1*09467b48Spatrick //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2*09467b48Spatrick // 3*09467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*09467b48Spatrick // See https://llvm.org/LICENSE.txt for license information. 5*09467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*09467b48Spatrick // 7*09467b48Spatrick //===----------------------------------------------------------------------===// 8*09467b48Spatrick // 9*09467b48Spatrick // This file implements some loop unrolling utilities. It does not define any 10*09467b48Spatrick // actual pass or policy, but provides a single function to perform loop 11*09467b48Spatrick // unrolling. 12*09467b48Spatrick // 13*09467b48Spatrick // The process of unrolling can produce extraneous basic blocks linked with 14*09467b48Spatrick // unconditional branches. This will be corrected in the future. 15*09467b48Spatrick // 16*09467b48Spatrick //===----------------------------------------------------------------------===// 17*09467b48Spatrick 18*09467b48Spatrick #include "llvm/ADT/SmallPtrSet.h" 19*09467b48Spatrick #include "llvm/ADT/Statistic.h" 20*09467b48Spatrick #include "llvm/Analysis/AssumptionCache.h" 21*09467b48Spatrick #include "llvm/Analysis/InstructionSimplify.h" 22*09467b48Spatrick #include "llvm/Analysis/LoopIterator.h" 23*09467b48Spatrick #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24*09467b48Spatrick #include "llvm/Analysis/ScalarEvolution.h" 25*09467b48Spatrick #include "llvm/IR/BasicBlock.h" 26*09467b48Spatrick #include "llvm/IR/DataLayout.h" 27*09467b48Spatrick #include "llvm/IR/DebugInfoMetadata.h" 28*09467b48Spatrick #include "llvm/IR/Dominators.h" 29*09467b48Spatrick #include "llvm/IR/IntrinsicInst.h" 30*09467b48Spatrick #include "llvm/IR/LLVMContext.h" 31*09467b48Spatrick #include "llvm/Support/CommandLine.h" 32*09467b48Spatrick #include "llvm/Support/Debug.h" 33*09467b48Spatrick #include "llvm/Support/raw_ostream.h" 34*09467b48Spatrick #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35*09467b48Spatrick #include "llvm/Transforms/Utils/Cloning.h" 36*09467b48Spatrick #include "llvm/Transforms/Utils/Local.h" 37*09467b48Spatrick #include "llvm/Transforms/Utils/LoopSimplify.h" 38*09467b48Spatrick #include "llvm/Transforms/Utils/LoopUtils.h" 39*09467b48Spatrick #include "llvm/Transforms/Utils/SimplifyIndVar.h" 40*09467b48Spatrick #include "llvm/Transforms/Utils/UnrollLoop.h" 41*09467b48Spatrick using namespace llvm; 42*09467b48Spatrick 43*09467b48Spatrick #define DEBUG_TYPE "loop-unroll" 44*09467b48Spatrick 45*09467b48Spatrick // TODO: Should these be here or in LoopUnroll? 46*09467b48Spatrick STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47*09467b48Spatrick STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48*09467b48Spatrick STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a " 49*09467b48Spatrick "conditional latch (completely or otherwise)"); 50*09467b48Spatrick 51*09467b48Spatrick static cl::opt<bool> 52*09467b48Spatrick UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 53*09467b48Spatrick cl::desc("Allow runtime unrolled loops to be unrolled " 54*09467b48Spatrick "with epilog instead of prolog.")); 55*09467b48Spatrick 56*09467b48Spatrick static cl::opt<bool> 57*09467b48Spatrick UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 58*09467b48Spatrick cl::desc("Verify domtree after unrolling"), 59*09467b48Spatrick #ifdef EXPENSIVE_CHECKS 60*09467b48Spatrick cl::init(true) 61*09467b48Spatrick #else 62*09467b48Spatrick cl::init(false) 63*09467b48Spatrick #endif 64*09467b48Spatrick ); 65*09467b48Spatrick 66*09467b48Spatrick /// Convert the instruction operands from referencing the current values into 67*09467b48Spatrick /// those specified by VMap. 68*09467b48Spatrick void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) { 69*09467b48Spatrick for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 70*09467b48Spatrick Value *Op = I->getOperand(op); 71*09467b48Spatrick 72*09467b48Spatrick // Unwrap arguments of dbg.value intrinsics. 73*09467b48Spatrick bool Wrapped = false; 74*09467b48Spatrick if (auto *V = dyn_cast<MetadataAsValue>(Op)) 75*09467b48Spatrick if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) { 76*09467b48Spatrick Op = Unwrapped->getValue(); 77*09467b48Spatrick Wrapped = true; 78*09467b48Spatrick } 79*09467b48Spatrick 80*09467b48Spatrick auto wrap = [&](Value *V) { 81*09467b48Spatrick auto &C = I->getContext(); 82*09467b48Spatrick return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V; 83*09467b48Spatrick }; 84*09467b48Spatrick 85*09467b48Spatrick ValueToValueMapTy::iterator It = VMap.find(Op); 86*09467b48Spatrick if (It != VMap.end()) 87*09467b48Spatrick I->setOperand(op, wrap(It->second)); 88*09467b48Spatrick } 89*09467b48Spatrick 90*09467b48Spatrick if (PHINode *PN = dyn_cast<PHINode>(I)) { 91*09467b48Spatrick for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 92*09467b48Spatrick ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 93*09467b48Spatrick if (It != VMap.end()) 94*09467b48Spatrick PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 95*09467b48Spatrick } 96*09467b48Spatrick } 97*09467b48Spatrick } 98*09467b48Spatrick 99*09467b48Spatrick /// Check if unrolling created a situation where we need to insert phi nodes to 100*09467b48Spatrick /// preserve LCSSA form. 101*09467b48Spatrick /// \param Blocks is a vector of basic blocks representing unrolled loop. 102*09467b48Spatrick /// \param L is the outer loop. 103*09467b48Spatrick /// It's possible that some of the blocks are in L, and some are not. In this 104*09467b48Spatrick /// case, if there is a use is outside L, and definition is inside L, we need to 105*09467b48Spatrick /// insert a phi-node, otherwise LCSSA will be broken. 106*09467b48Spatrick /// The function is just a helper function for llvm::UnrollLoop that returns 107*09467b48Spatrick /// true if this situation occurs, indicating that LCSSA needs to be fixed. 108*09467b48Spatrick static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 109*09467b48Spatrick LoopInfo *LI) { 110*09467b48Spatrick for (BasicBlock *BB : Blocks) { 111*09467b48Spatrick if (LI->getLoopFor(BB) == L) 112*09467b48Spatrick continue; 113*09467b48Spatrick for (Instruction &I : *BB) { 114*09467b48Spatrick for (Use &U : I.operands()) { 115*09467b48Spatrick if (auto Def = dyn_cast<Instruction>(U)) { 116*09467b48Spatrick Loop *DefLoop = LI->getLoopFor(Def->getParent()); 117*09467b48Spatrick if (!DefLoop) 118*09467b48Spatrick continue; 119*09467b48Spatrick if (DefLoop->contains(L)) 120*09467b48Spatrick return true; 121*09467b48Spatrick } 122*09467b48Spatrick } 123*09467b48Spatrick } 124*09467b48Spatrick } 125*09467b48Spatrick return false; 126*09467b48Spatrick } 127*09467b48Spatrick 128*09467b48Spatrick /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 129*09467b48Spatrick /// and adds a mapping from the original loop to the new loop to NewLoops. 130*09467b48Spatrick /// Returns nullptr if no new loop was created and a pointer to the 131*09467b48Spatrick /// original loop OriginalBB was part of otherwise. 132*09467b48Spatrick const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 133*09467b48Spatrick BasicBlock *ClonedBB, LoopInfo *LI, 134*09467b48Spatrick NewLoopsMap &NewLoops) { 135*09467b48Spatrick // Figure out which loop New is in. 136*09467b48Spatrick const Loop *OldLoop = LI->getLoopFor(OriginalBB); 137*09467b48Spatrick assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 138*09467b48Spatrick 139*09467b48Spatrick Loop *&NewLoop = NewLoops[OldLoop]; 140*09467b48Spatrick if (!NewLoop) { 141*09467b48Spatrick // Found a new sub-loop. 142*09467b48Spatrick assert(OriginalBB == OldLoop->getHeader() && 143*09467b48Spatrick "Header should be first in RPO"); 144*09467b48Spatrick 145*09467b48Spatrick NewLoop = LI->AllocateLoop(); 146*09467b48Spatrick Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 147*09467b48Spatrick 148*09467b48Spatrick if (NewLoopParent) 149*09467b48Spatrick NewLoopParent->addChildLoop(NewLoop); 150*09467b48Spatrick else 151*09467b48Spatrick LI->addTopLevelLoop(NewLoop); 152*09467b48Spatrick 153*09467b48Spatrick NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 154*09467b48Spatrick return OldLoop; 155*09467b48Spatrick } else { 156*09467b48Spatrick NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 157*09467b48Spatrick return nullptr; 158*09467b48Spatrick } 159*09467b48Spatrick } 160*09467b48Spatrick 161*09467b48Spatrick /// The function chooses which type of unroll (epilog or prolog) is more 162*09467b48Spatrick /// profitabale. 163*09467b48Spatrick /// Epilog unroll is more profitable when there is PHI that starts from 164*09467b48Spatrick /// constant. In this case epilog will leave PHI start from constant, 165*09467b48Spatrick /// but prolog will convert it to non-constant. 166*09467b48Spatrick /// 167*09467b48Spatrick /// loop: 168*09467b48Spatrick /// PN = PHI [I, Latch], [CI, PreHeader] 169*09467b48Spatrick /// I = foo(PN) 170*09467b48Spatrick /// ... 171*09467b48Spatrick /// 172*09467b48Spatrick /// Epilog unroll case. 173*09467b48Spatrick /// loop: 174*09467b48Spatrick /// PN = PHI [I2, Latch], [CI, PreHeader] 175*09467b48Spatrick /// I1 = foo(PN) 176*09467b48Spatrick /// I2 = foo(I1) 177*09467b48Spatrick /// ... 178*09467b48Spatrick /// Prolog unroll case. 179*09467b48Spatrick /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 180*09467b48Spatrick /// loop: 181*09467b48Spatrick /// PN = PHI [I2, Latch], [NewPN, PreHeader] 182*09467b48Spatrick /// I1 = foo(PN) 183*09467b48Spatrick /// I2 = foo(I1) 184*09467b48Spatrick /// ... 185*09467b48Spatrick /// 186*09467b48Spatrick static bool isEpilogProfitable(Loop *L) { 187*09467b48Spatrick BasicBlock *PreHeader = L->getLoopPreheader(); 188*09467b48Spatrick BasicBlock *Header = L->getHeader(); 189*09467b48Spatrick assert(PreHeader && Header); 190*09467b48Spatrick for (const PHINode &PN : Header->phis()) { 191*09467b48Spatrick if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 192*09467b48Spatrick return true; 193*09467b48Spatrick } 194*09467b48Spatrick return false; 195*09467b48Spatrick } 196*09467b48Spatrick 197*09467b48Spatrick /// Perform some cleanup and simplifications on loops after unrolling. It is 198*09467b48Spatrick /// useful to simplify the IV's in the new loop, as well as do a quick 199*09467b48Spatrick /// simplify/dce pass of the instructions. 200*09467b48Spatrick void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 201*09467b48Spatrick ScalarEvolution *SE, DominatorTree *DT, 202*09467b48Spatrick AssumptionCache *AC) { 203*09467b48Spatrick // Simplify any new induction variables in the partially unrolled loop. 204*09467b48Spatrick if (SE && SimplifyIVs) { 205*09467b48Spatrick SmallVector<WeakTrackingVH, 16> DeadInsts; 206*09467b48Spatrick simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 207*09467b48Spatrick 208*09467b48Spatrick // Aggressively clean up dead instructions that simplifyLoopIVs already 209*09467b48Spatrick // identified. Any remaining should be cleaned up below. 210*09467b48Spatrick while (!DeadInsts.empty()) 211*09467b48Spatrick if (Instruction *Inst = 212*09467b48Spatrick dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 213*09467b48Spatrick RecursivelyDeleteTriviallyDeadInstructions(Inst); 214*09467b48Spatrick } 215*09467b48Spatrick 216*09467b48Spatrick // At this point, the code is well formed. We now do a quick sweep over the 217*09467b48Spatrick // inserted code, doing constant propagation and dead code elimination as we 218*09467b48Spatrick // go. 219*09467b48Spatrick const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 220*09467b48Spatrick for (BasicBlock *BB : L->getBlocks()) { 221*09467b48Spatrick for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 222*09467b48Spatrick Instruction *Inst = &*I++; 223*09467b48Spatrick 224*09467b48Spatrick if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 225*09467b48Spatrick if (LI->replacementPreservesLCSSAForm(Inst, V)) 226*09467b48Spatrick Inst->replaceAllUsesWith(V); 227*09467b48Spatrick if (isInstructionTriviallyDead(Inst)) 228*09467b48Spatrick BB->getInstList().erase(Inst); 229*09467b48Spatrick } 230*09467b48Spatrick } 231*09467b48Spatrick 232*09467b48Spatrick // TODO: after peeling or unrolling, previously loop variant conditions are 233*09467b48Spatrick // likely to fold to constants, eagerly propagating those here will require 234*09467b48Spatrick // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 235*09467b48Spatrick // appropriate. 236*09467b48Spatrick } 237*09467b48Spatrick 238*09467b48Spatrick /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 239*09467b48Spatrick /// can only fail when the loop's latch block is not terminated by a conditional 240*09467b48Spatrick /// branch instruction. However, if the trip count (and multiple) are not known, 241*09467b48Spatrick /// loop unrolling will mostly produce more code that is no faster. 242*09467b48Spatrick /// 243*09467b48Spatrick /// TripCount is the upper bound of the iteration on which control exits 244*09467b48Spatrick /// LatchBlock. Control may exit the loop prior to TripCount iterations either 245*09467b48Spatrick /// via an early branch in other loop block or via LatchBlock terminator. This 246*09467b48Spatrick /// is relaxed from the general definition of trip count which is the number of 247*09467b48Spatrick /// times the loop header executes. Note that UnrollLoop assumes that the loop 248*09467b48Spatrick /// counter test is in LatchBlock in order to remove unnecesssary instances of 249*09467b48Spatrick /// the test. If control can exit the loop from the LatchBlock's terminator 250*09467b48Spatrick /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 251*09467b48Spatrick /// 252*09467b48Spatrick /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 253*09467b48Spatrick /// needs to be preserved. It is needed when we use trip count upper bound to 254*09467b48Spatrick /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 255*09467b48Spatrick /// conditional branch needs to be preserved. 256*09467b48Spatrick /// 257*09467b48Spatrick /// Similarly, TripMultiple divides the number of times that the LatchBlock may 258*09467b48Spatrick /// execute without exiting the loop. 259*09467b48Spatrick /// 260*09467b48Spatrick /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 261*09467b48Spatrick /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 262*09467b48Spatrick /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 263*09467b48Spatrick /// iterations before branching into the unrolled loop. UnrollLoop will not 264*09467b48Spatrick /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 265*09467b48Spatrick /// AllowExpensiveTripCount is false. 266*09467b48Spatrick /// 267*09467b48Spatrick /// If we want to perform PGO-based loop peeling, PeelCount is set to the 268*09467b48Spatrick /// number of iterations we want to peel off. 269*09467b48Spatrick /// 270*09467b48Spatrick /// The LoopInfo Analysis that is passed will be kept consistent. 271*09467b48Spatrick /// 272*09467b48Spatrick /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 273*09467b48Spatrick /// DominatorTree if they are non-null. 274*09467b48Spatrick /// 275*09467b48Spatrick /// If RemainderLoop is non-null, it will receive the remainder loop (if 276*09467b48Spatrick /// required and not fully unrolled). 277*09467b48Spatrick LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 278*09467b48Spatrick ScalarEvolution *SE, DominatorTree *DT, 279*09467b48Spatrick AssumptionCache *AC, 280*09467b48Spatrick OptimizationRemarkEmitter *ORE, 281*09467b48Spatrick bool PreserveLCSSA, Loop **RemainderLoop) { 282*09467b48Spatrick 283*09467b48Spatrick BasicBlock *Preheader = L->getLoopPreheader(); 284*09467b48Spatrick if (!Preheader) { 285*09467b48Spatrick LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 286*09467b48Spatrick return LoopUnrollResult::Unmodified; 287*09467b48Spatrick } 288*09467b48Spatrick 289*09467b48Spatrick BasicBlock *LatchBlock = L->getLoopLatch(); 290*09467b48Spatrick if (!LatchBlock) { 291*09467b48Spatrick LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 292*09467b48Spatrick return LoopUnrollResult::Unmodified; 293*09467b48Spatrick } 294*09467b48Spatrick 295*09467b48Spatrick // Loops with indirectbr cannot be cloned. 296*09467b48Spatrick if (!L->isSafeToClone()) { 297*09467b48Spatrick LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 298*09467b48Spatrick return LoopUnrollResult::Unmodified; 299*09467b48Spatrick } 300*09467b48Spatrick 301*09467b48Spatrick // The current loop unroll pass can unroll loops with a single latch or header 302*09467b48Spatrick // that's a conditional branch exiting the loop. 303*09467b48Spatrick // FIXME: The implementation can be extended to work with more complicated 304*09467b48Spatrick // cases, e.g. loops with multiple latches. 305*09467b48Spatrick BasicBlock *Header = L->getHeader(); 306*09467b48Spatrick BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator()); 307*09467b48Spatrick BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 308*09467b48Spatrick 309*09467b48Spatrick // FIXME: Support loops without conditional latch and multiple exiting blocks. 310*09467b48Spatrick if (!BI || 311*09467b48Spatrick (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() || 312*09467b48Spatrick L->getExitingBlock() != Header))) { 313*09467b48Spatrick LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional " 314*09467b48Spatrick "branch in the latch or header.\n"); 315*09467b48Spatrick return LoopUnrollResult::Unmodified; 316*09467b48Spatrick } 317*09467b48Spatrick 318*09467b48Spatrick auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) { 319*09467b48Spatrick return BI->isConditional() && BI->getSuccessor(S1) == Header && 320*09467b48Spatrick !L->contains(BI->getSuccessor(S2)); 321*09467b48Spatrick }; 322*09467b48Spatrick 323*09467b48Spatrick // If we have a conditional latch, it must exit the loop. 324*09467b48Spatrick if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) && 325*09467b48Spatrick !CheckLatchSuccessors(1, 0)) { 326*09467b48Spatrick LLVM_DEBUG( 327*09467b48Spatrick dbgs() << "Can't unroll; a conditional latch must exit the loop"); 328*09467b48Spatrick return LoopUnrollResult::Unmodified; 329*09467b48Spatrick } 330*09467b48Spatrick 331*09467b48Spatrick auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) { 332*09467b48Spatrick return HeaderBI && HeaderBI->isConditional() && 333*09467b48Spatrick L->contains(HeaderBI->getSuccessor(S1)) && 334*09467b48Spatrick !L->contains(HeaderBI->getSuccessor(S2)); 335*09467b48Spatrick }; 336*09467b48Spatrick 337*09467b48Spatrick // If we do not have a conditional latch, the header must exit the loop. 338*09467b48Spatrick if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() && 339*09467b48Spatrick !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) { 340*09467b48Spatrick LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop"); 341*09467b48Spatrick return LoopUnrollResult::Unmodified; 342*09467b48Spatrick } 343*09467b48Spatrick 344*09467b48Spatrick if (Header->hasAddressTaken()) { 345*09467b48Spatrick // The loop-rotate pass can be helpful to avoid this in many cases. 346*09467b48Spatrick LLVM_DEBUG( 347*09467b48Spatrick dbgs() << " Won't unroll loop: address of header block is taken.\n"); 348*09467b48Spatrick return LoopUnrollResult::Unmodified; 349*09467b48Spatrick } 350*09467b48Spatrick 351*09467b48Spatrick if (ULO.TripCount != 0) 352*09467b48Spatrick LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 353*09467b48Spatrick if (ULO.TripMultiple != 1) 354*09467b48Spatrick LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 355*09467b48Spatrick 356*09467b48Spatrick // Effectively "DCE" unrolled iterations that are beyond the tripcount 357*09467b48Spatrick // and will never be executed. 358*09467b48Spatrick if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 359*09467b48Spatrick ULO.Count = ULO.TripCount; 360*09467b48Spatrick 361*09467b48Spatrick // Don't enter the unroll code if there is nothing to do. 362*09467b48Spatrick if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 363*09467b48Spatrick LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 364*09467b48Spatrick return LoopUnrollResult::Unmodified; 365*09467b48Spatrick } 366*09467b48Spatrick 367*09467b48Spatrick assert(ULO.Count > 0); 368*09467b48Spatrick assert(ULO.TripMultiple > 0); 369*09467b48Spatrick assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 370*09467b48Spatrick 371*09467b48Spatrick // Are we eliminating the loop control altogether? 372*09467b48Spatrick bool CompletelyUnroll = ULO.Count == ULO.TripCount; 373*09467b48Spatrick SmallVector<BasicBlock *, 4> ExitBlocks; 374*09467b48Spatrick L->getExitBlocks(ExitBlocks); 375*09467b48Spatrick std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 376*09467b48Spatrick 377*09467b48Spatrick // Go through all exits of L and see if there are any phi-nodes there. We just 378*09467b48Spatrick // conservatively assume that they're inserted to preserve LCSSA form, which 379*09467b48Spatrick // means that complete unrolling might break this form. We need to either fix 380*09467b48Spatrick // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 381*09467b48Spatrick // now we just recompute LCSSA for the outer loop, but it should be possible 382*09467b48Spatrick // to fix it in-place. 383*09467b48Spatrick bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 384*09467b48Spatrick any_of(ExitBlocks, [](const BasicBlock *BB) { 385*09467b48Spatrick return isa<PHINode>(BB->begin()); 386*09467b48Spatrick }); 387*09467b48Spatrick 388*09467b48Spatrick // We assume a run-time trip count if the compiler cannot 389*09467b48Spatrick // figure out the loop trip count and the unroll-runtime 390*09467b48Spatrick // flag is specified. 391*09467b48Spatrick bool RuntimeTripCount = 392*09467b48Spatrick (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 393*09467b48Spatrick 394*09467b48Spatrick assert((!RuntimeTripCount || !ULO.PeelCount) && 395*09467b48Spatrick "Did not expect runtime trip-count unrolling " 396*09467b48Spatrick "and peeling for the same loop"); 397*09467b48Spatrick 398*09467b48Spatrick bool Peeled = false; 399*09467b48Spatrick if (ULO.PeelCount) { 400*09467b48Spatrick Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 401*09467b48Spatrick 402*09467b48Spatrick // Successful peeling may result in a change in the loop preheader/trip 403*09467b48Spatrick // counts. If we later unroll the loop, we want these to be updated. 404*09467b48Spatrick if (Peeled) { 405*09467b48Spatrick // According to our guards and profitability checks the only 406*09467b48Spatrick // meaningful exit should be latch block. Other exits go to deopt, 407*09467b48Spatrick // so we do not worry about them. 408*09467b48Spatrick BasicBlock *ExitingBlock = L->getLoopLatch(); 409*09467b48Spatrick assert(ExitingBlock && "Loop without exiting block?"); 410*09467b48Spatrick assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 411*09467b48Spatrick Preheader = L->getLoopPreheader(); 412*09467b48Spatrick ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 413*09467b48Spatrick ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 414*09467b48Spatrick } 415*09467b48Spatrick } 416*09467b48Spatrick 417*09467b48Spatrick // Loops containing convergent instructions must have a count that divides 418*09467b48Spatrick // their TripMultiple. 419*09467b48Spatrick LLVM_DEBUG( 420*09467b48Spatrick { 421*09467b48Spatrick bool HasConvergent = false; 422*09467b48Spatrick for (auto &BB : L->blocks()) 423*09467b48Spatrick for (auto &I : *BB) 424*09467b48Spatrick if (auto CS = CallSite(&I)) 425*09467b48Spatrick HasConvergent |= CS.isConvergent(); 426*09467b48Spatrick assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 427*09467b48Spatrick "Unroll count must divide trip multiple if loop contains a " 428*09467b48Spatrick "convergent operation."); 429*09467b48Spatrick }); 430*09467b48Spatrick 431*09467b48Spatrick bool EpilogProfitability = 432*09467b48Spatrick UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 433*09467b48Spatrick : isEpilogProfitable(L); 434*09467b48Spatrick 435*09467b48Spatrick if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 436*09467b48Spatrick !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 437*09467b48Spatrick EpilogProfitability, ULO.UnrollRemainder, 438*09467b48Spatrick ULO.ForgetAllSCEV, LI, SE, DT, AC, 439*09467b48Spatrick PreserveLCSSA, RemainderLoop)) { 440*09467b48Spatrick if (ULO.Force) 441*09467b48Spatrick RuntimeTripCount = false; 442*09467b48Spatrick else { 443*09467b48Spatrick LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 444*09467b48Spatrick "generated when assuming runtime trip count\n"); 445*09467b48Spatrick return LoopUnrollResult::Unmodified; 446*09467b48Spatrick } 447*09467b48Spatrick } 448*09467b48Spatrick 449*09467b48Spatrick // If we know the trip count, we know the multiple... 450*09467b48Spatrick unsigned BreakoutTrip = 0; 451*09467b48Spatrick if (ULO.TripCount != 0) { 452*09467b48Spatrick BreakoutTrip = ULO.TripCount % ULO.Count; 453*09467b48Spatrick ULO.TripMultiple = 0; 454*09467b48Spatrick } else { 455*09467b48Spatrick // Figure out what multiple to use. 456*09467b48Spatrick BreakoutTrip = ULO.TripMultiple = 457*09467b48Spatrick (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 458*09467b48Spatrick } 459*09467b48Spatrick 460*09467b48Spatrick using namespace ore; 461*09467b48Spatrick // Report the unrolling decision. 462*09467b48Spatrick if (CompletelyUnroll) { 463*09467b48Spatrick LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 464*09467b48Spatrick << " with trip count " << ULO.TripCount << "!\n"); 465*09467b48Spatrick if (ORE) 466*09467b48Spatrick ORE->emit([&]() { 467*09467b48Spatrick return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 468*09467b48Spatrick L->getHeader()) 469*09467b48Spatrick << "completely unrolled loop with " 470*09467b48Spatrick << NV("UnrollCount", ULO.TripCount) << " iterations"; 471*09467b48Spatrick }); 472*09467b48Spatrick } else if (ULO.PeelCount) { 473*09467b48Spatrick LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 474*09467b48Spatrick << " with iteration count " << ULO.PeelCount << "!\n"); 475*09467b48Spatrick if (ORE) 476*09467b48Spatrick ORE->emit([&]() { 477*09467b48Spatrick return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 478*09467b48Spatrick L->getHeader()) 479*09467b48Spatrick << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 480*09467b48Spatrick << " iterations"; 481*09467b48Spatrick }); 482*09467b48Spatrick } else { 483*09467b48Spatrick auto DiagBuilder = [&]() { 484*09467b48Spatrick OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 485*09467b48Spatrick L->getHeader()); 486*09467b48Spatrick return Diag << "unrolled loop by a factor of " 487*09467b48Spatrick << NV("UnrollCount", ULO.Count); 488*09467b48Spatrick }; 489*09467b48Spatrick 490*09467b48Spatrick LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 491*09467b48Spatrick << ULO.Count); 492*09467b48Spatrick if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 493*09467b48Spatrick LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 494*09467b48Spatrick if (ORE) 495*09467b48Spatrick ORE->emit([&]() { 496*09467b48Spatrick return DiagBuilder() << " with a breakout at trip " 497*09467b48Spatrick << NV("BreakoutTrip", BreakoutTrip); 498*09467b48Spatrick }); 499*09467b48Spatrick } else if (ULO.TripMultiple != 1) { 500*09467b48Spatrick LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 501*09467b48Spatrick if (ORE) 502*09467b48Spatrick ORE->emit([&]() { 503*09467b48Spatrick return DiagBuilder() 504*09467b48Spatrick << " with " << NV("TripMultiple", ULO.TripMultiple) 505*09467b48Spatrick << " trips per branch"; 506*09467b48Spatrick }); 507*09467b48Spatrick } else if (RuntimeTripCount) { 508*09467b48Spatrick LLVM_DEBUG(dbgs() << " with run-time trip count"); 509*09467b48Spatrick if (ORE) 510*09467b48Spatrick ORE->emit( 511*09467b48Spatrick [&]() { return DiagBuilder() << " with run-time trip count"; }); 512*09467b48Spatrick } 513*09467b48Spatrick LLVM_DEBUG(dbgs() << "!\n"); 514*09467b48Spatrick } 515*09467b48Spatrick 516*09467b48Spatrick // We are going to make changes to this loop. SCEV may be keeping cached info 517*09467b48Spatrick // about it, in particular about backedge taken count. The changes we make 518*09467b48Spatrick // are guaranteed to invalidate this information for our loop. It is tempting 519*09467b48Spatrick // to only invalidate the loop being unrolled, but it is incorrect as long as 520*09467b48Spatrick // all exiting branches from all inner loops have impact on the outer loops, 521*09467b48Spatrick // and if something changes inside them then any of outer loops may also 522*09467b48Spatrick // change. When we forget outermost loop, we also forget all contained loops 523*09467b48Spatrick // and this is what we need here. 524*09467b48Spatrick if (SE) { 525*09467b48Spatrick if (ULO.ForgetAllSCEV) 526*09467b48Spatrick SE->forgetAllLoops(); 527*09467b48Spatrick else 528*09467b48Spatrick SE->forgetTopmostLoop(L); 529*09467b48Spatrick } 530*09467b48Spatrick 531*09467b48Spatrick bool ContinueOnTrue; 532*09467b48Spatrick bool LatchIsExiting = BI->isConditional(); 533*09467b48Spatrick BasicBlock *LoopExit = nullptr; 534*09467b48Spatrick if (LatchIsExiting) { 535*09467b48Spatrick ContinueOnTrue = L->contains(BI->getSuccessor(0)); 536*09467b48Spatrick LoopExit = BI->getSuccessor(ContinueOnTrue); 537*09467b48Spatrick } else { 538*09467b48Spatrick NumUnrolledWithHeader++; 539*09467b48Spatrick ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0)); 540*09467b48Spatrick LoopExit = HeaderBI->getSuccessor(ContinueOnTrue); 541*09467b48Spatrick } 542*09467b48Spatrick 543*09467b48Spatrick // For the first iteration of the loop, we should use the precloned values for 544*09467b48Spatrick // PHI nodes. Insert associations now. 545*09467b48Spatrick ValueToValueMapTy LastValueMap; 546*09467b48Spatrick std::vector<PHINode*> OrigPHINode; 547*09467b48Spatrick for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 548*09467b48Spatrick OrigPHINode.push_back(cast<PHINode>(I)); 549*09467b48Spatrick } 550*09467b48Spatrick 551*09467b48Spatrick std::vector<BasicBlock *> Headers; 552*09467b48Spatrick std::vector<BasicBlock *> HeaderSucc; 553*09467b48Spatrick std::vector<BasicBlock *> Latches; 554*09467b48Spatrick Headers.push_back(Header); 555*09467b48Spatrick Latches.push_back(LatchBlock); 556*09467b48Spatrick 557*09467b48Spatrick if (!LatchIsExiting) { 558*09467b48Spatrick auto *Term = cast<BranchInst>(Header->getTerminator()); 559*09467b48Spatrick if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) { 560*09467b48Spatrick assert(L->contains(Term->getSuccessor(0))); 561*09467b48Spatrick HeaderSucc.push_back(Term->getSuccessor(0)); 562*09467b48Spatrick } else { 563*09467b48Spatrick assert(L->contains(Term->getSuccessor(1))); 564*09467b48Spatrick HeaderSucc.push_back(Term->getSuccessor(1)); 565*09467b48Spatrick } 566*09467b48Spatrick } 567*09467b48Spatrick 568*09467b48Spatrick // The current on-the-fly SSA update requires blocks to be processed in 569*09467b48Spatrick // reverse postorder so that LastValueMap contains the correct value at each 570*09467b48Spatrick // exit. 571*09467b48Spatrick LoopBlocksDFS DFS(L); 572*09467b48Spatrick DFS.perform(LI); 573*09467b48Spatrick 574*09467b48Spatrick // Stash the DFS iterators before adding blocks to the loop. 575*09467b48Spatrick LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 576*09467b48Spatrick LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 577*09467b48Spatrick 578*09467b48Spatrick std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 579*09467b48Spatrick 580*09467b48Spatrick // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 581*09467b48Spatrick // might break loop-simplified form for these loops (as they, e.g., would 582*09467b48Spatrick // share the same exit blocks). We'll keep track of loops for which we can 583*09467b48Spatrick // break this so that later we can re-simplify them. 584*09467b48Spatrick SmallSetVector<Loop *, 4> LoopsToSimplify; 585*09467b48Spatrick for (Loop *SubLoop : *L) 586*09467b48Spatrick LoopsToSimplify.insert(SubLoop); 587*09467b48Spatrick 588*09467b48Spatrick if (Header->getParent()->isDebugInfoForProfiling()) 589*09467b48Spatrick for (BasicBlock *BB : L->getBlocks()) 590*09467b48Spatrick for (Instruction &I : *BB) 591*09467b48Spatrick if (!isa<DbgInfoIntrinsic>(&I)) 592*09467b48Spatrick if (const DILocation *DIL = I.getDebugLoc()) { 593*09467b48Spatrick auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 594*09467b48Spatrick if (NewDIL) 595*09467b48Spatrick I.setDebugLoc(NewDIL.getValue()); 596*09467b48Spatrick else 597*09467b48Spatrick LLVM_DEBUG(dbgs() 598*09467b48Spatrick << "Failed to create new discriminator: " 599*09467b48Spatrick << DIL->getFilename() << " Line: " << DIL->getLine()); 600*09467b48Spatrick } 601*09467b48Spatrick 602*09467b48Spatrick for (unsigned It = 1; It != ULO.Count; ++It) { 603*09467b48Spatrick std::vector<BasicBlock*> NewBlocks; 604*09467b48Spatrick SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 605*09467b48Spatrick NewLoops[L] = L; 606*09467b48Spatrick 607*09467b48Spatrick for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 608*09467b48Spatrick ValueToValueMapTy VMap; 609*09467b48Spatrick BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 610*09467b48Spatrick Header->getParent()->getBasicBlockList().push_back(New); 611*09467b48Spatrick 612*09467b48Spatrick assert((*BB != Header || LI->getLoopFor(*BB) == L) && 613*09467b48Spatrick "Header should not be in a sub-loop"); 614*09467b48Spatrick // Tell LI about New. 615*09467b48Spatrick const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 616*09467b48Spatrick if (OldLoop) 617*09467b48Spatrick LoopsToSimplify.insert(NewLoops[OldLoop]); 618*09467b48Spatrick 619*09467b48Spatrick if (*BB == Header) 620*09467b48Spatrick // Loop over all of the PHI nodes in the block, changing them to use 621*09467b48Spatrick // the incoming values from the previous block. 622*09467b48Spatrick for (PHINode *OrigPHI : OrigPHINode) { 623*09467b48Spatrick PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 624*09467b48Spatrick Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 625*09467b48Spatrick if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 626*09467b48Spatrick if (It > 1 && L->contains(InValI)) 627*09467b48Spatrick InVal = LastValueMap[InValI]; 628*09467b48Spatrick VMap[OrigPHI] = InVal; 629*09467b48Spatrick New->getInstList().erase(NewPHI); 630*09467b48Spatrick } 631*09467b48Spatrick 632*09467b48Spatrick // Update our running map of newest clones 633*09467b48Spatrick LastValueMap[*BB] = New; 634*09467b48Spatrick for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 635*09467b48Spatrick VI != VE; ++VI) 636*09467b48Spatrick LastValueMap[VI->first] = VI->second; 637*09467b48Spatrick 638*09467b48Spatrick // Add phi entries for newly created values to all exit blocks. 639*09467b48Spatrick for (BasicBlock *Succ : successors(*BB)) { 640*09467b48Spatrick if (L->contains(Succ)) 641*09467b48Spatrick continue; 642*09467b48Spatrick for (PHINode &PHI : Succ->phis()) { 643*09467b48Spatrick Value *Incoming = PHI.getIncomingValueForBlock(*BB); 644*09467b48Spatrick ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 645*09467b48Spatrick if (It != LastValueMap.end()) 646*09467b48Spatrick Incoming = It->second; 647*09467b48Spatrick PHI.addIncoming(Incoming, New); 648*09467b48Spatrick } 649*09467b48Spatrick } 650*09467b48Spatrick // Keep track of new headers and latches as we create them, so that 651*09467b48Spatrick // we can insert the proper branches later. 652*09467b48Spatrick if (*BB == Header) 653*09467b48Spatrick Headers.push_back(New); 654*09467b48Spatrick if (*BB == LatchBlock) 655*09467b48Spatrick Latches.push_back(New); 656*09467b48Spatrick 657*09467b48Spatrick // Keep track of the successor of the new header in the current iteration. 658*09467b48Spatrick for (auto *Pred : predecessors(*BB)) 659*09467b48Spatrick if (Pred == Header) { 660*09467b48Spatrick HeaderSucc.push_back(New); 661*09467b48Spatrick break; 662*09467b48Spatrick } 663*09467b48Spatrick 664*09467b48Spatrick NewBlocks.push_back(New); 665*09467b48Spatrick UnrolledLoopBlocks.push_back(New); 666*09467b48Spatrick 667*09467b48Spatrick // Update DomTree: since we just copy the loop body, and each copy has a 668*09467b48Spatrick // dedicated entry block (copy of the header block), this header's copy 669*09467b48Spatrick // dominates all copied blocks. That means, dominance relations in the 670*09467b48Spatrick // copied body are the same as in the original body. 671*09467b48Spatrick if (DT) { 672*09467b48Spatrick if (*BB == Header) 673*09467b48Spatrick DT->addNewBlock(New, Latches[It - 1]); 674*09467b48Spatrick else { 675*09467b48Spatrick auto BBDomNode = DT->getNode(*BB); 676*09467b48Spatrick auto BBIDom = BBDomNode->getIDom(); 677*09467b48Spatrick BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 678*09467b48Spatrick DT->addNewBlock( 679*09467b48Spatrick New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 680*09467b48Spatrick } 681*09467b48Spatrick } 682*09467b48Spatrick } 683*09467b48Spatrick 684*09467b48Spatrick // Remap all instructions in the most recent iteration 685*09467b48Spatrick for (BasicBlock *NewBlock : NewBlocks) { 686*09467b48Spatrick for (Instruction &I : *NewBlock) { 687*09467b48Spatrick ::remapInstruction(&I, LastValueMap); 688*09467b48Spatrick if (auto *II = dyn_cast<IntrinsicInst>(&I)) 689*09467b48Spatrick if (II->getIntrinsicID() == Intrinsic::assume) 690*09467b48Spatrick AC->registerAssumption(II); 691*09467b48Spatrick } 692*09467b48Spatrick } 693*09467b48Spatrick } 694*09467b48Spatrick 695*09467b48Spatrick // Loop over the PHI nodes in the original block, setting incoming values. 696*09467b48Spatrick for (PHINode *PN : OrigPHINode) { 697*09467b48Spatrick if (CompletelyUnroll) { 698*09467b48Spatrick PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 699*09467b48Spatrick Header->getInstList().erase(PN); 700*09467b48Spatrick } else if (ULO.Count > 1) { 701*09467b48Spatrick Value *InVal = PN->removeIncomingValue(LatchBlock, false); 702*09467b48Spatrick // If this value was defined in the loop, take the value defined by the 703*09467b48Spatrick // last iteration of the loop. 704*09467b48Spatrick if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 705*09467b48Spatrick if (L->contains(InValI)) 706*09467b48Spatrick InVal = LastValueMap[InVal]; 707*09467b48Spatrick } 708*09467b48Spatrick assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 709*09467b48Spatrick PN->addIncoming(InVal, Latches.back()); 710*09467b48Spatrick } 711*09467b48Spatrick } 712*09467b48Spatrick 713*09467b48Spatrick auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest, 714*09467b48Spatrick ArrayRef<BasicBlock *> NextBlocks, 715*09467b48Spatrick BasicBlock *BlockInLoop, 716*09467b48Spatrick bool NeedConditional) { 717*09467b48Spatrick auto *Term = cast<BranchInst>(Src->getTerminator()); 718*09467b48Spatrick if (NeedConditional) { 719*09467b48Spatrick // Update the conditional branch's successor for the following 720*09467b48Spatrick // iteration. 721*09467b48Spatrick Term->setSuccessor(!ContinueOnTrue, Dest); 722*09467b48Spatrick } else { 723*09467b48Spatrick // Remove phi operands at this loop exit 724*09467b48Spatrick if (Dest != LoopExit) { 725*09467b48Spatrick BasicBlock *BB = Src; 726*09467b48Spatrick for (BasicBlock *Succ : successors(BB)) { 727*09467b48Spatrick // Preserve the incoming value from BB if we are jumping to the block 728*09467b48Spatrick // in the current loop. 729*09467b48Spatrick if (Succ == BlockInLoop) 730*09467b48Spatrick continue; 731*09467b48Spatrick for (PHINode &Phi : Succ->phis()) 732*09467b48Spatrick Phi.removeIncomingValue(BB, false); 733*09467b48Spatrick } 734*09467b48Spatrick } 735*09467b48Spatrick // Replace the conditional branch with an unconditional one. 736*09467b48Spatrick BranchInst::Create(Dest, Term); 737*09467b48Spatrick Term->eraseFromParent(); 738*09467b48Spatrick } 739*09467b48Spatrick }; 740*09467b48Spatrick 741*09467b48Spatrick // Now that all the basic blocks for the unrolled iterations are in place, 742*09467b48Spatrick // set up the branches to connect them. 743*09467b48Spatrick if (LatchIsExiting) { 744*09467b48Spatrick // Set up latches to branch to the new header in the unrolled iterations or 745*09467b48Spatrick // the loop exit for the last latch in a fully unrolled loop. 746*09467b48Spatrick for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 747*09467b48Spatrick // The branch destination. 748*09467b48Spatrick unsigned j = (i + 1) % e; 749*09467b48Spatrick BasicBlock *Dest = Headers[j]; 750*09467b48Spatrick bool NeedConditional = true; 751*09467b48Spatrick 752*09467b48Spatrick if (RuntimeTripCount && j != 0) { 753*09467b48Spatrick NeedConditional = false; 754*09467b48Spatrick } 755*09467b48Spatrick 756*09467b48Spatrick // For a complete unroll, make the last iteration end with a branch 757*09467b48Spatrick // to the exit block. 758*09467b48Spatrick if (CompletelyUnroll) { 759*09467b48Spatrick if (j == 0) 760*09467b48Spatrick Dest = LoopExit; 761*09467b48Spatrick // If using trip count upper bound to completely unroll, we need to keep 762*09467b48Spatrick // the conditional branch except the last one because the loop may exit 763*09467b48Spatrick // after any iteration. 764*09467b48Spatrick assert(NeedConditional && 765*09467b48Spatrick "NeedCondition cannot be modified by both complete " 766*09467b48Spatrick "unrolling and runtime unrolling"); 767*09467b48Spatrick NeedConditional = 768*09467b48Spatrick (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); 769*09467b48Spatrick } else if (j != BreakoutTrip && 770*09467b48Spatrick (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 771*09467b48Spatrick // If we know the trip count or a multiple of it, we can safely use an 772*09467b48Spatrick // unconditional branch for some iterations. 773*09467b48Spatrick NeedConditional = false; 774*09467b48Spatrick } 775*09467b48Spatrick 776*09467b48Spatrick setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional); 777*09467b48Spatrick } 778*09467b48Spatrick } else { 779*09467b48Spatrick // Setup headers to branch to their new successors in the unrolled 780*09467b48Spatrick // iterations. 781*09467b48Spatrick for (unsigned i = 0, e = Headers.size(); i != e; ++i) { 782*09467b48Spatrick // The branch destination. 783*09467b48Spatrick unsigned j = (i + 1) % e; 784*09467b48Spatrick BasicBlock *Dest = HeaderSucc[i]; 785*09467b48Spatrick bool NeedConditional = true; 786*09467b48Spatrick 787*09467b48Spatrick if (RuntimeTripCount && j != 0) 788*09467b48Spatrick NeedConditional = false; 789*09467b48Spatrick 790*09467b48Spatrick if (CompletelyUnroll) 791*09467b48Spatrick // We cannot drop the conditional branch for the last condition, as we 792*09467b48Spatrick // may have to execute the loop body depending on the condition. 793*09467b48Spatrick NeedConditional = j == 0 || ULO.PreserveCondBr; 794*09467b48Spatrick else if (j != BreakoutTrip && 795*09467b48Spatrick (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) 796*09467b48Spatrick // If we know the trip count or a multiple of it, we can safely use an 797*09467b48Spatrick // unconditional branch for some iterations. 798*09467b48Spatrick NeedConditional = false; 799*09467b48Spatrick 800*09467b48Spatrick setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional); 801*09467b48Spatrick } 802*09467b48Spatrick 803*09467b48Spatrick // Set up latches to branch to the new header in the unrolled iterations or 804*09467b48Spatrick // the loop exit for the last latch in a fully unrolled loop. 805*09467b48Spatrick 806*09467b48Spatrick for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 807*09467b48Spatrick // The original branch was replicated in each unrolled iteration. 808*09467b48Spatrick BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 809*09467b48Spatrick 810*09467b48Spatrick // The branch destination. 811*09467b48Spatrick unsigned j = (i + 1) % e; 812*09467b48Spatrick BasicBlock *Dest = Headers[j]; 813*09467b48Spatrick 814*09467b48Spatrick // When completely unrolling, the last latch becomes unreachable. 815*09467b48Spatrick if (CompletelyUnroll && j == 0) 816*09467b48Spatrick new UnreachableInst(Term->getContext(), Term); 817*09467b48Spatrick else 818*09467b48Spatrick // Replace the conditional branch with an unconditional one. 819*09467b48Spatrick BranchInst::Create(Dest, Term); 820*09467b48Spatrick 821*09467b48Spatrick Term->eraseFromParent(); 822*09467b48Spatrick } 823*09467b48Spatrick } 824*09467b48Spatrick 825*09467b48Spatrick // Update dominators of blocks we might reach through exits. 826*09467b48Spatrick // Immediate dominator of such block might change, because we add more 827*09467b48Spatrick // routes which can lead to the exit: we can now reach it from the copied 828*09467b48Spatrick // iterations too. 829*09467b48Spatrick if (DT && ULO.Count > 1) { 830*09467b48Spatrick for (auto *BB : OriginalLoopBlocks) { 831*09467b48Spatrick auto *BBDomNode = DT->getNode(BB); 832*09467b48Spatrick SmallVector<BasicBlock *, 16> ChildrenToUpdate; 833*09467b48Spatrick for (auto *ChildDomNode : BBDomNode->getChildren()) { 834*09467b48Spatrick auto *ChildBB = ChildDomNode->getBlock(); 835*09467b48Spatrick if (!L->contains(ChildBB)) 836*09467b48Spatrick ChildrenToUpdate.push_back(ChildBB); 837*09467b48Spatrick } 838*09467b48Spatrick BasicBlock *NewIDom; 839*09467b48Spatrick BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header; 840*09467b48Spatrick auto &TermBlocks = LatchIsExiting ? Latches : Headers; 841*09467b48Spatrick if (BB == TermBlock) { 842*09467b48Spatrick // The latch is special because we emit unconditional branches in 843*09467b48Spatrick // some cases where the original loop contained a conditional branch. 844*09467b48Spatrick // Since the latch is always at the bottom of the loop, if the latch 845*09467b48Spatrick // dominated an exit before unrolling, the new dominator of that exit 846*09467b48Spatrick // must also be a latch. Specifically, the dominator is the first 847*09467b48Spatrick // latch which ends in a conditional branch, or the last latch if 848*09467b48Spatrick // there is no such latch. 849*09467b48Spatrick // For loops exiting from the header, we limit the supported loops 850*09467b48Spatrick // to have a single exiting block. 851*09467b48Spatrick NewIDom = TermBlocks.back(); 852*09467b48Spatrick for (BasicBlock *Iter : TermBlocks) { 853*09467b48Spatrick Instruction *Term = Iter->getTerminator(); 854*09467b48Spatrick if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 855*09467b48Spatrick NewIDom = Iter; 856*09467b48Spatrick break; 857*09467b48Spatrick } 858*09467b48Spatrick } 859*09467b48Spatrick } else { 860*09467b48Spatrick // The new idom of the block will be the nearest common dominator 861*09467b48Spatrick // of all copies of the previous idom. This is equivalent to the 862*09467b48Spatrick // nearest common dominator of the previous idom and the first latch, 863*09467b48Spatrick // which dominates all copies of the previous idom. 864*09467b48Spatrick NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 865*09467b48Spatrick } 866*09467b48Spatrick for (auto *ChildBB : ChildrenToUpdate) 867*09467b48Spatrick DT->changeImmediateDominator(ChildBB, NewIDom); 868*09467b48Spatrick } 869*09467b48Spatrick } 870*09467b48Spatrick 871*09467b48Spatrick assert(!DT || !UnrollVerifyDomtree || 872*09467b48Spatrick DT->verify(DominatorTree::VerificationLevel::Fast)); 873*09467b48Spatrick 874*09467b48Spatrick DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 875*09467b48Spatrick // Merge adjacent basic blocks, if possible. 876*09467b48Spatrick for (BasicBlock *Latch : Latches) { 877*09467b48Spatrick BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 878*09467b48Spatrick assert((Term || 879*09467b48Spatrick (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 880*09467b48Spatrick "Need a branch as terminator, except when fully unrolling with " 881*09467b48Spatrick "unconditional latch"); 882*09467b48Spatrick if (Term && Term->isUnconditional()) { 883*09467b48Spatrick BasicBlock *Dest = Term->getSuccessor(0); 884*09467b48Spatrick BasicBlock *Fold = Dest->getUniquePredecessor(); 885*09467b48Spatrick if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 886*09467b48Spatrick // Dest has been folded into Fold. Update our worklists accordingly. 887*09467b48Spatrick std::replace(Latches.begin(), Latches.end(), Dest, Fold); 888*09467b48Spatrick UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 889*09467b48Spatrick UnrolledLoopBlocks.end(), Dest), 890*09467b48Spatrick UnrolledLoopBlocks.end()); 891*09467b48Spatrick } 892*09467b48Spatrick } 893*09467b48Spatrick } 894*09467b48Spatrick // Apply updates to the DomTree. 895*09467b48Spatrick DT = &DTU.getDomTree(); 896*09467b48Spatrick 897*09467b48Spatrick // At this point, the code is well formed. We now simplify the unrolled loop, 898*09467b48Spatrick // doing constant propagation and dead code elimination as we go. 899*09467b48Spatrick simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 900*09467b48Spatrick SE, DT, AC); 901*09467b48Spatrick 902*09467b48Spatrick NumCompletelyUnrolled += CompletelyUnroll; 903*09467b48Spatrick ++NumUnrolled; 904*09467b48Spatrick 905*09467b48Spatrick Loop *OuterL = L->getParentLoop(); 906*09467b48Spatrick // Update LoopInfo if the loop is completely removed. 907*09467b48Spatrick if (CompletelyUnroll) 908*09467b48Spatrick LI->erase(L); 909*09467b48Spatrick 910*09467b48Spatrick // After complete unrolling most of the blocks should be contained in OuterL. 911*09467b48Spatrick // However, some of them might happen to be out of OuterL (e.g. if they 912*09467b48Spatrick // precede a loop exit). In this case we might need to insert PHI nodes in 913*09467b48Spatrick // order to preserve LCSSA form. 914*09467b48Spatrick // We don't need to check this if we already know that we need to fix LCSSA 915*09467b48Spatrick // form. 916*09467b48Spatrick // TODO: For now we just recompute LCSSA for the outer loop in this case, but 917*09467b48Spatrick // it should be possible to fix it in-place. 918*09467b48Spatrick if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 919*09467b48Spatrick NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 920*09467b48Spatrick 921*09467b48Spatrick // If we have a pass and a DominatorTree we should re-simplify impacted loops 922*09467b48Spatrick // to ensure subsequent analyses can rely on this form. We want to simplify 923*09467b48Spatrick // at least one layer outside of the loop that was unrolled so that any 924*09467b48Spatrick // changes to the parent loop exposed by the unrolling are considered. 925*09467b48Spatrick if (DT) { 926*09467b48Spatrick if (OuterL) { 927*09467b48Spatrick // OuterL includes all loops for which we can break loop-simplify, so 928*09467b48Spatrick // it's sufficient to simplify only it (it'll recursively simplify inner 929*09467b48Spatrick // loops too). 930*09467b48Spatrick if (NeedToFixLCSSA) { 931*09467b48Spatrick // LCSSA must be performed on the outermost affected loop. The unrolled 932*09467b48Spatrick // loop's last loop latch is guaranteed to be in the outermost loop 933*09467b48Spatrick // after LoopInfo's been updated by LoopInfo::erase. 934*09467b48Spatrick Loop *LatchLoop = LI->getLoopFor(Latches.back()); 935*09467b48Spatrick Loop *FixLCSSALoop = OuterL; 936*09467b48Spatrick if (!FixLCSSALoop->contains(LatchLoop)) 937*09467b48Spatrick while (FixLCSSALoop->getParentLoop() != LatchLoop) 938*09467b48Spatrick FixLCSSALoop = FixLCSSALoop->getParentLoop(); 939*09467b48Spatrick 940*09467b48Spatrick formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 941*09467b48Spatrick } else if (PreserveLCSSA) { 942*09467b48Spatrick assert(OuterL->isLCSSAForm(*DT) && 943*09467b48Spatrick "Loops should be in LCSSA form after loop-unroll."); 944*09467b48Spatrick } 945*09467b48Spatrick 946*09467b48Spatrick // TODO: That potentially might be compile-time expensive. We should try 947*09467b48Spatrick // to fix the loop-simplified form incrementally. 948*09467b48Spatrick simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 949*09467b48Spatrick } else { 950*09467b48Spatrick // Simplify loops for which we might've broken loop-simplify form. 951*09467b48Spatrick for (Loop *SubLoop : LoopsToSimplify) 952*09467b48Spatrick simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 953*09467b48Spatrick } 954*09467b48Spatrick } 955*09467b48Spatrick 956*09467b48Spatrick return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 957*09467b48Spatrick : LoopUnrollResult::PartiallyUnrolled; 958*09467b48Spatrick } 959*09467b48Spatrick 960*09467b48Spatrick /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 961*09467b48Spatrick /// node with the given name (for example, "llvm.loop.unroll.count"). If no 962*09467b48Spatrick /// such metadata node exists, then nullptr is returned. 963*09467b48Spatrick MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 964*09467b48Spatrick // First operand should refer to the loop id itself. 965*09467b48Spatrick assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 966*09467b48Spatrick assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 967*09467b48Spatrick 968*09467b48Spatrick for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 969*09467b48Spatrick MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 970*09467b48Spatrick if (!MD) 971*09467b48Spatrick continue; 972*09467b48Spatrick 973*09467b48Spatrick MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 974*09467b48Spatrick if (!S) 975*09467b48Spatrick continue; 976*09467b48Spatrick 977*09467b48Spatrick if (Name.equals(S->getString())) 978*09467b48Spatrick return MD; 979*09467b48Spatrick } 980*09467b48Spatrick return nullptr; 981*09467b48Spatrick } 982