a function, then it may be a common symbol 927 which was resolved when the dynamic object was created. We want 928 to treat such symbols specially, because they raise special 929 considerations when setting the symbol size: if the symbol 930 appears as a common symbol in a regular object, and the size in 931 the regular object is larger, we must make sure that we use the 932 larger size. This problematic case can always be avoided in C, 933 but it must be handled correctly when using Fortran shared 934 libraries. 935 936 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and 937 likewise for OLDDYNCOMMON and OLDDEF. 938 939 Note that this test is just a heuristic, and that it is quite 940 possible to have an uninitialized symbol in a shared object which 941 is really a definition, rather than a common symbol. This could 942 lead to some minor confusion when the symbol really is a common 943 symbol in some regular object. However, I think it will be 944 harmless. */ 945 946 if (newdyn 947 && newdef 948 && !newweak 949 && (sec->flags & SEC_ALLOC) != 0 950 && (sec->flags & SEC_LOAD) == 0 951 && sym->st_size > 0 952 && ELF_ST_TYPE (sym->st_info) != STT_FUNC) 953 newdyncommon = TRUE; 954 else 955 newdyncommon = FALSE; 956 957 if (olddyn 958 && olddef 959 && h->root.type == bfd_link_hash_defined 960 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 961 && (h->root.u.def.section->flags & SEC_ALLOC) != 0 962 && (h->root.u.def.section->flags & SEC_LOAD) == 0 963 && h->size > 0 964 && h->type != STT_FUNC) 965 olddyncommon = TRUE; 966 else 967 olddyncommon = FALSE; 968 969 /* If both the old and the new symbols look like common symbols in a 970 dynamic object, set the size of the symbol to the larger of the 971 two. */ 972 973 if (olddyncommon 974 && newdyncommon 975 && sym->st_size != h->size) 976 { 977 /* Since we think we have two common symbols, issue a multiple 978 common warning if desired. Note that we only warn if the 979 size is different. If the size is the same, we simply let 980 the old symbol override the new one as normally happens with 981 symbols defined in dynamic objects. */ 982 983 if (! ((*info->callbacks->multiple_common) 984 (info, h->root.root.string, oldbfd, bfd_link_hash_common, 985 h->size, abfd, bfd_link_hash_common, sym->st_size))) 986 return FALSE; 987 988 if (sym->st_size > h->size) 989 h->size = sym->st_size; 990 991 *size_change_ok = TRUE; 992 } 993 994 /* If we are looking at a dynamic object, and we have found a 995 definition, we need to see if the symbol was already defined by 996 some other object. If so, we want to use the existing 997 definition, and we do not want to report a multiple symbol 998 definition error; we do this by clobbering *PSEC to be 999 bfd_und_section_ptr. 1000 1001 We treat a common symbol as a definition if the symbol in the 1002 shared library is a function, since common symbols always 1003 represent variables; this can cause confusion in principle, but 1004 any such confusion would seem to indicate an erroneous program or 1005 shared library. We also permit a common symbol in a regular 1006 object to override a weak symbol in a shared object. */ 1007 1008 if (newdyn 1009 && newdef 1010 && (olddef 1011 || (h->root.type == bfd_link_hash_common 1012 && (newweak 1013 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))) 1014 { 1015 *override = TRUE; 1016 newdef = FALSE; 1017 newdyncommon = FALSE; 1018 1019 *psec = sec = bfd_und_section_ptr; 1020 *size_change_ok = TRUE; 1021 1022 /* If we get here when the old symbol is a common symbol, then 1023 we are explicitly letting it override a weak symbol or 1024 function in a dynamic object, and we don't want to warn about 1025 a type change. If the old symbol is a defined symbol, a type 1026 change warning may still be appropriate. */ 1027 1028 if (h->root.type == bfd_link_hash_common) 1029 *type_change_ok = TRUE; 1030 } 1031 1032 /* Handle the special case of an old common symbol merging with a 1033 new symbol which looks like a common symbol in a shared object. 1034 We change *PSEC and *PVALUE to make the new symbol look like a 1035 common symbol, and let _bfd_generic_link_add_one_symbol will do 1036 the right thing. */ 1037 1038 if (newdyncommon 1039 && h->root.type == bfd_link_hash_common) 1040 { 1041 *override = TRUE; 1042 newdef = FALSE; 1043 newdyncommon = FALSE; 1044 *pvalue = sym->st_size; 1045 *psec = sec = bfd_com_section_ptr; 1046 *size_change_ok = TRUE; 1047 } 1048 1049 /* If the old symbol is from a dynamic object, and the new symbol is 1050 a definition which is not from a dynamic object, then the new 1051 symbol overrides the old symbol. Symbols from regular files 1052 always take precedence over symbols from dynamic objects, even if 1053 they are defined after the dynamic object in the link. 1054 1055 As above, we again permit a common symbol in a regular object to 1056 override a definition in a shared object if the shared object 1057 symbol is a function or is weak. */ 1058 1059 flip = NULL; 1060 if (! newdyn 1061 && (newdef 1062 || (bfd_is_com_section (sec) 1063 && (oldweak 1064 || h->type == STT_FUNC))) 1065 && olddyn 1066 && olddef 1067 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) 1068 { 1069 /* Change the hash table entry to undefined, and let 1070 _bfd_generic_link_add_one_symbol do the right thing with the 1071 new definition. */ 1072 1073 h->root.type = bfd_link_hash_undefined; 1074 h->root.u.undef.abfd = h->root.u.def.section->owner; 1075 *size_change_ok = TRUE; 1076 1077 olddef = FALSE; 1078 olddyncommon = FALSE; 1079 1080 /* We again permit a type change when a common symbol may be 1081 overriding a function. */ 1082 1083 if (bfd_is_com_section (sec)) 1084 *type_change_ok = TRUE; 1085 1086 if ((*sym_hash)->root.type == bfd_link_hash_indirect) 1087 flip = *sym_hash; 1088 else 1089 /* This union may have been set to be non-NULL when this symbol 1090 was seen in a dynamic object. We must force the union to be 1091 NULL, so that it is correct for a regular symbol. */ 1092 h->verinfo.vertree = NULL; 1093 } 1094 1095 /* Handle the special case of a new common symbol merging with an 1096 old symbol that looks like it might be a common symbol defined in 1097 a shared object. Note that we have already handled the case in 1098 which a new common symbol should simply override the definition 1099 in the shared library. */ 1100 1101 if (! newdyn 1102 && bfd_is_com_section (sec) 1103 && olddyncommon) 1104 { 1105 /* It would be best if we could set the hash table entry to a 1106 common symbol, but we don't know what to use for the section 1107 or the alignment. */ 1108 if (! ((*info->callbacks->multiple_common) 1109 (info, h->root.root.string, oldbfd, bfd_link_hash_common, 1110 h->size, abfd, bfd_link_hash_common, sym->st_size))) 1111 return FALSE; 1112 1113 /* If the presumed common symbol in the dynamic object is 1114 larger, pretend that the new symbol has its size. */ 1115 1116 if (h->size > *pvalue) 1117 *pvalue = h->size; 1118 1119 /* FIXME: We no longer know the alignment required by the symbol 1120 in the dynamic object, so we just wind up using the one from 1121 the regular object. */ 1122 1123 olddef = FALSE; 1124 olddyncommon = FALSE; 1125 1126 h->root.type = bfd_link_hash_undefined; 1127 h->root.u.undef.abfd = h->root.u.def.section->owner; 1128 1129 *size_change_ok = TRUE; 1130 *type_change_ok = TRUE; 1131 1132 if ((*sym_hash)->root.type == bfd_link_hash_indirect) 1133 flip = *sym_hash; 1134 else 1135 h->verinfo.vertree = NULL; 1136 } 1137 1138 if (flip != NULL) 1139 { 1140 /* Handle the case where we had a versioned symbol in a dynamic 1141 library and now find a definition in a normal object. In this 1142 case, we make the versioned symbol point to the normal one. */ 1143 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 1144 flip->root.type = h->root.type; 1145 h->root.type = bfd_link_hash_indirect; 1146 h->root.u.i.link = (struct bfd_link_hash_entry *) flip; 1147 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h); 1148 flip->root.u.undef.abfd = h->root.u.undef.abfd; 1149 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) 1150 { 1151 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC; 1152 flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; 1153 } 1154 } 1155 1156 return TRUE; 1157 } 1158 1159 /* This function is called to create an indirect symbol from the 1160 default for the symbol with the default version if needed. The 1161 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We 1162 set DYNSYM if the new indirect symbol is dynamic. */ 1163 1164 bfd_boolean 1165 _bfd_elf_add_default_symbol (bfd *abfd, 1166 struct bfd_link_info *info, 1167 struct elf_link_hash_entry *h, 1168 const char *name, 1169 Elf_Internal_Sym *sym, 1170 asection **psec, 1171 bfd_vma *value, 1172 bfd_boolean *dynsym, 1173 bfd_boolean override) 1174 { 1175 bfd_boolean type_change_ok; 1176 bfd_boolean size_change_ok; 1177 bfd_boolean skip; 1178 char *shortname; 1179 struct elf_link_hash_entry *hi; 1180 struct bfd_link_hash_entry *bh; 1181 const struct elf_backend_data *bed; 1182 bfd_boolean collect; 1183 bfd_boolean dynamic; 1184 char *p; 1185 size_t len, shortlen; 1186 asection *sec; 1187 1188 /* If this symbol has a version, and it is the default version, we 1189 create an indirect symbol from the default name to the fully 1190 decorated name. This will cause external references which do not 1191 specify a version to be bound to this version of the symbol. */ 1192 p = strchr (name, ELF_VER_CHR); 1193 if (p == NULL || p[1] != ELF_VER_CHR) 1194 return TRUE; 1195 1196 if (override) 1197 { 1198 /* We are overridden by an old definition. We need to check if we 1199 need to create the indirect symbol from the default name. */ 1200 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, 1201 FALSE, FALSE); 1202 BFD_ASSERT (hi != NULL); 1203 if (hi == h) 1204 return TRUE; 1205 while (hi->root.type == bfd_link_hash_indirect 1206 || hi->root.type == bfd_link_hash_warning) 1207 { 1208 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 1209 if (hi == h) 1210 return TRUE; 1211 } 1212 } 1213 1214 bed = get_elf_backend_data (abfd); 1215 collect = bed->collect; 1216 dynamic = (abfd->flags & DYNAMIC) != 0; 1217 1218 shortlen = p - name; 1219 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1); 1220 if (shortname == NULL) 1221 return FALSE; 1222 memcpy (shortname, name, shortlen); 1223 shortname[shortlen] = '\0'; 1224 1225 /* We are going to create a new symbol. Merge it with any existing 1226 symbol with this name. For the purposes of the merge, act as 1227 though we were defining the symbol we just defined, although we 1228 actually going to define an indirect symbol. */ 1229 type_change_ok = FALSE; 1230 size_change_ok = FALSE; 1231 sec = *psec; 1232 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, 1233 &hi, &skip, &override, &type_change_ok, 1234 &size_change_ok)) 1235 return FALSE; 1236 1237 if (skip) 1238 goto nondefault; 1239 1240 if (! override) 1241 { 1242 bh = &hi->root; 1243 if (! (_bfd_generic_link_add_one_symbol 1244 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr, 1245 0, name, FALSE, collect, &bh))) 1246 return FALSE; 1247 hi = (struct elf_link_hash_entry *) bh; 1248 } 1249 else 1250 { 1251 /* In this case the symbol named SHORTNAME is overriding the 1252 indirect symbol we want to add. We were planning on making 1253 SHORTNAME an indirect symbol referring to NAME. SHORTNAME 1254 is the name without a version. NAME is the fully versioned 1255 name, and it is the default version. 1256 1257 Overriding means that we already saw a definition for the 1258 symbol SHORTNAME in a regular object, and it is overriding 1259 the symbol defined in the dynamic object. 1260 1261 When this happens, we actually want to change NAME, the 1262 symbol we just added, to refer to SHORTNAME. This will cause 1263 references to NAME in the shared object to become references 1264 to SHORTNAME in the regular object. This is what we expect 1265 when we override a function in a shared object: that the 1266 references in the shared object will be mapped to the 1267 definition in the regular object. */ 1268 1269 while (hi->root.type == bfd_link_hash_indirect 1270 || hi->root.type == bfd_link_hash_warning) 1271 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 1272 1273 h->root.type = bfd_link_hash_indirect; 1274 h->root.u.i.link = (struct bfd_link_hash_entry *) hi; 1275 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) 1276 { 1277 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC; 1278 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; 1279 if (hi->elf_link_hash_flags 1280 & (ELF_LINK_HASH_REF_REGULAR 1281 | ELF_LINK_HASH_DEF_REGULAR)) 1282 { 1283 if (! bfd_elf_link_record_dynamic_symbol (info, hi)) 1284 return FALSE; 1285 } 1286 } 1287 1288 /* Now set HI to H, so that the following code will set the 1289 other fields correctly. */ 1290 hi = h; 1291 } 1292 1293 /* If there is a duplicate definition somewhere, then HI may not 1294 point to an indirect symbol. We will have reported an error to 1295 the user in that case. */ 1296 1297 if (hi->root.type == bfd_link_hash_indirect) 1298 { 1299 struct elf_link_hash_entry *ht; 1300 1301 ht = (struct elf_link_hash_entry *) hi->root.u.i.link; 1302 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi); 1303 1304 /* See if the new flags lead us to realize that the symbol must 1305 be dynamic. */ 1306 if (! *dynsym) 1307 { 1308 if (! dynamic) 1309 { 1310 if (info->shared 1311 || ((hi->elf_link_hash_flags 1312 & ELF_LINK_HASH_REF_DYNAMIC) != 0)) 1313 *dynsym = TRUE; 1314 } 1315 else 1316 { 1317 if ((hi->elf_link_hash_flags 1318 & ELF_LINK_HASH_REF_REGULAR) != 0) 1319 *dynsym = TRUE; 1320 } 1321 } 1322 } 1323 1324 /* We also need to define an indirection from the nondefault version 1325 of the symbol. */ 1326 1327 nondefault: 1328 len = strlen (name); 1329 shortname = bfd_hash_allocate (&info->hash->table, len); 1330 if (shortname == NULL) 1331 return FALSE; 1332 memcpy (shortname, name, shortlen); 1333 memcpy (shortname + shortlen, p + 1, len - shortlen); 1334 1335 /* Once again, merge with any existing symbol. */ 1336 type_change_ok = FALSE; 1337 size_change_ok = FALSE; 1338 sec = *psec; 1339 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, 1340 &hi, &skip, &override, &type_change_ok, 1341 &size_change_ok)) 1342 return FALSE; 1343 1344 if (skip) 1345 return TRUE; 1346 1347 if (override) 1348 { 1349 /* Here SHORTNAME is a versioned name, so we don't expect to see 1350 the type of override we do in the case above unless it is 1351 overridden by a versioned definition. */ 1352 if (hi->root.type != bfd_link_hash_defined 1353 && hi->root.type != bfd_link_hash_defweak) 1354 (*_bfd_error_handler) 1355 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"), 1356 bfd_archive_filename (abfd), shortname); 1357 } 1358 else 1359 { 1360 bh = &hi->root; 1361 if (! (_bfd_generic_link_add_one_symbol 1362 (info, abfd, shortname, BSF_INDIRECT, 1363 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh))) 1364 return FALSE; 1365 hi = (struct elf_link_hash_entry *) bh; 1366 1367 /* If there is a duplicate definition somewhere, then HI may not 1368 point to an indirect symbol. We will have reported an error 1369 to the user in that case. */ 1370 1371 if (hi->root.type == bfd_link_hash_indirect) 1372 { 1373 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi); 1374 1375 /* See if the new flags lead us to realize that the symbol 1376 must be dynamic. */ 1377 if (! *dynsym) 1378 { 1379 if (! dynamic) 1380 { 1381 if (info->shared 1382 || ((hi->elf_link_hash_flags 1383 & ELF_LINK_HASH_REF_DYNAMIC) != 0)) 1384 *dynsym = TRUE; 1385 } 1386 else 1387 { 1388 if ((hi->elf_link_hash_flags 1389 & ELF_LINK_HASH_REF_REGULAR) != 0) 1390 *dynsym = TRUE; 1391 } 1392 } 1393 } 1394 } 1395 1396 return TRUE; 1397 } 1398 1399 /* This routine is used to export all defined symbols into the dynamic 1400 symbol table. It is called via elf_link_hash_traverse. */ 1401 1402 bfd_boolean 1403 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) 1404 { 1405 struct elf_info_failed *eif = data; 1406 1407 /* Ignore indirect symbols. These are added by the versioning code. */ 1408 if (h->root.type == bfd_link_hash_indirect) 1409 return TRUE; 1410 1411 if (h->root.type == bfd_link_hash_warning) 1412 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1413 1414 if (h->dynindx == -1 1415 && (h->elf_link_hash_flags 1416 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) 1417 { 1418 struct bfd_elf_version_tree *t; 1419 struct bfd_elf_version_expr *d; 1420 1421 for (t = eif->verdefs; t != NULL; t = t->next) 1422 { 1423 if (t->globals.list != NULL) 1424 { 1425 d = (*t->match) (&t->globals, NULL, h->root.root.string); 1426 if (d != NULL) 1427 goto doit; 1428 } 1429 1430 if (t->locals.list != NULL) 1431 { 1432 d = (*t->match) (&t->locals, NULL, h->root.root.string); 1433 if (d != NULL) 1434 return TRUE; 1435 } 1436 } 1437 1438 if (!eif->verdefs) 1439 { 1440 doit: 1441 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 1442 { 1443 eif->failed = TRUE; 1444 return FALSE; 1445 } 1446 } 1447 } 1448 1449 return TRUE; 1450 } 1451 1452 /* Look through the symbols which are defined in other shared 1453 libraries and referenced here. Update the list of version 1454 dependencies. This will be put into the .gnu.version_r section. 1455 This function is called via elf_link_hash_traverse. */ 1456 1457 bfd_boolean 1458 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, 1459 void *data) 1460 { 1461 struct elf_find_verdep_info *rinfo = data; 1462 Elf_Internal_Verneed *t; 1463 Elf_Internal_Vernaux *a; 1464 bfd_size_type amt; 1465 1466 if (h->root.type == bfd_link_hash_warning) 1467 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1468 1469 /* We only care about symbols defined in shared objects with version 1470 information. */ 1471 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 1472 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 1473 || h->dynindx == -1 1474 || h->verinfo.verdef == NULL) 1475 return TRUE; 1476 1477 /* See if we already know about this version. */ 1478 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref) 1479 { 1480 if (t->vn_bfd != h->verinfo.verdef->vd_bfd) 1481 continue; 1482 1483 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 1484 if (a->vna_nodename == h->verinfo.verdef->vd_nodename) 1485 return TRUE; 1486 1487 break; 1488 } 1489 1490 /* This is a new version. Add it to tree we are building. */ 1491 1492 if (t == NULL) 1493 { 1494 amt = sizeof *t; 1495 t = bfd_zalloc (rinfo->output_bfd, amt); 1496 if (t == NULL) 1497 { 1498 rinfo->failed = TRUE; 1499 return FALSE; 1500 } 1501 1502 t->vn_bfd = h->verinfo.verdef->vd_bfd; 1503 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref; 1504 elf_tdata (rinfo->output_bfd)->verref = t; 1505 } 1506 1507 amt = sizeof *a; 1508 a = bfd_zalloc (rinfo->output_bfd, amt); 1509 1510 /* Note that we are copying a string pointer here, and testing it 1511 above. If bfd_elf_string_from_elf_section is ever changed to 1512 discard the string data when low in memory, this will have to be 1513 fixed. */ 1514 a->vna_nodename = h->verinfo.verdef->vd_nodename; 1515 1516 a->vna_flags = h->verinfo.verdef->vd_flags; 1517 a->vna_nextptr = t->vn_auxptr; 1518 1519 h->verinfo.verdef->vd_exp_refno = rinfo->vers; 1520 ++rinfo->vers; 1521 1522 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; 1523 1524 t->vn_auxptr = a; 1525 1526 return TRUE; 1527 } 1528 1529 /* Figure out appropriate versions for all the symbols. We may not 1530 have the version number script until we have read all of the input 1531 files, so until that point we don't know which symbols should be 1532 local. This function is called via elf_link_hash_traverse. */ 1533 1534 bfd_boolean 1535 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) 1536 { 1537 struct elf_assign_sym_version_info *sinfo; 1538 struct bfd_link_info *info; 1539 const struct elf_backend_data *bed; 1540 struct elf_info_failed eif; 1541 char *p; 1542 bfd_size_type amt; 1543 1544 sinfo = data; 1545 info = sinfo->info; 1546 1547 if (h->root.type == bfd_link_hash_warning) 1548 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1549 1550 /* Fix the symbol flags. */ 1551 eif.failed = FALSE; 1552 eif.info = info; 1553 if (! _bfd_elf_fix_symbol_flags (h, &eif)) 1554 { 1555 if (eif.failed) 1556 sinfo->failed = TRUE; 1557 return FALSE; 1558 } 1559 1560 /* We only need version numbers for symbols defined in regular 1561 objects. */ 1562 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) 1563 return TRUE; 1564 1565 bed = get_elf_backend_data (sinfo->output_bfd); 1566 p = strchr (h->root.root.string, ELF_VER_CHR); 1567 if (p != NULL && h->verinfo.vertree == NULL) 1568 { 1569 struct bfd_elf_version_tree *t; 1570 bfd_boolean hidden; 1571 1572 hidden = TRUE; 1573 1574 /* There are two consecutive ELF_VER_CHR characters if this is 1575 not a hidden symbol. */ 1576 ++p; 1577 if (*p == ELF_VER_CHR) 1578 { 1579 hidden = FALSE; 1580 ++p; 1581 } 1582 1583 /* If there is no version string, we can just return out. */ 1584 if (*p == '\0') 1585 { 1586 if (hidden) 1587 h->elf_link_hash_flags |= ELF_LINK_HIDDEN; 1588 return TRUE; 1589 } 1590 1591 /* Look for the version. If we find it, it is no longer weak. */ 1592 for (t = sinfo->verdefs; t != NULL; t = t->next) 1593 { 1594 if (strcmp (t->name, p) == 0) 1595 { 1596 size_t len; 1597 char *alc; 1598 struct bfd_elf_version_expr *d; 1599 1600 len = p - h->root.root.string; 1601 alc = bfd_malloc (len); 1602 if (alc == NULL) 1603 return FALSE; 1604 memcpy (alc, h->root.root.string, len - 1); 1605 alc[len - 1] = '\0'; 1606 if (alc[len - 2] == ELF_VER_CHR) 1607 alc[len - 2] = '\0'; 1608 1609 h->verinfo.vertree = t; 1610 t->used = TRUE; 1611 d = NULL; 1612 1613 if (t->globals.list != NULL) 1614 d = (*t->match) (&t->globals, NULL, alc); 1615 1616 /* See if there is anything to force this symbol to 1617 local scope. */ 1618 if (d == NULL && t->locals.list != NULL) 1619 { 1620 d = (*t->match) (&t->locals, NULL, alc); 1621 if (d != NULL 1622 && h->dynindx != -1 1623 && info->shared 1624 && ! info->export_dynamic) 1625 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1626 } 1627 1628 free (alc); 1629 break; 1630 } 1631 } 1632 1633 /* If we are building an application, we need to create a 1634 version node for this version. */ 1635 if (t == NULL && info->executable) 1636 { 1637 struct bfd_elf_version_tree **pp; 1638 int version_index; 1639 1640 /* If we aren't going to export this symbol, we don't need 1641 to worry about it. */ 1642 if (h->dynindx == -1) 1643 return TRUE; 1644 1645 amt = sizeof *t; 1646 t = bfd_zalloc (sinfo->output_bfd, amt); 1647 if (t == NULL) 1648 { 1649 sinfo->failed = TRUE; 1650 return FALSE; 1651 } 1652 1653 t->name = p; 1654 t->name_indx = (unsigned int) -1; 1655 t->used = TRUE; 1656 1657 version_index = 1; 1658 /* Don't count anonymous version tag. */ 1659 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0) 1660 version_index = 0; 1661 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) 1662 ++version_index; 1663 t->vernum = version_index; 1664 1665 *pp = t; 1666 1667 h->verinfo.vertree = t; 1668 } 1669 else if (t == NULL) 1670 { 1671 /* We could not find the version for a symbol when 1672 generating a shared archive. Return an error. */ 1673 (*_bfd_error_handler) 1674 (_("%s: undefined versioned symbol name %s"), 1675 bfd_get_filename (sinfo->output_bfd), h->root.root.string); 1676 bfd_set_error (bfd_error_bad_value); 1677 sinfo->failed = TRUE; 1678 return FALSE; 1679 } 1680 1681 if (hidden) 1682 h->elf_link_hash_flags |= ELF_LINK_HIDDEN; 1683 } 1684 1685 /* If we don't have a version for this symbol, see if we can find 1686 something. */ 1687 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) 1688 { 1689 struct bfd_elf_version_tree *t; 1690 struct bfd_elf_version_tree *local_ver; 1691 struct bfd_elf_version_expr *d; 1692 1693 /* See if can find what version this symbol is in. If the 1694 symbol is supposed to be local, then don't actually register 1695 it. */ 1696 local_ver = NULL; 1697 for (t = sinfo->verdefs; t != NULL; t = t->next) 1698 { 1699 if (t->globals.list != NULL) 1700 { 1701 bfd_boolean matched; 1702 1703 matched = FALSE; 1704 d = NULL; 1705 while ((d = (*t->match) (&t->globals, d, 1706 h->root.root.string)) != NULL) 1707 if (d->symver) 1708 matched = TRUE; 1709 else 1710 { 1711 /* There is a version without definition. Make 1712 the symbol the default definition for this 1713 version. */ 1714 h->verinfo.vertree = t; 1715 local_ver = NULL; 1716 d->script = 1; 1717 break; 1718 } 1719 if (d != NULL) 1720 break; 1721 else if (matched) 1722 /* There is no undefined version for this symbol. Hide the 1723 default one. */ 1724 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1725 } 1726 1727 if (t->locals.list != NULL) 1728 { 1729 d = NULL; 1730 while ((d = (*t->match) (&t->locals, d, 1731 h->root.root.string)) != NULL) 1732 { 1733 local_ver = t; 1734 /* If the match is "*", keep looking for a more 1735 explicit, perhaps even global, match. 1736 XXX: Shouldn't this be !d->wildcard instead? */ 1737 if (d->pattern[0] != '*' || d->pattern[1] != '\0') 1738 break; 1739 } 1740 1741 if (d != NULL) 1742 break; 1743 } 1744 } 1745 1746 if (local_ver != NULL) 1747 { 1748 h->verinfo.vertree = local_ver; 1749 if (h->dynindx != -1 1750 && info->shared 1751 && ! info->export_dynamic) 1752 { 1753 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1754 } 1755 } 1756 } 1757 1758 return TRUE; 1759 } 1760 1761 /* Read and swap the relocs from the section indicated by SHDR. This 1762 may be either a REL or a RELA section. The relocations are 1763 translated into RELA relocations and stored in INTERNAL_RELOCS, 1764 which should have already been allocated to contain enough space. 1765 The EXTERNAL_RELOCS are a buffer where the external form of the 1766 relocations should be stored. 1767 1768 Returns FALSE if something goes wrong. */ 1769 1770 static bfd_boolean 1771 elf_link_read_relocs_from_section (bfd *abfd, 1772 asection *sec, 1773 Elf_Internal_Shdr *shdr, 1774 void *external_relocs, 1775 Elf_Internal_Rela *internal_relocs) 1776 { 1777 const struct elf_backend_data *bed; 1778 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 1779 const bfd_byte *erela; 1780 const bfd_byte *erelaend; 1781 Elf_Internal_Rela *irela; 1782 Elf_Internal_Shdr *symtab_hdr; 1783 size_t nsyms; 1784 1785 /* Position ourselves at the start of the section. */ 1786 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) 1787 return FALSE; 1788 1789 /* Read the relocations. */ 1790 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) 1791 return FALSE; 1792 1793 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1794 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize; 1795 1796 bed = get_elf_backend_data (abfd); 1797 1798 /* Convert the external relocations to the internal format. */ 1799 if (shdr->sh_entsize == bed->s->sizeof_rel) 1800 swap_in = bed->s->swap_reloc_in; 1801 else if (shdr->sh_entsize == bed->s->sizeof_rela) 1802 swap_in = bed->s->swap_reloca_in; 1803 else 1804 { 1805 bfd_set_error (bfd_error_wrong_format); 1806 return FALSE; 1807 } 1808 1809 erela = external_relocs; 1810 erelaend = erela + shdr->sh_size; 1811 irela = internal_relocs; 1812 while (erela < erelaend) 1813 { 1814 bfd_vma r_symndx; 1815 1816 (*swap_in) (abfd, erela, irela); 1817 r_symndx = ELF32_R_SYM (irela->r_info); 1818 if (bed->s->arch_size == 64) 1819 r_symndx >>= 24; 1820 if ((size_t) r_symndx >= nsyms) 1821 { 1822 (*_bfd_error_handler) 1823 (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"), 1824 bfd_archive_filename (abfd), (unsigned long) r_symndx, 1825 (unsigned long) nsyms, irela->r_offset, sec->name); 1826 bfd_set_error (bfd_error_bad_value); 1827 return FALSE; 1828 } 1829 irela += bed->s->int_rels_per_ext_rel; 1830 erela += shdr->sh_entsize; 1831 } 1832 1833 return TRUE; 1834 } 1835 1836 /* Read and swap the relocs for a section O. They may have been 1837 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are 1838 not NULL, they are used as buffers to read into. They are known to 1839 be large enough. If the INTERNAL_RELOCS relocs argument is NULL, 1840 the return value is allocated using either malloc or bfd_alloc, 1841 according to the KEEP_MEMORY argument. If O has two relocation 1842 sections (both REL and RELA relocations), then the REL_HDR 1843 relocations will appear first in INTERNAL_RELOCS, followed by the 1844 REL_HDR2 relocations. */ 1845 1846 Elf_Internal_Rela * 1847 _bfd_elf_link_read_relocs (bfd *abfd, 1848 asection *o, 1849 void *external_relocs, 1850 Elf_Internal_Rela *internal_relocs, 1851 bfd_boolean keep_memory) 1852 { 1853 Elf_Internal_Shdr *rel_hdr; 1854 void *alloc1 = NULL; 1855 Elf_Internal_Rela *alloc2 = NULL; 1856 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 1857 1858 if (elf_section_data (o)->relocs != NULL) 1859 return elf_section_data (o)->relocs; 1860 1861 if (o->reloc_count == 0) 1862 return NULL; 1863 1864 rel_hdr = &elf_section_data (o)->rel_hdr; 1865 1866 if (internal_relocs == NULL) 1867 { 1868 bfd_size_type size; 1869 1870 size = o->reloc_count; 1871 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela); 1872 if (keep_memory) 1873 internal_relocs = bfd_alloc (abfd, size); 1874 else 1875 internal_relocs = alloc2 = bfd_malloc (size); 1876 if (internal_relocs == NULL) 1877 goto error_return; 1878 } 1879 1880 if (external_relocs == NULL) 1881 { 1882 bfd_size_type size = rel_hdr->sh_size; 1883 1884 if (elf_section_data (o)->rel_hdr2) 1885 size += elf_section_data (o)->rel_hdr2->sh_size; 1886 alloc1 = bfd_malloc (size); 1887 if (alloc1 == NULL) 1888 goto error_return; 1889 external_relocs = alloc1; 1890 } 1891 1892 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr, 1893 external_relocs, 1894 internal_relocs)) 1895 goto error_return; 1896 if (elf_section_data (o)->rel_hdr2 1897 && (!elf_link_read_relocs_from_section 1898 (abfd, o, 1899 elf_section_data (o)->rel_hdr2, 1900 ((bfd_byte *) external_relocs) + rel_hdr->sh_size, 1901 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr) 1902 * bed->s->int_rels_per_ext_rel)))) 1903 goto error_return; 1904 1905 /* Cache the results for next time, if we can. */ 1906 if (keep_memory) 1907 elf_section_data (o)->relocs = internal_relocs; 1908 1909 if (alloc1 != NULL) 1910 free (alloc1); 1911 1912 /* Don't free alloc2, since if it was allocated we are passing it 1913 back (under the name of internal_relocs). */ 1914 1915 return internal_relocs; 1916 1917 error_return: 1918 if (alloc1 != NULL) 1919 free (alloc1); 1920 if (alloc2 != NULL) 1921 free (alloc2); 1922 return NULL; 1923 } 1924 1925 /* Compute the size of, and allocate space for, REL_HDR which is the 1926 section header for a section containing relocations for O. */ 1927 1928 bfd_boolean 1929 _bfd_elf_link_size_reloc_section (bfd *abfd, 1930 Elf_Internal_Shdr *rel_hdr, 1931 asection *o) 1932 { 1933 bfd_size_type reloc_count; 1934 bfd_size_type num_rel_hashes; 1935 1936 /* Figure out how many relocations there will be. */ 1937 if (rel_hdr == &elf_section_data (o)->rel_hdr) 1938 reloc_count = elf_section_data (o)->rel_count; 1939 else 1940 reloc_count = elf_section_data (o)->rel_count2; 1941 1942 num_rel_hashes = o->reloc_count; 1943 if (num_rel_hashes < reloc_count) 1944 num_rel_hashes = reloc_count; 1945 1946 /* That allows us to calculate the size of the section. */ 1947 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count; 1948 1949 /* The contents field must last into write_object_contents, so we 1950 allocate it with bfd_alloc rather than malloc. Also since we 1951 cannot be sure that the contents will actually be filled in, 1952 we zero the allocated space. */ 1953 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size); 1954 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) 1955 return FALSE; 1956 1957 /* We only allocate one set of hash entries, so we only do it the 1958 first time we are called. */ 1959 if (elf_section_data (o)->rel_hashes == NULL 1960 && num_rel_hashes) 1961 { 1962 struct elf_link_hash_entry **p; 1963 1964 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *)); 1965 if (p == NULL) 1966 return FALSE; 1967 1968 elf_section_data (o)->rel_hashes = p; 1969 } 1970 1971 return TRUE; 1972 } 1973 1974 /* Copy the relocations indicated by the INTERNAL_RELOCS (which 1975 originated from the section given by INPUT_REL_HDR) to the 1976 OUTPUT_BFD. */ 1977 1978 bfd_boolean 1979 _bfd_elf_link_output_relocs (bfd *output_bfd, 1980 asection *input_section, 1981 Elf_Internal_Shdr *input_rel_hdr, 1982 Elf_Internal_Rela *internal_relocs) 1983 { 1984 Elf_Internal_Rela *irela; 1985 Elf_Internal_Rela *irelaend; 1986 bfd_byte *erel; 1987 Elf_Internal_Shdr *output_rel_hdr; 1988 asection *output_section; 1989 unsigned int *rel_countp = NULL; 1990 const struct elf_backend_data *bed; 1991 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 1992 1993 output_section = input_section->output_section; 1994 output_rel_hdr = NULL; 1995 1996 if (elf_section_data (output_section)->rel_hdr.sh_entsize 1997 == input_rel_hdr->sh_entsize) 1998 { 1999 output_rel_hdr = &elf_section_data (output_section)->rel_hdr; 2000 rel_countp = &elf_section_data (output_section)->rel_count; 2001 } 2002 else if (elf_section_data (output_section)->rel_hdr2 2003 && (elf_section_data (output_section)->rel_hdr2->sh_entsize 2004 == input_rel_hdr->sh_entsize)) 2005 { 2006 output_rel_hdr = elf_section_data (output_section)->rel_hdr2; 2007 rel_countp = &elf_section_data (output_section)->rel_count2; 2008 } 2009 else 2010 { 2011 (*_bfd_error_handler) 2012 (_("%s: relocation size mismatch in %s section %s"), 2013 bfd_get_filename (output_bfd), 2014 bfd_archive_filename (input_section->owner), 2015 input_section->name); 2016 bfd_set_error (bfd_error_wrong_object_format); 2017 return FALSE; 2018 } 2019 2020 bed = get_elf_backend_data (output_bfd); 2021 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel) 2022 swap_out = bed->s->swap_reloc_out; 2023 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela) 2024 swap_out = bed->s->swap_reloca_out; 2025 else 2026 abort (); 2027 2028 erel = output_rel_hdr->contents; 2029 erel += *rel_countp * input_rel_hdr->sh_entsize; 2030 irela = internal_relocs; 2031 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) 2032 * bed->s->int_rels_per_ext_rel); 2033 while (irela < irelaend) 2034 { 2035 (*swap_out) (output_bfd, irela, erel); 2036 irela += bed->s->int_rels_per_ext_rel; 2037 erel += input_rel_hdr->sh_entsize; 2038 } 2039 2040 /* Bump the counter, so that we know where to add the next set of 2041 relocations. */ 2042 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr); 2043 2044 return TRUE; 2045 } 2046 2047 /* Fix up the flags for a symbol. This handles various cases which 2048 can only be fixed after all the input files are seen. This is 2049 currently called by both adjust_dynamic_symbol and 2050 assign_sym_version, which is unnecessary but perhaps more robust in 2051 the face of future changes. */ 2052 2053 bfd_boolean 2054 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, 2055 struct elf_info_failed *eif) 2056 { 2057 /* If this symbol was mentioned in a non-ELF file, try to set 2058 DEF_REGULAR and REF_REGULAR correctly. This is the only way to 2059 permit a non-ELF file to correctly refer to a symbol defined in 2060 an ELF dynamic object. */ 2061 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) 2062 { 2063 while (h->root.type == bfd_link_hash_indirect) 2064 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2065 2066 if (h->root.type != bfd_link_hash_defined 2067 && h->root.type != bfd_link_hash_defweak) 2068 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR 2069 | ELF_LINK_HASH_REF_REGULAR_NONWEAK); 2070 else 2071 { 2072 if (h->root.u.def.section->owner != NULL 2073 && (bfd_get_flavour (h->root.u.def.section->owner) 2074 == bfd_target_elf_flavour)) 2075 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR 2076 | ELF_LINK_HASH_REF_REGULAR_NONWEAK); 2077 else 2078 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; 2079 } 2080 2081 if (h->dynindx == -1 2082 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 2083 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)) 2084 { 2085 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2086 { 2087 eif->failed = TRUE; 2088 return FALSE; 2089 } 2090 } 2091 } 2092 else 2093 { 2094 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol 2095 was first seen in a non-ELF file. Fortunately, if the symbol 2096 was first seen in an ELF file, we're probably OK unless the 2097 symbol was defined in a non-ELF file. Catch that case here. 2098 FIXME: We're still in trouble if the symbol was first seen in 2099 a dynamic object, and then later in a non-ELF regular object. */ 2100 if ((h->root.type == bfd_link_hash_defined 2101 || h->root.type == bfd_link_hash_defweak) 2102 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 2103 && (h->root.u.def.section->owner != NULL 2104 ? (bfd_get_flavour (h->root.u.def.section->owner) 2105 != bfd_target_elf_flavour) 2106 : (bfd_is_abs_section (h->root.u.def.section) 2107 && (h->elf_link_hash_flags 2108 & ELF_LINK_HASH_DEF_DYNAMIC) == 0))) 2109 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; 2110 } 2111 2112 /* If this is a final link, and the symbol was defined as a common 2113 symbol in a regular object file, and there was no definition in 2114 any dynamic object, then the linker will have allocated space for 2115 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR 2116 flag will not have been set. */ 2117 if (h->root.type == bfd_link_hash_defined 2118 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 2119 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 2120 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 2121 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) 2122 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; 2123 2124 /* If -Bsymbolic was used (which means to bind references to global 2125 symbols to the definition within the shared object), and this 2126 symbol was defined in a regular object, then it actually doesn't 2127 need a PLT entry. Likewise, if the symbol has non-default 2128 visibility. If the symbol has hidden or internal visibility, we 2129 will force it local. */ 2130 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 2131 && eif->info->shared 2132 && is_elf_hash_table (eif->info->hash) 2133 && (eif->info->symbolic 2134 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 2135 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) 2136 { 2137 const struct elf_backend_data *bed; 2138 bfd_boolean force_local; 2139 2140 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); 2141 2142 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL 2143 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); 2144 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); 2145 } 2146 2147 /* If a weak undefined symbol has non-default visibility, we also 2148 hide it from the dynamic linker. */ 2149 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 2150 && h->root.type == bfd_link_hash_undefweak) 2151 { 2152 const struct elf_backend_data *bed; 2153 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); 2154 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2155 } 2156 2157 /* If this is a weak defined symbol in a dynamic object, and we know 2158 the real definition in the dynamic object, copy interesting flags 2159 over to the real definition. */ 2160 if (h->weakdef != NULL) 2161 { 2162 struct elf_link_hash_entry *weakdef; 2163 2164 weakdef = h->weakdef; 2165 if (h->root.type == bfd_link_hash_indirect) 2166 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2167 2168 BFD_ASSERT (h->root.type == bfd_link_hash_defined 2169 || h->root.type == bfd_link_hash_defweak); 2170 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined 2171 || weakdef->root.type == bfd_link_hash_defweak); 2172 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); 2173 2174 /* If the real definition is defined by a regular object file, 2175 don't do anything special. See the longer description in 2176 _bfd_elf_adjust_dynamic_symbol, below. */ 2177 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) 2178 h->weakdef = NULL; 2179 else 2180 { 2181 const struct elf_backend_data *bed; 2182 2183 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); 2184 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h); 2185 } 2186 } 2187 2188 return TRUE; 2189 } 2190 2191 /* Make the backend pick a good value for a dynamic symbol. This is 2192 called via elf_link_hash_traverse, and also calls itself 2193 recursively. */ 2194 2195 bfd_boolean 2196 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) 2197 { 2198 struct elf_info_failed *eif = data; 2199 bfd *dynobj; 2200 const struct elf_backend_data *bed; 2201 2202 if (! is_elf_hash_table (eif->info->hash)) 2203 return FALSE; 2204 2205 if (h->root.type == bfd_link_hash_warning) 2206 { 2207 h->plt = elf_hash_table (eif->info)->init_offset; 2208 h->got = elf_hash_table (eif->info)->init_offset; 2209 2210 /* When warning symbols are created, they **replace** the "real" 2211 entry in the hash table, thus we never get to see the real 2212 symbol in a hash traversal. So look at it now. */ 2213 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2214 } 2215 2216 /* Ignore indirect symbols. These are added by the versioning code. */ 2217 if (h->root.type == bfd_link_hash_indirect) 2218 return TRUE; 2219 2220 /* Fix the symbol flags. */ 2221 if (! _bfd_elf_fix_symbol_flags (h, eif)) 2222 return FALSE; 2223 2224 /* If this symbol does not require a PLT entry, and it is not 2225 defined by a dynamic object, or is not referenced by a regular 2226 object, ignore it. We do have to handle a weak defined symbol, 2227 even if no regular object refers to it, if we decided to add it 2228 to the dynamic symbol table. FIXME: Do we normally need to worry 2229 about symbols which are defined by one dynamic object and 2230 referenced by another one? */ 2231 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 2232 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 2233 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 2234 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 2235 && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) 2236 { 2237 h->plt = elf_hash_table (eif->info)->init_offset; 2238 return TRUE; 2239 } 2240 2241 /* If we've already adjusted this symbol, don't do it again. This 2242 can happen via a recursive call. */ 2243 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) 2244 return TRUE; 2245 2246 /* Don't look at this symbol again. Note that we must set this 2247 after checking the above conditions, because we may look at a 2248 symbol once, decide not to do anything, and then get called 2249 recursively later after REF_REGULAR is set below. */ 2250 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; 2251 2252 /* If this is a weak definition, and we know a real definition, and 2253 the real symbol is not itself defined by a regular object file, 2254 then get a good value for the real definition. We handle the 2255 real symbol first, for the convenience of the backend routine. 2256 2257 Note that there is a confusing case here. If the real definition 2258 is defined by a regular object file, we don't get the real symbol 2259 from the dynamic object, but we do get the weak symbol. If the 2260 processor backend uses a COPY reloc, then if some routine in the 2261 dynamic object changes the real symbol, we will not see that 2262 change in the corresponding weak symbol. This is the way other 2263 ELF linkers work as well, and seems to be a result of the shared 2264 library model. 2265 2266 I will clarify this issue. Most SVR4 shared libraries define the 2267 variable _timezone and define timezone as a weak synonym. The 2268 tzset call changes _timezone. If you write 2269 extern int timezone; 2270 int _timezone = 5; 2271 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } 2272 you might expect that, since timezone is a synonym for _timezone, 2273 the same number will print both times. However, if the processor 2274 backend uses a COPY reloc, then actually timezone will be copied 2275 into your process image, and, since you define _timezone 2276 yourself, _timezone will not. Thus timezone and _timezone will 2277 wind up at different memory locations. The tzset call will set 2278 _timezone, leaving timezone unchanged. */ 2279 2280 if (h->weakdef != NULL) 2281 { 2282 /* If we get to this point, we know there is an implicit 2283 reference by a regular object file via the weak symbol H. 2284 FIXME: Is this really true? What if the traversal finds 2285 H->WEAKDEF before it finds H? */ 2286 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; 2287 2288 if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif)) 2289 return FALSE; 2290 } 2291 2292 /* If a symbol has no type and no size and does not require a PLT 2293 entry, then we are probably about to do the wrong thing here: we 2294 are probably going to create a COPY reloc for an empty object. 2295 This case can arise when a shared object is built with assembly 2296 code, and the assembly code fails to set the symbol type. */ 2297 if (h->size == 0 2298 && h->type == STT_NOTYPE 2299 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) 2300 (*_bfd_error_handler) 2301 (_("warning: type and size of dynamic symbol `%s' are not defined"), 2302 h->root.root.string); 2303 2304 dynobj = elf_hash_table (eif->info)->dynobj; 2305 bed = get_elf_backend_data (dynobj); 2306 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) 2307 { 2308 eif->failed = TRUE; 2309 return FALSE; 2310 } 2311 2312 return TRUE; 2313 } 2314 2315 /* Adjust all external symbols pointing into SEC_MERGE sections 2316 to reflect the object merging within the sections. */ 2317 2318 bfd_boolean 2319 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) 2320 { 2321 asection *sec; 2322 2323 if (h->root.type == bfd_link_hash_warning) 2324 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2325 2326 if ((h->root.type == bfd_link_hash_defined 2327 || h->root.type == bfd_link_hash_defweak) 2328 && ((sec = h->root.u.def.section)->flags & SEC_MERGE) 2329 && sec->sec_info_type == ELF_INFO_TYPE_MERGE) 2330 { 2331 bfd *output_bfd = data; 2332 2333 h->root.u.def.value = 2334 _bfd_merged_section_offset (output_bfd, 2335 &h->root.u.def.section, 2336 elf_section_data (sec)->sec_info, 2337 h->root.u.def.value, 0); 2338 } 2339 2340 return TRUE; 2341 } 2342 2343 /* Returns false if the symbol referred to by H should be considered 2344 to resolve local to the current module, and true if it should be 2345 considered to bind dynamically. */ 2346 2347 bfd_boolean 2348 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, 2349 struct bfd_link_info *info, 2350 bfd_boolean ignore_protected) 2351 { 2352 bfd_boolean binding_stays_local_p; 2353 2354 if (h == NULL) 2355 return FALSE; 2356 2357 while (h->root.type == bfd_link_hash_indirect 2358 || h->root.type == bfd_link_hash_warning) 2359 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2360 2361 /* If it was forced local, then clearly it's not dynamic. */ 2362 if (h->dynindx == -1) 2363 return FALSE; 2364 if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) 2365 return FALSE; 2366 2367 /* Identify the cases where name binding rules say that a 2368 visible symbol resolves locally. */ 2369 binding_stays_local_p = info->executable || info->symbolic; 2370 2371 switch (ELF_ST_VISIBILITY (h->other)) 2372 { 2373 case STV_INTERNAL: 2374 case STV_HIDDEN: 2375 return FALSE; 2376 2377 case STV_PROTECTED: 2378 /* Proper resolution for function pointer equality may require 2379 that these symbols perhaps be resolved dynamically, even though 2380 we should be resolving them to the current module. */ 2381 if (!ignore_protected) 2382 binding_stays_local_p = TRUE; 2383 break; 2384 2385 default: 2386 break; 2387 } 2388 2389 /* If it isn't defined locally, then clearly it's dynamic. */ 2390 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) 2391 return TRUE; 2392 2393 /* Otherwise, the symbol is dynamic if binding rules don't tell 2394 us that it remains local. */ 2395 return !binding_stays_local_p; 2396 } 2397 2398 /* Return true if the symbol referred to by H should be considered 2399 to resolve local to the current module, and false otherwise. Differs 2400 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of 2401 undefined symbols and weak symbols. */ 2402 2403 bfd_boolean 2404 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, 2405 struct bfd_link_info *info, 2406 bfd_boolean local_protected) 2407 { 2408 /* If it's a local sym, of course we resolve locally. */ 2409 if (h == NULL) 2410 return TRUE; 2411 2412 /* If we don't have a definition in a regular file, then we can't 2413 resolve locally. The sym is either undefined or dynamic. */ 2414 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) 2415 return FALSE; 2416 2417 /* Forced local symbols resolve locally. */ 2418 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) 2419 return TRUE; 2420 2421 /* As do non-dynamic symbols. */ 2422 if (h->dynindx == -1) 2423 return TRUE; 2424 2425 /* At this point, we know the symbol is defined and dynamic. In an 2426 executable it must resolve locally, likewise when building symbolic 2427 shared libraries. */ 2428 if (info->executable || info->symbolic) 2429 return TRUE; 2430 2431 /* Now deal with defined dynamic symbols in shared libraries. Ones 2432 with default visibility might not resolve locally. */ 2433 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 2434 return FALSE; 2435 2436 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */ 2437 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED) 2438 return TRUE; 2439 2440 /* Function pointer equality tests may require that STV_PROTECTED 2441 symbols be treated as dynamic symbols, even when we know that the 2442 dynamic linker will resolve them locally. */ 2443 return local_protected; 2444 } 2445 2446 /* Caches some TLS segment info, and ensures that the TLS segment vma is 2447 aligned. Returns the first TLS output section. */ 2448 2449 struct bfd_section * 2450 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) 2451 { 2452 struct bfd_section *sec, *tls; 2453 unsigned int align = 0; 2454 2455 for (sec = obfd->sections; sec != NULL; sec = sec->next) 2456 if ((sec->flags & SEC_THREAD_LOCAL) != 0) 2457 break; 2458 tls = sec; 2459 2460 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) 2461 if (sec->alignment_power > align) 2462 align = sec->alignment_power; 2463 2464 elf_hash_table (info)->tls_sec = tls; 2465 2466 /* Ensure the alignment of the first section is the largest alignment, 2467 so that the tls segment starts aligned. */ 2468 if (tls != NULL) 2469 tls->alignment_power = align; 2470 2471 return tls; 2472 } 2473 2474 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ 2475 static bfd_boolean 2476 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, 2477 Elf_Internal_Sym *sym) 2478 { 2479 /* Local symbols do not count, but target specific ones might. */ 2480 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL 2481 && ELF_ST_BIND (sym->st_info) < STB_LOOS) 2482 return FALSE; 2483 2484 /* Function symbols do not count. */ 2485 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC) 2486 return FALSE; 2487 2488 /* If the section is undefined, then so is the symbol. */ 2489 if (sym->st_shndx == SHN_UNDEF) 2490 return FALSE; 2491 2492 /* If the symbol is defined in the common section, then 2493 it is a common definition and so does not count. */ 2494 if (sym->st_shndx == SHN_COMMON) 2495 return FALSE; 2496 2497 /* If the symbol is in a target specific section then we 2498 must rely upon the backend to tell us what it is. */ 2499 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) 2500 /* FIXME - this function is not coded yet: 2501 2502 return _bfd_is_global_symbol_definition (abfd, sym); 2503 2504 Instead for now assume that the definition is not global, 2505 Even if this is wrong, at least the linker will behave 2506 in the same way that it used to do. */ 2507 return FALSE; 2508 2509 return TRUE; 2510 } 2511 2512 /* Search the symbol table of the archive element of the archive ABFD 2513 whose archive map contains a mention of SYMDEF, and determine if 2514 the symbol is defined in this element. */ 2515 static bfd_boolean 2516 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) 2517 { 2518 Elf_Internal_Shdr * hdr; 2519 bfd_size_type symcount; 2520 bfd_size_type extsymcount; 2521 bfd_size_type extsymoff; 2522 Elf_Internal_Sym *isymbuf; 2523 Elf_Internal_Sym *isym; 2524 Elf_Internal_Sym *isymend; 2525 bfd_boolean result; 2526 2527 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); 2528 if (abfd == NULL) 2529 return FALSE; 2530 2531 if (! bfd_check_format (abfd, bfd_object)) 2532 return FALSE; 2533 2534 /* If we have already included the element containing this symbol in the 2535 link then we do not need to include it again. Just claim that any symbol 2536 it contains is not a definition, so that our caller will not decide to 2537 (re)include this element. */ 2538 if (abfd->archive_pass) 2539 return FALSE; 2540 2541 /* Select the appropriate symbol table. */ 2542 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) 2543 hdr = &elf_tdata (abfd)->symtab_hdr; 2544 else 2545 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 2546 2547 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 2548 2549 /* The sh_info field of the symtab header tells us where the 2550 external symbols start. We don't care about the local symbols. */ 2551 if (elf_bad_symtab (abfd)) 2552 { 2553 extsymcount = symcount; 2554 extsymoff = 0; 2555 } 2556 else 2557 { 2558 extsymcount = symcount - hdr->sh_info; 2559 extsymoff = hdr->sh_info; 2560 } 2561 2562 if (extsymcount == 0) 2563 return FALSE; 2564 2565 /* Read in the symbol table. */ 2566 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 2567 NULL, NULL, NULL); 2568 if (isymbuf == NULL) 2569 return FALSE; 2570 2571 /* Scan the symbol table looking for SYMDEF. */ 2572 result = FALSE; 2573 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) 2574 { 2575 const char *name; 2576 2577 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 2578 isym->st_name); 2579 if (name == NULL) 2580 break; 2581 2582 if (strcmp (name, symdef->name) == 0) 2583 { 2584 result = is_global_data_symbol_definition (abfd, isym); 2585 break; 2586 } 2587 } 2588 2589 free (isymbuf); 2590 2591 return result; 2592 } 2593 2594 /* Add an entry to the .dynamic table. */ 2595 2596 bfd_boolean 2597 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, 2598 bfd_vma tag, 2599 bfd_vma val) 2600 { 2601 struct elf_link_hash_table *hash_table; 2602 const struct elf_backend_data *bed; 2603 asection *s; 2604 bfd_size_type newsize; 2605 bfd_byte *newcontents; 2606 Elf_Internal_Dyn dyn; 2607 2608 hash_table = elf_hash_table (info); 2609 if (! is_elf_hash_table (hash_table)) 2610 return FALSE; 2611 2612 bed = get_elf_backend_data (hash_table->dynobj); 2613 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic"); 2614 BFD_ASSERT (s != NULL); 2615 2616 newsize = s->_raw_size + bed->s->sizeof_dyn; 2617 newcontents = bfd_realloc (s->contents, newsize); 2618 if (newcontents == NULL) 2619 return FALSE; 2620 2621 dyn.d_tag = tag; 2622 dyn.d_un.d_val = val; 2623 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->_raw_size); 2624 2625 s->_raw_size = newsize; 2626 s->contents = newcontents; 2627 2628 return TRUE; 2629 } 2630 2631 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true, 2632 otherwise just check whether one already exists. Returns -1 on error, 2633 1 if a DT_NEEDED tag already exists, and 0 on success. */ 2634 2635 static int 2636 elf_add_dt_needed_tag (struct bfd_link_info *info, 2637 const char *soname, 2638 bfd_boolean do_it) 2639 { 2640 struct elf_link_hash_table *hash_table; 2641 bfd_size_type oldsize; 2642 bfd_size_type strindex; 2643 2644 hash_table = elf_hash_table (info); 2645 oldsize = _bfd_elf_strtab_size (hash_table->dynstr); 2646 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE); 2647 if (strindex == (bfd_size_type) -1) 2648 return -1; 2649 2650 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr)) 2651 { 2652 asection *sdyn; 2653 const struct elf_backend_data *bed; 2654 bfd_byte *extdyn; 2655 2656 bed = get_elf_backend_data (hash_table->dynobj); 2657 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic"); 2658 BFD_ASSERT (sdyn != NULL); 2659 2660 for (extdyn = sdyn->contents; 2661 extdyn < sdyn->contents + sdyn->_raw_size; 2662 extdyn += bed->s->sizeof_dyn) 2663 { 2664 Elf_Internal_Dyn dyn; 2665 2666 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); 2667 if (dyn.d_tag == DT_NEEDED 2668 && dyn.d_un.d_val == strindex) 2669 { 2670 _bfd_elf_strtab_delref (hash_table->dynstr, strindex); 2671 return 1; 2672 } 2673 } 2674 } 2675 2676 if (do_it) 2677 { 2678 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) 2679 return -1; 2680 } 2681 else 2682 /* We were just checking for existence of the tag. */ 2683 _bfd_elf_strtab_delref (hash_table->dynstr, strindex); 2684 2685 return 0; 2686 } 2687 2688 /* Sort symbol by value and section. */ 2689 static int 2690 elf_sort_symbol (const void *arg1, const void *arg2) 2691 { 2692 const struct elf_link_hash_entry *h1; 2693 const struct elf_link_hash_entry *h2; 2694 bfd_signed_vma vdiff; 2695 2696 h1 = *(const struct elf_link_hash_entry **) arg1; 2697 h2 = *(const struct elf_link_hash_entry **) arg2; 2698 vdiff = h1->root.u.def.value - h2->root.u.def.value; 2699 if (vdiff != 0) 2700 return vdiff > 0 ? 1 : -1; 2701 else 2702 { 2703 long sdiff = h1->root.u.def.section - h2->root.u.def.section; 2704 if (sdiff != 0) 2705 return sdiff > 0 ? 1 : -1; 2706 } 2707 return 0; 2708 } 2709 2710 /* This function is used to adjust offsets into .dynstr for 2711 dynamic symbols. This is called via elf_link_hash_traverse. */ 2712 2713 static bfd_boolean 2714 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) 2715 { 2716 struct elf_strtab_hash *dynstr = data; 2717 2718 if (h->root.type == bfd_link_hash_warning) 2719 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2720 2721 if (h->dynindx != -1) 2722 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); 2723 return TRUE; 2724 } 2725 2726 /* Assign string offsets in .dynstr, update all structures referencing 2727 them. */ 2728 2729 static bfd_boolean 2730 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) 2731 { 2732 struct elf_link_hash_table *hash_table = elf_hash_table (info); 2733 struct elf_link_local_dynamic_entry *entry; 2734 struct elf_strtab_hash *dynstr = hash_table->dynstr; 2735 bfd *dynobj = hash_table->dynobj; 2736 asection *sdyn; 2737 bfd_size_type size; 2738 const struct elf_backend_data *bed; 2739 bfd_byte *extdyn; 2740 2741 _bfd_elf_strtab_finalize (dynstr); 2742 size = _bfd_elf_strtab_size (dynstr); 2743 2744 bed = get_elf_backend_data (dynobj); 2745 sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); 2746 BFD_ASSERT (sdyn != NULL); 2747 2748 /* Update all .dynamic entries referencing .dynstr strings. */ 2749 for (extdyn = sdyn->contents; 2750 extdyn < sdyn->contents + sdyn->_raw_size; 2751 extdyn += bed->s->sizeof_dyn) 2752 { 2753 Elf_Internal_Dyn dyn; 2754 2755 bed->s->swap_dyn_in (dynobj, extdyn, &dyn); 2756 switch (dyn.d_tag) 2757 { 2758 case DT_STRSZ: 2759 dyn.d_un.d_val = size; 2760 break; 2761 case DT_NEEDED: 2762 case DT_SONAME: 2763 case DT_RPATH: 2764 case DT_RUNPATH: 2765 case DT_FILTER: 2766 case DT_AUXILIARY: 2767 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); 2768 break; 2769 default: 2770 continue; 2771 } 2772 bed->s->swap_dyn_out (dynobj, &dyn, extdyn); 2773 } 2774 2775 /* Now update local dynamic symbols. */ 2776 for (entry = hash_table->dynlocal; entry ; entry = entry->next) 2777 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, 2778 entry->isym.st_name); 2779 2780 /* And the rest of dynamic symbols. */ 2781 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); 2782 2783 /* Adjust version definitions. */ 2784 if (elf_tdata (output_bfd)->cverdefs) 2785 { 2786 asection *s; 2787 bfd_byte *p; 2788 bfd_size_type i; 2789 Elf_Internal_Verdef def; 2790 Elf_Internal_Verdaux defaux; 2791 2792 s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); 2793 p = s->contents; 2794 do 2795 { 2796 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, 2797 &def); 2798 p += sizeof (Elf_External_Verdef); 2799 for (i = 0; i < def.vd_cnt; ++i) 2800 { 2801 _bfd_elf_swap_verdaux_in (output_bfd, 2802 (Elf_External_Verdaux *) p, &defaux); 2803 defaux.vda_name = _bfd_elf_strtab_offset (dynstr, 2804 defaux.vda_name); 2805 _bfd_elf_swap_verdaux_out (output_bfd, 2806 &defaux, (Elf_External_Verdaux *) p); 2807 p += sizeof (Elf_External_Verdaux); 2808 } 2809 } 2810 while (def.vd_next); 2811 } 2812 2813 /* Adjust version references. */ 2814 if (elf_tdata (output_bfd)->verref) 2815 { 2816 asection *s; 2817 bfd_byte *p; 2818 bfd_size_type i; 2819 Elf_Internal_Verneed need; 2820 Elf_Internal_Vernaux needaux; 2821 2822 s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); 2823 p = s->contents; 2824 do 2825 { 2826 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, 2827 &need); 2828 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); 2829 _bfd_elf_swap_verneed_out (output_bfd, &need, 2830 (Elf_External_Verneed *) p); 2831 p += sizeof (Elf_External_Verneed); 2832 for (i = 0; i < need.vn_cnt; ++i) 2833 { 2834 _bfd_elf_swap_vernaux_in (output_bfd, 2835 (Elf_External_Vernaux *) p, &needaux); 2836 needaux.vna_name = _bfd_elf_strtab_offset (dynstr, 2837 needaux.vna_name); 2838 _bfd_elf_swap_vernaux_out (output_bfd, 2839 &needaux, 2840 (Elf_External_Vernaux *) p); 2841 p += sizeof (Elf_External_Vernaux); 2842 } 2843 } 2844 while (need.vn_next); 2845 } 2846 2847 return TRUE; 2848 } 2849 2850 /* Add symbols from an ELF object file to the linker hash table. */ 2851 2852 static bfd_boolean 2853 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) 2854 { 2855 bfd_boolean (*add_symbol_hook) 2856 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *, 2857 const char **, flagword *, asection **, bfd_vma *); 2858 bfd_boolean (*check_relocs) 2859 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); 2860 bfd_boolean collect; 2861 Elf_Internal_Shdr *hdr; 2862 bfd_size_type symcount; 2863 bfd_size_type extsymcount; 2864 bfd_size_type extsymoff; 2865 struct elf_link_hash_entry **sym_hash; 2866 bfd_boolean dynamic; 2867 Elf_External_Versym *extversym = NULL; 2868 Elf_External_Versym *ever; 2869 struct elf_link_hash_entry *weaks; 2870 struct elf_link_hash_entry **nondeflt_vers = NULL; 2871 bfd_size_type nondeflt_vers_cnt = 0; 2872 Elf_Internal_Sym *isymbuf = NULL; 2873 Elf_Internal_Sym *isym; 2874 Elf_Internal_Sym *isymend; 2875 const struct elf_backend_data *bed; 2876 bfd_boolean add_needed; 2877 struct elf_link_hash_table * hash_table; 2878 bfd_size_type amt; 2879 2880 hash_table = elf_hash_table (info); 2881 2882 bed = get_elf_backend_data (abfd); 2883 add_symbol_hook = bed->elf_add_symbol_hook; 2884 collect = bed->collect; 2885 2886 if ((abfd->flags & DYNAMIC) == 0) 2887 dynamic = FALSE; 2888 else 2889 { 2890 dynamic = TRUE; 2891 2892 /* You can't use -r against a dynamic object. Also, there's no 2893 hope of using a dynamic object which does not exactly match 2894 the format of the output file. */ 2895 if (info->relocatable 2896 || !is_elf_hash_table (hash_table) 2897 || hash_table->root.creator != abfd->xvec) 2898 { 2899 bfd_set_error (bfd_error_invalid_operation); 2900 goto error_return; 2901 } 2902 } 2903 2904 /* As a GNU extension, any input sections which are named 2905 .gnu.warning.SYMBOL are treated as warning symbols for the given 2906 symbol. This differs from .gnu.warning sections, which generate 2907 warnings when they are included in an output file. */ 2908 if (info->executable) 2909 { 2910 asection *s; 2911 2912 for (s = abfd->sections; s != NULL; s = s->next) 2913 { 2914 const char *name; 2915 2916 name = bfd_get_section_name (abfd, s); 2917 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) 2918 { 2919 char *msg; 2920 bfd_size_type sz; 2921 2922 name += sizeof ".gnu.warning." - 1; 2923 2924 /* If this is a shared object, then look up the symbol 2925 in the hash table. If it is there, and it is already 2926 been defined, then we will not be using the entry 2927 from this shared object, so we don't need to warn. 2928 FIXME: If we see the definition in a regular object 2929 later on, we will warn, but we shouldn't. The only 2930 fix is to keep track of what warnings we are supposed 2931 to emit, and then handle them all at the end of the 2932 link. */ 2933 if (dynamic) 2934 { 2935 struct elf_link_hash_entry *h; 2936 2937 h = elf_link_hash_lookup (hash_table, name, 2938 FALSE, FALSE, TRUE); 2939 2940 /* FIXME: What about bfd_link_hash_common? */ 2941 if (h != NULL 2942 && (h->root.type == bfd_link_hash_defined 2943 || h->root.type == bfd_link_hash_defweak)) 2944 { 2945 /* We don't want to issue this warning. Clobber 2946 the section size so that the warning does not 2947 get copied into the output file. */ 2948 s->_raw_size = 0; 2949 continue; 2950 } 2951 } 2952 2953 sz = bfd_section_size (abfd, s); 2954 msg = bfd_alloc (abfd, sz + 1); 2955 if (msg == NULL) 2956 goto error_return; 2957 2958 if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) 2959 goto error_return; 2960 2961 msg[sz] = '\0'; 2962 2963 if (! (_bfd_generic_link_add_one_symbol 2964 (info, abfd, name, BSF_WARNING, s, 0, msg, 2965 FALSE, collect, NULL))) 2966 goto error_return; 2967 2968 if (! info->relocatable) 2969 { 2970 /* Clobber the section size so that the warning does 2971 not get copied into the output file. */ 2972 s->_raw_size = 0; 2973 } 2974 } 2975 } 2976 } 2977 2978 add_needed = TRUE; 2979 if (! dynamic) 2980 { 2981 /* If we are creating a shared library, create all the dynamic 2982 sections immediately. We need to attach them to something, 2983 so we attach them to this BFD, provided it is the right 2984 format. FIXME: If there are no input BFD's of the same 2985 format as the output, we can't make a shared library. */ 2986 if (info->shared 2987 && is_elf_hash_table (hash_table) 2988 && hash_table->root.creator == abfd->xvec 2989 && ! hash_table->dynamic_sections_created) 2990 { 2991 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 2992 goto error_return; 2993 } 2994 } 2995 else if (!is_elf_hash_table (hash_table)) 2996 goto error_return; 2997 else 2998 { 2999 asection *s; 3000 const char *soname = NULL; 3001 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; 3002 int ret; 3003 3004 /* ld --just-symbols and dynamic objects don't mix very well. 3005 Test for --just-symbols by looking at info set up by 3006 _bfd_elf_link_just_syms. */ 3007 if ((s = abfd->sections) != NULL 3008 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS) 3009 goto error_return; 3010 3011 /* If this dynamic lib was specified on the command line with 3012 --as-needed in effect, then we don't want to add a DT_NEEDED 3013 tag unless the lib is actually used. Similary for libs brought 3014 in by another lib's DT_NEEDED. */ 3015 add_needed = elf_dyn_lib_class (abfd) == DYN_NORMAL; 3016 3017 s = bfd_get_section_by_name (abfd, ".dynamic"); 3018 if (s != NULL) 3019 { 3020 bfd_byte *dynbuf; 3021 bfd_byte *extdyn; 3022 int elfsec; 3023 unsigned long shlink; 3024 3025 dynbuf = bfd_malloc (s->_raw_size); 3026 if (dynbuf == NULL) 3027 goto error_return; 3028 3029 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size)) 3030 goto error_free_dyn; 3031 3032 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 3033 if (elfsec == -1) 3034 goto error_free_dyn; 3035 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 3036 3037 for (extdyn = dynbuf; 3038 extdyn < dynbuf + s->_raw_size; 3039 extdyn += bed->s->sizeof_dyn) 3040 { 3041 Elf_Internal_Dyn dyn; 3042 3043 bed->s->swap_dyn_in (abfd, extdyn, &dyn); 3044 if (dyn.d_tag == DT_SONAME) 3045 { 3046 unsigned int tagv = dyn.d_un.d_val; 3047 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 3048 if (soname == NULL) 3049 goto error_free_dyn; 3050 } 3051 if (dyn.d_tag == DT_NEEDED) 3052 { 3053 struct bfd_link_needed_list *n, **pn; 3054 char *fnm, *anm; 3055 unsigned int tagv = dyn.d_un.d_val; 3056 3057 amt = sizeof (struct bfd_link_needed_list); 3058 n = bfd_alloc (abfd, amt); 3059 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 3060 if (n == NULL || fnm == NULL) 3061 goto error_free_dyn; 3062 amt = strlen (fnm) + 1; 3063 anm = bfd_alloc (abfd, amt); 3064 if (anm == NULL) 3065 goto error_free_dyn; 3066 memcpy (anm, fnm, amt); 3067 n->name = anm; 3068 n->by = abfd; 3069 n->next = NULL; 3070 for (pn = & hash_table->needed; 3071 *pn != NULL; 3072 pn = &(*pn)->next) 3073 ; 3074 *pn = n; 3075 } 3076 if (dyn.d_tag == DT_RUNPATH) 3077 { 3078 struct bfd_link_needed_list *n, **pn; 3079 char *fnm, *anm; 3080 unsigned int tagv = dyn.d_un.d_val; 3081 3082 amt = sizeof (struct bfd_link_needed_list); 3083 n = bfd_alloc (abfd, amt); 3084 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 3085 if (n == NULL || fnm == NULL) 3086 goto error_free_dyn; 3087 amt = strlen (fnm) + 1; 3088 anm = bfd_alloc (abfd, amt); 3089 if (anm == NULL) 3090 goto error_free_dyn; 3091 memcpy (anm, fnm, amt); 3092 n->name = anm; 3093 n->by = abfd; 3094 n->next = NULL; 3095 for (pn = & runpath; 3096 *pn != NULL; 3097 pn = &(*pn)->next) 3098 ; 3099 *pn = n; 3100 } 3101 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ 3102 if (!runpath && dyn.d_tag == DT_RPATH) 3103 { 3104 struct bfd_link_needed_list *n, **pn; 3105 char *fnm, *anm; 3106 unsigned int tagv = dyn.d_un.d_val; 3107 3108 amt = sizeof (struct bfd_link_needed_list); 3109 n = bfd_alloc (abfd, amt); 3110 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 3111 if (n == NULL || fnm == NULL) 3112 goto error_free_dyn; 3113 amt = strlen (fnm) + 1; 3114 anm = bfd_alloc (abfd, amt); 3115 if (anm == NULL) 3116 { 3117 error_free_dyn: 3118 free (dynbuf); 3119 goto error_return; 3120 } 3121 memcpy (anm, fnm, amt); 3122 n->name = anm; 3123 n->by = abfd; 3124 n->next = NULL; 3125 for (pn = & rpath; 3126 *pn != NULL; 3127 pn = &(*pn)->next) 3128 ; 3129 *pn = n; 3130 } 3131 } 3132 3133 free (dynbuf); 3134 } 3135 3136 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that 3137 frees all more recently bfd_alloc'd blocks as well. */ 3138 if (runpath) 3139 rpath = runpath; 3140 3141 if (rpath) 3142 { 3143 struct bfd_link_needed_list **pn; 3144 for (pn = & hash_table->runpath; 3145 *pn != NULL; 3146 pn = &(*pn)->next) 3147 ; 3148 *pn = rpath; 3149 } 3150 3151 /* We do not want to include any of the sections in a dynamic 3152 object in the output file. We hack by simply clobbering the 3153 list of sections in the BFD. This could be handled more 3154 cleanly by, say, a new section flag; the existing 3155 SEC_NEVER_LOAD flag is not the one we want, because that one 3156 still implies that the section takes up space in the output 3157 file. */ 3158 bfd_section_list_clear (abfd); 3159 3160 /* If this is the first dynamic object found in the link, create 3161 the special sections required for dynamic linking. */ 3162 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 3163 goto error_return; 3164 3165 /* Find the name to use in a DT_NEEDED entry that refers to this 3166 object. If the object has a DT_SONAME entry, we use it. 3167 Otherwise, if the generic linker stuck something in 3168 elf_dt_name, we use that. Otherwise, we just use the file 3169 name. */ 3170 if (soname == NULL || *soname == '\0') 3171 { 3172 soname = elf_dt_name (abfd); 3173 if (soname == NULL || *soname == '\0') 3174 soname = bfd_get_filename (abfd); 3175 } 3176 3177 /* Save the SONAME because sometimes the linker emulation code 3178 will need to know it. */ 3179 elf_dt_name (abfd) = soname; 3180 3181 ret = elf_add_dt_needed_tag (info, soname, add_needed); 3182 if (ret < 0) 3183 goto error_return; 3184 3185 /* If we have already included this dynamic object in the 3186 link, just ignore it. There is no reason to include a 3187 particular dynamic object more than once. */ 3188 if (ret > 0) 3189 return TRUE; 3190 } 3191 3192 /* If this is a dynamic object, we always link against the .dynsym 3193 symbol table, not the .symtab symbol table. The dynamic linker 3194 will only see the .dynsym symbol table, so there is no reason to 3195 look at .symtab for a dynamic object. */ 3196 3197 if (! dynamic || elf_dynsymtab (abfd) == 0) 3198 hdr = &elf_tdata (abfd)->symtab_hdr; 3199 else 3200 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 3201 3202 symcount = hdr->sh_size / bed->s->sizeof_sym; 3203 3204 /* The sh_info field of the symtab header tells us where the 3205 external symbols start. We don't care about the local symbols at 3206 this point. */ 3207 if (elf_bad_symtab (abfd)) 3208 { 3209 extsymcount = symcount; 3210 extsymoff = 0; 3211 } 3212 else 3213 { 3214 extsymcount = symcount - hdr->sh_info; 3215 extsymoff = hdr->sh_info; 3216 } 3217 3218 sym_hash = NULL; 3219 if (extsymcount != 0) 3220 { 3221 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 3222 NULL, NULL, NULL); 3223 if (isymbuf == NULL) 3224 goto error_return; 3225 3226 /* We store a pointer to the hash table entry for each external 3227 symbol. */ 3228 amt = extsymcount * sizeof (struct elf_link_hash_entry *); 3229 sym_hash = bfd_alloc (abfd, amt); 3230 if (sym_hash == NULL) 3231 goto error_free_sym; 3232 elf_sym_hashes (abfd) = sym_hash; 3233 } 3234 3235 if (dynamic) 3236 { 3237 /* Read in any version definitions. */ 3238 if (! _bfd_elf_slurp_version_tables (abfd)) 3239 goto error_free_sym; 3240 3241 /* Read in the symbol versions, but don't bother to convert them 3242 to internal format. */ 3243 if (elf_dynversym (abfd) != 0) 3244 { 3245 Elf_Internal_Shdr *versymhdr; 3246 3247 versymhdr = &elf_tdata (abfd)->dynversym_hdr; 3248 extversym = bfd_malloc (versymhdr->sh_size); 3249 if (extversym == NULL) 3250 goto error_free_sym; 3251 amt = versymhdr->sh_size; 3252 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 3253 || bfd_bread (extversym, amt, abfd) != amt) 3254 goto error_free_vers; 3255 } 3256 } 3257 3258 weaks = NULL; 3259 3260 ever = extversym != NULL ? extversym + extsymoff : NULL; 3261 for (isym = isymbuf, isymend = isymbuf + extsymcount; 3262 isym < isymend; 3263 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) 3264 { 3265 int bind; 3266 bfd_vma value; 3267 asection *sec; 3268 flagword flags; 3269 const char *name; 3270 struct elf_link_hash_entry *h; 3271 bfd_boolean definition; 3272 bfd_boolean size_change_ok; 3273 bfd_boolean type_change_ok; 3274 bfd_boolean new_weakdef; 3275 bfd_boolean override; 3276 unsigned int old_alignment; 3277 bfd *old_bfd; 3278 3279 override = FALSE; 3280 3281 flags = BSF_NO_FLAGS; 3282 sec = NULL; 3283 value = isym->st_value; 3284 *sym_hash = NULL; 3285 3286 bind = ELF_ST_BIND (isym->st_info); 3287 if (bind == STB_LOCAL) 3288 { 3289 /* This should be impossible, since ELF requires that all 3290 global symbols follow all local symbols, and that sh_info 3291 point to the first global symbol. Unfortunately, Irix 5 3292 screws this up. */ 3293 continue; 3294 } 3295 else if (bind == STB_GLOBAL) 3296 { 3297 if (isym->st_shndx != SHN_UNDEF 3298 && isym->st_shndx != SHN_COMMON) 3299 flags = BSF_GLOBAL; 3300 } 3301 else if (bind == STB_WEAK) 3302 flags = BSF_WEAK; 3303 else 3304 { 3305 /* Leave it up to the processor backend. */ 3306 } 3307 3308 if (isym->st_shndx == SHN_UNDEF) 3309 sec = bfd_und_section_ptr; 3310 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE) 3311 { 3312 sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 3313 if (sec == NULL) 3314 sec = bfd_abs_section_ptr; 3315 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 3316 value -= sec->vma; 3317 } 3318 else if (isym->st_shndx == SHN_ABS) 3319 sec = bfd_abs_section_ptr; 3320 else if (isym->st_shndx == SHN_COMMON) 3321 { 3322 sec = bfd_com_section_ptr; 3323 /* What ELF calls the size we call the value. What ELF 3324 calls the value we call the alignment. */ 3325 value = isym->st_size; 3326 } 3327 else 3328 { 3329 /* Leave it up to the processor backend. */ 3330 } 3331 3332 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 3333 isym->st_name); 3334 if (name == NULL) 3335 goto error_free_vers; 3336 3337 if (isym->st_shndx == SHN_COMMON 3338 && ELF_ST_TYPE (isym->st_info) == STT_TLS) 3339 { 3340 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); 3341 3342 if (tcomm == NULL) 3343 { 3344 tcomm = bfd_make_section (abfd, ".tcommon"); 3345 if (tcomm == NULL 3346 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC 3347 | SEC_IS_COMMON 3348 | SEC_LINKER_CREATED 3349 | SEC_THREAD_LOCAL))) 3350 goto error_free_vers; 3351 } 3352 sec = tcomm; 3353 } 3354 else if (add_symbol_hook) 3355 { 3356 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec, 3357 &value)) 3358 goto error_free_vers; 3359 3360 /* The hook function sets the name to NULL if this symbol 3361 should be skipped for some reason. */ 3362 if (name == NULL) 3363 continue; 3364 } 3365 3366 /* Sanity check that all possibilities were handled. */ 3367 if (sec == NULL) 3368 { 3369 bfd_set_error (bfd_error_bad_value); 3370 goto error_free_vers; 3371 } 3372 3373 if (bfd_is_und_section (sec) 3374 || bfd_is_com_section (sec)) 3375 definition = FALSE; 3376 else 3377 definition = TRUE; 3378 3379 size_change_ok = FALSE; 3380 type_change_ok = get_elf_backend_data (abfd)->type_change_ok; 3381 old_alignment = 0; 3382 old_bfd = NULL; 3383 3384 if (is_elf_hash_table (hash_table)) 3385 { 3386 Elf_Internal_Versym iver; 3387 unsigned int vernum = 0; 3388 bfd_boolean skip; 3389 3390 if (ever != NULL) 3391 { 3392 _bfd_elf_swap_versym_in (abfd, ever, &iver); 3393 vernum = iver.vs_vers & VERSYM_VERSION; 3394 3395 /* If this is a hidden symbol, or if it is not version 3396 1, we append the version name to the symbol name. 3397 However, we do not modify a non-hidden absolute 3398 symbol, because it might be the version symbol 3399 itself. FIXME: What if it isn't? */ 3400 if ((iver.vs_vers & VERSYM_HIDDEN) != 0 3401 || (vernum > 1 && ! bfd_is_abs_section (sec))) 3402 { 3403 const char *verstr; 3404 size_t namelen, verlen, newlen; 3405 char *newname, *p; 3406 3407 if (isym->st_shndx != SHN_UNDEF) 3408 { 3409 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info) 3410 { 3411 (*_bfd_error_handler) 3412 (_("%s: %s: invalid version %u (max %d)"), 3413 bfd_archive_filename (abfd), name, vernum, 3414 elf_tdata (abfd)->dynverdef_hdr.sh_info); 3415 bfd_set_error (bfd_error_bad_value); 3416 goto error_free_vers; 3417 } 3418 else if (vernum > 1) 3419 verstr = 3420 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; 3421 else 3422 verstr = ""; 3423 } 3424 else 3425 { 3426 /* We cannot simply test for the number of 3427 entries in the VERNEED section since the 3428 numbers for the needed versions do not start 3429 at 0. */ 3430 Elf_Internal_Verneed *t; 3431 3432 verstr = NULL; 3433 for (t = elf_tdata (abfd)->verref; 3434 t != NULL; 3435 t = t->vn_nextref) 3436 { 3437 Elf_Internal_Vernaux *a; 3438 3439 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 3440 { 3441 if (a->vna_other == vernum) 3442 { 3443 verstr = a->vna_nodename; 3444 break; 3445 } 3446 } 3447 if (a != NULL) 3448 break; 3449 } 3450 if (verstr == NULL) 3451 { 3452 (*_bfd_error_handler) 3453 (_("%s: %s: invalid needed version %d"), 3454 bfd_archive_filename (abfd), name, vernum); 3455 bfd_set_error (bfd_error_bad_value); 3456 goto error_free_vers; 3457 } 3458 } 3459 3460 namelen = strlen (name); 3461 verlen = strlen (verstr); 3462 newlen = namelen + verlen + 2; 3463 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 3464 && isym->st_shndx != SHN_UNDEF) 3465 ++newlen; 3466 3467 newname = bfd_alloc (abfd, newlen); 3468 if (newname == NULL) 3469 goto error_free_vers; 3470 memcpy (newname, name, namelen); 3471 p = newname + namelen; 3472 *p++ = ELF_VER_CHR; 3473 /* If this is a defined non-hidden version symbol, 3474 we add another @ to the name. This indicates the 3475 default version of the symbol. */ 3476 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 3477 && isym->st_shndx != SHN_UNDEF) 3478 *p++ = ELF_VER_CHR; 3479 memcpy (p, verstr, verlen + 1); 3480 3481 name = newname; 3482 } 3483 } 3484 3485 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, 3486 sym_hash, &skip, &override, 3487 &type_change_ok, &size_change_ok)) 3488 goto error_free_vers; 3489 3490 if (skip) 3491 continue; 3492 3493 if (override) 3494 definition = FALSE; 3495 3496 h = *sym_hash; 3497 while (h->root.type == bfd_link_hash_indirect 3498 || h->root.type == bfd_link_hash_warning) 3499 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3500 3501 /* Remember the old alignment if this is a common symbol, so 3502 that we don't reduce the alignment later on. We can't 3503 check later, because _bfd_generic_link_add_one_symbol 3504 will set a default for the alignment which we want to 3505 override. We also remember the old bfd where the existing 3506 definition comes from. */ 3507 switch (h->root.type) 3508 { 3509 default: 3510 break; 3511 3512 case bfd_link_hash_defined: 3513 case bfd_link_hash_defweak: 3514 old_bfd = h->root.u.def.section->owner; 3515 break; 3516 3517 case bfd_link_hash_common: 3518 old_bfd = h->root.u.c.p->section->owner; 3519 old_alignment = h->root.u.c.p->alignment_power; 3520 break; 3521 } 3522 3523 if (elf_tdata (abfd)->verdef != NULL 3524 && ! override 3525 && vernum > 1 3526 && definition) 3527 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; 3528 } 3529 3530 if (! (_bfd_generic_link_add_one_symbol 3531 (info, abfd, name, flags, sec, value, NULL, FALSE, collect, 3532 (struct bfd_link_hash_entry **) sym_hash))) 3533 goto error_free_vers; 3534 3535 h = *sym_hash; 3536 while (h->root.type == bfd_link_hash_indirect 3537 || h->root.type == bfd_link_hash_warning) 3538 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3539 *sym_hash = h; 3540 3541 new_weakdef = FALSE; 3542 if (dynamic 3543 && definition 3544 && (flags & BSF_WEAK) != 0 3545 && ELF_ST_TYPE (isym->st_info) != STT_FUNC 3546 && is_elf_hash_table (hash_table) 3547 && h->weakdef == NULL) 3548 { 3549 /* Keep a list of all weak defined non function symbols from 3550 a dynamic object, using the weakdef field. Later in this 3551 function we will set the weakdef field to the correct 3552 value. We only put non-function symbols from dynamic 3553 objects on this list, because that happens to be the only 3554 time we need to know the normal symbol corresponding to a 3555 weak symbol, and the information is time consuming to 3556 figure out. If the weakdef field is not already NULL, 3557 then this symbol was already defined by some previous 3558 dynamic object, and we will be using that previous 3559 definition anyhow. */ 3560 3561 h->weakdef = weaks; 3562 weaks = h; 3563 new_weakdef = TRUE; 3564 } 3565 3566 /* Set the alignment of a common symbol. */ 3567 if (isym->st_shndx == SHN_COMMON 3568 && h->root.type == bfd_link_hash_common) 3569 { 3570 unsigned int align; 3571 3572 align = bfd_log2 (isym->st_value); 3573 if (align > old_alignment 3574 /* Permit an alignment power of zero if an alignment of one 3575 is specified and no other alignments have been specified. */ 3576 || (isym->st_value == 1 && old_alignment == 0)) 3577 h->root.u.c.p->alignment_power = align; 3578 else 3579 h->root.u.c.p->alignment_power = old_alignment; 3580 } 3581 3582 if (is_elf_hash_table (hash_table)) 3583 { 3584 int old_flags; 3585 bfd_boolean dynsym; 3586 int new_flag; 3587 3588 /* Check the alignment when a common symbol is involved. This 3589 can change when a common symbol is overridden by a normal 3590 definition or a common symbol is ignored due to the old 3591 normal definition. We need to make sure the maximum 3592 alignment is maintained. */ 3593 if ((old_alignment || isym->st_shndx == SHN_COMMON) 3594 && h->root.type != bfd_link_hash_common) 3595 { 3596 unsigned int common_align; 3597 unsigned int normal_align; 3598 unsigned int symbol_align; 3599 bfd *normal_bfd; 3600 bfd *common_bfd; 3601 3602 symbol_align = ffs (h->root.u.def.value) - 1; 3603 if (h->root.u.def.section->owner != NULL 3604 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) 3605 { 3606 normal_align = h->root.u.def.section->alignment_power; 3607 if (normal_align > symbol_align) 3608 normal_align = symbol_align; 3609 } 3610 else 3611 normal_align = symbol_align; 3612 3613 if (old_alignment) 3614 { 3615 common_align = old_alignment; 3616 common_bfd = old_bfd; 3617 normal_bfd = abfd; 3618 } 3619 else 3620 { 3621 common_align = bfd_log2 (isym->st_value); 3622 common_bfd = abfd; 3623 normal_bfd = old_bfd; 3624 } 3625 3626 if (normal_align < common_align) 3627 (*_bfd_error_handler) 3628 (_("Warning: alignment %u of symbol `%s' in %s is smaller than %u in %s"), 3629 1 << normal_align, 3630 name, 3631 bfd_archive_filename (normal_bfd), 3632 1 << common_align, 3633 bfd_archive_filename (common_bfd)); 3634 } 3635 3636 /* Remember the symbol size and type. */ 3637 if (isym->st_size != 0 3638 && (definition || h->size == 0)) 3639 { 3640 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok) 3641 (*_bfd_error_handler) 3642 (_("Warning: size of symbol `%s' changed from %lu in %s to %lu in %s"), 3643 name, (unsigned long) h->size, 3644 bfd_archive_filename (old_bfd), 3645 (unsigned long) isym->st_size, 3646 bfd_archive_filename (abfd)); 3647 3648 h->size = isym->st_size; 3649 } 3650 3651 /* If this is a common symbol, then we always want H->SIZE 3652 to be the size of the common symbol. The code just above 3653 won't fix the size if a common symbol becomes larger. We 3654 don't warn about a size change here, because that is 3655 covered by --warn-common. */ 3656 if (h->root.type == bfd_link_hash_common) 3657 h->size = h->root.u.c.size; 3658 3659 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE 3660 && (definition || h->type == STT_NOTYPE)) 3661 { 3662 if (h->type != STT_NOTYPE 3663 && h->type != ELF_ST_TYPE (isym->st_info) 3664 && ! type_change_ok) 3665 (*_bfd_error_handler) 3666 (_("Warning: type of symbol `%s' changed from %d to %d in %s"), 3667 name, h->type, ELF_ST_TYPE (isym->st_info), 3668 bfd_archive_filename (abfd)); 3669 3670 h->type = ELF_ST_TYPE (isym->st_info); 3671 } 3672 3673 /* If st_other has a processor-specific meaning, specific 3674 code might be needed here. We never merge the visibility 3675 attribute with the one from a dynamic object. */ 3676 if (bed->elf_backend_merge_symbol_attribute) 3677 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition, 3678 dynamic); 3679 3680 if (isym->st_other != 0 && !dynamic) 3681 { 3682 unsigned char hvis, symvis, other, nvis; 3683 3684 /* Take the balance of OTHER from the definition. */ 3685 other = (definition ? isym->st_other : h->other); 3686 other &= ~ ELF_ST_VISIBILITY (-1); 3687 3688 /* Combine visibilities, using the most constraining one. */ 3689 hvis = ELF_ST_VISIBILITY (h->other); 3690 symvis = ELF_ST_VISIBILITY (isym->st_other); 3691 if (! hvis) 3692 nvis = symvis; 3693 else if (! symvis) 3694 nvis = hvis; 3695 else 3696 nvis = hvis < symvis ? hvis : symvis; 3697 3698 h->other = other | nvis; 3699 } 3700 3701 /* Set a flag in the hash table entry indicating the type of 3702 reference or definition we just found. Keep a count of 3703 the number of dynamic symbols we find. A dynamic symbol 3704 is one which is referenced or defined by both a regular 3705 object and a shared object. */ 3706 old_flags = h->elf_link_hash_flags; 3707 dynsym = FALSE; 3708 if (! dynamic) 3709 { 3710 if (! definition) 3711 { 3712 new_flag = ELF_LINK_HASH_REF_REGULAR; 3713 if (bind != STB_WEAK) 3714 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; 3715 } 3716 else 3717 new_flag = ELF_LINK_HASH_DEF_REGULAR; 3718 if (! info->executable 3719 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC 3720 | ELF_LINK_HASH_REF_DYNAMIC)) != 0) 3721 dynsym = TRUE; 3722 } 3723 else 3724 { 3725 if (! definition) 3726 new_flag = ELF_LINK_HASH_REF_DYNAMIC; 3727 else 3728 new_flag = ELF_LINK_HASH_DEF_DYNAMIC; 3729 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR 3730 | ELF_LINK_HASH_REF_REGULAR)) != 0 3731 || (h->weakdef != NULL 3732 && ! new_weakdef 3733 && h->weakdef->dynindx != -1)) 3734 dynsym = TRUE; 3735 } 3736 3737 h->elf_link_hash_flags |= new_flag; 3738 3739 /* Check to see if we need to add an indirect symbol for 3740 the default name. */ 3741 if (definition || h->root.type == bfd_link_hash_common) 3742 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, 3743 &sec, &value, &dynsym, 3744 override)) 3745 goto error_free_vers; 3746 3747 if (definition && !dynamic) 3748 { 3749 char *p = strchr (name, ELF_VER_CHR); 3750 if (p != NULL && p[1] != ELF_VER_CHR) 3751 { 3752 /* Queue non-default versions so that .symver x, x@FOO 3753 aliases can be checked. */ 3754 if (! nondeflt_vers) 3755 { 3756 amt = (isymend - isym + 1) 3757 * sizeof (struct elf_link_hash_entry *); 3758 nondeflt_vers = bfd_malloc (amt); 3759 } 3760 nondeflt_vers [nondeflt_vers_cnt++] = h; 3761 } 3762 } 3763 3764 if (dynsym && h->dynindx == -1) 3765 { 3766 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 3767 goto error_free_vers; 3768 if (h->weakdef != NULL 3769 && ! new_weakdef 3770 && h->weakdef->dynindx == -1) 3771 { 3772 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) 3773 goto error_free_vers; 3774 } 3775 } 3776 else if (dynsym && h->dynindx != -1) 3777 /* If the symbol already has a dynamic index, but 3778 visibility says it should not be visible, turn it into 3779 a local symbol. */ 3780 switch (ELF_ST_VISIBILITY (h->other)) 3781 { 3782 case STV_INTERNAL: 3783 case STV_HIDDEN: 3784 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 3785 dynsym = FALSE; 3786 break; 3787 } 3788 3789 if (!add_needed 3790 && definition 3791 && dynsym 3792 && (h->elf_link_hash_flags 3793 & ELF_LINK_HASH_REF_REGULAR) != 0) 3794 { 3795 int ret; 3796 const char *soname = elf_dt_name (abfd); 3797 3798 /* A symbol from a library loaded via DT_NEEDED of some 3799 other library is referenced by a regular object. 3800 Add a DT_NEEDED entry for it. */ 3801 add_needed = TRUE; 3802 ret = elf_add_dt_needed_tag (info, soname, add_needed); 3803 if (ret < 0) 3804 goto error_free_vers; 3805 3806 BFD_ASSERT (ret == 0); 3807 } 3808 } 3809 } 3810 3811 /* Now that all the symbols from this input file are created, handle 3812 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */ 3813 if (nondeflt_vers != NULL) 3814 { 3815 bfd_size_type cnt, symidx; 3816 3817 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) 3818 { 3819 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; 3820 char *shortname, *p; 3821 3822 p = strchr (h->root.root.string, ELF_VER_CHR); 3823 if (p == NULL 3824 || (h->root.type != bfd_link_hash_defined 3825 && h->root.type != bfd_link_hash_defweak)) 3826 continue; 3827 3828 amt = p - h->root.root.string; 3829 shortname = bfd_malloc (amt + 1); 3830 memcpy (shortname, h->root.root.string, amt); 3831 shortname[amt] = '\0'; 3832 3833 hi = (struct elf_link_hash_entry *) 3834 bfd_link_hash_lookup (&hash_table->root, shortname, 3835 FALSE, FALSE, FALSE); 3836 if (hi != NULL 3837 && hi->root.type == h->root.type 3838 && hi->root.u.def.value == h->root.u.def.value 3839 && hi->root.u.def.section == h->root.u.def.section) 3840 { 3841 (*bed->elf_backend_hide_symbol) (info, hi, TRUE); 3842 hi->root.type = bfd_link_hash_indirect; 3843 hi->root.u.i.link = (struct bfd_link_hash_entry *) h; 3844 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi); 3845 sym_hash = elf_sym_hashes (abfd); 3846 if (sym_hash) 3847 for (symidx = 0; symidx < extsymcount; ++symidx) 3848 if (sym_hash[symidx] == hi) 3849 { 3850 sym_hash[symidx] = h; 3851 break; 3852 } 3853 } 3854 free (shortname); 3855 } 3856 free (nondeflt_vers); 3857 nondeflt_vers = NULL; 3858 } 3859 3860 if (extversym != NULL) 3861 { 3862 free (extversym); 3863 extversym = NULL; 3864 } 3865 3866 if (isymbuf != NULL) 3867 free (isymbuf); 3868 isymbuf = NULL; 3869 3870 /* Now set the weakdefs field correctly for all the weak defined 3871 symbols we found. The only way to do this is to search all the 3872 symbols. Since we only need the information for non functions in 3873 dynamic objects, that's the only time we actually put anything on 3874 the list WEAKS. We need this information so that if a regular 3875 object refers to a symbol defined weakly in a dynamic object, the 3876 real symbol in the dynamic object is also put in the dynamic 3877 symbols; we also must arrange for both symbols to point to the 3878 same memory location. We could handle the general case of symbol 3879 aliasing, but a general symbol alias can only be generated in 3880 assembler code, handling it correctly would be very time 3881 consuming, and other ELF linkers don't handle general aliasing 3882 either. */ 3883 if (weaks != NULL) 3884 { 3885 struct elf_link_hash_entry **hpp; 3886 struct elf_link_hash_entry **hppend; 3887 struct elf_link_hash_entry **sorted_sym_hash; 3888 struct elf_link_hash_entry *h; 3889 size_t sym_count; 3890 3891 /* Since we have to search the whole symbol list for each weak 3892 defined symbol, search time for N weak defined symbols will be 3893 O(N^2). Binary search will cut it down to O(NlogN). */ 3894 amt = extsymcount * sizeof (struct elf_link_hash_entry *); 3895 sorted_sym_hash = bfd_malloc (amt); 3896 if (sorted_sym_hash == NULL) 3897 goto error_return; 3898 sym_hash = sorted_sym_hash; 3899 hpp = elf_sym_hashes (abfd); 3900 hppend = hpp + extsymcount; 3901 sym_count = 0; 3902 for (; hpp < hppend; hpp++) 3903 { 3904 h = *hpp; 3905 if (h != NULL 3906 && h->root.type == bfd_link_hash_defined 3907 && h->type != STT_FUNC) 3908 { 3909 *sym_hash = h; 3910 sym_hash++; 3911 sym_count++; 3912 } 3913 } 3914 3915 qsort (sorted_sym_hash, sym_count, 3916 sizeof (struct elf_link_hash_entry *), 3917 elf_sort_symbol); 3918 3919 while (weaks != NULL) 3920 { 3921 struct elf_link_hash_entry *hlook; 3922 asection *slook; 3923 bfd_vma vlook; 3924 long ilook; 3925 size_t i, j, idx; 3926 3927 hlook = weaks; 3928 weaks = hlook->weakdef; 3929 hlook->weakdef = NULL; 3930 3931 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined 3932 || hlook->root.type == bfd_link_hash_defweak 3933 || hlook->root.type == bfd_link_hash_common 3934 || hlook->root.type == bfd_link_hash_indirect); 3935 slook = hlook->root.u.def.section; 3936 vlook = hlook->root.u.def.value; 3937 3938 ilook = -1; 3939 i = 0; 3940 j = sym_count; 3941 while (i < j) 3942 { 3943 bfd_signed_vma vdiff; 3944 idx = (i + j) / 2; 3945 h = sorted_sym_hash [idx]; 3946 vdiff = vlook - h->root.u.def.value; 3947 if (vdiff < 0) 3948 j = idx; 3949 else if (vdiff > 0) 3950 i = idx + 1; 3951 else 3952 { 3953 long sdiff = slook - h->root.u.def.section; 3954 if (sdiff < 0) 3955 j = idx; 3956 else if (sdiff > 0) 3957 i = idx + 1; 3958 else 3959 { 3960 ilook = idx; 3961 break; 3962 } 3963 } 3964 } 3965 3966 /* We didn't find a value/section match. */ 3967 if (ilook == -1) 3968 continue; 3969 3970 for (i = ilook; i < sym_count; i++) 3971 { 3972 h = sorted_sym_hash [i]; 3973 3974 /* Stop if value or section doesn't match. */ 3975 if (h->root.u.def.value != vlook 3976 || h->root.u.def.section != slook) 3977 break; 3978 else if (h != hlook) 3979 { 3980 hlook->weakdef = h; 3981 3982 /* If the weak definition is in the list of dynamic 3983 symbols, make sure the real definition is put 3984 there as well. */ 3985 if (hlook->dynindx != -1 && h->dynindx == -1) 3986 { 3987 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 3988 goto error_return; 3989 } 3990 3991 /* If the real definition is in the list of dynamic 3992 symbols, make sure the weak definition is put 3993 there as well. If we don't do this, then the 3994 dynamic loader might not merge the entries for the 3995 real definition and the weak definition. */ 3996 if (h->dynindx != -1 && hlook->dynindx == -1) 3997 { 3998 if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) 3999 goto error_return; 4000 } 4001 break; 4002 } 4003 } 4004 } 4005 4006 free (sorted_sym_hash); 4007 } 4008 4009 /* If this object is the same format as the output object, and it is 4010 not a shared library, then let the backend look through the 4011 relocs. 4012 4013 This is required to build global offset table entries and to 4014 arrange for dynamic relocs. It is not required for the 4015 particular common case of linking non PIC code, even when linking 4016 against shared libraries, but unfortunately there is no way of 4017 knowing whether an object file has been compiled PIC or not. 4018 Looking through the relocs is not particularly time consuming. 4019 The problem is that we must either (1) keep the relocs in memory, 4020 which causes the linker to require additional runtime memory or 4021 (2) read the relocs twice from the input file, which wastes time. 4022 This would be a good case for using mmap. 4023 4024 I have no idea how to handle linking PIC code into a file of a 4025 different format. It probably can't be done. */ 4026 check_relocs = get_elf_backend_data (abfd)->check_relocs; 4027 if (! dynamic 4028 && is_elf_hash_table (hash_table) 4029 && hash_table->root.creator == abfd->xvec 4030 && check_relocs != NULL) 4031 { 4032 asection *o; 4033 4034 for (o = abfd->sections; o != NULL; o = o->next) 4035 { 4036 Elf_Internal_Rela *internal_relocs; 4037 bfd_boolean ok; 4038 4039 if ((o->flags & SEC_RELOC) == 0 4040 || o->reloc_count == 0 4041 || ((info->strip == strip_all || info->strip == strip_debugger) 4042 && (o->flags & SEC_DEBUGGING) != 0) 4043 || bfd_is_abs_section (o->output_section)) 4044 continue; 4045 4046 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 4047 info->keep_memory); 4048 if (internal_relocs == NULL) 4049 goto error_return; 4050 4051 ok = (*check_relocs) (abfd, info, o, internal_relocs); 4052 4053 if (elf_section_data (o)->relocs != internal_relocs) 4054 free (internal_relocs); 4055 4056 if (! ok) 4057 goto error_return; 4058 } 4059 } 4060 4061 /* If this is a non-traditional link, try to optimize the handling 4062 of the .stab/.stabstr sections. */ 4063 if (! dynamic 4064 && ! info->traditional_format 4065 && is_elf_hash_table (hash_table) 4066 && (info->strip != strip_all && info->strip != strip_debugger)) 4067 { 4068 asection *stabstr; 4069 4070 stabstr = bfd_get_section_by_name (abfd, ".stabstr"); 4071 if (stabstr != NULL) 4072 { 4073 bfd_size_type string_offset = 0; 4074 asection *stab; 4075 4076 for (stab = abfd->sections; stab; stab = stab->next) 4077 if (strncmp (".stab", stab->name, 5) == 0 4078 && (!stab->name[5] || 4079 (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) 4080 && (stab->flags & SEC_MERGE) == 0 4081 && !bfd_is_abs_section (stab->output_section)) 4082 { 4083 struct bfd_elf_section_data *secdata; 4084 4085 secdata = elf_section_data (stab); 4086 if (! _bfd_link_section_stabs (abfd, 4087 & hash_table->stab_info, 4088 stab, stabstr, 4089 &secdata->sec_info, 4090 &string_offset)) 4091 goto error_return; 4092 if (secdata->sec_info) 4093 stab->sec_info_type = ELF_INFO_TYPE_STABS; 4094 } 4095 } 4096 } 4097 4098 if (! info->relocatable 4099 && ! dynamic 4100 && is_elf_hash_table (hash_table)) 4101 { 4102 asection *s; 4103 4104 for (s = abfd->sections; s != NULL; s = s->next) 4105 if ((s->flags & SEC_MERGE) != 0 4106 && !bfd_is_abs_section (s->output_section)) 4107 { 4108 struct bfd_elf_section_data *secdata; 4109 4110 secdata = elf_section_data (s); 4111 if (! _bfd_merge_section (abfd, 4112 & hash_table->merge_info, 4113 s, &secdata->sec_info)) 4114 goto error_return; 4115 else if (secdata->sec_info) 4116 s->sec_info_type = ELF_INFO_TYPE_MERGE; 4117 } 4118 } 4119 4120 if (is_elf_hash_table (hash_table)) 4121 { 4122 /* Add this bfd to the loaded list. */ 4123 struct elf_link_loaded_list *n; 4124 4125 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)); 4126 if (n == NULL) 4127 goto error_return; 4128 n->abfd = abfd; 4129 n->next = hash_table->loaded; 4130 hash_table->loaded = n; 4131 } 4132 4133 return TRUE; 4134 4135 error_free_vers: 4136 if (nondeflt_vers != NULL) 4137 free (nondeflt_vers); 4138 if (extversym != NULL) 4139 free (extversym); 4140 error_free_sym: 4141 if (isymbuf != NULL) 4142 free (isymbuf); 4143 error_return: 4144 return FALSE; 4145 } 4146 4147 /* Add symbols from an ELF archive file to the linker hash table. We 4148 don't use _bfd_generic_link_add_archive_symbols because of a 4149 problem which arises on UnixWare. The UnixWare libc.so is an 4150 archive which includes an entry libc.so.1 which defines a bunch of 4151 symbols. The libc.so archive also includes a number of other 4152 object files, which also define symbols, some of which are the same 4153 as those defined in libc.so.1. Correct linking requires that we 4154 consider each object file in turn, and include it if it defines any 4155 symbols we need. _bfd_generic_link_add_archive_symbols does not do 4156 this; it looks through the list of undefined symbols, and includes 4157 any object file which defines them. When this algorithm is used on 4158 UnixWare, it winds up pulling in libc.so.1 early and defining a 4159 bunch of symbols. This means that some of the other objects in the 4160 archive are not included in the link, which is incorrect since they 4161 precede libc.so.1 in the archive. 4162 4163 Fortunately, ELF archive handling is simpler than that done by 4164 _bfd_generic_link_add_archive_symbols, which has to allow for a.out 4165 oddities. In ELF, if we find a symbol in the archive map, and the 4166 symbol is currently undefined, we know that we must pull in that 4167 object file. 4168 4169 Unfortunately, we do have to make multiple passes over the symbol 4170 table until nothing further is resolved. */ 4171 4172 static bfd_boolean 4173 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) 4174 { 4175 symindex c; 4176 bfd_boolean *defined = NULL; 4177 bfd_boolean *included = NULL; 4178 carsym *symdefs; 4179 bfd_boolean loop; 4180 bfd_size_type amt; 4181 4182 if (! bfd_has_map (abfd)) 4183 { 4184 /* An empty archive is a special case. */ 4185 if (bfd_openr_next_archived_file (abfd, NULL) == NULL) 4186 return TRUE; 4187 bfd_set_error (bfd_error_no_armap); 4188 return FALSE; 4189 } 4190 4191 /* Keep track of all symbols we know to be already defined, and all 4192 files we know to be already included. This is to speed up the 4193 second and subsequent passes. */ 4194 c = bfd_ardata (abfd)->symdef_count; 4195 if (c == 0) 4196 return TRUE; 4197 amt = c; 4198 amt *= sizeof (bfd_boolean); 4199 defined = bfd_zmalloc (amt); 4200 included = bfd_zmalloc (amt); 4201 if (defined == NULL || included == NULL) 4202 goto error_return; 4203 4204 symdefs = bfd_ardata (abfd)->symdefs; 4205 4206 do 4207 { 4208 file_ptr last; 4209 symindex i; 4210 carsym *symdef; 4211 carsym *symdefend; 4212 4213 loop = FALSE; 4214 last = -1; 4215 4216 symdef = symdefs; 4217 symdefend = symdef + c; 4218 for (i = 0; symdef < symdefend; symdef++, i++) 4219 { 4220 struct elf_link_hash_entry *h; 4221 bfd *element; 4222 struct bfd_link_hash_entry *undefs_tail; 4223 symindex mark; 4224 4225 if (defined[i] || included[i]) 4226 continue; 4227 if (symdef->file_offset == last) 4228 { 4229 included[i] = TRUE; 4230 continue; 4231 } 4232 4233 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, 4234 FALSE, FALSE, FALSE); 4235 4236 if (h == NULL) 4237 { 4238 char *p, *copy; 4239 size_t len, first; 4240 4241 /* If this is a default version (the name contains @@), 4242 look up the symbol again with only one `@' as well 4243 as without the version. The effect is that references 4244 to the symbol with and without the version will be 4245 matched by the default symbol in the archive. */ 4246 4247 p = strchr (symdef->name, ELF_VER_CHR); 4248 if (p == NULL || p[1] != ELF_VER_CHR) 4249 continue; 4250 4251 /* First check with only one `@'. */ 4252 len = strlen (symdef->name); 4253 copy = bfd_alloc (abfd, len); 4254 if (copy == NULL) 4255 goto error_return; 4256 first = p - symdef->name + 1; 4257 memcpy (copy, symdef->name, first); 4258 memcpy (copy + first, symdef->name + first + 1, len - first); 4259 4260 h = elf_link_hash_lookup (elf_hash_table (info), copy, 4261 FALSE, FALSE, FALSE); 4262 4263 if (h == NULL) 4264 { 4265 /* We also need to check references to the symbol 4266 without the version. */ 4267 4268 copy[first - 1] = '\0'; 4269 h = elf_link_hash_lookup (elf_hash_table (info), 4270 copy, FALSE, FALSE, FALSE); 4271 } 4272 4273 bfd_release (abfd, copy); 4274 } 4275 4276 if (h == NULL) 4277 continue; 4278 4279 if (h->root.type == bfd_link_hash_common) 4280 { 4281 /* We currently have a common symbol. The archive map contains 4282 a reference to this symbol, so we may want to include it. We 4283 only want to include it however, if this archive element 4284 contains a definition of the symbol, not just another common 4285 declaration of it. 4286 4287 Unfortunately some archivers (including GNU ar) will put 4288 declarations of common symbols into their archive maps, as 4289 well as real definitions, so we cannot just go by the archive 4290 map alone. Instead we must read in the element's symbol 4291 table and check that to see what kind of symbol definition 4292 this is. */ 4293 if (! elf_link_is_defined_archive_symbol (abfd, symdef)) 4294 continue; 4295 } 4296 else if (h->root.type != bfd_link_hash_undefined) 4297 { 4298 if (h->root.type != bfd_link_hash_undefweak) 4299 defined[i] = TRUE; 4300 continue; 4301 } 4302 4303 /* We need to include this archive member. */ 4304 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); 4305 if (element == NULL) 4306 goto error_return; 4307 4308 if (! bfd_check_format (element, bfd_object)) 4309 goto error_return; 4310 4311 /* Doublecheck that we have not included this object 4312 already--it should be impossible, but there may be 4313 something wrong with the archive. */ 4314 if (element->archive_pass != 0) 4315 { 4316 bfd_set_error (bfd_error_bad_value); 4317 goto error_return; 4318 } 4319 element->archive_pass = 1; 4320 4321 undefs_tail = info->hash->undefs_tail; 4322 4323 if (! (*info->callbacks->add_archive_element) (info, element, 4324 symdef->name)) 4325 goto error_return; 4326 if (! bfd_link_add_symbols (element, info)) 4327 goto error_return; 4328 4329 /* If there are any new undefined symbols, we need to make 4330 another pass through the archive in order to see whether 4331 they can be defined. FIXME: This isn't perfect, because 4332 common symbols wind up on undefs_tail and because an 4333 undefined symbol which is defined later on in this pass 4334 does not require another pass. This isn't a bug, but it 4335 does make the code less efficient than it could be. */ 4336 if (undefs_tail != info->hash->undefs_tail) 4337 loop = TRUE; 4338 4339 /* Look backward to mark all symbols from this object file 4340 which we have already seen in this pass. */ 4341 mark = i; 4342 do 4343 { 4344 included[mark] = TRUE; 4345 if (mark == 0) 4346 break; 4347 --mark; 4348 } 4349 while (symdefs[mark].file_offset == symdef->file_offset); 4350 4351 /* We mark subsequent symbols from this object file as we go 4352 on through the loop. */ 4353 last = symdef->file_offset; 4354 } 4355 } 4356 while (loop); 4357 4358 free (defined); 4359 free (included); 4360 4361 return TRUE; 4362 4363 error_return: 4364 if (defined != NULL) 4365 free (defined); 4366 if (included != NULL) 4367 free (included); 4368 return FALSE; 4369 } 4370 4371 /* Given an ELF BFD, add symbols to the global hash table as 4372 appropriate. */ 4373 4374 bfd_boolean 4375 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) 4376 { 4377 switch (bfd_get_format (abfd)) 4378 { 4379 case bfd_object: 4380 return elf_link_add_object_symbols (abfd, info); 4381 case bfd_archive: 4382 return elf_link_add_archive_symbols (abfd, info); 4383 default: 4384 bfd_set_error (bfd_error_wrong_format); 4385 return FALSE; 4386 } 4387 } 4388 4389 /* This function will be called though elf_link_hash_traverse to store 4390 all hash value of the exported symbols in an array. */ 4391 4392 static bfd_boolean 4393 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) 4394 { 4395 unsigned long **valuep = data; 4396 const char *name; 4397 char *p; 4398 unsigned long ha; 4399 char *alc = NULL; 4400 4401 if (h->root.type == bfd_link_hash_warning) 4402 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4403 4404 /* Ignore indirect symbols. These are added by the versioning code. */ 4405 if (h->dynindx == -1) 4406 return TRUE; 4407 4408 name = h->root.root.string; 4409 p = strchr (name, ELF_VER_CHR); 4410 if (p != NULL) 4411 { 4412 alc = bfd_malloc (p - name + 1); 4413 memcpy (alc, name, p - name); 4414 alc[p - name] = '\0'; 4415 name = alc; 4416 } 4417 4418 /* Compute the hash value. */ 4419 ha = bfd_elf_hash (name); 4420 4421 /* Store the found hash value in the array given as the argument. */ 4422 *(*valuep)++ = ha; 4423 4424 /* And store it in the struct so that we can put it in the hash table 4425 later. */ 4426 h->elf_hash_value = ha; 4427 4428 if (alc != NULL) 4429 free (alc); 4430 4431 return TRUE; 4432 } 4433 4434 /* Array used to determine the number of hash table buckets to use 4435 based on the number of symbols there are. If there are fewer than 4436 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, 4437 fewer than 37 we use 17 buckets, and so forth. We never use more 4438 than 32771 buckets. */ 4439 4440 static const size_t elf_buckets[] = 4441 { 4442 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 4443 16411, 32771, 0 4444 }; 4445 4446 /* Compute bucket count for hashing table. We do not use a static set 4447 of possible tables sizes anymore. Instead we determine for all 4448 possible reasonable sizes of the table the outcome (i.e., the 4449 number of collisions etc) and choose the best solution. The 4450 weighting functions are not too simple to allow the table to grow 4451 without bounds. Instead one of the weighting factors is the size. 4452 Therefore the result is always a good payoff between few collisions 4453 (= short chain lengths) and table size. */ 4454 static size_t 4455 compute_bucket_count (struct bfd_link_info *info) 4456 { 4457 size_t dynsymcount = elf_hash_table (info)->dynsymcount; 4458 size_t best_size = 0; 4459 unsigned long int *hashcodes; 4460 unsigned long int *hashcodesp; 4461 unsigned long int i; 4462 bfd_size_type amt; 4463 4464 /* Compute the hash values for all exported symbols. At the same 4465 time store the values in an array so that we could use them for 4466 optimizations. */ 4467 amt = dynsymcount; 4468 amt *= sizeof (unsigned long int); 4469 hashcodes = bfd_malloc (amt); 4470 if (hashcodes == NULL) 4471 return 0; 4472 hashcodesp = hashcodes; 4473 4474 /* Put all hash values in HASHCODES. */ 4475 elf_link_hash_traverse (elf_hash_table (info), 4476 elf_collect_hash_codes, &hashcodesp); 4477 4478 /* We have a problem here. The following code to optimize the table 4479 size requires an integer type with more the 32 bits. If 4480 BFD_HOST_U_64_BIT is set we know about such a type. */ 4481 #ifdef BFD_HOST_U_64_BIT 4482 if (info->optimize) 4483 { 4484 unsigned long int nsyms = hashcodesp - hashcodes; 4485 size_t minsize; 4486 size_t maxsize; 4487 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); 4488 unsigned long int *counts ; 4489 bfd *dynobj = elf_hash_table (info)->dynobj; 4490 const struct elf_backend_data *bed = get_elf_backend_data (dynobj); 4491 4492 /* Possible optimization parameters: if we have NSYMS symbols we say 4493 that the hashing table must at least have NSYMS/4 and at most 4494 2*NSYMS buckets. */ 4495 minsize = nsyms / 4; 4496 if (minsize == 0) 4497 minsize = 1; 4498 best_size = maxsize = nsyms * 2; 4499 4500 /* Create array where we count the collisions in. We must use bfd_malloc 4501 since the size could be large. */ 4502 amt = maxsize; 4503 amt *= sizeof (unsigned long int); 4504 counts = bfd_malloc (amt); 4505 if (counts == NULL) 4506 { 4507 free (hashcodes); 4508 return 0; 4509 } 4510 4511 /* Compute the "optimal" size for the hash table. The criteria is a 4512 minimal chain length. The minor criteria is (of course) the size 4513 of the table. */ 4514 for (i = minsize; i < maxsize; ++i) 4515 { 4516 /* Walk through the array of hashcodes and count the collisions. */ 4517 BFD_HOST_U_64_BIT max; 4518 unsigned long int j; 4519 unsigned long int fact; 4520 4521 memset (counts, '\0', i * sizeof (unsigned long int)); 4522 4523 /* Determine how often each hash bucket is used. */ 4524 for (j = 0; j < nsyms; ++j) 4525 ++counts[hashcodes[j] % i]; 4526 4527 /* For the weight function we need some information about the 4528 pagesize on the target. This is information need not be 100% 4529 accurate. Since this information is not available (so far) we 4530 define it here to a reasonable default value. If it is crucial 4531 to have a better value some day simply define this value. */ 4532 # ifndef BFD_TARGET_PAGESIZE 4533 # define BFD_TARGET_PAGESIZE (4096) 4534 # endif 4535 4536 /* We in any case need 2 + NSYMS entries for the size values and 4537 the chains. */ 4538 max = (2 + nsyms) * (bed->s->arch_size / 8); 4539 4540 # if 1 4541 /* Variant 1: optimize for short chains. We add the squares 4542 of all the chain lengths (which favors many small chain 4543 over a few long chains). */ 4544 for (j = 0; j < i; ++j) 4545 max += counts[j] * counts[j]; 4546 4547 /* This adds penalties for the overall size of the table. */ 4548 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1; 4549 max *= fact * fact; 4550 # else 4551 /* Variant 2: Optimize a lot more for small table. Here we 4552 also add squares of the size but we also add penalties for 4553 empty slots (the +1 term). */ 4554 for (j = 0; j < i; ++j) 4555 max += (1 + counts[j]) * (1 + counts[j]); 4556 4557 /* The overall size of the table is considered, but not as 4558 strong as in variant 1, where it is squared. */ 4559 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1; 4560 max *= fact; 4561 # endif 4562 4563 /* Compare with current best results. */ 4564 if (max < best_chlen) 4565 { 4566 best_chlen = max; 4567 best_size = i; 4568 } 4569 } 4570 4571 free (counts); 4572 } 4573 else 4574 #endif /* defined (BFD_HOST_U_64_BIT) */ 4575 { 4576 /* This is the fallback solution if no 64bit type is available or if we 4577 are not supposed to spend much time on optimizations. We select the 4578 bucket count using a fixed set of numbers. */ 4579 for (i = 0; elf_buckets[i] != 0; i++) 4580 { 4581 best_size = elf_buckets[i]; 4582 if (dynsymcount < elf_buckets[i + 1]) 4583 break; 4584 } 4585 } 4586 4587 /* Free the arrays we needed. */ 4588 free (hashcodes); 4589 4590 return best_size; 4591 } 4592 4593 /* Set up the sizes and contents of the ELF dynamic sections. This is 4594 called by the ELF linker emulation before_allocation routine. We 4595 must set the sizes of the sections before the linker sets the 4596 addresses of the various sections. */ 4597 4598 bfd_boolean 4599 bfd_elf_size_dynamic_sections (bfd *output_bfd, 4600 const char *soname, 4601 const char *rpath, 4602 const char *filter_shlib, 4603 const char * const *auxiliary_filters, 4604 struct bfd_link_info *info, 4605 asection **sinterpptr, 4606 struct bfd_elf_version_tree *verdefs) 4607 { 4608 bfd_size_type soname_indx; 4609 bfd *dynobj; 4610 const struct elf_backend_data *bed; 4611 struct elf_assign_sym_version_info asvinfo; 4612 4613 *sinterpptr = NULL; 4614 4615 soname_indx = (bfd_size_type) -1; 4616 4617 if (!is_elf_hash_table (info->hash)) 4618 return TRUE; 4619 4620 if (info->execstack) 4621 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X; 4622 else if (info->noexecstack) 4623 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W; 4624 else 4625 { 4626 bfd *inputobj; 4627 asection *notesec = NULL; 4628 int exec = 0; 4629 4630 for (inputobj = info->input_bfds; 4631 inputobj; 4632 inputobj = inputobj->link_next) 4633 { 4634 asection *s; 4635 4636 if (inputobj->flags & DYNAMIC) 4637 continue; 4638 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); 4639 if (s) 4640 { 4641 if (s->flags & SEC_CODE) 4642 exec = PF_X; 4643 notesec = s; 4644 } 4645 else 4646 exec = PF_X; 4647 } 4648 if (notesec) 4649 { 4650 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec; 4651 if (exec && info->relocatable 4652 && notesec->output_section != bfd_abs_section_ptr) 4653 notesec->output_section->flags |= SEC_CODE; 4654 } 4655 } 4656 4657 /* Any syms created from now on start with -1 in 4658 got.refcount/offset and plt.refcount/offset. */ 4659 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset; 4660 4661 /* The backend may have to create some sections regardless of whether 4662 we're dynamic or not. */ 4663 bed = get_elf_backend_data (output_bfd); 4664 if (bed->elf_backend_always_size_sections 4665 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) 4666 return FALSE; 4667 4668 dynobj = elf_hash_table (info)->dynobj; 4669 4670 /* If there were no dynamic objects in the link, there is nothing to 4671 do here. */ 4672 if (dynobj == NULL) 4673 return TRUE; 4674 4675 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) 4676 return FALSE; 4677 4678 if (elf_hash_table (info)->dynamic_sections_created) 4679 { 4680 struct elf_info_failed eif; 4681 struct elf_link_hash_entry *h; 4682 asection *dynstr; 4683 struct bfd_elf_version_tree *t; 4684 struct bfd_elf_version_expr *d; 4685 bfd_boolean all_defined; 4686 4687 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); 4688 BFD_ASSERT (*sinterpptr != NULL || !info->executable); 4689 4690 if (soname != NULL) 4691 { 4692 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 4693 soname, TRUE); 4694 if (soname_indx == (bfd_size_type) -1 4695 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) 4696 return FALSE; 4697 } 4698 4699 if (info->symbolic) 4700 { 4701 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) 4702 return FALSE; 4703 info->flags |= DF_SYMBOLIC; 4704 } 4705 4706 if (rpath != NULL) 4707 { 4708 bfd_size_type indx; 4709 4710 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, 4711 TRUE); 4712 if (indx == (bfd_size_type) -1 4713 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx)) 4714 return FALSE; 4715 4716 if (info->new_dtags) 4717 { 4718 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx); 4719 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx)) 4720 return FALSE; 4721 } 4722 } 4723 4724 if (filter_shlib != NULL) 4725 { 4726 bfd_size_type indx; 4727 4728 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 4729 filter_shlib, TRUE); 4730 if (indx == (bfd_size_type) -1 4731 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) 4732 return FALSE; 4733 } 4734 4735 if (auxiliary_filters != NULL) 4736 { 4737 const char * const *p; 4738 4739 for (p = auxiliary_filters; *p != NULL; p++) 4740 { 4741 bfd_size_type indx; 4742 4743 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 4744 *p, TRUE); 4745 if (indx == (bfd_size_type) -1 4746 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) 4747 return FALSE; 4748 } 4749 } 4750 4751 eif.info = info; 4752 eif.verdefs = verdefs; 4753 eif.failed = FALSE; 4754 4755 /* If we are supposed to export all symbols into the dynamic symbol 4756 table (this is not the normal case), then do so. */ 4757 if (info->export_dynamic) 4758 { 4759 elf_link_hash_traverse (elf_hash_table (info), 4760 _bfd_elf_export_symbol, 4761 &eif); 4762 if (eif.failed) 4763 return FALSE; 4764 } 4765 4766 /* Make all global versions with definition. */ 4767 for (t = verdefs; t != NULL; t = t->next) 4768 for (d = t->globals.list; d != NULL; d = d->next) 4769 if (!d->symver && d->symbol) 4770 { 4771 const char *verstr, *name; 4772 size_t namelen, verlen, newlen; 4773 char *newname, *p; 4774 struct elf_link_hash_entry *newh; 4775 4776 name = d->symbol; 4777 namelen = strlen (name); 4778 verstr = t->name; 4779 verlen = strlen (verstr); 4780 newlen = namelen + verlen + 3; 4781 4782 newname = bfd_malloc (newlen); 4783 if (newname == NULL) 4784 return FALSE; 4785 memcpy (newname, name, namelen); 4786 4787 /* Check the hidden versioned definition. */ 4788 p = newname + namelen; 4789 *p++ = ELF_VER_CHR; 4790 memcpy (p, verstr, verlen + 1); 4791 newh = elf_link_hash_lookup (elf_hash_table (info), 4792 newname, FALSE, FALSE, 4793 FALSE); 4794 if (newh == NULL 4795 || (newh->root.type != bfd_link_hash_defined 4796 && newh->root.type != bfd_link_hash_defweak)) 4797 { 4798 /* Check the default versioned definition. */ 4799 *p++ = ELF_VER_CHR; 4800 memcpy (p, verstr, verlen + 1); 4801 newh = elf_link_hash_lookup (elf_hash_table (info), 4802 newname, FALSE, FALSE, 4803 FALSE); 4804 } 4805 free (newname); 4806 4807 /* Mark this version if there is a definition and it is 4808 not defined in a shared object. */ 4809 if (newh != NULL 4810 && ((newh->elf_link_hash_flags 4811 & ELF_LINK_HASH_DEF_DYNAMIC) == 0) 4812 && (newh->root.type == bfd_link_hash_defined 4813 || newh->root.type == bfd_link_hash_defweak)) 4814 d->symver = 1; 4815 } 4816 4817 /* Attach all the symbols to their version information. */ 4818 asvinfo.output_bfd = output_bfd; 4819 asvinfo.info = info; 4820 asvinfo.verdefs = verdefs; 4821 asvinfo.failed = FALSE; 4822 4823 elf_link_hash_traverse (elf_hash_table (info), 4824 _bfd_elf_link_assign_sym_version, 4825 &asvinfo); 4826 if (asvinfo.failed) 4827 return FALSE; 4828 4829 if (!info->allow_undefined_version) 4830 { 4831 /* Check if all global versions have a definition. */ 4832 all_defined = TRUE; 4833 for (t = verdefs; t != NULL; t = t->next) 4834 for (d = t->globals.list; d != NULL; d = d->next) 4835 if (!d->symver && !d->script) 4836 { 4837 (*_bfd_error_handler) 4838 (_("%s: undefined version: %s"), 4839 d->pattern, t->name); 4840 all_defined = FALSE; 4841 } 4842 4843 if (!all_defined) 4844 { 4845 bfd_set_error (bfd_error_bad_value); 4846 return FALSE; 4847 } 4848 } 4849 4850 /* Find all symbols which were defined in a dynamic object and make 4851 the backend pick a reasonable value for them. */ 4852 elf_link_hash_traverse (elf_hash_table (info), 4853 _bfd_elf_adjust_dynamic_symbol, 4854 &eif); 4855 if (eif.failed) 4856 return FALSE; 4857 4858 /* Add some entries to the .dynamic section. We fill in some of the 4859 values later, in elf_bfd_final_link, but we must add the entries 4860 now so that we know the final size of the .dynamic section. */ 4861 4862 /* If there are initialization and/or finalization functions to 4863 call then add the corresponding DT_INIT/DT_FINI entries. */ 4864 h = (info->init_function 4865 ? elf_link_hash_lookup (elf_hash_table (info), 4866 info->init_function, FALSE, 4867 FALSE, FALSE) 4868 : NULL); 4869 if (h != NULL 4870 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR 4871 | ELF_LINK_HASH_DEF_REGULAR)) != 0) 4872 { 4873 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) 4874 return FALSE; 4875 } 4876 h = (info->fini_function 4877 ? elf_link_hash_lookup (elf_hash_table (info), 4878 info->fini_function, FALSE, 4879 FALSE, FALSE) 4880 : NULL); 4881 if (h != NULL 4882 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR 4883 | ELF_LINK_HASH_DEF_REGULAR)) != 0) 4884 { 4885 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) 4886 return FALSE; 4887 } 4888 4889 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL) 4890 { 4891 /* DT_PREINIT_ARRAY is not allowed in shared library. */ 4892 if (! info->executable) 4893 { 4894 bfd *sub; 4895 asection *o; 4896 4897 for (sub = info->input_bfds; sub != NULL; 4898 sub = sub->link_next) 4899 for (o = sub->sections; o != NULL; o = o->next) 4900 if (elf_section_data (o)->this_hdr.sh_type 4901 == SHT_PREINIT_ARRAY) 4902 { 4903 (*_bfd_error_handler) 4904 (_("%s: .preinit_array section is not allowed in DSO"), 4905 bfd_archive_filename (sub)); 4906 break; 4907 } 4908 4909 bfd_set_error (bfd_error_nonrepresentable_section); 4910 return FALSE; 4911 } 4912 4913 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) 4914 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) 4915 return FALSE; 4916 } 4917 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL) 4918 { 4919 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) 4920 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) 4921 return FALSE; 4922 } 4923 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL) 4924 { 4925 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) 4926 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) 4927 return FALSE; 4928 } 4929 4930 dynstr = bfd_get_section_by_name (dynobj, ".dynstr"); 4931 /* If .dynstr is excluded from the link, we don't want any of 4932 these tags. Strictly, we should be checking each section 4933 individually; This quick check covers for the case where 4934 someone does a /DISCARD/ : { *(*) }. */ 4935 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) 4936 { 4937 bfd_size_type strsize; 4938 4939 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 4940 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0) 4941 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) 4942 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) 4943 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) 4944 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, 4945 bed->s->sizeof_sym)) 4946 return FALSE; 4947 } 4948 } 4949 4950 /* The backend must work out the sizes of all the other dynamic 4951 sections. */ 4952 if (bed->elf_backend_size_dynamic_sections 4953 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) 4954 return FALSE; 4955 4956 if (elf_hash_table (info)->dynamic_sections_created) 4957 { 4958 bfd_size_type dynsymcount; 4959 asection *s; 4960 size_t bucketcount = 0; 4961 size_t hash_entry_size; 4962 unsigned int dtagcount; 4963 4964 /* Set up the version definition section. */ 4965 s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); 4966 BFD_ASSERT (s != NULL); 4967 4968 /* We may have created additional version definitions if we are 4969 just linking a regular application. */ 4970 verdefs = asvinfo.verdefs; 4971 4972 /* Skip anonymous version tag. */ 4973 if (verdefs != NULL && verdefs->vernum == 0) 4974 verdefs = verdefs->next; 4975 4976 if (verdefs == NULL) 4977 _bfd_strip_section_from_output (info, s); 4978 else 4979 { 4980 unsigned int cdefs; 4981 bfd_size_type size; 4982 struct bfd_elf_version_tree *t; 4983 bfd_byte *p; 4984 Elf_Internal_Verdef def; 4985 Elf_Internal_Verdaux defaux; 4986 4987 cdefs = 0; 4988 size = 0; 4989 4990 /* Make space for the base version. */ 4991 size += sizeof (Elf_External_Verdef); 4992 size += sizeof (Elf_External_Verdaux); 4993 ++cdefs; 4994 4995 for (t = verdefs; t != NULL; t = t->next) 4996 { 4997 struct bfd_elf_version_deps *n; 4998 4999 size += sizeof (Elf_External_Verdef); 5000 size += sizeof (Elf_External_Verdaux); 5001 ++cdefs; 5002 5003 for (n = t->deps; n != NULL; n = n->next) 5004 size += sizeof (Elf_External_Verdaux); 5005 } 5006 5007 s->_raw_size = size; 5008 s->contents = bfd_alloc (output_bfd, s->_raw_size); 5009 if (s->contents == NULL && s->_raw_size != 0) 5010 return FALSE; 5011 5012 /* Fill in the version definition section. */ 5013 5014 p = s->contents; 5015 5016 def.vd_version = VER_DEF_CURRENT; 5017 def.vd_flags = VER_FLG_BASE; 5018 def.vd_ndx = 1; 5019 def.vd_cnt = 1; 5020 def.vd_aux = sizeof (Elf_External_Verdef); 5021 def.vd_next = (sizeof (Elf_External_Verdef) 5022 + sizeof (Elf_External_Verdaux)); 5023 5024 if (soname_indx != (bfd_size_type) -1) 5025 { 5026 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 5027 soname_indx); 5028 def.vd_hash = bfd_elf_hash (soname); 5029 defaux.vda_name = soname_indx; 5030 } 5031 else 5032 { 5033 const char *name; 5034 bfd_size_type indx; 5035 5036 name = basename (output_bfd->filename); 5037 def.vd_hash = bfd_elf_hash (name); 5038 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 5039 name, FALSE); 5040 if (indx == (bfd_size_type) -1) 5041 return FALSE; 5042 defaux.vda_name = indx; 5043 } 5044 defaux.vda_next = 0; 5045 5046 _bfd_elf_swap_verdef_out (output_bfd, &def, 5047 (Elf_External_Verdef *) p); 5048 p += sizeof (Elf_External_Verdef); 5049 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 5050 (Elf_External_Verdaux *) p); 5051 p += sizeof (Elf_External_Verdaux); 5052 5053 for (t = verdefs; t != NULL; t = t->next) 5054 { 5055 unsigned int cdeps; 5056 struct bfd_elf_version_deps *n; 5057 struct elf_link_hash_entry *h; 5058 struct bfd_link_hash_entry *bh; 5059 5060 cdeps = 0; 5061 for (n = t->deps; n != NULL; n = n->next) 5062 ++cdeps; 5063 5064 /* Add a symbol representing this version. */ 5065 bh = NULL; 5066 if (! (_bfd_generic_link_add_one_symbol 5067 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, 5068 0, NULL, FALSE, 5069 get_elf_backend_data (dynobj)->collect, &bh))) 5070 return FALSE; 5071 h = (struct elf_link_hash_entry *) bh; 5072 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF; 5073 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; 5074 h->type = STT_OBJECT; 5075 h->verinfo.vertree = t; 5076 5077 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 5078 return FALSE; 5079 5080 def.vd_version = VER_DEF_CURRENT; 5081 def.vd_flags = 0; 5082 if (t->globals.list == NULL 5083 && t->locals.list == NULL 5084 && ! t->used) 5085 def.vd_flags |= VER_FLG_WEAK; 5086 def.vd_ndx = t->vernum + 1; 5087 def.vd_cnt = cdeps + 1; 5088 def.vd_hash = bfd_elf_hash (t->name); 5089 def.vd_aux = sizeof (Elf_External_Verdef); 5090 def.vd_next = 0; 5091 if (t->next != NULL) 5092 def.vd_next = (sizeof (Elf_External_Verdef) 5093 + (cdeps + 1) * sizeof (Elf_External_Verdaux)); 5094 5095 _bfd_elf_swap_verdef_out (output_bfd, &def, 5096 (Elf_External_Verdef *) p); 5097 p += sizeof (Elf_External_Verdef); 5098 5099 defaux.vda_name = h->dynstr_index; 5100 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 5101 h->dynstr_index); 5102 defaux.vda_next = 0; 5103 if (t->deps != NULL) 5104 defaux.vda_next = sizeof (Elf_External_Verdaux); 5105 t->name_indx = defaux.vda_name; 5106 5107 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 5108 (Elf_External_Verdaux *) p); 5109 p += sizeof (Elf_External_Verdaux); 5110 5111 for (n = t->deps; n != NULL; n = n->next) 5112 { 5113 if (n->version_needed == NULL) 5114 { 5115 /* This can happen if there was an error in the 5116 version script. */ 5117 defaux.vda_name = 0; 5118 } 5119 else 5120 { 5121 defaux.vda_name = n->version_needed->name_indx; 5122 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 5123 defaux.vda_name); 5124 } 5125 if (n->next == NULL) 5126 defaux.vda_next = 0; 5127 else 5128 defaux.vda_next = sizeof (Elf_External_Verdaux); 5129 5130 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 5131 (Elf_External_Verdaux *) p); 5132 p += sizeof (Elf_External_Verdaux); 5133 } 5134 } 5135 5136 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) 5137 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs)) 5138 return FALSE; 5139 5140 elf_tdata (output_bfd)->cverdefs = cdefs; 5141 } 5142 5143 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) 5144 { 5145 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) 5146 return FALSE; 5147 } 5148 else if (info->flags & DF_BIND_NOW) 5149 { 5150 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) 5151 return FALSE; 5152 } 5153 5154 if (info->flags_1) 5155 { 5156 if (info->executable) 5157 info->flags_1 &= ~ (DF_1_INITFIRST 5158 | DF_1_NODELETE 5159 | DF_1_NOOPEN); 5160 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) 5161 return FALSE; 5162 } 5163 5164 /* Work out the size of the version reference section. */ 5165 5166 s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); 5167 BFD_ASSERT (s != NULL); 5168 { 5169 struct elf_find_verdep_info sinfo; 5170 5171 sinfo.output_bfd = output_bfd; 5172 sinfo.info = info; 5173 sinfo.vers = elf_tdata (output_bfd)->cverdefs; 5174 if (sinfo.vers == 0) 5175 sinfo.vers = 1; 5176 sinfo.failed = FALSE; 5177 5178 elf_link_hash_traverse (elf_hash_table (info), 5179 _bfd_elf_link_find_version_dependencies, 5180 &sinfo); 5181 5182 if (elf_tdata (output_bfd)->verref == NULL) 5183 _bfd_strip_section_from_output (info, s); 5184 else 5185 { 5186 Elf_Internal_Verneed *t; 5187 unsigned int size; 5188 unsigned int crefs; 5189 bfd_byte *p; 5190 5191 /* Build the version definition section. */ 5192 size = 0; 5193 crefs = 0; 5194 for (t = elf_tdata (output_bfd)->verref; 5195 t != NULL; 5196 t = t->vn_nextref) 5197 { 5198 Elf_Internal_Vernaux *a; 5199 5200 size += sizeof (Elf_External_Verneed); 5201 ++crefs; 5202 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 5203 size += sizeof (Elf_External_Vernaux); 5204 } 5205 5206 s->_raw_size = size; 5207 s->contents = bfd_alloc (output_bfd, s->_raw_size); 5208 if (s->contents == NULL) 5209 return FALSE; 5210 5211 p = s->contents; 5212 for (t = elf_tdata (output_bfd)->verref; 5213 t != NULL; 5214 t = t->vn_nextref) 5215 { 5216 unsigned int caux; 5217 Elf_Internal_Vernaux *a; 5218 bfd_size_type indx; 5219 5220 caux = 0; 5221 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 5222 ++caux; 5223 5224 t->vn_version = VER_NEED_CURRENT; 5225 t->vn_cnt = caux; 5226 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 5227 elf_dt_name (t->vn_bfd) != NULL 5228 ? elf_dt_name (t->vn_bfd) 5229 : basename (t->vn_bfd->filename), 5230 FALSE); 5231 if (indx == (bfd_size_type) -1) 5232 return FALSE; 5233 t->vn_file = indx; 5234 t->vn_aux = sizeof (Elf_External_Verneed); 5235 if (t->vn_nextref == NULL) 5236 t->vn_next = 0; 5237 else 5238 t->vn_next = (sizeof (Elf_External_Verneed) 5239 + caux * sizeof (Elf_External_Vernaux)); 5240 5241 _bfd_elf_swap_verneed_out (output_bfd, t, 5242 (Elf_External_Verneed *) p); 5243 p += sizeof (Elf_External_Verneed); 5244 5245 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 5246 { 5247 a->vna_hash = bfd_elf_hash (a->vna_nodename); 5248 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 5249 a->vna_nodename, FALSE); 5250 if (indx == (bfd_size_type) -1) 5251 return FALSE; 5252 a->vna_name = indx; 5253 if (a->vna_nextptr == NULL) 5254 a->vna_next = 0; 5255 else 5256 a->vna_next = sizeof (Elf_External_Vernaux); 5257 5258 _bfd_elf_swap_vernaux_out (output_bfd, a, 5259 (Elf_External_Vernaux *) p); 5260 p += sizeof (Elf_External_Vernaux); 5261 } 5262 } 5263 5264 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) 5265 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) 5266 return FALSE; 5267 5268 elf_tdata (output_bfd)->cverrefs = crefs; 5269 } 5270 } 5271 5272 /* Assign dynsym indicies. In a shared library we generate a 5273 section symbol for each output section, which come first. 5274 Next come all of the back-end allocated local dynamic syms, 5275 followed by the rest of the global symbols. */ 5276 5277 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); 5278 5279 /* Work out the size of the symbol version section. */ 5280 s = bfd_get_section_by_name (dynobj, ".gnu.version"); 5281 BFD_ASSERT (s != NULL); 5282 if (dynsymcount == 0 5283 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL)) 5284 { 5285 _bfd_strip_section_from_output (info, s); 5286 /* The DYNSYMCOUNT might have changed if we were going to 5287 output a dynamic symbol table entry for S. */ 5288 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); 5289 } 5290 else 5291 { 5292 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym); 5293 s->contents = bfd_zalloc (output_bfd, s->_raw_size); 5294 if (s->contents == NULL) 5295 return FALSE; 5296 5297 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) 5298 return FALSE; 5299 } 5300 5301 /* Set the size of the .dynsym and .hash sections. We counted 5302 the number of dynamic symbols in elf_link_add_object_symbols. 5303 We will build the contents of .dynsym and .hash when we build 5304 the final symbol table, because until then we do not know the 5305 correct value to give the symbols. We built the .dynstr 5306 section as we went along in elf_link_add_object_symbols. */ 5307 s = bfd_get_section_by_name (dynobj, ".dynsym"); 5308 BFD_ASSERT (s != NULL); 5309 s->_raw_size = dynsymcount * bed->s->sizeof_sym; 5310 s->contents = bfd_alloc (output_bfd, s->_raw_size); 5311 if (s->contents == NULL && s->_raw_size != 0) 5312 return FALSE; 5313 5314 if (dynsymcount != 0) 5315 { 5316 Elf_Internal_Sym isym; 5317 5318 /* The first entry in .dynsym is a dummy symbol. */ 5319 isym.st_value = 0; 5320 isym.st_size = 0; 5321 isym.st_name = 0; 5322 isym.st_info = 0; 5323 isym.st_other = 0; 5324 isym.st_shndx = 0; 5325 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0); 5326 } 5327 5328 /* Compute the size of the hashing table. As a side effect this 5329 computes the hash values for all the names we export. */ 5330 bucketcount = compute_bucket_count (info); 5331 5332 s = bfd_get_section_by_name (dynobj, ".hash"); 5333 BFD_ASSERT (s != NULL); 5334 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; 5335 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size); 5336 s->contents = bfd_zalloc (output_bfd, s->_raw_size); 5337 if (s->contents == NULL) 5338 return FALSE; 5339 5340 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); 5341 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, 5342 s->contents + hash_entry_size); 5343 5344 elf_hash_table (info)->bucketcount = bucketcount; 5345 5346 s = bfd_get_section_by_name (dynobj, ".dynstr"); 5347 BFD_ASSERT (s != NULL); 5348 5349 elf_finalize_dynstr (output_bfd, info); 5350 5351 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 5352 5353 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) 5354 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) 5355 return FALSE; 5356 } 5357 5358 return TRUE; 5359 } 5360 5361 /* Final phase of ELF linker. */ 5362 5363 /* A structure we use to avoid passing large numbers of arguments. */ 5364 5365 struct elf_final_link_info 5366 { 5367 /* General link information. */ 5368 struct bfd_link_info *info; 5369 /* Output BFD. */ 5370 bfd *output_bfd; 5371 /* Symbol string table. */ 5372 struct bfd_strtab_hash *symstrtab; 5373 /* .dynsym section. */ 5374 asection *dynsym_sec; 5375 /* .hash section. */ 5376 asection *hash_sec; 5377 /* symbol version section (.gnu.version). */ 5378 asection *symver_sec; 5379 /* Buffer large enough to hold contents of any section. */ 5380 bfd_byte *contents; 5381 /* Buffer large enough to hold external relocs of any section. */ 5382 void *external_relocs; 5383 /* Buffer large enough to hold internal relocs of any section. */ 5384 Elf_Internal_Rela *internal_relocs; 5385 /* Buffer large enough to hold external local symbols of any input 5386 BFD. */ 5387 bfd_byte *external_syms; 5388 /* And a buffer for symbol section indices. */ 5389 Elf_External_Sym_Shndx *locsym_shndx; 5390 /* Buffer large enough to hold internal local symbols of any input 5391 BFD. */ 5392 Elf_Internal_Sym *internal_syms; 5393 /* Array large enough to hold a symbol index for each local symbol 5394 of any input BFD. */ 5395 long *indices; 5396 /* Array large enough to hold a section pointer for each local 5397 symbol of any input BFD. */ 5398 asection **sections; 5399 /* Buffer to hold swapped out symbols. */ 5400 bfd_byte *symbuf; 5401 /* And one for symbol section indices. */ 5402 Elf_External_Sym_Shndx *symshndxbuf; 5403 /* Number of swapped out symbols in buffer. */ 5404 size_t symbuf_count; 5405 /* Number of symbols which fit in symbuf. */ 5406 size_t symbuf_size; 5407 /* And same for symshndxbuf. */ 5408 size_t shndxbuf_size; 5409 }; 5410 5411 /* This struct is used to pass information to elf_link_output_extsym. */ 5412 5413 struct elf_outext_info 5414 { 5415 bfd_boolean failed; 5416 bfd_boolean localsyms; 5417 struct elf_final_link_info *finfo; 5418 }; 5419 5420 /* When performing a relocatable link, the input relocations are 5421 preserved. But, if they reference global symbols, the indices 5422 referenced must be updated. Update all the relocations in 5423 REL_HDR (there are COUNT of them), using the data in REL_HASH. */ 5424 5425 static void 5426 elf_link_adjust_relocs (bfd *abfd, 5427 Elf_Internal_Shdr *rel_hdr, 5428 unsigned int count, 5429 struct elf_link_hash_entry **rel_hash) 5430 { 5431 unsigned int i; 5432 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5433 bfd_byte *erela; 5434 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 5435 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 5436 bfd_vma r_type_mask; 5437 int r_sym_shift; 5438 5439 if (rel_hdr->sh_entsize == bed->s->sizeof_rel) 5440 { 5441 swap_in = bed->s->swap_reloc_in; 5442 swap_out = bed->s->swap_reloc_out; 5443 } 5444 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela) 5445 { 5446 swap_in = bed->s->swap_reloca_in; 5447 swap_out = bed->s->swap_reloca_out; 5448 } 5449 else 5450 abort (); 5451 5452 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) 5453 abort (); 5454 5455 if (bed->s->arch_size == 32) 5456 { 5457 r_type_mask = 0xff; 5458 r_sym_shift = 8; 5459 } 5460 else 5461 { 5462 r_type_mask = 0xffffffff; 5463 r_sym_shift = 32; 5464 } 5465 5466 erela = rel_hdr->contents; 5467 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize) 5468 { 5469 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; 5470 unsigned int j; 5471 5472 if (*rel_hash == NULL) 5473 continue; 5474 5475 BFD_ASSERT ((*rel_hash)->indx >= 0); 5476 5477 (*swap_in) (abfd, erela, irela); 5478 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) 5479 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift 5480 | (irela[j].r_info & r_type_mask)); 5481 (*swap_out) (abfd, irela, erela); 5482 } 5483 } 5484 5485 struct elf_link_sort_rela 5486 { 5487 union { 5488 bfd_vma offset; 5489 bfd_vma sym_mask; 5490 } u; 5491 enum elf_reloc_type_class type; 5492 /* We use this as an array of size int_rels_per_ext_rel. */ 5493 Elf_Internal_Rela rela[1]; 5494 }; 5495 5496 static int 5497 elf_link_sort_cmp1 (const void *A, const void *B) 5498 { 5499 const struct elf_link_sort_rela *a = A; 5500 const struct elf_link_sort_rela *b = B; 5501 int relativea, relativeb; 5502 5503 relativea = a->type == reloc_class_relative; 5504 relativeb = b->type == reloc_class_relative; 5505 5506 if (relativea < relativeb) 5507 return 1; 5508 if (relativea > relativeb) 5509 return -1; 5510 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) 5511 return -1; 5512 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) 5513 return 1; 5514 if (a->rela->r_offset < b->rela->r_offset) 5515 return -1; 5516 if (a->rela->r_offset > b->rela->r_offset) 5517 return 1; 5518 return 0; 5519 } 5520 5521 static int 5522 elf_link_sort_cmp2 (const void *A, const void *B) 5523 { 5524 const struct elf_link_sort_rela *a = A; 5525 const struct elf_link_sort_rela *b = B; 5526 int copya, copyb; 5527 5528 if (a->u.offset < b->u.offset) 5529 return -1; 5530 if (a->u.offset > b->u.offset) 5531 return 1; 5532 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt); 5533 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt); 5534 if (copya < copyb) 5535 return -1; 5536 if (copya > copyb) 5537 return 1; 5538 if (a->rela->r_offset < b->rela->r_offset) 5539 return -1; 5540 if (a->rela->r_offset > b->rela->r_offset) 5541 return 1; 5542 return 0; 5543 } 5544 5545 static size_t 5546 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) 5547 { 5548 asection *reldyn; 5549 bfd_size_type count, size; 5550 size_t i, ret, sort_elt, ext_size; 5551 bfd_byte *sort, *s_non_relative, *p; 5552 struct elf_link_sort_rela *sq; 5553 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5554 int i2e = bed->s->int_rels_per_ext_rel; 5555 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 5556 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 5557 struct bfd_link_order *lo; 5558 bfd_vma r_sym_mask; 5559 5560 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn"); 5561 if (reldyn == NULL || reldyn->_raw_size == 0) 5562 { 5563 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn"); 5564 if (reldyn == NULL || reldyn->_raw_size == 0) 5565 return 0; 5566 ext_size = bed->s->sizeof_rel; 5567 swap_in = bed->s->swap_reloc_in; 5568 swap_out = bed->s->swap_reloc_out; 5569 } 5570 else 5571 { 5572 ext_size = bed->s->sizeof_rela; 5573 swap_in = bed->s->swap_reloca_in; 5574 swap_out = bed->s->swap_reloca_out; 5575 } 5576 count = reldyn->_raw_size / ext_size; 5577 5578 size = 0; 5579 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next) 5580 if (lo->type == bfd_indirect_link_order) 5581 { 5582 asection *o = lo->u.indirect.section; 5583 size += o->_raw_size; 5584 } 5585 5586 if (size != reldyn->_raw_size) 5587 return 0; 5588 5589 sort_elt = (sizeof (struct elf_link_sort_rela) 5590 + (i2e - 1) * sizeof (Elf_Internal_Rela)); 5591 sort = bfd_zmalloc (sort_elt * count); 5592 if (sort == NULL) 5593 { 5594 (*info->callbacks->warning) 5595 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0); 5596 return 0; 5597 } 5598 5599 if (bed->s->arch_size == 32) 5600 r_sym_mask = ~(bfd_vma) 0xff; 5601 else 5602 r_sym_mask = ~(bfd_vma) 0xffffffff; 5603 5604 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next) 5605 if (lo->type == bfd_indirect_link_order) 5606 { 5607 bfd_byte *erel, *erelend; 5608 asection *o = lo->u.indirect.section; 5609 5610 erel = o->contents; 5611 erelend = o->contents + o->_raw_size; 5612 p = sort + o->output_offset / ext_size * sort_elt; 5613 while (erel < erelend) 5614 { 5615 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 5616 (*swap_in) (abfd, erel, s->rela); 5617 s->type = (*bed->elf_backend_reloc_type_class) (s->rela); 5618 s->u.sym_mask = r_sym_mask; 5619 p += sort_elt; 5620 erel += ext_size; 5621 } 5622 } 5623 5624 qsort (sort, count, sort_elt, elf_link_sort_cmp1); 5625 5626 for (i = 0, p = sort; i < count; i++, p += sort_elt) 5627 { 5628 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 5629 if (s->type != reloc_class_relative) 5630 break; 5631 } 5632 ret = i; 5633 s_non_relative = p; 5634 5635 sq = (struct elf_link_sort_rela *) s_non_relative; 5636 for (; i < count; i++, p += sort_elt) 5637 { 5638 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; 5639 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) 5640 sq = sp; 5641 sp->u.offset = sq->rela->r_offset; 5642 } 5643 5644 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); 5645 5646 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next) 5647 if (lo->type == bfd_indirect_link_order) 5648 { 5649 bfd_byte *erel, *erelend; 5650 asection *o = lo->u.indirect.section; 5651 5652 erel = o->contents; 5653 erelend = o->contents + o->_raw_size; 5654 p = sort + o->output_offset / ext_size * sort_elt; 5655 while (erel < erelend) 5656 { 5657 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 5658 (*swap_out) (abfd, s->rela, erel); 5659 p += sort_elt; 5660 erel += ext_size; 5661 } 5662 } 5663 5664 free (sort); 5665 *psec = reldyn; 5666 return ret; 5667 } 5668 5669 /* Flush the output symbols to the file. */ 5670 5671 static bfd_boolean 5672 elf_link_flush_output_syms (struct elf_final_link_info *finfo, 5673 const struct elf_backend_data *bed) 5674 { 5675 if (finfo->symbuf_count > 0) 5676 { 5677 Elf_Internal_Shdr *hdr; 5678 file_ptr pos; 5679 bfd_size_type amt; 5680 5681 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr; 5682 pos = hdr->sh_offset + hdr->sh_size; 5683 amt = finfo->symbuf_count * bed->s->sizeof_sym; 5684 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0 5685 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt) 5686 return FALSE; 5687 5688 hdr->sh_size += amt; 5689 finfo->symbuf_count = 0; 5690 } 5691 5692 return TRUE; 5693 } 5694 5695 /* Add a symbol to the output symbol table. */ 5696 5697 static bfd_boolean 5698 elf_link_output_sym (struct elf_final_link_info *finfo, 5699 const char *name, 5700 Elf_Internal_Sym *elfsym, 5701 asection *input_sec, 5702 struct elf_link_hash_entry *h) 5703 { 5704 bfd_byte *dest; 5705 Elf_External_Sym_Shndx *destshndx; 5706 bfd_boolean (*output_symbol_hook) 5707 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, 5708 struct elf_link_hash_entry *); 5709 const struct elf_backend_data *bed; 5710 5711 bed = get_elf_backend_data (finfo->output_bfd); 5712 output_symbol_hook = bed->elf_backend_link_output_symbol_hook; 5713 if (output_symbol_hook != NULL) 5714 { 5715 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h)) 5716 return FALSE; 5717 } 5718 5719 if (name == NULL || *name == '\0') 5720 elfsym->st_name = 0; 5721 else if (input_sec->flags & SEC_EXCLUDE) 5722 elfsym->st_name = 0; 5723 else 5724 { 5725 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, 5726 name, TRUE, FALSE); 5727 if (elfsym->st_name == (unsigned long) -1) 5728 return FALSE; 5729 } 5730 5731 if (finfo->symbuf_count >= finfo->symbuf_size) 5732 { 5733 if (! elf_link_flush_output_syms (finfo, bed)) 5734 return FALSE; 5735 } 5736 5737 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym; 5738 destshndx = finfo->symshndxbuf; 5739 if (destshndx != NULL) 5740 { 5741 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size) 5742 { 5743 bfd_size_type amt; 5744 5745 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx); 5746 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2); 5747 if (destshndx == NULL) 5748 return FALSE; 5749 memset ((char *) destshndx + amt, 0, amt); 5750 finfo->shndxbuf_size *= 2; 5751 } 5752 destshndx += bfd_get_symcount (finfo->output_bfd); 5753 } 5754 5755 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx); 5756 finfo->symbuf_count += 1; 5757 bfd_get_symcount (finfo->output_bfd) += 1; 5758 5759 return TRUE; 5760 } 5761 5762 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in 5763 allowing an unsatisfied unversioned symbol in the DSO to match a 5764 versioned symbol that would normally require an explicit version. 5765 We also handle the case that a DSO references a hidden symbol 5766 which may be satisfied by a versioned symbol in another DSO. */ 5767 5768 static bfd_boolean 5769 elf_link_check_versioned_symbol (struct bfd_link_info *info, 5770 const struct elf_backend_data *bed, 5771 struct elf_link_hash_entry *h) 5772 { 5773 bfd *abfd; 5774 struct elf_link_loaded_list *loaded; 5775 5776 if (!is_elf_hash_table (info->hash)) 5777 return FALSE; 5778 5779 switch (h->root.type) 5780 { 5781 default: 5782 abfd = NULL; 5783 break; 5784 5785 case bfd_link_hash_undefined: 5786 case bfd_link_hash_undefweak: 5787 abfd = h->root.u.undef.abfd; 5788 if ((abfd->flags & DYNAMIC) == 0 5789 || elf_dyn_lib_class (abfd) != DYN_DT_NEEDED) 5790 return FALSE; 5791 break; 5792 5793 case bfd_link_hash_defined: 5794 case bfd_link_hash_defweak: 5795 abfd = h->root.u.def.section->owner; 5796 break; 5797 5798 case bfd_link_hash_common: 5799 abfd = h->root.u.c.p->section->owner; 5800 break; 5801 } 5802 BFD_ASSERT (abfd != NULL); 5803 5804 for (loaded = elf_hash_table (info)->loaded; 5805 loaded != NULL; 5806 loaded = loaded->next) 5807 { 5808 bfd *input; 5809 Elf_Internal_Shdr *hdr; 5810 bfd_size_type symcount; 5811 bfd_size_type extsymcount; 5812 bfd_size_type extsymoff; 5813 Elf_Internal_Shdr *versymhdr; 5814 Elf_Internal_Sym *isym; 5815 Elf_Internal_Sym *isymend; 5816 Elf_Internal_Sym *isymbuf; 5817 Elf_External_Versym *ever; 5818 Elf_External_Versym *extversym; 5819 5820 input = loaded->abfd; 5821 5822 /* We check each DSO for a possible hidden versioned definition. */ 5823 if (input == abfd 5824 || (input->flags & DYNAMIC) == 0 5825 || elf_dynversym (input) == 0) 5826 continue; 5827 5828 hdr = &elf_tdata (input)->dynsymtab_hdr; 5829 5830 symcount = hdr->sh_size / bed->s->sizeof_sym; 5831 if (elf_bad_symtab (input)) 5832 { 5833 extsymcount = symcount; 5834 extsymoff = 0; 5835 } 5836 else 5837 { 5838 extsymcount = symcount - hdr->sh_info; 5839 extsymoff = hdr->sh_info; 5840 } 5841 5842 if (extsymcount == 0) 5843 continue; 5844 5845 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, 5846 NULL, NULL, NULL); 5847 if (isymbuf == NULL) 5848 return FALSE; 5849 5850 /* Read in any version definitions. */ 5851 versymhdr = &elf_tdata (input)->dynversym_hdr; 5852 extversym = bfd_malloc (versymhdr->sh_size); 5853 if (extversym == NULL) 5854 goto error_ret; 5855 5856 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 5857 || (bfd_bread (extversym, versymhdr->sh_size, input) 5858 != versymhdr->sh_size)) 5859 { 5860 free (extversym); 5861 error_ret: 5862 free (isymbuf); 5863 return FALSE; 5864 } 5865 5866 ever = extversym + extsymoff; 5867 isymend = isymbuf + extsymcount; 5868 for (isym = isymbuf; isym < isymend; isym++, ever++) 5869 { 5870 const char *name; 5871 Elf_Internal_Versym iver; 5872 unsigned short version_index; 5873 5874 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL 5875 || isym->st_shndx == SHN_UNDEF) 5876 continue; 5877 5878 name = bfd_elf_string_from_elf_section (input, 5879 hdr->sh_link, 5880 isym->st_name); 5881 if (strcmp (name, h->root.root.string) != 0) 5882 continue; 5883 5884 _bfd_elf_swap_versym_in (input, ever, &iver); 5885 5886 if ((iver.vs_vers & VERSYM_HIDDEN) == 0) 5887 { 5888 /* If we have a non-hidden versioned sym, then it should 5889 have provided a definition for the undefined sym. */ 5890 abort (); 5891 } 5892 5893 version_index = iver.vs_vers & VERSYM_VERSION; 5894 if (version_index == 1 || version_index == 2) 5895 { 5896 /* This is the base or first version. We can use it. */ 5897 free (extversym); 5898 free (isymbuf); 5899 return TRUE; 5900 } 5901 } 5902 5903 free (extversym); 5904 free (isymbuf); 5905 } 5906 5907 return FALSE; 5908 } 5909 5910 /* Add an external symbol to the symbol table. This is called from 5911 the hash table traversal routine. When generating a shared object, 5912 we go through the symbol table twice. The first time we output 5913 anything that might have been forced to local scope in a version 5914 script. The second time we output the symbols that are still 5915 global symbols. */ 5916 5917 static bfd_boolean 5918 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data) 5919 { 5920 struct elf_outext_info *eoinfo = data; 5921 struct elf_final_link_info *finfo = eoinfo->finfo; 5922 bfd_boolean strip; 5923 Elf_Internal_Sym sym; 5924 asection *input_sec; 5925 const struct elf_backend_data *bed; 5926 5927 if (h->root.type == bfd_link_hash_warning) 5928 { 5929 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5930 if (h->root.type == bfd_link_hash_new) 5931 return TRUE; 5932 } 5933 5934 /* Decide whether to output this symbol in this pass. */ 5935 if (eoinfo->localsyms) 5936 { 5937 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) 5938 return TRUE; 5939 } 5940 else 5941 { 5942 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) 5943 return TRUE; 5944 } 5945 5946 bed = get_elf_backend_data (finfo->output_bfd); 5947 5948 /* If we have an undefined symbol reference here then it must have 5949 come from a shared library that is being linked in. (Undefined 5950 references in regular files have already been handled). If we 5951 are reporting errors for this situation then do so now. */ 5952 if (h->root.type == bfd_link_hash_undefined 5953 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 5954 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 5955 && ! elf_link_check_versioned_symbol (finfo->info, bed, h) 5956 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) 5957 { 5958 if (! ((*finfo->info->callbacks->undefined_symbol) 5959 (finfo->info, h->root.root.string, h->root.u.undef.abfd, 5960 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR))) 5961 { 5962 eoinfo->failed = TRUE; 5963 return FALSE; 5964 } 5965 } 5966 5967 /* We should also warn if a forced local symbol is referenced from 5968 shared libraries. */ 5969 if (! finfo->info->relocatable 5970 && (! finfo->info->shared) 5971 && (h->elf_link_hash_flags 5972 & (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_DYNAMIC_DEF | ELF_LINK_DYNAMIC_WEAK)) 5973 == (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC) 5974 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)) 5975 { 5976 (*_bfd_error_handler) 5977 (_("%s: %s symbol `%s' in %s is referenced by DSO"), 5978 bfd_get_filename (finfo->output_bfd), 5979 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL 5980 ? "internal" 5981 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN 5982 ? "hidden" : "local", 5983 h->root.root.string, 5984 bfd_archive_filename (h->root.u.def.section->owner)); 5985 eoinfo->failed = TRUE; 5986 return FALSE; 5987 } 5988 5989 /* We don't want to output symbols that have never been mentioned by 5990 a regular file, or that we have been told to strip. However, if 5991 h->indx is set to -2, the symbol is used by a reloc and we must 5992 output it. */ 5993 if (h->indx == -2) 5994 strip = FALSE; 5995 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 5996 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) 5997 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 5998 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) 5999 strip = TRUE; 6000 else if (finfo->info->strip == strip_all) 6001 strip = TRUE; 6002 else if (finfo->info->strip == strip_some 6003 && bfd_hash_lookup (finfo->info->keep_hash, 6004 h->root.root.string, FALSE, FALSE) == NULL) 6005 strip = TRUE; 6006 else if (finfo->info->strip_discarded 6007 && (h->root.type == bfd_link_hash_defined 6008 || h->root.type == bfd_link_hash_defweak) 6009 && elf_discarded_section (h->root.u.def.section)) 6010 strip = TRUE; 6011 else 6012 strip = FALSE; 6013 6014 /* If we're stripping it, and it's not a dynamic symbol, there's 6015 nothing else to do unless it is a forced local symbol. */ 6016 if (strip 6017 && h->dynindx == -1 6018 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) 6019 return TRUE; 6020 6021 sym.st_value = 0; 6022 sym.st_size = h->size; 6023 sym.st_other = h->other; 6024 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) 6025 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type); 6026 else if (h->root.type == bfd_link_hash_undefweak 6027 || h->root.type == bfd_link_hash_defweak) 6028 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); 6029 else 6030 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); 6031 6032 switch (h->root.type) 6033 { 6034 default: 6035 case bfd_link_hash_new: 6036 case bfd_link_hash_warning: 6037 abort (); 6038 return FALSE; 6039 6040 case bfd_link_hash_undefined: 6041 case bfd_link_hash_undefweak: 6042 input_sec = bfd_und_section_ptr; 6043 sym.st_shndx = SHN_UNDEF; 6044 break; 6045 6046 case bfd_link_hash_defined: 6047 case bfd_link_hash_defweak: 6048 { 6049 input_sec = h->root.u.def.section; 6050 if (input_sec->output_section != NULL) 6051 { 6052 sym.st_shndx = 6053 _bfd_elf_section_from_bfd_section (finfo->output_bfd, 6054 input_sec->output_section); 6055 if (sym.st_shndx == SHN_BAD) 6056 { 6057 (*_bfd_error_handler) 6058 (_("%s: could not find output section %s for input section %s"), 6059 bfd_get_filename (finfo->output_bfd), 6060 input_sec->output_section->name, 6061 input_sec->name); 6062 eoinfo->failed = TRUE; 6063 return FALSE; 6064 } 6065 6066 /* ELF symbols in relocatable files are section relative, 6067 but in nonrelocatable files they are virtual 6068 addresses. */ 6069 sym.st_value = h->root.u.def.value + input_sec->output_offset; 6070 if (! finfo->info->relocatable) 6071 { 6072 sym.st_value += input_sec->output_section->vma; 6073 if (h->type == STT_TLS) 6074 { 6075 /* STT_TLS symbols are relative to PT_TLS segment 6076 base. */ 6077 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL); 6078 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma; 6079 } 6080 } 6081 } 6082 else 6083 { 6084 BFD_ASSERT (input_sec->owner == NULL 6085 || (input_sec->owner->flags & DYNAMIC) != 0); 6086 sym.st_shndx = SHN_UNDEF; 6087 input_sec = bfd_und_section_ptr; 6088 } 6089 } 6090 break; 6091 6092 case bfd_link_hash_common: 6093 input_sec = h->root.u.c.p->section; 6094 sym.st_shndx = SHN_COMMON; 6095 sym.st_value = 1 << h->root.u.c.p->alignment_power; 6096 break; 6097 6098 case bfd_link_hash_indirect: 6099 /* These symbols are created by symbol versioning. They point 6100 to the decorated version of the name. For example, if the 6101 symbol foo@@GNU_1.2 is the default, which should be used when 6102 foo is used with no version, then we add an indirect symbol 6103 foo which points to foo@@GNU_1.2. We ignore these symbols, 6104 since the indirected symbol is already in the hash table. */ 6105 return TRUE; 6106 } 6107 6108 /* Give the processor backend a chance to tweak the symbol value, 6109 and also to finish up anything that needs to be done for this 6110 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for 6111 forced local syms when non-shared is due to a historical quirk. */ 6112 if ((h->dynindx != -1 6113 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) 6114 && ((finfo->info->shared 6115 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 6116 || h->root.type != bfd_link_hash_undefweak)) 6117 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) 6118 && elf_hash_table (finfo->info)->dynamic_sections_created) 6119 { 6120 if (! ((*bed->elf_backend_finish_dynamic_symbol) 6121 (finfo->output_bfd, finfo->info, h, &sym))) 6122 { 6123 eoinfo->failed = TRUE; 6124 return FALSE; 6125 } 6126 } 6127 6128 /* If we are marking the symbol as undefined, and there are no 6129 non-weak references to this symbol from a regular object, then 6130 mark the symbol as weak undefined; if there are non-weak 6131 references, mark the symbol as strong. We can't do this earlier, 6132 because it might not be marked as undefined until the 6133 finish_dynamic_symbol routine gets through with it. */ 6134 if (sym.st_shndx == SHN_UNDEF 6135 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 6136 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL 6137 || ELF_ST_BIND (sym.st_info) == STB_WEAK)) 6138 { 6139 int bindtype; 6140 6141 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0) 6142 bindtype = STB_GLOBAL; 6143 else 6144 bindtype = STB_WEAK; 6145 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info)); 6146 } 6147 6148 /* If a non-weak symbol with non-default visibility is not defined 6149 locally, it is a fatal error. */ 6150 if (! finfo->info->relocatable 6151 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT 6152 && ELF_ST_BIND (sym.st_info) != STB_WEAK 6153 && h->root.type == bfd_link_hash_undefined 6154 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) 6155 { 6156 (*_bfd_error_handler) 6157 (_("%s: %s symbol `%s' isn't defined"), 6158 bfd_get_filename (finfo->output_bfd), 6159 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED 6160 ? "protected" 6161 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL 6162 ? "internal" : "hidden", 6163 h->root.root.string); 6164 eoinfo->failed = TRUE; 6165 return FALSE; 6166 } 6167 6168 /* If this symbol should be put in the .dynsym section, then put it 6169 there now. We already know the symbol index. We also fill in 6170 the entry in the .hash section. */ 6171 if (h->dynindx != -1 6172 && elf_hash_table (finfo->info)->dynamic_sections_created) 6173 { 6174 size_t bucketcount; 6175 size_t bucket; 6176 size_t hash_entry_size; 6177 bfd_byte *bucketpos; 6178 bfd_vma chain; 6179 bfd_byte *esym; 6180 6181 sym.st_name = h->dynstr_index; 6182 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym; 6183 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0); 6184 6185 bucketcount = elf_hash_table (finfo->info)->bucketcount; 6186 bucket = h->elf_hash_value % bucketcount; 6187 hash_entry_size 6188 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize; 6189 bucketpos = ((bfd_byte *) finfo->hash_sec->contents 6190 + (bucket + 2) * hash_entry_size); 6191 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos); 6192 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos); 6193 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain, 6194 ((bfd_byte *) finfo->hash_sec->contents 6195 + (bucketcount + 2 + h->dynindx) * hash_entry_size)); 6196 6197 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL) 6198 { 6199 Elf_Internal_Versym iversym; 6200 Elf_External_Versym *eversym; 6201 6202 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) 6203 { 6204 if (h->verinfo.verdef == NULL) 6205 iversym.vs_vers = 0; 6206 else 6207 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; 6208 } 6209 else 6210 { 6211 if (h->verinfo.vertree == NULL) 6212 iversym.vs_vers = 1; 6213 else 6214 iversym.vs_vers = h->verinfo.vertree->vernum + 1; 6215 } 6216 6217 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0) 6218 iversym.vs_vers |= VERSYM_HIDDEN; 6219 6220 eversym = (Elf_External_Versym *) finfo->symver_sec->contents; 6221 eversym += h->dynindx; 6222 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym); 6223 } 6224 } 6225 6226 /* If we're stripping it, then it was just a dynamic symbol, and 6227 there's nothing else to do. */ 6228 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0) 6229 return TRUE; 6230 6231 h->indx = bfd_get_symcount (finfo->output_bfd); 6232 6233 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h)) 6234 { 6235 eoinfo->failed = TRUE; 6236 return FALSE; 6237 } 6238 6239 return TRUE; 6240 } 6241 6242 static bfd_boolean 6243 elf_section_ignore_discarded_relocs (asection *sec) 6244 { 6245 const struct elf_backend_data *bed; 6246 6247 switch (sec->sec_info_type) 6248 { 6249 case ELF_INFO_TYPE_STABS: 6250 case ELF_INFO_TYPE_EH_FRAME: 6251 return TRUE; 6252 default: 6253 break; 6254 } 6255 6256 bed = get_elf_backend_data (sec->owner); 6257 if (bed->elf_backend_ignore_discarded_relocs != NULL 6258 && (*bed->elf_backend_ignore_discarded_relocs) (sec)) 6259 return TRUE; 6260 6261 return FALSE; 6262 } 6263 6264 /* Link an input file into the linker output file. This function 6265 handles all the sections and relocations of the input file at once. 6266 This is so that we only have to read the local symbols once, and 6267 don't have to keep them in memory. */ 6268 6269 static bfd_boolean 6270 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd) 6271 { 6272 bfd_boolean (*relocate_section) 6273 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 6274 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); 6275 bfd *output_bfd; 6276 Elf_Internal_Shdr *symtab_hdr; 6277 size_t locsymcount; 6278 size_t extsymoff; 6279 Elf_Internal_Sym *isymbuf; 6280 Elf_Internal_Sym *isym; 6281 Elf_Internal_Sym *isymend; 6282 long *pindex; 6283 asection **ppsection; 6284 asection *o; 6285 const struct elf_backend_data *bed; 6286 bfd_boolean emit_relocs; 6287 struct elf_link_hash_entry **sym_hashes; 6288 6289 output_bfd = finfo->output_bfd; 6290 bed = get_elf_backend_data (output_bfd); 6291 relocate_section = bed->elf_backend_relocate_section; 6292 6293 /* If this is a dynamic object, we don't want to do anything here: 6294 we don't want the local symbols, and we don't want the section 6295 contents. */ 6296 if ((input_bfd->flags & DYNAMIC) != 0) 6297 return TRUE; 6298 6299 emit_relocs = (finfo->info->relocatable 6300 || finfo->info->emitrelocations 6301 || bed->elf_backend_emit_relocs); 6302 6303 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 6304 if (elf_bad_symtab (input_bfd)) 6305 { 6306 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 6307 extsymoff = 0; 6308 } 6309 else 6310 { 6311 locsymcount = symtab_hdr->sh_info; 6312 extsymoff = symtab_hdr->sh_info; 6313 } 6314 6315 /* Read the local symbols. */ 6316 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 6317 if (isymbuf == NULL && locsymcount != 0) 6318 { 6319 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, 6320 finfo->internal_syms, 6321 finfo->external_syms, 6322 finfo->locsym_shndx); 6323 if (isymbuf == NULL) 6324 return FALSE; 6325 } 6326 6327 /* Find local symbol sections and adjust values of symbols in 6328 SEC_MERGE sections. Write out those local symbols we know are 6329 going into the output file. */ 6330 isymend = isymbuf + locsymcount; 6331 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections; 6332 isym < isymend; 6333 isym++, pindex++, ppsection++) 6334 { 6335 asection *isec; 6336 const char *name; 6337 Elf_Internal_Sym osym; 6338 6339 *pindex = -1; 6340 6341 if (elf_bad_symtab (input_bfd)) 6342 { 6343 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) 6344 { 6345 *ppsection = NULL; 6346 continue; 6347 } 6348 } 6349 6350 if (isym->st_shndx == SHN_UNDEF) 6351 isec = bfd_und_section_ptr; 6352 else if (isym->st_shndx < SHN_LORESERVE 6353 || isym->st_shndx > SHN_HIRESERVE) 6354 { 6355 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); 6356 if (isec 6357 && isec->sec_info_type == ELF_INFO_TYPE_MERGE 6358 && ELF_ST_TYPE (isym->st_info) != STT_SECTION) 6359 isym->st_value = 6360 _bfd_merged_section_offset (output_bfd, &isec, 6361 elf_section_data (isec)->sec_info, 6362 isym->st_value, 0); 6363 } 6364 else if (isym->st_shndx == SHN_ABS) 6365 isec = bfd_abs_section_ptr; 6366 else if (isym->st_shndx == SHN_COMMON) 6367 isec = bfd_com_section_ptr; 6368 else 6369 { 6370 /* Who knows? */ 6371 isec = NULL; 6372 } 6373 6374 *ppsection = isec; 6375 6376 /* Don't output the first, undefined, symbol. */ 6377 if (ppsection == finfo->sections) 6378 continue; 6379 6380 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 6381 { 6382 /* We never output section symbols. Instead, we use the 6383 section symbol of the corresponding section in the output 6384 file. */ 6385 continue; 6386 } 6387 6388 /* If we are stripping all symbols, we don't want to output this 6389 one. */ 6390 if (finfo->info->strip == strip_all) 6391 continue; 6392 6393 /* If we are discarding all local symbols, we don't want to 6394 output this one. If we are generating a relocatable output 6395 file, then some of the local symbols may be required by 6396 relocs; we output them below as we discover that they are 6397 needed. */ 6398 if (finfo->info->discard == discard_all) 6399 continue; 6400 6401 /* If this symbol is defined in a section which we are 6402 discarding, we don't need to keep it, but note that 6403 linker_mark is only reliable for sections that have contents. 6404 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE 6405 as well as linker_mark. */ 6406 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE) 6407 && isec != NULL 6408 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0) 6409 || (! finfo->info->relocatable 6410 && (isec->flags & SEC_EXCLUDE) != 0))) 6411 continue; 6412 6413 /* Get the name of the symbol. */ 6414 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, 6415 isym->st_name); 6416 if (name == NULL) 6417 return FALSE; 6418 6419 /* See if we are discarding symbols with this name. */ 6420 if ((finfo->info->strip == strip_some 6421 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE) 6422 == NULL)) 6423 || (((finfo->info->discard == discard_sec_merge 6424 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable) 6425 || finfo->info->discard == discard_l) 6426 && bfd_is_local_label_name (input_bfd, name))) 6427 continue; 6428 6429 /* If we get here, we are going to output this symbol. */ 6430 6431 osym = *isym; 6432 6433 /* Adjust the section index for the output file. */ 6434 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 6435 isec->output_section); 6436 if (osym.st_shndx == SHN_BAD) 6437 return FALSE; 6438 6439 *pindex = bfd_get_symcount (output_bfd); 6440 6441 /* ELF symbols in relocatable files are section relative, but 6442 in executable files they are virtual addresses. Note that 6443 this code assumes that all ELF sections have an associated 6444 BFD section with a reasonable value for output_offset; below 6445 we assume that they also have a reasonable value for 6446 output_section. Any special sections must be set up to meet 6447 these requirements. */ 6448 osym.st_value += isec->output_offset; 6449 if (! finfo->info->relocatable) 6450 { 6451 osym.st_value += isec->output_section->vma; 6452 if (ELF_ST_TYPE (osym.st_info) == STT_TLS) 6453 { 6454 /* STT_TLS symbols are relative to PT_TLS segment base. */ 6455 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL); 6456 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma; 6457 } 6458 } 6459 6460 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL)) 6461 return FALSE; 6462 } 6463 6464 /* Relocate the contents of each section. */ 6465 sym_hashes = elf_sym_hashes (input_bfd); 6466 for (o = input_bfd->sections; o != NULL; o = o->next) 6467 { 6468 bfd_byte *contents; 6469 6470 if (! o->linker_mark) 6471 { 6472 /* This section was omitted from the link. */ 6473 continue; 6474 } 6475 6476 if ((o->flags & SEC_HAS_CONTENTS) == 0 6477 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0)) 6478 continue; 6479 6480 if ((o->flags & SEC_LINKER_CREATED) != 0) 6481 { 6482 /* Section was created by _bfd_elf_link_create_dynamic_sections 6483 or somesuch. */ 6484 continue; 6485 } 6486 6487 /* Get the contents of the section. They have been cached by a 6488 relaxation routine. Note that o is a section in an input 6489 file, so the contents field will not have been set by any of 6490 the routines which work on output files. */ 6491 if (elf_section_data (o)->this_hdr.contents != NULL) 6492 contents = elf_section_data (o)->this_hdr.contents; 6493 else 6494 { 6495 contents = finfo->contents; 6496 if (! bfd_get_section_contents (input_bfd, o, contents, 0, 6497 o->_raw_size)) 6498 return FALSE; 6499 } 6500 6501 if ((o->flags & SEC_RELOC) != 0) 6502 { 6503 Elf_Internal_Rela *internal_relocs; 6504 bfd_vma r_type_mask; 6505 int r_sym_shift; 6506 6507 /* Get the swapped relocs. */ 6508 internal_relocs 6509 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs, 6510 finfo->internal_relocs, FALSE); 6511 if (internal_relocs == NULL 6512 && o->reloc_count > 0) 6513 return FALSE; 6514 6515 if (bed->s->arch_size == 32) 6516 { 6517 r_type_mask = 0xff; 6518 r_sym_shift = 8; 6519 } 6520 else 6521 { 6522 r_type_mask = 0xffffffff; 6523 r_sym_shift = 32; 6524 } 6525 6526 /* Run through the relocs looking for any against symbols 6527 from discarded sections and section symbols from 6528 removed link-once sections. Complain about relocs 6529 against discarded sections. Zero relocs against removed 6530 link-once sections. Preserve debug information as much 6531 as we can. */ 6532 if (!elf_section_ignore_discarded_relocs (o)) 6533 { 6534 Elf_Internal_Rela *rel, *relend; 6535 6536 rel = internal_relocs; 6537 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel; 6538 for ( ; rel < relend; rel++) 6539 { 6540 unsigned long r_symndx = rel->r_info >> r_sym_shift; 6541 asection *sec; 6542 6543 if (r_symndx >= locsymcount 6544 || (elf_bad_symtab (input_bfd) 6545 && finfo->sections[r_symndx] == NULL)) 6546 { 6547 struct elf_link_hash_entry *h; 6548 6549 h = sym_hashes[r_symndx - extsymoff]; 6550 while (h->root.type == bfd_link_hash_indirect 6551 || h->root.type == bfd_link_hash_warning) 6552 h = (struct elf_link_hash_entry *) h->root.u.i.link; 6553 6554 /* Complain if the definition comes from a 6555 discarded section. */ 6556 sec = h->root.u.def.section; 6557 if ((h->root.type == bfd_link_hash_defined 6558 || h->root.type == bfd_link_hash_defweak) 6559 && elf_discarded_section (sec)) 6560 { 6561 if ((o->flags & SEC_DEBUGGING) != 0) 6562 { 6563 BFD_ASSERT (r_symndx != 0); 6564 /* Try to preserve debug information. */ 6565 if ((o->flags & SEC_DEBUGGING) != 0 6566 && sec->kept_section != NULL 6567 && sec->_raw_size == sec->kept_section->_raw_size) 6568 h->root.u.def.section 6569 = sec->kept_section; 6570 else 6571 memset (rel, 0, sizeof (*rel)); 6572 } 6573 else 6574 finfo->info->callbacks->error_handler 6575 (LD_DEFINITION_IN_DISCARDED_SECTION, 6576 _("%T: discarded in section `%s' from %s\n"), 6577 h->root.root.string, 6578 h->root.root.string, 6579 h->root.u.def.section->name, 6580 bfd_archive_filename (h->root.u.def.section->owner)); 6581 } 6582 } 6583 else 6584 { 6585 sec = finfo->sections[r_symndx]; 6586 6587 if (sec != NULL && elf_discarded_section (sec)) 6588 { 6589 if ((o->flags & SEC_DEBUGGING) != 0 6590 || (sec->flags & SEC_LINK_ONCE) != 0) 6591 { 6592 BFD_ASSERT (r_symndx != 0); 6593 /* Try to preserve debug information. */ 6594 if ((o->flags & SEC_DEBUGGING) != 0 6595 && sec->kept_section != NULL 6596 && sec->_raw_size == sec->kept_section->_raw_size) 6597 finfo->sections[r_symndx] 6598 = sec->kept_section; 6599 else 6600 { 6601 rel->r_info &= r_type_mask; 6602 rel->r_addend = 0; 6603 } 6604 } 6605 else 6606 { 6607 static int count; 6608 int ok; 6609 char *buf; 6610 6611 ok = asprintf (&buf, "local symbol %d", 6612 count++); 6613 if (ok <= 0) 6614 buf = (char *) "local symbol"; 6615 finfo->info->callbacks->error_handler 6616 (LD_DEFINITION_IN_DISCARDED_SECTION, 6617 _("%T: discarded in section `%s' from %s\n"), 6618 buf, buf, sec->name, 6619 bfd_archive_filename (input_bfd)); 6620 if (ok != -1) 6621 free (buf); 6622 } 6623 } 6624 } 6625 } 6626 } 6627 6628 /* Relocate the section by invoking a back end routine. 6629 6630 The back end routine is responsible for adjusting the 6631 section contents as necessary, and (if using Rela relocs 6632 and generating a relocatable output file) adjusting the 6633 reloc addend as necessary. 6634 6635 The back end routine does not have to worry about setting 6636 the reloc address or the reloc symbol index. 6637 6638 The back end routine is given a pointer to the swapped in 6639 internal symbols, and can access the hash table entries 6640 for the external symbols via elf_sym_hashes (input_bfd). 6641 6642 When generating relocatable output, the back end routine 6643 must handle STB_LOCAL/STT_SECTION symbols specially. The 6644 output symbol is going to be a section symbol 6645 corresponding to the output section, which will require 6646 the addend to be adjusted. */ 6647 6648 if (! (*relocate_section) (output_bfd, finfo->info, 6649 input_bfd, o, contents, 6650 internal_relocs, 6651 isymbuf, 6652 finfo->sections)) 6653 return FALSE; 6654 6655 if (emit_relocs) 6656 { 6657 Elf_Internal_Rela *irela; 6658 Elf_Internal_Rela *irelaend; 6659 bfd_vma last_offset; 6660 struct elf_link_hash_entry **rel_hash; 6661 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2; 6662 unsigned int next_erel; 6663 bfd_boolean (*reloc_emitter) 6664 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *); 6665 bfd_boolean rela_normal; 6666 6667 input_rel_hdr = &elf_section_data (o)->rel_hdr; 6668 rela_normal = (bed->rela_normal 6669 && (input_rel_hdr->sh_entsize 6670 == bed->s->sizeof_rela)); 6671 6672 /* Adjust the reloc addresses and symbol indices. */ 6673 6674 irela = internal_relocs; 6675 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel; 6676 rel_hash = (elf_section_data (o->output_section)->rel_hashes 6677 + elf_section_data (o->output_section)->rel_count 6678 + elf_section_data (o->output_section)->rel_count2); 6679 last_offset = o->output_offset; 6680 if (!finfo->info->relocatable) 6681 last_offset += o->output_section->vma; 6682 for (next_erel = 0; irela < irelaend; irela++, next_erel++) 6683 { 6684 unsigned long r_symndx; 6685 asection *sec; 6686 Elf_Internal_Sym sym; 6687 6688 if (next_erel == bed->s->int_rels_per_ext_rel) 6689 { 6690 rel_hash++; 6691 next_erel = 0; 6692 } 6693 6694 irela->r_offset = _bfd_elf_section_offset (output_bfd, 6695 finfo->info, o, 6696 irela->r_offset); 6697 if (irela->r_offset >= (bfd_vma) -2) 6698 { 6699 /* This is a reloc for a deleted entry or somesuch. 6700 Turn it into an R_*_NONE reloc, at the same 6701 offset as the last reloc. elf_eh_frame.c and 6702 elf_bfd_discard_info rely on reloc offsets 6703 being ordered. */ 6704 irela->r_offset = last_offset; 6705 irela->r_info = 0; 6706 irela->r_addend = 0; 6707 continue; 6708 } 6709 6710 irela->r_offset += o->output_offset; 6711 6712 /* Relocs in an executable have to be virtual addresses. */ 6713 if (!finfo->info->relocatable) 6714 irela->r_offset += o->output_section->vma; 6715 6716 last_offset = irela->r_offset; 6717 6718 r_symndx = irela->r_info >> r_sym_shift; 6719 if (r_symndx == STN_UNDEF) 6720 continue; 6721 6722 if (r_symndx >= locsymcount 6723 || (elf_bad_symtab (input_bfd) 6724 && finfo->sections[r_symndx] == NULL)) 6725 { 6726 struct elf_link_hash_entry *rh; 6727 unsigned long indx; 6728 6729 /* This is a reloc against a global symbol. We 6730 have not yet output all the local symbols, so 6731 we do not know the symbol index of any global 6732 symbol. We set the rel_hash entry for this 6733 reloc to point to the global hash table entry 6734 for this symbol. The symbol index is then 6735 set at the end of elf_bfd_final_link. */ 6736 indx = r_symndx - extsymoff; 6737 rh = elf_sym_hashes (input_bfd)[indx]; 6738 while (rh->root.type == bfd_link_hash_indirect 6739 || rh->root.type == bfd_link_hash_warning) 6740 rh = (struct elf_link_hash_entry *) rh->root.u.i.link; 6741 6742 /* Setting the index to -2 tells 6743 elf_link_output_extsym that this symbol is 6744 used by a reloc. */ 6745 BFD_ASSERT (rh->indx < 0); 6746 rh->indx = -2; 6747 6748 *rel_hash = rh; 6749 6750 continue; 6751 } 6752 6753 /* This is a reloc against a local symbol. */ 6754 6755 *rel_hash = NULL; 6756 sym = isymbuf[r_symndx]; 6757 sec = finfo->sections[r_symndx]; 6758 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) 6759 { 6760 /* I suppose the backend ought to fill in the 6761 section of any STT_SECTION symbol against a 6762 processor specific section. If we have 6763 discarded a section, the output_section will 6764 be the absolute section. */ 6765 if (bfd_is_abs_section (sec) 6766 || (sec != NULL 6767 && bfd_is_abs_section (sec->output_section))) 6768 r_symndx = 0; 6769 else if (sec == NULL || sec->owner == NULL) 6770 { 6771 bfd_set_error (bfd_error_bad_value); 6772 return FALSE; 6773 } 6774 else 6775 { 6776 r_symndx = sec->output_section->target_index; 6777 BFD_ASSERT (r_symndx != 0); 6778 } 6779 6780 /* Adjust the addend according to where the 6781 section winds up in the output section. */ 6782 if (rela_normal) 6783 irela->r_addend += sec->output_offset; 6784 } 6785 else 6786 { 6787 if (finfo->indices[r_symndx] == -1) 6788 { 6789 unsigned long shlink; 6790 const char *name; 6791 asection *osec; 6792 6793 if (finfo->info->strip == strip_all) 6794 { 6795 /* You can't do ld -r -s. */ 6796 bfd_set_error (bfd_error_invalid_operation); 6797 return FALSE; 6798 } 6799 6800 /* This symbol was skipped earlier, but 6801 since it is needed by a reloc, we 6802 must output it now. */ 6803 shlink = symtab_hdr->sh_link; 6804 name = (bfd_elf_string_from_elf_section 6805 (input_bfd, shlink, sym.st_name)); 6806 if (name == NULL) 6807 return FALSE; 6808 6809 osec = sec->output_section; 6810 sym.st_shndx = 6811 _bfd_elf_section_from_bfd_section (output_bfd, 6812 osec); 6813 if (sym.st_shndx == SHN_BAD) 6814 return FALSE; 6815 6816 sym.st_value += sec->output_offset; 6817 if (! finfo->info->relocatable) 6818 { 6819 sym.st_value += osec->vma; 6820 if (ELF_ST_TYPE (sym.st_info) == STT_TLS) 6821 { 6822 /* STT_TLS symbols are relative to PT_TLS 6823 segment base. */ 6824 BFD_ASSERT (elf_hash_table (finfo->info) 6825 ->tls_sec != NULL); 6826 sym.st_value -= (elf_hash_table (finfo->info) 6827 ->tls_sec->vma); 6828 } 6829 } 6830 6831 finfo->indices[r_symndx] 6832 = bfd_get_symcount (output_bfd); 6833 6834 if (! elf_link_output_sym (finfo, name, &sym, sec, 6835 NULL)) 6836 return FALSE; 6837 } 6838 6839 r_symndx = finfo->indices[r_symndx]; 6840 } 6841 6842 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift 6843 | (irela->r_info & r_type_mask)); 6844 } 6845 6846 /* Swap out the relocs. */ 6847 if (bed->elf_backend_emit_relocs 6848 && !(finfo->info->relocatable 6849 || finfo->info->emitrelocations)) 6850 reloc_emitter = bed->elf_backend_emit_relocs; 6851 else 6852 reloc_emitter = _bfd_elf_link_output_relocs; 6853 6854 if (input_rel_hdr->sh_size != 0 6855 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr, 6856 internal_relocs)) 6857 return FALSE; 6858 6859 input_rel_hdr2 = elf_section_data (o)->rel_hdr2; 6860 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0) 6861 { 6862 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) 6863 * bed->s->int_rels_per_ext_rel); 6864 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2, 6865 internal_relocs)) 6866 return FALSE; 6867 } 6868 } 6869 } 6870 6871 /* Write out the modified section contents. */ 6872 if (bed->elf_backend_write_section 6873 && (*bed->elf_backend_write_section) (output_bfd, o, contents)) 6874 { 6875 /* Section written out. */ 6876 } 6877 else switch (o->sec_info_type) 6878 { 6879 case ELF_INFO_TYPE_STABS: 6880 if (! (_bfd_write_section_stabs 6881 (output_bfd, 6882 &elf_hash_table (finfo->info)->stab_info, 6883 o, &elf_section_data (o)->sec_info, contents))) 6884 return FALSE; 6885 break; 6886 case ELF_INFO_TYPE_MERGE: 6887 if (! _bfd_write_merged_section (output_bfd, o, 6888 elf_section_data (o)->sec_info)) 6889 return FALSE; 6890 break; 6891 case ELF_INFO_TYPE_EH_FRAME: 6892 { 6893 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info, 6894 o, contents)) 6895 return FALSE; 6896 } 6897 break; 6898 default: 6899 { 6900 bfd_size_type sec_size; 6901 6902 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size); 6903 if (! (o->flags & SEC_EXCLUDE) 6904 && ! bfd_set_section_contents (output_bfd, o->output_section, 6905 contents, 6906 (file_ptr) o->output_offset, 6907 sec_size)) 6908 return FALSE; 6909 } 6910 break; 6911 } 6912 } 6913 6914 return TRUE; 6915 } 6916 6917 /* Generate a reloc when linking an ELF file. This is a reloc 6918 requested by the linker, and does come from any input file. This 6919 is used to build constructor and destructor tables when linking 6920 with -Ur. */ 6921 6922 static bfd_boolean 6923 elf_reloc_link_order (bfd *output_bfd, 6924 struct bfd_link_info *info, 6925 asection *output_section, 6926 struct bfd_link_order *link_order) 6927 { 6928 reloc_howto_type *howto; 6929 long indx; 6930 bfd_vma offset; 6931 bfd_vma addend; 6932 struct elf_link_hash_entry **rel_hash_ptr; 6933 Elf_Internal_Shdr *rel_hdr; 6934 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 6935 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; 6936 bfd_byte *erel; 6937 unsigned int i; 6938 6939 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); 6940 if (howto == NULL) 6941 { 6942 bfd_set_error (bfd_error_bad_value); 6943 return FALSE; 6944 } 6945 6946 addend = link_order->u.reloc.p->addend; 6947 6948 /* Figure out the symbol index. */ 6949 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes 6950 + elf_section_data (output_section)->rel_count 6951 + elf_section_data (output_section)->rel_count2); 6952 if (link_order->type == bfd_section_reloc_link_order) 6953 { 6954 indx = link_order->u.reloc.p->u.section->target_index; 6955 BFD_ASSERT (indx != 0); 6956 *rel_hash_ptr = NULL; 6957 } 6958 else 6959 { 6960 struct elf_link_hash_entry *h; 6961 6962 /* Treat a reloc against a defined symbol as though it were 6963 actually against the section. */ 6964 h = ((struct elf_link_hash_entry *) 6965 bfd_wrapped_link_hash_lookup (output_bfd, info, 6966 link_order->u.reloc.p->u.name, 6967 FALSE, FALSE, TRUE)); 6968 if (h != NULL 6969 && (h->root.type == bfd_link_hash_defined 6970 || h->root.type == bfd_link_hash_defweak)) 6971 { 6972 asection *section; 6973 6974 section = h->root.u.def.section; 6975 indx = section->output_section->target_index; 6976 *rel_hash_ptr = NULL; 6977 /* It seems that we ought to add the symbol value to the 6978 addend here, but in practice it has already been added 6979 because it was passed to constructor_callback. */ 6980 addend += section->output_section->vma + section->output_offset; 6981 } 6982 else if (h != NULL) 6983 { 6984 /* Setting the index to -2 tells elf_link_output_extsym that 6985 this symbol is used by a reloc. */ 6986 h->indx = -2; 6987 *rel_hash_ptr = h; 6988 indx = 0; 6989 } 6990 else 6991 { 6992 if (! ((*info->callbacks->unattached_reloc) 6993 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0))) 6994 return FALSE; 6995 indx = 0; 6996 } 6997 } 6998 6999 /* If this is an inplace reloc, we must write the addend into the 7000 object file. */ 7001 if (howto->partial_inplace && addend != 0) 7002 { 7003 bfd_size_type size; 7004 bfd_reloc_status_type rstat; 7005 bfd_byte *buf; 7006 bfd_boolean ok; 7007 const char *sym_name; 7008 7009 size = bfd_get_reloc_size (howto); 7010 buf = bfd_zmalloc (size); 7011 if (buf == NULL) 7012 return FALSE; 7013 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); 7014 switch (rstat) 7015 { 7016 case bfd_reloc_ok: 7017 break; 7018 7019 default: 7020 case bfd_reloc_outofrange: 7021 abort (); 7022 7023 case bfd_reloc_overflow: 7024 if (link_order->type == bfd_section_reloc_link_order) 7025 sym_name = bfd_section_name (output_bfd, 7026 link_order->u.reloc.p->u.section); 7027 else 7028 sym_name = link_order->u.reloc.p->u.name; 7029 if (! ((*info->callbacks->reloc_overflow) 7030 (info, sym_name, howto->name, addend, NULL, NULL, 0))) 7031 { 7032 free (buf); 7033 return FALSE; 7034 } 7035 break; 7036 } 7037 ok = bfd_set_section_contents (output_bfd, output_section, buf, 7038 link_order->offset, size); 7039 free (buf); 7040 if (! ok) 7041 return FALSE; 7042 } 7043 7044 /* The address of a reloc is relative to the section in a 7045 relocatable file, and is a virtual address in an executable 7046 file. */ 7047 offset = link_order->offset; 7048 if (! info->relocatable) 7049 offset += output_section->vma; 7050 7051 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) 7052 { 7053 irel[i].r_offset = offset; 7054 irel[i].r_info = 0; 7055 irel[i].r_addend = 0; 7056 } 7057 if (bed->s->arch_size == 32) 7058 irel[0].r_info = ELF32_R_INFO (indx, howto->type); 7059 else 7060 irel[0].r_info = ELF64_R_INFO (indx, howto->type); 7061 7062 rel_hdr = &elf_section_data (output_section)->rel_hdr; 7063 erel = rel_hdr->contents; 7064 if (rel_hdr->sh_type == SHT_REL) 7065 { 7066 erel += (elf_section_data (output_section)->rel_count 7067 * bed->s->sizeof_rel); 7068 (*bed->s->swap_reloc_out) (output_bfd, irel, erel); 7069 } 7070 else 7071 { 7072 irel[0].r_addend = addend; 7073 erel += (elf_section_data (output_section)->rel_count 7074 * bed->s->sizeof_rela); 7075 (*bed->s->swap_reloca_out) (output_bfd, irel, erel); 7076 } 7077 7078 ++elf_section_data (output_section)->rel_count; 7079 7080 return TRUE; 7081 } 7082 7083 /* Do the final step of an ELF link. */ 7084 7085 bfd_boolean 7086 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) 7087 { 7088 bfd_boolean dynamic; 7089 bfd_boolean emit_relocs; 7090 bfd *dynobj; 7091 struct elf_final_link_info finfo; 7092 register asection *o; 7093 register struct bfd_link_order *p; 7094 register bfd *sub; 7095 bfd_size_type max_contents_size; 7096 bfd_size_type max_external_reloc_size; 7097 bfd_size_type max_internal_reloc_count; 7098 bfd_size_type max_sym_count; 7099 bfd_size_type max_sym_shndx_count; 7100 file_ptr off; 7101 Elf_Internal_Sym elfsym; 7102 unsigned int i; 7103 Elf_Internal_Shdr *symtab_hdr; 7104 Elf_Internal_Shdr *symtab_shndx_hdr; 7105 Elf_Internal_Shdr *symstrtab_hdr; 7106 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7107 struct elf_outext_info eoinfo; 7108 bfd_boolean merged; 7109 size_t relativecount = 0; 7110 asection *reldyn = 0; 7111 bfd_size_type amt; 7112 7113 if (! is_elf_hash_table (info->hash)) 7114 return FALSE; 7115 7116 if (info->shared) 7117 abfd->flags |= DYNAMIC; 7118 7119 dynamic = elf_hash_table (info)->dynamic_sections_created; 7120 dynobj = elf_hash_table (info)->dynobj; 7121 7122 emit_relocs = (info->relocatable 7123 || info->emitrelocations 7124 || bed->elf_backend_emit_relocs); 7125 7126 finfo.info = info; 7127 finfo.output_bfd = abfd; 7128 finfo.symstrtab = _bfd_elf_stringtab_init (); 7129 if (finfo.symstrtab == NULL) 7130 return FALSE; 7131 7132 if (! dynamic) 7133 { 7134 finfo.dynsym_sec = NULL; 7135 finfo.hash_sec = NULL; 7136 finfo.symver_sec = NULL; 7137 } 7138 else 7139 { 7140 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); 7141 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); 7142 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); 7143 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version"); 7144 /* Note that it is OK if symver_sec is NULL. */ 7145 } 7146 7147 finfo.contents = NULL; 7148 finfo.external_relocs = NULL; 7149 finfo.internal_relocs = NULL; 7150 finfo.external_syms = NULL; 7151 finfo.locsym_shndx = NULL; 7152 finfo.internal_syms = NULL; 7153 finfo.indices = NULL; 7154 finfo.sections = NULL; 7155 finfo.symbuf = NULL; 7156 finfo.symshndxbuf = NULL; 7157 finfo.symbuf_count = 0; 7158 finfo.shndxbuf_size = 0; 7159 7160 /* Count up the number of relocations we will output for each output 7161 section, so that we know the sizes of the reloc sections. We 7162 also figure out some maximum sizes. */ 7163 max_contents_size = 0; 7164 max_external_reloc_size = 0; 7165 max_internal_reloc_count = 0; 7166 max_sym_count = 0; 7167 max_sym_shndx_count = 0; 7168 merged = FALSE; 7169 for (o = abfd->sections; o != NULL; o = o->next) 7170 { 7171 struct bfd_elf_section_data *esdo = elf_section_data (o); 7172 o->reloc_count = 0; 7173 7174 for (p = o->link_order_head; p != NULL; p = p->next) 7175 { 7176 unsigned int reloc_count = 0; 7177 struct bfd_elf_section_data *esdi = NULL; 7178 unsigned int *rel_count1; 7179 7180 if (p->type == bfd_section_reloc_link_order 7181 || p->type == bfd_symbol_reloc_link_order) 7182 reloc_count = 1; 7183 else if (p->type == bfd_indirect_link_order) 7184 { 7185 asection *sec; 7186 7187 sec = p->u.indirect.section; 7188 esdi = elf_section_data (sec); 7189 7190 /* Mark all sections which are to be included in the 7191 link. This will normally be every section. We need 7192 to do this so that we can identify any sections which 7193 the linker has decided to not include. */ 7194 sec->linker_mark = TRUE; 7195 7196 if (sec->flags & SEC_MERGE) 7197 merged = TRUE; 7198 7199 if (info->relocatable || info->emitrelocations) 7200 reloc_count = sec->reloc_count; 7201 else if (bed->elf_backend_count_relocs) 7202 { 7203 Elf_Internal_Rela * relocs; 7204 7205 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 7206 info->keep_memory); 7207 7208 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs); 7209 7210 if (elf_section_data (o)->relocs != relocs) 7211 free (relocs); 7212 } 7213 7214 if (sec->_raw_size > max_contents_size) 7215 max_contents_size = sec->_raw_size; 7216 if (sec->_cooked_size > max_contents_size) 7217 max_contents_size = sec->_cooked_size; 7218 7219 /* We are interested in just local symbols, not all 7220 symbols. */ 7221 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour 7222 && (sec->owner->flags & DYNAMIC) == 0) 7223 { 7224 size_t sym_count; 7225 7226 if (elf_bad_symtab (sec->owner)) 7227 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size 7228 / bed->s->sizeof_sym); 7229 else 7230 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; 7231 7232 if (sym_count > max_sym_count) 7233 max_sym_count = sym_count; 7234 7235 if (sym_count > max_sym_shndx_count 7236 && elf_symtab_shndx (sec->owner) != 0) 7237 max_sym_shndx_count = sym_count; 7238 7239 if ((sec->flags & SEC_RELOC) != 0) 7240 { 7241 size_t ext_size; 7242 7243 ext_size = elf_section_data (sec)->rel_hdr.sh_size; 7244 if (ext_size > max_external_reloc_size) 7245 max_external_reloc_size = ext_size; 7246 if (sec->reloc_count > max_internal_reloc_count) 7247 max_internal_reloc_count = sec->reloc_count; 7248 } 7249 } 7250 } 7251 7252 if (reloc_count == 0) 7253 continue; 7254 7255 o->reloc_count += reloc_count; 7256 7257 /* MIPS may have a mix of REL and RELA relocs on sections. 7258 To support this curious ABI we keep reloc counts in 7259 elf_section_data too. We must be careful to add the 7260 relocations from the input section to the right output 7261 count. FIXME: Get rid of one count. We have 7262 o->reloc_count == esdo->rel_count + esdo->rel_count2. */ 7263 rel_count1 = &esdo->rel_count; 7264 if (esdi != NULL) 7265 { 7266 bfd_boolean same_size; 7267 bfd_size_type entsize1; 7268 7269 entsize1 = esdi->rel_hdr.sh_entsize; 7270 BFD_ASSERT (entsize1 == bed->s->sizeof_rel 7271 || entsize1 == bed->s->sizeof_rela); 7272 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel); 7273 7274 if (!same_size) 7275 rel_count1 = &esdo->rel_count2; 7276 7277 if (esdi->rel_hdr2 != NULL) 7278 { 7279 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize; 7280 unsigned int alt_count; 7281 unsigned int *rel_count2; 7282 7283 BFD_ASSERT (entsize2 != entsize1 7284 && (entsize2 == bed->s->sizeof_rel 7285 || entsize2 == bed->s->sizeof_rela)); 7286 7287 rel_count2 = &esdo->rel_count2; 7288 if (!same_size) 7289 rel_count2 = &esdo->rel_count; 7290 7291 /* The following is probably too simplistic if the 7292 backend counts output relocs unusually. */ 7293 BFD_ASSERT (bed->elf_backend_count_relocs == NULL); 7294 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2); 7295 *rel_count2 += alt_count; 7296 reloc_count -= alt_count; 7297 } 7298 } 7299 *rel_count1 += reloc_count; 7300 } 7301 7302 if (o->reloc_count > 0) 7303 o->flags |= SEC_RELOC; 7304 else 7305 { 7306 /* Explicitly clear the SEC_RELOC flag. The linker tends to 7307 set it (this is probably a bug) and if it is set 7308 assign_section_numbers will create a reloc section. */ 7309 o->flags &=~ SEC_RELOC; 7310 } 7311 7312 /* If the SEC_ALLOC flag is not set, force the section VMA to 7313 zero. This is done in elf_fake_sections as well, but forcing 7314 the VMA to 0 here will ensure that relocs against these 7315 sections are handled correctly. */ 7316 if ((o->flags & SEC_ALLOC) == 0 7317 && ! o->user_set_vma) 7318 o->vma = 0; 7319 } 7320 7321 if (! info->relocatable && merged) 7322 elf_link_hash_traverse (elf_hash_table (info), 7323 _bfd_elf_link_sec_merge_syms, abfd); 7324 7325 /* Figure out the file positions for everything but the symbol table 7326 and the relocs. We set symcount to force assign_section_numbers 7327 to create a symbol table. */ 7328 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1; 7329 BFD_ASSERT (! abfd->output_has_begun); 7330 if (! _bfd_elf_compute_section_file_positions (abfd, info)) 7331 goto error_return; 7332 7333 /* That created the reloc sections. Set their sizes, and assign 7334 them file positions, and allocate some buffers. */ 7335 for (o = abfd->sections; o != NULL; o = o->next) 7336 { 7337 if ((o->flags & SEC_RELOC) != 0) 7338 { 7339 if (!(_bfd_elf_link_size_reloc_section 7340 (abfd, &elf_section_data (o)->rel_hdr, o))) 7341 goto error_return; 7342 7343 if (elf_section_data (o)->rel_hdr2 7344 && !(_bfd_elf_link_size_reloc_section 7345 (abfd, elf_section_data (o)->rel_hdr2, o))) 7346 goto error_return; 7347 } 7348 7349 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them 7350 to count upwards while actually outputting the relocations. */ 7351 elf_section_data (o)->rel_count = 0; 7352 elf_section_data (o)->rel_count2 = 0; 7353 } 7354 7355 _bfd_elf_assign_file_positions_for_relocs (abfd); 7356 7357 /* We have now assigned file positions for all the sections except 7358 .symtab and .strtab. We start the .symtab section at the current 7359 file position, and write directly to it. We build the .strtab 7360 section in memory. */ 7361 bfd_get_symcount (abfd) = 0; 7362 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 7363 /* sh_name is set in prep_headers. */ 7364 symtab_hdr->sh_type = SHT_SYMTAB; 7365 /* sh_flags, sh_addr and sh_size all start off zero. */ 7366 symtab_hdr->sh_entsize = bed->s->sizeof_sym; 7367 /* sh_link is set in assign_section_numbers. */ 7368 /* sh_info is set below. */ 7369 /* sh_offset is set just below. */ 7370 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align; 7371 7372 off = elf_tdata (abfd)->next_file_pos; 7373 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE); 7374 7375 /* Note that at this point elf_tdata (abfd)->next_file_pos is 7376 incorrect. We do not yet know the size of the .symtab section. 7377 We correct next_file_pos below, after we do know the size. */ 7378 7379 /* Allocate a buffer to hold swapped out symbols. This is to avoid 7380 continuously seeking to the right position in the file. */ 7381 if (! info->keep_memory || max_sym_count < 20) 7382 finfo.symbuf_size = 20; 7383 else 7384 finfo.symbuf_size = max_sym_count; 7385 amt = finfo.symbuf_size; 7386 amt *= bed->s->sizeof_sym; 7387 finfo.symbuf = bfd_malloc (amt); 7388 if (finfo.symbuf == NULL) 7389 goto error_return; 7390 if (elf_numsections (abfd) > SHN_LORESERVE) 7391 { 7392 /* Wild guess at number of output symbols. realloc'd as needed. */ 7393 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000; 7394 finfo.shndxbuf_size = amt; 7395 amt *= sizeof (Elf_External_Sym_Shndx); 7396 finfo.symshndxbuf = bfd_zmalloc (amt); 7397 if (finfo.symshndxbuf == NULL) 7398 goto error_return; 7399 } 7400 7401 /* Start writing out the symbol table. The first symbol is always a 7402 dummy symbol. */ 7403 if (info->strip != strip_all 7404 || emit_relocs) 7405 { 7406 elfsym.st_value = 0; 7407 elfsym.st_size = 0; 7408 elfsym.st_info = 0; 7409 elfsym.st_other = 0; 7410 elfsym.st_shndx = SHN_UNDEF; 7411 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr, 7412 NULL)) 7413 goto error_return; 7414 } 7415 7416 #if 0 7417 /* Some standard ELF linkers do this, but we don't because it causes 7418 bootstrap comparison failures. */ 7419 /* Output a file symbol for the output file as the second symbol. 7420 We output this even if we are discarding local symbols, although 7421 I'm not sure if this is correct. */ 7422 elfsym.st_value = 0; 7423 elfsym.st_size = 0; 7424 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 7425 elfsym.st_other = 0; 7426 elfsym.st_shndx = SHN_ABS; 7427 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), 7428 &elfsym, bfd_abs_section_ptr, NULL)) 7429 goto error_return; 7430 #endif 7431 7432 /* Output a symbol for each section. We output these even if we are 7433 discarding local symbols, since they are used for relocs. These 7434 symbols have no names. We store the index of each one in the 7435 index field of the section, so that we can find it again when 7436 outputting relocs. */ 7437 if (info->strip != strip_all 7438 || emit_relocs) 7439 { 7440 elfsym.st_size = 0; 7441 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 7442 elfsym.st_other = 0; 7443 for (i = 1; i < elf_numsections (abfd); i++) 7444 { 7445 o = bfd_section_from_elf_index (abfd, i); 7446 if (o != NULL) 7447 o->target_index = bfd_get_symcount (abfd); 7448 elfsym.st_shndx = i; 7449 if (info->relocatable || o == NULL) 7450 elfsym.st_value = 0; 7451 else 7452 elfsym.st_value = o->vma; 7453 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL)) 7454 goto error_return; 7455 if (i == SHN_LORESERVE - 1) 7456 i += SHN_HIRESERVE + 1 - SHN_LORESERVE; 7457 } 7458 } 7459 7460 /* Allocate some memory to hold information read in from the input 7461 files. */ 7462 if (max_contents_size != 0) 7463 { 7464 finfo.contents = bfd_malloc (max_contents_size); 7465 if (finfo.contents == NULL) 7466 goto error_return; 7467 } 7468 7469 if (max_external_reloc_size != 0) 7470 { 7471 finfo.external_relocs = bfd_malloc (max_external_reloc_size); 7472 if (finfo.external_relocs == NULL) 7473 goto error_return; 7474 } 7475 7476 if (max_internal_reloc_count != 0) 7477 { 7478 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel; 7479 amt *= sizeof (Elf_Internal_Rela); 7480 finfo.internal_relocs = bfd_malloc (amt); 7481 if (finfo.internal_relocs == NULL) 7482 goto error_return; 7483 } 7484 7485 if (max_sym_count != 0) 7486 { 7487 amt = max_sym_count * bed->s->sizeof_sym; 7488 finfo.external_syms = bfd_malloc (amt); 7489 if (finfo.external_syms == NULL) 7490 goto error_return; 7491 7492 amt = max_sym_count * sizeof (Elf_Internal_Sym); 7493 finfo.internal_syms = bfd_malloc (amt); 7494 if (finfo.internal_syms == NULL) 7495 goto error_return; 7496 7497 amt = max_sym_count * sizeof (long); 7498 finfo.indices = bfd_malloc (amt); 7499 if (finfo.indices == NULL) 7500 goto error_return; 7501 7502 amt = max_sym_count * sizeof (asection *); 7503 finfo.sections = bfd_malloc (amt); 7504 if (finfo.sections == NULL) 7505 goto error_return; 7506 } 7507 7508 if (max_sym_shndx_count != 0) 7509 { 7510 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); 7511 finfo.locsym_shndx = bfd_malloc (amt); 7512 if (finfo.locsym_shndx == NULL) 7513 goto error_return; 7514 } 7515 7516 if (elf_hash_table (info)->tls_sec) 7517 { 7518 bfd_vma base, end = 0; 7519 asection *sec; 7520 7521 for (sec = elf_hash_table (info)->tls_sec; 7522 sec && (sec->flags & SEC_THREAD_LOCAL); 7523 sec = sec->next) 7524 { 7525 bfd_vma size = sec->_raw_size; 7526 7527 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0) 7528 { 7529 struct bfd_link_order *o; 7530 7531 for (o = sec->link_order_head; o != NULL; o = o->next) 7532 if (size < o->offset + o->size) 7533 size = o->offset + o->size; 7534 } 7535 end = sec->vma + size; 7536 } 7537 base = elf_hash_table (info)->tls_sec->vma; 7538 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power); 7539 elf_hash_table (info)->tls_size = end - base; 7540 } 7541 7542 /* Since ELF permits relocations to be against local symbols, we 7543 must have the local symbols available when we do the relocations. 7544 Since we would rather only read the local symbols once, and we 7545 would rather not keep them in memory, we handle all the 7546 relocations for a single input file at the same time. 7547 7548 Unfortunately, there is no way to know the total number of local 7549 symbols until we have seen all of them, and the local symbol 7550 indices precede the global symbol indices. This means that when 7551 we are generating relocatable output, and we see a reloc against 7552 a global symbol, we can not know the symbol index until we have 7553 finished examining all the local symbols to see which ones we are 7554 going to output. To deal with this, we keep the relocations in 7555 memory, and don't output them until the end of the link. This is 7556 an unfortunate waste of memory, but I don't see a good way around 7557 it. Fortunately, it only happens when performing a relocatable 7558 link, which is not the common case. FIXME: If keep_memory is set 7559 we could write the relocs out and then read them again; I don't 7560 know how bad the memory loss will be. */ 7561 7562 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) 7563 sub->output_has_begun = FALSE; 7564 for (o = abfd->sections; o != NULL; o = o->next) 7565 { 7566 for (p = o->link_order_head; p != NULL; p = p->next) 7567 { 7568 if (p->type == bfd_indirect_link_order 7569 && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) 7570 == bfd_target_elf_flavour) 7571 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) 7572 { 7573 if (! sub->output_has_begun) 7574 { 7575 if (! elf_link_input_bfd (&finfo, sub)) 7576 goto error_return; 7577 sub->output_has_begun = TRUE; 7578 } 7579 } 7580 else if (p->type == bfd_section_reloc_link_order 7581 || p->type == bfd_symbol_reloc_link_order) 7582 { 7583 if (! elf_reloc_link_order (abfd, info, o, p)) 7584 goto error_return; 7585 } 7586 else 7587 { 7588 if (! _bfd_default_link_order (abfd, info, o, p)) 7589 goto error_return; 7590 } 7591 } 7592 } 7593 7594 /* Output any global symbols that got converted to local in a 7595 version script or due to symbol visibility. We do this in a 7596 separate step since ELF requires all local symbols to appear 7597 prior to any global symbols. FIXME: We should only do this if 7598 some global symbols were, in fact, converted to become local. 7599 FIXME: Will this work correctly with the Irix 5 linker? */ 7600 eoinfo.failed = FALSE; 7601 eoinfo.finfo = &finfo; 7602 eoinfo.localsyms = TRUE; 7603 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, 7604 &eoinfo); 7605 if (eoinfo.failed) 7606 return FALSE; 7607 7608 /* That wrote out all the local symbols. Finish up the symbol table 7609 with the global symbols. Even if we want to strip everything we 7610 can, we still need to deal with those global symbols that got 7611 converted to local in a version script. */ 7612 7613 /* The sh_info field records the index of the first non local symbol. */ 7614 symtab_hdr->sh_info = bfd_get_symcount (abfd); 7615 7616 if (dynamic 7617 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr) 7618 { 7619 Elf_Internal_Sym sym; 7620 bfd_byte *dynsym = finfo.dynsym_sec->contents; 7621 long last_local = 0; 7622 7623 /* Write out the section symbols for the output sections. */ 7624 if (info->shared) 7625 { 7626 asection *s; 7627 7628 sym.st_size = 0; 7629 sym.st_name = 0; 7630 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 7631 sym.st_other = 0; 7632 7633 for (s = abfd->sections; s != NULL; s = s->next) 7634 { 7635 int indx; 7636 bfd_byte *dest; 7637 long dynindx; 7638 7639 indx = elf_section_data (s)->this_idx; 7640 dynindx = elf_section_data (s)->dynindx; 7641 BFD_ASSERT (indx > 0); 7642 sym.st_shndx = indx; 7643 sym.st_value = s->vma; 7644 dest = dynsym + dynindx * bed->s->sizeof_sym; 7645 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 7646 } 7647 7648 last_local = bfd_count_sections (abfd); 7649 } 7650 7651 /* Write out the local dynsyms. */ 7652 if (elf_hash_table (info)->dynlocal) 7653 { 7654 struct elf_link_local_dynamic_entry *e; 7655 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) 7656 { 7657 asection *s; 7658 bfd_byte *dest; 7659 7660 sym.st_size = e->isym.st_size; 7661 sym.st_other = e->isym.st_other; 7662 7663 /* Copy the internal symbol as is. 7664 Note that we saved a word of storage and overwrote 7665 the original st_name with the dynstr_index. */ 7666 sym = e->isym; 7667 7668 if (e->isym.st_shndx != SHN_UNDEF 7669 && (e->isym.st_shndx < SHN_LORESERVE 7670 || e->isym.st_shndx > SHN_HIRESERVE)) 7671 { 7672 s = bfd_section_from_elf_index (e->input_bfd, 7673 e->isym.st_shndx); 7674 7675 sym.st_shndx = 7676 elf_section_data (s->output_section)->this_idx; 7677 sym.st_value = (s->output_section->vma 7678 + s->output_offset 7679 + e->isym.st_value); 7680 } 7681 7682 if (last_local < e->dynindx) 7683 last_local = e->dynindx; 7684 7685 dest = dynsym + e->dynindx * bed->s->sizeof_sym; 7686 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 7687 } 7688 } 7689 7690 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 7691 last_local + 1; 7692 } 7693 7694 /* We get the global symbols from the hash table. */ 7695 eoinfo.failed = FALSE; 7696 eoinfo.localsyms = FALSE; 7697 eoinfo.finfo = &finfo; 7698 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, 7699 &eoinfo); 7700 if (eoinfo.failed) 7701 return FALSE; 7702 7703 /* If backend needs to output some symbols not present in the hash 7704 table, do it now. */ 7705 if (bed->elf_backend_output_arch_syms) 7706 { 7707 typedef bfd_boolean (*out_sym_func) 7708 (void *, const char *, Elf_Internal_Sym *, asection *, 7709 struct elf_link_hash_entry *); 7710 7711 if (! ((*bed->elf_backend_output_arch_syms) 7712 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym))) 7713 return FALSE; 7714 } 7715 7716 /* Flush all symbols to the file. */ 7717 if (! elf_link_flush_output_syms (&finfo, bed)) 7718 return FALSE; 7719 7720 /* Now we know the size of the symtab section. */ 7721 off += symtab_hdr->sh_size; 7722 7723 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; 7724 if (symtab_shndx_hdr->sh_name != 0) 7725 { 7726 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; 7727 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); 7728 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); 7729 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); 7730 symtab_shndx_hdr->sh_size = amt; 7731 7732 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, 7733 off, TRUE); 7734 7735 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 7736 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt)) 7737 return FALSE; 7738 } 7739 7740 7741 /* Finish up and write out the symbol string table (.strtab) 7742 section. */ 7743 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; 7744 /* sh_name was set in prep_headers. */ 7745 symstrtab_hdr->sh_type = SHT_STRTAB; 7746 symstrtab_hdr->sh_flags = 0; 7747 symstrtab_hdr->sh_addr = 0; 7748 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); 7749 symstrtab_hdr->sh_entsize = 0; 7750 symstrtab_hdr->sh_link = 0; 7751 symstrtab_hdr->sh_info = 0; 7752 /* sh_offset is set just below. */ 7753 symstrtab_hdr->sh_addralign = 1; 7754 7755 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE); 7756 elf_tdata (abfd)->next_file_pos = off; 7757 7758 if (bfd_get_symcount (abfd) > 0) 7759 { 7760 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 7761 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) 7762 return FALSE; 7763 } 7764 7765 /* Adjust the relocs to have the correct symbol indices. */ 7766 for (o = abfd->sections; o != NULL; o = o->next) 7767 { 7768 if ((o->flags & SEC_RELOC) == 0) 7769 continue; 7770 7771 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr, 7772 elf_section_data (o)->rel_count, 7773 elf_section_data (o)->rel_hashes); 7774 if (elf_section_data (o)->rel_hdr2 != NULL) 7775 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2, 7776 elf_section_data (o)->rel_count2, 7777 (elf_section_data (o)->rel_hashes 7778 + elf_section_data (o)->rel_count)); 7779 7780 /* Set the reloc_count field to 0 to prevent write_relocs from 7781 trying to swap the relocs out itself. */ 7782 o->reloc_count = 0; 7783 } 7784 7785 if (dynamic && info->combreloc && dynobj != NULL) 7786 relativecount = elf_link_sort_relocs (abfd, info, &reldyn); 7787 7788 /* If we are linking against a dynamic object, or generating a 7789 shared library, finish up the dynamic linking information. */ 7790 if (dynamic) 7791 { 7792 bfd_byte *dyncon, *dynconend; 7793 7794 /* Fix up .dynamic entries. */ 7795 o = bfd_get_section_by_name (dynobj, ".dynamic"); 7796 BFD_ASSERT (o != NULL); 7797 7798 dyncon = o->contents; 7799 dynconend = o->contents + o->_raw_size; 7800 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) 7801 { 7802 Elf_Internal_Dyn dyn; 7803 const char *name; 7804 unsigned int type; 7805 7806 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 7807 7808 switch (dyn.d_tag) 7809 { 7810 default: 7811 continue; 7812 case DT_NULL: 7813 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend) 7814 { 7815 switch (elf_section_data (reldyn)->this_hdr.sh_type) 7816 { 7817 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; 7818 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; 7819 default: continue; 7820 } 7821 dyn.d_un.d_val = relativecount; 7822 relativecount = 0; 7823 break; 7824 } 7825 continue; 7826 7827 case DT_INIT: 7828 name = info->init_function; 7829 goto get_sym; 7830 case DT_FINI: 7831 name = info->fini_function; 7832 get_sym: 7833 { 7834 struct elf_link_hash_entry *h; 7835 7836 h = elf_link_hash_lookup (elf_hash_table (info), name, 7837 FALSE, FALSE, TRUE); 7838 if (h != NULL 7839 && (h->root.type == bfd_link_hash_defined 7840 || h->root.type == bfd_link_hash_defweak)) 7841 { 7842 dyn.d_un.d_val = h->root.u.def.value; 7843 o = h->root.u.def.section; 7844 if (o->output_section != NULL) 7845 dyn.d_un.d_val += (o->output_section->vma 7846 + o->output_offset); 7847 else 7848 { 7849 /* The symbol is imported from another shared 7850 library and does not apply to this one. */ 7851 dyn.d_un.d_val = 0; 7852 } 7853 break; 7854 } 7855 } 7856 continue; 7857 7858 case DT_PREINIT_ARRAYSZ: 7859 name = ".preinit_array"; 7860 goto get_size; 7861 case DT_INIT_ARRAYSZ: 7862 name = ".init_array"; 7863 goto get_size; 7864 case DT_FINI_ARRAYSZ: 7865 name = ".fini_array"; 7866 get_size: 7867 o = bfd_get_section_by_name (abfd, name); 7868 if (o == NULL) 7869 { 7870 (*_bfd_error_handler) 7871 (_("%s: could not find output section %s"), 7872 bfd_get_filename (abfd), name); 7873 goto error_return; 7874 } 7875 if (o->_raw_size == 0) 7876 (*_bfd_error_handler) 7877 (_("warning: %s section has zero size"), name); 7878 dyn.d_un.d_val = o->_raw_size; 7879 break; 7880 7881 case DT_PREINIT_ARRAY: 7882 name = ".preinit_array"; 7883 goto get_vma; 7884 case DT_INIT_ARRAY: 7885 name = ".init_array"; 7886 goto get_vma; 7887 case DT_FINI_ARRAY: 7888 name = ".fini_array"; 7889 goto get_vma; 7890 7891 case DT_HASH: 7892 name = ".hash"; 7893 goto get_vma; 7894 case DT_STRTAB: 7895 name = ".dynstr"; 7896 goto get_vma; 7897 case DT_SYMTAB: 7898 name = ".dynsym"; 7899 goto get_vma; 7900 case DT_VERDEF: 7901 name = ".gnu.version_d"; 7902 goto get_vma; 7903 case DT_VERNEED: 7904 name = ".gnu.version_r"; 7905 goto get_vma; 7906 case DT_VERSYM: 7907 name = ".gnu.version"; 7908 get_vma: 7909 o = bfd_get_section_by_name (abfd, name); 7910 if (o == NULL) 7911 { 7912 (*_bfd_error_handler) 7913 (_("%s: could not find output section %s"), 7914 bfd_get_filename (abfd), name); 7915 goto error_return; 7916 } 7917 dyn.d_un.d_ptr = o->vma; 7918 break; 7919 7920 case DT_REL: 7921 case DT_RELA: 7922 case DT_RELSZ: 7923 case DT_RELASZ: 7924 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) 7925 type = SHT_REL; 7926 else 7927 type = SHT_RELA; 7928 dyn.d_un.d_val = 0; 7929 for (i = 1; i < elf_numsections (abfd); i++) 7930 { 7931 Elf_Internal_Shdr *hdr; 7932 7933 hdr = elf_elfsections (abfd)[i]; 7934 if (hdr->sh_type == type 7935 && (hdr->sh_flags & SHF_ALLOC) != 0) 7936 { 7937 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) 7938 dyn.d_un.d_val += hdr->sh_size; 7939 else 7940 { 7941 if (dyn.d_un.d_val == 0 7942 || hdr->sh_addr < dyn.d_un.d_val) 7943 dyn.d_un.d_val = hdr->sh_addr; 7944 } 7945 } 7946 } 7947 break; 7948 } 7949 bed->s->swap_dyn_out (dynobj, &dyn, dyncon); 7950 } 7951 } 7952 7953 /* If we have created any dynamic sections, then output them. */ 7954 if (dynobj != NULL) 7955 { 7956 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) 7957 goto error_return; 7958 7959 for (o = dynobj->sections; o != NULL; o = o->next) 7960 { 7961 if ((o->flags & SEC_HAS_CONTENTS) == 0 7962 || o->_raw_size == 0 7963 || o->output_section == bfd_abs_section_ptr) 7964 continue; 7965 if ((o->flags & SEC_LINKER_CREATED) == 0) 7966 { 7967 /* At this point, we are only interested in sections 7968 created by _bfd_elf_link_create_dynamic_sections. */ 7969 continue; 7970 } 7971 if ((elf_section_data (o->output_section)->this_hdr.sh_type 7972 != SHT_STRTAB) 7973 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) 7974 { 7975 if (! bfd_set_section_contents (abfd, o->output_section, 7976 o->contents, 7977 (file_ptr) o->output_offset, 7978 o->_raw_size)) 7979 goto error_return; 7980 } 7981 else 7982 { 7983 /* The contents of the .dynstr section are actually in a 7984 stringtab. */ 7985 off = elf_section_data (o->output_section)->this_hdr.sh_offset; 7986 if (bfd_seek (abfd, off, SEEK_SET) != 0 7987 || ! _bfd_elf_strtab_emit (abfd, 7988 elf_hash_table (info)->dynstr)) 7989 goto error_return; 7990 } 7991 } 7992 } 7993 7994 if (info->relocatable) 7995 { 7996 bfd_boolean failed = FALSE; 7997 7998 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); 7999 if (failed) 8000 goto error_return; 8001 } 8002 8003 /* If we have optimized stabs strings, output them. */ 8004 if (elf_hash_table (info)->stab_info != NULL) 8005 { 8006 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) 8007 goto error_return; 8008 } 8009 8010 if (info->eh_frame_hdr) 8011 { 8012 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) 8013 goto error_return; 8014 } 8015 8016 if (finfo.symstrtab != NULL) 8017 _bfd_stringtab_free (finfo.symstrtab); 8018 if (finfo.contents != NULL) 8019 free (finfo.contents); 8020 if (finfo.external_relocs != NULL) 8021 free (finfo.external_relocs); 8022 if (finfo.internal_relocs != NULL) 8023 free (finfo.internal_relocs); 8024 if (finfo.external_syms != NULL) 8025 free (finfo.external_syms); 8026 if (finfo.locsym_shndx != NULL) 8027 free (finfo.locsym_shndx); 8028 if (finfo.internal_syms != NULL) 8029 free (finfo.internal_syms); 8030 if (finfo.indices != NULL) 8031 free (finfo.indices); 8032 if (finfo.sections != NULL) 8033 free (finfo.sections); 8034 if (finfo.symbuf != NULL) 8035 free (finfo.symbuf); 8036 if (finfo.symshndxbuf != NULL) 8037 free (finfo.symshndxbuf); 8038 for (o = abfd->sections; o != NULL; o = o->next) 8039 { 8040 if ((o->flags & SEC_RELOC) != 0 8041 && elf_section_data (o)->rel_hashes != NULL) 8042 free (elf_section_data (o)->rel_hashes); 8043 } 8044 8045 elf_tdata (abfd)->linker = TRUE; 8046 8047 return TRUE; 8048 8049 error_return: 8050 if (finfo.symstrtab != NULL) 8051 _bfd_stringtab_free (finfo.symstrtab); 8052 if (finfo.contents != NULL) 8053 free (finfo.contents); 8054 if (finfo.external_relocs != NULL) 8055 free (finfo.external_relocs); 8056 if (finfo.internal_relocs != NULL) 8057 free (finfo.internal_relocs); 8058 if (finfo.external_syms != NULL) 8059 free (finfo.external_syms); 8060 if (finfo.locsym_shndx != NULL) 8061 free (finfo.locsym_shndx); 8062 if (finfo.internal_syms != NULL) 8063 free (finfo.internal_syms); 8064 if (finfo.indices != NULL) 8065 free (finfo.indices); 8066 if (finfo.sections != NULL) 8067 free (finfo.sections); 8068 if (finfo.symbuf != NULL) 8069 free (finfo.symbuf); 8070 if (finfo.symshndxbuf != NULL) 8071 free (finfo.symshndxbuf); 8072 for (o = abfd->sections; o != NULL; o = o->next) 8073 { 8074 if ((o->flags & SEC_RELOC) != 0 8075 && elf_section_data (o)->rel_hashes != NULL) 8076 free (elf_section_data (o)->rel_hashes); 8077 } 8078 8079 return FALSE; 8080 } 8081 8082 /* Garbage collect unused sections. */ 8083 8084 /* The mark phase of garbage collection. For a given section, mark 8085 it and any sections in this section's group, and all the sections 8086 which define symbols to which it refers. */ 8087 8088 typedef asection * (*gc_mark_hook_fn) 8089 (asection *, struct bfd_link_info *, Elf_Internal_Rela *, 8090 struct elf_link_hash_entry *, Elf_Internal_Sym *); 8091 8092 static bfd_boolean 8093 elf_gc_mark (struct bfd_link_info *info, 8094 asection *sec, 8095 gc_mark_hook_fn gc_mark_hook) 8096 { 8097 bfd_boolean ret; 8098 asection *group_sec; 8099 8100 sec->gc_mark = 1; 8101 8102 /* Mark all the sections in the group. */ 8103 group_sec = elf_section_data (sec)->next_in_group; 8104 if (group_sec && !group_sec->gc_mark) 8105 if (!elf_gc_mark (info, group_sec, gc_mark_hook)) 8106 return FALSE; 8107 8108 /* Look through the section relocs. */ 8109 ret = TRUE; 8110 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0) 8111 { 8112 Elf_Internal_Rela *relstart, *rel, *relend; 8113 Elf_Internal_Shdr *symtab_hdr; 8114 struct elf_link_hash_entry **sym_hashes; 8115 size_t nlocsyms; 8116 size_t extsymoff; 8117 bfd *input_bfd = sec->owner; 8118 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd); 8119 Elf_Internal_Sym *isym = NULL; 8120 int r_sym_shift; 8121 8122 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 8123 sym_hashes = elf_sym_hashes (input_bfd); 8124 8125 /* Read the local symbols. */ 8126 if (elf_bad_symtab (input_bfd)) 8127 { 8128 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym; 8129 extsymoff = 0; 8130 } 8131 else 8132 extsymoff = nlocsyms = symtab_hdr->sh_info; 8133 8134 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 8135 if (isym == NULL && nlocsyms != 0) 8136 { 8137 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0, 8138 NULL, NULL, NULL); 8139 if (isym == NULL) 8140 return FALSE; 8141 } 8142 8143 /* Read the relocations. */ 8144 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL, 8145 info->keep_memory); 8146 if (relstart == NULL) 8147 { 8148 ret = FALSE; 8149 goto out1; 8150 } 8151 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; 8152 8153 if (bed->s->arch_size == 32) 8154 r_sym_shift = 8; 8155 else 8156 r_sym_shift = 32; 8157 8158 for (rel = relstart; rel < relend; rel++) 8159 { 8160 unsigned long r_symndx; 8161 asection *rsec; 8162 struct elf_link_hash_entry *h; 8163 8164 r_symndx = rel->r_info >> r_sym_shift; 8165 if (r_symndx == 0) 8166 continue; 8167 8168 if (r_symndx >= nlocsyms 8169 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL) 8170 { 8171 h = sym_hashes[r_symndx - extsymoff]; 8172 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL); 8173 } 8174 else 8175 { 8176 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]); 8177 } 8178 8179 if (rsec && !rsec->gc_mark) 8180 { 8181 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour) 8182 rsec->gc_mark = 1; 8183 else if (!elf_gc_mark (info, rsec, gc_mark_hook)) 8184 { 8185 ret = FALSE; 8186 goto out2; 8187 } 8188 } 8189 } 8190 8191 out2: 8192 if (elf_section_data (sec)->relocs != relstart) 8193 free (relstart); 8194 out1: 8195 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym) 8196 { 8197 if (! info->keep_memory) 8198 free (isym); 8199 else 8200 symtab_hdr->contents = (unsigned char *) isym; 8201 } 8202 } 8203 8204 return ret; 8205 } 8206 8207 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ 8208 8209 static bfd_boolean 8210 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr) 8211 { 8212 int *idx = idxptr; 8213 8214 if (h->root.type == bfd_link_hash_warning) 8215 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8216 8217 if (h->dynindx != -1 8218 && ((h->root.type != bfd_link_hash_defined 8219 && h->root.type != bfd_link_hash_defweak) 8220 || h->root.u.def.section->gc_mark)) 8221 h->dynindx = (*idx)++; 8222 8223 return TRUE; 8224 } 8225 8226 /* The sweep phase of garbage collection. Remove all garbage sections. */ 8227 8228 typedef bfd_boolean (*gc_sweep_hook_fn) 8229 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); 8230 8231 static bfd_boolean 8232 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook) 8233 { 8234 bfd *sub; 8235 8236 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) 8237 { 8238 asection *o; 8239 8240 if (bfd_get_flavour (sub) != bfd_target_elf_flavour) 8241 continue; 8242 8243 for (o = sub->sections; o != NULL; o = o->next) 8244 { 8245 /* Keep special sections. Keep .debug sections. */ 8246 if ((o->flags & SEC_LINKER_CREATED) 8247 || (o->flags & SEC_DEBUGGING)) 8248 o->gc_mark = 1; 8249 8250 if (o->gc_mark) 8251 continue; 8252 8253 /* Skip sweeping sections already excluded. */ 8254 if (o->flags & SEC_EXCLUDE) 8255 continue; 8256 8257 /* Since this is early in the link process, it is simple 8258 to remove a section from the output. */ 8259 o->flags |= SEC_EXCLUDE; 8260 8261 /* But we also have to update some of the relocation 8262 info we collected before. */ 8263 if (gc_sweep_hook 8264 && (o->flags & SEC_RELOC) && o->reloc_count > 0) 8265 { 8266 Elf_Internal_Rela *internal_relocs; 8267 bfd_boolean r; 8268 8269 internal_relocs 8270 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL, 8271 info->keep_memory); 8272 if (internal_relocs == NULL) 8273 return FALSE; 8274 8275 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs); 8276 8277 if (elf_section_data (o)->relocs != internal_relocs) 8278 free (internal_relocs); 8279 8280 if (!r) 8281 return FALSE; 8282 } 8283 } 8284 } 8285 8286 /* Remove the symbols that were in the swept sections from the dynamic 8287 symbol table. GCFIXME: Anyone know how to get them out of the 8288 static symbol table as well? */ 8289 { 8290 int i = 0; 8291 8292 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i); 8293 8294 elf_hash_table (info)->dynsymcount = i; 8295 } 8296 8297 return TRUE; 8298 } 8299 8300 /* Propagate collected vtable information. This is called through 8301 elf_link_hash_traverse. */ 8302 8303 static bfd_boolean 8304 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) 8305 { 8306 if (h->root.type == bfd_link_hash_warning) 8307 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8308 8309 /* Those that are not vtables. */ 8310 if (h->vtable_parent == NULL) 8311 return TRUE; 8312 8313 /* Those vtables that do not have parents, we cannot merge. */ 8314 if (h->vtable_parent == (struct elf_link_hash_entry *) -1) 8315 return TRUE; 8316 8317 /* If we've already been done, exit. */ 8318 if (h->vtable_entries_used && h->vtable_entries_used[-1]) 8319 return TRUE; 8320 8321 /* Make sure the parent's table is up to date. */ 8322 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp); 8323 8324 if (h->vtable_entries_used == NULL) 8325 { 8326 /* None of this table's entries were referenced. Re-use the 8327 parent's table. */ 8328 h->vtable_entries_used = h->vtable_parent->vtable_entries_used; 8329 h->vtable_entries_size = h->vtable_parent->vtable_entries_size; 8330 } 8331 else 8332 { 8333 size_t n; 8334 bfd_boolean *cu, *pu; 8335 8336 /* Or the parent's entries into ours. */ 8337 cu = h->vtable_entries_used; 8338 cu[-1] = TRUE; 8339 pu = h->vtable_parent->vtable_entries_used; 8340 if (pu != NULL) 8341 { 8342 const struct elf_backend_data *bed; 8343 unsigned int log_file_align; 8344 8345 bed = get_elf_backend_data (h->root.u.def.section->owner); 8346 log_file_align = bed->s->log_file_align; 8347 n = h->vtable_parent->vtable_entries_size >> log_file_align; 8348 while (n--) 8349 { 8350 if (*pu) 8351 *cu = TRUE; 8352 pu++; 8353 cu++; 8354 } 8355 } 8356 } 8357 8358 return TRUE; 8359 } 8360 8361 static bfd_boolean 8362 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp) 8363 { 8364 asection *sec; 8365 bfd_vma hstart, hend; 8366 Elf_Internal_Rela *relstart, *relend, *rel; 8367 const struct elf_backend_data *bed; 8368 unsigned int log_file_align; 8369 8370 if (h->root.type == bfd_link_hash_warning) 8371 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8372 8373 /* Take care of both those symbols that do not describe vtables as 8374 well as those that are not loaded. */ 8375 if (h->vtable_parent == NULL) 8376 return TRUE; 8377 8378 BFD_ASSERT (h->root.type == bfd_link_hash_defined 8379 || h->root.type == bfd_link_hash_defweak); 8380 8381 sec = h->root.u.def.section; 8382 hstart = h->root.u.def.value; 8383 hend = hstart + h->size; 8384 8385 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE); 8386 if (!relstart) 8387 return *(bfd_boolean *) okp = FALSE; 8388 bed = get_elf_backend_data (sec->owner); 8389 log_file_align = bed->s->log_file_align; 8390 8391 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; 8392 8393 for (rel = relstart; rel < relend; ++rel) 8394 if (rel->r_offset >= hstart && rel->r_offset < hend) 8395 { 8396 /* If the entry is in use, do nothing. */ 8397 if (h->vtable_entries_used 8398 && (rel->r_offset - hstart) < h->vtable_entries_size) 8399 { 8400 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; 8401 if (h->vtable_entries_used[entry]) 8402 continue; 8403 } 8404 /* Otherwise, kill it. */ 8405 rel->r_offset = rel->r_info = rel->r_addend = 0; 8406 } 8407 8408 return TRUE; 8409 } 8410 8411 /* Do mark and sweep of unused sections. */ 8412 8413 bfd_boolean 8414 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) 8415 { 8416 bfd_boolean ok = TRUE; 8417 bfd *sub; 8418 asection * (*gc_mark_hook) 8419 (asection *, struct bfd_link_info *, Elf_Internal_Rela *, 8420 struct elf_link_hash_entry *h, Elf_Internal_Sym *); 8421 8422 if (!get_elf_backend_data (abfd)->can_gc_sections 8423 || info->relocatable 8424 || info->emitrelocations 8425 || !is_elf_hash_table (info->hash) 8426 || elf_hash_table (info)->dynamic_sections_created) 8427 { 8428 (*_bfd_error_handler)(_("Warning: gc-sections option ignored")); 8429 return TRUE; 8430 } 8431 8432 /* Apply transitive closure to the vtable entry usage info. */ 8433 elf_link_hash_traverse (elf_hash_table (info), 8434 elf_gc_propagate_vtable_entries_used, 8435 &ok); 8436 if (!ok) 8437 return FALSE; 8438 8439 /* Kill the vtable relocations that were not used. */ 8440 elf_link_hash_traverse (elf_hash_table (info), 8441 elf_gc_smash_unused_vtentry_relocs, 8442 &ok); 8443 if (!ok) 8444 return FALSE; 8445 8446 /* Grovel through relocs to find out who stays ... */ 8447 8448 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook; 8449 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) 8450 { 8451 asection *o; 8452 8453 if (bfd_get_flavour (sub) != bfd_target_elf_flavour) 8454 continue; 8455 8456 for (o = sub->sections; o != NULL; o = o->next) 8457 { 8458 if (o->flags & SEC_KEEP) 8459 if (!elf_gc_mark (info, o, gc_mark_hook)) 8460 return FALSE; 8461 } 8462 } 8463 8464 /* ... and mark SEC_EXCLUDE for those that go. */ 8465 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook)) 8466 return FALSE; 8467 8468 return TRUE; 8469 } 8470 8471 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ 8472 8473 bfd_boolean 8474 bfd_elf_gc_record_vtinherit (bfd *abfd, 8475 asection *sec, 8476 struct elf_link_hash_entry *h, 8477 bfd_vma offset) 8478 { 8479 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; 8480 struct elf_link_hash_entry **search, *child; 8481 bfd_size_type extsymcount; 8482 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8483 8484 /* The sh_info field of the symtab header tells us where the 8485 external symbols start. We don't care about the local symbols at 8486 this point. */ 8487 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; 8488 if (!elf_bad_symtab (abfd)) 8489 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; 8490 8491 sym_hashes = elf_sym_hashes (abfd); 8492 sym_hashes_end = sym_hashes + extsymcount; 8493 8494 /* Hunt down the child symbol, which is in this section at the same 8495 offset as the relocation. */ 8496 for (search = sym_hashes; search != sym_hashes_end; ++search) 8497 { 8498 if ((child = *search) != NULL 8499 && (child->root.type == bfd_link_hash_defined 8500 || child->root.type == bfd_link_hash_defweak) 8501 && child->root.u.def.section == sec 8502 && child->root.u.def.value == offset) 8503 goto win; 8504 } 8505 8506 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT", 8507 bfd_archive_filename (abfd), sec->name, 8508 (unsigned long) offset); 8509 bfd_set_error (bfd_error_invalid_operation); 8510 return FALSE; 8511 8512 win: 8513 if (!h) 8514 { 8515 /* This *should* only be the absolute section. It could potentially 8516 be that someone has defined a non-global vtable though, which 8517 would be bad. It isn't worth paging in the local symbols to be 8518 sure though; that case should simply be handled by the assembler. */ 8519 8520 child->vtable_parent = (struct elf_link_hash_entry *) -1; 8521 } 8522 else 8523 child->vtable_parent = h; 8524 8525 return TRUE; 8526 } 8527 8528 /* Called from check_relocs to record the existence of a VTENTRY reloc. */ 8529 8530 bfd_boolean 8531 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED, 8532 asection *sec ATTRIBUTE_UNUSED, 8533 struct elf_link_hash_entry *h, 8534 bfd_vma addend) 8535 { 8536 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8537 unsigned int log_file_align = bed->s->log_file_align; 8538 8539 if (addend >= h->vtable_entries_size) 8540 { 8541 size_t size, bytes, file_align; 8542 bfd_boolean *ptr = h->vtable_entries_used; 8543 8544 /* While the symbol is undefined, we have to be prepared to handle 8545 a zero size. */ 8546 file_align = 1 << log_file_align; 8547 if (h->root.type == bfd_link_hash_undefined) 8548 size = addend + file_align; 8549 else 8550 { 8551 size = h->size; 8552 if (addend >= size) 8553 { 8554 /* Oops! We've got a reference past the defined end of 8555 the table. This is probably a bug -- shall we warn? */ 8556 size = addend + file_align; 8557 } 8558 } 8559 size = (size + file_align - 1) & -file_align; 8560 8561 /* Allocate one extra entry for use as a "done" flag for the 8562 consolidation pass. */ 8563 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean); 8564 8565 if (ptr) 8566 { 8567 ptr = bfd_realloc (ptr - 1, bytes); 8568 8569 if (ptr != NULL) 8570 { 8571 size_t oldbytes; 8572 8573 oldbytes = (((h->vtable_entries_size >> log_file_align) + 1) 8574 * sizeof (bfd_boolean)); 8575 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); 8576 } 8577 } 8578 else 8579 ptr = bfd_zmalloc (bytes); 8580 8581 if (ptr == NULL) 8582 return FALSE; 8583 8584 /* And arrange for that done flag to be at index -1. */ 8585 h->vtable_entries_used = ptr + 1; 8586 h->vtable_entries_size = size; 8587 } 8588 8589 h->vtable_entries_used[addend >> log_file_align] = TRUE; 8590 8591 return TRUE; 8592 } 8593 8594 struct alloc_got_off_arg { 8595 bfd_vma gotoff; 8596 unsigned int got_elt_size; 8597 }; 8598 8599 /* We need a special top-level link routine to convert got reference counts 8600 to real got offsets. */ 8601 8602 static bfd_boolean 8603 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) 8604 { 8605 struct alloc_got_off_arg *gofarg = arg; 8606 8607 if (h->root.type == bfd_link_hash_warning) 8608 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8609 8610 if (h->got.refcount > 0) 8611 { 8612 h->got.offset = gofarg->gotoff; 8613 gofarg->gotoff += gofarg->got_elt_size; 8614 } 8615 else 8616 h->got.offset = (bfd_vma) -1; 8617 8618 return TRUE; 8619 } 8620 8621 /* And an accompanying bit to work out final got entry offsets once 8622 we're done. Should be called from final_link. */ 8623 8624 bfd_boolean 8625 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, 8626 struct bfd_link_info *info) 8627 { 8628 bfd *i; 8629 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8630 bfd_vma gotoff; 8631 unsigned int got_elt_size = bed->s->arch_size / 8; 8632 struct alloc_got_off_arg gofarg; 8633 8634 if (! is_elf_hash_table (info->hash)) 8635 return FALSE; 8636 8637 /* The GOT offset is relative to the .got section, but the GOT header is 8638 put into the .got.plt section, if the backend uses it. */ 8639 if (bed->want_got_plt) 8640 gotoff = 0; 8641 else 8642 gotoff = bed->got_header_size; 8643 8644 /* Do the local .got entries first. */ 8645 for (i = info->input_bfds; i; i = i->link_next) 8646 { 8647 bfd_signed_vma *local_got; 8648 bfd_size_type j, locsymcount; 8649 Elf_Internal_Shdr *symtab_hdr; 8650 8651 if (bfd_get_flavour (i) != bfd_target_elf_flavour) 8652 continue; 8653 8654 local_got = elf_local_got_refcounts (i); 8655 if (!local_got) 8656 continue; 8657 8658 symtab_hdr = &elf_tdata (i)->symtab_hdr; 8659 if (elf_bad_symtab (i)) 8660 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 8661 else 8662 locsymcount = symtab_hdr->sh_info; 8663 8664 for (j = 0; j < locsymcount; ++j) 8665 { 8666 if (local_got[j] > 0) 8667 { 8668 local_got[j] = gotoff; 8669 gotoff += got_elt_size; 8670 } 8671 else 8672 local_got[j] = (bfd_vma) -1; 8673 } 8674 } 8675 8676 /* Then the global .got entries. .plt refcounts are handled by 8677 adjust_dynamic_symbol */ 8678 gofarg.gotoff = gotoff; 8679 gofarg.got_elt_size = got_elt_size; 8680 elf_link_hash_traverse (elf_hash_table (info), 8681 elf_gc_allocate_got_offsets, 8682 &gofarg); 8683 return TRUE; 8684 } 8685 8686 /* Many folk need no more in the way of final link than this, once 8687 got entry reference counting is enabled. */ 8688 8689 bfd_boolean 8690 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) 8691 { 8692 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) 8693 return FALSE; 8694 8695 /* Invoke the regular ELF backend linker to do all the work. */ 8696 return bfd_elf_final_link (abfd, info); 8697 } 8698 8699 bfd_boolean 8700 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) 8701 { 8702 struct elf_reloc_cookie *rcookie = cookie; 8703 8704 if (rcookie->bad_symtab) 8705 rcookie->rel = rcookie->rels; 8706 8707 for (; rcookie->rel < rcookie->relend; rcookie->rel++) 8708 { 8709 unsigned long r_symndx; 8710 8711 if (! rcookie->bad_symtab) 8712 if (rcookie->rel->r_offset > offset) 8713 return FALSE; 8714 if (rcookie->rel->r_offset != offset) 8715 continue; 8716 8717 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; 8718 if (r_symndx == SHN_UNDEF) 8719 return TRUE; 8720 8721 if (r_symndx >= rcookie->locsymcount 8722 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL) 8723 { 8724 struct elf_link_hash_entry *h; 8725 8726 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; 8727 8728 while (h->root.type == bfd_link_hash_indirect 8729 || h->root.type == bfd_link_hash_warning) 8730 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8731 8732 if ((h->root.type == bfd_link_hash_defined 8733 || h->root.type == bfd_link_hash_defweak) 8734 && elf_discarded_section (h->root.u.def.section)) 8735 return TRUE; 8736 else 8737 return FALSE; 8738 } 8739 else 8740 { 8741 /* It's not a relocation against a global symbol, 8742 but it could be a relocation against a local 8743 symbol for a discarded section. */ 8744 asection *isec; 8745 Elf_Internal_Sym *isym; 8746 8747 /* Need to: get the symbol; get the section. */ 8748 isym = &rcookie->locsyms[r_symndx]; 8749 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE) 8750 { 8751 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); 8752 if (isec != NULL && elf_discarded_section (isec)) 8753 return TRUE; 8754 } 8755 } 8756 return FALSE; 8757 } 8758 return FALSE; 8759 } 8760 8761 /* Discard unneeded references to discarded sections. 8762 Returns TRUE if any section's size was changed. */ 8763 /* This function assumes that the relocations are in sorted order, 8764 which is true for all known assemblers. */ 8765 8766 bfd_boolean 8767 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) 8768 { 8769 struct elf_reloc_cookie cookie; 8770 asection *stab, *eh; 8771 Elf_Internal_Shdr *symtab_hdr; 8772 const struct elf_backend_data *bed; 8773 bfd *abfd; 8774 unsigned int count; 8775 bfd_boolean ret = FALSE; 8776 8777 if (info->traditional_format 8778 || !is_elf_hash_table (info->hash)) 8779 return FALSE; 8780 8781 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) 8782 { 8783 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 8784 continue; 8785 8786 bed = get_elf_backend_data (abfd); 8787 8788 if ((abfd->flags & DYNAMIC) != 0) 8789 continue; 8790 8791 eh = bfd_get_section_by_name (abfd, ".eh_frame"); 8792 if (info->relocatable 8793 || (eh != NULL 8794 && (eh->_raw_size == 0 8795 || bfd_is_abs_section (eh->output_section)))) 8796 eh = NULL; 8797 8798 stab = bfd_get_section_by_name (abfd, ".stab"); 8799 if (stab != NULL 8800 && (stab->_raw_size == 0 8801 || bfd_is_abs_section (stab->output_section) 8802 || stab->sec_info_type != ELF_INFO_TYPE_STABS)) 8803 stab = NULL; 8804 8805 if (stab == NULL 8806 && eh == NULL 8807 && bed->elf_backend_discard_info == NULL) 8808 continue; 8809 8810 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 8811 cookie.abfd = abfd; 8812 cookie.sym_hashes = elf_sym_hashes (abfd); 8813 cookie.bad_symtab = elf_bad_symtab (abfd); 8814 if (cookie.bad_symtab) 8815 { 8816 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 8817 cookie.extsymoff = 0; 8818 } 8819 else 8820 { 8821 cookie.locsymcount = symtab_hdr->sh_info; 8822 cookie.extsymoff = symtab_hdr->sh_info; 8823 } 8824 8825 if (bed->s->arch_size == 32) 8826 cookie.r_sym_shift = 8; 8827 else 8828 cookie.r_sym_shift = 32; 8829 8830 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; 8831 if (cookie.locsyms == NULL && cookie.locsymcount != 0) 8832 { 8833 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, 8834 cookie.locsymcount, 0, 8835 NULL, NULL, NULL); 8836 if (cookie.locsyms == NULL) 8837 return FALSE; 8838 } 8839 8840 if (stab != NULL) 8841 { 8842 cookie.rels = NULL; 8843 count = stab->reloc_count; 8844 if (count != 0) 8845 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL, 8846 info->keep_memory); 8847 if (cookie.rels != NULL) 8848 { 8849 cookie.rel = cookie.rels; 8850 cookie.relend = cookie.rels; 8851 cookie.relend += count * bed->s->int_rels_per_ext_rel; 8852 if (_bfd_discard_section_stabs (abfd, stab, 8853 elf_section_data (stab)->sec_info, 8854 bfd_elf_reloc_symbol_deleted_p, 8855 &cookie)) 8856 ret = TRUE; 8857 if (elf_section_data (stab)->relocs != cookie.rels) 8858 free (cookie.rels); 8859 } 8860 } 8861 8862 if (eh != NULL) 8863 { 8864 cookie.rels = NULL; 8865 count = eh->reloc_count; 8866 if (count != 0) 8867 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL, 8868 info->keep_memory); 8869 cookie.rel = cookie.rels; 8870 cookie.relend = cookie.rels; 8871 if (cookie.rels != NULL) 8872 cookie.relend += count * bed->s->int_rels_per_ext_rel; 8873 8874 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, 8875 bfd_elf_reloc_symbol_deleted_p, 8876 &cookie)) 8877 ret = TRUE; 8878 8879 if (cookie.rels != NULL 8880 && elf_section_data (eh)->relocs != cookie.rels) 8881 free (cookie.rels); 8882 } 8883 8884 if (bed->elf_backend_discard_info != NULL 8885 && (*bed->elf_backend_discard_info) (abfd, &cookie, info)) 8886 ret = TRUE; 8887 8888 if (cookie.locsyms != NULL 8889 && symtab_hdr->contents != (unsigned char *) cookie.locsyms) 8890 { 8891 if (! info->keep_memory) 8892 free (cookie.locsyms); 8893 else 8894 symtab_hdr->contents = (unsigned char *) cookie.locsyms; 8895 } 8896 } 8897 8898 if (info->eh_frame_hdr 8899 && !info->relocatable 8900 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info)) 8901 ret = TRUE; 8902 8903 return ret; 8904 } 8905