1*09467b48Spatrick //===----------------- LoopRotationUtils.cpp -----------------------------===// 2*09467b48Spatrick // 3*09467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*09467b48Spatrick // See https://llvm.org/LICENSE.txt for license information. 5*09467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*09467b48Spatrick // 7*09467b48Spatrick //===----------------------------------------------------------------------===// 8*09467b48Spatrick // 9*09467b48Spatrick // This file provides utilities to convert a loop into a loop with bottom test. 10*09467b48Spatrick // 11*09467b48Spatrick //===----------------------------------------------------------------------===// 12*09467b48Spatrick 13*09467b48Spatrick #include "llvm/Transforms/Utils/LoopRotationUtils.h" 14*09467b48Spatrick #include "llvm/ADT/Statistic.h" 15*09467b48Spatrick #include "llvm/Analysis/AliasAnalysis.h" 16*09467b48Spatrick #include "llvm/Analysis/AssumptionCache.h" 17*09467b48Spatrick #include "llvm/Analysis/BasicAliasAnalysis.h" 18*09467b48Spatrick #include "llvm/Analysis/CodeMetrics.h" 19*09467b48Spatrick #include "llvm/Analysis/DomTreeUpdater.h" 20*09467b48Spatrick #include "llvm/Analysis/GlobalsModRef.h" 21*09467b48Spatrick #include "llvm/Analysis/InstructionSimplify.h" 22*09467b48Spatrick #include "llvm/Analysis/LoopPass.h" 23*09467b48Spatrick #include "llvm/Analysis/MemorySSA.h" 24*09467b48Spatrick #include "llvm/Analysis/MemorySSAUpdater.h" 25*09467b48Spatrick #include "llvm/Analysis/ScalarEvolution.h" 26*09467b48Spatrick #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 27*09467b48Spatrick #include "llvm/Analysis/TargetTransformInfo.h" 28*09467b48Spatrick #include "llvm/Analysis/ValueTracking.h" 29*09467b48Spatrick #include "llvm/IR/CFG.h" 30*09467b48Spatrick #include "llvm/IR/DebugInfoMetadata.h" 31*09467b48Spatrick #include "llvm/IR/Dominators.h" 32*09467b48Spatrick #include "llvm/IR/Function.h" 33*09467b48Spatrick #include "llvm/IR/IntrinsicInst.h" 34*09467b48Spatrick #include "llvm/IR/Module.h" 35*09467b48Spatrick #include "llvm/Support/CommandLine.h" 36*09467b48Spatrick #include "llvm/Support/Debug.h" 37*09467b48Spatrick #include "llvm/Support/raw_ostream.h" 38*09467b48Spatrick #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39*09467b48Spatrick #include "llvm/Transforms/Utils/Local.h" 40*09467b48Spatrick #include "llvm/Transforms/Utils/LoopUtils.h" 41*09467b48Spatrick #include "llvm/Transforms/Utils/SSAUpdater.h" 42*09467b48Spatrick #include "llvm/Transforms/Utils/ValueMapper.h" 43*09467b48Spatrick using namespace llvm; 44*09467b48Spatrick 45*09467b48Spatrick #define DEBUG_TYPE "loop-rotate" 46*09467b48Spatrick 47*09467b48Spatrick STATISTIC(NumRotated, "Number of loops rotated"); 48*09467b48Spatrick 49*09467b48Spatrick namespace { 50*09467b48Spatrick /// A simple loop rotation transformation. 51*09467b48Spatrick class LoopRotate { 52*09467b48Spatrick const unsigned MaxHeaderSize; 53*09467b48Spatrick LoopInfo *LI; 54*09467b48Spatrick const TargetTransformInfo *TTI; 55*09467b48Spatrick AssumptionCache *AC; 56*09467b48Spatrick DominatorTree *DT; 57*09467b48Spatrick ScalarEvolution *SE; 58*09467b48Spatrick MemorySSAUpdater *MSSAU; 59*09467b48Spatrick const SimplifyQuery &SQ; 60*09467b48Spatrick bool RotationOnly; 61*09467b48Spatrick bool IsUtilMode; 62*09467b48Spatrick 63*09467b48Spatrick public: 64*09467b48Spatrick LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 65*09467b48Spatrick const TargetTransformInfo *TTI, AssumptionCache *AC, 66*09467b48Spatrick DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 67*09467b48Spatrick const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode) 68*09467b48Spatrick : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 69*09467b48Spatrick MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), 70*09467b48Spatrick IsUtilMode(IsUtilMode) {} 71*09467b48Spatrick bool processLoop(Loop *L); 72*09467b48Spatrick 73*09467b48Spatrick private: 74*09467b48Spatrick bool rotateLoop(Loop *L, bool SimplifiedLatch); 75*09467b48Spatrick bool simplifyLoopLatch(Loop *L); 76*09467b48Spatrick }; 77*09467b48Spatrick } // end anonymous namespace 78*09467b48Spatrick 79*09467b48Spatrick /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not 80*09467b48Spatrick /// previously exist in the map, and the value was inserted. 81*09467b48Spatrick static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { 82*09467b48Spatrick bool Inserted = VM.insert({K, V}).second; 83*09467b48Spatrick assert(Inserted); 84*09467b48Spatrick (void)Inserted; 85*09467b48Spatrick } 86*09467b48Spatrick /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 87*09467b48Spatrick /// old header into the preheader. If there were uses of the values produced by 88*09467b48Spatrick /// these instruction that were outside of the loop, we have to insert PHI nodes 89*09467b48Spatrick /// to merge the two values. Do this now. 90*09467b48Spatrick static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 91*09467b48Spatrick BasicBlock *OrigPreheader, 92*09467b48Spatrick ValueToValueMapTy &ValueMap, 93*09467b48Spatrick SmallVectorImpl<PHINode*> *InsertedPHIs) { 94*09467b48Spatrick // Remove PHI node entries that are no longer live. 95*09467b48Spatrick BasicBlock::iterator I, E = OrigHeader->end(); 96*09467b48Spatrick for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 97*09467b48Spatrick PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 98*09467b48Spatrick 99*09467b48Spatrick // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 100*09467b48Spatrick // as necessary. 101*09467b48Spatrick SSAUpdater SSA(InsertedPHIs); 102*09467b48Spatrick for (I = OrigHeader->begin(); I != E; ++I) { 103*09467b48Spatrick Value *OrigHeaderVal = &*I; 104*09467b48Spatrick 105*09467b48Spatrick // If there are no uses of the value (e.g. because it returns void), there 106*09467b48Spatrick // is nothing to rewrite. 107*09467b48Spatrick if (OrigHeaderVal->use_empty()) 108*09467b48Spatrick continue; 109*09467b48Spatrick 110*09467b48Spatrick Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 111*09467b48Spatrick 112*09467b48Spatrick // The value now exits in two versions: the initial value in the preheader 113*09467b48Spatrick // and the loop "next" value in the original header. 114*09467b48Spatrick SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 115*09467b48Spatrick SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 116*09467b48Spatrick SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 117*09467b48Spatrick 118*09467b48Spatrick // Visit each use of the OrigHeader instruction. 119*09467b48Spatrick for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 120*09467b48Spatrick UE = OrigHeaderVal->use_end(); 121*09467b48Spatrick UI != UE;) { 122*09467b48Spatrick // Grab the use before incrementing the iterator. 123*09467b48Spatrick Use &U = *UI; 124*09467b48Spatrick 125*09467b48Spatrick // Increment the iterator before removing the use from the list. 126*09467b48Spatrick ++UI; 127*09467b48Spatrick 128*09467b48Spatrick // SSAUpdater can't handle a non-PHI use in the same block as an 129*09467b48Spatrick // earlier def. We can easily handle those cases manually. 130*09467b48Spatrick Instruction *UserInst = cast<Instruction>(U.getUser()); 131*09467b48Spatrick if (!isa<PHINode>(UserInst)) { 132*09467b48Spatrick BasicBlock *UserBB = UserInst->getParent(); 133*09467b48Spatrick 134*09467b48Spatrick // The original users in the OrigHeader are already using the 135*09467b48Spatrick // original definitions. 136*09467b48Spatrick if (UserBB == OrigHeader) 137*09467b48Spatrick continue; 138*09467b48Spatrick 139*09467b48Spatrick // Users in the OrigPreHeader need to use the value to which the 140*09467b48Spatrick // original definitions are mapped. 141*09467b48Spatrick if (UserBB == OrigPreheader) { 142*09467b48Spatrick U = OrigPreHeaderVal; 143*09467b48Spatrick continue; 144*09467b48Spatrick } 145*09467b48Spatrick } 146*09467b48Spatrick 147*09467b48Spatrick // Anything else can be handled by SSAUpdater. 148*09467b48Spatrick SSA.RewriteUse(U); 149*09467b48Spatrick } 150*09467b48Spatrick 151*09467b48Spatrick // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 152*09467b48Spatrick // intrinsics. 153*09467b48Spatrick SmallVector<DbgValueInst *, 1> DbgValues; 154*09467b48Spatrick llvm::findDbgValues(DbgValues, OrigHeaderVal); 155*09467b48Spatrick for (auto &DbgValue : DbgValues) { 156*09467b48Spatrick // The original users in the OrigHeader are already using the original 157*09467b48Spatrick // definitions. 158*09467b48Spatrick BasicBlock *UserBB = DbgValue->getParent(); 159*09467b48Spatrick if (UserBB == OrigHeader) 160*09467b48Spatrick continue; 161*09467b48Spatrick 162*09467b48Spatrick // Users in the OrigPreHeader need to use the value to which the 163*09467b48Spatrick // original definitions are mapped and anything else can be handled by 164*09467b48Spatrick // the SSAUpdater. To avoid adding PHINodes, check if the value is 165*09467b48Spatrick // available in UserBB, if not substitute undef. 166*09467b48Spatrick Value *NewVal; 167*09467b48Spatrick if (UserBB == OrigPreheader) 168*09467b48Spatrick NewVal = OrigPreHeaderVal; 169*09467b48Spatrick else if (SSA.HasValueForBlock(UserBB)) 170*09467b48Spatrick NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 171*09467b48Spatrick else 172*09467b48Spatrick NewVal = UndefValue::get(OrigHeaderVal->getType()); 173*09467b48Spatrick DbgValue->setOperand(0, 174*09467b48Spatrick MetadataAsValue::get(OrigHeaderVal->getContext(), 175*09467b48Spatrick ValueAsMetadata::get(NewVal))); 176*09467b48Spatrick } 177*09467b48Spatrick } 178*09467b48Spatrick } 179*09467b48Spatrick 180*09467b48Spatrick // Look for a phi which is only used outside the loop (via a LCSSA phi) 181*09467b48Spatrick // in the exit from the header. This means that rotating the loop can 182*09467b48Spatrick // remove the phi. 183*09467b48Spatrick static bool shouldRotateLoopExitingLatch(Loop *L) { 184*09467b48Spatrick BasicBlock *Header = L->getHeader(); 185*09467b48Spatrick BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0); 186*09467b48Spatrick if (L->contains(HeaderExit)) 187*09467b48Spatrick HeaderExit = Header->getTerminator()->getSuccessor(1); 188*09467b48Spatrick 189*09467b48Spatrick for (auto &Phi : Header->phis()) { 190*09467b48Spatrick // Look for uses of this phi in the loop/via exits other than the header. 191*09467b48Spatrick if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 192*09467b48Spatrick return cast<Instruction>(U)->getParent() != HeaderExit; 193*09467b48Spatrick })) 194*09467b48Spatrick continue; 195*09467b48Spatrick return true; 196*09467b48Spatrick } 197*09467b48Spatrick 198*09467b48Spatrick return false; 199*09467b48Spatrick } 200*09467b48Spatrick 201*09467b48Spatrick /// Rotate loop LP. Return true if the loop is rotated. 202*09467b48Spatrick /// 203*09467b48Spatrick /// \param SimplifiedLatch is true if the latch was just folded into the final 204*09467b48Spatrick /// loop exit. In this case we may want to rotate even though the new latch is 205*09467b48Spatrick /// now an exiting branch. This rotation would have happened had the latch not 206*09467b48Spatrick /// been simplified. However, if SimplifiedLatch is false, then we avoid 207*09467b48Spatrick /// rotating loops in which the latch exits to avoid excessive or endless 208*09467b48Spatrick /// rotation. LoopRotate should be repeatable and converge to a canonical 209*09467b48Spatrick /// form. This property is satisfied because simplifying the loop latch can only 210*09467b48Spatrick /// happen once across multiple invocations of the LoopRotate pass. 211*09467b48Spatrick bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 212*09467b48Spatrick // If the loop has only one block then there is not much to rotate. 213*09467b48Spatrick if (L->getBlocks().size() == 1) 214*09467b48Spatrick return false; 215*09467b48Spatrick 216*09467b48Spatrick BasicBlock *OrigHeader = L->getHeader(); 217*09467b48Spatrick BasicBlock *OrigLatch = L->getLoopLatch(); 218*09467b48Spatrick 219*09467b48Spatrick BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 220*09467b48Spatrick if (!BI || BI->isUnconditional()) 221*09467b48Spatrick return false; 222*09467b48Spatrick 223*09467b48Spatrick // If the loop header is not one of the loop exiting blocks then 224*09467b48Spatrick // either this loop is already rotated or it is not 225*09467b48Spatrick // suitable for loop rotation transformations. 226*09467b48Spatrick if (!L->isLoopExiting(OrigHeader)) 227*09467b48Spatrick return false; 228*09467b48Spatrick 229*09467b48Spatrick // If the loop latch already contains a branch that leaves the loop then the 230*09467b48Spatrick // loop is already rotated. 231*09467b48Spatrick if (!OrigLatch) 232*09467b48Spatrick return false; 233*09467b48Spatrick 234*09467b48Spatrick // Rotate if either the loop latch does *not* exit the loop, or if the loop 235*09467b48Spatrick // latch was just simplified. Or if we think it will be profitable. 236*09467b48Spatrick if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 237*09467b48Spatrick !shouldRotateLoopExitingLatch(L)) 238*09467b48Spatrick return false; 239*09467b48Spatrick 240*09467b48Spatrick // Check size of original header and reject loop if it is very big or we can't 241*09467b48Spatrick // duplicate blocks inside it. 242*09467b48Spatrick { 243*09467b48Spatrick SmallPtrSet<const Value *, 32> EphValues; 244*09467b48Spatrick CodeMetrics::collectEphemeralValues(L, AC, EphValues); 245*09467b48Spatrick 246*09467b48Spatrick CodeMetrics Metrics; 247*09467b48Spatrick Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 248*09467b48Spatrick if (Metrics.notDuplicatable) { 249*09467b48Spatrick LLVM_DEBUG( 250*09467b48Spatrick dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 251*09467b48Spatrick << " instructions: "; 252*09467b48Spatrick L->dump()); 253*09467b48Spatrick return false; 254*09467b48Spatrick } 255*09467b48Spatrick if (Metrics.convergent) { 256*09467b48Spatrick LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 257*09467b48Spatrick "instructions: "; 258*09467b48Spatrick L->dump()); 259*09467b48Spatrick return false; 260*09467b48Spatrick } 261*09467b48Spatrick if (Metrics.NumInsts > MaxHeaderSize) 262*09467b48Spatrick return false; 263*09467b48Spatrick } 264*09467b48Spatrick 265*09467b48Spatrick // Now, this loop is suitable for rotation. 266*09467b48Spatrick BasicBlock *OrigPreheader = L->getLoopPreheader(); 267*09467b48Spatrick 268*09467b48Spatrick // If the loop could not be converted to canonical form, it must have an 269*09467b48Spatrick // indirectbr in it, just give up. 270*09467b48Spatrick if (!OrigPreheader || !L->hasDedicatedExits()) 271*09467b48Spatrick return false; 272*09467b48Spatrick 273*09467b48Spatrick // Anything ScalarEvolution may know about this loop or the PHI nodes 274*09467b48Spatrick // in its header will soon be invalidated. We should also invalidate 275*09467b48Spatrick // all outer loops because insertion and deletion of blocks that happens 276*09467b48Spatrick // during the rotation may violate invariants related to backedge taken 277*09467b48Spatrick // infos in them. 278*09467b48Spatrick if (SE) 279*09467b48Spatrick SE->forgetTopmostLoop(L); 280*09467b48Spatrick 281*09467b48Spatrick LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 282*09467b48Spatrick if (MSSAU && VerifyMemorySSA) 283*09467b48Spatrick MSSAU->getMemorySSA()->verifyMemorySSA(); 284*09467b48Spatrick 285*09467b48Spatrick // Find new Loop header. NewHeader is a Header's one and only successor 286*09467b48Spatrick // that is inside loop. Header's other successor is outside the 287*09467b48Spatrick // loop. Otherwise loop is not suitable for rotation. 288*09467b48Spatrick BasicBlock *Exit = BI->getSuccessor(0); 289*09467b48Spatrick BasicBlock *NewHeader = BI->getSuccessor(1); 290*09467b48Spatrick if (L->contains(Exit)) 291*09467b48Spatrick std::swap(Exit, NewHeader); 292*09467b48Spatrick assert(NewHeader && "Unable to determine new loop header"); 293*09467b48Spatrick assert(L->contains(NewHeader) && !L->contains(Exit) && 294*09467b48Spatrick "Unable to determine loop header and exit blocks"); 295*09467b48Spatrick 296*09467b48Spatrick // This code assumes that the new header has exactly one predecessor. 297*09467b48Spatrick // Remove any single-entry PHI nodes in it. 298*09467b48Spatrick assert(NewHeader->getSinglePredecessor() && 299*09467b48Spatrick "New header doesn't have one pred!"); 300*09467b48Spatrick FoldSingleEntryPHINodes(NewHeader); 301*09467b48Spatrick 302*09467b48Spatrick // Begin by walking OrigHeader and populating ValueMap with an entry for 303*09467b48Spatrick // each Instruction. 304*09467b48Spatrick BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 305*09467b48Spatrick ValueToValueMapTy ValueMap, ValueMapMSSA; 306*09467b48Spatrick 307*09467b48Spatrick // For PHI nodes, the value available in OldPreHeader is just the 308*09467b48Spatrick // incoming value from OldPreHeader. 309*09467b48Spatrick for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 310*09467b48Spatrick InsertNewValueIntoMap(ValueMap, PN, 311*09467b48Spatrick PN->getIncomingValueForBlock(OrigPreheader)); 312*09467b48Spatrick 313*09467b48Spatrick // For the rest of the instructions, either hoist to the OrigPreheader if 314*09467b48Spatrick // possible or create a clone in the OldPreHeader if not. 315*09467b48Spatrick Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); 316*09467b48Spatrick 317*09467b48Spatrick // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication. 318*09467b48Spatrick using DbgIntrinsicHash = 319*09467b48Spatrick std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>; 320*09467b48Spatrick auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { 321*09467b48Spatrick return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()}; 322*09467b48Spatrick }; 323*09467b48Spatrick SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 324*09467b48Spatrick for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 325*09467b48Spatrick I != E; ++I) { 326*09467b48Spatrick if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I)) 327*09467b48Spatrick DbgIntrinsics.insert(makeHash(DII)); 328*09467b48Spatrick else 329*09467b48Spatrick break; 330*09467b48Spatrick } 331*09467b48Spatrick 332*09467b48Spatrick while (I != E) { 333*09467b48Spatrick Instruction *Inst = &*I++; 334*09467b48Spatrick 335*09467b48Spatrick // If the instruction's operands are invariant and it doesn't read or write 336*09467b48Spatrick // memory, then it is safe to hoist. Doing this doesn't change the order of 337*09467b48Spatrick // execution in the preheader, but does prevent the instruction from 338*09467b48Spatrick // executing in each iteration of the loop. This means it is safe to hoist 339*09467b48Spatrick // something that might trap, but isn't safe to hoist something that reads 340*09467b48Spatrick // memory (without proving that the loop doesn't write). 341*09467b48Spatrick if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 342*09467b48Spatrick !Inst->mayWriteToMemory() && !Inst->isTerminator() && 343*09467b48Spatrick !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 344*09467b48Spatrick Inst->moveBefore(LoopEntryBranch); 345*09467b48Spatrick continue; 346*09467b48Spatrick } 347*09467b48Spatrick 348*09467b48Spatrick // Otherwise, create a duplicate of the instruction. 349*09467b48Spatrick Instruction *C = Inst->clone(); 350*09467b48Spatrick 351*09467b48Spatrick // Eagerly remap the operands of the instruction. 352*09467b48Spatrick RemapInstruction(C, ValueMap, 353*09467b48Spatrick RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 354*09467b48Spatrick 355*09467b48Spatrick // Avoid inserting the same intrinsic twice. 356*09467b48Spatrick if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) 357*09467b48Spatrick if (DbgIntrinsics.count(makeHash(DII))) { 358*09467b48Spatrick C->deleteValue(); 359*09467b48Spatrick continue; 360*09467b48Spatrick } 361*09467b48Spatrick 362*09467b48Spatrick // With the operands remapped, see if the instruction constant folds or is 363*09467b48Spatrick // otherwise simplifyable. This commonly occurs because the entry from PHI 364*09467b48Spatrick // nodes allows icmps and other instructions to fold. 365*09467b48Spatrick Value *V = SimplifyInstruction(C, SQ); 366*09467b48Spatrick if (V && LI->replacementPreservesLCSSAForm(C, V)) { 367*09467b48Spatrick // If so, then delete the temporary instruction and stick the folded value 368*09467b48Spatrick // in the map. 369*09467b48Spatrick InsertNewValueIntoMap(ValueMap, Inst, V); 370*09467b48Spatrick if (!C->mayHaveSideEffects()) { 371*09467b48Spatrick C->deleteValue(); 372*09467b48Spatrick C = nullptr; 373*09467b48Spatrick } 374*09467b48Spatrick } else { 375*09467b48Spatrick InsertNewValueIntoMap(ValueMap, Inst, C); 376*09467b48Spatrick } 377*09467b48Spatrick if (C) { 378*09467b48Spatrick // Otherwise, stick the new instruction into the new block! 379*09467b48Spatrick C->setName(Inst->getName()); 380*09467b48Spatrick C->insertBefore(LoopEntryBranch); 381*09467b48Spatrick 382*09467b48Spatrick if (auto *II = dyn_cast<IntrinsicInst>(C)) 383*09467b48Spatrick if (II->getIntrinsicID() == Intrinsic::assume) 384*09467b48Spatrick AC->registerAssumption(II); 385*09467b48Spatrick // MemorySSA cares whether the cloned instruction was inserted or not, and 386*09467b48Spatrick // not whether it can be remapped to a simplified value. 387*09467b48Spatrick if (MSSAU) 388*09467b48Spatrick InsertNewValueIntoMap(ValueMapMSSA, Inst, C); 389*09467b48Spatrick } 390*09467b48Spatrick } 391*09467b48Spatrick 392*09467b48Spatrick // Along with all the other instructions, we just cloned OrigHeader's 393*09467b48Spatrick // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 394*09467b48Spatrick // successors by duplicating their incoming values for OrigHeader. 395*09467b48Spatrick for (BasicBlock *SuccBB : successors(OrigHeader)) 396*09467b48Spatrick for (BasicBlock::iterator BI = SuccBB->begin(); 397*09467b48Spatrick PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 398*09467b48Spatrick PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 399*09467b48Spatrick 400*09467b48Spatrick // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 401*09467b48Spatrick // OrigPreHeader's old terminator (the original branch into the loop), and 402*09467b48Spatrick // remove the corresponding incoming values from the PHI nodes in OrigHeader. 403*09467b48Spatrick LoopEntryBranch->eraseFromParent(); 404*09467b48Spatrick 405*09467b48Spatrick // Update MemorySSA before the rewrite call below changes the 1:1 406*09467b48Spatrick // instruction:cloned_instruction_or_value mapping. 407*09467b48Spatrick if (MSSAU) { 408*09467b48Spatrick InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader); 409*09467b48Spatrick MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, 410*09467b48Spatrick ValueMapMSSA); 411*09467b48Spatrick } 412*09467b48Spatrick 413*09467b48Spatrick SmallVector<PHINode*, 2> InsertedPHIs; 414*09467b48Spatrick // If there were any uses of instructions in the duplicated block outside the 415*09467b48Spatrick // loop, update them, inserting PHI nodes as required 416*09467b48Spatrick RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 417*09467b48Spatrick &InsertedPHIs); 418*09467b48Spatrick 419*09467b48Spatrick // Attach dbg.value intrinsics to the new phis if that phi uses a value that 420*09467b48Spatrick // previously had debug metadata attached. This keeps the debug info 421*09467b48Spatrick // up-to-date in the loop body. 422*09467b48Spatrick if (!InsertedPHIs.empty()) 423*09467b48Spatrick insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 424*09467b48Spatrick 425*09467b48Spatrick // NewHeader is now the header of the loop. 426*09467b48Spatrick L->moveToHeader(NewHeader); 427*09467b48Spatrick assert(L->getHeader() == NewHeader && "Latch block is our new header"); 428*09467b48Spatrick 429*09467b48Spatrick // Inform DT about changes to the CFG. 430*09467b48Spatrick if (DT) { 431*09467b48Spatrick // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 432*09467b48Spatrick // the DT about the removed edge to the OrigHeader (that got removed). 433*09467b48Spatrick SmallVector<DominatorTree::UpdateType, 3> Updates; 434*09467b48Spatrick Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 435*09467b48Spatrick Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 436*09467b48Spatrick Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 437*09467b48Spatrick DT->applyUpdates(Updates); 438*09467b48Spatrick 439*09467b48Spatrick if (MSSAU) { 440*09467b48Spatrick MSSAU->applyUpdates(Updates, *DT); 441*09467b48Spatrick if (VerifyMemorySSA) 442*09467b48Spatrick MSSAU->getMemorySSA()->verifyMemorySSA(); 443*09467b48Spatrick } 444*09467b48Spatrick } 445*09467b48Spatrick 446*09467b48Spatrick // At this point, we've finished our major CFG changes. As part of cloning 447*09467b48Spatrick // the loop into the preheader we've simplified instructions and the 448*09467b48Spatrick // duplicated conditional branch may now be branching on a constant. If it is 449*09467b48Spatrick // branching on a constant and if that constant means that we enter the loop, 450*09467b48Spatrick // then we fold away the cond branch to an uncond branch. This simplifies the 451*09467b48Spatrick // loop in cases important for nested loops, and it also means we don't have 452*09467b48Spatrick // to split as many edges. 453*09467b48Spatrick BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 454*09467b48Spatrick assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 455*09467b48Spatrick if (!isa<ConstantInt>(PHBI->getCondition()) || 456*09467b48Spatrick PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 457*09467b48Spatrick NewHeader) { 458*09467b48Spatrick // The conditional branch can't be folded, handle the general case. 459*09467b48Spatrick // Split edges as necessary to preserve LoopSimplify form. 460*09467b48Spatrick 461*09467b48Spatrick // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 462*09467b48Spatrick // thus is not a preheader anymore. 463*09467b48Spatrick // Split the edge to form a real preheader. 464*09467b48Spatrick BasicBlock *NewPH = SplitCriticalEdge( 465*09467b48Spatrick OrigPreheader, NewHeader, 466*09467b48Spatrick CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 467*09467b48Spatrick NewPH->setName(NewHeader->getName() + ".lr.ph"); 468*09467b48Spatrick 469*09467b48Spatrick // Preserve canonical loop form, which means that 'Exit' should have only 470*09467b48Spatrick // one predecessor. Note that Exit could be an exit block for multiple 471*09467b48Spatrick // nested loops, causing both of the edges to now be critical and need to 472*09467b48Spatrick // be split. 473*09467b48Spatrick SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 474*09467b48Spatrick bool SplitLatchEdge = false; 475*09467b48Spatrick for (BasicBlock *ExitPred : ExitPreds) { 476*09467b48Spatrick // We only need to split loop exit edges. 477*09467b48Spatrick Loop *PredLoop = LI->getLoopFor(ExitPred); 478*09467b48Spatrick if (!PredLoop || PredLoop->contains(Exit) || 479*09467b48Spatrick ExitPred->getTerminator()->isIndirectTerminator()) 480*09467b48Spatrick continue; 481*09467b48Spatrick SplitLatchEdge |= L->getLoopLatch() == ExitPred; 482*09467b48Spatrick BasicBlock *ExitSplit = SplitCriticalEdge( 483*09467b48Spatrick ExitPred, Exit, 484*09467b48Spatrick CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 485*09467b48Spatrick ExitSplit->moveBefore(Exit); 486*09467b48Spatrick } 487*09467b48Spatrick assert(SplitLatchEdge && 488*09467b48Spatrick "Despite splitting all preds, failed to split latch exit?"); 489*09467b48Spatrick } else { 490*09467b48Spatrick // We can fold the conditional branch in the preheader, this makes things 491*09467b48Spatrick // simpler. The first step is to remove the extra edge to the Exit block. 492*09467b48Spatrick Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 493*09467b48Spatrick BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 494*09467b48Spatrick NewBI->setDebugLoc(PHBI->getDebugLoc()); 495*09467b48Spatrick PHBI->eraseFromParent(); 496*09467b48Spatrick 497*09467b48Spatrick // With our CFG finalized, update DomTree if it is available. 498*09467b48Spatrick if (DT) DT->deleteEdge(OrigPreheader, Exit); 499*09467b48Spatrick 500*09467b48Spatrick // Update MSSA too, if available. 501*09467b48Spatrick if (MSSAU) 502*09467b48Spatrick MSSAU->removeEdge(OrigPreheader, Exit); 503*09467b48Spatrick } 504*09467b48Spatrick 505*09467b48Spatrick assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 506*09467b48Spatrick assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 507*09467b48Spatrick 508*09467b48Spatrick if (MSSAU && VerifyMemorySSA) 509*09467b48Spatrick MSSAU->getMemorySSA()->verifyMemorySSA(); 510*09467b48Spatrick 511*09467b48Spatrick // Now that the CFG and DomTree are in a consistent state again, try to merge 512*09467b48Spatrick // the OrigHeader block into OrigLatch. This will succeed if they are 513*09467b48Spatrick // connected by an unconditional branch. This is just a cleanup so the 514*09467b48Spatrick // emitted code isn't too gross in this common case. 515*09467b48Spatrick DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 516*09467b48Spatrick MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); 517*09467b48Spatrick 518*09467b48Spatrick if (MSSAU && VerifyMemorySSA) 519*09467b48Spatrick MSSAU->getMemorySSA()->verifyMemorySSA(); 520*09467b48Spatrick 521*09467b48Spatrick LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 522*09467b48Spatrick 523*09467b48Spatrick ++NumRotated; 524*09467b48Spatrick return true; 525*09467b48Spatrick } 526*09467b48Spatrick 527*09467b48Spatrick /// Determine whether the instructions in this range may be safely and cheaply 528*09467b48Spatrick /// speculated. This is not an important enough situation to develop complex 529*09467b48Spatrick /// heuristics. We handle a single arithmetic instruction along with any type 530*09467b48Spatrick /// conversions. 531*09467b48Spatrick static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 532*09467b48Spatrick BasicBlock::iterator End, Loop *L) { 533*09467b48Spatrick bool seenIncrement = false; 534*09467b48Spatrick bool MultiExitLoop = false; 535*09467b48Spatrick 536*09467b48Spatrick if (!L->getExitingBlock()) 537*09467b48Spatrick MultiExitLoop = true; 538*09467b48Spatrick 539*09467b48Spatrick for (BasicBlock::iterator I = Begin; I != End; ++I) { 540*09467b48Spatrick 541*09467b48Spatrick if (!isSafeToSpeculativelyExecute(&*I)) 542*09467b48Spatrick return false; 543*09467b48Spatrick 544*09467b48Spatrick if (isa<DbgInfoIntrinsic>(I)) 545*09467b48Spatrick continue; 546*09467b48Spatrick 547*09467b48Spatrick switch (I->getOpcode()) { 548*09467b48Spatrick default: 549*09467b48Spatrick return false; 550*09467b48Spatrick case Instruction::GetElementPtr: 551*09467b48Spatrick // GEPs are cheap if all indices are constant. 552*09467b48Spatrick if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 553*09467b48Spatrick return false; 554*09467b48Spatrick // fall-thru to increment case 555*09467b48Spatrick LLVM_FALLTHROUGH; 556*09467b48Spatrick case Instruction::Add: 557*09467b48Spatrick case Instruction::Sub: 558*09467b48Spatrick case Instruction::And: 559*09467b48Spatrick case Instruction::Or: 560*09467b48Spatrick case Instruction::Xor: 561*09467b48Spatrick case Instruction::Shl: 562*09467b48Spatrick case Instruction::LShr: 563*09467b48Spatrick case Instruction::AShr: { 564*09467b48Spatrick Value *IVOpnd = 565*09467b48Spatrick !isa<Constant>(I->getOperand(0)) 566*09467b48Spatrick ? I->getOperand(0) 567*09467b48Spatrick : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 568*09467b48Spatrick if (!IVOpnd) 569*09467b48Spatrick return false; 570*09467b48Spatrick 571*09467b48Spatrick // If increment operand is used outside of the loop, this speculation 572*09467b48Spatrick // could cause extra live range interference. 573*09467b48Spatrick if (MultiExitLoop) { 574*09467b48Spatrick for (User *UseI : IVOpnd->users()) { 575*09467b48Spatrick auto *UserInst = cast<Instruction>(UseI); 576*09467b48Spatrick if (!L->contains(UserInst)) 577*09467b48Spatrick return false; 578*09467b48Spatrick } 579*09467b48Spatrick } 580*09467b48Spatrick 581*09467b48Spatrick if (seenIncrement) 582*09467b48Spatrick return false; 583*09467b48Spatrick seenIncrement = true; 584*09467b48Spatrick break; 585*09467b48Spatrick } 586*09467b48Spatrick case Instruction::Trunc: 587*09467b48Spatrick case Instruction::ZExt: 588*09467b48Spatrick case Instruction::SExt: 589*09467b48Spatrick // ignore type conversions 590*09467b48Spatrick break; 591*09467b48Spatrick } 592*09467b48Spatrick } 593*09467b48Spatrick return true; 594*09467b48Spatrick } 595*09467b48Spatrick 596*09467b48Spatrick /// Fold the loop tail into the loop exit by speculating the loop tail 597*09467b48Spatrick /// instructions. Typically, this is a single post-increment. In the case of a 598*09467b48Spatrick /// simple 2-block loop, hoisting the increment can be much better than 599*09467b48Spatrick /// duplicating the entire loop header. In the case of loops with early exits, 600*09467b48Spatrick /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 601*09467b48Spatrick /// canonical form so downstream passes can handle it. 602*09467b48Spatrick /// 603*09467b48Spatrick /// I don't believe this invalidates SCEV. 604*09467b48Spatrick bool LoopRotate::simplifyLoopLatch(Loop *L) { 605*09467b48Spatrick BasicBlock *Latch = L->getLoopLatch(); 606*09467b48Spatrick if (!Latch || Latch->hasAddressTaken()) 607*09467b48Spatrick return false; 608*09467b48Spatrick 609*09467b48Spatrick BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 610*09467b48Spatrick if (!Jmp || !Jmp->isUnconditional()) 611*09467b48Spatrick return false; 612*09467b48Spatrick 613*09467b48Spatrick BasicBlock *LastExit = Latch->getSinglePredecessor(); 614*09467b48Spatrick if (!LastExit || !L->isLoopExiting(LastExit)) 615*09467b48Spatrick return false; 616*09467b48Spatrick 617*09467b48Spatrick BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 618*09467b48Spatrick if (!BI) 619*09467b48Spatrick return false; 620*09467b48Spatrick 621*09467b48Spatrick if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 622*09467b48Spatrick return false; 623*09467b48Spatrick 624*09467b48Spatrick LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 625*09467b48Spatrick << LastExit->getName() << "\n"); 626*09467b48Spatrick 627*09467b48Spatrick DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 628*09467b48Spatrick MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr, 629*09467b48Spatrick /*PredecessorWithTwoSuccessors=*/true); 630*09467b48Spatrick 631*09467b48Spatrick if (MSSAU && VerifyMemorySSA) 632*09467b48Spatrick MSSAU->getMemorySSA()->verifyMemorySSA(); 633*09467b48Spatrick 634*09467b48Spatrick return true; 635*09467b48Spatrick } 636*09467b48Spatrick 637*09467b48Spatrick /// Rotate \c L, and return true if any modification was made. 638*09467b48Spatrick bool LoopRotate::processLoop(Loop *L) { 639*09467b48Spatrick // Save the loop metadata. 640*09467b48Spatrick MDNode *LoopMD = L->getLoopID(); 641*09467b48Spatrick 642*09467b48Spatrick bool SimplifiedLatch = false; 643*09467b48Spatrick 644*09467b48Spatrick // Simplify the loop latch before attempting to rotate the header 645*09467b48Spatrick // upward. Rotation may not be needed if the loop tail can be folded into the 646*09467b48Spatrick // loop exit. 647*09467b48Spatrick if (!RotationOnly) 648*09467b48Spatrick SimplifiedLatch = simplifyLoopLatch(L); 649*09467b48Spatrick 650*09467b48Spatrick bool MadeChange = rotateLoop(L, SimplifiedLatch); 651*09467b48Spatrick assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 652*09467b48Spatrick "Loop latch should be exiting after loop-rotate."); 653*09467b48Spatrick 654*09467b48Spatrick // Restore the loop metadata. 655*09467b48Spatrick // NB! We presume LoopRotation DOESN'T ADD its own metadata. 656*09467b48Spatrick if ((MadeChange || SimplifiedLatch) && LoopMD) 657*09467b48Spatrick L->setLoopID(LoopMD); 658*09467b48Spatrick 659*09467b48Spatrick return MadeChange || SimplifiedLatch; 660*09467b48Spatrick } 661*09467b48Spatrick 662*09467b48Spatrick 663*09467b48Spatrick /// The utility to convert a loop into a loop with bottom test. 664*09467b48Spatrick bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 665*09467b48Spatrick AssumptionCache *AC, DominatorTree *DT, 666*09467b48Spatrick ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 667*09467b48Spatrick const SimplifyQuery &SQ, bool RotationOnly = true, 668*09467b48Spatrick unsigned Threshold = unsigned(-1), 669*09467b48Spatrick bool IsUtilMode = true) { 670*09467b48Spatrick if (MSSAU && VerifyMemorySSA) 671*09467b48Spatrick MSSAU->getMemorySSA()->verifyMemorySSA(); 672*09467b48Spatrick LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, 673*09467b48Spatrick IsUtilMode); 674*09467b48Spatrick if (MSSAU && VerifyMemorySSA) 675*09467b48Spatrick MSSAU->getMemorySSA()->verifyMemorySSA(); 676*09467b48Spatrick 677*09467b48Spatrick return LR.processLoop(L); 678*09467b48Spatrick } 679