xref: /openbsd-src/gnu/llvm/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp (revision 097a140d792de8b2bbe59ad827d39eabf9b4280a)
109467b48Spatrick //===----------------- LoopRotationUtils.cpp -----------------------------===//
209467b48Spatrick //
309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
609467b48Spatrick //
709467b48Spatrick //===----------------------------------------------------------------------===//
809467b48Spatrick //
909467b48Spatrick // This file provides utilities to convert a loop into a loop with bottom test.
1009467b48Spatrick //
1109467b48Spatrick //===----------------------------------------------------------------------===//
1209467b48Spatrick 
1309467b48Spatrick #include "llvm/Transforms/Utils/LoopRotationUtils.h"
1409467b48Spatrick #include "llvm/ADT/Statistic.h"
1509467b48Spatrick #include "llvm/Analysis/AliasAnalysis.h"
1609467b48Spatrick #include "llvm/Analysis/AssumptionCache.h"
1709467b48Spatrick #include "llvm/Analysis/BasicAliasAnalysis.h"
1809467b48Spatrick #include "llvm/Analysis/CodeMetrics.h"
1909467b48Spatrick #include "llvm/Analysis/DomTreeUpdater.h"
2009467b48Spatrick #include "llvm/Analysis/GlobalsModRef.h"
2109467b48Spatrick #include "llvm/Analysis/InstructionSimplify.h"
2209467b48Spatrick #include "llvm/Analysis/LoopPass.h"
2309467b48Spatrick #include "llvm/Analysis/MemorySSA.h"
2409467b48Spatrick #include "llvm/Analysis/MemorySSAUpdater.h"
2509467b48Spatrick #include "llvm/Analysis/ScalarEvolution.h"
2609467b48Spatrick #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
2709467b48Spatrick #include "llvm/Analysis/TargetTransformInfo.h"
2809467b48Spatrick #include "llvm/Analysis/ValueTracking.h"
2909467b48Spatrick #include "llvm/IR/CFG.h"
3009467b48Spatrick #include "llvm/IR/DebugInfoMetadata.h"
3109467b48Spatrick #include "llvm/IR/Dominators.h"
3209467b48Spatrick #include "llvm/IR/Function.h"
3309467b48Spatrick #include "llvm/IR/IntrinsicInst.h"
3409467b48Spatrick #include "llvm/IR/Module.h"
3509467b48Spatrick #include "llvm/Support/CommandLine.h"
3609467b48Spatrick #include "llvm/Support/Debug.h"
3709467b48Spatrick #include "llvm/Support/raw_ostream.h"
3809467b48Spatrick #include "llvm/Transforms/Utils/BasicBlockUtils.h"
3909467b48Spatrick #include "llvm/Transforms/Utils/Local.h"
4009467b48Spatrick #include "llvm/Transforms/Utils/LoopUtils.h"
4109467b48Spatrick #include "llvm/Transforms/Utils/SSAUpdater.h"
4209467b48Spatrick #include "llvm/Transforms/Utils/ValueMapper.h"
4309467b48Spatrick using namespace llvm;
4409467b48Spatrick 
4509467b48Spatrick #define DEBUG_TYPE "loop-rotate"
4609467b48Spatrick 
4709467b48Spatrick STATISTIC(NumRotated, "Number of loops rotated");
4809467b48Spatrick 
49*097a140dSpatrick static cl::opt<bool>
50*097a140dSpatrick     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
51*097a140dSpatrick                 cl::desc("Allow loop rotation multiple times in order to reach "
52*097a140dSpatrick                          "a better latch exit"));
53*097a140dSpatrick 
5409467b48Spatrick namespace {
5509467b48Spatrick /// A simple loop rotation transformation.
5609467b48Spatrick class LoopRotate {
5709467b48Spatrick   const unsigned MaxHeaderSize;
5809467b48Spatrick   LoopInfo *LI;
5909467b48Spatrick   const TargetTransformInfo *TTI;
6009467b48Spatrick   AssumptionCache *AC;
6109467b48Spatrick   DominatorTree *DT;
6209467b48Spatrick   ScalarEvolution *SE;
6309467b48Spatrick   MemorySSAUpdater *MSSAU;
6409467b48Spatrick   const SimplifyQuery &SQ;
6509467b48Spatrick   bool RotationOnly;
6609467b48Spatrick   bool IsUtilMode;
6709467b48Spatrick 
6809467b48Spatrick public:
6909467b48Spatrick   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
7009467b48Spatrick              const TargetTransformInfo *TTI, AssumptionCache *AC,
7109467b48Spatrick              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
7209467b48Spatrick              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode)
7309467b48Spatrick       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
7409467b48Spatrick         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
7509467b48Spatrick         IsUtilMode(IsUtilMode) {}
7609467b48Spatrick   bool processLoop(Loop *L);
7709467b48Spatrick 
7809467b48Spatrick private:
7909467b48Spatrick   bool rotateLoop(Loop *L, bool SimplifiedLatch);
8009467b48Spatrick   bool simplifyLoopLatch(Loop *L);
8109467b48Spatrick };
8209467b48Spatrick } // end anonymous namespace
8309467b48Spatrick 
8409467b48Spatrick /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
8509467b48Spatrick /// previously exist in the map, and the value was inserted.
8609467b48Spatrick static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
8709467b48Spatrick   bool Inserted = VM.insert({K, V}).second;
8809467b48Spatrick   assert(Inserted);
8909467b48Spatrick   (void)Inserted;
9009467b48Spatrick }
9109467b48Spatrick /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
9209467b48Spatrick /// old header into the preheader.  If there were uses of the values produced by
9309467b48Spatrick /// these instruction that were outside of the loop, we have to insert PHI nodes
9409467b48Spatrick /// to merge the two values.  Do this now.
9509467b48Spatrick static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
9609467b48Spatrick                                             BasicBlock *OrigPreheader,
9709467b48Spatrick                                             ValueToValueMapTy &ValueMap,
9809467b48Spatrick                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
9909467b48Spatrick   // Remove PHI node entries that are no longer live.
10009467b48Spatrick   BasicBlock::iterator I, E = OrigHeader->end();
10109467b48Spatrick   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
10209467b48Spatrick     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
10309467b48Spatrick 
10409467b48Spatrick   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
10509467b48Spatrick   // as necessary.
10609467b48Spatrick   SSAUpdater SSA(InsertedPHIs);
10709467b48Spatrick   for (I = OrigHeader->begin(); I != E; ++I) {
10809467b48Spatrick     Value *OrigHeaderVal = &*I;
10909467b48Spatrick 
11009467b48Spatrick     // If there are no uses of the value (e.g. because it returns void), there
11109467b48Spatrick     // is nothing to rewrite.
11209467b48Spatrick     if (OrigHeaderVal->use_empty())
11309467b48Spatrick       continue;
11409467b48Spatrick 
11509467b48Spatrick     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
11609467b48Spatrick 
11709467b48Spatrick     // The value now exits in two versions: the initial value in the preheader
11809467b48Spatrick     // and the loop "next" value in the original header.
11909467b48Spatrick     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
12009467b48Spatrick     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
12109467b48Spatrick     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
12209467b48Spatrick 
12309467b48Spatrick     // Visit each use of the OrigHeader instruction.
12409467b48Spatrick     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
12509467b48Spatrick                              UE = OrigHeaderVal->use_end();
12609467b48Spatrick          UI != UE;) {
12709467b48Spatrick       // Grab the use before incrementing the iterator.
12809467b48Spatrick       Use &U = *UI;
12909467b48Spatrick 
13009467b48Spatrick       // Increment the iterator before removing the use from the list.
13109467b48Spatrick       ++UI;
13209467b48Spatrick 
13309467b48Spatrick       // SSAUpdater can't handle a non-PHI use in the same block as an
13409467b48Spatrick       // earlier def. We can easily handle those cases manually.
13509467b48Spatrick       Instruction *UserInst = cast<Instruction>(U.getUser());
13609467b48Spatrick       if (!isa<PHINode>(UserInst)) {
13709467b48Spatrick         BasicBlock *UserBB = UserInst->getParent();
13809467b48Spatrick 
13909467b48Spatrick         // The original users in the OrigHeader are already using the
14009467b48Spatrick         // original definitions.
14109467b48Spatrick         if (UserBB == OrigHeader)
14209467b48Spatrick           continue;
14309467b48Spatrick 
14409467b48Spatrick         // Users in the OrigPreHeader need to use the value to which the
14509467b48Spatrick         // original definitions are mapped.
14609467b48Spatrick         if (UserBB == OrigPreheader) {
14709467b48Spatrick           U = OrigPreHeaderVal;
14809467b48Spatrick           continue;
14909467b48Spatrick         }
15009467b48Spatrick       }
15109467b48Spatrick 
15209467b48Spatrick       // Anything else can be handled by SSAUpdater.
15309467b48Spatrick       SSA.RewriteUse(U);
15409467b48Spatrick     }
15509467b48Spatrick 
15609467b48Spatrick     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
15709467b48Spatrick     // intrinsics.
15809467b48Spatrick     SmallVector<DbgValueInst *, 1> DbgValues;
15909467b48Spatrick     llvm::findDbgValues(DbgValues, OrigHeaderVal);
16009467b48Spatrick     for (auto &DbgValue : DbgValues) {
16109467b48Spatrick       // The original users in the OrigHeader are already using the original
16209467b48Spatrick       // definitions.
16309467b48Spatrick       BasicBlock *UserBB = DbgValue->getParent();
16409467b48Spatrick       if (UserBB == OrigHeader)
16509467b48Spatrick         continue;
16609467b48Spatrick 
16709467b48Spatrick       // Users in the OrigPreHeader need to use the value to which the
16809467b48Spatrick       // original definitions are mapped and anything else can be handled by
16909467b48Spatrick       // the SSAUpdater. To avoid adding PHINodes, check if the value is
17009467b48Spatrick       // available in UserBB, if not substitute undef.
17109467b48Spatrick       Value *NewVal;
17209467b48Spatrick       if (UserBB == OrigPreheader)
17309467b48Spatrick         NewVal = OrigPreHeaderVal;
17409467b48Spatrick       else if (SSA.HasValueForBlock(UserBB))
17509467b48Spatrick         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
17609467b48Spatrick       else
17709467b48Spatrick         NewVal = UndefValue::get(OrigHeaderVal->getType());
17809467b48Spatrick       DbgValue->setOperand(0,
17909467b48Spatrick                            MetadataAsValue::get(OrigHeaderVal->getContext(),
18009467b48Spatrick                                                 ValueAsMetadata::get(NewVal)));
18109467b48Spatrick     }
18209467b48Spatrick   }
18309467b48Spatrick }
18409467b48Spatrick 
185*097a140dSpatrick // Assuming both header and latch are exiting, look for a phi which is only
186*097a140dSpatrick // used outside the loop (via a LCSSA phi) in the exit from the header.
187*097a140dSpatrick // This means that rotating the loop can remove the phi.
188*097a140dSpatrick static bool profitableToRotateLoopExitingLatch(Loop *L) {
18909467b48Spatrick   BasicBlock *Header = L->getHeader();
190*097a140dSpatrick   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
191*097a140dSpatrick   assert(BI && BI->isConditional() && "need header with conditional exit");
192*097a140dSpatrick   BasicBlock *HeaderExit = BI->getSuccessor(0);
19309467b48Spatrick   if (L->contains(HeaderExit))
194*097a140dSpatrick     HeaderExit = BI->getSuccessor(1);
19509467b48Spatrick 
19609467b48Spatrick   for (auto &Phi : Header->phis()) {
19709467b48Spatrick     // Look for uses of this phi in the loop/via exits other than the header.
19809467b48Spatrick     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
19909467b48Spatrick           return cast<Instruction>(U)->getParent() != HeaderExit;
20009467b48Spatrick         }))
20109467b48Spatrick       continue;
20209467b48Spatrick     return true;
20309467b48Spatrick   }
204*097a140dSpatrick   return false;
205*097a140dSpatrick }
20609467b48Spatrick 
207*097a140dSpatrick // Check that latch exit is deoptimizing (which means - very unlikely to happen)
208*097a140dSpatrick // and there is another exit from the loop which is non-deoptimizing.
209*097a140dSpatrick // If we rotate latch to that exit our loop has a better chance of being fully
210*097a140dSpatrick // canonical.
211*097a140dSpatrick //
212*097a140dSpatrick // It can give false positives in some rare cases.
213*097a140dSpatrick static bool canRotateDeoptimizingLatchExit(Loop *L) {
214*097a140dSpatrick   BasicBlock *Latch = L->getLoopLatch();
215*097a140dSpatrick   assert(Latch && "need latch");
216*097a140dSpatrick   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
217*097a140dSpatrick   // Need normal exiting latch.
218*097a140dSpatrick   if (!BI || !BI->isConditional())
219*097a140dSpatrick     return false;
220*097a140dSpatrick 
221*097a140dSpatrick   BasicBlock *Exit = BI->getSuccessor(1);
222*097a140dSpatrick   if (L->contains(Exit))
223*097a140dSpatrick     Exit = BI->getSuccessor(0);
224*097a140dSpatrick 
225*097a140dSpatrick   // Latch exit is non-deoptimizing, no need to rotate.
226*097a140dSpatrick   if (!Exit->getPostdominatingDeoptimizeCall())
227*097a140dSpatrick     return false;
228*097a140dSpatrick 
229*097a140dSpatrick   SmallVector<BasicBlock *, 4> Exits;
230*097a140dSpatrick   L->getUniqueExitBlocks(Exits);
231*097a140dSpatrick   if (!Exits.empty()) {
232*097a140dSpatrick     // There is at least one non-deoptimizing exit.
233*097a140dSpatrick     //
234*097a140dSpatrick     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
235*097a140dSpatrick     // as it can conservatively return false for deoptimizing exits with
236*097a140dSpatrick     // complex enough control flow down to deoptimize call.
237*097a140dSpatrick     //
238*097a140dSpatrick     // That means here we can report success for a case where
239*097a140dSpatrick     // all exits are deoptimizing but one of them has complex enough
240*097a140dSpatrick     // control flow (e.g. with loops).
241*097a140dSpatrick     //
242*097a140dSpatrick     // That should be a very rare case and false positives for this function
243*097a140dSpatrick     // have compile-time effect only.
244*097a140dSpatrick     return any_of(Exits, [](const BasicBlock *BB) {
245*097a140dSpatrick       return !BB->getPostdominatingDeoptimizeCall();
246*097a140dSpatrick     });
247*097a140dSpatrick   }
24809467b48Spatrick   return false;
24909467b48Spatrick }
25009467b48Spatrick 
25109467b48Spatrick /// Rotate loop LP. Return true if the loop is rotated.
25209467b48Spatrick ///
25309467b48Spatrick /// \param SimplifiedLatch is true if the latch was just folded into the final
25409467b48Spatrick /// loop exit. In this case we may want to rotate even though the new latch is
25509467b48Spatrick /// now an exiting branch. This rotation would have happened had the latch not
25609467b48Spatrick /// been simplified. However, if SimplifiedLatch is false, then we avoid
25709467b48Spatrick /// rotating loops in which the latch exits to avoid excessive or endless
25809467b48Spatrick /// rotation. LoopRotate should be repeatable and converge to a canonical
25909467b48Spatrick /// form. This property is satisfied because simplifying the loop latch can only
26009467b48Spatrick /// happen once across multiple invocations of the LoopRotate pass.
261*097a140dSpatrick ///
262*097a140dSpatrick /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
263*097a140dSpatrick /// so to reach a suitable (non-deoptimizing) exit.
26409467b48Spatrick bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
26509467b48Spatrick   // If the loop has only one block then there is not much to rotate.
26609467b48Spatrick   if (L->getBlocks().size() == 1)
26709467b48Spatrick     return false;
26809467b48Spatrick 
269*097a140dSpatrick   bool Rotated = false;
270*097a140dSpatrick   do {
27109467b48Spatrick     BasicBlock *OrigHeader = L->getHeader();
27209467b48Spatrick     BasicBlock *OrigLatch = L->getLoopLatch();
27309467b48Spatrick 
27409467b48Spatrick     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
27509467b48Spatrick     if (!BI || BI->isUnconditional())
276*097a140dSpatrick       return Rotated;
27709467b48Spatrick 
27809467b48Spatrick     // If the loop header is not one of the loop exiting blocks then
27909467b48Spatrick     // either this loop is already rotated or it is not
28009467b48Spatrick     // suitable for loop rotation transformations.
28109467b48Spatrick     if (!L->isLoopExiting(OrigHeader))
282*097a140dSpatrick       return Rotated;
28309467b48Spatrick 
28409467b48Spatrick     // If the loop latch already contains a branch that leaves the loop then the
28509467b48Spatrick     // loop is already rotated.
28609467b48Spatrick     if (!OrigLatch)
287*097a140dSpatrick       return Rotated;
28809467b48Spatrick 
28909467b48Spatrick     // Rotate if either the loop latch does *not* exit the loop, or if the loop
29009467b48Spatrick     // latch was just simplified. Or if we think it will be profitable.
29109467b48Spatrick     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
292*097a140dSpatrick         !profitableToRotateLoopExitingLatch(L) &&
293*097a140dSpatrick         !canRotateDeoptimizingLatchExit(L))
294*097a140dSpatrick       return Rotated;
29509467b48Spatrick 
29609467b48Spatrick     // Check size of original header and reject loop if it is very big or we can't
29709467b48Spatrick     // duplicate blocks inside it.
29809467b48Spatrick     {
29909467b48Spatrick       SmallPtrSet<const Value *, 32> EphValues;
30009467b48Spatrick       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
30109467b48Spatrick 
30209467b48Spatrick       CodeMetrics Metrics;
30309467b48Spatrick       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
30409467b48Spatrick       if (Metrics.notDuplicatable) {
30509467b48Spatrick         LLVM_DEBUG(
30609467b48Spatrick                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
30709467b48Spatrick                    << " instructions: ";
30809467b48Spatrick                    L->dump());
309*097a140dSpatrick         return Rotated;
31009467b48Spatrick       }
31109467b48Spatrick       if (Metrics.convergent) {
31209467b48Spatrick         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
31309467b48Spatrick                    "instructions: ";
31409467b48Spatrick                    L->dump());
315*097a140dSpatrick         return Rotated;
31609467b48Spatrick       }
317*097a140dSpatrick       if (Metrics.NumInsts > MaxHeaderSize) {
318*097a140dSpatrick         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
319*097a140dSpatrick                           << Metrics.NumInsts
320*097a140dSpatrick                           << " instructions, which is more than the threshold ("
321*097a140dSpatrick                           << MaxHeaderSize << " instructions): ";
322*097a140dSpatrick                    L->dump());
323*097a140dSpatrick         return Rotated;
324*097a140dSpatrick       }
32509467b48Spatrick     }
32609467b48Spatrick 
32709467b48Spatrick     // Now, this loop is suitable for rotation.
32809467b48Spatrick     BasicBlock *OrigPreheader = L->getLoopPreheader();
32909467b48Spatrick 
33009467b48Spatrick     // If the loop could not be converted to canonical form, it must have an
33109467b48Spatrick     // indirectbr in it, just give up.
33209467b48Spatrick     if (!OrigPreheader || !L->hasDedicatedExits())
333*097a140dSpatrick       return Rotated;
33409467b48Spatrick 
33509467b48Spatrick     // Anything ScalarEvolution may know about this loop or the PHI nodes
33609467b48Spatrick     // in its header will soon be invalidated. We should also invalidate
33709467b48Spatrick     // all outer loops because insertion and deletion of blocks that happens
33809467b48Spatrick     // during the rotation may violate invariants related to backedge taken
33909467b48Spatrick     // infos in them.
34009467b48Spatrick     if (SE)
34109467b48Spatrick       SE->forgetTopmostLoop(L);
34209467b48Spatrick 
34309467b48Spatrick     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
34409467b48Spatrick     if (MSSAU && VerifyMemorySSA)
34509467b48Spatrick       MSSAU->getMemorySSA()->verifyMemorySSA();
34609467b48Spatrick 
34709467b48Spatrick     // Find new Loop header. NewHeader is a Header's one and only successor
34809467b48Spatrick     // that is inside loop.  Header's other successor is outside the
34909467b48Spatrick     // loop.  Otherwise loop is not suitable for rotation.
35009467b48Spatrick     BasicBlock *Exit = BI->getSuccessor(0);
35109467b48Spatrick     BasicBlock *NewHeader = BI->getSuccessor(1);
35209467b48Spatrick     if (L->contains(Exit))
35309467b48Spatrick       std::swap(Exit, NewHeader);
35409467b48Spatrick     assert(NewHeader && "Unable to determine new loop header");
35509467b48Spatrick     assert(L->contains(NewHeader) && !L->contains(Exit) &&
35609467b48Spatrick            "Unable to determine loop header and exit blocks");
35709467b48Spatrick 
35809467b48Spatrick     // This code assumes that the new header has exactly one predecessor.
35909467b48Spatrick     // Remove any single-entry PHI nodes in it.
36009467b48Spatrick     assert(NewHeader->getSinglePredecessor() &&
36109467b48Spatrick            "New header doesn't have one pred!");
36209467b48Spatrick     FoldSingleEntryPHINodes(NewHeader);
36309467b48Spatrick 
36409467b48Spatrick     // Begin by walking OrigHeader and populating ValueMap with an entry for
36509467b48Spatrick     // each Instruction.
36609467b48Spatrick     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
36709467b48Spatrick     ValueToValueMapTy ValueMap, ValueMapMSSA;
36809467b48Spatrick 
36909467b48Spatrick     // For PHI nodes, the value available in OldPreHeader is just the
37009467b48Spatrick     // incoming value from OldPreHeader.
37109467b48Spatrick     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
37209467b48Spatrick       InsertNewValueIntoMap(ValueMap, PN,
37309467b48Spatrick                             PN->getIncomingValueForBlock(OrigPreheader));
37409467b48Spatrick 
37509467b48Spatrick     // For the rest of the instructions, either hoist to the OrigPreheader if
37609467b48Spatrick     // possible or create a clone in the OldPreHeader if not.
37709467b48Spatrick     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
37809467b48Spatrick 
37909467b48Spatrick     // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
38009467b48Spatrick     using DbgIntrinsicHash =
38109467b48Spatrick       std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
38209467b48Spatrick     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
38309467b48Spatrick       return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
38409467b48Spatrick     };
38509467b48Spatrick     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
38609467b48Spatrick     for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
38709467b48Spatrick          I != E; ++I) {
38809467b48Spatrick       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
38909467b48Spatrick         DbgIntrinsics.insert(makeHash(DII));
39009467b48Spatrick       else
39109467b48Spatrick         break;
39209467b48Spatrick     }
39309467b48Spatrick 
39409467b48Spatrick     while (I != E) {
39509467b48Spatrick       Instruction *Inst = &*I++;
39609467b48Spatrick 
39709467b48Spatrick       // If the instruction's operands are invariant and it doesn't read or write
39809467b48Spatrick       // memory, then it is safe to hoist.  Doing this doesn't change the order of
39909467b48Spatrick       // execution in the preheader, but does prevent the instruction from
40009467b48Spatrick       // executing in each iteration of the loop.  This means it is safe to hoist
40109467b48Spatrick       // something that might trap, but isn't safe to hoist something that reads
40209467b48Spatrick       // memory (without proving that the loop doesn't write).
40309467b48Spatrick       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
40409467b48Spatrick           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
40509467b48Spatrick           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
40609467b48Spatrick         Inst->moveBefore(LoopEntryBranch);
40709467b48Spatrick         continue;
40809467b48Spatrick       }
40909467b48Spatrick 
41009467b48Spatrick       // Otherwise, create a duplicate of the instruction.
41109467b48Spatrick       Instruction *C = Inst->clone();
41209467b48Spatrick 
41309467b48Spatrick       // Eagerly remap the operands of the instruction.
41409467b48Spatrick       RemapInstruction(C, ValueMap,
41509467b48Spatrick                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
41609467b48Spatrick 
41709467b48Spatrick       // Avoid inserting the same intrinsic twice.
41809467b48Spatrick       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
41909467b48Spatrick         if (DbgIntrinsics.count(makeHash(DII))) {
42009467b48Spatrick           C->deleteValue();
42109467b48Spatrick           continue;
42209467b48Spatrick         }
42309467b48Spatrick 
42409467b48Spatrick       // With the operands remapped, see if the instruction constant folds or is
42509467b48Spatrick       // otherwise simplifyable.  This commonly occurs because the entry from PHI
42609467b48Spatrick       // nodes allows icmps and other instructions to fold.
42709467b48Spatrick       Value *V = SimplifyInstruction(C, SQ);
42809467b48Spatrick       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
42909467b48Spatrick         // If so, then delete the temporary instruction and stick the folded value
43009467b48Spatrick         // in the map.
43109467b48Spatrick         InsertNewValueIntoMap(ValueMap, Inst, V);
43209467b48Spatrick         if (!C->mayHaveSideEffects()) {
43309467b48Spatrick           C->deleteValue();
43409467b48Spatrick           C = nullptr;
43509467b48Spatrick         }
43609467b48Spatrick       } else {
43709467b48Spatrick         InsertNewValueIntoMap(ValueMap, Inst, C);
43809467b48Spatrick       }
43909467b48Spatrick       if (C) {
44009467b48Spatrick         // Otherwise, stick the new instruction into the new block!
44109467b48Spatrick         C->setName(Inst->getName());
44209467b48Spatrick         C->insertBefore(LoopEntryBranch);
44309467b48Spatrick 
44409467b48Spatrick         if (auto *II = dyn_cast<IntrinsicInst>(C))
44509467b48Spatrick           if (II->getIntrinsicID() == Intrinsic::assume)
44609467b48Spatrick             AC->registerAssumption(II);
44709467b48Spatrick         // MemorySSA cares whether the cloned instruction was inserted or not, and
44809467b48Spatrick         // not whether it can be remapped to a simplified value.
44909467b48Spatrick         if (MSSAU)
45009467b48Spatrick           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
45109467b48Spatrick       }
45209467b48Spatrick     }
45309467b48Spatrick 
45409467b48Spatrick     // Along with all the other instructions, we just cloned OrigHeader's
45509467b48Spatrick     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
45609467b48Spatrick     // successors by duplicating their incoming values for OrigHeader.
45709467b48Spatrick     for (BasicBlock *SuccBB : successors(OrigHeader))
45809467b48Spatrick       for (BasicBlock::iterator BI = SuccBB->begin();
45909467b48Spatrick            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
46009467b48Spatrick         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
46109467b48Spatrick 
46209467b48Spatrick     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
46309467b48Spatrick     // OrigPreHeader's old terminator (the original branch into the loop), and
46409467b48Spatrick     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
46509467b48Spatrick     LoopEntryBranch->eraseFromParent();
46609467b48Spatrick 
46709467b48Spatrick     // Update MemorySSA before the rewrite call below changes the 1:1
46809467b48Spatrick     // instruction:cloned_instruction_or_value mapping.
46909467b48Spatrick     if (MSSAU) {
47009467b48Spatrick       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
47109467b48Spatrick       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
47209467b48Spatrick                                           ValueMapMSSA);
47309467b48Spatrick     }
47409467b48Spatrick 
47509467b48Spatrick     SmallVector<PHINode*, 2> InsertedPHIs;
47609467b48Spatrick     // If there were any uses of instructions in the duplicated block outside the
47709467b48Spatrick     // loop, update them, inserting PHI nodes as required
47809467b48Spatrick     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
47909467b48Spatrick                                     &InsertedPHIs);
48009467b48Spatrick 
48109467b48Spatrick     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
48209467b48Spatrick     // previously had debug metadata attached. This keeps the debug info
48309467b48Spatrick     // up-to-date in the loop body.
48409467b48Spatrick     if (!InsertedPHIs.empty())
48509467b48Spatrick       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
48609467b48Spatrick 
48709467b48Spatrick     // NewHeader is now the header of the loop.
48809467b48Spatrick     L->moveToHeader(NewHeader);
48909467b48Spatrick     assert(L->getHeader() == NewHeader && "Latch block is our new header");
49009467b48Spatrick 
49109467b48Spatrick     // Inform DT about changes to the CFG.
49209467b48Spatrick     if (DT) {
49309467b48Spatrick       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
49409467b48Spatrick       // the DT about the removed edge to the OrigHeader (that got removed).
49509467b48Spatrick       SmallVector<DominatorTree::UpdateType, 3> Updates;
49609467b48Spatrick       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
49709467b48Spatrick       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
49809467b48Spatrick       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
49909467b48Spatrick       DT->applyUpdates(Updates);
50009467b48Spatrick 
50109467b48Spatrick       if (MSSAU) {
50209467b48Spatrick         MSSAU->applyUpdates(Updates, *DT);
50309467b48Spatrick         if (VerifyMemorySSA)
50409467b48Spatrick           MSSAU->getMemorySSA()->verifyMemorySSA();
50509467b48Spatrick       }
50609467b48Spatrick     }
50709467b48Spatrick 
50809467b48Spatrick     // At this point, we've finished our major CFG changes.  As part of cloning
50909467b48Spatrick     // the loop into the preheader we've simplified instructions and the
51009467b48Spatrick     // duplicated conditional branch may now be branching on a constant.  If it is
51109467b48Spatrick     // branching on a constant and if that constant means that we enter the loop,
51209467b48Spatrick     // then we fold away the cond branch to an uncond branch.  This simplifies the
51309467b48Spatrick     // loop in cases important for nested loops, and it also means we don't have
51409467b48Spatrick     // to split as many edges.
51509467b48Spatrick     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
51609467b48Spatrick     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
51709467b48Spatrick     if (!isa<ConstantInt>(PHBI->getCondition()) ||
51809467b48Spatrick         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
51909467b48Spatrick         NewHeader) {
52009467b48Spatrick       // The conditional branch can't be folded, handle the general case.
52109467b48Spatrick       // Split edges as necessary to preserve LoopSimplify form.
52209467b48Spatrick 
52309467b48Spatrick       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
52409467b48Spatrick       // thus is not a preheader anymore.
52509467b48Spatrick       // Split the edge to form a real preheader.
52609467b48Spatrick       BasicBlock *NewPH = SplitCriticalEdge(
52709467b48Spatrick                                             OrigPreheader, NewHeader,
52809467b48Spatrick                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
52909467b48Spatrick       NewPH->setName(NewHeader->getName() + ".lr.ph");
53009467b48Spatrick 
53109467b48Spatrick       // Preserve canonical loop form, which means that 'Exit' should have only
53209467b48Spatrick       // one predecessor. Note that Exit could be an exit block for multiple
53309467b48Spatrick       // nested loops, causing both of the edges to now be critical and need to
53409467b48Spatrick       // be split.
53509467b48Spatrick       SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
53609467b48Spatrick       bool SplitLatchEdge = false;
53709467b48Spatrick       for (BasicBlock *ExitPred : ExitPreds) {
53809467b48Spatrick         // We only need to split loop exit edges.
53909467b48Spatrick         Loop *PredLoop = LI->getLoopFor(ExitPred);
54009467b48Spatrick         if (!PredLoop || PredLoop->contains(Exit) ||
54109467b48Spatrick             ExitPred->getTerminator()->isIndirectTerminator())
54209467b48Spatrick           continue;
54309467b48Spatrick         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
54409467b48Spatrick         BasicBlock *ExitSplit = SplitCriticalEdge(
54509467b48Spatrick                                                   ExitPred, Exit,
54609467b48Spatrick                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
54709467b48Spatrick         ExitSplit->moveBefore(Exit);
54809467b48Spatrick       }
54909467b48Spatrick       assert(SplitLatchEdge &&
55009467b48Spatrick              "Despite splitting all preds, failed to split latch exit?");
55109467b48Spatrick     } else {
55209467b48Spatrick       // We can fold the conditional branch in the preheader, this makes things
55309467b48Spatrick       // simpler. The first step is to remove the extra edge to the Exit block.
55409467b48Spatrick       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
55509467b48Spatrick       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
55609467b48Spatrick       NewBI->setDebugLoc(PHBI->getDebugLoc());
55709467b48Spatrick       PHBI->eraseFromParent();
55809467b48Spatrick 
55909467b48Spatrick       // With our CFG finalized, update DomTree if it is available.
56009467b48Spatrick       if (DT) DT->deleteEdge(OrigPreheader, Exit);
56109467b48Spatrick 
56209467b48Spatrick       // Update MSSA too, if available.
56309467b48Spatrick       if (MSSAU)
56409467b48Spatrick         MSSAU->removeEdge(OrigPreheader, Exit);
56509467b48Spatrick     }
56609467b48Spatrick 
56709467b48Spatrick     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
56809467b48Spatrick     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
56909467b48Spatrick 
57009467b48Spatrick     if (MSSAU && VerifyMemorySSA)
57109467b48Spatrick       MSSAU->getMemorySSA()->verifyMemorySSA();
57209467b48Spatrick 
57309467b48Spatrick     // Now that the CFG and DomTree are in a consistent state again, try to merge
57409467b48Spatrick     // the OrigHeader block into OrigLatch.  This will succeed if they are
57509467b48Spatrick     // connected by an unconditional branch.  This is just a cleanup so the
57609467b48Spatrick     // emitted code isn't too gross in this common case.
57709467b48Spatrick     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
57809467b48Spatrick     MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
57909467b48Spatrick 
58009467b48Spatrick     if (MSSAU && VerifyMemorySSA)
58109467b48Spatrick       MSSAU->getMemorySSA()->verifyMemorySSA();
58209467b48Spatrick 
58309467b48Spatrick     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
58409467b48Spatrick 
58509467b48Spatrick     ++NumRotated;
586*097a140dSpatrick 
587*097a140dSpatrick     Rotated = true;
588*097a140dSpatrick     SimplifiedLatch = false;
589*097a140dSpatrick 
590*097a140dSpatrick     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
591*097a140dSpatrick     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
592*097a140dSpatrick     // TODO: if it becomes a performance bottleneck extend rotation algorithm
593*097a140dSpatrick     // to handle multiple rotations in one go.
594*097a140dSpatrick   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
595*097a140dSpatrick 
596*097a140dSpatrick 
59709467b48Spatrick   return true;
59809467b48Spatrick }
59909467b48Spatrick 
60009467b48Spatrick /// Determine whether the instructions in this range may be safely and cheaply
60109467b48Spatrick /// speculated. This is not an important enough situation to develop complex
60209467b48Spatrick /// heuristics. We handle a single arithmetic instruction along with any type
60309467b48Spatrick /// conversions.
60409467b48Spatrick static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
60509467b48Spatrick                                   BasicBlock::iterator End, Loop *L) {
60609467b48Spatrick   bool seenIncrement = false;
60709467b48Spatrick   bool MultiExitLoop = false;
60809467b48Spatrick 
60909467b48Spatrick   if (!L->getExitingBlock())
61009467b48Spatrick     MultiExitLoop = true;
61109467b48Spatrick 
61209467b48Spatrick   for (BasicBlock::iterator I = Begin; I != End; ++I) {
61309467b48Spatrick 
61409467b48Spatrick     if (!isSafeToSpeculativelyExecute(&*I))
61509467b48Spatrick       return false;
61609467b48Spatrick 
61709467b48Spatrick     if (isa<DbgInfoIntrinsic>(I))
61809467b48Spatrick       continue;
61909467b48Spatrick 
62009467b48Spatrick     switch (I->getOpcode()) {
62109467b48Spatrick     default:
62209467b48Spatrick       return false;
62309467b48Spatrick     case Instruction::GetElementPtr:
62409467b48Spatrick       // GEPs are cheap if all indices are constant.
62509467b48Spatrick       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
62609467b48Spatrick         return false;
62709467b48Spatrick       // fall-thru to increment case
62809467b48Spatrick       LLVM_FALLTHROUGH;
62909467b48Spatrick     case Instruction::Add:
63009467b48Spatrick     case Instruction::Sub:
63109467b48Spatrick     case Instruction::And:
63209467b48Spatrick     case Instruction::Or:
63309467b48Spatrick     case Instruction::Xor:
63409467b48Spatrick     case Instruction::Shl:
63509467b48Spatrick     case Instruction::LShr:
63609467b48Spatrick     case Instruction::AShr: {
63709467b48Spatrick       Value *IVOpnd =
63809467b48Spatrick           !isa<Constant>(I->getOperand(0))
63909467b48Spatrick               ? I->getOperand(0)
64009467b48Spatrick               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
64109467b48Spatrick       if (!IVOpnd)
64209467b48Spatrick         return false;
64309467b48Spatrick 
64409467b48Spatrick       // If increment operand is used outside of the loop, this speculation
64509467b48Spatrick       // could cause extra live range interference.
64609467b48Spatrick       if (MultiExitLoop) {
64709467b48Spatrick         for (User *UseI : IVOpnd->users()) {
64809467b48Spatrick           auto *UserInst = cast<Instruction>(UseI);
64909467b48Spatrick           if (!L->contains(UserInst))
65009467b48Spatrick             return false;
65109467b48Spatrick         }
65209467b48Spatrick       }
65309467b48Spatrick 
65409467b48Spatrick       if (seenIncrement)
65509467b48Spatrick         return false;
65609467b48Spatrick       seenIncrement = true;
65709467b48Spatrick       break;
65809467b48Spatrick     }
65909467b48Spatrick     case Instruction::Trunc:
66009467b48Spatrick     case Instruction::ZExt:
66109467b48Spatrick     case Instruction::SExt:
66209467b48Spatrick       // ignore type conversions
66309467b48Spatrick       break;
66409467b48Spatrick     }
66509467b48Spatrick   }
66609467b48Spatrick   return true;
66709467b48Spatrick }
66809467b48Spatrick 
66909467b48Spatrick /// Fold the loop tail into the loop exit by speculating the loop tail
67009467b48Spatrick /// instructions. Typically, this is a single post-increment. In the case of a
67109467b48Spatrick /// simple 2-block loop, hoisting the increment can be much better than
67209467b48Spatrick /// duplicating the entire loop header. In the case of loops with early exits,
67309467b48Spatrick /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
67409467b48Spatrick /// canonical form so downstream passes can handle it.
67509467b48Spatrick ///
67609467b48Spatrick /// I don't believe this invalidates SCEV.
67709467b48Spatrick bool LoopRotate::simplifyLoopLatch(Loop *L) {
67809467b48Spatrick   BasicBlock *Latch = L->getLoopLatch();
67909467b48Spatrick   if (!Latch || Latch->hasAddressTaken())
68009467b48Spatrick     return false;
68109467b48Spatrick 
68209467b48Spatrick   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
68309467b48Spatrick   if (!Jmp || !Jmp->isUnconditional())
68409467b48Spatrick     return false;
68509467b48Spatrick 
68609467b48Spatrick   BasicBlock *LastExit = Latch->getSinglePredecessor();
68709467b48Spatrick   if (!LastExit || !L->isLoopExiting(LastExit))
68809467b48Spatrick     return false;
68909467b48Spatrick 
69009467b48Spatrick   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
69109467b48Spatrick   if (!BI)
69209467b48Spatrick     return false;
69309467b48Spatrick 
69409467b48Spatrick   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
69509467b48Spatrick     return false;
69609467b48Spatrick 
69709467b48Spatrick   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
69809467b48Spatrick                     << LastExit->getName() << "\n");
69909467b48Spatrick 
70009467b48Spatrick   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
70109467b48Spatrick   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
70209467b48Spatrick                             /*PredecessorWithTwoSuccessors=*/true);
70309467b48Spatrick 
70409467b48Spatrick   if (MSSAU && VerifyMemorySSA)
70509467b48Spatrick     MSSAU->getMemorySSA()->verifyMemorySSA();
70609467b48Spatrick 
70709467b48Spatrick   return true;
70809467b48Spatrick }
70909467b48Spatrick 
71009467b48Spatrick /// Rotate \c L, and return true if any modification was made.
71109467b48Spatrick bool LoopRotate::processLoop(Loop *L) {
71209467b48Spatrick   // Save the loop metadata.
71309467b48Spatrick   MDNode *LoopMD = L->getLoopID();
71409467b48Spatrick 
71509467b48Spatrick   bool SimplifiedLatch = false;
71609467b48Spatrick 
71709467b48Spatrick   // Simplify the loop latch before attempting to rotate the header
71809467b48Spatrick   // upward. Rotation may not be needed if the loop tail can be folded into the
71909467b48Spatrick   // loop exit.
72009467b48Spatrick   if (!RotationOnly)
72109467b48Spatrick     SimplifiedLatch = simplifyLoopLatch(L);
72209467b48Spatrick 
72309467b48Spatrick   bool MadeChange = rotateLoop(L, SimplifiedLatch);
72409467b48Spatrick   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
72509467b48Spatrick          "Loop latch should be exiting after loop-rotate.");
72609467b48Spatrick 
72709467b48Spatrick   // Restore the loop metadata.
72809467b48Spatrick   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
72909467b48Spatrick   if ((MadeChange || SimplifiedLatch) && LoopMD)
73009467b48Spatrick     L->setLoopID(LoopMD);
73109467b48Spatrick 
73209467b48Spatrick   return MadeChange || SimplifiedLatch;
73309467b48Spatrick }
73409467b48Spatrick 
73509467b48Spatrick 
73609467b48Spatrick /// The utility to convert a loop into a loop with bottom test.
73709467b48Spatrick bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
73809467b48Spatrick                         AssumptionCache *AC, DominatorTree *DT,
73909467b48Spatrick                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
74009467b48Spatrick                         const SimplifyQuery &SQ, bool RotationOnly = true,
74109467b48Spatrick                         unsigned Threshold = unsigned(-1),
74209467b48Spatrick                         bool IsUtilMode = true) {
74309467b48Spatrick   if (MSSAU && VerifyMemorySSA)
74409467b48Spatrick     MSSAU->getMemorySSA()->verifyMemorySSA();
74509467b48Spatrick   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
74609467b48Spatrick                 IsUtilMode);
74709467b48Spatrick   if (MSSAU && VerifyMemorySSA)
74809467b48Spatrick     MSSAU->getMemorySSA()->verifyMemorySSA();
74909467b48Spatrick 
75009467b48Spatrick   return LR.processLoop(L);
75109467b48Spatrick }
752