xref: /openbsd-src/gnu/llvm/llvm/tools/dsymutil/DwarfLinkerForBinary.cpp (revision 1a8dbaac879b9f3335ad7fb25429ce63ac1d6bac)
1 //===- tools/dsymutil/DwarfLinkerForBinary.cpp ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "DwarfLinkerForBinary.h"
10 #include "BinaryHolder.h"
11 #include "DebugMap.h"
12 #include "DwarfStreamer.h"
13 #include "MachOUtils.h"
14 #include "dsymutil.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringMap.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/BinaryFormat/MachO.h"
34 #include "llvm/CodeGen/AccelTable.h"
35 #include "llvm/CodeGen/AsmPrinter.h"
36 #include "llvm/CodeGen/DIE.h"
37 #include "llvm/CodeGen/NonRelocatableStringpool.h"
38 #include "llvm/Config/config.h"
39 #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
40 #include "llvm/DebugInfo/DIContext.h"
41 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
42 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
43 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
44 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
45 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
46 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
47 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
48 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
49 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
50 #include "llvm/MC/MCAsmBackend.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCCodeEmitter.h"
53 #include "llvm/MC/MCContext.h"
54 #include "llvm/MC/MCDwarf.h"
55 #include "llvm/MC/MCInstrInfo.h"
56 #include "llvm/MC/MCObjectFileInfo.h"
57 #include "llvm/MC/MCObjectWriter.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSection.h"
60 #include "llvm/MC/MCStreamer.h"
61 #include "llvm/MC/MCSubtargetInfo.h"
62 #include "llvm/MC/MCTargetOptions.h"
63 #include "llvm/Object/MachO.h"
64 #include "llvm/Object/ObjectFile.h"
65 #include "llvm/Object/SymbolicFile.h"
66 #include "llvm/Remarks/RemarkFormat.h"
67 #include "llvm/Remarks/RemarkLinker.h"
68 #include "llvm/Support/Allocator.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/DJB.h"
72 #include "llvm/Support/DataExtractor.h"
73 #include "llvm/Support/Error.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/ErrorOr.h"
76 #include "llvm/Support/FileSystem.h"
77 #include "llvm/Support/Format.h"
78 #include "llvm/Support/LEB128.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/MemoryBuffer.h"
81 #include "llvm/Support/Path.h"
82 #include "llvm/Support/TargetRegistry.h"
83 #include "llvm/Support/ThreadPool.h"
84 #include "llvm/Support/ToolOutputFile.h"
85 #include "llvm/Support/WithColor.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cinttypes>
92 #include <climits>
93 #include <cstdint>
94 #include <cstdlib>
95 #include <cstring>
96 #include <limits>
97 #include <map>
98 #include <memory>
99 #include <string>
100 #include <system_error>
101 #include <tuple>
102 #include <utility>
103 #include <vector>
104 
105 namespace llvm {
106 namespace dsymutil {
107 
108 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
109 /// CompileUnit object instead.
110 static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
111   auto CU = std::upper_bound(
112       Units.begin(), Units.end(), Offset,
113       [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
114         return LHS < RHS->getOrigUnit().getNextUnitOffset();
115       });
116   return CU != Units.end() ? CU->get() : nullptr;
117 }
118 
119 /// Resolve the DIE attribute reference that has been extracted in \p RefValue.
120 /// The resulting DIE might be in another CompileUnit which is stored into \p
121 /// ReferencedCU. \returns null if resolving fails for any reason.
122 static DWARFDie resolveDIEReference(const DwarfLinkerForBinary &Linker,
123                                     const DebugMapObject &DMO,
124                                     const UnitListTy &Units,
125                                     const DWARFFormValue &RefValue,
126                                     const DWARFDie &DIE, CompileUnit *&RefCU) {
127   assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
128   uint64_t RefOffset = *RefValue.getAsReference();
129   if ((RefCU = getUnitForOffset(Units, RefOffset)))
130     if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
131       // In a file with broken references, an attribute might point to a NULL
132       // DIE.
133       if (!RefDie.isNULL())
134         return RefDie;
135     }
136 
137   Linker.reportWarning("could not find referenced DIE", DMO, &DIE);
138   return DWARFDie();
139 }
140 
141 /// \returns whether the passed \a Attr type might contain a DIE reference
142 /// suitable for ODR uniquing.
143 static bool isODRAttribute(uint16_t Attr) {
144   switch (Attr) {
145   default:
146     return false;
147   case dwarf::DW_AT_type:
148   case dwarf::DW_AT_containing_type:
149   case dwarf::DW_AT_specification:
150   case dwarf::DW_AT_abstract_origin:
151   case dwarf::DW_AT_import:
152     return true;
153   }
154   llvm_unreachable("Improper attribute.");
155 }
156 
157 static bool isTypeTag(uint16_t Tag) {
158   switch (Tag) {
159   case dwarf::DW_TAG_array_type:
160   case dwarf::DW_TAG_class_type:
161   case dwarf::DW_TAG_enumeration_type:
162   case dwarf::DW_TAG_pointer_type:
163   case dwarf::DW_TAG_reference_type:
164   case dwarf::DW_TAG_string_type:
165   case dwarf::DW_TAG_structure_type:
166   case dwarf::DW_TAG_subroutine_type:
167   case dwarf::DW_TAG_typedef:
168   case dwarf::DW_TAG_union_type:
169   case dwarf::DW_TAG_ptr_to_member_type:
170   case dwarf::DW_TAG_set_type:
171   case dwarf::DW_TAG_subrange_type:
172   case dwarf::DW_TAG_base_type:
173   case dwarf::DW_TAG_const_type:
174   case dwarf::DW_TAG_constant:
175   case dwarf::DW_TAG_file_type:
176   case dwarf::DW_TAG_namelist:
177   case dwarf::DW_TAG_packed_type:
178   case dwarf::DW_TAG_volatile_type:
179   case dwarf::DW_TAG_restrict_type:
180   case dwarf::DW_TAG_atomic_type:
181   case dwarf::DW_TAG_interface_type:
182   case dwarf::DW_TAG_unspecified_type:
183   case dwarf::DW_TAG_shared_type:
184     return true;
185   default:
186     break;
187   }
188   return false;
189 }
190 
191 static Error remarksErrorHandler(const DebugMapObject &DMO,
192                                  DwarfLinkerForBinary &Linker,
193                                  std::unique_ptr<FileError> FE) {
194   bool IsArchive = DMO.getObjectFilename().endswith(")");
195   // Don't report errors for missing remark files from static
196   // archives.
197   if (!IsArchive)
198     return Error(std::move(FE));
199 
200   std::string Message = FE->message();
201   Error E = FE->takeError();
202   Error NewE = handleErrors(std::move(E), [&](std::unique_ptr<ECError> EC) {
203     if (EC->convertToErrorCode() != std::errc::no_such_file_or_directory)
204       return Error(std::move(EC));
205 
206     Linker.reportWarning(Message, DMO);
207     return Error(Error::success());
208   });
209 
210   if (!NewE)
211     return Error::success();
212 
213   return createFileError(FE->getFileName(), std::move(NewE));
214 }
215 
216 bool DwarfLinkerForBinary::DIECloner::getDIENames(const DWARFDie &Die,
217                                                   AttributesInfo &Info,
218                                                   OffsetsStringPool &StringPool,
219                                                   bool StripTemplate) {
220   // This function will be called on DIEs having low_pcs and
221   // ranges. As getting the name might be more expansive, filter out
222   // blocks directly.
223   if (Die.getTag() == dwarf::DW_TAG_lexical_block)
224     return false;
225 
226   // FIXME: a bit wasteful as the first getName might return the
227   // short name.
228   if (!Info.MangledName)
229     if (const char *MangledName = Die.getName(DINameKind::LinkageName))
230       Info.MangledName = StringPool.getEntry(MangledName);
231 
232   if (!Info.Name)
233     if (const char *Name = Die.getName(DINameKind::ShortName))
234       Info.Name = StringPool.getEntry(Name);
235 
236   if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
237     // FIXME: dsymutil compatibility. This is wrong for operator<
238     auto Split = Info.Name.getString().split('<');
239     if (!Split.second.empty())
240       Info.NameWithoutTemplate = StringPool.getEntry(Split.first);
241   }
242 
243   return Info.Name || Info.MangledName;
244 }
245 
246 /// Report a warning to the user, optionally including information about a
247 /// specific \p DIE related to the warning.
248 void DwarfLinkerForBinary::reportWarning(const Twine &Warning,
249                                          const DebugMapObject &DMO,
250                                          const DWARFDie *DIE) const {
251   StringRef Context = DMO.getObjectFilename();
252   warn(Warning, Context);
253 
254   if (!Options.Verbose || !DIE)
255     return;
256 
257   DIDumpOptions DumpOpts;
258   DumpOpts.ChildRecurseDepth = 0;
259   DumpOpts.Verbose = Options.Verbose;
260 
261   WithColor::note() << "    in DIE:\n";
262   DIE->dump(errs(), 6 /* Indent */, DumpOpts);
263 }
264 
265 bool DwarfLinkerForBinary::createStreamer(const Triple &TheTriple,
266                                           raw_fd_ostream &OutFile) {
267   if (Options.NoOutput)
268     return true;
269 
270   Streamer = std::make_unique<DwarfStreamer>(OutFile, Options);
271   return Streamer->init(TheTriple);
272 }
273 
274 /// Resolve the relative path to a build artifact referenced by DWARF by
275 /// applying DW_AT_comp_dir.
276 static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
277   sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
278 }
279 
280 /// Collect references to parseable Swift interfaces in imported
281 /// DW_TAG_module blocks.
282 static void analyzeImportedModule(
283     const DWARFDie &DIE, CompileUnit &CU,
284     std::map<std::string, std::string> &ParseableSwiftInterfaces,
285     std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
286   if (CU.getLanguage() != dwarf::DW_LANG_Swift)
287     return;
288 
289   StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
290   if (!Path.endswith(".swiftinterface"))
291     return;
292   if (Optional<DWARFFormValue> Val = DIE.find(dwarf::DW_AT_name))
293     if (Optional<const char *> Name = Val->getAsCString()) {
294       auto &Entry = ParseableSwiftInterfaces[*Name];
295       // The prepend path is applied later when copying.
296       DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
297       SmallString<128> ResolvedPath;
298       if (sys::path::is_relative(Path))
299         resolveRelativeObjectPath(ResolvedPath, CUDie);
300       sys::path::append(ResolvedPath, Path);
301       if (!Entry.empty() && Entry != ResolvedPath)
302         ReportWarning(
303             Twine("Conflicting parseable interfaces for Swift Module ") +
304                 *Name + ": " + Entry + " and " + Path,
305             DIE);
306       Entry = ResolvedPath.str();
307     }
308 }
309 
310 /// Recursive helper to build the global DeclContext information and
311 /// gather the child->parent relationships in the original compile unit.
312 ///
313 /// \return true when this DIE and all of its children are only
314 /// forward declarations to types defined in external clang modules
315 /// (i.e., forward declarations that are children of a DW_TAG_module).
316 static bool analyzeContextInfo(
317     const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
318     DeclContext *CurrentDeclContext, UniquingStringPool &StringPool,
319     DeclContextTree &Contexts, uint64_t ModulesEndOffset,
320     std::map<std::string, std::string> &ParseableSwiftInterfaces,
321     std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
322     bool InImportedModule = false) {
323   unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
324   CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx);
325 
326   // Clang imposes an ODR on modules(!) regardless of the language:
327   //  "The module-id should consist of only a single identifier,
328   //   which provides the name of the module being defined. Each
329   //   module shall have a single definition."
330   //
331   // This does not extend to the types inside the modules:
332   //  "[I]n C, this implies that if two structs are defined in
333   //   different submodules with the same name, those two types are
334   //   distinct types (but may be compatible types if their
335   //   definitions match)."
336   //
337   // We treat non-C++ modules like namespaces for this reason.
338   if (DIE.getTag() == dwarf::DW_TAG_module && ParentIdx == 0 &&
339       dwarf::toString(DIE.find(dwarf::DW_AT_name), "") !=
340           CU.getClangModuleName()) {
341     InImportedModule = true;
342     analyzeImportedModule(DIE, CU, ParseableSwiftInterfaces, ReportWarning);
343   }
344 
345   Info.ParentIdx = ParentIdx;
346   bool InClangModule = CU.isClangModule() || InImportedModule;
347   if (CU.hasODR() || InClangModule) {
348     if (CurrentDeclContext) {
349       auto PtrInvalidPair = Contexts.getChildDeclContext(
350           *CurrentDeclContext, DIE, CU, StringPool, InClangModule);
351       CurrentDeclContext = PtrInvalidPair.getPointer();
352       Info.Ctxt =
353           PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
354       if (Info.Ctxt)
355         Info.Ctxt->setDefinedInClangModule(InClangModule);
356     } else
357       Info.Ctxt = CurrentDeclContext = nullptr;
358   }
359 
360   Info.Prune = InImportedModule;
361   if (DIE.hasChildren())
362     for (auto Child : DIE.children())
363       Info.Prune &= analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext,
364                                        StringPool, Contexts, ModulesEndOffset,
365                                        ParseableSwiftInterfaces, ReportWarning,
366                                        InImportedModule);
367 
368   // Prune this DIE if it is either a forward declaration inside a
369   // DW_TAG_module or a DW_TAG_module that contains nothing but
370   // forward declarations.
371   Info.Prune &= (DIE.getTag() == dwarf::DW_TAG_module) ||
372                 (isTypeTag(DIE.getTag()) &&
373                  dwarf::toUnsigned(DIE.find(dwarf::DW_AT_declaration), 0));
374 
375   // Only prune forward declarations inside a DW_TAG_module for which a
376   // definition exists elsewhere.
377   if (ModulesEndOffset == 0)
378     Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
379   else
380     Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
381                   Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
382 
383   return Info.Prune;
384 } // namespace dsymutil
385 
386 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
387   switch (Tag) {
388   default:
389     return false;
390   case dwarf::DW_TAG_class_type:
391   case dwarf::DW_TAG_common_block:
392   case dwarf::DW_TAG_lexical_block:
393   case dwarf::DW_TAG_structure_type:
394   case dwarf::DW_TAG_subprogram:
395   case dwarf::DW_TAG_subroutine_type:
396   case dwarf::DW_TAG_union_type:
397     return true;
398   }
399   llvm_unreachable("Invalid Tag");
400 }
401 
402 void DwarfLinkerForBinary::startDebugObject(LinkContext &Context) {}
403 
404 void DwarfLinkerForBinary::endDebugObject(LinkContext &Context) {
405   Context.Clear();
406 
407   for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
408     (*I)->~DIEBlock();
409   for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
410     (*I)->~DIELoc();
411 
412   DIEBlocks.clear();
413   DIELocs.clear();
414   DIEAlloc.Reset();
415 }
416 
417 static bool isMachOPairedReloc(uint64_t RelocType, uint64_t Arch) {
418   switch (Arch) {
419   case Triple::x86:
420     return RelocType == MachO::GENERIC_RELOC_SECTDIFF ||
421            RelocType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
422   case Triple::x86_64:
423     return RelocType == MachO::X86_64_RELOC_SUBTRACTOR;
424   case Triple::arm:
425   case Triple::thumb:
426     return RelocType == MachO::ARM_RELOC_SECTDIFF ||
427            RelocType == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
428            RelocType == MachO::ARM_RELOC_HALF ||
429            RelocType == MachO::ARM_RELOC_HALF_SECTDIFF;
430   case Triple::aarch64:
431     return RelocType == MachO::ARM64_RELOC_SUBTRACTOR;
432   default:
433     return false;
434   }
435 }
436 
437 /// Iterate over the relocations of the given \p Section and
438 /// store the ones that correspond to debug map entries into the
439 /// ValidRelocs array.
440 void DwarfLinkerForBinary::RelocationManager::findValidRelocsMachO(
441     const object::SectionRef &Section, const object::MachOObjectFile &Obj,
442     const DebugMapObject &DMO) {
443   Expected<StringRef> ContentsOrErr = Section.getContents();
444   if (!ContentsOrErr) {
445     consumeError(ContentsOrErr.takeError());
446     Linker.reportWarning("error reading section", DMO);
447     return;
448   }
449   DataExtractor Data(*ContentsOrErr, Obj.isLittleEndian(), 0);
450   bool SkipNext = false;
451 
452   for (const object::RelocationRef &Reloc : Section.relocations()) {
453     if (SkipNext) {
454       SkipNext = false;
455       continue;
456     }
457 
458     object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
459     MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
460 
461     if (isMachOPairedReloc(Obj.getAnyRelocationType(MachOReloc),
462                            Obj.getArch())) {
463       SkipNext = true;
464       Linker.reportWarning("unsupported relocation in debug_info section.",
465                            DMO);
466       continue;
467     }
468 
469     unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
470     uint64_t Offset64 = Reloc.getOffset();
471     if ((RelocSize != 4 && RelocSize != 8)) {
472       Linker.reportWarning("unsupported relocation in debug_info section.",
473                            DMO);
474       continue;
475     }
476     uint64_t OffsetCopy = Offset64;
477     // Mach-o uses REL relocations, the addend is at the relocation offset.
478     uint64_t Addend = Data.getUnsigned(&OffsetCopy, RelocSize);
479     uint64_t SymAddress;
480     int64_t SymOffset;
481 
482     if (Obj.isRelocationScattered(MachOReloc)) {
483       // The address of the base symbol for scattered relocations is
484       // stored in the reloc itself. The actual addend will store the
485       // base address plus the offset.
486       SymAddress = Obj.getScatteredRelocationValue(MachOReloc);
487       SymOffset = int64_t(Addend) - SymAddress;
488     } else {
489       SymAddress = Addend;
490       SymOffset = 0;
491     }
492 
493     auto Sym = Reloc.getSymbol();
494     if (Sym != Obj.symbol_end()) {
495       Expected<StringRef> SymbolName = Sym->getName();
496       if (!SymbolName) {
497         consumeError(SymbolName.takeError());
498         Linker.reportWarning("error getting relocation symbol name.", DMO);
499         continue;
500       }
501       if (const auto *Mapping = DMO.lookupSymbol(*SymbolName))
502         ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
503     } else if (const auto *Mapping = DMO.lookupObjectAddress(SymAddress)) {
504       // Do not store the addend. The addend was the address of the symbol in
505       // the object file, the address in the binary that is stored in the debug
506       // map doesn't need to be offset.
507       ValidRelocs.emplace_back(Offset64, RelocSize, SymOffset, Mapping);
508     }
509   }
510 }
511 
512 /// Dispatch the valid relocation finding logic to the
513 /// appropriate handler depending on the object file format.
514 bool DwarfLinkerForBinary::RelocationManager::findValidRelocs(
515     const object::SectionRef &Section, const object::ObjectFile &Obj,
516     const DebugMapObject &DMO) {
517   // Dispatch to the right handler depending on the file type.
518   if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
519     findValidRelocsMachO(Section, *MachOObj, DMO);
520   else
521     Linker.reportWarning(
522         Twine("unsupported object file type: ") + Obj.getFileName(), DMO);
523 
524   if (ValidRelocs.empty())
525     return false;
526 
527   // Sort the relocations by offset. We will walk the DIEs linearly in
528   // the file, this allows us to just keep an index in the relocation
529   // array that we advance during our walk, rather than resorting to
530   // some associative container. See DwarfLinker::NextValidReloc.
531   llvm::sort(ValidRelocs);
532   return true;
533 }
534 
535 /// Look for relocations in the debug_info section that match
536 /// entries in the debug map. These relocations will drive the Dwarf
537 /// link by indicating which DIEs refer to symbols present in the
538 /// linked binary.
539 /// \returns whether there are any valid relocations in the debug info.
540 bool DwarfLinkerForBinary::RelocationManager::findValidRelocsInDebugInfo(
541     const object::ObjectFile &Obj, const DebugMapObject &DMO) {
542   // Find the debug_info section.
543   for (const object::SectionRef &Section : Obj.sections()) {
544     StringRef SectionName;
545     if (Expected<StringRef> NameOrErr = Section.getName())
546       SectionName = *NameOrErr;
547     else
548       consumeError(NameOrErr.takeError());
549 
550     SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
551     if (SectionName != "debug_info")
552       continue;
553     return findValidRelocs(Section, Obj, DMO);
554   }
555   return false;
556 }
557 
558 /// Checks that there is a relocation against an actual debug
559 /// map entry between \p StartOffset and \p NextOffset.
560 ///
561 /// This function must be called with offsets in strictly ascending
562 /// order because it never looks back at relocations it already 'went past'.
563 /// \returns true and sets Info.InDebugMap if it is the case.
564 bool DwarfLinkerForBinary::RelocationManager::hasValidRelocationAt(
565     uint64_t StartOffset, uint64_t EndOffset, CompileUnit::DIEInfo &Info) {
566   assert(NextValidReloc == 0 ||
567          StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
568   if (NextValidReloc >= ValidRelocs.size())
569     return false;
570 
571   uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
572 
573   // We might need to skip some relocs that we didn't consider. For
574   // example the high_pc of a discarded DIE might contain a reloc that
575   // is in the list because it actually corresponds to the start of a
576   // function that is in the debug map.
577   while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
578     RelocOffset = ValidRelocs[++NextValidReloc].Offset;
579 
580   if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
581     return false;
582 
583   const auto &ValidReloc = ValidRelocs[NextValidReloc++];
584   const auto &Mapping = ValidReloc.Mapping->getValue();
585   const uint64_t BinaryAddress = Mapping.BinaryAddress;
586   const uint64_t ObjectAddress = Mapping.ObjectAddress
587                                      ? uint64_t(*Mapping.ObjectAddress)
588                                      : std::numeric_limits<uint64_t>::max();
589   if (Linker.Options.Verbose)
590     outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
591            << "\t"
592            << format("0x%016" PRIx64 " => 0x%016" PRIx64 "\n", ObjectAddress,
593                      BinaryAddress);
594 
595   Info.AddrAdjust = BinaryAddress + ValidReloc.Addend;
596   if (Mapping.ObjectAddress)
597     Info.AddrAdjust -= ObjectAddress;
598   Info.InDebugMap = true;
599   return true;
600 }
601 
602 /// Get the starting and ending (exclusive) offset for the
603 /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
604 /// supposed to point to the position of the first attribute described
605 /// by \p Abbrev.
606 /// \return [StartOffset, EndOffset) as a pair.
607 static std::pair<uint64_t, uint64_t>
608 getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
609                     uint64_t Offset, const DWARFUnit &Unit) {
610   DataExtractor Data = Unit.getDebugInfoExtractor();
611 
612   for (unsigned i = 0; i < Idx; ++i)
613     DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset,
614                               Unit.getFormParams());
615 
616   uint64_t End = Offset;
617   DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End,
618                             Unit.getFormParams());
619 
620   return std::make_pair(Offset, End);
621 }
622 
623 /// Check if a variable describing DIE should be kept.
624 /// \returns updated TraversalFlags.
625 unsigned DwarfLinkerForBinary::shouldKeepVariableDIE(
626     RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit,
627     CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
628   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
629 
630   // Global variables with constant value can always be kept.
631   if (!(Flags & TF_InFunctionScope) &&
632       Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
633     MyInfo.InDebugMap = true;
634     return Flags | TF_Keep;
635   }
636 
637   Optional<uint32_t> LocationIdx =
638       Abbrev->findAttributeIndex(dwarf::DW_AT_location);
639   if (!LocationIdx)
640     return Flags;
641 
642   uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
643   const DWARFUnit &OrigUnit = Unit.getOrigUnit();
644   uint64_t LocationOffset, LocationEndOffset;
645   std::tie(LocationOffset, LocationEndOffset) =
646       getAttributeOffsets(Abbrev, *LocationIdx, Offset, OrigUnit);
647 
648   // See if there is a relocation to a valid debug map entry inside
649   // this variable's location. The order is important here. We want to
650   // always check if the variable has a valid relocation, so that the
651   // DIEInfo is filled. However, we don't want a static variable in a
652   // function to force us to keep the enclosing function.
653   if (!RelocMgr.hasValidRelocationAt(LocationOffset, LocationEndOffset,
654                                      MyInfo) ||
655       (Flags & TF_InFunctionScope))
656     return Flags;
657 
658   if (Options.Verbose) {
659     outs() << "Keeping variable DIE:";
660     DIDumpOptions DumpOpts;
661     DumpOpts.ChildRecurseDepth = 0;
662     DumpOpts.Verbose = Options.Verbose;
663     DIE.dump(outs(), 8 /* Indent */, DumpOpts);
664   }
665 
666   return Flags | TF_Keep;
667 }
668 
669 /// Check if a function describing DIE should be kept.
670 /// \returns updated TraversalFlags.
671 unsigned DwarfLinkerForBinary::shouldKeepSubprogramDIE(
672     RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
673     const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
674     unsigned Flags) {
675   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
676 
677   Flags |= TF_InFunctionScope;
678 
679   Optional<uint32_t> LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
680   if (!LowPcIdx)
681     return Flags;
682 
683   uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
684   DWARFUnit &OrigUnit = Unit.getOrigUnit();
685   uint64_t LowPcOffset, LowPcEndOffset;
686   std::tie(LowPcOffset, LowPcEndOffset) =
687       getAttributeOffsets(Abbrev, *LowPcIdx, Offset, OrigUnit);
688 
689   auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
690   assert(LowPc.hasValue() && "low_pc attribute is not an address.");
691   if (!LowPc ||
692       !RelocMgr.hasValidRelocationAt(LowPcOffset, LowPcEndOffset, MyInfo))
693     return Flags;
694 
695   if (Options.Verbose) {
696     outs() << "Keeping subprogram DIE:";
697     DIDumpOptions DumpOpts;
698     DumpOpts.ChildRecurseDepth = 0;
699     DumpOpts.Verbose = Options.Verbose;
700     DIE.dump(outs(), 8 /* Indent */, DumpOpts);
701   }
702 
703   if (DIE.getTag() == dwarf::DW_TAG_label) {
704     if (Unit.hasLabelAt(*LowPc))
705       return Flags;
706     // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
707     // that don't fall into the CU's aranges. This is wrong IMO. Debug info
708     // generation bugs aside, this is really wrong in the case of labels, where
709     // a label marking the end of a function will have a PC == CU's high_pc.
710     if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
711             .getValueOr(UINT64_MAX) <= LowPc)
712       return Flags;
713     Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
714     return Flags | TF_Keep;
715   }
716 
717   Flags |= TF_Keep;
718 
719   Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
720   if (!HighPc) {
721     reportWarning("Function without high_pc. Range will be discarded.\n", DMO,
722                   &DIE);
723     return Flags;
724   }
725 
726   // Replace the debug map range with a more accurate one.
727   Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust);
728   Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
729   return Flags;
730 }
731 
732 /// Check if a DIE should be kept.
733 /// \returns updated TraversalFlags.
734 unsigned DwarfLinkerForBinary::shouldKeepDIE(
735     RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
736     const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
737     unsigned Flags) {
738   switch (DIE.getTag()) {
739   case dwarf::DW_TAG_constant:
740   case dwarf::DW_TAG_variable:
741     return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
742   case dwarf::DW_TAG_subprogram:
743   case dwarf::DW_TAG_label:
744     return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, DMO, Unit, MyInfo,
745                                    Flags);
746   case dwarf::DW_TAG_base_type:
747     // DWARF Expressions may reference basic types, but scanning them
748     // is expensive. Basic types are tiny, so just keep all of them.
749   case dwarf::DW_TAG_imported_module:
750   case dwarf::DW_TAG_imported_declaration:
751   case dwarf::DW_TAG_imported_unit:
752     // We always want to keep these.
753     return Flags | TF_Keep;
754   default:
755     break;
756   }
757 
758   return Flags;
759 }
760 
761 namespace {
762 /// The  distinct types of work performed by the work loop.
763 enum class WorklistItemType {
764   /// Given a DIE, look for DIEs to be kept.
765   LookForDIEsToKeep,
766   /// Given a DIE, look for children of this DIE to be kept.
767   LookForChildDIEsToKeep,
768   /// Given a DIE, look for DIEs referencing this DIE to be kept.
769   LookForRefDIEsToKeep,
770   /// Given a DIE, look for parent DIEs to be kept.
771   LookForParentDIEsToKeep,
772   /// Given a DIE, update its incompleteness based on whether its children are
773   /// incomplete.
774   UpdateChildIncompleteness,
775   /// Given a DIE, update its incompleteness based on whether the DIEs it
776   /// references are incomplete.
777   UpdateRefIncompleteness,
778 };
779 
780 /// This class represents an item in the work list. The type defines what kind
781 /// of work needs to be performed when processing the current item. The flags
782 /// and info fields are optional based on the type.
783 struct WorklistItem {
784   WorklistItemType Type;
785   DWARFDie Die;
786   CompileUnit &CU;
787   unsigned Flags;
788   unsigned AncestorIdx = 0;
789   CompileUnit::DIEInfo *OtherInfo = nullptr;
790 
791   WorklistItem(DWARFDie Die, CompileUnit &CU, unsigned Flags,
792                WorklistItemType T = WorklistItemType::LookForDIEsToKeep)
793       : Type(T), Die(Die), CU(CU), Flags(Flags){};
794 
795   WorklistItem(DWARFDie Die, CompileUnit &CU, WorklistItemType T,
796                CompileUnit::DIEInfo *OtherInfo = nullptr)
797       : Type(T), Die(Die), CU(CU), OtherInfo(OtherInfo){};
798 
799   WorklistItem(unsigned AncestorIdx, CompileUnit &CU, unsigned Flags)
800       : Type(WorklistItemType::LookForParentDIEsToKeep), CU(CU), Flags(Flags),
801         AncestorIdx(AncestorIdx){};
802 };
803 } // namespace
804 
805 /// Helper that updates the completeness of the current DIE based on the
806 /// completeness of one of its children. It depends on the incompleteness of
807 /// the children already being computed.
808 static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
809                                       CompileUnit::DIEInfo &ChildInfo) {
810   switch (Die.getTag()) {
811   case dwarf::DW_TAG_structure_type:
812   case dwarf::DW_TAG_class_type:
813     break;
814   default:
815     return;
816   }
817 
818   unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
819   CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
820 
821   if (ChildInfo.Incomplete || ChildInfo.Prune)
822     MyInfo.Incomplete = true;
823 }
824 
825 /// Helper that updates the completeness of the current DIE based on the
826 /// completeness of the DIEs it references. It depends on the incompleteness of
827 /// the referenced DIE already being computed.
828 static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
829                                     CompileUnit::DIEInfo &RefInfo) {
830   switch (Die.getTag()) {
831   case dwarf::DW_TAG_typedef:
832   case dwarf::DW_TAG_member:
833   case dwarf::DW_TAG_reference_type:
834   case dwarf::DW_TAG_ptr_to_member_type:
835   case dwarf::DW_TAG_pointer_type:
836     break;
837   default:
838     return;
839   }
840 
841   unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
842   CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
843 
844   if (MyInfo.Incomplete)
845     return;
846 
847   if (RefInfo.Incomplete)
848     MyInfo.Incomplete = true;
849 }
850 
851 /// Look at the children of the given DIE and decide whether they should be
852 /// kept.
853 static void lookForChildDIEsToKeep(const DWARFDie &Die, CompileUnit &CU,
854                                    unsigned Flags,
855                                    SmallVectorImpl<WorklistItem> &Worklist) {
856   // The TF_ParentWalk flag tells us that we are currently walking up the
857   // parent chain of a required DIE, and we don't want to mark all the children
858   // of the parents as kept (consider for example a DW_TAG_namespace node in
859   // the parent chain). There are however a set of DIE types for which we want
860   // to ignore that directive and still walk their children.
861   if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
862     Flags &= ~DwarfLinkerForBinary::TF_ParentWalk;
863 
864   // We're finished if this DIE has no children or we're walking the parent
865   // chain.
866   if (!Die.hasChildren() || (Flags & DwarfLinkerForBinary::TF_ParentWalk))
867     return;
868 
869   // Add children in reverse order to the worklist to effectively process them
870   // in order.
871   for (auto Child : reverse(Die.children())) {
872     // Add a worklist item before every child to calculate incompleteness right
873     // after the current child is processed.
874     unsigned Idx = CU.getOrigUnit().getDIEIndex(Child);
875     CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Idx);
876     Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
877                           &ChildInfo);
878     Worklist.emplace_back(Child, CU, Flags);
879   }
880 }
881 
882 /// Look at DIEs referenced by the given DIE and decide whether they should be
883 /// kept. All DIEs referenced though attributes should be kept.
884 static void lookForRefDIEsToKeep(const DWARFDie &Die, CompileUnit &CU,
885                                  unsigned Flags, DwarfLinkerForBinary &Linker,
886                                  const UnitListTy &Units,
887                                  const DebugMapObject &DMO,
888                                  SmallVectorImpl<WorklistItem> &Worklist) {
889   bool UseOdr = (Flags & DwarfLinkerForBinary::TF_DependencyWalk)
890                     ? (Flags & DwarfLinkerForBinary::TF_ODR)
891                     : CU.hasODR();
892   DWARFUnit &Unit = CU.getOrigUnit();
893   DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
894   const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
895   uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
896 
897   SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
898   for (const auto &AttrSpec : Abbrev->attributes()) {
899     DWARFFormValue Val(AttrSpec.Form);
900     if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
901         AttrSpec.Attr == dwarf::DW_AT_sibling) {
902       DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
903                                 Unit.getFormParams());
904       continue;
905     }
906 
907     Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
908     CompileUnit *ReferencedCU;
909     if (auto RefDie =
910             resolveDIEReference(Linker, DMO, Units, Val, Die, ReferencedCU)) {
911       uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDie);
912       CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx);
913       bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
914                          Info.Ctxt->isDefinedInClangModule();
915       // If the referenced DIE has a DeclContext that has already been
916       // emitted, then do not keep the one in this CU. We'll link to
917       // the canonical DIE in cloneDieReferenceAttribute.
918       //
919       // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
920       // be necessary and could be advantageously replaced by
921       // ReferencedCU->hasODR() && CU.hasODR().
922       //
923       // FIXME: compatibility with dsymutil-classic. There is no
924       // reason not to unique ref_addr references.
925       if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) &&
926           Info.Ctxt &&
927           Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
928           Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
929         continue;
930 
931       // Keep a module forward declaration if there is no definition.
932       if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
933             Info.Ctxt->getCanonicalDIEOffset()))
934         Info.Prune = false;
935       ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
936     }
937   }
938 
939   unsigned ODRFlag = UseOdr ? DwarfLinkerForBinary::TF_ODR : 0;
940 
941   // Add referenced DIEs in reverse order to the worklist to effectively
942   // process them in order.
943   for (auto &P : reverse(ReferencedDIEs)) {
944     // Add a worklist item before every child to calculate incompleteness right
945     // after the current child is processed.
946     uint32_t RefIdx = P.second.getOrigUnit().getDIEIndex(P.first);
947     CompileUnit::DIEInfo &Info = P.second.getInfo(RefIdx);
948     Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
949                           &Info);
950     Worklist.emplace_back(P.first, P.second,
951                           DwarfLinkerForBinary::TF_Keep |
952                               DwarfLinkerForBinary::TF_DependencyWalk |
953                               ODRFlag);
954   }
955 }
956 
957 /// Look at the parent of the given DIE and decide whether they should be kept.
958 static void lookForParentDIEsToKeep(unsigned AncestorIdx, CompileUnit &CU,
959                                     unsigned Flags,
960                                     SmallVectorImpl<WorklistItem> &Worklist) {
961   // Stop if we encounter an ancestor that's already marked as kept.
962   if (CU.getInfo(AncestorIdx).Keep)
963     return;
964 
965   DWARFUnit &Unit = CU.getOrigUnit();
966   DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
967   Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
968   Worklist.emplace_back(ParentDIE, CU, Flags);
969 }
970 
971 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
972 /// information in \p CU's DIEInfo.
973 ///
974 /// This function is the entry point of the DIE selection algorithm. It is
975 /// expected to walk the DIE tree in file order and (though the mediation of
976 /// its helper) call hasValidRelocation() on each DIE that might be a 'root
977 /// DIE' (See DwarfLinker class comment).
978 ///
979 /// While walking the dependencies of root DIEs, this function is also called,
980 /// but during these dependency walks the file order is not respected. The
981 /// TF_DependencyWalk flag tells us which kind of traversal we are currently
982 /// doing.
983 ///
984 /// The recursive algorithm is implemented iteratively as a work list because
985 /// very deep recursion could exhaust the stack for large projects. The work
986 /// list acts as a scheduler for different types of work that need to be
987 /// performed.
988 ///
989 /// The recursive nature of the algorithm is simulated by running the "main"
990 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
991 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
992 /// fixing up a computed property (UpdateChildIncompleteness,
993 /// UpdateRefIncompleteness).
994 ///
995 /// The return value indicates whether the DIE is incomplete.
996 void DwarfLinkerForBinary::lookForDIEsToKeep(RelocationManager &RelocMgr,
997                                              RangesTy &Ranges,
998                                              const UnitListTy &Units,
999                                              const DWARFDie &Die,
1000                                              const DebugMapObject &DMO,
1001                                              CompileUnit &Cu, unsigned Flags) {
1002   // LIFO work list.
1003   SmallVector<WorklistItem, 4> Worklist;
1004   Worklist.emplace_back(Die, Cu, Flags);
1005 
1006   while (!Worklist.empty()) {
1007     WorklistItem Current = Worklist.back();
1008     Worklist.pop_back();
1009 
1010     // Look at the worklist type to decide what kind of work to perform.
1011     switch (Current.Type) {
1012     case WorklistItemType::UpdateChildIncompleteness:
1013       updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
1014       continue;
1015     case WorklistItemType::UpdateRefIncompleteness:
1016       updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
1017       continue;
1018     case WorklistItemType::LookForChildDIEsToKeep:
1019       lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
1020       continue;
1021     case WorklistItemType::LookForRefDIEsToKeep:
1022       lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, *this, Units,
1023                            DMO, Worklist);
1024       continue;
1025     case WorklistItemType::LookForParentDIEsToKeep:
1026       lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
1027                               Worklist);
1028       continue;
1029     case WorklistItemType::LookForDIEsToKeep:
1030       break;
1031     }
1032 
1033     unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
1034     CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
1035 
1036     if (MyInfo.Prune)
1037       continue;
1038 
1039     // If the Keep flag is set, we are marking a required DIE's dependencies.
1040     // If our target is already marked as kept, we're all set.
1041     bool AlreadyKept = MyInfo.Keep;
1042     if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
1043       continue;
1044 
1045     // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
1046     // because it would screw up the relocation finding logic.
1047     if (!(Current.Flags & TF_DependencyWalk))
1048       Current.Flags = shouldKeepDIE(RelocMgr, Ranges, Current.Die, DMO,
1049                                     Current.CU, MyInfo, Current.Flags);
1050 
1051     // Finish by looking for child DIEs. Because of the LIFO worklist we need
1052     // to schedule that work before any subsequent items are added to the
1053     // worklist.
1054     Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
1055                           WorklistItemType::LookForChildDIEsToKeep);
1056 
1057     if (AlreadyKept || !(Current.Flags & TF_Keep))
1058       continue;
1059 
1060     // If it is a newly kept DIE mark it as well as all its dependencies as
1061     // kept.
1062     MyInfo.Keep = true;
1063 
1064     // We're looking for incomplete types.
1065     MyInfo.Incomplete =
1066         Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
1067         Current.Die.getTag() != dwarf::DW_TAG_member &&
1068         dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
1069 
1070     // After looking at the parent chain, look for referenced DIEs. Because of
1071     // the LIFO worklist we need to schedule that work before any subsequent
1072     // items are added to the worklist.
1073     Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
1074                           WorklistItemType::LookForRefDIEsToKeep);
1075 
1076     bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
1077                                                       : Current.CU.hasODR();
1078     unsigned ODRFlag = UseOdr ? TF_ODR : 0;
1079     unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
1080 
1081     // Now schedule the parent walk.
1082     Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
1083   }
1084 }
1085 
1086 /// Assign an abbreviation number to \p Abbrev.
1087 ///
1088 /// Our DIEs get freed after every DebugMapObject has been processed,
1089 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
1090 /// the instances hold by the DIEs. When we encounter an abbreviation
1091 /// that we don't know, we create a permanent copy of it.
1092 void DwarfLinkerForBinary::assignAbbrev(DIEAbbrev &Abbrev) {
1093   // Check the set for priors.
1094   FoldingSetNodeID ID;
1095   Abbrev.Profile(ID);
1096   void *InsertToken;
1097   DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
1098 
1099   // If it's newly added.
1100   if (InSet) {
1101     // Assign existing abbreviation number.
1102     Abbrev.setNumber(InSet->getNumber());
1103   } else {
1104     // Add to abbreviation list.
1105     Abbreviations.push_back(
1106         std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
1107     for (const auto &Attr : Abbrev.getData())
1108       Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
1109     AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
1110     // Assign the unique abbreviation number.
1111     Abbrev.setNumber(Abbreviations.size());
1112     Abbreviations.back()->setNumber(Abbreviations.size());
1113   }
1114 }
1115 
1116 unsigned DwarfLinkerForBinary::DIECloner::cloneStringAttribute(
1117     DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1118     const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
1119   // Switch everything to out of line strings.
1120   const char *String = *Val.getAsCString();
1121   auto StringEntry = StringPool.getEntry(String);
1122 
1123   // Update attributes info.
1124   if (AttrSpec.Attr == dwarf::DW_AT_name)
1125     Info.Name = StringEntry;
1126   else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
1127            AttrSpec.Attr == dwarf::DW_AT_linkage_name)
1128     Info.MangledName = StringEntry;
1129 
1130   Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
1131                DIEInteger(StringEntry.getOffset()));
1132 
1133   return 4;
1134 }
1135 
1136 unsigned DwarfLinkerForBinary::DIECloner::cloneDieReferenceAttribute(
1137     DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
1138     unsigned AttrSize, const DWARFFormValue &Val, const DebugMapObject &DMO,
1139     CompileUnit &Unit) {
1140   const DWARFUnit &U = Unit.getOrigUnit();
1141   uint64_t Ref = *Val.getAsReference();
1142   DIE *NewRefDie = nullptr;
1143   CompileUnit *RefUnit = nullptr;
1144   DeclContext *Ctxt = nullptr;
1145 
1146   DWARFDie RefDie =
1147       resolveDIEReference(Linker, DMO, CompileUnits, Val, InputDIE, RefUnit);
1148 
1149   // If the referenced DIE is not found,  drop the attribute.
1150   if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
1151     return 0;
1152 
1153   unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
1154   CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
1155 
1156   // If we already have emitted an equivalent DeclContext, just point
1157   // at it.
1158   if (isODRAttribute(AttrSpec.Attr)) {
1159     Ctxt = RefInfo.Ctxt;
1160     if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
1161       DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
1162       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1163                    dwarf::DW_FORM_ref_addr, Attr);
1164       return U.getRefAddrByteSize();
1165     }
1166   }
1167 
1168   if (!RefInfo.Clone) {
1169     assert(Ref > InputDIE.getOffset());
1170     // We haven't cloned this DIE yet. Just create an empty one and
1171     // store it. It'll get really cloned when we process it.
1172     RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
1173   }
1174   NewRefDie = RefInfo.Clone;
1175 
1176   if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
1177       (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
1178     // We cannot currently rely on a DIEEntry to emit ref_addr
1179     // references, because the implementation calls back to DwarfDebug
1180     // to find the unit offset. (We don't have a DwarfDebug)
1181     // FIXME: we should be able to design DIEEntry reliance on
1182     // DwarfDebug away.
1183     uint64_t Attr;
1184     if (Ref < InputDIE.getOffset()) {
1185       // We must have already cloned that DIE.
1186       uint32_t NewRefOffset =
1187           RefUnit->getStartOffset() + NewRefDie->getOffset();
1188       Attr = NewRefOffset;
1189       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1190                    dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
1191     } else {
1192       // A forward reference. Note and fixup later.
1193       Attr = 0xBADDEF;
1194       Unit.noteForwardReference(
1195           NewRefDie, RefUnit, Ctxt,
1196           Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1197                        dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
1198     }
1199     return U.getRefAddrByteSize();
1200   }
1201 
1202   Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1203                dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
1204   return AttrSize;
1205 }
1206 
1207 void DwarfLinkerForBinary::DIECloner::cloneExpression(
1208     DataExtractor &Data, DWARFExpression Expression, const DebugMapObject &DMO,
1209     CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
1210   using Encoding = DWARFExpression::Operation::Encoding;
1211 
1212   uint64_t OpOffset = 0;
1213   for (auto &Op : Expression) {
1214     auto Description = Op.getDescription();
1215     // DW_OP_const_type is variable-length and has 3
1216     // operands. DWARFExpression thus far only supports 2.
1217     auto Op0 = Description.Op[0];
1218     auto Op1 = Description.Op[1];
1219     if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
1220         (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
1221       Linker.reportWarning("Unsupported DW_OP encoding.", DMO);
1222 
1223     if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
1224         (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
1225       // This code assumes that the other non-typeref operand fits into 1 byte.
1226       assert(OpOffset < Op.getEndOffset());
1227       uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
1228       assert(ULEBsize <= 16);
1229 
1230       // Copy over the operation.
1231       OutputBuffer.push_back(Op.getCode());
1232       uint64_t RefOffset;
1233       if (Op1 == Encoding::SizeNA) {
1234         RefOffset = Op.getRawOperand(0);
1235       } else {
1236         OutputBuffer.push_back(Op.getRawOperand(0));
1237         RefOffset = Op.getRawOperand(1);
1238       }
1239       auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
1240       uint32_t RefIdx = Unit.getOrigUnit().getDIEIndex(RefDie);
1241       CompileUnit::DIEInfo &Info = Unit.getInfo(RefIdx);
1242       uint32_t Offset = 0;
1243       if (DIE *Clone = Info.Clone)
1244         Offset = Clone->getOffset();
1245       else
1246         Linker.reportWarning("base type ref doesn't point to DW_TAG_base_type.",
1247                              DMO);
1248       uint8_t ULEB[16];
1249       unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
1250       if (RealSize > ULEBsize) {
1251         // Emit the generic type as a fallback.
1252         RealSize = encodeULEB128(0, ULEB, ULEBsize);
1253         Linker.reportWarning("base type ref doesn't fit.", DMO);
1254       }
1255       assert(RealSize == ULEBsize && "padding failed");
1256       ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
1257       OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
1258     } else {
1259       // Copy over everything else unmodified.
1260       StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
1261       OutputBuffer.append(Bytes.begin(), Bytes.end());
1262     }
1263     OpOffset = Op.getEndOffset();
1264   }
1265 }
1266 
1267 unsigned DwarfLinkerForBinary::DIECloner::cloneBlockAttribute(
1268     DIE &Die, const DebugMapObject &DMO, CompileUnit &Unit,
1269     AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize,
1270     bool IsLittleEndian) {
1271   DIEValueList *Attr;
1272   DIEValue Value;
1273   DIELoc *Loc = nullptr;
1274   DIEBlock *Block = nullptr;
1275   if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1276     Loc = new (DIEAlloc) DIELoc;
1277     Linker.DIELocs.push_back(Loc);
1278   } else {
1279     Block = new (DIEAlloc) DIEBlock;
1280     Linker.DIEBlocks.push_back(Block);
1281   }
1282   Attr = Loc ? static_cast<DIEValueList *>(Loc)
1283              : static_cast<DIEValueList *>(Block);
1284 
1285   if (Loc)
1286     Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1287                      dwarf::Form(AttrSpec.Form), Loc);
1288   else
1289     Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1290                      dwarf::Form(AttrSpec.Form), Block);
1291 
1292   // If the block is a DWARF Expression, clone it into the temporary
1293   // buffer using cloneExpression(), otherwise copy the data directly.
1294   SmallVector<uint8_t, 32> Buffer;
1295   ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1296   if (DWARFAttribute::mayHaveLocationDescription(AttrSpec.Attr) &&
1297       (Val.isFormClass(DWARFFormValue::FC_Block) ||
1298        Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
1299     DWARFUnit &OrigUnit = Unit.getOrigUnit();
1300     DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
1301                        IsLittleEndian, OrigUnit.getAddressByteSize());
1302     DWARFExpression Expr(Data, OrigUnit.getVersion(),
1303                          OrigUnit.getAddressByteSize());
1304     cloneExpression(Data, Expr, DMO, Unit, Buffer);
1305     Bytes = Buffer;
1306   }
1307   for (auto Byte : Bytes)
1308     Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
1309                    dwarf::DW_FORM_data1, DIEInteger(Byte));
1310 
1311   // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1312   // the DIE class, this if could be replaced by
1313   // Attr->setSize(Bytes.size()).
1314   if (Linker.Streamer) {
1315     auto *AsmPrinter = &Linker.Streamer->getAsmPrinter();
1316     if (Loc)
1317       Loc->ComputeSize(AsmPrinter);
1318     else
1319       Block->ComputeSize(AsmPrinter);
1320   }
1321   Die.addValue(DIEAlloc, Value);
1322   return AttrSize;
1323 }
1324 
1325 unsigned DwarfLinkerForBinary::DIECloner::cloneAddressAttribute(
1326     DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1327     const CompileUnit &Unit, AttributesInfo &Info) {
1328   uint64_t Addr = *Val.getAsAddress();
1329 
1330   if (LLVM_UNLIKELY(Linker.Options.Update)) {
1331     if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
1332       Info.HasLowPc = true;
1333     Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1334                  dwarf::Form(AttrSpec.Form), DIEInteger(Addr));
1335     return Unit.getOrigUnit().getAddressByteSize();
1336   }
1337 
1338   if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1339     if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
1340         Die.getTag() == dwarf::DW_TAG_lexical_block)
1341       // The low_pc of a block or inline subroutine might get
1342       // relocated because it happens to match the low_pc of the
1343       // enclosing subprogram. To prevent issues with that, always use
1344       // the low_pc from the input DIE if relocations have been applied.
1345       Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
1346                   ? Info.OrigLowPc
1347                   : Addr) +
1348              Info.PCOffset;
1349     else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1350       Addr = Unit.getLowPc();
1351       if (Addr == std::numeric_limits<uint64_t>::max())
1352         return 0;
1353     }
1354     Info.HasLowPc = true;
1355   } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1356     if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1357       if (uint64_t HighPc = Unit.getHighPc())
1358         Addr = HighPc;
1359       else
1360         return 0;
1361     } else
1362       // If we have a high_pc recorded for the input DIE, use
1363       // it. Otherwise (when no relocations where applied) just use the
1364       // one we just decoded.
1365       Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
1366   }
1367 
1368   Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1369                static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
1370   return Unit.getOrigUnit().getAddressByteSize();
1371 }
1372 
1373 unsigned DwarfLinkerForBinary::DIECloner::cloneScalarAttribute(
1374     DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
1375     CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1376     unsigned AttrSize, AttributesInfo &Info) {
1377   uint64_t Value;
1378 
1379   if (LLVM_UNLIKELY(Linker.Options.Update)) {
1380     if (auto OptionalValue = Val.getAsUnsignedConstant())
1381       Value = *OptionalValue;
1382     else if (auto OptionalValue = Val.getAsSignedConstant())
1383       Value = *OptionalValue;
1384     else if (auto OptionalValue = Val.getAsSectionOffset())
1385       Value = *OptionalValue;
1386     else {
1387       Linker.reportWarning(
1388           "Unsupported scalar attribute form. Dropping attribute.", DMO,
1389           &InputDIE);
1390       return 0;
1391     }
1392     if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1393       Info.IsDeclaration = true;
1394     Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1395                  dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1396     return AttrSize;
1397   }
1398 
1399   if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1400       Die.getTag() == dwarf::DW_TAG_compile_unit) {
1401     if (Unit.getLowPc() == -1ULL)
1402       return 0;
1403     // Dwarf >= 4 high_pc is an size, not an address.
1404     Value = Unit.getHighPc() - Unit.getLowPc();
1405   } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1406     Value = *Val.getAsSectionOffset();
1407   else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1408     Value = *Val.getAsSignedConstant();
1409   else if (auto OptionalValue = Val.getAsUnsignedConstant())
1410     Value = *OptionalValue;
1411   else {
1412     Linker.reportWarning(
1413         "Unsupported scalar attribute form. Dropping attribute.", DMO,
1414         &InputDIE);
1415     return 0;
1416   }
1417   PatchLocation Patch =
1418       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1419                    dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1420   if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
1421     Unit.noteRangeAttribute(Die, Patch);
1422     Info.HasRanges = true;
1423   }
1424 
1425   // A more generic way to check for location attributes would be
1426   // nice, but it's very unlikely that any other attribute needs a
1427   // location list.
1428   // FIXME: use DWARFAttribute::mayHaveLocationDescription().
1429   else if (AttrSpec.Attr == dwarf::DW_AT_location ||
1430            AttrSpec.Attr == dwarf::DW_AT_frame_base)
1431     Unit.noteLocationAttribute(Patch, Info.PCOffset);
1432   else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1433     Info.IsDeclaration = true;
1434 
1435   return AttrSize;
1436 }
1437 
1438 /// Clone \p InputDIE's attribute described by \p AttrSpec with
1439 /// value \p Val, and add it to \p Die.
1440 /// \returns the size of the cloned attribute.
1441 unsigned DwarfLinkerForBinary::DIECloner::cloneAttribute(
1442     DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
1443     CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
1444     const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
1445     bool IsLittleEndian) {
1446   const DWARFUnit &U = Unit.getOrigUnit();
1447 
1448   switch (AttrSpec.Form) {
1449   case dwarf::DW_FORM_strp:
1450   case dwarf::DW_FORM_string:
1451     return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
1452   case dwarf::DW_FORM_ref_addr:
1453   case dwarf::DW_FORM_ref1:
1454   case dwarf::DW_FORM_ref2:
1455   case dwarf::DW_FORM_ref4:
1456   case dwarf::DW_FORM_ref8:
1457     return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1458                                       DMO, Unit);
1459   case dwarf::DW_FORM_block:
1460   case dwarf::DW_FORM_block1:
1461   case dwarf::DW_FORM_block2:
1462   case dwarf::DW_FORM_block4:
1463   case dwarf::DW_FORM_exprloc:
1464     return cloneBlockAttribute(Die, DMO, Unit, AttrSpec, Val, AttrSize,
1465                                IsLittleEndian);
1466   case dwarf::DW_FORM_addr:
1467     return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
1468   case dwarf::DW_FORM_data1:
1469   case dwarf::DW_FORM_data2:
1470   case dwarf::DW_FORM_data4:
1471   case dwarf::DW_FORM_data8:
1472   case dwarf::DW_FORM_udata:
1473   case dwarf::DW_FORM_sdata:
1474   case dwarf::DW_FORM_sec_offset:
1475   case dwarf::DW_FORM_flag:
1476   case dwarf::DW_FORM_flag_present:
1477     return cloneScalarAttribute(Die, InputDIE, DMO, Unit, AttrSpec, Val,
1478                                 AttrSize, Info);
1479   default:
1480     Linker.reportWarning(
1481         "Unsupported attribute form in cloneAttribute. Dropping.", DMO,
1482         &InputDIE);
1483   }
1484 
1485   return 0;
1486 }
1487 
1488 /// Apply the valid relocations found by findValidRelocs() to
1489 /// the buffer \p Data, taking into account that Data is at \p BaseOffset
1490 /// in the debug_info section.
1491 ///
1492 /// Like for findValidRelocs(), this function must be called with
1493 /// monotonic \p BaseOffset values.
1494 ///
1495 /// \returns whether any reloc has been applied.
1496 bool DwarfLinkerForBinary::RelocationManager::applyValidRelocs(
1497     MutableArrayRef<char> Data, uint64_t BaseOffset, bool IsLittleEndian) {
1498   assert((NextValidReloc == 0 ||
1499           BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
1500          "BaseOffset should only be increasing.");
1501   if (NextValidReloc >= ValidRelocs.size())
1502     return false;
1503 
1504   // Skip relocs that haven't been applied.
1505   while (NextValidReloc < ValidRelocs.size() &&
1506          ValidRelocs[NextValidReloc].Offset < BaseOffset)
1507     ++NextValidReloc;
1508 
1509   bool Applied = false;
1510   uint64_t EndOffset = BaseOffset + Data.size();
1511   while (NextValidReloc < ValidRelocs.size() &&
1512          ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
1513          ValidRelocs[NextValidReloc].Offset < EndOffset) {
1514     const auto &ValidReloc = ValidRelocs[NextValidReloc++];
1515     assert(ValidReloc.Offset - BaseOffset < Data.size());
1516     assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
1517     char Buf[8];
1518     uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
1519     Value += ValidReloc.Addend;
1520     for (unsigned i = 0; i != ValidReloc.Size; ++i) {
1521       unsigned Index = IsLittleEndian ? i : (ValidReloc.Size - i - 1);
1522       Buf[i] = uint8_t(Value >> (Index * 8));
1523     }
1524     assert(ValidReloc.Size <= sizeof(Buf));
1525     memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
1526     Applied = true;
1527   }
1528 
1529   return Applied;
1530 }
1531 
1532 static bool isObjCSelector(StringRef Name) {
1533   return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
1534          (Name[1] == '[');
1535 }
1536 
1537 void DwarfLinkerForBinary::DIECloner::addObjCAccelerator(
1538     CompileUnit &Unit, const DIE *Die, DwarfStringPoolEntryRef Name,
1539     OffsetsStringPool &StringPool, bool SkipPubSection) {
1540   assert(isObjCSelector(Name.getString()) && "not an objc selector");
1541   // Objective C method or class function.
1542   // "- [Class(Category) selector :withArg ...]"
1543   StringRef ClassNameStart(Name.getString().drop_front(2));
1544   size_t FirstSpace = ClassNameStart.find(' ');
1545   if (FirstSpace == StringRef::npos)
1546     return;
1547 
1548   StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
1549   if (!SelectorStart.size())
1550     return;
1551 
1552   StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
1553   Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
1554 
1555   // Add an entry for the class name that points to this
1556   // method/class function.
1557   StringRef ClassName(ClassNameStart.data(), FirstSpace);
1558   Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
1559 
1560   if (ClassName[ClassName.size() - 1] == ')') {
1561     size_t OpenParens = ClassName.find('(');
1562     if (OpenParens != StringRef::npos) {
1563       StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
1564       Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
1565                               SkipPubSection);
1566 
1567       std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
1568       // FIXME: The missing space here may be a bug, but
1569       //        dsymutil-classic also does it this way.
1570       MethodNameNoCategory.append(SelectorStart);
1571       Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
1572                               SkipPubSection);
1573     }
1574   }
1575 }
1576 
1577 static bool
1578 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
1579                     uint16_t Tag, bool InDebugMap, bool SkipPC,
1580                     bool InFunctionScope) {
1581   switch (AttrSpec.Attr) {
1582   default:
1583     return false;
1584   case dwarf::DW_AT_low_pc:
1585   case dwarf::DW_AT_high_pc:
1586   case dwarf::DW_AT_ranges:
1587     return SkipPC;
1588   case dwarf::DW_AT_location:
1589   case dwarf::DW_AT_frame_base:
1590     // FIXME: for some reason dsymutil-classic keeps the location attributes
1591     // when they are of block type (i.e. not location lists). This is totally
1592     // wrong for globals where we will keep a wrong address. It is mostly
1593     // harmless for locals, but there is no point in keeping these anyway when
1594     // the function wasn't linked.
1595     return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
1596                        !InDebugMap)) &&
1597            !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
1598   }
1599 }
1600 
1601 DIE *DwarfLinkerForBinary::DIECloner::cloneDIE(
1602     const DWARFDie &InputDIE, const DebugMapObject &DMO, CompileUnit &Unit,
1603     OffsetsStringPool &StringPool, int64_t PCOffset, uint32_t OutOffset,
1604     unsigned Flags, bool IsLittleEndian, DIE *Die) {
1605   DWARFUnit &U = Unit.getOrigUnit();
1606   unsigned Idx = U.getDIEIndex(InputDIE);
1607   CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
1608 
1609   // Should the DIE appear in the output?
1610   if (!Unit.getInfo(Idx).Keep)
1611     return nullptr;
1612 
1613   uint64_t Offset = InputDIE.getOffset();
1614   assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
1615   if (!Die) {
1616     // The DIE might have been already created by a forward reference
1617     // (see cloneDieReferenceAttribute()).
1618     if (!Info.Clone)
1619       Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
1620     Die = Info.Clone;
1621   }
1622 
1623   assert(Die->getTag() == InputDIE.getTag());
1624   Die->setOffset(OutOffset);
1625   if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
1626       Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
1627       Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
1628       !Info.Ctxt->getCanonicalDIEOffset()) {
1629     // We are about to emit a DIE that is the root of its own valid
1630     // DeclContext tree. Make the current offset the canonical offset
1631     // for this context.
1632     Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
1633   }
1634 
1635   // Extract and clone every attribute.
1636   DWARFDataExtractor Data = U.getDebugInfoExtractor();
1637   // Point to the next DIE (generally there is always at least a NULL
1638   // entry after the current one). If this is a lone
1639   // DW_TAG_compile_unit without any children, point to the next unit.
1640   uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
1641                             ? U.getDIEAtIndex(Idx + 1).getOffset()
1642                             : U.getNextUnitOffset();
1643   AttributesInfo AttrInfo;
1644 
1645   // We could copy the data only if we need to apply a relocation to it. After
1646   // testing, it seems there is no performance downside to doing the copy
1647   // unconditionally, and it makes the code simpler.
1648   SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
1649   Data =
1650       DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
1651   // Modify the copy with relocated addresses.
1652   if (RelocMgr.areRelocationsResolved() &&
1653       RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
1654     // If we applied relocations, we store the value of high_pc that was
1655     // potentially stored in the input DIE. If high_pc is an address
1656     // (Dwarf version == 2), then it might have been relocated to a
1657     // totally unrelated value (because the end address in the object
1658     // file might be start address of another function which got moved
1659     // independently by the linker). The computation of the actual
1660     // high_pc value is done in cloneAddressAttribute().
1661     AttrInfo.OrigHighPc =
1662         dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
1663     // Also store the low_pc. It might get relocated in an
1664     // inline_subprogram that happens at the beginning of its
1665     // inlining function.
1666     AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
1667                                           std::numeric_limits<uint64_t>::max());
1668   }
1669 
1670   // Reset the Offset to 0 as we will be working on the local copy of
1671   // the data.
1672   Offset = 0;
1673 
1674   const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
1675   Offset += getULEB128Size(Abbrev->getCode());
1676 
1677   // We are entering a subprogram. Get and propagate the PCOffset.
1678   if (Die->getTag() == dwarf::DW_TAG_subprogram)
1679     PCOffset = Info.AddrAdjust;
1680   AttrInfo.PCOffset = PCOffset;
1681 
1682   if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
1683     Flags |= TF_InFunctionScope;
1684     if (!Info.InDebugMap && LLVM_LIKELY(!Options.Update))
1685       Flags |= TF_SkipPC;
1686   }
1687 
1688   bool Copied = false;
1689   for (const auto &AttrSpec : Abbrev->attributes()) {
1690     if (LLVM_LIKELY(!Options.Update) &&
1691         shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
1692                             Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
1693       DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
1694                                 U.getFormParams());
1695       // FIXME: dsymutil-classic keeps the old abbreviation around
1696       // even if it's not used. We can remove this (and the copyAbbrev
1697       // helper) as soon as bit-for-bit compatibility is not a goal anymore.
1698       if (!Copied) {
1699         copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
1700         Copied = true;
1701       }
1702       continue;
1703     }
1704 
1705     DWARFFormValue Val(AttrSpec.Form);
1706     uint64_t AttrSize = Offset;
1707     Val.extractValue(Data, &Offset, U.getFormParams(), &U);
1708     AttrSize = Offset - AttrSize;
1709 
1710     OutOffset += cloneAttribute(*Die, InputDIE, DMO, Unit, StringPool, Val,
1711                                 AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
1712   }
1713 
1714   // Look for accelerator entries.
1715   uint16_t Tag = InputDIE.getTag();
1716   // FIXME: This is slightly wrong. An inline_subroutine without a
1717   // low_pc, but with AT_ranges might be interesting to get into the
1718   // accelerator tables too. For now stick with dsymutil's behavior.
1719   if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
1720       Tag != dwarf::DW_TAG_compile_unit &&
1721       getDIENames(InputDIE, AttrInfo, StringPool,
1722                   Tag != dwarf::DW_TAG_inlined_subroutine)) {
1723     if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
1724       Unit.addNameAccelerator(Die, AttrInfo.MangledName,
1725                               Tag == dwarf::DW_TAG_inlined_subroutine);
1726     if (AttrInfo.Name) {
1727       if (AttrInfo.NameWithoutTemplate)
1728         Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
1729                                 /* SkipPubSection */ true);
1730       Unit.addNameAccelerator(Die, AttrInfo.Name,
1731                               Tag == dwarf::DW_TAG_inlined_subroutine);
1732     }
1733     if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
1734       addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
1735                          /* SkipPubSection =*/true);
1736 
1737   } else if (Tag == dwarf::DW_TAG_namespace) {
1738     if (!AttrInfo.Name)
1739       AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
1740     Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1741   } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
1742              getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
1743              AttrInfo.Name.getString()[0]) {
1744     uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, DMO);
1745     uint64_t RuntimeLang =
1746         dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
1747             .getValueOr(0);
1748     bool ObjCClassIsImplementation =
1749         (RuntimeLang == dwarf::DW_LANG_ObjC ||
1750          RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
1751         dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
1752             .getValueOr(0);
1753     Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
1754                             Hash);
1755   }
1756 
1757   // Determine whether there are any children that we want to keep.
1758   bool HasChildren = false;
1759   for (auto Child : InputDIE.children()) {
1760     unsigned Idx = U.getDIEIndex(Child);
1761     if (Unit.getInfo(Idx).Keep) {
1762       HasChildren = true;
1763       break;
1764     }
1765   }
1766 
1767   DIEAbbrev NewAbbrev = Die->generateAbbrev();
1768   if (HasChildren)
1769     NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
1770   // Assign a permanent abbrev number
1771   Linker.assignAbbrev(NewAbbrev);
1772   Die->setAbbrevNumber(NewAbbrev.getNumber());
1773 
1774   // Add the size of the abbreviation number to the output offset.
1775   OutOffset += getULEB128Size(Die->getAbbrevNumber());
1776 
1777   if (!HasChildren) {
1778     // Update our size.
1779     Die->setSize(OutOffset - Die->getOffset());
1780     return Die;
1781   }
1782 
1783   // Recursively clone children.
1784   for (auto Child : InputDIE.children()) {
1785     if (DIE *Clone = cloneDIE(Child, DMO, Unit, StringPool, PCOffset, OutOffset,
1786                               Flags, IsLittleEndian)) {
1787       Die->addChild(Clone);
1788       OutOffset = Clone->getOffset() + Clone->getSize();
1789     }
1790   }
1791 
1792   // Account for the end of children marker.
1793   OutOffset += sizeof(int8_t);
1794   // Update our size.
1795   Die->setSize(OutOffset - Die->getOffset());
1796   return Die;
1797 }
1798 
1799 /// Patch the input object file relevant debug_ranges entries
1800 /// and emit them in the output file. Update the relevant attributes
1801 /// to point at the new entries.
1802 void DwarfLinkerForBinary::patchRangesForUnit(const CompileUnit &Unit,
1803                                               DWARFContext &OrigDwarf,
1804                                               const DebugMapObject &DMO) const {
1805   DWARFDebugRangeList RangeList;
1806   const auto &FunctionRanges = Unit.getFunctionRanges();
1807   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
1808   DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
1809                                     OrigDwarf.getDWARFObj().getRangesSection(),
1810                                     OrigDwarf.isLittleEndian(), AddressSize);
1811   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1812   DWARFUnit &OrigUnit = Unit.getOrigUnit();
1813   auto OrigUnitDie = OrigUnit.getUnitDIE(false);
1814   uint64_t OrigLowPc =
1815       dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
1816   // Ranges addresses are based on the unit's low_pc. Compute the
1817   // offset we need to apply to adapt to the new unit's low_pc.
1818   int64_t UnitPcOffset = 0;
1819   if (OrigLowPc != -1ULL)
1820     UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
1821 
1822   for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
1823     uint64_t Offset = RangeAttribute.get();
1824     RangeAttribute.set(Streamer->getRangesSectionSize());
1825     if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
1826       llvm::consumeError(std::move(E));
1827       reportWarning("invalid range list ignored.", DMO);
1828       RangeList.clear();
1829     }
1830     const auto &Entries = RangeList.getEntries();
1831     if (!Entries.empty()) {
1832       const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
1833 
1834       if (CurrRange == InvalidRange ||
1835           First.StartAddress + OrigLowPc < CurrRange.start() ||
1836           First.StartAddress + OrigLowPc >= CurrRange.stop()) {
1837         CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
1838         if (CurrRange == InvalidRange ||
1839             CurrRange.start() > First.StartAddress + OrigLowPc) {
1840           reportWarning("no mapping for range.", DMO);
1841           continue;
1842         }
1843       }
1844     }
1845 
1846     Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
1847                                 AddressSize);
1848   }
1849 }
1850 
1851 /// Generate the debug_aranges entries for \p Unit and if the
1852 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
1853 /// contribution for this attribute.
1854 /// FIXME: this could actually be done right in patchRangesForUnit,
1855 /// but for the sake of initial bit-for-bit compatibility with legacy
1856 /// dsymutil, we have to do it in a delayed pass.
1857 void DwarfLinkerForBinary::generateUnitRanges(CompileUnit &Unit) const {
1858   auto Attr = Unit.getUnitRangesAttribute();
1859   if (Attr)
1860     Attr->set(Streamer->getRangesSectionSize());
1861   Streamer->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
1862 }
1863 
1864 /// Insert the new line info sequence \p Seq into the current
1865 /// set of already linked line info \p Rows.
1866 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
1867                                std::vector<DWARFDebugLine::Row> &Rows) {
1868   if (Seq.empty())
1869     return;
1870 
1871   if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
1872     Rows.insert(Rows.end(), Seq.begin(), Seq.end());
1873     Seq.clear();
1874     return;
1875   }
1876 
1877   object::SectionedAddress Front = Seq.front().Address;
1878   auto InsertPoint = partition_point(
1879       Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
1880 
1881   // FIXME: this only removes the unneeded end_sequence if the
1882   // sequences have been inserted in order. Using a global sort like
1883   // described in patchLineTableForUnit() and delaying the end_sequene
1884   // elimination to emitLineTableForUnit() we can get rid of all of them.
1885   if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
1886       InsertPoint->EndSequence) {
1887     *InsertPoint = Seq.front();
1888     Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
1889   } else {
1890     Rows.insert(InsertPoint, Seq.begin(), Seq.end());
1891   }
1892 
1893   Seq.clear();
1894 }
1895 
1896 static void patchStmtList(DIE &Die, DIEInteger Offset) {
1897   for (auto &V : Die.values())
1898     if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
1899       V = DIEValue(V.getAttribute(), V.getForm(), Offset);
1900       return;
1901     }
1902 
1903   llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
1904 }
1905 
1906 /// Extract the line table for \p Unit from \p OrigDwarf, and
1907 /// recreate a relocated version of these for the address ranges that
1908 /// are present in the binary.
1909 void DwarfLinkerForBinary::patchLineTableForUnit(CompileUnit &Unit,
1910                                                  DWARFContext &OrigDwarf,
1911                                                  RangesTy &Ranges,
1912                                                  const DebugMapObject &DMO) {
1913   DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
1914   auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1915   if (!StmtList)
1916     return;
1917 
1918   // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
1919   if (auto *OutputDIE = Unit.getOutputUnitDIE())
1920     patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize()));
1921 
1922   // Parse the original line info for the unit.
1923   DWARFDebugLine::LineTable LineTable;
1924   uint64_t StmtOffset = *StmtList;
1925   DWARFDataExtractor LineExtractor(
1926       OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
1927       OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
1928   if (Options.Translator)
1929     return Streamer->translateLineTable(LineExtractor, StmtOffset);
1930 
1931   Error Err = LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
1932                               &Unit.getOrigUnit(), DWARFContext::dumpWarning);
1933   DWARFContext::dumpWarning(std::move(Err));
1934 
1935   // This vector is the output line table.
1936   std::vector<DWARFDebugLine::Row> NewRows;
1937   NewRows.reserve(LineTable.Rows.size());
1938 
1939   // Current sequence of rows being extracted, before being inserted
1940   // in NewRows.
1941   std::vector<DWARFDebugLine::Row> Seq;
1942   const auto &FunctionRanges = Unit.getFunctionRanges();
1943   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1944 
1945   // FIXME: This logic is meant to generate exactly the same output as
1946   // Darwin's classic dsymutil. There is a nicer way to implement this
1947   // by simply putting all the relocated line info in NewRows and simply
1948   // sorting NewRows before passing it to emitLineTableForUnit. This
1949   // should be correct as sequences for a function should stay
1950   // together in the sorted output. There are a few corner cases that
1951   // look suspicious though, and that required to implement the logic
1952   // this way. Revisit that once initial validation is finished.
1953 
1954   // Iterate over the object file line info and extract the sequences
1955   // that correspond to linked functions.
1956   for (auto &Row : LineTable.Rows) {
1957     // Check whether we stepped out of the range. The range is
1958     // half-open, but consider accept the end address of the range if
1959     // it is marked as end_sequence in the input (because in that
1960     // case, the relocation offset is accurate and that entry won't
1961     // serve as the start of another function).
1962     if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() ||
1963         Row.Address.Address > CurrRange.stop() ||
1964         (Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) {
1965       // We just stepped out of a known range. Insert a end_sequence
1966       // corresponding to the end of the range.
1967       uint64_t StopAddress = CurrRange != InvalidRange
1968                                  ? CurrRange.stop() + CurrRange.value()
1969                                  : -1ULL;
1970       CurrRange = FunctionRanges.find(Row.Address.Address);
1971       bool CurrRangeValid =
1972           CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address;
1973       if (!CurrRangeValid) {
1974         CurrRange = InvalidRange;
1975         if (StopAddress != -1ULL) {
1976           // Try harder by looking in the DebugMapObject function
1977           // ranges map. There are corner cases where this finds a
1978           // valid entry. It's unclear if this is right or wrong, but
1979           // for now do as dsymutil.
1980           // FIXME: Understand exactly what cases this addresses and
1981           // potentially remove it along with the Ranges map.
1982           auto Range = Ranges.lower_bound(Row.Address.Address);
1983           if (Range != Ranges.begin() && Range != Ranges.end())
1984             --Range;
1985 
1986           if (Range != Ranges.end() && Range->first <= Row.Address.Address &&
1987               Range->second.HighPC >= Row.Address.Address) {
1988             StopAddress = Row.Address.Address + Range->second.Offset;
1989           }
1990         }
1991       }
1992       if (StopAddress != -1ULL && !Seq.empty()) {
1993         // Insert end sequence row with the computed end address, but
1994         // the same line as the previous one.
1995         auto NextLine = Seq.back();
1996         NextLine.Address.Address = StopAddress;
1997         NextLine.EndSequence = 1;
1998         NextLine.PrologueEnd = 0;
1999         NextLine.BasicBlock = 0;
2000         NextLine.EpilogueBegin = 0;
2001         Seq.push_back(NextLine);
2002         insertLineSequence(Seq, NewRows);
2003       }
2004 
2005       if (!CurrRangeValid)
2006         continue;
2007     }
2008 
2009     // Ignore empty sequences.
2010     if (Row.EndSequence && Seq.empty())
2011       continue;
2012 
2013     // Relocate row address and add it to the current sequence.
2014     Row.Address.Address += CurrRange.value();
2015     Seq.emplace_back(Row);
2016 
2017     if (Row.EndSequence)
2018       insertLineSequence(Seq, NewRows);
2019   }
2020 
2021   // Finished extracting, now emit the line tables.
2022   // FIXME: LLVM hard-codes its prologue values. We just copy the
2023   // prologue over and that works because we act as both producer and
2024   // consumer. It would be nicer to have a real configurable line
2025   // table emitter.
2026   if (LineTable.Prologue.getVersion() < 2 ||
2027       LineTable.Prologue.getVersion() > 5 ||
2028       LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
2029       LineTable.Prologue.OpcodeBase > 13)
2030     reportWarning("line table parameters mismatch. Cannot emit.", DMO);
2031   else {
2032     uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
2033     // DWARF v5 has an extra 2 bytes of information before the header_length
2034     // field.
2035     if (LineTable.Prologue.getVersion() == 5)
2036       PrologueEnd += 2;
2037     StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
2038     MCDwarfLineTableParams Params;
2039     Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
2040     Params.DWARF2LineBase = LineTable.Prologue.LineBase;
2041     Params.DWARF2LineRange = LineTable.Prologue.LineRange;
2042     Streamer->emitLineTableForUnit(Params,
2043                                    LineData.slice(*StmtList + 4, PrologueEnd),
2044                                    LineTable.Prologue.MinInstLength, NewRows,
2045                                    Unit.getOrigUnit().getAddressByteSize());
2046   }
2047 }
2048 
2049 void DwarfLinkerForBinary::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
2050   switch (Options.TheAccelTableKind) {
2051   case AccelTableKind::Apple:
2052     emitAppleAcceleratorEntriesForUnit(Unit);
2053     break;
2054   case AccelTableKind::Dwarf:
2055     emitDwarfAcceleratorEntriesForUnit(Unit);
2056     break;
2057   case AccelTableKind::Default:
2058     llvm_unreachable("The default must be updated to a concrete value.");
2059     break;
2060   }
2061 }
2062 
2063 void DwarfLinkerForBinary::emitAppleAcceleratorEntriesForUnit(
2064     CompileUnit &Unit) {
2065   // Add namespaces.
2066   for (const auto &Namespace : Unit.getNamespaces())
2067     AppleNamespaces.addName(Namespace.Name,
2068                             Namespace.Die->getOffset() + Unit.getStartOffset());
2069 
2070   /// Add names.
2071   if (!Options.Minimize)
2072     Streamer->emitPubNamesForUnit(Unit);
2073   for (const auto &Pubname : Unit.getPubnames())
2074     AppleNames.addName(Pubname.Name,
2075                        Pubname.Die->getOffset() + Unit.getStartOffset());
2076 
2077   /// Add types.
2078   if (!Options.Minimize)
2079     Streamer->emitPubTypesForUnit(Unit);
2080   for (const auto &Pubtype : Unit.getPubtypes())
2081     AppleTypes.addName(
2082         Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
2083         Pubtype.Die->getTag(),
2084         Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
2085                                         : 0,
2086         Pubtype.QualifiedNameHash);
2087 
2088   /// Add ObjC names.
2089   for (const auto &ObjC : Unit.getObjC())
2090     AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
2091 }
2092 
2093 void DwarfLinkerForBinary::emitDwarfAcceleratorEntriesForUnit(
2094     CompileUnit &Unit) {
2095   for (const auto &Namespace : Unit.getNamespaces())
2096     DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
2097                        Namespace.Die->getTag(), Unit.getUniqueID());
2098   for (const auto &Pubname : Unit.getPubnames())
2099     DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
2100                        Pubname.Die->getTag(), Unit.getUniqueID());
2101   for (const auto &Pubtype : Unit.getPubtypes())
2102     DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
2103                        Pubtype.Die->getTag(), Unit.getUniqueID());
2104 }
2105 
2106 /// Read the frame info stored in the object, and emit the
2107 /// patched frame descriptions for the linked binary.
2108 ///
2109 /// This is actually pretty easy as the data of the CIEs and FDEs can
2110 /// be considered as black boxes and moved as is. The only thing to do
2111 /// is to patch the addresses in the headers.
2112 void DwarfLinkerForBinary::patchFrameInfoForObject(const DebugMapObject &DMO,
2113                                                    RangesTy &Ranges,
2114                                                    DWARFContext &OrigDwarf,
2115                                                    unsigned AddrSize) {
2116   StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
2117   if (FrameData.empty())
2118     return;
2119 
2120   DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
2121   uint64_t InputOffset = 0;
2122 
2123   // Store the data of the CIEs defined in this object, keyed by their
2124   // offsets.
2125   DenseMap<uint64_t, StringRef> LocalCIES;
2126 
2127   while (Data.isValidOffset(InputOffset)) {
2128     uint64_t EntryOffset = InputOffset;
2129     uint32_t InitialLength = Data.getU32(&InputOffset);
2130     if (InitialLength == 0xFFFFFFFF)
2131       return reportWarning("Dwarf64 bits no supported", DMO);
2132 
2133     uint32_t CIEId = Data.getU32(&InputOffset);
2134     if (CIEId == 0xFFFFFFFF) {
2135       // This is a CIE, store it.
2136       StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
2137       LocalCIES[EntryOffset] = CIEData;
2138       // The -4 is to account for the CIEId we just read.
2139       InputOffset += InitialLength - 4;
2140       continue;
2141     }
2142 
2143     uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
2144 
2145     // Some compilers seem to emit frame info that doesn't start at
2146     // the function entry point, thus we can't just lookup the address
2147     // in the debug map. Use the linker's range map to see if the FDE
2148     // describes something that we can relocate.
2149     auto Range = Ranges.upper_bound(Loc);
2150     if (Range != Ranges.begin())
2151       --Range;
2152     if (Range == Ranges.end() || Range->first > Loc ||
2153         Range->second.HighPC <= Loc) {
2154       // The +4 is to account for the size of the InitialLength field itself.
2155       InputOffset = EntryOffset + InitialLength + 4;
2156       continue;
2157     }
2158 
2159     // This is an FDE, and we have a mapping.
2160     // Have we already emitted a corresponding CIE?
2161     StringRef CIEData = LocalCIES[CIEId];
2162     if (CIEData.empty())
2163       return reportWarning("Inconsistent debug_frame content. Dropping.", DMO);
2164 
2165     // Look if we already emitted a CIE that corresponds to the
2166     // referenced one (the CIE data is the key of that lookup).
2167     auto IteratorInserted = EmittedCIEs.insert(
2168         std::make_pair(CIEData, Streamer->getFrameSectionSize()));
2169     // If there is no CIE yet for this ID, emit it.
2170     if (IteratorInserted.second ||
2171         // FIXME: dsymutil-classic only caches the last used CIE for
2172         // reuse. Mimic that behavior for now. Just removing that
2173         // second half of the condition and the LastCIEOffset variable
2174         // makes the code DTRT.
2175         LastCIEOffset != IteratorInserted.first->getValue()) {
2176       LastCIEOffset = Streamer->getFrameSectionSize();
2177       IteratorInserted.first->getValue() = LastCIEOffset;
2178       Streamer->emitCIE(CIEData);
2179     }
2180 
2181     // Emit the FDE with updated address and CIE pointer.
2182     // (4 + AddrSize) is the size of the CIEId + initial_location
2183     // fields that will get reconstructed by emitFDE().
2184     unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
2185     Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize,
2186                       Loc + Range->second.Offset,
2187                       FrameData.substr(InputOffset, FDERemainingBytes));
2188     InputOffset += FDERemainingBytes;
2189   }
2190 }
2191 
2192 void DwarfLinkerForBinary::DIECloner::copyAbbrev(
2193     const DWARFAbbreviationDeclaration &Abbrev, bool HasODR) {
2194   DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
2195                  dwarf::Form(Abbrev.hasChildren()));
2196 
2197   for (const auto &Attr : Abbrev.attributes()) {
2198     uint16_t Form = Attr.Form;
2199     if (HasODR && isODRAttribute(Attr.Attr))
2200       Form = dwarf::DW_FORM_ref_addr;
2201     Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
2202   }
2203 
2204   Linker.assignAbbrev(Copy);
2205 }
2206 
2207 uint32_t DwarfLinkerForBinary::DIECloner::hashFullyQualifiedName(
2208     DWARFDie DIE, CompileUnit &U, const DebugMapObject &DMO,
2209     int ChildRecurseDepth) {
2210   const char *Name = nullptr;
2211   DWARFUnit *OrigUnit = &U.getOrigUnit();
2212   CompileUnit *CU = &U;
2213   Optional<DWARFFormValue> Ref;
2214 
2215   while (1) {
2216     if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
2217       Name = CurrentName;
2218 
2219     if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
2220         !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
2221       break;
2222 
2223     if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
2224       break;
2225 
2226     CompileUnit *RefCU;
2227     if (auto RefDIE =
2228             resolveDIEReference(Linker, DMO, CompileUnits, *Ref, DIE, RefCU)) {
2229       CU = RefCU;
2230       OrigUnit = &RefCU->getOrigUnit();
2231       DIE = RefDIE;
2232     }
2233   }
2234 
2235   unsigned Idx = OrigUnit->getDIEIndex(DIE);
2236   if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
2237     Name = "(anonymous namespace)";
2238 
2239   if (CU->getInfo(Idx).ParentIdx == 0 ||
2240       // FIXME: dsymutil-classic compatibility. Ignore modules.
2241       CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
2242           dwarf::DW_TAG_module)
2243     return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
2244 
2245   DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
2246   return djbHash(
2247       (Name ? Name : ""),
2248       djbHash((Name ? "::" : ""),
2249               hashFullyQualifiedName(Die, *CU, DMO, ++ChildRecurseDepth)));
2250 }
2251 
2252 static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
2253   auto DwoId = dwarf::toUnsigned(
2254       CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
2255   if (DwoId)
2256     return *DwoId;
2257   return 0;
2258 }
2259 
2260 bool DwarfLinkerForBinary::registerModuleReference(
2261     DWARFDie CUDie, const DWARFUnit &Unit, DebugMap &ModuleMap,
2262     const DebugMapObject &DMO, RangesTy &Ranges, OffsetsStringPool &StringPool,
2263     UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts,
2264     uint64_t ModulesEndOffset, unsigned &UnitID, bool IsLittleEndian,
2265     unsigned Indent, bool Quiet) {
2266   std::string PCMfile = dwarf::toString(
2267       CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
2268   if (PCMfile.empty())
2269     return false;
2270 
2271   // Clang module DWARF skeleton CUs abuse this for the path to the module.
2272   uint64_t DwoId = getDwoId(CUDie, Unit);
2273 
2274   std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2275   if (Name.empty()) {
2276     if (!Quiet)
2277       reportWarning("Anonymous module skeleton CU for " + PCMfile, DMO);
2278     return true;
2279   }
2280 
2281   if (!Quiet && Options.Verbose) {
2282     outs().indent(Indent);
2283     outs() << "Found clang module reference " << PCMfile;
2284   }
2285 
2286   auto Cached = ClangModules.find(PCMfile);
2287   if (Cached != ClangModules.end()) {
2288     // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2289     // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2290     // ASTFileSignatures will change randomly when a module is rebuilt.
2291     if (!Quiet && Options.Verbose && (Cached->second != DwoId))
2292       reportWarning(Twine("hash mismatch: this object file was built against a "
2293                           "different version of the module ") +
2294                         PCMfile,
2295                     DMO);
2296     if (!Quiet && Options.Verbose)
2297       outs() << " [cached].\n";
2298     return true;
2299   }
2300   if (!Quiet && Options.Verbose)
2301     outs() << " ...\n";
2302 
2303   // Cyclic dependencies are disallowed by Clang, but we still
2304   // shouldn't run into an infinite loop, so mark it as processed now.
2305   ClangModules.insert({PCMfile, DwoId});
2306 
2307   if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, ModuleMap, DMO,
2308                                 Ranges, StringPool, UniquingStringPool,
2309                                 ODRContexts, ModulesEndOffset, UnitID,
2310                                 IsLittleEndian, Indent + 2, Quiet)) {
2311     consumeError(std::move(E));
2312     return false;
2313   }
2314   return true;
2315 }
2316 
2317 ErrorOr<const object::ObjectFile &>
2318 DwarfLinkerForBinary::loadObject(const DebugMapObject &Obj,
2319                                  const DebugMap &Map) {
2320   auto ObjectEntry =
2321       BinHolder.getObjectEntry(Obj.getObjectFilename(), Obj.getTimestamp());
2322   if (!ObjectEntry) {
2323     auto Err = ObjectEntry.takeError();
2324     reportWarning(
2325         Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
2326     return errorToErrorCode(std::move(Err));
2327   }
2328 
2329   auto Object = ObjectEntry->getObject(Map.getTriple());
2330   if (!Object) {
2331     auto Err = Object.takeError();
2332     reportWarning(
2333         Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
2334     return errorToErrorCode(std::move(Err));
2335   }
2336 
2337   return *Object;
2338 }
2339 
2340 Error DwarfLinkerForBinary::loadClangModule(
2341     DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId,
2342     DebugMap &ModuleMap, const DebugMapObject &DMO, RangesTy &Ranges,
2343     OffsetsStringPool &StringPool, UniquingStringPool &UniquingStringPool,
2344     DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID,
2345     bool IsLittleEndian, unsigned Indent, bool Quiet) {
2346   /// Using a SmallString<0> because loadClangModule() is recursive.
2347   SmallString<0> Path(Options.PrependPath);
2348   if (sys::path::is_relative(Filename))
2349     resolveRelativeObjectPath(Path, CUDie);
2350   sys::path::append(Path, Filename);
2351   // Don't use the cached binary holder because we have no thread-safety
2352   // guarantee and the lifetime is limited.
2353   auto &Obj = ModuleMap.addDebugMapObject(
2354       Path, sys::TimePoint<std::chrono::seconds>(), MachO::N_OSO);
2355   auto ErrOrObj = loadObject(Obj, ModuleMap);
2356   if (!ErrOrObj) {
2357     // Try and emit more helpful warnings by applying some heuristics.
2358     StringRef ObjFile = DMO.getObjectFilename();
2359     bool isClangModule = sys::path::extension(Filename).equals(".pcm");
2360     bool isArchive = ObjFile.endswith(")");
2361     if (isClangModule) {
2362       StringRef ModuleCacheDir = sys::path::parent_path(Path);
2363       if (sys::fs::exists(ModuleCacheDir)) {
2364         // If the module's parent directory exists, we assume that the module
2365         // cache has expired and was pruned by clang.  A more adventurous
2366         // dsymutil would invoke clang to rebuild the module now.
2367         if (!ModuleCacheHintDisplayed) {
2368           WithColor::note() << "The clang module cache may have expired since "
2369                                "this object file was built. Rebuilding the "
2370                                "object file will rebuild the module cache.\n";
2371           ModuleCacheHintDisplayed = true;
2372         }
2373       } else if (isArchive) {
2374         // If the module cache directory doesn't exist at all and the object
2375         // file is inside a static library, we assume that the static library
2376         // was built on a different machine. We don't want to discourage module
2377         // debugging for convenience libraries within a project though.
2378         if (!ArchiveHintDisplayed) {
2379           WithColor::note()
2380               << "Linking a static library that was built with "
2381                  "-gmodules, but the module cache was not found.  "
2382                  "Redistributable static libraries should never be "
2383                  "built with module debugging enabled.  The debug "
2384                  "experience will be degraded due to incomplete "
2385                  "debug information.\n";
2386           ArchiveHintDisplayed = true;
2387         }
2388       }
2389     }
2390     return Error::success();
2391   }
2392 
2393   std::unique_ptr<CompileUnit> Unit;
2394 
2395   // Setup access to the debug info.
2396   auto DwarfContext = DWARFContext::create(*ErrOrObj);
2397   RelocationManager RelocMgr(*this, *ErrOrObj, DMO);
2398 
2399   for (const auto &CU : DwarfContext->compile_units()) {
2400     updateDwarfVersion(CU->getVersion());
2401     // Recursively get all modules imported by this one.
2402     auto CUDie = CU->getUnitDIE(false);
2403     if (!CUDie)
2404       continue;
2405     if (!registerModuleReference(CUDie, *CU, ModuleMap, DMO, Ranges, StringPool,
2406                                  UniquingStringPool, ODRContexts,
2407                                  ModulesEndOffset, UnitID, IsLittleEndian,
2408                                  Indent, Quiet)) {
2409       if (Unit) {
2410         std::string Err =
2411             (Filename +
2412              ": Clang modules are expected to have exactly 1 compile unit.\n")
2413                 .str();
2414         error(Err);
2415         return make_error<StringError>(Err, inconvertibleErrorCode());
2416       }
2417       // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2418       // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2419       // ASTFileSignatures will change randomly when a module is rebuilt.
2420       uint64_t PCMDwoId = getDwoId(CUDie, *CU);
2421       if (PCMDwoId != DwoId) {
2422         if (!Quiet && Options.Verbose)
2423           reportWarning(
2424               Twine("hash mismatch: this object file was built against a "
2425                     "different version of the module ") +
2426                   Filename,
2427               DMO);
2428         // Update the cache entry with the DwoId of the module loaded from disk.
2429         ClangModules[Filename] = PCMDwoId;
2430       }
2431 
2432       // Add this module.
2433       Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
2434                                            ModuleName);
2435       Unit->setHasInterestingContent();
2436       analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(),
2437                          UniquingStringPool, ODRContexts, ModulesEndOffset,
2438                          ParseableSwiftInterfaces,
2439                          [&](const Twine &Warning, const DWARFDie &DIE) {
2440                            reportWarning(Warning, DMO, &DIE);
2441                          });
2442       // Keep everything.
2443       Unit->markEverythingAsKept();
2444     }
2445   }
2446   if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
2447     return Error::success();
2448   if (!Quiet && Options.Verbose) {
2449     outs().indent(Indent);
2450     outs() << "cloning .debug_info from " << Filename << "\n";
2451   }
2452 
2453   UnitListTy CompileUnits;
2454   CompileUnits.push_back(std::move(Unit));
2455   DIECloner(*this, RelocMgr, DIEAlloc, CompileUnits, Options)
2456       .cloneAllCompileUnits(*DwarfContext, DMO, Ranges, StringPool,
2457                             IsLittleEndian);
2458   return Error::success();
2459 }
2460 
2461 void DwarfLinkerForBinary::DIECloner::cloneAllCompileUnits(
2462     DWARFContext &DwarfContext, const DebugMapObject &DMO, RangesTy &Ranges,
2463     OffsetsStringPool &StringPool, bool IsLittleEndian) {
2464   if (!Linker.Streamer)
2465     return;
2466 
2467   uint64_t OutputDebugInfoSize = Linker.Streamer->getDebugInfoSectionSize();
2468   for (auto &CurrentUnit : CompileUnits) {
2469     auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
2470     CurrentUnit->setStartOffset(OutputDebugInfoSize);
2471     if (!InputDIE) {
2472       OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
2473       continue;
2474     }
2475     if (CurrentUnit->getInfo(0).Keep) {
2476       // Clone the InputDIE into your Unit DIE in our compile unit since it
2477       // already has a DIE inside of it.
2478       CurrentUnit->createOutputDIE();
2479       cloneDIE(InputDIE, DMO, *CurrentUnit, StringPool, 0 /* PC offset */,
2480                11 /* Unit Header size */, 0, IsLittleEndian,
2481                CurrentUnit->getOutputUnitDIE());
2482     }
2483 
2484     OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
2485 
2486     if (Linker.Options.NoOutput)
2487       continue;
2488 
2489     // FIXME: for compatibility with the classic dsymutil, we emit
2490     // an empty line table for the unit, even if the unit doesn't
2491     // actually exist in the DIE tree.
2492     if (LLVM_LIKELY(!Linker.Options.Update) || Linker.Options.Translator)
2493       Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, Ranges, DMO);
2494 
2495     Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2496 
2497     if (LLVM_UNLIKELY(Linker.Options.Update))
2498       continue;
2499 
2500     Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, DMO);
2501     auto ProcessExpr = [&](StringRef Bytes, SmallVectorImpl<uint8_t> &Buffer) {
2502       DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
2503       DataExtractor Data(Bytes, IsLittleEndian, OrigUnit.getAddressByteSize());
2504       cloneExpression(Data,
2505                       DWARFExpression(Data, OrigUnit.getVersion(),
2506                                       OrigUnit.getAddressByteSize()),
2507                       DMO, *CurrentUnit, Buffer);
2508     };
2509     Linker.Streamer->emitLocationsForUnit(*CurrentUnit, DwarfContext,
2510                                           ProcessExpr);
2511   }
2512 
2513   if (Linker.Options.NoOutput)
2514     return;
2515 
2516   // Emit all the compile unit's debug information.
2517   for (auto &CurrentUnit : CompileUnits) {
2518     if (LLVM_LIKELY(!Linker.Options.Update))
2519       Linker.generateUnitRanges(*CurrentUnit);
2520 
2521     CurrentUnit->fixupForwardReferences();
2522 
2523     if (!CurrentUnit->getOutputUnitDIE())
2524       continue;
2525 
2526     assert(Linker.Streamer->getDebugInfoSectionSize() ==
2527            CurrentUnit->getStartOffset());
2528     Linker.Streamer->emitCompileUnitHeader(*CurrentUnit);
2529     Linker.Streamer->emitDIE(*CurrentUnit->getOutputUnitDIE());
2530     assert(Linker.Streamer->getDebugInfoSectionSize() ==
2531            CurrentUnit->computeNextUnitOffset());
2532   }
2533 }
2534 
2535 void DwarfLinkerForBinary::updateAccelKind(DWARFContext &Dwarf) {
2536   if (Options.TheAccelTableKind != AccelTableKind::Default)
2537     return;
2538 
2539   auto &DwarfObj = Dwarf.getDWARFObj();
2540 
2541   if (!AtLeastOneDwarfAccelTable &&
2542       (!DwarfObj.getAppleNamesSection().Data.empty() ||
2543        !DwarfObj.getAppleTypesSection().Data.empty() ||
2544        !DwarfObj.getAppleNamespacesSection().Data.empty() ||
2545        !DwarfObj.getAppleObjCSection().Data.empty())) {
2546     AtLeastOneAppleAccelTable = true;
2547   }
2548 
2549   if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
2550     AtLeastOneDwarfAccelTable = true;
2551   }
2552 }
2553 
2554 bool DwarfLinkerForBinary::emitPaperTrailWarnings(
2555     const DebugMapObject &DMO, const DebugMap &Map,
2556     OffsetsStringPool &StringPool) {
2557   if (DMO.getWarnings().empty() || !DMO.empty())
2558     return false;
2559 
2560   Streamer->switchToDebugInfoSection(/* Version */ 2);
2561   DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
2562   CUDie->setOffset(11);
2563   StringRef Producer = StringPool.internString("dsymutil");
2564   StringRef File = StringPool.internString(DMO.getObjectFilename());
2565   CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
2566                   DIEInteger(StringPool.getStringOffset(Producer)));
2567   DIEBlock *String = new (DIEAlloc) DIEBlock();
2568   DIEBlocks.push_back(String);
2569   for (auto &C : File)
2570     String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2571                      DIEInteger(C));
2572   String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2573                    DIEInteger(0));
2574 
2575   CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
2576   for (const auto &Warning : DMO.getWarnings()) {
2577     DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
2578     ConstDie.addValue(
2579         DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
2580         DIEInteger(StringPool.getStringOffset("dsymutil_warning")));
2581     ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
2582                       DIEInteger(1));
2583     ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
2584                       DIEInteger(StringPool.getStringOffset(Warning)));
2585   }
2586   unsigned Size = 4 /* FORM_strp */ + File.size() + 1 +
2587                   DMO.getWarnings().size() * (4 + 1 + 4) +
2588                   1 /* End of children */;
2589   DIEAbbrev Abbrev = CUDie->generateAbbrev();
2590   assignAbbrev(Abbrev);
2591   CUDie->setAbbrevNumber(Abbrev.getNumber());
2592   Size += getULEB128Size(Abbrev.getNumber());
2593   // Abbreviation ordering needed for classic compatibility.
2594   for (auto &Child : CUDie->children()) {
2595     Abbrev = Child.generateAbbrev();
2596     assignAbbrev(Abbrev);
2597     Child.setAbbrevNumber(Abbrev.getNumber());
2598     Size += getULEB128Size(Abbrev.getNumber());
2599   }
2600   CUDie->setSize(Size);
2601   Streamer->emitPaperTrailWarningsDie(Map.getTriple(), *CUDie);
2602 
2603   return true;
2604 }
2605 
2606 static Error copySwiftInterfaces(
2607     const std::map<std::string, std::string> &ParseableSwiftInterfaces,
2608     StringRef Architecture, const LinkOptions &Options) {
2609   std::error_code EC;
2610   SmallString<128> InputPath;
2611   SmallString<128> Path;
2612   sys::path::append(Path, *Options.ResourceDir, "Swift", Architecture);
2613   if ((EC = sys::fs::create_directories(Path.str(), true,
2614                                         sys::fs::perms::all_all)))
2615     return make_error<StringError>(
2616         "cannot create directory: " + toString(errorCodeToError(EC)), EC);
2617   unsigned BaseLength = Path.size();
2618 
2619   for (auto &I : ParseableSwiftInterfaces) {
2620     StringRef ModuleName = I.first;
2621     StringRef InterfaceFile = I.second;
2622     if (!Options.PrependPath.empty()) {
2623       InputPath.clear();
2624       sys::path::append(InputPath, Options.PrependPath, InterfaceFile);
2625       InterfaceFile = InputPath;
2626     }
2627     sys::path::append(Path, ModuleName);
2628     Path.append(".swiftinterface");
2629     if (Options.Verbose)
2630       outs() << "copy parseable Swift interface " << InterfaceFile << " -> "
2631              << Path.str() << '\n';
2632 
2633     // copy_file attempts an APFS clone first, so this should be cheap.
2634     if ((EC = sys::fs::copy_file(InterfaceFile, Path.str())))
2635       warn(Twine("cannot copy parseable Swift interface ") + InterfaceFile +
2636            ": " + toString(errorCodeToError(EC)));
2637     Path.resize(BaseLength);
2638   }
2639   return Error::success();
2640 }
2641 
2642 static Error emitRemarks(const LinkOptions &Options, StringRef BinaryPath,
2643                          StringRef ArchName, const remarks::RemarkLinker &RL) {
2644   // Make sure we don't create the directories and the file if there is nothing
2645   // to serialize.
2646   if (RL.empty())
2647     return Error::success();
2648 
2649   SmallString<128> InputPath;
2650   SmallString<128> Path;
2651   // Create the "Remarks" directory in the "Resources" directory.
2652   sys::path::append(Path, *Options.ResourceDir, "Remarks");
2653   if (std::error_code EC = sys::fs::create_directories(Path.str(), true,
2654                                                        sys::fs::perms::all_all))
2655     return errorCodeToError(EC);
2656 
2657   // Append the file name.
2658   // For fat binaries, also append a dash and the architecture name.
2659   sys::path::append(Path, sys::path::filename(BinaryPath));
2660   if (Options.NumDebugMaps > 1) {
2661     // More than one debug map means we have a fat binary.
2662     Path += '-';
2663     Path += ArchName;
2664   }
2665 
2666   std::error_code EC;
2667   raw_fd_ostream OS(Options.NoOutput ? "-" : Path.str(), EC, sys::fs::OF_None);
2668   if (EC)
2669     return errorCodeToError(EC);
2670 
2671   if (Error E = RL.serialize(OS, Options.RemarksFormat))
2672     return E;
2673 
2674   return Error::success();
2675 }
2676 
2677 bool DwarfLinkerForBinary::link(const DebugMap &Map) {
2678   if (!createStreamer(Map.getTriple(), OutFile))
2679     return false;
2680 
2681   // Size of the DIEs (and headers) generated for the linked output.
2682   // A unique ID that identifies each compile unit.
2683   unsigned UnitID = 0;
2684   DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath());
2685 
2686   // First populate the data structure we need for each iteration of the
2687   // parallel loop.
2688   unsigned NumObjects = Map.getNumberOfObjects();
2689   std::vector<LinkContext> ObjectContexts;
2690   ObjectContexts.reserve(NumObjects);
2691   for (const auto &Obj : Map.objects()) {
2692     ObjectContexts.emplace_back(Map, *this, *Obj.get());
2693     LinkContext &LC = ObjectContexts.back();
2694     if (LC.ObjectFile)
2695       updateAccelKind(*LC.DwarfContext);
2696   }
2697 
2698   // This Dwarf string pool which is only used for uniquing. This one should
2699   // never be used for offsets as its not thread-safe or predictable.
2700   UniquingStringPool UniquingStringPool(nullptr, true);
2701 
2702   // This Dwarf string pool which is used for emission. It must be used
2703   // serially as the order of calling getStringOffset matters for
2704   // reproducibility.
2705   OffsetsStringPool OffsetsStringPool(Options.Translator, true);
2706 
2707   // ODR Contexts for the link.
2708   DeclContextTree ODRContexts;
2709 
2710   // If we haven't decided on an accelerator table kind yet, we base ourselves
2711   // on the DWARF we have seen so far. At this point we haven't pulled in debug
2712   // information from modules yet, so it is technically possible that they
2713   // would affect the decision. However, as they're built with the same
2714   // compiler and flags, it is safe to assume that they will follow the
2715   // decision made here.
2716   if (Options.TheAccelTableKind == AccelTableKind::Default) {
2717     if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
2718       Options.TheAccelTableKind = AccelTableKind::Dwarf;
2719     else
2720       Options.TheAccelTableKind = AccelTableKind::Apple;
2721   }
2722 
2723   for (LinkContext &LinkContext : ObjectContexts) {
2724     if (Options.Verbose)
2725       outs() << "DEBUG MAP OBJECT: " << LinkContext.DMO.getObjectFilename()
2726              << "\n";
2727 
2728     // N_AST objects (swiftmodule files) should get dumped directly into the
2729     // appropriate DWARF section.
2730     if (LinkContext.DMO.getType() == MachO::N_AST) {
2731       StringRef File = LinkContext.DMO.getObjectFilename();
2732       auto ErrorOrMem = MemoryBuffer::getFile(File);
2733       if (!ErrorOrMem) {
2734         warn("Could not open '" + File + "'\n");
2735         continue;
2736       }
2737       sys::fs::file_status Stat;
2738       if (auto Err = sys::fs::status(File, Stat)) {
2739         warn(Err.message());
2740         continue;
2741       }
2742       if (!Options.NoTimestamp) {
2743         // The modification can have sub-second precision so we need to cast
2744         // away the extra precision that's not present in the debug map.
2745         auto ModificationTime =
2746             std::chrono::time_point_cast<std::chrono::seconds>(
2747                 Stat.getLastModificationTime());
2748         if (ModificationTime != LinkContext.DMO.getTimestamp()) {
2749           // Not using the helper here as we can easily stream TimePoint<>.
2750           WithColor::warning()
2751               << "Timestamp mismatch for " << File << ": "
2752               << Stat.getLastModificationTime() << " and "
2753               << sys::TimePoint<>(LinkContext.DMO.getTimestamp()) << "\n";
2754           continue;
2755         }
2756       }
2757 
2758       // Copy the module into the .swift_ast section.
2759       if (!Options.NoOutput)
2760         Streamer->emitSwiftAST((*ErrorOrMem)->getBuffer());
2761       continue;
2762     }
2763 
2764     if (emitPaperTrailWarnings(LinkContext.DMO, Map, OffsetsStringPool))
2765       continue;
2766 
2767     if (!LinkContext.ObjectFile)
2768       continue;
2769 
2770     // Look for relocations that correspond to debug map entries.
2771 
2772     if (LLVM_LIKELY(!Options.Update) &&
2773         !LinkContext.RelocMgr->hasValidRelocs()) {
2774       if (Options.Verbose)
2775         outs() << "No valid relocations found. Skipping.\n";
2776 
2777       // Clear this ObjFile entry as a signal to other loops that we should not
2778       // process this iteration.
2779       LinkContext.ObjectFile = nullptr;
2780       continue;
2781     }
2782 
2783     // Setup access to the debug info.
2784     if (!LinkContext.DwarfContext)
2785       continue;
2786 
2787     startDebugObject(LinkContext);
2788 
2789     // In a first phase, just read in the debug info and load all clang modules.
2790     LinkContext.CompileUnits.reserve(
2791         LinkContext.DwarfContext->getNumCompileUnits());
2792 
2793     for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
2794       updateDwarfVersion(CU->getVersion());
2795       auto CUDie = CU->getUnitDIE(false);
2796       if (Options.Verbose) {
2797         outs() << "Input compilation unit:";
2798         DIDumpOptions DumpOpts;
2799         DumpOpts.ChildRecurseDepth = 0;
2800         DumpOpts.Verbose = Options.Verbose;
2801         CUDie.dump(outs(), 0, DumpOpts);
2802       }
2803       if (CUDie && !LLVM_UNLIKELY(Options.Update))
2804         registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
2805                                 LinkContext.Ranges, OffsetsStringPool,
2806                                 UniquingStringPool, ODRContexts, 0, UnitID,
2807                                 LinkContext.DwarfContext->isLittleEndian());
2808     }
2809   }
2810 
2811   // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
2812   if (MaxDwarfVersion == 0)
2813     MaxDwarfVersion = 3;
2814 
2815   // At this point we know how much data we have emitted. We use this value to
2816   // compare canonical DIE offsets in analyzeContextInfo to see if a definition
2817   // is already emitted, without being affected by canonical die offsets set
2818   // later. This prevents undeterminism when analyze and clone execute
2819   // concurrently, as clone set the canonical DIE offset and analyze reads it.
2820   const uint64_t ModulesEndOffset =
2821       Options.NoOutput ? 0 : Streamer->getDebugInfoSectionSize();
2822 
2823   // These variables manage the list of processed object files.
2824   // The mutex and condition variable are to ensure that this is thread safe.
2825   std::mutex ProcessedFilesMutex;
2826   std::condition_variable ProcessedFilesConditionVariable;
2827   BitVector ProcessedFiles(NumObjects, false);
2828 
2829   //  Analyzing the context info is particularly expensive so it is executed in
2830   //  parallel with emitting the previous compile unit.
2831   auto AnalyzeLambda = [&](size_t i) {
2832     auto &LinkContext = ObjectContexts[i];
2833 
2834     if (!LinkContext.ObjectFile || !LinkContext.DwarfContext)
2835       return;
2836 
2837     for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
2838       updateDwarfVersion(CU->getVersion());
2839       // The !registerModuleReference() condition effectively skips
2840       // over fully resolved skeleton units. This second pass of
2841       // registerModuleReferences doesn't do any new work, but it
2842       // will collect top-level errors, which are suppressed. Module
2843       // warnings were already displayed in the first iteration.
2844       bool Quiet = true;
2845       auto CUDie = CU->getUnitDIE(false);
2846       if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
2847           !registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
2848                                    LinkContext.Ranges, OffsetsStringPool,
2849                                    UniquingStringPool, ODRContexts,
2850                                    ModulesEndOffset, UnitID, Quiet)) {
2851         LinkContext.CompileUnits.push_back(std::make_unique<CompileUnit>(
2852             *CU, UnitID++, !Options.NoODR && !Options.Update, ""));
2853       }
2854     }
2855 
2856     // Now build the DIE parent links that we will use during the next phase.
2857     for (auto &CurrentUnit : LinkContext.CompileUnits) {
2858       auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
2859       if (!CUDie)
2860         continue;
2861       analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
2862                          *CurrentUnit, &ODRContexts.getRoot(),
2863                          UniquingStringPool, ODRContexts, ModulesEndOffset,
2864                          ParseableSwiftInterfaces,
2865                          [&](const Twine &Warning, const DWARFDie &DIE) {
2866                            reportWarning(Warning, LinkContext.DMO, &DIE);
2867                          });
2868     }
2869   };
2870 
2871   // And then the remaining work in serial again.
2872   // Note, although this loop runs in serial, it can run in parallel with
2873   // the analyzeContextInfo loop so long as we process files with indices >=
2874   // than those processed by analyzeContextInfo.
2875   auto CloneLambda = [&](size_t i) {
2876     auto &LinkContext = ObjectContexts[i];
2877     if (!LinkContext.ObjectFile)
2878       return;
2879 
2880     // Then mark all the DIEs that need to be present in the linked output
2881     // and collect some information about them.
2882     // Note that this loop can not be merged with the previous one because
2883     // cross-cu references require the ParentIdx to be setup for every CU in
2884     // the object file before calling this.
2885     if (LLVM_UNLIKELY(Options.Update)) {
2886       for (auto &CurrentUnit : LinkContext.CompileUnits)
2887         CurrentUnit->markEverythingAsKept();
2888       Streamer->copyInvariantDebugSection(*LinkContext.ObjectFile);
2889     } else {
2890       for (auto &CurrentUnit : LinkContext.CompileUnits)
2891         lookForDIEsToKeep(*LinkContext.RelocMgr, LinkContext.Ranges,
2892                           LinkContext.CompileUnits,
2893                           CurrentUnit->getOrigUnit().getUnitDIE(),
2894                           LinkContext.DMO, *CurrentUnit, 0);
2895     }
2896 
2897     // The calls to applyValidRelocs inside cloneDIE will walk the reloc
2898     // array again (in the same way findValidRelocsInDebugInfo() did). We
2899     // need to reset the NextValidReloc index to the beginning.
2900     if (LinkContext.RelocMgr->hasValidRelocs() || LLVM_UNLIKELY(Options.Update))
2901       DIECloner(*this, *LinkContext.RelocMgr, DIEAlloc,
2902                 LinkContext.CompileUnits, Options)
2903           .cloneAllCompileUnits(*LinkContext.DwarfContext, LinkContext.DMO,
2904                                 LinkContext.Ranges, OffsetsStringPool,
2905                                 LinkContext.DwarfContext->isLittleEndian());
2906     if (!Options.NoOutput && !LinkContext.CompileUnits.empty() &&
2907         LLVM_LIKELY(!Options.Update))
2908       patchFrameInfoForObject(
2909           LinkContext.DMO, LinkContext.Ranges, *LinkContext.DwarfContext,
2910           LinkContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
2911 
2912     // Clean-up before starting working on the next object.
2913     endDebugObject(LinkContext);
2914   };
2915 
2916   auto EmitLambda = [&]() {
2917     // Emit everything that's global.
2918     if (!Options.NoOutput) {
2919       Streamer->emitAbbrevs(Abbreviations, MaxDwarfVersion);
2920       Streamer->emitStrings(OffsetsStringPool);
2921       switch (Options.TheAccelTableKind) {
2922       case AccelTableKind::Apple:
2923         Streamer->emitAppleNames(AppleNames);
2924         Streamer->emitAppleNamespaces(AppleNamespaces);
2925         Streamer->emitAppleTypes(AppleTypes);
2926         Streamer->emitAppleObjc(AppleObjc);
2927         break;
2928       case AccelTableKind::Dwarf:
2929         Streamer->emitDebugNames(DebugNames);
2930         break;
2931       case AccelTableKind::Default:
2932         llvm_unreachable("Default should have already been resolved.");
2933         break;
2934       }
2935     }
2936   };
2937 
2938   remarks::RemarkLinker RL;
2939   if (!Options.RemarksPrependPath.empty())
2940     RL.setExternalFilePrependPath(Options.RemarksPrependPath);
2941   auto RemarkLinkLambda = [&](size_t i) {
2942     // Link remarks from one object file.
2943     auto &LinkContext = ObjectContexts[i];
2944     if (const object::ObjectFile *Obj = LinkContext.ObjectFile) {
2945       Error E = RL.link(*Obj);
2946       if (Error NewE = handleErrors(
2947               std::move(E), [&](std::unique_ptr<FileError> EC) -> Error {
2948                 return remarksErrorHandler(LinkContext.DMO, *this,
2949                                            std::move(EC));
2950               }))
2951         return NewE;
2952     }
2953     return Error(Error::success());
2954   };
2955 
2956   auto AnalyzeAll = [&]() {
2957     for (unsigned i = 0, e = NumObjects; i != e; ++i) {
2958       AnalyzeLambda(i);
2959 
2960       std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2961       ProcessedFiles.set(i);
2962       ProcessedFilesConditionVariable.notify_one();
2963     }
2964   };
2965 
2966   auto CloneAll = [&]() {
2967     for (unsigned i = 0, e = NumObjects; i != e; ++i) {
2968       {
2969         std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2970         if (!ProcessedFiles[i]) {
2971           ProcessedFilesConditionVariable.wait(
2972               LockGuard, [&]() { return ProcessedFiles[i]; });
2973         }
2974       }
2975 
2976       CloneLambda(i);
2977     }
2978     EmitLambda();
2979   };
2980 
2981   auto EmitRemarksLambda = [&]() {
2982     StringRef ArchName = Map.getTriple().getArchName();
2983     return emitRemarks(Options, Map.getBinaryPath(), ArchName, RL);
2984   };
2985 
2986   // Instead of making error handling a lot more complicated using futures,
2987   // write to one llvm::Error instance if something went wrong.
2988   // We're assuming RemarkLinkAllError is alive longer than the thread
2989   // executing RemarkLinkAll.
2990   auto RemarkLinkAll = [&](Error &RemarkLinkAllError) {
2991     // Allow assigning to the error only within the lambda.
2992     ErrorAsOutParameter EAO(&RemarkLinkAllError);
2993     for (unsigned i = 0, e = NumObjects; i != e; ++i)
2994       if ((RemarkLinkAllError = RemarkLinkLambda(i)))
2995         return;
2996 
2997     if ((RemarkLinkAllError = EmitRemarksLambda()))
2998       return;
2999   };
3000 
3001   // To limit memory usage in the single threaded case, analyze and clone are
3002   // run sequentially so the LinkContext is freed after processing each object
3003   // in endDebugObject.
3004   if (Options.Threads == 1) {
3005     for (unsigned i = 0, e = NumObjects; i != e; ++i) {
3006       AnalyzeLambda(i);
3007       CloneLambda(i);
3008 
3009       if (Error E = RemarkLinkLambda(i))
3010         return error(toString(std::move(E)));
3011     }
3012     EmitLambda();
3013 
3014     if (Error E = EmitRemarksLambda())
3015       return error(toString(std::move(E)));
3016 
3017   } else {
3018     // This should not be constructed on the single-threaded path to avoid fatal
3019     // errors from unchecked llvm::Error objects.
3020     Error RemarkLinkAllError = Error::success();
3021 
3022     ThreadPool pool(3);
3023     pool.async(AnalyzeAll);
3024     pool.async(CloneAll);
3025     pool.async(RemarkLinkAll, std::ref(RemarkLinkAllError));
3026     pool.wait();
3027 
3028     // Report errors from RemarkLinkAll, if any.
3029     if (Error E = std::move(RemarkLinkAllError))
3030       return error(toString(std::move(E)));
3031   }
3032 
3033   if (Options.NoOutput)
3034     return true;
3035 
3036   if (Options.ResourceDir && !ParseableSwiftInterfaces.empty()) {
3037     StringRef ArchName = Triple::getArchTypeName(Map.getTriple().getArch());
3038     if (auto E =
3039             copySwiftInterfaces(ParseableSwiftInterfaces, ArchName, Options))
3040       return error(toString(std::move(E)));
3041   }
3042 
3043   return Streamer->finish(Map, Options.Translator);
3044 } // namespace dsymutil
3045 
3046 bool linkDwarf(raw_fd_ostream &OutFile, BinaryHolder &BinHolder,
3047                const DebugMap &DM, LinkOptions Options) {
3048   DwarfLinkerForBinary Linker(OutFile, BinHolder, std::move(Options));
3049   return Linker.link(DM);
3050 }
3051 
3052 } // namespace dsymutil
3053 } // namespace llvm
3054