1*09467b48Spatrick //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2*09467b48Spatrick // 3*09467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*09467b48Spatrick // See https://llvm.org/LICENSE.txt for license information. 5*09467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*09467b48Spatrick // 7*09467b48Spatrick //===----------------------------------------------------------------===// 8*09467b48Spatrick // 9*09467b48Spatrick // This file implements the PredicateInfo class. 10*09467b48Spatrick // 11*09467b48Spatrick //===----------------------------------------------------------------===// 12*09467b48Spatrick 13*09467b48Spatrick #include "llvm/Transforms/Utils/PredicateInfo.h" 14*09467b48Spatrick #include "llvm/ADT/DenseMap.h" 15*09467b48Spatrick #include "llvm/ADT/DepthFirstIterator.h" 16*09467b48Spatrick #include "llvm/ADT/STLExtras.h" 17*09467b48Spatrick #include "llvm/ADT/SmallPtrSet.h" 18*09467b48Spatrick #include "llvm/ADT/Statistic.h" 19*09467b48Spatrick #include "llvm/ADT/StringExtras.h" 20*09467b48Spatrick #include "llvm/Analysis/AssumptionCache.h" 21*09467b48Spatrick #include "llvm/Analysis/CFG.h" 22*09467b48Spatrick #include "llvm/IR/AssemblyAnnotationWriter.h" 23*09467b48Spatrick #include "llvm/IR/DataLayout.h" 24*09467b48Spatrick #include "llvm/IR/Dominators.h" 25*09467b48Spatrick #include "llvm/IR/GlobalVariable.h" 26*09467b48Spatrick #include "llvm/IR/IRBuilder.h" 27*09467b48Spatrick #include "llvm/IR/InstIterator.h" 28*09467b48Spatrick #include "llvm/IR/IntrinsicInst.h" 29*09467b48Spatrick #include "llvm/IR/LLVMContext.h" 30*09467b48Spatrick #include "llvm/IR/Metadata.h" 31*09467b48Spatrick #include "llvm/IR/Module.h" 32*09467b48Spatrick #include "llvm/IR/PatternMatch.h" 33*09467b48Spatrick #include "llvm/InitializePasses.h" 34*09467b48Spatrick #include "llvm/Support/Debug.h" 35*09467b48Spatrick #include "llvm/Support/DebugCounter.h" 36*09467b48Spatrick #include "llvm/Support/FormattedStream.h" 37*09467b48Spatrick #include "llvm/Transforms/Utils.h" 38*09467b48Spatrick #include <algorithm> 39*09467b48Spatrick #define DEBUG_TYPE "predicateinfo" 40*09467b48Spatrick using namespace llvm; 41*09467b48Spatrick using namespace PatternMatch; 42*09467b48Spatrick using namespace llvm::PredicateInfoClasses; 43*09467b48Spatrick 44*09467b48Spatrick INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 45*09467b48Spatrick "PredicateInfo Printer", false, false) 46*09467b48Spatrick INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 47*09467b48Spatrick INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 48*09467b48Spatrick INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 49*09467b48Spatrick "PredicateInfo Printer", false, false) 50*09467b48Spatrick static cl::opt<bool> VerifyPredicateInfo( 51*09467b48Spatrick "verify-predicateinfo", cl::init(false), cl::Hidden, 52*09467b48Spatrick cl::desc("Verify PredicateInfo in legacy printer pass.")); 53*09467b48Spatrick DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 54*09467b48Spatrick "Controls which variables are renamed with predicateinfo"); 55*09467b48Spatrick 56*09467b48Spatrick namespace { 57*09467b48Spatrick // Given a predicate info that is a type of branching terminator, get the 58*09467b48Spatrick // branching block. 59*09467b48Spatrick const BasicBlock *getBranchBlock(const PredicateBase *PB) { 60*09467b48Spatrick assert(isa<PredicateWithEdge>(PB) && 61*09467b48Spatrick "Only branches and switches should have PHIOnly defs that " 62*09467b48Spatrick "require branch blocks."); 63*09467b48Spatrick return cast<PredicateWithEdge>(PB)->From; 64*09467b48Spatrick } 65*09467b48Spatrick 66*09467b48Spatrick // Given a predicate info that is a type of branching terminator, get the 67*09467b48Spatrick // branching terminator. 68*09467b48Spatrick static Instruction *getBranchTerminator(const PredicateBase *PB) { 69*09467b48Spatrick assert(isa<PredicateWithEdge>(PB) && 70*09467b48Spatrick "Not a predicate info type we know how to get a terminator from."); 71*09467b48Spatrick return cast<PredicateWithEdge>(PB)->From->getTerminator(); 72*09467b48Spatrick } 73*09467b48Spatrick 74*09467b48Spatrick // Given a predicate info that is a type of branching terminator, get the 75*09467b48Spatrick // edge this predicate info represents 76*09467b48Spatrick const std::pair<BasicBlock *, BasicBlock *> 77*09467b48Spatrick getBlockEdge(const PredicateBase *PB) { 78*09467b48Spatrick assert(isa<PredicateWithEdge>(PB) && 79*09467b48Spatrick "Not a predicate info type we know how to get an edge from."); 80*09467b48Spatrick const auto *PEdge = cast<PredicateWithEdge>(PB); 81*09467b48Spatrick return std::make_pair(PEdge->From, PEdge->To); 82*09467b48Spatrick } 83*09467b48Spatrick } 84*09467b48Spatrick 85*09467b48Spatrick namespace llvm { 86*09467b48Spatrick namespace PredicateInfoClasses { 87*09467b48Spatrick enum LocalNum { 88*09467b48Spatrick // Operations that must appear first in the block. 89*09467b48Spatrick LN_First, 90*09467b48Spatrick // Operations that are somewhere in the middle of the block, and are sorted on 91*09467b48Spatrick // demand. 92*09467b48Spatrick LN_Middle, 93*09467b48Spatrick // Operations that must appear last in a block, like successor phi node uses. 94*09467b48Spatrick LN_Last 95*09467b48Spatrick }; 96*09467b48Spatrick 97*09467b48Spatrick // Associate global and local DFS info with defs and uses, so we can sort them 98*09467b48Spatrick // into a global domination ordering. 99*09467b48Spatrick struct ValueDFS { 100*09467b48Spatrick int DFSIn = 0; 101*09467b48Spatrick int DFSOut = 0; 102*09467b48Spatrick unsigned int LocalNum = LN_Middle; 103*09467b48Spatrick // Only one of Def or Use will be set. 104*09467b48Spatrick Value *Def = nullptr; 105*09467b48Spatrick Use *U = nullptr; 106*09467b48Spatrick // Neither PInfo nor EdgeOnly participate in the ordering 107*09467b48Spatrick PredicateBase *PInfo = nullptr; 108*09467b48Spatrick bool EdgeOnly = false; 109*09467b48Spatrick }; 110*09467b48Spatrick 111*09467b48Spatrick // Perform a strict weak ordering on instructions and arguments. 112*09467b48Spatrick static bool valueComesBefore(OrderedInstructions &OI, const Value *A, 113*09467b48Spatrick const Value *B) { 114*09467b48Spatrick auto *ArgA = dyn_cast_or_null<Argument>(A); 115*09467b48Spatrick auto *ArgB = dyn_cast_or_null<Argument>(B); 116*09467b48Spatrick if (ArgA && !ArgB) 117*09467b48Spatrick return true; 118*09467b48Spatrick if (ArgB && !ArgA) 119*09467b48Spatrick return false; 120*09467b48Spatrick if (ArgA && ArgB) 121*09467b48Spatrick return ArgA->getArgNo() < ArgB->getArgNo(); 122*09467b48Spatrick return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B)); 123*09467b48Spatrick } 124*09467b48Spatrick 125*09467b48Spatrick // This compares ValueDFS structures, creating OrderedBasicBlocks where 126*09467b48Spatrick // necessary to compare uses/defs in the same block. Doing so allows us to walk 127*09467b48Spatrick // the minimum number of instructions necessary to compute our def/use ordering. 128*09467b48Spatrick struct ValueDFS_Compare { 129*09467b48Spatrick DominatorTree &DT; 130*09467b48Spatrick OrderedInstructions &OI; 131*09467b48Spatrick ValueDFS_Compare(DominatorTree &DT, OrderedInstructions &OI) 132*09467b48Spatrick : DT(DT), OI(OI) {} 133*09467b48Spatrick 134*09467b48Spatrick bool operator()(const ValueDFS &A, const ValueDFS &B) const { 135*09467b48Spatrick if (&A == &B) 136*09467b48Spatrick return false; 137*09467b48Spatrick // The only case we can't directly compare them is when they in the same 138*09467b48Spatrick // block, and both have localnum == middle. In that case, we have to use 139*09467b48Spatrick // comesbefore to see what the real ordering is, because they are in the 140*09467b48Spatrick // same basic block. 141*09467b48Spatrick 142*09467b48Spatrick assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) && 143*09467b48Spatrick "Equal DFS-in numbers imply equal out numbers"); 144*09467b48Spatrick bool SameBlock = A.DFSIn == B.DFSIn; 145*09467b48Spatrick 146*09467b48Spatrick // We want to put the def that will get used for a given set of phi uses, 147*09467b48Spatrick // before those phi uses. 148*09467b48Spatrick // So we sort by edge, then by def. 149*09467b48Spatrick // Note that only phi nodes uses and defs can come last. 150*09467b48Spatrick if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 151*09467b48Spatrick return comparePHIRelated(A, B); 152*09467b48Spatrick 153*09467b48Spatrick bool isADef = A.Def; 154*09467b48Spatrick bool isBDef = B.Def; 155*09467b48Spatrick if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 156*09467b48Spatrick return std::tie(A.DFSIn, A.LocalNum, isADef) < 157*09467b48Spatrick std::tie(B.DFSIn, B.LocalNum, isBDef); 158*09467b48Spatrick return localComesBefore(A, B); 159*09467b48Spatrick } 160*09467b48Spatrick 161*09467b48Spatrick // For a phi use, or a non-materialized def, return the edge it represents. 162*09467b48Spatrick const std::pair<BasicBlock *, BasicBlock *> 163*09467b48Spatrick getBlockEdge(const ValueDFS &VD) const { 164*09467b48Spatrick if (!VD.Def && VD.U) { 165*09467b48Spatrick auto *PHI = cast<PHINode>(VD.U->getUser()); 166*09467b48Spatrick return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 167*09467b48Spatrick } 168*09467b48Spatrick // This is really a non-materialized def. 169*09467b48Spatrick return ::getBlockEdge(VD.PInfo); 170*09467b48Spatrick } 171*09467b48Spatrick 172*09467b48Spatrick // For two phi related values, return the ordering. 173*09467b48Spatrick bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 174*09467b48Spatrick BasicBlock *ASrc, *ADest, *BSrc, *BDest; 175*09467b48Spatrick std::tie(ASrc, ADest) = getBlockEdge(A); 176*09467b48Spatrick std::tie(BSrc, BDest) = getBlockEdge(B); 177*09467b48Spatrick 178*09467b48Spatrick #ifndef NDEBUG 179*09467b48Spatrick // This function should only be used for values in the same BB, check that. 180*09467b48Spatrick DomTreeNode *DomASrc = DT.getNode(ASrc); 181*09467b48Spatrick DomTreeNode *DomBSrc = DT.getNode(BSrc); 182*09467b48Spatrick assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && 183*09467b48Spatrick "DFS numbers for A should match the ones of the source block"); 184*09467b48Spatrick assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && 185*09467b48Spatrick "DFS numbers for B should match the ones of the source block"); 186*09467b48Spatrick assert(A.DFSIn == B.DFSIn && "Values must be in the same block"); 187*09467b48Spatrick #endif 188*09467b48Spatrick (void)ASrc; 189*09467b48Spatrick (void)BSrc; 190*09467b48Spatrick 191*09467b48Spatrick // Use DFS numbers to compare destination blocks, to guarantee a 192*09467b48Spatrick // deterministic order. 193*09467b48Spatrick DomTreeNode *DomADest = DT.getNode(ADest); 194*09467b48Spatrick DomTreeNode *DomBDest = DT.getNode(BDest); 195*09467b48Spatrick unsigned AIn = DomADest->getDFSNumIn(); 196*09467b48Spatrick unsigned BIn = DomBDest->getDFSNumIn(); 197*09467b48Spatrick bool isADef = A.Def; 198*09467b48Spatrick bool isBDef = B.Def; 199*09467b48Spatrick assert((!A.Def || !A.U) && (!B.Def || !B.U) && 200*09467b48Spatrick "Def and U cannot be set at the same time"); 201*09467b48Spatrick // Now sort by edge destination and then defs before uses. 202*09467b48Spatrick return std::tie(AIn, isADef) < std::tie(BIn, isBDef); 203*09467b48Spatrick } 204*09467b48Spatrick 205*09467b48Spatrick // Get the definition of an instruction that occurs in the middle of a block. 206*09467b48Spatrick Value *getMiddleDef(const ValueDFS &VD) const { 207*09467b48Spatrick if (VD.Def) 208*09467b48Spatrick return VD.Def; 209*09467b48Spatrick // It's possible for the defs and uses to be null. For branches, the local 210*09467b48Spatrick // numbering will say the placed predicaeinfos should go first (IE 211*09467b48Spatrick // LN_beginning), so we won't be in this function. For assumes, we will end 212*09467b48Spatrick // up here, beause we need to order the def we will place relative to the 213*09467b48Spatrick // assume. So for the purpose of ordering, we pretend the def is the assume 214*09467b48Spatrick // because that is where we will insert the info. 215*09467b48Spatrick if (!VD.U) { 216*09467b48Spatrick assert(VD.PInfo && 217*09467b48Spatrick "No def, no use, and no predicateinfo should not occur"); 218*09467b48Spatrick assert(isa<PredicateAssume>(VD.PInfo) && 219*09467b48Spatrick "Middle of block should only occur for assumes"); 220*09467b48Spatrick return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 221*09467b48Spatrick } 222*09467b48Spatrick return nullptr; 223*09467b48Spatrick } 224*09467b48Spatrick 225*09467b48Spatrick // Return either the Def, if it's not null, or the user of the Use, if the def 226*09467b48Spatrick // is null. 227*09467b48Spatrick const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 228*09467b48Spatrick if (Def) 229*09467b48Spatrick return cast<Instruction>(Def); 230*09467b48Spatrick return cast<Instruction>(U->getUser()); 231*09467b48Spatrick } 232*09467b48Spatrick 233*09467b48Spatrick // This performs the necessary local basic block ordering checks to tell 234*09467b48Spatrick // whether A comes before B, where both are in the same basic block. 235*09467b48Spatrick bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 236*09467b48Spatrick auto *ADef = getMiddleDef(A); 237*09467b48Spatrick auto *BDef = getMiddleDef(B); 238*09467b48Spatrick 239*09467b48Spatrick // See if we have real values or uses. If we have real values, we are 240*09467b48Spatrick // guaranteed they are instructions or arguments. No matter what, we are 241*09467b48Spatrick // guaranteed they are in the same block if they are instructions. 242*09467b48Spatrick auto *ArgA = dyn_cast_or_null<Argument>(ADef); 243*09467b48Spatrick auto *ArgB = dyn_cast_or_null<Argument>(BDef); 244*09467b48Spatrick 245*09467b48Spatrick if (ArgA || ArgB) 246*09467b48Spatrick return valueComesBefore(OI, ArgA, ArgB); 247*09467b48Spatrick 248*09467b48Spatrick auto *AInst = getDefOrUser(ADef, A.U); 249*09467b48Spatrick auto *BInst = getDefOrUser(BDef, B.U); 250*09467b48Spatrick return valueComesBefore(OI, AInst, BInst); 251*09467b48Spatrick } 252*09467b48Spatrick }; 253*09467b48Spatrick 254*09467b48Spatrick } // namespace PredicateInfoClasses 255*09467b48Spatrick 256*09467b48Spatrick bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, 257*09467b48Spatrick const ValueDFS &VDUse) const { 258*09467b48Spatrick if (Stack.empty()) 259*09467b48Spatrick return false; 260*09467b48Spatrick // If it's a phi only use, make sure it's for this phi node edge, and that the 261*09467b48Spatrick // use is in a phi node. If it's anything else, and the top of the stack is 262*09467b48Spatrick // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 263*09467b48Spatrick // the defs they must go with so that we can know it's time to pop the stack 264*09467b48Spatrick // when we hit the end of the phi uses for a given def. 265*09467b48Spatrick if (Stack.back().EdgeOnly) { 266*09467b48Spatrick if (!VDUse.U) 267*09467b48Spatrick return false; 268*09467b48Spatrick auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 269*09467b48Spatrick if (!PHI) 270*09467b48Spatrick return false; 271*09467b48Spatrick // Check edge 272*09467b48Spatrick BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 273*09467b48Spatrick if (EdgePred != getBranchBlock(Stack.back().PInfo)) 274*09467b48Spatrick return false; 275*09467b48Spatrick 276*09467b48Spatrick // Use dominates, which knows how to handle edge dominance. 277*09467b48Spatrick return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 278*09467b48Spatrick } 279*09467b48Spatrick 280*09467b48Spatrick return (VDUse.DFSIn >= Stack.back().DFSIn && 281*09467b48Spatrick VDUse.DFSOut <= Stack.back().DFSOut); 282*09467b48Spatrick } 283*09467b48Spatrick 284*09467b48Spatrick void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, 285*09467b48Spatrick const ValueDFS &VD) { 286*09467b48Spatrick while (!Stack.empty() && !stackIsInScope(Stack, VD)) 287*09467b48Spatrick Stack.pop_back(); 288*09467b48Spatrick } 289*09467b48Spatrick 290*09467b48Spatrick // Convert the uses of Op into a vector of uses, associating global and local 291*09467b48Spatrick // DFS info with each one. 292*09467b48Spatrick void PredicateInfo::convertUsesToDFSOrdered( 293*09467b48Spatrick Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 294*09467b48Spatrick for (auto &U : Op->uses()) { 295*09467b48Spatrick if (auto *I = dyn_cast<Instruction>(U.getUser())) { 296*09467b48Spatrick ValueDFS VD; 297*09467b48Spatrick // Put the phi node uses in the incoming block. 298*09467b48Spatrick BasicBlock *IBlock; 299*09467b48Spatrick if (auto *PN = dyn_cast<PHINode>(I)) { 300*09467b48Spatrick IBlock = PN->getIncomingBlock(U); 301*09467b48Spatrick // Make phi node users appear last in the incoming block 302*09467b48Spatrick // they are from. 303*09467b48Spatrick VD.LocalNum = LN_Last; 304*09467b48Spatrick } else { 305*09467b48Spatrick // If it's not a phi node use, it is somewhere in the middle of the 306*09467b48Spatrick // block. 307*09467b48Spatrick IBlock = I->getParent(); 308*09467b48Spatrick VD.LocalNum = LN_Middle; 309*09467b48Spatrick } 310*09467b48Spatrick DomTreeNode *DomNode = DT.getNode(IBlock); 311*09467b48Spatrick // It's possible our use is in an unreachable block. Skip it if so. 312*09467b48Spatrick if (!DomNode) 313*09467b48Spatrick continue; 314*09467b48Spatrick VD.DFSIn = DomNode->getDFSNumIn(); 315*09467b48Spatrick VD.DFSOut = DomNode->getDFSNumOut(); 316*09467b48Spatrick VD.U = &U; 317*09467b48Spatrick DFSOrderedSet.push_back(VD); 318*09467b48Spatrick } 319*09467b48Spatrick } 320*09467b48Spatrick } 321*09467b48Spatrick 322*09467b48Spatrick // Collect relevant operations from Comparison that we may want to insert copies 323*09467b48Spatrick // for. 324*09467b48Spatrick void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 325*09467b48Spatrick auto *Op0 = Comparison->getOperand(0); 326*09467b48Spatrick auto *Op1 = Comparison->getOperand(1); 327*09467b48Spatrick if (Op0 == Op1) 328*09467b48Spatrick return; 329*09467b48Spatrick CmpOperands.push_back(Comparison); 330*09467b48Spatrick // Only want real values, not constants. Additionally, operands with one use 331*09467b48Spatrick // are only being used in the comparison, which means they will not be useful 332*09467b48Spatrick // for us to consider for predicateinfo. 333*09467b48Spatrick // 334*09467b48Spatrick if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 335*09467b48Spatrick CmpOperands.push_back(Op0); 336*09467b48Spatrick if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 337*09467b48Spatrick CmpOperands.push_back(Op1); 338*09467b48Spatrick } 339*09467b48Spatrick 340*09467b48Spatrick // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 341*09467b48Spatrick void PredicateInfo::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 342*09467b48Spatrick PredicateBase *PB) { 343*09467b48Spatrick auto &OperandInfo = getOrCreateValueInfo(Op); 344*09467b48Spatrick if (OperandInfo.Infos.empty()) 345*09467b48Spatrick OpsToRename.push_back(Op); 346*09467b48Spatrick AllInfos.push_back(PB); 347*09467b48Spatrick OperandInfo.Infos.push_back(PB); 348*09467b48Spatrick } 349*09467b48Spatrick 350*09467b48Spatrick // Process an assume instruction and place relevant operations we want to rename 351*09467b48Spatrick // into OpsToRename. 352*09467b48Spatrick void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, 353*09467b48Spatrick SmallVectorImpl<Value *> &OpsToRename) { 354*09467b48Spatrick // See if we have a comparison we support 355*09467b48Spatrick SmallVector<Value *, 8> CmpOperands; 356*09467b48Spatrick SmallVector<Value *, 2> ConditionsToProcess; 357*09467b48Spatrick CmpInst::Predicate Pred; 358*09467b48Spatrick Value *Operand = II->getOperand(0); 359*09467b48Spatrick if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 360*09467b48Spatrick m_Cmp(Pred, m_Value(), m_Value())) 361*09467b48Spatrick .match(II->getOperand(0))) { 362*09467b48Spatrick ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 363*09467b48Spatrick ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 364*09467b48Spatrick ConditionsToProcess.push_back(Operand); 365*09467b48Spatrick } else if (isa<CmpInst>(Operand)) { 366*09467b48Spatrick 367*09467b48Spatrick ConditionsToProcess.push_back(Operand); 368*09467b48Spatrick } 369*09467b48Spatrick for (auto Cond : ConditionsToProcess) { 370*09467b48Spatrick if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 371*09467b48Spatrick collectCmpOps(Cmp, CmpOperands); 372*09467b48Spatrick // Now add our copy infos for our operands 373*09467b48Spatrick for (auto *Op : CmpOperands) { 374*09467b48Spatrick auto *PA = new PredicateAssume(Op, II, Cmp); 375*09467b48Spatrick addInfoFor(OpsToRename, Op, PA); 376*09467b48Spatrick } 377*09467b48Spatrick CmpOperands.clear(); 378*09467b48Spatrick } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 379*09467b48Spatrick // Otherwise, it should be an AND. 380*09467b48Spatrick assert(BinOp->getOpcode() == Instruction::And && 381*09467b48Spatrick "Should have been an AND"); 382*09467b48Spatrick auto *PA = new PredicateAssume(BinOp, II, BinOp); 383*09467b48Spatrick addInfoFor(OpsToRename, BinOp, PA); 384*09467b48Spatrick } else { 385*09467b48Spatrick llvm_unreachable("Unknown type of condition"); 386*09467b48Spatrick } 387*09467b48Spatrick } 388*09467b48Spatrick } 389*09467b48Spatrick 390*09467b48Spatrick // Process a block terminating branch, and place relevant operations to be 391*09467b48Spatrick // renamed into OpsToRename. 392*09467b48Spatrick void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, 393*09467b48Spatrick SmallVectorImpl<Value *> &OpsToRename) { 394*09467b48Spatrick BasicBlock *FirstBB = BI->getSuccessor(0); 395*09467b48Spatrick BasicBlock *SecondBB = BI->getSuccessor(1); 396*09467b48Spatrick SmallVector<BasicBlock *, 2> SuccsToProcess; 397*09467b48Spatrick SuccsToProcess.push_back(FirstBB); 398*09467b48Spatrick SuccsToProcess.push_back(SecondBB); 399*09467b48Spatrick SmallVector<Value *, 2> ConditionsToProcess; 400*09467b48Spatrick 401*09467b48Spatrick auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 402*09467b48Spatrick for (auto *Succ : SuccsToProcess) { 403*09467b48Spatrick // Don't try to insert on a self-edge. This is mainly because we will 404*09467b48Spatrick // eliminate during renaming anyway. 405*09467b48Spatrick if (Succ == BranchBB) 406*09467b48Spatrick continue; 407*09467b48Spatrick bool TakenEdge = (Succ == FirstBB); 408*09467b48Spatrick // For and, only insert on the true edge 409*09467b48Spatrick // For or, only insert on the false edge 410*09467b48Spatrick if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 411*09467b48Spatrick continue; 412*09467b48Spatrick PredicateBase *PB = 413*09467b48Spatrick new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 414*09467b48Spatrick addInfoFor(OpsToRename, Op, PB); 415*09467b48Spatrick if (!Succ->getSinglePredecessor()) 416*09467b48Spatrick EdgeUsesOnly.insert({BranchBB, Succ}); 417*09467b48Spatrick } 418*09467b48Spatrick }; 419*09467b48Spatrick 420*09467b48Spatrick // Match combinations of conditions. 421*09467b48Spatrick CmpInst::Predicate Pred; 422*09467b48Spatrick bool isAnd = false; 423*09467b48Spatrick bool isOr = false; 424*09467b48Spatrick SmallVector<Value *, 8> CmpOperands; 425*09467b48Spatrick if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 426*09467b48Spatrick m_Cmp(Pred, m_Value(), m_Value()))) || 427*09467b48Spatrick match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 428*09467b48Spatrick m_Cmp(Pred, m_Value(), m_Value())))) { 429*09467b48Spatrick auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 430*09467b48Spatrick if (BinOp->getOpcode() == Instruction::And) 431*09467b48Spatrick isAnd = true; 432*09467b48Spatrick else if (BinOp->getOpcode() == Instruction::Or) 433*09467b48Spatrick isOr = true; 434*09467b48Spatrick ConditionsToProcess.push_back(BinOp->getOperand(0)); 435*09467b48Spatrick ConditionsToProcess.push_back(BinOp->getOperand(1)); 436*09467b48Spatrick ConditionsToProcess.push_back(BI->getCondition()); 437*09467b48Spatrick } else if (isa<CmpInst>(BI->getCondition())) { 438*09467b48Spatrick ConditionsToProcess.push_back(BI->getCondition()); 439*09467b48Spatrick } 440*09467b48Spatrick for (auto Cond : ConditionsToProcess) { 441*09467b48Spatrick if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 442*09467b48Spatrick collectCmpOps(Cmp, CmpOperands); 443*09467b48Spatrick // Now add our copy infos for our operands 444*09467b48Spatrick for (auto *Op : CmpOperands) 445*09467b48Spatrick InsertHelper(Op, isAnd, isOr, Cmp); 446*09467b48Spatrick } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 447*09467b48Spatrick // This must be an AND or an OR. 448*09467b48Spatrick assert((BinOp->getOpcode() == Instruction::And || 449*09467b48Spatrick BinOp->getOpcode() == Instruction::Or) && 450*09467b48Spatrick "Should have been an AND or an OR"); 451*09467b48Spatrick // The actual value of the binop is not subject to the same restrictions 452*09467b48Spatrick // as the comparison. It's either true or false on the true/false branch. 453*09467b48Spatrick InsertHelper(BinOp, false, false, BinOp); 454*09467b48Spatrick } else { 455*09467b48Spatrick llvm_unreachable("Unknown type of condition"); 456*09467b48Spatrick } 457*09467b48Spatrick CmpOperands.clear(); 458*09467b48Spatrick } 459*09467b48Spatrick } 460*09467b48Spatrick // Process a block terminating switch, and place relevant operations to be 461*09467b48Spatrick // renamed into OpsToRename. 462*09467b48Spatrick void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB, 463*09467b48Spatrick SmallVectorImpl<Value *> &OpsToRename) { 464*09467b48Spatrick Value *Op = SI->getCondition(); 465*09467b48Spatrick if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 466*09467b48Spatrick return; 467*09467b48Spatrick 468*09467b48Spatrick // Remember how many outgoing edges there are to every successor. 469*09467b48Spatrick SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 470*09467b48Spatrick for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 471*09467b48Spatrick BasicBlock *TargetBlock = SI->getSuccessor(i); 472*09467b48Spatrick ++SwitchEdges[TargetBlock]; 473*09467b48Spatrick } 474*09467b48Spatrick 475*09467b48Spatrick // Now propagate info for each case value 476*09467b48Spatrick for (auto C : SI->cases()) { 477*09467b48Spatrick BasicBlock *TargetBlock = C.getCaseSuccessor(); 478*09467b48Spatrick if (SwitchEdges.lookup(TargetBlock) == 1) { 479*09467b48Spatrick PredicateSwitch *PS = new PredicateSwitch( 480*09467b48Spatrick Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 481*09467b48Spatrick addInfoFor(OpsToRename, Op, PS); 482*09467b48Spatrick if (!TargetBlock->getSinglePredecessor()) 483*09467b48Spatrick EdgeUsesOnly.insert({BranchBB, TargetBlock}); 484*09467b48Spatrick } 485*09467b48Spatrick } 486*09467b48Spatrick } 487*09467b48Spatrick 488*09467b48Spatrick // Build predicate info for our function 489*09467b48Spatrick void PredicateInfo::buildPredicateInfo() { 490*09467b48Spatrick DT.updateDFSNumbers(); 491*09467b48Spatrick // Collect operands to rename from all conditional branch terminators, as well 492*09467b48Spatrick // as assume statements. 493*09467b48Spatrick SmallVector<Value *, 8> OpsToRename; 494*09467b48Spatrick for (auto DTN : depth_first(DT.getRootNode())) { 495*09467b48Spatrick BasicBlock *BranchBB = DTN->getBlock(); 496*09467b48Spatrick if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 497*09467b48Spatrick if (!BI->isConditional()) 498*09467b48Spatrick continue; 499*09467b48Spatrick // Can't insert conditional information if they all go to the same place. 500*09467b48Spatrick if (BI->getSuccessor(0) == BI->getSuccessor(1)) 501*09467b48Spatrick continue; 502*09467b48Spatrick processBranch(BI, BranchBB, OpsToRename); 503*09467b48Spatrick } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 504*09467b48Spatrick processSwitch(SI, BranchBB, OpsToRename); 505*09467b48Spatrick } 506*09467b48Spatrick } 507*09467b48Spatrick for (auto &Assume : AC.assumptions()) { 508*09467b48Spatrick if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 509*09467b48Spatrick if (DT.isReachableFromEntry(II->getParent())) 510*09467b48Spatrick processAssume(II, II->getParent(), OpsToRename); 511*09467b48Spatrick } 512*09467b48Spatrick // Now rename all our operations. 513*09467b48Spatrick renameUses(OpsToRename); 514*09467b48Spatrick } 515*09467b48Spatrick 516*09467b48Spatrick // Create a ssa_copy declaration with custom mangling, because 517*09467b48Spatrick // Intrinsic::getDeclaration does not handle overloaded unnamed types properly: 518*09467b48Spatrick // all unnamed types get mangled to the same string. We use the pointer 519*09467b48Spatrick // to the type as name here, as it guarantees unique names for different 520*09467b48Spatrick // types and we remove the declarations when destroying PredicateInfo. 521*09467b48Spatrick // It is a workaround for PR38117, because solving it in a fully general way is 522*09467b48Spatrick // tricky (FIXME). 523*09467b48Spatrick static Function *getCopyDeclaration(Module *M, Type *Ty) { 524*09467b48Spatrick std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty); 525*09467b48Spatrick return cast<Function>( 526*09467b48Spatrick M->getOrInsertFunction(Name, 527*09467b48Spatrick getType(M->getContext(), Intrinsic::ssa_copy, Ty)) 528*09467b48Spatrick .getCallee()); 529*09467b48Spatrick } 530*09467b48Spatrick 531*09467b48Spatrick // Given the renaming stack, make all the operands currently on the stack real 532*09467b48Spatrick // by inserting them into the IR. Return the last operation's value. 533*09467b48Spatrick Value *PredicateInfo::materializeStack(unsigned int &Counter, 534*09467b48Spatrick ValueDFSStack &RenameStack, 535*09467b48Spatrick Value *OrigOp) { 536*09467b48Spatrick // Find the first thing we have to materialize 537*09467b48Spatrick auto RevIter = RenameStack.rbegin(); 538*09467b48Spatrick for (; RevIter != RenameStack.rend(); ++RevIter) 539*09467b48Spatrick if (RevIter->Def) 540*09467b48Spatrick break; 541*09467b48Spatrick 542*09467b48Spatrick size_t Start = RevIter - RenameStack.rbegin(); 543*09467b48Spatrick // The maximum number of things we should be trying to materialize at once 544*09467b48Spatrick // right now is 4, depending on if we had an assume, a branch, and both used 545*09467b48Spatrick // and of conditions. 546*09467b48Spatrick for (auto RenameIter = RenameStack.end() - Start; 547*09467b48Spatrick RenameIter != RenameStack.end(); ++RenameIter) { 548*09467b48Spatrick auto *Op = 549*09467b48Spatrick RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 550*09467b48Spatrick ValueDFS &Result = *RenameIter; 551*09467b48Spatrick auto *ValInfo = Result.PInfo; 552*09467b48Spatrick // For edge predicates, we can just place the operand in the block before 553*09467b48Spatrick // the terminator. For assume, we have to place it right before the assume 554*09467b48Spatrick // to ensure we dominate all of our uses. Always insert right before the 555*09467b48Spatrick // relevant instruction (terminator, assume), so that we insert in proper 556*09467b48Spatrick // order in the case of multiple predicateinfo in the same block. 557*09467b48Spatrick if (isa<PredicateWithEdge>(ValInfo)) { 558*09467b48Spatrick IRBuilder<> B(getBranchTerminator(ValInfo)); 559*09467b48Spatrick Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 560*09467b48Spatrick if (IF->users().empty()) 561*09467b48Spatrick CreatedDeclarations.insert(IF); 562*09467b48Spatrick CallInst *PIC = 563*09467b48Spatrick B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 564*09467b48Spatrick PredicateMap.insert({PIC, ValInfo}); 565*09467b48Spatrick Result.Def = PIC; 566*09467b48Spatrick } else { 567*09467b48Spatrick auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 568*09467b48Spatrick assert(PAssume && 569*09467b48Spatrick "Should not have gotten here without it being an assume"); 570*09467b48Spatrick IRBuilder<> B(PAssume->AssumeInst); 571*09467b48Spatrick Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 572*09467b48Spatrick if (IF->users().empty()) 573*09467b48Spatrick CreatedDeclarations.insert(IF); 574*09467b48Spatrick CallInst *PIC = B.CreateCall(IF, Op); 575*09467b48Spatrick PredicateMap.insert({PIC, ValInfo}); 576*09467b48Spatrick Result.Def = PIC; 577*09467b48Spatrick } 578*09467b48Spatrick } 579*09467b48Spatrick return RenameStack.back().Def; 580*09467b48Spatrick } 581*09467b48Spatrick 582*09467b48Spatrick // Instead of the standard SSA renaming algorithm, which is O(Number of 583*09467b48Spatrick // instructions), and walks the entire dominator tree, we walk only the defs + 584*09467b48Spatrick // uses. The standard SSA renaming algorithm does not really rely on the 585*09467b48Spatrick // dominator tree except to order the stack push/pops of the renaming stacks, so 586*09467b48Spatrick // that defs end up getting pushed before hitting the correct uses. This does 587*09467b48Spatrick // not require the dominator tree, only the *order* of the dominator tree. The 588*09467b48Spatrick // complete and correct ordering of the defs and uses, in dominator tree is 589*09467b48Spatrick // contained in the DFS numbering of the dominator tree. So we sort the defs and 590*09467b48Spatrick // uses into the DFS ordering, and then just use the renaming stack as per 591*09467b48Spatrick // normal, pushing when we hit a def (which is a predicateinfo instruction), 592*09467b48Spatrick // popping when we are out of the dfs scope for that def, and replacing any uses 593*09467b48Spatrick // with top of stack if it exists. In order to handle liveness without 594*09467b48Spatrick // propagating liveness info, we don't actually insert the predicateinfo 595*09467b48Spatrick // instruction def until we see a use that it would dominate. Once we see such 596*09467b48Spatrick // a use, we materialize the predicateinfo instruction in the right place and 597*09467b48Spatrick // use it. 598*09467b48Spatrick // 599*09467b48Spatrick // TODO: Use this algorithm to perform fast single-variable renaming in 600*09467b48Spatrick // promotememtoreg and memoryssa. 601*09467b48Spatrick void PredicateInfo::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 602*09467b48Spatrick ValueDFS_Compare Compare(DT, OI); 603*09467b48Spatrick // Compute liveness, and rename in O(uses) per Op. 604*09467b48Spatrick for (auto *Op : OpsToRename) { 605*09467b48Spatrick LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 606*09467b48Spatrick unsigned Counter = 0; 607*09467b48Spatrick SmallVector<ValueDFS, 16> OrderedUses; 608*09467b48Spatrick const auto &ValueInfo = getValueInfo(Op); 609*09467b48Spatrick // Insert the possible copies into the def/use list. 610*09467b48Spatrick // They will become real copies if we find a real use for them, and never 611*09467b48Spatrick // created otherwise. 612*09467b48Spatrick for (auto &PossibleCopy : ValueInfo.Infos) { 613*09467b48Spatrick ValueDFS VD; 614*09467b48Spatrick // Determine where we are going to place the copy by the copy type. 615*09467b48Spatrick // The predicate info for branches always come first, they will get 616*09467b48Spatrick // materialized in the split block at the top of the block. 617*09467b48Spatrick // The predicate info for assumes will be somewhere in the middle, 618*09467b48Spatrick // it will get materialized in front of the assume. 619*09467b48Spatrick if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 620*09467b48Spatrick VD.LocalNum = LN_Middle; 621*09467b48Spatrick DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 622*09467b48Spatrick if (!DomNode) 623*09467b48Spatrick continue; 624*09467b48Spatrick VD.DFSIn = DomNode->getDFSNumIn(); 625*09467b48Spatrick VD.DFSOut = DomNode->getDFSNumOut(); 626*09467b48Spatrick VD.PInfo = PossibleCopy; 627*09467b48Spatrick OrderedUses.push_back(VD); 628*09467b48Spatrick } else if (isa<PredicateWithEdge>(PossibleCopy)) { 629*09467b48Spatrick // If we can only do phi uses, we treat it like it's in the branch 630*09467b48Spatrick // block, and handle it specially. We know that it goes last, and only 631*09467b48Spatrick // dominate phi uses. 632*09467b48Spatrick auto BlockEdge = getBlockEdge(PossibleCopy); 633*09467b48Spatrick if (EdgeUsesOnly.count(BlockEdge)) { 634*09467b48Spatrick VD.LocalNum = LN_Last; 635*09467b48Spatrick auto *DomNode = DT.getNode(BlockEdge.first); 636*09467b48Spatrick if (DomNode) { 637*09467b48Spatrick VD.DFSIn = DomNode->getDFSNumIn(); 638*09467b48Spatrick VD.DFSOut = DomNode->getDFSNumOut(); 639*09467b48Spatrick VD.PInfo = PossibleCopy; 640*09467b48Spatrick VD.EdgeOnly = true; 641*09467b48Spatrick OrderedUses.push_back(VD); 642*09467b48Spatrick } 643*09467b48Spatrick } else { 644*09467b48Spatrick // Otherwise, we are in the split block (even though we perform 645*09467b48Spatrick // insertion in the branch block). 646*09467b48Spatrick // Insert a possible copy at the split block and before the branch. 647*09467b48Spatrick VD.LocalNum = LN_First; 648*09467b48Spatrick auto *DomNode = DT.getNode(BlockEdge.second); 649*09467b48Spatrick if (DomNode) { 650*09467b48Spatrick VD.DFSIn = DomNode->getDFSNumIn(); 651*09467b48Spatrick VD.DFSOut = DomNode->getDFSNumOut(); 652*09467b48Spatrick VD.PInfo = PossibleCopy; 653*09467b48Spatrick OrderedUses.push_back(VD); 654*09467b48Spatrick } 655*09467b48Spatrick } 656*09467b48Spatrick } 657*09467b48Spatrick } 658*09467b48Spatrick 659*09467b48Spatrick convertUsesToDFSOrdered(Op, OrderedUses); 660*09467b48Spatrick // Here we require a stable sort because we do not bother to try to 661*09467b48Spatrick // assign an order to the operands the uses represent. Thus, two 662*09467b48Spatrick // uses in the same instruction do not have a strict sort order 663*09467b48Spatrick // currently and will be considered equal. We could get rid of the 664*09467b48Spatrick // stable sort by creating one if we wanted. 665*09467b48Spatrick llvm::stable_sort(OrderedUses, Compare); 666*09467b48Spatrick SmallVector<ValueDFS, 8> RenameStack; 667*09467b48Spatrick // For each use, sorted into dfs order, push values and replaces uses with 668*09467b48Spatrick // top of stack, which will represent the reaching def. 669*09467b48Spatrick for (auto &VD : OrderedUses) { 670*09467b48Spatrick // We currently do not materialize copy over copy, but we should decide if 671*09467b48Spatrick // we want to. 672*09467b48Spatrick bool PossibleCopy = VD.PInfo != nullptr; 673*09467b48Spatrick if (RenameStack.empty()) { 674*09467b48Spatrick LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 675*09467b48Spatrick } else { 676*09467b48Spatrick LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 677*09467b48Spatrick << RenameStack.back().DFSIn << "," 678*09467b48Spatrick << RenameStack.back().DFSOut << ")\n"); 679*09467b48Spatrick } 680*09467b48Spatrick 681*09467b48Spatrick LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 682*09467b48Spatrick << VD.DFSOut << ")\n"); 683*09467b48Spatrick 684*09467b48Spatrick bool ShouldPush = (VD.Def || PossibleCopy); 685*09467b48Spatrick bool OutOfScope = !stackIsInScope(RenameStack, VD); 686*09467b48Spatrick if (OutOfScope || ShouldPush) { 687*09467b48Spatrick // Sync to our current scope. 688*09467b48Spatrick popStackUntilDFSScope(RenameStack, VD); 689*09467b48Spatrick if (ShouldPush) { 690*09467b48Spatrick RenameStack.push_back(VD); 691*09467b48Spatrick } 692*09467b48Spatrick } 693*09467b48Spatrick // If we get to this point, and the stack is empty we must have a use 694*09467b48Spatrick // with no renaming needed, just skip it. 695*09467b48Spatrick if (RenameStack.empty()) 696*09467b48Spatrick continue; 697*09467b48Spatrick // Skip values, only want to rename the uses 698*09467b48Spatrick if (VD.Def || PossibleCopy) 699*09467b48Spatrick continue; 700*09467b48Spatrick if (!DebugCounter::shouldExecute(RenameCounter)) { 701*09467b48Spatrick LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 702*09467b48Spatrick continue; 703*09467b48Spatrick } 704*09467b48Spatrick ValueDFS &Result = RenameStack.back(); 705*09467b48Spatrick 706*09467b48Spatrick // If the possible copy dominates something, materialize our stack up to 707*09467b48Spatrick // this point. This ensures every comparison that affects our operation 708*09467b48Spatrick // ends up with predicateinfo. 709*09467b48Spatrick if (!Result.Def) 710*09467b48Spatrick Result.Def = materializeStack(Counter, RenameStack, Op); 711*09467b48Spatrick 712*09467b48Spatrick LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 713*09467b48Spatrick << *VD.U->get() << " in " << *(VD.U->getUser()) 714*09467b48Spatrick << "\n"); 715*09467b48Spatrick assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 716*09467b48Spatrick "Predicateinfo def should have dominated this use"); 717*09467b48Spatrick VD.U->set(Result.Def); 718*09467b48Spatrick } 719*09467b48Spatrick } 720*09467b48Spatrick } 721*09467b48Spatrick 722*09467b48Spatrick PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { 723*09467b48Spatrick auto OIN = ValueInfoNums.find(Operand); 724*09467b48Spatrick if (OIN == ValueInfoNums.end()) { 725*09467b48Spatrick // This will grow it 726*09467b48Spatrick ValueInfos.resize(ValueInfos.size() + 1); 727*09467b48Spatrick // This will use the new size and give us a 0 based number of the info 728*09467b48Spatrick auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 729*09467b48Spatrick assert(InsertResult.second && "Value info number already existed?"); 730*09467b48Spatrick return ValueInfos[InsertResult.first->second]; 731*09467b48Spatrick } 732*09467b48Spatrick return ValueInfos[OIN->second]; 733*09467b48Spatrick } 734*09467b48Spatrick 735*09467b48Spatrick const PredicateInfo::ValueInfo & 736*09467b48Spatrick PredicateInfo::getValueInfo(Value *Operand) const { 737*09467b48Spatrick auto OINI = ValueInfoNums.lookup(Operand); 738*09467b48Spatrick assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 739*09467b48Spatrick assert(OINI < ValueInfos.size() && 740*09467b48Spatrick "Value Info Number greater than size of Value Info Table"); 741*09467b48Spatrick return ValueInfos[OINI]; 742*09467b48Spatrick } 743*09467b48Spatrick 744*09467b48Spatrick PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 745*09467b48Spatrick AssumptionCache &AC) 746*09467b48Spatrick : F(F), DT(DT), AC(AC), OI(&DT) { 747*09467b48Spatrick // Push an empty operand info so that we can detect 0 as not finding one 748*09467b48Spatrick ValueInfos.resize(1); 749*09467b48Spatrick buildPredicateInfo(); 750*09467b48Spatrick } 751*09467b48Spatrick 752*09467b48Spatrick // Remove all declarations we created . The PredicateInfo consumers are 753*09467b48Spatrick // responsible for remove the ssa_copy calls created. 754*09467b48Spatrick PredicateInfo::~PredicateInfo() { 755*09467b48Spatrick // Collect function pointers in set first, as SmallSet uses a SmallVector 756*09467b48Spatrick // internally and we have to remove the asserting value handles first. 757*09467b48Spatrick SmallPtrSet<Function *, 20> FunctionPtrs; 758*09467b48Spatrick for (auto &F : CreatedDeclarations) 759*09467b48Spatrick FunctionPtrs.insert(&*F); 760*09467b48Spatrick CreatedDeclarations.clear(); 761*09467b48Spatrick 762*09467b48Spatrick for (Function *F : FunctionPtrs) { 763*09467b48Spatrick assert(F->user_begin() == F->user_end() && 764*09467b48Spatrick "PredicateInfo consumer did not remove all SSA copies."); 765*09467b48Spatrick F->eraseFromParent(); 766*09467b48Spatrick } 767*09467b48Spatrick } 768*09467b48Spatrick 769*09467b48Spatrick void PredicateInfo::verifyPredicateInfo() const {} 770*09467b48Spatrick 771*09467b48Spatrick char PredicateInfoPrinterLegacyPass::ID = 0; 772*09467b48Spatrick 773*09467b48Spatrick PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 774*09467b48Spatrick : FunctionPass(ID) { 775*09467b48Spatrick initializePredicateInfoPrinterLegacyPassPass( 776*09467b48Spatrick *PassRegistry::getPassRegistry()); 777*09467b48Spatrick } 778*09467b48Spatrick 779*09467b48Spatrick void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 780*09467b48Spatrick AU.setPreservesAll(); 781*09467b48Spatrick AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 782*09467b48Spatrick AU.addRequired<AssumptionCacheTracker>(); 783*09467b48Spatrick } 784*09467b48Spatrick 785*09467b48Spatrick // Replace ssa_copy calls created by PredicateInfo with their operand. 786*09467b48Spatrick static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 787*09467b48Spatrick for (auto I = inst_begin(F), E = inst_end(F); I != E;) { 788*09467b48Spatrick Instruction *Inst = &*I++; 789*09467b48Spatrick const auto *PI = PredInfo.getPredicateInfoFor(Inst); 790*09467b48Spatrick auto *II = dyn_cast<IntrinsicInst>(Inst); 791*09467b48Spatrick if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 792*09467b48Spatrick continue; 793*09467b48Spatrick 794*09467b48Spatrick Inst->replaceAllUsesWith(II->getOperand(0)); 795*09467b48Spatrick Inst->eraseFromParent(); 796*09467b48Spatrick } 797*09467b48Spatrick } 798*09467b48Spatrick 799*09467b48Spatrick bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 800*09467b48Spatrick auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 801*09467b48Spatrick auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 802*09467b48Spatrick auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 803*09467b48Spatrick PredInfo->print(dbgs()); 804*09467b48Spatrick if (VerifyPredicateInfo) 805*09467b48Spatrick PredInfo->verifyPredicateInfo(); 806*09467b48Spatrick 807*09467b48Spatrick replaceCreatedSSACopys(*PredInfo, F); 808*09467b48Spatrick return false; 809*09467b48Spatrick } 810*09467b48Spatrick 811*09467b48Spatrick PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 812*09467b48Spatrick FunctionAnalysisManager &AM) { 813*09467b48Spatrick auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 814*09467b48Spatrick auto &AC = AM.getResult<AssumptionAnalysis>(F); 815*09467b48Spatrick OS << "PredicateInfo for function: " << F.getName() << "\n"; 816*09467b48Spatrick auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 817*09467b48Spatrick PredInfo->print(OS); 818*09467b48Spatrick 819*09467b48Spatrick replaceCreatedSSACopys(*PredInfo, F); 820*09467b48Spatrick return PreservedAnalyses::all(); 821*09467b48Spatrick } 822*09467b48Spatrick 823*09467b48Spatrick /// An assembly annotator class to print PredicateInfo information in 824*09467b48Spatrick /// comments. 825*09467b48Spatrick class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 826*09467b48Spatrick friend class PredicateInfo; 827*09467b48Spatrick const PredicateInfo *PredInfo; 828*09467b48Spatrick 829*09467b48Spatrick public: 830*09467b48Spatrick PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 831*09467b48Spatrick 832*09467b48Spatrick virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 833*09467b48Spatrick formatted_raw_ostream &OS) {} 834*09467b48Spatrick 835*09467b48Spatrick virtual void emitInstructionAnnot(const Instruction *I, 836*09467b48Spatrick formatted_raw_ostream &OS) { 837*09467b48Spatrick if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 838*09467b48Spatrick OS << "; Has predicate info\n"; 839*09467b48Spatrick if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 840*09467b48Spatrick OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 841*09467b48Spatrick << " Comparison:" << *PB->Condition << " Edge: ["; 842*09467b48Spatrick PB->From->printAsOperand(OS); 843*09467b48Spatrick OS << ","; 844*09467b48Spatrick PB->To->printAsOperand(OS); 845*09467b48Spatrick OS << "] }\n"; 846*09467b48Spatrick } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 847*09467b48Spatrick OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 848*09467b48Spatrick << " Switch:" << *PS->Switch << " Edge: ["; 849*09467b48Spatrick PS->From->printAsOperand(OS); 850*09467b48Spatrick OS << ","; 851*09467b48Spatrick PS->To->printAsOperand(OS); 852*09467b48Spatrick OS << "] }\n"; 853*09467b48Spatrick } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 854*09467b48Spatrick OS << "; assume predicate info {" 855*09467b48Spatrick << " Comparison:" << *PA->Condition << " }\n"; 856*09467b48Spatrick } 857*09467b48Spatrick } 858*09467b48Spatrick } 859*09467b48Spatrick }; 860*09467b48Spatrick 861*09467b48Spatrick void PredicateInfo::print(raw_ostream &OS) const { 862*09467b48Spatrick PredicateInfoAnnotatedWriter Writer(this); 863*09467b48Spatrick F.print(OS, &Writer); 864*09467b48Spatrick } 865*09467b48Spatrick 866*09467b48Spatrick void PredicateInfo::dump() const { 867*09467b48Spatrick PredicateInfoAnnotatedWriter Writer(this); 868*09467b48Spatrick F.print(dbgs(), &Writer); 869*09467b48Spatrick } 870*09467b48Spatrick 871*09467b48Spatrick PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 872*09467b48Spatrick FunctionAnalysisManager &AM) { 873*09467b48Spatrick auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 874*09467b48Spatrick auto &AC = AM.getResult<AssumptionAnalysis>(F); 875*09467b48Spatrick std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 876*09467b48Spatrick 877*09467b48Spatrick return PreservedAnalyses::all(); 878*09467b48Spatrick } 879*09467b48Spatrick } 880