109467b48Spatrick //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 209467b48Spatrick // 309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information. 509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 609467b48Spatrick // 709467b48Spatrick //===----------------------------------------------------------------===// 809467b48Spatrick // 909467b48Spatrick // This file implements the PredicateInfo class. 1009467b48Spatrick // 1109467b48Spatrick //===----------------------------------------------------------------===// 1209467b48Spatrick 1309467b48Spatrick #include "llvm/Transforms/Utils/PredicateInfo.h" 1409467b48Spatrick #include "llvm/ADT/DenseMap.h" 1509467b48Spatrick #include "llvm/ADT/DepthFirstIterator.h" 1609467b48Spatrick #include "llvm/ADT/STLExtras.h" 1709467b48Spatrick #include "llvm/ADT/SmallPtrSet.h" 1809467b48Spatrick #include "llvm/ADT/Statistic.h" 1909467b48Spatrick #include "llvm/ADT/StringExtras.h" 2009467b48Spatrick #include "llvm/Analysis/AssumptionCache.h" 2109467b48Spatrick #include "llvm/Analysis/CFG.h" 2209467b48Spatrick #include "llvm/IR/AssemblyAnnotationWriter.h" 2309467b48Spatrick #include "llvm/IR/DataLayout.h" 2409467b48Spatrick #include "llvm/IR/Dominators.h" 2509467b48Spatrick #include "llvm/IR/GlobalVariable.h" 2609467b48Spatrick #include "llvm/IR/IRBuilder.h" 2709467b48Spatrick #include "llvm/IR/InstIterator.h" 2809467b48Spatrick #include "llvm/IR/IntrinsicInst.h" 2909467b48Spatrick #include "llvm/IR/LLVMContext.h" 3009467b48Spatrick #include "llvm/IR/Metadata.h" 3109467b48Spatrick #include "llvm/IR/Module.h" 3209467b48Spatrick #include "llvm/IR/PatternMatch.h" 3309467b48Spatrick #include "llvm/InitializePasses.h" 34097a140dSpatrick #include "llvm/Support/CommandLine.h" 3509467b48Spatrick #include "llvm/Support/Debug.h" 3609467b48Spatrick #include "llvm/Support/DebugCounter.h" 3709467b48Spatrick #include "llvm/Support/FormattedStream.h" 3809467b48Spatrick #include "llvm/Transforms/Utils.h" 3909467b48Spatrick #include <algorithm> 4009467b48Spatrick #define DEBUG_TYPE "predicateinfo" 4109467b48Spatrick using namespace llvm; 4209467b48Spatrick using namespace PatternMatch; 4309467b48Spatrick 4409467b48Spatrick INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 4509467b48Spatrick "PredicateInfo Printer", false, false) 4609467b48Spatrick INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4709467b48Spatrick INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4809467b48Spatrick INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 4909467b48Spatrick "PredicateInfo Printer", false, false) 5009467b48Spatrick static cl::opt<bool> VerifyPredicateInfo( 5109467b48Spatrick "verify-predicateinfo", cl::init(false), cl::Hidden, 5209467b48Spatrick cl::desc("Verify PredicateInfo in legacy printer pass.")); 5309467b48Spatrick DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 5409467b48Spatrick "Controls which variables are renamed with predicateinfo"); 5509467b48Spatrick 56*73471bf0Spatrick // Maximum number of conditions considered for renaming for each branch/assume. 57*73471bf0Spatrick // This limits renaming of deep and/or chains. 58*73471bf0Spatrick static const unsigned MaxCondsPerBranch = 8; 59*73471bf0Spatrick 6009467b48Spatrick namespace { 6109467b48Spatrick // Given a predicate info that is a type of branching terminator, get the 6209467b48Spatrick // branching block. 6309467b48Spatrick const BasicBlock *getBranchBlock(const PredicateBase *PB) { 6409467b48Spatrick assert(isa<PredicateWithEdge>(PB) && 6509467b48Spatrick "Only branches and switches should have PHIOnly defs that " 6609467b48Spatrick "require branch blocks."); 6709467b48Spatrick return cast<PredicateWithEdge>(PB)->From; 6809467b48Spatrick } 6909467b48Spatrick 7009467b48Spatrick // Given a predicate info that is a type of branching terminator, get the 7109467b48Spatrick // branching terminator. 7209467b48Spatrick static Instruction *getBranchTerminator(const PredicateBase *PB) { 7309467b48Spatrick assert(isa<PredicateWithEdge>(PB) && 7409467b48Spatrick "Not a predicate info type we know how to get a terminator from."); 7509467b48Spatrick return cast<PredicateWithEdge>(PB)->From->getTerminator(); 7609467b48Spatrick } 7709467b48Spatrick 7809467b48Spatrick // Given a predicate info that is a type of branching terminator, get the 7909467b48Spatrick // edge this predicate info represents 80*73471bf0Spatrick std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) { 8109467b48Spatrick assert(isa<PredicateWithEdge>(PB) && 8209467b48Spatrick "Not a predicate info type we know how to get an edge from."); 8309467b48Spatrick const auto *PEdge = cast<PredicateWithEdge>(PB); 8409467b48Spatrick return std::make_pair(PEdge->From, PEdge->To); 8509467b48Spatrick } 8609467b48Spatrick } 8709467b48Spatrick 8809467b48Spatrick namespace llvm { 8909467b48Spatrick enum LocalNum { 9009467b48Spatrick // Operations that must appear first in the block. 9109467b48Spatrick LN_First, 9209467b48Spatrick // Operations that are somewhere in the middle of the block, and are sorted on 9309467b48Spatrick // demand. 9409467b48Spatrick LN_Middle, 9509467b48Spatrick // Operations that must appear last in a block, like successor phi node uses. 9609467b48Spatrick LN_Last 9709467b48Spatrick }; 9809467b48Spatrick 9909467b48Spatrick // Associate global and local DFS info with defs and uses, so we can sort them 10009467b48Spatrick // into a global domination ordering. 10109467b48Spatrick struct ValueDFS { 10209467b48Spatrick int DFSIn = 0; 10309467b48Spatrick int DFSOut = 0; 10409467b48Spatrick unsigned int LocalNum = LN_Middle; 10509467b48Spatrick // Only one of Def or Use will be set. 10609467b48Spatrick Value *Def = nullptr; 10709467b48Spatrick Use *U = nullptr; 10809467b48Spatrick // Neither PInfo nor EdgeOnly participate in the ordering 10909467b48Spatrick PredicateBase *PInfo = nullptr; 11009467b48Spatrick bool EdgeOnly = false; 11109467b48Spatrick }; 11209467b48Spatrick 11309467b48Spatrick // Perform a strict weak ordering on instructions and arguments. 114097a140dSpatrick static bool valueComesBefore(const Value *A, const Value *B) { 11509467b48Spatrick auto *ArgA = dyn_cast_or_null<Argument>(A); 11609467b48Spatrick auto *ArgB = dyn_cast_or_null<Argument>(B); 11709467b48Spatrick if (ArgA && !ArgB) 11809467b48Spatrick return true; 11909467b48Spatrick if (ArgB && !ArgA) 12009467b48Spatrick return false; 12109467b48Spatrick if (ArgA && ArgB) 12209467b48Spatrick return ArgA->getArgNo() < ArgB->getArgNo(); 123097a140dSpatrick return cast<Instruction>(A)->comesBefore(cast<Instruction>(B)); 12409467b48Spatrick } 12509467b48Spatrick 126097a140dSpatrick // This compares ValueDFS structures. Doing so allows us to walk the minimum 127097a140dSpatrick // number of instructions necessary to compute our def/use ordering. 12809467b48Spatrick struct ValueDFS_Compare { 12909467b48Spatrick DominatorTree &DT; 130097a140dSpatrick ValueDFS_Compare(DominatorTree &DT) : DT(DT) {} 13109467b48Spatrick 13209467b48Spatrick bool operator()(const ValueDFS &A, const ValueDFS &B) const { 13309467b48Spatrick if (&A == &B) 13409467b48Spatrick return false; 13509467b48Spatrick // The only case we can't directly compare them is when they in the same 13609467b48Spatrick // block, and both have localnum == middle. In that case, we have to use 13709467b48Spatrick // comesbefore to see what the real ordering is, because they are in the 13809467b48Spatrick // same basic block. 13909467b48Spatrick 14009467b48Spatrick assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) && 14109467b48Spatrick "Equal DFS-in numbers imply equal out numbers"); 14209467b48Spatrick bool SameBlock = A.DFSIn == B.DFSIn; 14309467b48Spatrick 14409467b48Spatrick // We want to put the def that will get used for a given set of phi uses, 14509467b48Spatrick // before those phi uses. 14609467b48Spatrick // So we sort by edge, then by def. 14709467b48Spatrick // Note that only phi nodes uses and defs can come last. 14809467b48Spatrick if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 14909467b48Spatrick return comparePHIRelated(A, B); 15009467b48Spatrick 15109467b48Spatrick bool isADef = A.Def; 15209467b48Spatrick bool isBDef = B.Def; 15309467b48Spatrick if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 15409467b48Spatrick return std::tie(A.DFSIn, A.LocalNum, isADef) < 15509467b48Spatrick std::tie(B.DFSIn, B.LocalNum, isBDef); 15609467b48Spatrick return localComesBefore(A, B); 15709467b48Spatrick } 15809467b48Spatrick 15909467b48Spatrick // For a phi use, or a non-materialized def, return the edge it represents. 160*73471bf0Spatrick std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const { 16109467b48Spatrick if (!VD.Def && VD.U) { 16209467b48Spatrick auto *PHI = cast<PHINode>(VD.U->getUser()); 16309467b48Spatrick return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 16409467b48Spatrick } 16509467b48Spatrick // This is really a non-materialized def. 16609467b48Spatrick return ::getBlockEdge(VD.PInfo); 16709467b48Spatrick } 16809467b48Spatrick 16909467b48Spatrick // For two phi related values, return the ordering. 17009467b48Spatrick bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 17109467b48Spatrick BasicBlock *ASrc, *ADest, *BSrc, *BDest; 17209467b48Spatrick std::tie(ASrc, ADest) = getBlockEdge(A); 17309467b48Spatrick std::tie(BSrc, BDest) = getBlockEdge(B); 17409467b48Spatrick 17509467b48Spatrick #ifndef NDEBUG 17609467b48Spatrick // This function should only be used for values in the same BB, check that. 17709467b48Spatrick DomTreeNode *DomASrc = DT.getNode(ASrc); 17809467b48Spatrick DomTreeNode *DomBSrc = DT.getNode(BSrc); 17909467b48Spatrick assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && 18009467b48Spatrick "DFS numbers for A should match the ones of the source block"); 18109467b48Spatrick assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && 18209467b48Spatrick "DFS numbers for B should match the ones of the source block"); 18309467b48Spatrick assert(A.DFSIn == B.DFSIn && "Values must be in the same block"); 18409467b48Spatrick #endif 18509467b48Spatrick (void)ASrc; 18609467b48Spatrick (void)BSrc; 18709467b48Spatrick 18809467b48Spatrick // Use DFS numbers to compare destination blocks, to guarantee a 18909467b48Spatrick // deterministic order. 19009467b48Spatrick DomTreeNode *DomADest = DT.getNode(ADest); 19109467b48Spatrick DomTreeNode *DomBDest = DT.getNode(BDest); 19209467b48Spatrick unsigned AIn = DomADest->getDFSNumIn(); 19309467b48Spatrick unsigned BIn = DomBDest->getDFSNumIn(); 19409467b48Spatrick bool isADef = A.Def; 19509467b48Spatrick bool isBDef = B.Def; 19609467b48Spatrick assert((!A.Def || !A.U) && (!B.Def || !B.U) && 19709467b48Spatrick "Def and U cannot be set at the same time"); 19809467b48Spatrick // Now sort by edge destination and then defs before uses. 19909467b48Spatrick return std::tie(AIn, isADef) < std::tie(BIn, isBDef); 20009467b48Spatrick } 20109467b48Spatrick 20209467b48Spatrick // Get the definition of an instruction that occurs in the middle of a block. 20309467b48Spatrick Value *getMiddleDef(const ValueDFS &VD) const { 20409467b48Spatrick if (VD.Def) 20509467b48Spatrick return VD.Def; 20609467b48Spatrick // It's possible for the defs and uses to be null. For branches, the local 20709467b48Spatrick // numbering will say the placed predicaeinfos should go first (IE 20809467b48Spatrick // LN_beginning), so we won't be in this function. For assumes, we will end 20909467b48Spatrick // up here, beause we need to order the def we will place relative to the 210097a140dSpatrick // assume. So for the purpose of ordering, we pretend the def is right 211097a140dSpatrick // after the assume, because that is where we will insert the info. 21209467b48Spatrick if (!VD.U) { 21309467b48Spatrick assert(VD.PInfo && 21409467b48Spatrick "No def, no use, and no predicateinfo should not occur"); 21509467b48Spatrick assert(isa<PredicateAssume>(VD.PInfo) && 21609467b48Spatrick "Middle of block should only occur for assumes"); 217097a140dSpatrick return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode(); 21809467b48Spatrick } 21909467b48Spatrick return nullptr; 22009467b48Spatrick } 22109467b48Spatrick 22209467b48Spatrick // Return either the Def, if it's not null, or the user of the Use, if the def 22309467b48Spatrick // is null. 22409467b48Spatrick const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 22509467b48Spatrick if (Def) 22609467b48Spatrick return cast<Instruction>(Def); 22709467b48Spatrick return cast<Instruction>(U->getUser()); 22809467b48Spatrick } 22909467b48Spatrick 23009467b48Spatrick // This performs the necessary local basic block ordering checks to tell 23109467b48Spatrick // whether A comes before B, where both are in the same basic block. 23209467b48Spatrick bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 23309467b48Spatrick auto *ADef = getMiddleDef(A); 23409467b48Spatrick auto *BDef = getMiddleDef(B); 23509467b48Spatrick 23609467b48Spatrick // See if we have real values or uses. If we have real values, we are 23709467b48Spatrick // guaranteed they are instructions or arguments. No matter what, we are 23809467b48Spatrick // guaranteed they are in the same block if they are instructions. 23909467b48Spatrick auto *ArgA = dyn_cast_or_null<Argument>(ADef); 24009467b48Spatrick auto *ArgB = dyn_cast_or_null<Argument>(BDef); 24109467b48Spatrick 24209467b48Spatrick if (ArgA || ArgB) 243097a140dSpatrick return valueComesBefore(ArgA, ArgB); 24409467b48Spatrick 24509467b48Spatrick auto *AInst = getDefOrUser(ADef, A.U); 24609467b48Spatrick auto *BInst = getDefOrUser(BDef, B.U); 247097a140dSpatrick return valueComesBefore(AInst, BInst); 24809467b48Spatrick } 24909467b48Spatrick }; 25009467b48Spatrick 251097a140dSpatrick class PredicateInfoBuilder { 252097a140dSpatrick // Used to store information about each value we might rename. 253097a140dSpatrick struct ValueInfo { 254097a140dSpatrick SmallVector<PredicateBase *, 4> Infos; 255097a140dSpatrick }; 25609467b48Spatrick 257097a140dSpatrick PredicateInfo &PI; 258097a140dSpatrick Function &F; 259097a140dSpatrick DominatorTree &DT; 260097a140dSpatrick AssumptionCache &AC; 261097a140dSpatrick 262097a140dSpatrick // This stores info about each operand or comparison result we make copies 263097a140dSpatrick // of. The real ValueInfos start at index 1, index 0 is unused so that we 264097a140dSpatrick // can more easily detect invalid indexing. 265097a140dSpatrick SmallVector<ValueInfo, 32> ValueInfos; 266097a140dSpatrick 267097a140dSpatrick // This gives the index into the ValueInfos array for a given Value. Because 268097a140dSpatrick // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell 269097a140dSpatrick // whether it returned a valid result. 270097a140dSpatrick DenseMap<Value *, unsigned int> ValueInfoNums; 271097a140dSpatrick 272097a140dSpatrick // The set of edges along which we can only handle phi uses, due to critical 273097a140dSpatrick // edges. 274097a140dSpatrick DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly; 275097a140dSpatrick 276097a140dSpatrick ValueInfo &getOrCreateValueInfo(Value *); 277097a140dSpatrick const ValueInfo &getValueInfo(Value *) const; 278097a140dSpatrick 279097a140dSpatrick void processAssume(IntrinsicInst *, BasicBlock *, 280097a140dSpatrick SmallVectorImpl<Value *> &OpsToRename); 281097a140dSpatrick void processBranch(BranchInst *, BasicBlock *, 282097a140dSpatrick SmallVectorImpl<Value *> &OpsToRename); 283097a140dSpatrick void processSwitch(SwitchInst *, BasicBlock *, 284097a140dSpatrick SmallVectorImpl<Value *> &OpsToRename); 285097a140dSpatrick void renameUses(SmallVectorImpl<Value *> &OpsToRename); 286097a140dSpatrick void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 287097a140dSpatrick PredicateBase *PB); 288097a140dSpatrick 289097a140dSpatrick typedef SmallVectorImpl<ValueDFS> ValueDFSStack; 290097a140dSpatrick void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &); 291097a140dSpatrick Value *materializeStack(unsigned int &, ValueDFSStack &, Value *); 292097a140dSpatrick bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const; 293097a140dSpatrick void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &); 294097a140dSpatrick 295097a140dSpatrick public: 296097a140dSpatrick PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, 297097a140dSpatrick AssumptionCache &AC) 298097a140dSpatrick : PI(PI), F(F), DT(DT), AC(AC) { 299097a140dSpatrick // Push an empty operand info so that we can detect 0 as not finding one 300097a140dSpatrick ValueInfos.resize(1); 301097a140dSpatrick } 302097a140dSpatrick 303097a140dSpatrick void buildPredicateInfo(); 304097a140dSpatrick }; 305097a140dSpatrick 306097a140dSpatrick bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack, 30709467b48Spatrick const ValueDFS &VDUse) const { 30809467b48Spatrick if (Stack.empty()) 30909467b48Spatrick return false; 31009467b48Spatrick // If it's a phi only use, make sure it's for this phi node edge, and that the 31109467b48Spatrick // use is in a phi node. If it's anything else, and the top of the stack is 31209467b48Spatrick // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 31309467b48Spatrick // the defs they must go with so that we can know it's time to pop the stack 31409467b48Spatrick // when we hit the end of the phi uses for a given def. 31509467b48Spatrick if (Stack.back().EdgeOnly) { 31609467b48Spatrick if (!VDUse.U) 31709467b48Spatrick return false; 31809467b48Spatrick auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 31909467b48Spatrick if (!PHI) 32009467b48Spatrick return false; 32109467b48Spatrick // Check edge 32209467b48Spatrick BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 32309467b48Spatrick if (EdgePred != getBranchBlock(Stack.back().PInfo)) 32409467b48Spatrick return false; 32509467b48Spatrick 32609467b48Spatrick // Use dominates, which knows how to handle edge dominance. 32709467b48Spatrick return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 32809467b48Spatrick } 32909467b48Spatrick 33009467b48Spatrick return (VDUse.DFSIn >= Stack.back().DFSIn && 33109467b48Spatrick VDUse.DFSOut <= Stack.back().DFSOut); 33209467b48Spatrick } 33309467b48Spatrick 334097a140dSpatrick void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack, 33509467b48Spatrick const ValueDFS &VD) { 33609467b48Spatrick while (!Stack.empty() && !stackIsInScope(Stack, VD)) 33709467b48Spatrick Stack.pop_back(); 33809467b48Spatrick } 33909467b48Spatrick 34009467b48Spatrick // Convert the uses of Op into a vector of uses, associating global and local 34109467b48Spatrick // DFS info with each one. 342097a140dSpatrick void PredicateInfoBuilder::convertUsesToDFSOrdered( 34309467b48Spatrick Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 34409467b48Spatrick for (auto &U : Op->uses()) { 34509467b48Spatrick if (auto *I = dyn_cast<Instruction>(U.getUser())) { 34609467b48Spatrick ValueDFS VD; 34709467b48Spatrick // Put the phi node uses in the incoming block. 34809467b48Spatrick BasicBlock *IBlock; 34909467b48Spatrick if (auto *PN = dyn_cast<PHINode>(I)) { 35009467b48Spatrick IBlock = PN->getIncomingBlock(U); 35109467b48Spatrick // Make phi node users appear last in the incoming block 35209467b48Spatrick // they are from. 35309467b48Spatrick VD.LocalNum = LN_Last; 35409467b48Spatrick } else { 35509467b48Spatrick // If it's not a phi node use, it is somewhere in the middle of the 35609467b48Spatrick // block. 35709467b48Spatrick IBlock = I->getParent(); 35809467b48Spatrick VD.LocalNum = LN_Middle; 35909467b48Spatrick } 36009467b48Spatrick DomTreeNode *DomNode = DT.getNode(IBlock); 36109467b48Spatrick // It's possible our use is in an unreachable block. Skip it if so. 36209467b48Spatrick if (!DomNode) 36309467b48Spatrick continue; 36409467b48Spatrick VD.DFSIn = DomNode->getDFSNumIn(); 36509467b48Spatrick VD.DFSOut = DomNode->getDFSNumOut(); 36609467b48Spatrick VD.U = &U; 36709467b48Spatrick DFSOrderedSet.push_back(VD); 36809467b48Spatrick } 36909467b48Spatrick } 37009467b48Spatrick } 37109467b48Spatrick 372*73471bf0Spatrick bool shouldRename(Value *V) { 373*73471bf0Spatrick // Only want real values, not constants. Additionally, operands with one use 374*73471bf0Spatrick // are only being used in the comparison, which means they will not be useful 375*73471bf0Spatrick // for us to consider for predicateinfo. 376*73471bf0Spatrick return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse(); 377*73471bf0Spatrick } 378*73471bf0Spatrick 37909467b48Spatrick // Collect relevant operations from Comparison that we may want to insert copies 38009467b48Spatrick // for. 38109467b48Spatrick void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 38209467b48Spatrick auto *Op0 = Comparison->getOperand(0); 38309467b48Spatrick auto *Op1 = Comparison->getOperand(1); 38409467b48Spatrick if (Op0 == Op1) 38509467b48Spatrick return; 386*73471bf0Spatrick 38709467b48Spatrick CmpOperands.push_back(Op0); 38809467b48Spatrick CmpOperands.push_back(Op1); 38909467b48Spatrick } 39009467b48Spatrick 39109467b48Spatrick // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 392097a140dSpatrick void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, 393097a140dSpatrick Value *Op, PredicateBase *PB) { 39409467b48Spatrick auto &OperandInfo = getOrCreateValueInfo(Op); 39509467b48Spatrick if (OperandInfo.Infos.empty()) 39609467b48Spatrick OpsToRename.push_back(Op); 397097a140dSpatrick PI.AllInfos.push_back(PB); 39809467b48Spatrick OperandInfo.Infos.push_back(PB); 39909467b48Spatrick } 40009467b48Spatrick 40109467b48Spatrick // Process an assume instruction and place relevant operations we want to rename 40209467b48Spatrick // into OpsToRename. 403097a140dSpatrick void PredicateInfoBuilder::processAssume( 404097a140dSpatrick IntrinsicInst *II, BasicBlock *AssumeBB, 40509467b48Spatrick SmallVectorImpl<Value *> &OpsToRename) { 406*73471bf0Spatrick SmallVector<Value *, 4> Worklist; 407*73471bf0Spatrick SmallPtrSet<Value *, 4> Visited; 408*73471bf0Spatrick Worklist.push_back(II->getOperand(0)); 409*73471bf0Spatrick while (!Worklist.empty()) { 410*73471bf0Spatrick Value *Cond = Worklist.pop_back_val(); 411*73471bf0Spatrick if (!Visited.insert(Cond).second) 412*73471bf0Spatrick continue; 413*73471bf0Spatrick if (Visited.size() > MaxCondsPerBranch) 414*73471bf0Spatrick break; 41509467b48Spatrick 416*73471bf0Spatrick Value *Op0, *Op1; 417*73471bf0Spatrick if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 418*73471bf0Spatrick Worklist.push_back(Op1); 419*73471bf0Spatrick Worklist.push_back(Op0); 42009467b48Spatrick } 421*73471bf0Spatrick 422*73471bf0Spatrick SmallVector<Value *, 4> Values; 423*73471bf0Spatrick Values.push_back(Cond); 424*73471bf0Spatrick if (auto *Cmp = dyn_cast<CmpInst>(Cond)) 425*73471bf0Spatrick collectCmpOps(Cmp, Values); 426*73471bf0Spatrick 427*73471bf0Spatrick for (Value *V : Values) { 428*73471bf0Spatrick if (shouldRename(V)) { 429*73471bf0Spatrick auto *PA = new PredicateAssume(V, II, Cond); 430*73471bf0Spatrick addInfoFor(OpsToRename, V, PA); 43109467b48Spatrick } 43209467b48Spatrick } 43309467b48Spatrick } 43409467b48Spatrick } 43509467b48Spatrick 43609467b48Spatrick // Process a block terminating branch, and place relevant operations to be 43709467b48Spatrick // renamed into OpsToRename. 438097a140dSpatrick void PredicateInfoBuilder::processBranch( 439097a140dSpatrick BranchInst *BI, BasicBlock *BranchBB, 44009467b48Spatrick SmallVectorImpl<Value *> &OpsToRename) { 44109467b48Spatrick BasicBlock *FirstBB = BI->getSuccessor(0); 44209467b48Spatrick BasicBlock *SecondBB = BI->getSuccessor(1); 44309467b48Spatrick 444*73471bf0Spatrick for (BasicBlock *Succ : {FirstBB, SecondBB}) { 445*73471bf0Spatrick bool TakenEdge = Succ == FirstBB; 44609467b48Spatrick // Don't try to insert on a self-edge. This is mainly because we will 44709467b48Spatrick // eliminate during renaming anyway. 44809467b48Spatrick if (Succ == BranchBB) 44909467b48Spatrick continue; 450*73471bf0Spatrick 451*73471bf0Spatrick SmallVector<Value *, 4> Worklist; 452*73471bf0Spatrick SmallPtrSet<Value *, 4> Visited; 453*73471bf0Spatrick Worklist.push_back(BI->getCondition()); 454*73471bf0Spatrick while (!Worklist.empty()) { 455*73471bf0Spatrick Value *Cond = Worklist.pop_back_val(); 456*73471bf0Spatrick if (!Visited.insert(Cond).second) 45709467b48Spatrick continue; 458*73471bf0Spatrick if (Visited.size() > MaxCondsPerBranch) 459*73471bf0Spatrick break; 460*73471bf0Spatrick 461*73471bf0Spatrick Value *Op0, *Op1; 462*73471bf0Spatrick if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) 463*73471bf0Spatrick : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 464*73471bf0Spatrick Worklist.push_back(Op1); 465*73471bf0Spatrick Worklist.push_back(Op0); 466*73471bf0Spatrick } 467*73471bf0Spatrick 468*73471bf0Spatrick SmallVector<Value *, 4> Values; 469*73471bf0Spatrick Values.push_back(Cond); 470*73471bf0Spatrick if (auto *Cmp = dyn_cast<CmpInst>(Cond)) 471*73471bf0Spatrick collectCmpOps(Cmp, Values); 472*73471bf0Spatrick 473*73471bf0Spatrick for (Value *V : Values) { 474*73471bf0Spatrick if (shouldRename(V)) { 47509467b48Spatrick PredicateBase *PB = 476*73471bf0Spatrick new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge); 477*73471bf0Spatrick addInfoFor(OpsToRename, V, PB); 47809467b48Spatrick if (!Succ->getSinglePredecessor()) 47909467b48Spatrick EdgeUsesOnly.insert({BranchBB, Succ}); 48009467b48Spatrick } 48109467b48Spatrick } 48209467b48Spatrick } 48309467b48Spatrick } 48409467b48Spatrick } 48509467b48Spatrick // Process a block terminating switch, and place relevant operations to be 48609467b48Spatrick // renamed into OpsToRename. 487097a140dSpatrick void PredicateInfoBuilder::processSwitch( 488097a140dSpatrick SwitchInst *SI, BasicBlock *BranchBB, 48909467b48Spatrick SmallVectorImpl<Value *> &OpsToRename) { 49009467b48Spatrick Value *Op = SI->getCondition(); 49109467b48Spatrick if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 49209467b48Spatrick return; 49309467b48Spatrick 49409467b48Spatrick // Remember how many outgoing edges there are to every successor. 49509467b48Spatrick SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 49609467b48Spatrick for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 49709467b48Spatrick BasicBlock *TargetBlock = SI->getSuccessor(i); 49809467b48Spatrick ++SwitchEdges[TargetBlock]; 49909467b48Spatrick } 50009467b48Spatrick 50109467b48Spatrick // Now propagate info for each case value 50209467b48Spatrick for (auto C : SI->cases()) { 50309467b48Spatrick BasicBlock *TargetBlock = C.getCaseSuccessor(); 50409467b48Spatrick if (SwitchEdges.lookup(TargetBlock) == 1) { 50509467b48Spatrick PredicateSwitch *PS = new PredicateSwitch( 50609467b48Spatrick Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 50709467b48Spatrick addInfoFor(OpsToRename, Op, PS); 50809467b48Spatrick if (!TargetBlock->getSinglePredecessor()) 50909467b48Spatrick EdgeUsesOnly.insert({BranchBB, TargetBlock}); 51009467b48Spatrick } 51109467b48Spatrick } 51209467b48Spatrick } 51309467b48Spatrick 51409467b48Spatrick // Build predicate info for our function 515097a140dSpatrick void PredicateInfoBuilder::buildPredicateInfo() { 51609467b48Spatrick DT.updateDFSNumbers(); 51709467b48Spatrick // Collect operands to rename from all conditional branch terminators, as well 51809467b48Spatrick // as assume statements. 51909467b48Spatrick SmallVector<Value *, 8> OpsToRename; 52009467b48Spatrick for (auto DTN : depth_first(DT.getRootNode())) { 52109467b48Spatrick BasicBlock *BranchBB = DTN->getBlock(); 52209467b48Spatrick if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 52309467b48Spatrick if (!BI->isConditional()) 52409467b48Spatrick continue; 52509467b48Spatrick // Can't insert conditional information if they all go to the same place. 52609467b48Spatrick if (BI->getSuccessor(0) == BI->getSuccessor(1)) 52709467b48Spatrick continue; 52809467b48Spatrick processBranch(BI, BranchBB, OpsToRename); 52909467b48Spatrick } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 53009467b48Spatrick processSwitch(SI, BranchBB, OpsToRename); 53109467b48Spatrick } 53209467b48Spatrick } 53309467b48Spatrick for (auto &Assume : AC.assumptions()) { 53409467b48Spatrick if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 53509467b48Spatrick if (DT.isReachableFromEntry(II->getParent())) 53609467b48Spatrick processAssume(II, II->getParent(), OpsToRename); 53709467b48Spatrick } 53809467b48Spatrick // Now rename all our operations. 53909467b48Spatrick renameUses(OpsToRename); 54009467b48Spatrick } 54109467b48Spatrick 54209467b48Spatrick // Given the renaming stack, make all the operands currently on the stack real 54309467b48Spatrick // by inserting them into the IR. Return the last operation's value. 544097a140dSpatrick Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter, 54509467b48Spatrick ValueDFSStack &RenameStack, 54609467b48Spatrick Value *OrigOp) { 54709467b48Spatrick // Find the first thing we have to materialize 54809467b48Spatrick auto RevIter = RenameStack.rbegin(); 54909467b48Spatrick for (; RevIter != RenameStack.rend(); ++RevIter) 55009467b48Spatrick if (RevIter->Def) 55109467b48Spatrick break; 55209467b48Spatrick 55309467b48Spatrick size_t Start = RevIter - RenameStack.rbegin(); 55409467b48Spatrick // The maximum number of things we should be trying to materialize at once 55509467b48Spatrick // right now is 4, depending on if we had an assume, a branch, and both used 55609467b48Spatrick // and of conditions. 55709467b48Spatrick for (auto RenameIter = RenameStack.end() - Start; 55809467b48Spatrick RenameIter != RenameStack.end(); ++RenameIter) { 55909467b48Spatrick auto *Op = 56009467b48Spatrick RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 56109467b48Spatrick ValueDFS &Result = *RenameIter; 56209467b48Spatrick auto *ValInfo = Result.PInfo; 563097a140dSpatrick ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin() 564097a140dSpatrick ? OrigOp 565097a140dSpatrick : (RenameStack.end() - Start - 1)->Def; 56609467b48Spatrick // For edge predicates, we can just place the operand in the block before 56709467b48Spatrick // the terminator. For assume, we have to place it right before the assume 56809467b48Spatrick // to ensure we dominate all of our uses. Always insert right before the 56909467b48Spatrick // relevant instruction (terminator, assume), so that we insert in proper 57009467b48Spatrick // order in the case of multiple predicateinfo in the same block. 571*73471bf0Spatrick // The number of named values is used to detect if a new declaration was 572*73471bf0Spatrick // added. If so, that declaration is tracked so that it can be removed when 573*73471bf0Spatrick // the analysis is done. The corner case were a new declaration results in 574*73471bf0Spatrick // a name clash and the old name being renamed is not considered as that 575*73471bf0Spatrick // represents an invalid module. 57609467b48Spatrick if (isa<PredicateWithEdge>(ValInfo)) { 57709467b48Spatrick IRBuilder<> B(getBranchTerminator(ValInfo)); 578*73471bf0Spatrick auto NumDecls = F.getParent()->getNumNamedValues(); 579*73471bf0Spatrick Function *IF = Intrinsic::getDeclaration( 580*73471bf0Spatrick F.getParent(), Intrinsic::ssa_copy, Op->getType()); 581*73471bf0Spatrick if (NumDecls != F.getParent()->getNumNamedValues()) 582097a140dSpatrick PI.CreatedDeclarations.insert(IF); 58309467b48Spatrick CallInst *PIC = 58409467b48Spatrick B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 585097a140dSpatrick PI.PredicateMap.insert({PIC, ValInfo}); 58609467b48Spatrick Result.Def = PIC; 58709467b48Spatrick } else { 58809467b48Spatrick auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 58909467b48Spatrick assert(PAssume && 59009467b48Spatrick "Should not have gotten here without it being an assume"); 591097a140dSpatrick // Insert the predicate directly after the assume. While it also holds 592097a140dSpatrick // directly before it, assume(i1 true) is not a useful fact. 593097a140dSpatrick IRBuilder<> B(PAssume->AssumeInst->getNextNode()); 594*73471bf0Spatrick auto NumDecls = F.getParent()->getNumNamedValues(); 595*73471bf0Spatrick Function *IF = Intrinsic::getDeclaration( 596*73471bf0Spatrick F.getParent(), Intrinsic::ssa_copy, Op->getType()); 597*73471bf0Spatrick if (NumDecls != F.getParent()->getNumNamedValues()) 598097a140dSpatrick PI.CreatedDeclarations.insert(IF); 59909467b48Spatrick CallInst *PIC = B.CreateCall(IF, Op); 600097a140dSpatrick PI.PredicateMap.insert({PIC, ValInfo}); 60109467b48Spatrick Result.Def = PIC; 60209467b48Spatrick } 60309467b48Spatrick } 60409467b48Spatrick return RenameStack.back().Def; 60509467b48Spatrick } 60609467b48Spatrick 60709467b48Spatrick // Instead of the standard SSA renaming algorithm, which is O(Number of 60809467b48Spatrick // instructions), and walks the entire dominator tree, we walk only the defs + 60909467b48Spatrick // uses. The standard SSA renaming algorithm does not really rely on the 61009467b48Spatrick // dominator tree except to order the stack push/pops of the renaming stacks, so 61109467b48Spatrick // that defs end up getting pushed before hitting the correct uses. This does 61209467b48Spatrick // not require the dominator tree, only the *order* of the dominator tree. The 61309467b48Spatrick // complete and correct ordering of the defs and uses, in dominator tree is 61409467b48Spatrick // contained in the DFS numbering of the dominator tree. So we sort the defs and 61509467b48Spatrick // uses into the DFS ordering, and then just use the renaming stack as per 61609467b48Spatrick // normal, pushing when we hit a def (which is a predicateinfo instruction), 61709467b48Spatrick // popping when we are out of the dfs scope for that def, and replacing any uses 61809467b48Spatrick // with top of stack if it exists. In order to handle liveness without 61909467b48Spatrick // propagating liveness info, we don't actually insert the predicateinfo 62009467b48Spatrick // instruction def until we see a use that it would dominate. Once we see such 62109467b48Spatrick // a use, we materialize the predicateinfo instruction in the right place and 62209467b48Spatrick // use it. 62309467b48Spatrick // 62409467b48Spatrick // TODO: Use this algorithm to perform fast single-variable renaming in 62509467b48Spatrick // promotememtoreg and memoryssa. 626097a140dSpatrick void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 627097a140dSpatrick ValueDFS_Compare Compare(DT); 62809467b48Spatrick // Compute liveness, and rename in O(uses) per Op. 62909467b48Spatrick for (auto *Op : OpsToRename) { 63009467b48Spatrick LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 63109467b48Spatrick unsigned Counter = 0; 63209467b48Spatrick SmallVector<ValueDFS, 16> OrderedUses; 63309467b48Spatrick const auto &ValueInfo = getValueInfo(Op); 63409467b48Spatrick // Insert the possible copies into the def/use list. 63509467b48Spatrick // They will become real copies if we find a real use for them, and never 63609467b48Spatrick // created otherwise. 63709467b48Spatrick for (auto &PossibleCopy : ValueInfo.Infos) { 63809467b48Spatrick ValueDFS VD; 63909467b48Spatrick // Determine where we are going to place the copy by the copy type. 64009467b48Spatrick // The predicate info for branches always come first, they will get 64109467b48Spatrick // materialized in the split block at the top of the block. 64209467b48Spatrick // The predicate info for assumes will be somewhere in the middle, 64309467b48Spatrick // it will get materialized in front of the assume. 64409467b48Spatrick if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 64509467b48Spatrick VD.LocalNum = LN_Middle; 64609467b48Spatrick DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 64709467b48Spatrick if (!DomNode) 64809467b48Spatrick continue; 64909467b48Spatrick VD.DFSIn = DomNode->getDFSNumIn(); 65009467b48Spatrick VD.DFSOut = DomNode->getDFSNumOut(); 65109467b48Spatrick VD.PInfo = PossibleCopy; 65209467b48Spatrick OrderedUses.push_back(VD); 65309467b48Spatrick } else if (isa<PredicateWithEdge>(PossibleCopy)) { 65409467b48Spatrick // If we can only do phi uses, we treat it like it's in the branch 65509467b48Spatrick // block, and handle it specially. We know that it goes last, and only 65609467b48Spatrick // dominate phi uses. 65709467b48Spatrick auto BlockEdge = getBlockEdge(PossibleCopy); 65809467b48Spatrick if (EdgeUsesOnly.count(BlockEdge)) { 65909467b48Spatrick VD.LocalNum = LN_Last; 66009467b48Spatrick auto *DomNode = DT.getNode(BlockEdge.first); 66109467b48Spatrick if (DomNode) { 66209467b48Spatrick VD.DFSIn = DomNode->getDFSNumIn(); 66309467b48Spatrick VD.DFSOut = DomNode->getDFSNumOut(); 66409467b48Spatrick VD.PInfo = PossibleCopy; 66509467b48Spatrick VD.EdgeOnly = true; 66609467b48Spatrick OrderedUses.push_back(VD); 66709467b48Spatrick } 66809467b48Spatrick } else { 66909467b48Spatrick // Otherwise, we are in the split block (even though we perform 67009467b48Spatrick // insertion in the branch block). 67109467b48Spatrick // Insert a possible copy at the split block and before the branch. 67209467b48Spatrick VD.LocalNum = LN_First; 67309467b48Spatrick auto *DomNode = DT.getNode(BlockEdge.second); 67409467b48Spatrick if (DomNode) { 67509467b48Spatrick VD.DFSIn = DomNode->getDFSNumIn(); 67609467b48Spatrick VD.DFSOut = DomNode->getDFSNumOut(); 67709467b48Spatrick VD.PInfo = PossibleCopy; 67809467b48Spatrick OrderedUses.push_back(VD); 67909467b48Spatrick } 68009467b48Spatrick } 68109467b48Spatrick } 68209467b48Spatrick } 68309467b48Spatrick 68409467b48Spatrick convertUsesToDFSOrdered(Op, OrderedUses); 68509467b48Spatrick // Here we require a stable sort because we do not bother to try to 68609467b48Spatrick // assign an order to the operands the uses represent. Thus, two 68709467b48Spatrick // uses in the same instruction do not have a strict sort order 68809467b48Spatrick // currently and will be considered equal. We could get rid of the 68909467b48Spatrick // stable sort by creating one if we wanted. 69009467b48Spatrick llvm::stable_sort(OrderedUses, Compare); 69109467b48Spatrick SmallVector<ValueDFS, 8> RenameStack; 69209467b48Spatrick // For each use, sorted into dfs order, push values and replaces uses with 69309467b48Spatrick // top of stack, which will represent the reaching def. 69409467b48Spatrick for (auto &VD : OrderedUses) { 69509467b48Spatrick // We currently do not materialize copy over copy, but we should decide if 69609467b48Spatrick // we want to. 69709467b48Spatrick bool PossibleCopy = VD.PInfo != nullptr; 69809467b48Spatrick if (RenameStack.empty()) { 69909467b48Spatrick LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 70009467b48Spatrick } else { 70109467b48Spatrick LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 70209467b48Spatrick << RenameStack.back().DFSIn << "," 70309467b48Spatrick << RenameStack.back().DFSOut << ")\n"); 70409467b48Spatrick } 70509467b48Spatrick 70609467b48Spatrick LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 70709467b48Spatrick << VD.DFSOut << ")\n"); 70809467b48Spatrick 70909467b48Spatrick bool ShouldPush = (VD.Def || PossibleCopy); 71009467b48Spatrick bool OutOfScope = !stackIsInScope(RenameStack, VD); 71109467b48Spatrick if (OutOfScope || ShouldPush) { 71209467b48Spatrick // Sync to our current scope. 71309467b48Spatrick popStackUntilDFSScope(RenameStack, VD); 71409467b48Spatrick if (ShouldPush) { 71509467b48Spatrick RenameStack.push_back(VD); 71609467b48Spatrick } 71709467b48Spatrick } 71809467b48Spatrick // If we get to this point, and the stack is empty we must have a use 71909467b48Spatrick // with no renaming needed, just skip it. 72009467b48Spatrick if (RenameStack.empty()) 72109467b48Spatrick continue; 72209467b48Spatrick // Skip values, only want to rename the uses 72309467b48Spatrick if (VD.Def || PossibleCopy) 72409467b48Spatrick continue; 72509467b48Spatrick if (!DebugCounter::shouldExecute(RenameCounter)) { 72609467b48Spatrick LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 72709467b48Spatrick continue; 72809467b48Spatrick } 72909467b48Spatrick ValueDFS &Result = RenameStack.back(); 73009467b48Spatrick 73109467b48Spatrick // If the possible copy dominates something, materialize our stack up to 73209467b48Spatrick // this point. This ensures every comparison that affects our operation 73309467b48Spatrick // ends up with predicateinfo. 73409467b48Spatrick if (!Result.Def) 73509467b48Spatrick Result.Def = materializeStack(Counter, RenameStack, Op); 73609467b48Spatrick 73709467b48Spatrick LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 73809467b48Spatrick << *VD.U->get() << " in " << *(VD.U->getUser()) 73909467b48Spatrick << "\n"); 74009467b48Spatrick assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 74109467b48Spatrick "Predicateinfo def should have dominated this use"); 74209467b48Spatrick VD.U->set(Result.Def); 74309467b48Spatrick } 74409467b48Spatrick } 74509467b48Spatrick } 74609467b48Spatrick 747097a140dSpatrick PredicateInfoBuilder::ValueInfo & 748097a140dSpatrick PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) { 74909467b48Spatrick auto OIN = ValueInfoNums.find(Operand); 75009467b48Spatrick if (OIN == ValueInfoNums.end()) { 75109467b48Spatrick // This will grow it 75209467b48Spatrick ValueInfos.resize(ValueInfos.size() + 1); 75309467b48Spatrick // This will use the new size and give us a 0 based number of the info 75409467b48Spatrick auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 75509467b48Spatrick assert(InsertResult.second && "Value info number already existed?"); 75609467b48Spatrick return ValueInfos[InsertResult.first->second]; 75709467b48Spatrick } 75809467b48Spatrick return ValueInfos[OIN->second]; 75909467b48Spatrick } 76009467b48Spatrick 761097a140dSpatrick const PredicateInfoBuilder::ValueInfo & 762097a140dSpatrick PredicateInfoBuilder::getValueInfo(Value *Operand) const { 76309467b48Spatrick auto OINI = ValueInfoNums.lookup(Operand); 76409467b48Spatrick assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 76509467b48Spatrick assert(OINI < ValueInfos.size() && 76609467b48Spatrick "Value Info Number greater than size of Value Info Table"); 76709467b48Spatrick return ValueInfos[OINI]; 76809467b48Spatrick } 76909467b48Spatrick 77009467b48Spatrick PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 77109467b48Spatrick AssumptionCache &AC) 772097a140dSpatrick : F(F) { 773097a140dSpatrick PredicateInfoBuilder Builder(*this, F, DT, AC); 774097a140dSpatrick Builder.buildPredicateInfo(); 77509467b48Spatrick } 77609467b48Spatrick 77709467b48Spatrick // Remove all declarations we created . The PredicateInfo consumers are 77809467b48Spatrick // responsible for remove the ssa_copy calls created. 77909467b48Spatrick PredicateInfo::~PredicateInfo() { 78009467b48Spatrick // Collect function pointers in set first, as SmallSet uses a SmallVector 78109467b48Spatrick // internally and we have to remove the asserting value handles first. 78209467b48Spatrick SmallPtrSet<Function *, 20> FunctionPtrs; 78309467b48Spatrick for (auto &F : CreatedDeclarations) 78409467b48Spatrick FunctionPtrs.insert(&*F); 78509467b48Spatrick CreatedDeclarations.clear(); 78609467b48Spatrick 78709467b48Spatrick for (Function *F : FunctionPtrs) { 78809467b48Spatrick assert(F->user_begin() == F->user_end() && 78909467b48Spatrick "PredicateInfo consumer did not remove all SSA copies."); 79009467b48Spatrick F->eraseFromParent(); 79109467b48Spatrick } 79209467b48Spatrick } 79309467b48Spatrick 794*73471bf0Spatrick Optional<PredicateConstraint> PredicateBase::getConstraint() const { 795*73471bf0Spatrick switch (Type) { 796*73471bf0Spatrick case PT_Assume: 797*73471bf0Spatrick case PT_Branch: { 798*73471bf0Spatrick bool TrueEdge = true; 799*73471bf0Spatrick if (auto *PBranch = dyn_cast<PredicateBranch>(this)) 800*73471bf0Spatrick TrueEdge = PBranch->TrueEdge; 801*73471bf0Spatrick 802*73471bf0Spatrick if (Condition == RenamedOp) { 803*73471bf0Spatrick return {{CmpInst::ICMP_EQ, 804*73471bf0Spatrick TrueEdge ? ConstantInt::getTrue(Condition->getType()) 805*73471bf0Spatrick : ConstantInt::getFalse(Condition->getType())}}; 806*73471bf0Spatrick } 807*73471bf0Spatrick 808*73471bf0Spatrick CmpInst *Cmp = dyn_cast<CmpInst>(Condition); 809*73471bf0Spatrick if (!Cmp) { 810*73471bf0Spatrick // TODO: Make this an assertion once RenamedOp is fully accurate. 811*73471bf0Spatrick return None; 812*73471bf0Spatrick } 813*73471bf0Spatrick 814*73471bf0Spatrick CmpInst::Predicate Pred; 815*73471bf0Spatrick Value *OtherOp; 816*73471bf0Spatrick if (Cmp->getOperand(0) == RenamedOp) { 817*73471bf0Spatrick Pred = Cmp->getPredicate(); 818*73471bf0Spatrick OtherOp = Cmp->getOperand(1); 819*73471bf0Spatrick } else if (Cmp->getOperand(1) == RenamedOp) { 820*73471bf0Spatrick Pred = Cmp->getSwappedPredicate(); 821*73471bf0Spatrick OtherOp = Cmp->getOperand(0); 822*73471bf0Spatrick } else { 823*73471bf0Spatrick // TODO: Make this an assertion once RenamedOp is fully accurate. 824*73471bf0Spatrick return None; 825*73471bf0Spatrick } 826*73471bf0Spatrick 827*73471bf0Spatrick // Invert predicate along false edge. 828*73471bf0Spatrick if (!TrueEdge) 829*73471bf0Spatrick Pred = CmpInst::getInversePredicate(Pred); 830*73471bf0Spatrick 831*73471bf0Spatrick return {{Pred, OtherOp}}; 832*73471bf0Spatrick } 833*73471bf0Spatrick case PT_Switch: 834*73471bf0Spatrick if (Condition != RenamedOp) { 835*73471bf0Spatrick // TODO: Make this an assertion once RenamedOp is fully accurate. 836*73471bf0Spatrick return None; 837*73471bf0Spatrick } 838*73471bf0Spatrick 839*73471bf0Spatrick return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}}; 840*73471bf0Spatrick } 841*73471bf0Spatrick llvm_unreachable("Unknown predicate type"); 842*73471bf0Spatrick } 843*73471bf0Spatrick 84409467b48Spatrick void PredicateInfo::verifyPredicateInfo() const {} 84509467b48Spatrick 84609467b48Spatrick char PredicateInfoPrinterLegacyPass::ID = 0; 84709467b48Spatrick 84809467b48Spatrick PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 84909467b48Spatrick : FunctionPass(ID) { 85009467b48Spatrick initializePredicateInfoPrinterLegacyPassPass( 85109467b48Spatrick *PassRegistry::getPassRegistry()); 85209467b48Spatrick } 85309467b48Spatrick 85409467b48Spatrick void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 85509467b48Spatrick AU.setPreservesAll(); 85609467b48Spatrick AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 85709467b48Spatrick AU.addRequired<AssumptionCacheTracker>(); 85809467b48Spatrick } 85909467b48Spatrick 86009467b48Spatrick // Replace ssa_copy calls created by PredicateInfo with their operand. 86109467b48Spatrick static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 862*73471bf0Spatrick for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) { 863*73471bf0Spatrick const auto *PI = PredInfo.getPredicateInfoFor(&Inst); 864*73471bf0Spatrick auto *II = dyn_cast<IntrinsicInst>(&Inst); 86509467b48Spatrick if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 86609467b48Spatrick continue; 86709467b48Spatrick 868*73471bf0Spatrick Inst.replaceAllUsesWith(II->getOperand(0)); 869*73471bf0Spatrick Inst.eraseFromParent(); 87009467b48Spatrick } 87109467b48Spatrick } 87209467b48Spatrick 87309467b48Spatrick bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 87409467b48Spatrick auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 87509467b48Spatrick auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 87609467b48Spatrick auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 87709467b48Spatrick PredInfo->print(dbgs()); 87809467b48Spatrick if (VerifyPredicateInfo) 87909467b48Spatrick PredInfo->verifyPredicateInfo(); 88009467b48Spatrick 88109467b48Spatrick replaceCreatedSSACopys(*PredInfo, F); 88209467b48Spatrick return false; 88309467b48Spatrick } 88409467b48Spatrick 88509467b48Spatrick PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 88609467b48Spatrick FunctionAnalysisManager &AM) { 88709467b48Spatrick auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 88809467b48Spatrick auto &AC = AM.getResult<AssumptionAnalysis>(F); 88909467b48Spatrick OS << "PredicateInfo for function: " << F.getName() << "\n"; 89009467b48Spatrick auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 89109467b48Spatrick PredInfo->print(OS); 89209467b48Spatrick 89309467b48Spatrick replaceCreatedSSACopys(*PredInfo, F); 89409467b48Spatrick return PreservedAnalyses::all(); 89509467b48Spatrick } 89609467b48Spatrick 89709467b48Spatrick /// An assembly annotator class to print PredicateInfo information in 89809467b48Spatrick /// comments. 89909467b48Spatrick class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 90009467b48Spatrick friend class PredicateInfo; 90109467b48Spatrick const PredicateInfo *PredInfo; 90209467b48Spatrick 90309467b48Spatrick public: 90409467b48Spatrick PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 90509467b48Spatrick 906097a140dSpatrick void emitBasicBlockStartAnnot(const BasicBlock *BB, 907097a140dSpatrick formatted_raw_ostream &OS) override {} 90809467b48Spatrick 909097a140dSpatrick void emitInstructionAnnot(const Instruction *I, 910097a140dSpatrick formatted_raw_ostream &OS) override { 91109467b48Spatrick if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 91209467b48Spatrick OS << "; Has predicate info\n"; 91309467b48Spatrick if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 91409467b48Spatrick OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 91509467b48Spatrick << " Comparison:" << *PB->Condition << " Edge: ["; 91609467b48Spatrick PB->From->printAsOperand(OS); 91709467b48Spatrick OS << ","; 91809467b48Spatrick PB->To->printAsOperand(OS); 919097a140dSpatrick OS << "]"; 92009467b48Spatrick } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 92109467b48Spatrick OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 92209467b48Spatrick << " Switch:" << *PS->Switch << " Edge: ["; 92309467b48Spatrick PS->From->printAsOperand(OS); 92409467b48Spatrick OS << ","; 92509467b48Spatrick PS->To->printAsOperand(OS); 926097a140dSpatrick OS << "]"; 92709467b48Spatrick } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 92809467b48Spatrick OS << "; assume predicate info {" 929097a140dSpatrick << " Comparison:" << *PA->Condition; 93009467b48Spatrick } 931097a140dSpatrick OS << ", RenamedOp: "; 932097a140dSpatrick PI->RenamedOp->printAsOperand(OS, false); 933097a140dSpatrick OS << " }\n"; 93409467b48Spatrick } 93509467b48Spatrick } 93609467b48Spatrick }; 93709467b48Spatrick 93809467b48Spatrick void PredicateInfo::print(raw_ostream &OS) const { 93909467b48Spatrick PredicateInfoAnnotatedWriter Writer(this); 94009467b48Spatrick F.print(OS, &Writer); 94109467b48Spatrick } 94209467b48Spatrick 94309467b48Spatrick void PredicateInfo::dump() const { 94409467b48Spatrick PredicateInfoAnnotatedWriter Writer(this); 94509467b48Spatrick F.print(dbgs(), &Writer); 94609467b48Spatrick } 94709467b48Spatrick 94809467b48Spatrick PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 94909467b48Spatrick FunctionAnalysisManager &AM) { 95009467b48Spatrick auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 95109467b48Spatrick auto &AC = AM.getResult<AssumptionAnalysis>(F); 95209467b48Spatrick std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 95309467b48Spatrick 95409467b48Spatrick return PreservedAnalyses::all(); 95509467b48Spatrick } 95609467b48Spatrick } 957