xref: /openbsd-src/gnu/llvm/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 097a140d792de8b2bbe59ad827d39eabf9b4280a)
109467b48Spatrick //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
209467b48Spatrick //
309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
609467b48Spatrick //
709467b48Spatrick //===----------------------------------------------------------------------===//
809467b48Spatrick //
909467b48Spatrick // This family of functions perform manipulations on basic blocks, and
1009467b48Spatrick // instructions contained within basic blocks.
1109467b48Spatrick //
1209467b48Spatrick //===----------------------------------------------------------------------===//
1309467b48Spatrick 
1409467b48Spatrick #include "llvm/Transforms/Utils/BasicBlockUtils.h"
1509467b48Spatrick #include "llvm/ADT/ArrayRef.h"
1609467b48Spatrick #include "llvm/ADT/SmallPtrSet.h"
1709467b48Spatrick #include "llvm/ADT/SmallVector.h"
1809467b48Spatrick #include "llvm/ADT/Twine.h"
1909467b48Spatrick #include "llvm/Analysis/CFG.h"
2009467b48Spatrick #include "llvm/Analysis/DomTreeUpdater.h"
2109467b48Spatrick #include "llvm/Analysis/LoopInfo.h"
2209467b48Spatrick #include "llvm/Analysis/MemoryDependenceAnalysis.h"
2309467b48Spatrick #include "llvm/Analysis/MemorySSAUpdater.h"
2409467b48Spatrick #include "llvm/Analysis/PostDominators.h"
2509467b48Spatrick #include "llvm/IR/BasicBlock.h"
2609467b48Spatrick #include "llvm/IR/CFG.h"
2709467b48Spatrick #include "llvm/IR/Constants.h"
2809467b48Spatrick #include "llvm/IR/DebugInfoMetadata.h"
2909467b48Spatrick #include "llvm/IR/Dominators.h"
3009467b48Spatrick #include "llvm/IR/Function.h"
3109467b48Spatrick #include "llvm/IR/InstrTypes.h"
3209467b48Spatrick #include "llvm/IR/Instruction.h"
3309467b48Spatrick #include "llvm/IR/Instructions.h"
3409467b48Spatrick #include "llvm/IR/IntrinsicInst.h"
3509467b48Spatrick #include "llvm/IR/LLVMContext.h"
3609467b48Spatrick #include "llvm/IR/Type.h"
3709467b48Spatrick #include "llvm/IR/User.h"
3809467b48Spatrick #include "llvm/IR/Value.h"
3909467b48Spatrick #include "llvm/IR/ValueHandle.h"
4009467b48Spatrick #include "llvm/Support/Casting.h"
4109467b48Spatrick #include "llvm/Support/Debug.h"
4209467b48Spatrick #include "llvm/Support/raw_ostream.h"
4309467b48Spatrick #include "llvm/Transforms/Utils/Local.h"
4409467b48Spatrick #include <cassert>
4509467b48Spatrick #include <cstdint>
4609467b48Spatrick #include <string>
4709467b48Spatrick #include <utility>
4809467b48Spatrick #include <vector>
4909467b48Spatrick 
5009467b48Spatrick using namespace llvm;
5109467b48Spatrick 
5209467b48Spatrick #define DEBUG_TYPE "basicblock-utils"
5309467b48Spatrick 
5409467b48Spatrick void llvm::DetatchDeadBlocks(
5509467b48Spatrick     ArrayRef<BasicBlock *> BBs,
5609467b48Spatrick     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
5709467b48Spatrick     bool KeepOneInputPHIs) {
5809467b48Spatrick   for (auto *BB : BBs) {
5909467b48Spatrick     // Loop through all of our successors and make sure they know that one
6009467b48Spatrick     // of their predecessors is going away.
6109467b48Spatrick     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
6209467b48Spatrick     for (BasicBlock *Succ : successors(BB)) {
6309467b48Spatrick       Succ->removePredecessor(BB, KeepOneInputPHIs);
6409467b48Spatrick       if (Updates && UniqueSuccessors.insert(Succ).second)
6509467b48Spatrick         Updates->push_back({DominatorTree::Delete, BB, Succ});
6609467b48Spatrick     }
6709467b48Spatrick 
6809467b48Spatrick     // Zap all the instructions in the block.
6909467b48Spatrick     while (!BB->empty()) {
7009467b48Spatrick       Instruction &I = BB->back();
7109467b48Spatrick       // If this instruction is used, replace uses with an arbitrary value.
7209467b48Spatrick       // Because control flow can't get here, we don't care what we replace the
7309467b48Spatrick       // value with.  Note that since this block is unreachable, and all values
7409467b48Spatrick       // contained within it must dominate their uses, that all uses will
7509467b48Spatrick       // eventually be removed (they are themselves dead).
7609467b48Spatrick       if (!I.use_empty())
7709467b48Spatrick         I.replaceAllUsesWith(UndefValue::get(I.getType()));
7809467b48Spatrick       BB->getInstList().pop_back();
7909467b48Spatrick     }
8009467b48Spatrick     new UnreachableInst(BB->getContext(), BB);
8109467b48Spatrick     assert(BB->getInstList().size() == 1 &&
8209467b48Spatrick            isa<UnreachableInst>(BB->getTerminator()) &&
8309467b48Spatrick            "The successor list of BB isn't empty before "
8409467b48Spatrick            "applying corresponding DTU updates.");
8509467b48Spatrick   }
8609467b48Spatrick }
8709467b48Spatrick 
8809467b48Spatrick void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
8909467b48Spatrick                            bool KeepOneInputPHIs) {
9009467b48Spatrick   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
9109467b48Spatrick }
9209467b48Spatrick 
9309467b48Spatrick void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
9409467b48Spatrick                             bool KeepOneInputPHIs) {
9509467b48Spatrick #ifndef NDEBUG
9609467b48Spatrick   // Make sure that all predecessors of each dead block is also dead.
9709467b48Spatrick   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
9809467b48Spatrick   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
9909467b48Spatrick   for (auto *BB : Dead)
10009467b48Spatrick     for (BasicBlock *Pred : predecessors(BB))
10109467b48Spatrick       assert(Dead.count(Pred) && "All predecessors must be dead!");
10209467b48Spatrick #endif
10309467b48Spatrick 
10409467b48Spatrick   SmallVector<DominatorTree::UpdateType, 4> Updates;
10509467b48Spatrick   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
10609467b48Spatrick 
10709467b48Spatrick   if (DTU)
10809467b48Spatrick     DTU->applyUpdatesPermissive(Updates);
10909467b48Spatrick 
11009467b48Spatrick   for (BasicBlock *BB : BBs)
11109467b48Spatrick     if (DTU)
11209467b48Spatrick       DTU->deleteBB(BB);
11309467b48Spatrick     else
11409467b48Spatrick       BB->eraseFromParent();
11509467b48Spatrick }
11609467b48Spatrick 
11709467b48Spatrick bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
11809467b48Spatrick                                       bool KeepOneInputPHIs) {
11909467b48Spatrick   df_iterator_default_set<BasicBlock*> Reachable;
12009467b48Spatrick 
12109467b48Spatrick   // Mark all reachable blocks.
12209467b48Spatrick   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
12309467b48Spatrick     (void)BB/* Mark all reachable blocks */;
12409467b48Spatrick 
12509467b48Spatrick   // Collect all dead blocks.
12609467b48Spatrick   std::vector<BasicBlock*> DeadBlocks;
12709467b48Spatrick   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
12809467b48Spatrick     if (!Reachable.count(&*I)) {
12909467b48Spatrick       BasicBlock *BB = &*I;
13009467b48Spatrick       DeadBlocks.push_back(BB);
13109467b48Spatrick     }
13209467b48Spatrick 
13309467b48Spatrick   // Delete the dead blocks.
13409467b48Spatrick   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
13509467b48Spatrick 
13609467b48Spatrick   return !DeadBlocks.empty();
13709467b48Spatrick }
13809467b48Spatrick 
13909467b48Spatrick void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
14009467b48Spatrick                                    MemoryDependenceResults *MemDep) {
14109467b48Spatrick   if (!isa<PHINode>(BB->begin())) return;
14209467b48Spatrick 
14309467b48Spatrick   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
14409467b48Spatrick     if (PN->getIncomingValue(0) != PN)
14509467b48Spatrick       PN->replaceAllUsesWith(PN->getIncomingValue(0));
14609467b48Spatrick     else
14709467b48Spatrick       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
14809467b48Spatrick 
14909467b48Spatrick     if (MemDep)
15009467b48Spatrick       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
15109467b48Spatrick 
15209467b48Spatrick     PN->eraseFromParent();
15309467b48Spatrick   }
15409467b48Spatrick }
15509467b48Spatrick 
156*097a140dSpatrick bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
157*097a140dSpatrick                           MemorySSAUpdater *MSSAU) {
15809467b48Spatrick   // Recursively deleting a PHI may cause multiple PHIs to be deleted
15909467b48Spatrick   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
16009467b48Spatrick   SmallVector<WeakTrackingVH, 8> PHIs;
16109467b48Spatrick   for (PHINode &PN : BB->phis())
16209467b48Spatrick     PHIs.push_back(&PN);
16309467b48Spatrick 
16409467b48Spatrick   bool Changed = false;
16509467b48Spatrick   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
16609467b48Spatrick     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
167*097a140dSpatrick       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
16809467b48Spatrick 
16909467b48Spatrick   return Changed;
17009467b48Spatrick }
17109467b48Spatrick 
17209467b48Spatrick bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
17309467b48Spatrick                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
17409467b48Spatrick                                      MemoryDependenceResults *MemDep,
17509467b48Spatrick                                      bool PredecessorWithTwoSuccessors) {
17609467b48Spatrick   if (BB->hasAddressTaken())
17709467b48Spatrick     return false;
17809467b48Spatrick 
17909467b48Spatrick   // Can't merge if there are multiple predecessors, or no predecessors.
18009467b48Spatrick   BasicBlock *PredBB = BB->getUniquePredecessor();
18109467b48Spatrick   if (!PredBB) return false;
18209467b48Spatrick 
18309467b48Spatrick   // Don't break self-loops.
18409467b48Spatrick   if (PredBB == BB) return false;
18509467b48Spatrick   // Don't break unwinding instructions.
18609467b48Spatrick   if (PredBB->getTerminator()->isExceptionalTerminator())
18709467b48Spatrick     return false;
18809467b48Spatrick 
18909467b48Spatrick   // Can't merge if there are multiple distinct successors.
19009467b48Spatrick   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
19109467b48Spatrick     return false;
19209467b48Spatrick 
19309467b48Spatrick   // Currently only allow PredBB to have two predecessors, one being BB.
19409467b48Spatrick   // Update BI to branch to BB's only successor instead of BB.
19509467b48Spatrick   BranchInst *PredBB_BI;
19609467b48Spatrick   BasicBlock *NewSucc = nullptr;
19709467b48Spatrick   unsigned FallThruPath;
19809467b48Spatrick   if (PredecessorWithTwoSuccessors) {
19909467b48Spatrick     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
20009467b48Spatrick       return false;
20109467b48Spatrick     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
20209467b48Spatrick     if (!BB_JmpI || !BB_JmpI->isUnconditional())
20309467b48Spatrick       return false;
20409467b48Spatrick     NewSucc = BB_JmpI->getSuccessor(0);
20509467b48Spatrick     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
20609467b48Spatrick   }
20709467b48Spatrick 
20809467b48Spatrick   // Can't merge if there is PHI loop.
20909467b48Spatrick   for (PHINode &PN : BB->phis())
21009467b48Spatrick     for (Value *IncValue : PN.incoming_values())
21109467b48Spatrick       if (IncValue == &PN)
21209467b48Spatrick         return false;
21309467b48Spatrick 
21409467b48Spatrick   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
21509467b48Spatrick                     << PredBB->getName() << "\n");
21609467b48Spatrick 
21709467b48Spatrick   // Begin by getting rid of unneeded PHIs.
21809467b48Spatrick   SmallVector<AssertingVH<Value>, 4> IncomingValues;
21909467b48Spatrick   if (isa<PHINode>(BB->front())) {
22009467b48Spatrick     for (PHINode &PN : BB->phis())
22109467b48Spatrick       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
22209467b48Spatrick           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
22309467b48Spatrick         IncomingValues.push_back(PN.getIncomingValue(0));
22409467b48Spatrick     FoldSingleEntryPHINodes(BB, MemDep);
22509467b48Spatrick   }
22609467b48Spatrick 
22709467b48Spatrick   // DTU update: Collect all the edges that exit BB.
22809467b48Spatrick   // These dominator edges will be redirected from Pred.
22909467b48Spatrick   std::vector<DominatorTree::UpdateType> Updates;
23009467b48Spatrick   if (DTU) {
23109467b48Spatrick     Updates.reserve(1 + (2 * succ_size(BB)));
23209467b48Spatrick     // Add insert edges first. Experimentally, for the particular case of two
23309467b48Spatrick     // blocks that can be merged, with a single successor and single predecessor
23409467b48Spatrick     // respectively, it is beneficial to have all insert updates first. Deleting
23509467b48Spatrick     // edges first may lead to unreachable blocks, followed by inserting edges
23609467b48Spatrick     // making the blocks reachable again. Such DT updates lead to high compile
23709467b48Spatrick     // times. We add inserts before deletes here to reduce compile time.
23809467b48Spatrick     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
23909467b48Spatrick       // This successor of BB may already have PredBB as a predecessor.
24009467b48Spatrick       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
24109467b48Spatrick         Updates.push_back({DominatorTree::Insert, PredBB, *I});
24209467b48Spatrick     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
24309467b48Spatrick       Updates.push_back({DominatorTree::Delete, BB, *I});
24409467b48Spatrick     Updates.push_back({DominatorTree::Delete, PredBB, BB});
24509467b48Spatrick   }
24609467b48Spatrick 
24709467b48Spatrick   Instruction *PTI = PredBB->getTerminator();
24809467b48Spatrick   Instruction *STI = BB->getTerminator();
24909467b48Spatrick   Instruction *Start = &*BB->begin();
25009467b48Spatrick   // If there's nothing to move, mark the starting instruction as the last
25109467b48Spatrick   // instruction in the block. Terminator instruction is handled separately.
25209467b48Spatrick   if (Start == STI)
25309467b48Spatrick     Start = PTI;
25409467b48Spatrick 
25509467b48Spatrick   // Move all definitions in the successor to the predecessor...
25609467b48Spatrick   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
25709467b48Spatrick                                BB->begin(), STI->getIterator());
25809467b48Spatrick 
25909467b48Spatrick   if (MSSAU)
26009467b48Spatrick     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
26109467b48Spatrick 
26209467b48Spatrick   // Make all PHI nodes that referred to BB now refer to Pred as their
26309467b48Spatrick   // source...
26409467b48Spatrick   BB->replaceAllUsesWith(PredBB);
26509467b48Spatrick 
26609467b48Spatrick   if (PredecessorWithTwoSuccessors) {
26709467b48Spatrick     // Delete the unconditional branch from BB.
26809467b48Spatrick     BB->getInstList().pop_back();
26909467b48Spatrick 
27009467b48Spatrick     // Update branch in the predecessor.
27109467b48Spatrick     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
27209467b48Spatrick   } else {
27309467b48Spatrick     // Delete the unconditional branch from the predecessor.
27409467b48Spatrick     PredBB->getInstList().pop_back();
27509467b48Spatrick 
27609467b48Spatrick     // Move terminator instruction.
27709467b48Spatrick     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
27809467b48Spatrick 
27909467b48Spatrick     // Terminator may be a memory accessing instruction too.
28009467b48Spatrick     if (MSSAU)
28109467b48Spatrick       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
28209467b48Spatrick               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
28309467b48Spatrick         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
28409467b48Spatrick   }
28509467b48Spatrick   // Add unreachable to now empty BB.
28609467b48Spatrick   new UnreachableInst(BB->getContext(), BB);
28709467b48Spatrick 
28809467b48Spatrick   // Eliminate duplicate/redundant dbg.values. This seems to be a good place to
28909467b48Spatrick   // do that since we might end up with redundant dbg.values describing the
29009467b48Spatrick   // entry PHI node post-splice.
29109467b48Spatrick   RemoveRedundantDbgInstrs(PredBB);
29209467b48Spatrick 
29309467b48Spatrick   // Inherit predecessors name if it exists.
29409467b48Spatrick   if (!PredBB->hasName())
29509467b48Spatrick     PredBB->takeName(BB);
29609467b48Spatrick 
29709467b48Spatrick   if (LI)
29809467b48Spatrick     LI->removeBlock(BB);
29909467b48Spatrick 
30009467b48Spatrick   if (MemDep)
30109467b48Spatrick     MemDep->invalidateCachedPredecessors();
30209467b48Spatrick 
30309467b48Spatrick   // Finally, erase the old block and update dominator info.
30409467b48Spatrick   if (DTU) {
30509467b48Spatrick     assert(BB->getInstList().size() == 1 &&
30609467b48Spatrick            isa<UnreachableInst>(BB->getTerminator()) &&
30709467b48Spatrick            "The successor list of BB isn't empty before "
30809467b48Spatrick            "applying corresponding DTU updates.");
30909467b48Spatrick     DTU->applyUpdatesPermissive(Updates);
31009467b48Spatrick     DTU->deleteBB(BB);
31109467b48Spatrick   } else {
31209467b48Spatrick     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
31309467b48Spatrick   }
31409467b48Spatrick 
31509467b48Spatrick   return true;
31609467b48Spatrick }
31709467b48Spatrick 
318*097a140dSpatrick bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
319*097a140dSpatrick     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
320*097a140dSpatrick     LoopInfo *LI) {
321*097a140dSpatrick   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
322*097a140dSpatrick 
323*097a140dSpatrick   bool BlocksHaveBeenMerged = false;
324*097a140dSpatrick   while (!MergeBlocks.empty()) {
325*097a140dSpatrick     BasicBlock *BB = *MergeBlocks.begin();
326*097a140dSpatrick     BasicBlock *Dest = BB->getSingleSuccessor();
327*097a140dSpatrick     if (Dest && (!L || L->contains(Dest))) {
328*097a140dSpatrick       BasicBlock *Fold = Dest->getUniquePredecessor();
329*097a140dSpatrick       (void)Fold;
330*097a140dSpatrick       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
331*097a140dSpatrick         assert(Fold == BB &&
332*097a140dSpatrick                "Expecting BB to be unique predecessor of the Dest block");
333*097a140dSpatrick         MergeBlocks.erase(Dest);
334*097a140dSpatrick         BlocksHaveBeenMerged = true;
335*097a140dSpatrick       } else
336*097a140dSpatrick         MergeBlocks.erase(BB);
337*097a140dSpatrick     } else
338*097a140dSpatrick       MergeBlocks.erase(BB);
339*097a140dSpatrick   }
340*097a140dSpatrick   return BlocksHaveBeenMerged;
341*097a140dSpatrick }
342*097a140dSpatrick 
34309467b48Spatrick /// Remove redundant instructions within sequences of consecutive dbg.value
34409467b48Spatrick /// instructions. This is done using a backward scan to keep the last dbg.value
34509467b48Spatrick /// describing a specific variable/fragment.
34609467b48Spatrick ///
34709467b48Spatrick /// BackwardScan strategy:
34809467b48Spatrick /// ----------------------
34909467b48Spatrick /// Given a sequence of consecutive DbgValueInst like this
35009467b48Spatrick ///
35109467b48Spatrick ///   dbg.value ..., "x", FragmentX1  (*)
35209467b48Spatrick ///   dbg.value ..., "y", FragmentY1
35309467b48Spatrick ///   dbg.value ..., "x", FragmentX2
35409467b48Spatrick ///   dbg.value ..., "x", FragmentX1  (**)
35509467b48Spatrick ///
35609467b48Spatrick /// then the instruction marked with (*) can be removed (it is guaranteed to be
35709467b48Spatrick /// obsoleted by the instruction marked with (**) as the latter instruction is
35809467b48Spatrick /// describing the same variable using the same fragment info).
35909467b48Spatrick ///
36009467b48Spatrick /// Possible improvements:
36109467b48Spatrick /// - Check fully overlapping fragments and not only identical fragments.
36209467b48Spatrick /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
36309467b48Spatrick ///   instructions being part of the sequence of consecutive instructions.
36409467b48Spatrick static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
36509467b48Spatrick   SmallVector<DbgValueInst *, 8> ToBeRemoved;
36609467b48Spatrick   SmallDenseSet<DebugVariable> VariableSet;
36709467b48Spatrick   for (auto &I : reverse(*BB)) {
36809467b48Spatrick     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
36909467b48Spatrick       DebugVariable Key(DVI->getVariable(),
37009467b48Spatrick                         DVI->getExpression(),
37109467b48Spatrick                         DVI->getDebugLoc()->getInlinedAt());
37209467b48Spatrick       auto R = VariableSet.insert(Key);
37309467b48Spatrick       // If the same variable fragment is described more than once it is enough
37409467b48Spatrick       // to keep the last one (i.e. the first found since we for reverse
37509467b48Spatrick       // iteration).
37609467b48Spatrick       if (!R.second)
37709467b48Spatrick         ToBeRemoved.push_back(DVI);
37809467b48Spatrick       continue;
37909467b48Spatrick     }
38009467b48Spatrick     // Sequence with consecutive dbg.value instrs ended. Clear the map to
38109467b48Spatrick     // restart identifying redundant instructions if case we find another
38209467b48Spatrick     // dbg.value sequence.
38309467b48Spatrick     VariableSet.clear();
38409467b48Spatrick   }
38509467b48Spatrick 
38609467b48Spatrick   for (auto &Instr : ToBeRemoved)
38709467b48Spatrick     Instr->eraseFromParent();
38809467b48Spatrick 
38909467b48Spatrick   return !ToBeRemoved.empty();
39009467b48Spatrick }
39109467b48Spatrick 
39209467b48Spatrick /// Remove redundant dbg.value instructions using a forward scan. This can
39309467b48Spatrick /// remove a dbg.value instruction that is redundant due to indicating that a
39409467b48Spatrick /// variable has the same value as already being indicated by an earlier
39509467b48Spatrick /// dbg.value.
39609467b48Spatrick ///
39709467b48Spatrick /// ForwardScan strategy:
39809467b48Spatrick /// ---------------------
39909467b48Spatrick /// Given two identical dbg.value instructions, separated by a block of
40009467b48Spatrick /// instructions that isn't describing the same variable, like this
40109467b48Spatrick ///
40209467b48Spatrick ///   dbg.value X1, "x", FragmentX1  (**)
40309467b48Spatrick ///   <block of instructions, none being "dbg.value ..., "x", ...">
40409467b48Spatrick ///   dbg.value X1, "x", FragmentX1  (*)
40509467b48Spatrick ///
40609467b48Spatrick /// then the instruction marked with (*) can be removed. Variable "x" is already
40709467b48Spatrick /// described as being mapped to the SSA value X1.
40809467b48Spatrick ///
40909467b48Spatrick /// Possible improvements:
41009467b48Spatrick /// - Keep track of non-overlapping fragments.
41109467b48Spatrick static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
41209467b48Spatrick   SmallVector<DbgValueInst *, 8> ToBeRemoved;
41309467b48Spatrick   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
41409467b48Spatrick   for (auto &I : *BB) {
41509467b48Spatrick     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
41609467b48Spatrick       DebugVariable Key(DVI->getVariable(),
41709467b48Spatrick                         NoneType(),
41809467b48Spatrick                         DVI->getDebugLoc()->getInlinedAt());
41909467b48Spatrick       auto VMI = VariableMap.find(Key);
42009467b48Spatrick       // Update the map if we found a new value/expression describing the
42109467b48Spatrick       // variable, or if the variable wasn't mapped already.
42209467b48Spatrick       if (VMI == VariableMap.end() ||
42309467b48Spatrick           VMI->second.first != DVI->getValue() ||
42409467b48Spatrick           VMI->second.second != DVI->getExpression()) {
42509467b48Spatrick         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
42609467b48Spatrick         continue;
42709467b48Spatrick       }
42809467b48Spatrick       // Found an identical mapping. Remember the instruction for later removal.
42909467b48Spatrick       ToBeRemoved.push_back(DVI);
43009467b48Spatrick     }
43109467b48Spatrick   }
43209467b48Spatrick 
43309467b48Spatrick   for (auto &Instr : ToBeRemoved)
43409467b48Spatrick     Instr->eraseFromParent();
43509467b48Spatrick 
43609467b48Spatrick   return !ToBeRemoved.empty();
43709467b48Spatrick }
43809467b48Spatrick 
43909467b48Spatrick bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
44009467b48Spatrick   bool MadeChanges = false;
44109467b48Spatrick   // By using the "backward scan" strategy before the "forward scan" strategy we
44209467b48Spatrick   // can remove both dbg.value (2) and (3) in a situation like this:
44309467b48Spatrick   //
44409467b48Spatrick   //   (1) dbg.value V1, "x", DIExpression()
44509467b48Spatrick   //       ...
44609467b48Spatrick   //   (2) dbg.value V2, "x", DIExpression()
44709467b48Spatrick   //   (3) dbg.value V1, "x", DIExpression()
44809467b48Spatrick   //
44909467b48Spatrick   // The backward scan will remove (2), it is made obsolete by (3). After
45009467b48Spatrick   // getting (2) out of the way, the foward scan will remove (3) since "x"
45109467b48Spatrick   // already is described as having the value V1 at (1).
45209467b48Spatrick   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
45309467b48Spatrick   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
45409467b48Spatrick 
45509467b48Spatrick   if (MadeChanges)
45609467b48Spatrick     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
45709467b48Spatrick                       << BB->getName() << "\n");
45809467b48Spatrick   return MadeChanges;
45909467b48Spatrick }
46009467b48Spatrick 
46109467b48Spatrick void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
46209467b48Spatrick                                 BasicBlock::iterator &BI, Value *V) {
46309467b48Spatrick   Instruction &I = *BI;
46409467b48Spatrick   // Replaces all of the uses of the instruction with uses of the value
46509467b48Spatrick   I.replaceAllUsesWith(V);
46609467b48Spatrick 
46709467b48Spatrick   // Make sure to propagate a name if there is one already.
46809467b48Spatrick   if (I.hasName() && !V->hasName())
46909467b48Spatrick     V->takeName(&I);
47009467b48Spatrick 
47109467b48Spatrick   // Delete the unnecessary instruction now...
47209467b48Spatrick   BI = BIL.erase(BI);
47309467b48Spatrick }
47409467b48Spatrick 
47509467b48Spatrick void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
47609467b48Spatrick                                BasicBlock::iterator &BI, Instruction *I) {
47709467b48Spatrick   assert(I->getParent() == nullptr &&
47809467b48Spatrick          "ReplaceInstWithInst: Instruction already inserted into basic block!");
47909467b48Spatrick 
48009467b48Spatrick   // Copy debug location to newly added instruction, if it wasn't already set
48109467b48Spatrick   // by the caller.
48209467b48Spatrick   if (!I->getDebugLoc())
48309467b48Spatrick     I->setDebugLoc(BI->getDebugLoc());
48409467b48Spatrick 
48509467b48Spatrick   // Insert the new instruction into the basic block...
48609467b48Spatrick   BasicBlock::iterator New = BIL.insert(BI, I);
48709467b48Spatrick 
48809467b48Spatrick   // Replace all uses of the old instruction, and delete it.
48909467b48Spatrick   ReplaceInstWithValue(BIL, BI, I);
49009467b48Spatrick 
49109467b48Spatrick   // Move BI back to point to the newly inserted instruction
49209467b48Spatrick   BI = New;
49309467b48Spatrick }
49409467b48Spatrick 
49509467b48Spatrick void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
49609467b48Spatrick   BasicBlock::iterator BI(From);
49709467b48Spatrick   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
49809467b48Spatrick }
49909467b48Spatrick 
50009467b48Spatrick BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
50109467b48Spatrick                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
50209467b48Spatrick   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
50309467b48Spatrick 
50409467b48Spatrick   // If this is a critical edge, let SplitCriticalEdge do it.
50509467b48Spatrick   Instruction *LatchTerm = BB->getTerminator();
50609467b48Spatrick   if (SplitCriticalEdge(
50709467b48Spatrick           LatchTerm, SuccNum,
50809467b48Spatrick           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
50909467b48Spatrick     return LatchTerm->getSuccessor(SuccNum);
51009467b48Spatrick 
51109467b48Spatrick   // If the edge isn't critical, then BB has a single successor or Succ has a
51209467b48Spatrick   // single pred.  Split the block.
51309467b48Spatrick   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
51409467b48Spatrick     // If the successor only has a single pred, split the top of the successor
51509467b48Spatrick     // block.
51609467b48Spatrick     assert(SP == BB && "CFG broken");
51709467b48Spatrick     SP = nullptr;
51809467b48Spatrick     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
51909467b48Spatrick   }
52009467b48Spatrick 
52109467b48Spatrick   // Otherwise, if BB has a single successor, split it at the bottom of the
52209467b48Spatrick   // block.
52309467b48Spatrick   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
52409467b48Spatrick          "Should have a single succ!");
52509467b48Spatrick   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
52609467b48Spatrick }
52709467b48Spatrick 
52809467b48Spatrick unsigned
52909467b48Spatrick llvm::SplitAllCriticalEdges(Function &F,
53009467b48Spatrick                             const CriticalEdgeSplittingOptions &Options) {
53109467b48Spatrick   unsigned NumBroken = 0;
53209467b48Spatrick   for (BasicBlock &BB : F) {
53309467b48Spatrick     Instruction *TI = BB.getTerminator();
53409467b48Spatrick     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
53509467b48Spatrick         !isa<CallBrInst>(TI))
53609467b48Spatrick       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
53709467b48Spatrick         if (SplitCriticalEdge(TI, i, Options))
53809467b48Spatrick           ++NumBroken;
53909467b48Spatrick   }
54009467b48Spatrick   return NumBroken;
54109467b48Spatrick }
54209467b48Spatrick 
54309467b48Spatrick BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
54409467b48Spatrick                              DominatorTree *DT, LoopInfo *LI,
54509467b48Spatrick                              MemorySSAUpdater *MSSAU, const Twine &BBName) {
54609467b48Spatrick   BasicBlock::iterator SplitIt = SplitPt->getIterator();
54709467b48Spatrick   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
54809467b48Spatrick     ++SplitIt;
54909467b48Spatrick   std::string Name = BBName.str();
55009467b48Spatrick   BasicBlock *New = Old->splitBasicBlock(
55109467b48Spatrick       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
55209467b48Spatrick 
55309467b48Spatrick   // The new block lives in whichever loop the old one did. This preserves
55409467b48Spatrick   // LCSSA as well, because we force the split point to be after any PHI nodes.
55509467b48Spatrick   if (LI)
55609467b48Spatrick     if (Loop *L = LI->getLoopFor(Old))
55709467b48Spatrick       L->addBasicBlockToLoop(New, *LI);
55809467b48Spatrick 
55909467b48Spatrick   if (DT)
56009467b48Spatrick     // Old dominates New. New node dominates all other nodes dominated by Old.
56109467b48Spatrick     if (DomTreeNode *OldNode = DT->getNode(Old)) {
56209467b48Spatrick       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
56309467b48Spatrick 
56409467b48Spatrick       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
56509467b48Spatrick       for (DomTreeNode *I : Children)
56609467b48Spatrick         DT->changeImmediateDominator(I, NewNode);
56709467b48Spatrick     }
56809467b48Spatrick 
56909467b48Spatrick   // Move MemoryAccesses still tracked in Old, but part of New now.
57009467b48Spatrick   // Update accesses in successor blocks accordingly.
57109467b48Spatrick   if (MSSAU)
57209467b48Spatrick     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
57309467b48Spatrick 
57409467b48Spatrick   return New;
57509467b48Spatrick }
57609467b48Spatrick 
57709467b48Spatrick /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
57809467b48Spatrick static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
57909467b48Spatrick                                       ArrayRef<BasicBlock *> Preds,
58009467b48Spatrick                                       DominatorTree *DT, LoopInfo *LI,
58109467b48Spatrick                                       MemorySSAUpdater *MSSAU,
58209467b48Spatrick                                       bool PreserveLCSSA, bool &HasLoopExit) {
58309467b48Spatrick   // Update dominator tree if available.
58409467b48Spatrick   if (DT) {
58509467b48Spatrick     if (OldBB == DT->getRootNode()->getBlock()) {
58609467b48Spatrick       assert(NewBB == &NewBB->getParent()->getEntryBlock());
58709467b48Spatrick       DT->setNewRoot(NewBB);
58809467b48Spatrick     } else {
58909467b48Spatrick       // Split block expects NewBB to have a non-empty set of predecessors.
59009467b48Spatrick       DT->splitBlock(NewBB);
59109467b48Spatrick     }
59209467b48Spatrick   }
59309467b48Spatrick 
59409467b48Spatrick   // Update MemoryPhis after split if MemorySSA is available
59509467b48Spatrick   if (MSSAU)
59609467b48Spatrick     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
59709467b48Spatrick 
59809467b48Spatrick   // The rest of the logic is only relevant for updating the loop structures.
59909467b48Spatrick   if (!LI)
60009467b48Spatrick     return;
60109467b48Spatrick 
60209467b48Spatrick   assert(DT && "DT should be available to update LoopInfo!");
60309467b48Spatrick   Loop *L = LI->getLoopFor(OldBB);
60409467b48Spatrick 
60509467b48Spatrick   // If we need to preserve loop analyses, collect some information about how
60609467b48Spatrick   // this split will affect loops.
60709467b48Spatrick   bool IsLoopEntry = !!L;
60809467b48Spatrick   bool SplitMakesNewLoopHeader = false;
60909467b48Spatrick   for (BasicBlock *Pred : Preds) {
61009467b48Spatrick     // Preds that are not reachable from entry should not be used to identify if
61109467b48Spatrick     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
61209467b48Spatrick     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
61309467b48Spatrick     // as true and make the NewBB the header of some loop. This breaks LI.
61409467b48Spatrick     if (!DT->isReachableFromEntry(Pred))
61509467b48Spatrick       continue;
61609467b48Spatrick     // If we need to preserve LCSSA, determine if any of the preds is a loop
61709467b48Spatrick     // exit.
61809467b48Spatrick     if (PreserveLCSSA)
61909467b48Spatrick       if (Loop *PL = LI->getLoopFor(Pred))
62009467b48Spatrick         if (!PL->contains(OldBB))
62109467b48Spatrick           HasLoopExit = true;
62209467b48Spatrick 
62309467b48Spatrick     // If we need to preserve LoopInfo, note whether any of the preds crosses
62409467b48Spatrick     // an interesting loop boundary.
62509467b48Spatrick     if (!L)
62609467b48Spatrick       continue;
62709467b48Spatrick     if (L->contains(Pred))
62809467b48Spatrick       IsLoopEntry = false;
62909467b48Spatrick     else
63009467b48Spatrick       SplitMakesNewLoopHeader = true;
63109467b48Spatrick   }
63209467b48Spatrick 
63309467b48Spatrick   // Unless we have a loop for OldBB, nothing else to do here.
63409467b48Spatrick   if (!L)
63509467b48Spatrick     return;
63609467b48Spatrick 
63709467b48Spatrick   if (IsLoopEntry) {
63809467b48Spatrick     // Add the new block to the nearest enclosing loop (and not an adjacent
63909467b48Spatrick     // loop). To find this, examine each of the predecessors and determine which
64009467b48Spatrick     // loops enclose them, and select the most-nested loop which contains the
64109467b48Spatrick     // loop containing the block being split.
64209467b48Spatrick     Loop *InnermostPredLoop = nullptr;
64309467b48Spatrick     for (BasicBlock *Pred : Preds) {
64409467b48Spatrick       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
64509467b48Spatrick         // Seek a loop which actually contains the block being split (to avoid
64609467b48Spatrick         // adjacent loops).
64709467b48Spatrick         while (PredLoop && !PredLoop->contains(OldBB))
64809467b48Spatrick           PredLoop = PredLoop->getParentLoop();
64909467b48Spatrick 
65009467b48Spatrick         // Select the most-nested of these loops which contains the block.
65109467b48Spatrick         if (PredLoop && PredLoop->contains(OldBB) &&
65209467b48Spatrick             (!InnermostPredLoop ||
65309467b48Spatrick              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
65409467b48Spatrick           InnermostPredLoop = PredLoop;
65509467b48Spatrick       }
65609467b48Spatrick     }
65709467b48Spatrick 
65809467b48Spatrick     if (InnermostPredLoop)
65909467b48Spatrick       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
66009467b48Spatrick   } else {
66109467b48Spatrick     L->addBasicBlockToLoop(NewBB, *LI);
66209467b48Spatrick     if (SplitMakesNewLoopHeader)
66309467b48Spatrick       L->moveToHeader(NewBB);
66409467b48Spatrick   }
66509467b48Spatrick }
66609467b48Spatrick 
66709467b48Spatrick /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
66809467b48Spatrick /// This also updates AliasAnalysis, if available.
66909467b48Spatrick static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
67009467b48Spatrick                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
67109467b48Spatrick                            bool HasLoopExit) {
67209467b48Spatrick   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
67309467b48Spatrick   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
67409467b48Spatrick   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
67509467b48Spatrick     PHINode *PN = cast<PHINode>(I++);
67609467b48Spatrick 
67709467b48Spatrick     // Check to see if all of the values coming in are the same.  If so, we
67809467b48Spatrick     // don't need to create a new PHI node, unless it's needed for LCSSA.
67909467b48Spatrick     Value *InVal = nullptr;
68009467b48Spatrick     if (!HasLoopExit) {
68109467b48Spatrick       InVal = PN->getIncomingValueForBlock(Preds[0]);
68209467b48Spatrick       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
68309467b48Spatrick         if (!PredSet.count(PN->getIncomingBlock(i)))
68409467b48Spatrick           continue;
68509467b48Spatrick         if (!InVal)
68609467b48Spatrick           InVal = PN->getIncomingValue(i);
68709467b48Spatrick         else if (InVal != PN->getIncomingValue(i)) {
68809467b48Spatrick           InVal = nullptr;
68909467b48Spatrick           break;
69009467b48Spatrick         }
69109467b48Spatrick       }
69209467b48Spatrick     }
69309467b48Spatrick 
69409467b48Spatrick     if (InVal) {
69509467b48Spatrick       // If all incoming values for the new PHI would be the same, just don't
69609467b48Spatrick       // make a new PHI.  Instead, just remove the incoming values from the old
69709467b48Spatrick       // PHI.
69809467b48Spatrick 
69909467b48Spatrick       // NOTE! This loop walks backwards for a reason! First off, this minimizes
70009467b48Spatrick       // the cost of removal if we end up removing a large number of values, and
70109467b48Spatrick       // second off, this ensures that the indices for the incoming values
70209467b48Spatrick       // aren't invalidated when we remove one.
70309467b48Spatrick       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
70409467b48Spatrick         if (PredSet.count(PN->getIncomingBlock(i)))
70509467b48Spatrick           PN->removeIncomingValue(i, false);
70609467b48Spatrick 
70709467b48Spatrick       // Add an incoming value to the PHI node in the loop for the preheader
70809467b48Spatrick       // edge.
70909467b48Spatrick       PN->addIncoming(InVal, NewBB);
71009467b48Spatrick       continue;
71109467b48Spatrick     }
71209467b48Spatrick 
71309467b48Spatrick     // If the values coming into the block are not the same, we need a new
71409467b48Spatrick     // PHI.
71509467b48Spatrick     // Create the new PHI node, insert it into NewBB at the end of the block
71609467b48Spatrick     PHINode *NewPHI =
71709467b48Spatrick         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
71809467b48Spatrick 
71909467b48Spatrick     // NOTE! This loop walks backwards for a reason! First off, this minimizes
72009467b48Spatrick     // the cost of removal if we end up removing a large number of values, and
72109467b48Spatrick     // second off, this ensures that the indices for the incoming values aren't
72209467b48Spatrick     // invalidated when we remove one.
72309467b48Spatrick     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
72409467b48Spatrick       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
72509467b48Spatrick       if (PredSet.count(IncomingBB)) {
72609467b48Spatrick         Value *V = PN->removeIncomingValue(i, false);
72709467b48Spatrick         NewPHI->addIncoming(V, IncomingBB);
72809467b48Spatrick       }
72909467b48Spatrick     }
73009467b48Spatrick 
73109467b48Spatrick     PN->addIncoming(NewPHI, NewBB);
73209467b48Spatrick   }
73309467b48Spatrick }
73409467b48Spatrick 
73509467b48Spatrick BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
73609467b48Spatrick                                          ArrayRef<BasicBlock *> Preds,
73709467b48Spatrick                                          const char *Suffix, DominatorTree *DT,
73809467b48Spatrick                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
73909467b48Spatrick                                          bool PreserveLCSSA) {
74009467b48Spatrick   // Do not attempt to split that which cannot be split.
74109467b48Spatrick   if (!BB->canSplitPredecessors())
74209467b48Spatrick     return nullptr;
74309467b48Spatrick 
74409467b48Spatrick   // For the landingpads we need to act a bit differently.
74509467b48Spatrick   // Delegate this work to the SplitLandingPadPredecessors.
74609467b48Spatrick   if (BB->isLandingPad()) {
74709467b48Spatrick     SmallVector<BasicBlock*, 2> NewBBs;
74809467b48Spatrick     std::string NewName = std::string(Suffix) + ".split-lp";
74909467b48Spatrick 
75009467b48Spatrick     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
75109467b48Spatrick                                 LI, MSSAU, PreserveLCSSA);
75209467b48Spatrick     return NewBBs[0];
75309467b48Spatrick   }
75409467b48Spatrick 
75509467b48Spatrick   // Create new basic block, insert right before the original block.
75609467b48Spatrick   BasicBlock *NewBB = BasicBlock::Create(
75709467b48Spatrick       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
75809467b48Spatrick 
75909467b48Spatrick   // The new block unconditionally branches to the old block.
76009467b48Spatrick   BranchInst *BI = BranchInst::Create(BB, NewBB);
76109467b48Spatrick   // Splitting the predecessors of a loop header creates a preheader block.
76209467b48Spatrick   if (LI && LI->isLoopHeader(BB))
76309467b48Spatrick     // Using the loop start line number prevents debuggers stepping into the
76409467b48Spatrick     // loop body for this instruction.
76509467b48Spatrick     BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
76609467b48Spatrick   else
76709467b48Spatrick     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
76809467b48Spatrick 
76909467b48Spatrick   // Move the edges from Preds to point to NewBB instead of BB.
77009467b48Spatrick   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
77109467b48Spatrick     // This is slightly more strict than necessary; the minimum requirement
77209467b48Spatrick     // is that there be no more than one indirectbr branching to BB. And
77309467b48Spatrick     // all BlockAddress uses would need to be updated.
77409467b48Spatrick     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
77509467b48Spatrick            "Cannot split an edge from an IndirectBrInst");
77609467b48Spatrick     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
77709467b48Spatrick            "Cannot split an edge from a CallBrInst");
77809467b48Spatrick     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
77909467b48Spatrick   }
78009467b48Spatrick 
78109467b48Spatrick   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
78209467b48Spatrick   // node becomes an incoming value for BB's phi node.  However, if the Preds
78309467b48Spatrick   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
78409467b48Spatrick   // account for the newly created predecessor.
78509467b48Spatrick   if (Preds.empty()) {
78609467b48Spatrick     // Insert dummy values as the incoming value.
78709467b48Spatrick     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
78809467b48Spatrick       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
78909467b48Spatrick   }
79009467b48Spatrick 
79109467b48Spatrick   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
79209467b48Spatrick   bool HasLoopExit = false;
79309467b48Spatrick   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
79409467b48Spatrick                             HasLoopExit);
79509467b48Spatrick 
79609467b48Spatrick   if (!Preds.empty()) {
79709467b48Spatrick     // Update the PHI nodes in BB with the values coming from NewBB.
79809467b48Spatrick     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
79909467b48Spatrick   }
80009467b48Spatrick 
80109467b48Spatrick   return NewBB;
80209467b48Spatrick }
80309467b48Spatrick 
80409467b48Spatrick void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
80509467b48Spatrick                                        ArrayRef<BasicBlock *> Preds,
80609467b48Spatrick                                        const char *Suffix1, const char *Suffix2,
80709467b48Spatrick                                        SmallVectorImpl<BasicBlock *> &NewBBs,
80809467b48Spatrick                                        DominatorTree *DT, LoopInfo *LI,
80909467b48Spatrick                                        MemorySSAUpdater *MSSAU,
81009467b48Spatrick                                        bool PreserveLCSSA) {
81109467b48Spatrick   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
81209467b48Spatrick 
81309467b48Spatrick   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
81409467b48Spatrick   // it right before the original block.
81509467b48Spatrick   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
81609467b48Spatrick                                           OrigBB->getName() + Suffix1,
81709467b48Spatrick                                           OrigBB->getParent(), OrigBB);
81809467b48Spatrick   NewBBs.push_back(NewBB1);
81909467b48Spatrick 
82009467b48Spatrick   // The new block unconditionally branches to the old block.
82109467b48Spatrick   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
82209467b48Spatrick   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
82309467b48Spatrick 
82409467b48Spatrick   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
82509467b48Spatrick   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
82609467b48Spatrick     // This is slightly more strict than necessary; the minimum requirement
82709467b48Spatrick     // is that there be no more than one indirectbr branching to BB. And
82809467b48Spatrick     // all BlockAddress uses would need to be updated.
82909467b48Spatrick     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
83009467b48Spatrick            "Cannot split an edge from an IndirectBrInst");
83109467b48Spatrick     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
83209467b48Spatrick   }
83309467b48Spatrick 
83409467b48Spatrick   bool HasLoopExit = false;
83509467b48Spatrick   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
83609467b48Spatrick                             HasLoopExit);
83709467b48Spatrick 
83809467b48Spatrick   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
83909467b48Spatrick   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
84009467b48Spatrick 
84109467b48Spatrick   // Move the remaining edges from OrigBB to point to NewBB2.
84209467b48Spatrick   SmallVector<BasicBlock*, 8> NewBB2Preds;
84309467b48Spatrick   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
84409467b48Spatrick        i != e; ) {
84509467b48Spatrick     BasicBlock *Pred = *i++;
84609467b48Spatrick     if (Pred == NewBB1) continue;
84709467b48Spatrick     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
84809467b48Spatrick            "Cannot split an edge from an IndirectBrInst");
84909467b48Spatrick     NewBB2Preds.push_back(Pred);
85009467b48Spatrick     e = pred_end(OrigBB);
85109467b48Spatrick   }
85209467b48Spatrick 
85309467b48Spatrick   BasicBlock *NewBB2 = nullptr;
85409467b48Spatrick   if (!NewBB2Preds.empty()) {
85509467b48Spatrick     // Create another basic block for the rest of OrigBB's predecessors.
85609467b48Spatrick     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
85709467b48Spatrick                                 OrigBB->getName() + Suffix2,
85809467b48Spatrick                                 OrigBB->getParent(), OrigBB);
85909467b48Spatrick     NewBBs.push_back(NewBB2);
86009467b48Spatrick 
86109467b48Spatrick     // The new block unconditionally branches to the old block.
86209467b48Spatrick     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
86309467b48Spatrick     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
86409467b48Spatrick 
86509467b48Spatrick     // Move the remaining edges from OrigBB to point to NewBB2.
86609467b48Spatrick     for (BasicBlock *NewBB2Pred : NewBB2Preds)
86709467b48Spatrick       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
86809467b48Spatrick 
86909467b48Spatrick     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
87009467b48Spatrick     HasLoopExit = false;
87109467b48Spatrick     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
87209467b48Spatrick                               PreserveLCSSA, HasLoopExit);
87309467b48Spatrick 
87409467b48Spatrick     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
87509467b48Spatrick     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
87609467b48Spatrick   }
87709467b48Spatrick 
87809467b48Spatrick   LandingPadInst *LPad = OrigBB->getLandingPadInst();
87909467b48Spatrick   Instruction *Clone1 = LPad->clone();
88009467b48Spatrick   Clone1->setName(Twine("lpad") + Suffix1);
88109467b48Spatrick   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
88209467b48Spatrick 
88309467b48Spatrick   if (NewBB2) {
88409467b48Spatrick     Instruction *Clone2 = LPad->clone();
88509467b48Spatrick     Clone2->setName(Twine("lpad") + Suffix2);
88609467b48Spatrick     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
88709467b48Spatrick 
88809467b48Spatrick     // Create a PHI node for the two cloned landingpad instructions only
88909467b48Spatrick     // if the original landingpad instruction has some uses.
89009467b48Spatrick     if (!LPad->use_empty()) {
89109467b48Spatrick       assert(!LPad->getType()->isTokenTy() &&
89209467b48Spatrick              "Split cannot be applied if LPad is token type. Otherwise an "
89309467b48Spatrick              "invalid PHINode of token type would be created.");
89409467b48Spatrick       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
89509467b48Spatrick       PN->addIncoming(Clone1, NewBB1);
89609467b48Spatrick       PN->addIncoming(Clone2, NewBB2);
89709467b48Spatrick       LPad->replaceAllUsesWith(PN);
89809467b48Spatrick     }
89909467b48Spatrick     LPad->eraseFromParent();
90009467b48Spatrick   } else {
90109467b48Spatrick     // There is no second clone. Just replace the landing pad with the first
90209467b48Spatrick     // clone.
90309467b48Spatrick     LPad->replaceAllUsesWith(Clone1);
90409467b48Spatrick     LPad->eraseFromParent();
90509467b48Spatrick   }
90609467b48Spatrick }
90709467b48Spatrick 
90809467b48Spatrick ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
90909467b48Spatrick                                              BasicBlock *Pred,
91009467b48Spatrick                                              DomTreeUpdater *DTU) {
91109467b48Spatrick   Instruction *UncondBranch = Pred->getTerminator();
91209467b48Spatrick   // Clone the return and add it to the end of the predecessor.
91309467b48Spatrick   Instruction *NewRet = RI->clone();
91409467b48Spatrick   Pred->getInstList().push_back(NewRet);
91509467b48Spatrick 
91609467b48Spatrick   // If the return instruction returns a value, and if the value was a
91709467b48Spatrick   // PHI node in "BB", propagate the right value into the return.
91809467b48Spatrick   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
91909467b48Spatrick        i != e; ++i) {
92009467b48Spatrick     Value *V = *i;
92109467b48Spatrick     Instruction *NewBC = nullptr;
92209467b48Spatrick     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
92309467b48Spatrick       // Return value might be bitcasted. Clone and insert it before the
92409467b48Spatrick       // return instruction.
92509467b48Spatrick       V = BCI->getOperand(0);
92609467b48Spatrick       NewBC = BCI->clone();
92709467b48Spatrick       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
92809467b48Spatrick       *i = NewBC;
92909467b48Spatrick     }
930*097a140dSpatrick 
931*097a140dSpatrick     Instruction *NewEV = nullptr;
932*097a140dSpatrick     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
933*097a140dSpatrick       V = EVI->getOperand(0);
934*097a140dSpatrick       NewEV = EVI->clone();
935*097a140dSpatrick       if (NewBC) {
936*097a140dSpatrick         NewBC->setOperand(0, NewEV);
937*097a140dSpatrick         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
938*097a140dSpatrick       } else {
939*097a140dSpatrick         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
940*097a140dSpatrick         *i = NewEV;
941*097a140dSpatrick       }
942*097a140dSpatrick     }
943*097a140dSpatrick 
94409467b48Spatrick     if (PHINode *PN = dyn_cast<PHINode>(V)) {
94509467b48Spatrick       if (PN->getParent() == BB) {
946*097a140dSpatrick         if (NewEV) {
947*097a140dSpatrick           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
948*097a140dSpatrick         } else if (NewBC)
94909467b48Spatrick           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
95009467b48Spatrick         else
95109467b48Spatrick           *i = PN->getIncomingValueForBlock(Pred);
95209467b48Spatrick       }
95309467b48Spatrick     }
95409467b48Spatrick   }
95509467b48Spatrick 
95609467b48Spatrick   // Update any PHI nodes in the returning block to realize that we no
95709467b48Spatrick   // longer branch to them.
95809467b48Spatrick   BB->removePredecessor(Pred);
95909467b48Spatrick   UncondBranch->eraseFromParent();
96009467b48Spatrick 
96109467b48Spatrick   if (DTU)
96209467b48Spatrick     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
96309467b48Spatrick 
96409467b48Spatrick   return cast<ReturnInst>(NewRet);
96509467b48Spatrick }
96609467b48Spatrick 
96709467b48Spatrick Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
96809467b48Spatrick                                              Instruction *SplitBefore,
96909467b48Spatrick                                              bool Unreachable,
97009467b48Spatrick                                              MDNode *BranchWeights,
97109467b48Spatrick                                              DominatorTree *DT, LoopInfo *LI,
97209467b48Spatrick                                              BasicBlock *ThenBlock) {
97309467b48Spatrick   BasicBlock *Head = SplitBefore->getParent();
97409467b48Spatrick   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
97509467b48Spatrick   Instruction *HeadOldTerm = Head->getTerminator();
97609467b48Spatrick   LLVMContext &C = Head->getContext();
97709467b48Spatrick   Instruction *CheckTerm;
97809467b48Spatrick   bool CreateThenBlock = (ThenBlock == nullptr);
97909467b48Spatrick   if (CreateThenBlock) {
98009467b48Spatrick     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
98109467b48Spatrick     if (Unreachable)
98209467b48Spatrick       CheckTerm = new UnreachableInst(C, ThenBlock);
98309467b48Spatrick     else
98409467b48Spatrick       CheckTerm = BranchInst::Create(Tail, ThenBlock);
98509467b48Spatrick     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
98609467b48Spatrick   } else
98709467b48Spatrick     CheckTerm = ThenBlock->getTerminator();
98809467b48Spatrick   BranchInst *HeadNewTerm =
98909467b48Spatrick     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
99009467b48Spatrick   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
99109467b48Spatrick   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
99209467b48Spatrick 
99309467b48Spatrick   if (DT) {
99409467b48Spatrick     if (DomTreeNode *OldNode = DT->getNode(Head)) {
99509467b48Spatrick       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
99609467b48Spatrick 
99709467b48Spatrick       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
99809467b48Spatrick       for (DomTreeNode *Child : Children)
99909467b48Spatrick         DT->changeImmediateDominator(Child, NewNode);
100009467b48Spatrick 
100109467b48Spatrick       // Head dominates ThenBlock.
100209467b48Spatrick       if (CreateThenBlock)
100309467b48Spatrick         DT->addNewBlock(ThenBlock, Head);
100409467b48Spatrick       else
100509467b48Spatrick         DT->changeImmediateDominator(ThenBlock, Head);
100609467b48Spatrick     }
100709467b48Spatrick   }
100809467b48Spatrick 
100909467b48Spatrick   if (LI) {
101009467b48Spatrick     if (Loop *L = LI->getLoopFor(Head)) {
101109467b48Spatrick       L->addBasicBlockToLoop(ThenBlock, *LI);
101209467b48Spatrick       L->addBasicBlockToLoop(Tail, *LI);
101309467b48Spatrick     }
101409467b48Spatrick   }
101509467b48Spatrick 
101609467b48Spatrick   return CheckTerm;
101709467b48Spatrick }
101809467b48Spatrick 
101909467b48Spatrick void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
102009467b48Spatrick                                          Instruction **ThenTerm,
102109467b48Spatrick                                          Instruction **ElseTerm,
102209467b48Spatrick                                          MDNode *BranchWeights) {
102309467b48Spatrick   BasicBlock *Head = SplitBefore->getParent();
102409467b48Spatrick   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
102509467b48Spatrick   Instruction *HeadOldTerm = Head->getTerminator();
102609467b48Spatrick   LLVMContext &C = Head->getContext();
102709467b48Spatrick   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
102809467b48Spatrick   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
102909467b48Spatrick   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
103009467b48Spatrick   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
103109467b48Spatrick   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
103209467b48Spatrick   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
103309467b48Spatrick   BranchInst *HeadNewTerm =
103409467b48Spatrick     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
103509467b48Spatrick   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
103609467b48Spatrick   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
103709467b48Spatrick }
103809467b48Spatrick 
103909467b48Spatrick Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
104009467b48Spatrick                              BasicBlock *&IfFalse) {
104109467b48Spatrick   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
104209467b48Spatrick   BasicBlock *Pred1 = nullptr;
104309467b48Spatrick   BasicBlock *Pred2 = nullptr;
104409467b48Spatrick 
104509467b48Spatrick   if (SomePHI) {
104609467b48Spatrick     if (SomePHI->getNumIncomingValues() != 2)
104709467b48Spatrick       return nullptr;
104809467b48Spatrick     Pred1 = SomePHI->getIncomingBlock(0);
104909467b48Spatrick     Pred2 = SomePHI->getIncomingBlock(1);
105009467b48Spatrick   } else {
105109467b48Spatrick     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
105209467b48Spatrick     if (PI == PE) // No predecessor
105309467b48Spatrick       return nullptr;
105409467b48Spatrick     Pred1 = *PI++;
105509467b48Spatrick     if (PI == PE) // Only one predecessor
105609467b48Spatrick       return nullptr;
105709467b48Spatrick     Pred2 = *PI++;
105809467b48Spatrick     if (PI != PE) // More than two predecessors
105909467b48Spatrick       return nullptr;
106009467b48Spatrick   }
106109467b48Spatrick 
106209467b48Spatrick   // We can only handle branches.  Other control flow will be lowered to
106309467b48Spatrick   // branches if possible anyway.
106409467b48Spatrick   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
106509467b48Spatrick   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
106609467b48Spatrick   if (!Pred1Br || !Pred2Br)
106709467b48Spatrick     return nullptr;
106809467b48Spatrick 
106909467b48Spatrick   // Eliminate code duplication by ensuring that Pred1Br is conditional if
107009467b48Spatrick   // either are.
107109467b48Spatrick   if (Pred2Br->isConditional()) {
107209467b48Spatrick     // If both branches are conditional, we don't have an "if statement".  In
107309467b48Spatrick     // reality, we could transform this case, but since the condition will be
107409467b48Spatrick     // required anyway, we stand no chance of eliminating it, so the xform is
107509467b48Spatrick     // probably not profitable.
107609467b48Spatrick     if (Pred1Br->isConditional())
107709467b48Spatrick       return nullptr;
107809467b48Spatrick 
107909467b48Spatrick     std::swap(Pred1, Pred2);
108009467b48Spatrick     std::swap(Pred1Br, Pred2Br);
108109467b48Spatrick   }
108209467b48Spatrick 
108309467b48Spatrick   if (Pred1Br->isConditional()) {
108409467b48Spatrick     // The only thing we have to watch out for here is to make sure that Pred2
108509467b48Spatrick     // doesn't have incoming edges from other blocks.  If it does, the condition
108609467b48Spatrick     // doesn't dominate BB.
108709467b48Spatrick     if (!Pred2->getSinglePredecessor())
108809467b48Spatrick       return nullptr;
108909467b48Spatrick 
109009467b48Spatrick     // If we found a conditional branch predecessor, make sure that it branches
109109467b48Spatrick     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
109209467b48Spatrick     if (Pred1Br->getSuccessor(0) == BB &&
109309467b48Spatrick         Pred1Br->getSuccessor(1) == Pred2) {
109409467b48Spatrick       IfTrue = Pred1;
109509467b48Spatrick       IfFalse = Pred2;
109609467b48Spatrick     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
109709467b48Spatrick                Pred1Br->getSuccessor(1) == BB) {
109809467b48Spatrick       IfTrue = Pred2;
109909467b48Spatrick       IfFalse = Pred1;
110009467b48Spatrick     } else {
110109467b48Spatrick       // We know that one arm of the conditional goes to BB, so the other must
110209467b48Spatrick       // go somewhere unrelated, and this must not be an "if statement".
110309467b48Spatrick       return nullptr;
110409467b48Spatrick     }
110509467b48Spatrick 
110609467b48Spatrick     return Pred1Br->getCondition();
110709467b48Spatrick   }
110809467b48Spatrick 
110909467b48Spatrick   // Ok, if we got here, both predecessors end with an unconditional branch to
111009467b48Spatrick   // BB.  Don't panic!  If both blocks only have a single (identical)
111109467b48Spatrick   // predecessor, and THAT is a conditional branch, then we're all ok!
111209467b48Spatrick   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
111309467b48Spatrick   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
111409467b48Spatrick     return nullptr;
111509467b48Spatrick 
111609467b48Spatrick   // Otherwise, if this is a conditional branch, then we can use it!
111709467b48Spatrick   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
111809467b48Spatrick   if (!BI) return nullptr;
111909467b48Spatrick 
112009467b48Spatrick   assert(BI->isConditional() && "Two successors but not conditional?");
112109467b48Spatrick   if (BI->getSuccessor(0) == Pred1) {
112209467b48Spatrick     IfTrue = Pred1;
112309467b48Spatrick     IfFalse = Pred2;
112409467b48Spatrick   } else {
112509467b48Spatrick     IfTrue = Pred2;
112609467b48Spatrick     IfFalse = Pred1;
112709467b48Spatrick   }
112809467b48Spatrick   return BI->getCondition();
112909467b48Spatrick }
1130*097a140dSpatrick 
1131*097a140dSpatrick // After creating a control flow hub, the operands of PHINodes in an outgoing
1132*097a140dSpatrick // block Out no longer match the predecessors of that block. Predecessors of Out
1133*097a140dSpatrick // that are incoming blocks to the hub are now replaced by just one edge from
1134*097a140dSpatrick // the hub. To match this new control flow, the corresponding values from each
1135*097a140dSpatrick // PHINode must now be moved a new PHINode in the first guard block of the hub.
1136*097a140dSpatrick //
1137*097a140dSpatrick // This operation cannot be performed with SSAUpdater, because it involves one
1138*097a140dSpatrick // new use: If the block Out is in the list of Incoming blocks, then the newly
1139*097a140dSpatrick // created PHI in the Hub will use itself along that edge from Out to Hub.
1140*097a140dSpatrick static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1141*097a140dSpatrick                           const SetVector<BasicBlock *> &Incoming,
1142*097a140dSpatrick                           BasicBlock *FirstGuardBlock) {
1143*097a140dSpatrick   auto I = Out->begin();
1144*097a140dSpatrick   while (I != Out->end() && isa<PHINode>(I)) {
1145*097a140dSpatrick     auto Phi = cast<PHINode>(I);
1146*097a140dSpatrick     auto NewPhi =
1147*097a140dSpatrick         PHINode::Create(Phi->getType(), Incoming.size(),
1148*097a140dSpatrick                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1149*097a140dSpatrick     for (auto In : Incoming) {
1150*097a140dSpatrick       Value *V = UndefValue::get(Phi->getType());
1151*097a140dSpatrick       if (In == Out) {
1152*097a140dSpatrick         V = NewPhi;
1153*097a140dSpatrick       } else if (Phi->getBasicBlockIndex(In) != -1) {
1154*097a140dSpatrick         V = Phi->removeIncomingValue(In, false);
1155*097a140dSpatrick       }
1156*097a140dSpatrick       NewPhi->addIncoming(V, In);
1157*097a140dSpatrick     }
1158*097a140dSpatrick     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1159*097a140dSpatrick     if (Phi->getNumOperands() == 0) {
1160*097a140dSpatrick       Phi->replaceAllUsesWith(NewPhi);
1161*097a140dSpatrick       I = Phi->eraseFromParent();
1162*097a140dSpatrick       continue;
1163*097a140dSpatrick     }
1164*097a140dSpatrick     Phi->addIncoming(NewPhi, GuardBlock);
1165*097a140dSpatrick     ++I;
1166*097a140dSpatrick   }
1167*097a140dSpatrick }
1168*097a140dSpatrick 
1169*097a140dSpatrick using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1170*097a140dSpatrick using BBSetVector = SetVector<BasicBlock *>;
1171*097a140dSpatrick 
1172*097a140dSpatrick // Redirects the terminator of the incoming block to the first guard
1173*097a140dSpatrick // block in the hub. The condition of the original terminator (if it
1174*097a140dSpatrick // was conditional) and its original successors are returned as a
1175*097a140dSpatrick // tuple <condition, succ0, succ1>. The function additionally filters
1176*097a140dSpatrick // out successors that are not in the set of outgoing blocks.
1177*097a140dSpatrick //
1178*097a140dSpatrick // - condition is non-null iff the branch is conditional.
1179*097a140dSpatrick // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1180*097a140dSpatrick // - Succ2 is non-null iff condition is non-null and the fallthrough
1181*097a140dSpatrick //         target is an outgoing block.
1182*097a140dSpatrick static std::tuple<Value *, BasicBlock *, BasicBlock *>
1183*097a140dSpatrick redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1184*097a140dSpatrick               const BBSetVector &Outgoing) {
1185*097a140dSpatrick   auto Branch = cast<BranchInst>(BB->getTerminator());
1186*097a140dSpatrick   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1187*097a140dSpatrick 
1188*097a140dSpatrick   BasicBlock *Succ0 = Branch->getSuccessor(0);
1189*097a140dSpatrick   BasicBlock *Succ1 = nullptr;
1190*097a140dSpatrick   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1191*097a140dSpatrick 
1192*097a140dSpatrick   if (Branch->isUnconditional()) {
1193*097a140dSpatrick     Branch->setSuccessor(0, FirstGuardBlock);
1194*097a140dSpatrick     assert(Succ0);
1195*097a140dSpatrick   } else {
1196*097a140dSpatrick     Succ1 = Branch->getSuccessor(1);
1197*097a140dSpatrick     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1198*097a140dSpatrick     assert(Succ0 || Succ1);
1199*097a140dSpatrick     if (Succ0 && !Succ1) {
1200*097a140dSpatrick       Branch->setSuccessor(0, FirstGuardBlock);
1201*097a140dSpatrick     } else if (Succ1 && !Succ0) {
1202*097a140dSpatrick       Branch->setSuccessor(1, FirstGuardBlock);
1203*097a140dSpatrick     } else {
1204*097a140dSpatrick       Branch->eraseFromParent();
1205*097a140dSpatrick       BranchInst::Create(FirstGuardBlock, BB);
1206*097a140dSpatrick     }
1207*097a140dSpatrick   }
1208*097a140dSpatrick 
1209*097a140dSpatrick   assert(Succ0 || Succ1);
1210*097a140dSpatrick   return std::make_tuple(Condition, Succ0, Succ1);
1211*097a140dSpatrick }
1212*097a140dSpatrick 
1213*097a140dSpatrick // Capture the existing control flow as guard predicates, and redirect
1214*097a140dSpatrick // control flow from every incoming block to the first guard block in
1215*097a140dSpatrick // the hub.
1216*097a140dSpatrick //
1217*097a140dSpatrick // There is one guard predicate for each outgoing block OutBB. The
1218*097a140dSpatrick // predicate is a PHINode with one input for each InBB which
1219*097a140dSpatrick // represents whether the hub should transfer control flow to OutBB if
1220*097a140dSpatrick // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1221*097a140dSpatrick // evaluates them in the same order as the Outgoing set-vector, and
1222*097a140dSpatrick // control branches to the first outgoing block whose predicate
1223*097a140dSpatrick // evaluates to true.
1224*097a140dSpatrick static void convertToGuardPredicates(
1225*097a140dSpatrick     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1226*097a140dSpatrick     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1227*097a140dSpatrick     const BBSetVector &Outgoing) {
1228*097a140dSpatrick   auto &Context = Incoming.front()->getContext();
1229*097a140dSpatrick   auto BoolTrue = ConstantInt::getTrue(Context);
1230*097a140dSpatrick   auto BoolFalse = ConstantInt::getFalse(Context);
1231*097a140dSpatrick 
1232*097a140dSpatrick   // The predicate for the last outgoing is trivially true, and so we
1233*097a140dSpatrick   // process only the first N-1 successors.
1234*097a140dSpatrick   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1235*097a140dSpatrick     auto Out = Outgoing[i];
1236*097a140dSpatrick     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1237*097a140dSpatrick     auto Phi =
1238*097a140dSpatrick         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1239*097a140dSpatrick                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1240*097a140dSpatrick     GuardPredicates[Out] = Phi;
1241*097a140dSpatrick   }
1242*097a140dSpatrick 
1243*097a140dSpatrick   for (auto In : Incoming) {
1244*097a140dSpatrick     Value *Condition;
1245*097a140dSpatrick     BasicBlock *Succ0;
1246*097a140dSpatrick     BasicBlock *Succ1;
1247*097a140dSpatrick     std::tie(Condition, Succ0, Succ1) =
1248*097a140dSpatrick         redirectToHub(In, FirstGuardBlock, Outgoing);
1249*097a140dSpatrick 
1250*097a140dSpatrick     // Optimization: Consider an incoming block A with both successors
1251*097a140dSpatrick     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1252*097a140dSpatrick     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1253*097a140dSpatrick     // first in the loop below, control will branch to Succ0 using the
1254*097a140dSpatrick     // corresponding predicate. But if that branch is not taken, then
1255*097a140dSpatrick     // control must reach Succ1, which means that the predicate for
1256*097a140dSpatrick     // Succ1 is always true.
1257*097a140dSpatrick     bool OneSuccessorDone = false;
1258*097a140dSpatrick     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1259*097a140dSpatrick       auto Out = Outgoing[i];
1260*097a140dSpatrick       auto Phi = GuardPredicates[Out];
1261*097a140dSpatrick       if (Out != Succ0 && Out != Succ1) {
1262*097a140dSpatrick         Phi->addIncoming(BoolFalse, In);
1263*097a140dSpatrick         continue;
1264*097a140dSpatrick       }
1265*097a140dSpatrick       // Optimization: When only one successor is an outgoing block,
1266*097a140dSpatrick       // the predicate is always true.
1267*097a140dSpatrick       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1268*097a140dSpatrick         Phi->addIncoming(BoolTrue, In);
1269*097a140dSpatrick         continue;
1270*097a140dSpatrick       }
1271*097a140dSpatrick       assert(Succ0 && Succ1);
1272*097a140dSpatrick       OneSuccessorDone = true;
1273*097a140dSpatrick       if (Out == Succ0) {
1274*097a140dSpatrick         Phi->addIncoming(Condition, In);
1275*097a140dSpatrick         continue;
1276*097a140dSpatrick       }
1277*097a140dSpatrick       auto Inverted = invertCondition(Condition);
1278*097a140dSpatrick       DeletionCandidates.push_back(Condition);
1279*097a140dSpatrick       Phi->addIncoming(Inverted, In);
1280*097a140dSpatrick     }
1281*097a140dSpatrick   }
1282*097a140dSpatrick }
1283*097a140dSpatrick 
1284*097a140dSpatrick // For each outgoing block OutBB, create a guard block in the Hub. The
1285*097a140dSpatrick // first guard block was already created outside, and available as the
1286*097a140dSpatrick // first element in the vector of guard blocks.
1287*097a140dSpatrick //
1288*097a140dSpatrick // Each guard block terminates in a conditional branch that transfers
1289*097a140dSpatrick // control to the corresponding outgoing block or the next guard
1290*097a140dSpatrick // block. The last guard block has two outgoing blocks as successors
1291*097a140dSpatrick // since the condition for the final outgoing block is trivially
1292*097a140dSpatrick // true. So we create one less block (including the first guard block)
1293*097a140dSpatrick // than the number of outgoing blocks.
1294*097a140dSpatrick static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1295*097a140dSpatrick                               Function *F, const BBSetVector &Outgoing,
1296*097a140dSpatrick                               BBPredicates &GuardPredicates, StringRef Prefix) {
1297*097a140dSpatrick   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1298*097a140dSpatrick     GuardBlocks.push_back(
1299*097a140dSpatrick         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1300*097a140dSpatrick   }
1301*097a140dSpatrick   assert(GuardBlocks.size() == GuardPredicates.size());
1302*097a140dSpatrick 
1303*097a140dSpatrick   // To help keep the loop simple, temporarily append the last
1304*097a140dSpatrick   // outgoing block to the list of guard blocks.
1305*097a140dSpatrick   GuardBlocks.push_back(Outgoing.back());
1306*097a140dSpatrick 
1307*097a140dSpatrick   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1308*097a140dSpatrick     auto Out = Outgoing[i];
1309*097a140dSpatrick     assert(GuardPredicates.count(Out));
1310*097a140dSpatrick     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1311*097a140dSpatrick                        GuardBlocks[i]);
1312*097a140dSpatrick   }
1313*097a140dSpatrick 
1314*097a140dSpatrick   // Remove the last block from the guard list.
1315*097a140dSpatrick   GuardBlocks.pop_back();
1316*097a140dSpatrick }
1317*097a140dSpatrick 
1318*097a140dSpatrick BasicBlock *llvm::CreateControlFlowHub(
1319*097a140dSpatrick     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1320*097a140dSpatrick     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1321*097a140dSpatrick     const StringRef Prefix) {
1322*097a140dSpatrick   auto F = Incoming.front()->getParent();
1323*097a140dSpatrick   auto FirstGuardBlock =
1324*097a140dSpatrick       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1325*097a140dSpatrick 
1326*097a140dSpatrick   SmallVector<DominatorTree::UpdateType, 16> Updates;
1327*097a140dSpatrick   if (DTU) {
1328*097a140dSpatrick     for (auto In : Incoming) {
1329*097a140dSpatrick       for (auto Succ : successors(In)) {
1330*097a140dSpatrick         if (Outgoing.count(Succ))
1331*097a140dSpatrick           Updates.push_back({DominatorTree::Delete, In, Succ});
1332*097a140dSpatrick       }
1333*097a140dSpatrick       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1334*097a140dSpatrick     }
1335*097a140dSpatrick   }
1336*097a140dSpatrick 
1337*097a140dSpatrick   BBPredicates GuardPredicates;
1338*097a140dSpatrick   SmallVector<WeakVH, 8> DeletionCandidates;
1339*097a140dSpatrick   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1340*097a140dSpatrick                            Incoming, Outgoing);
1341*097a140dSpatrick 
1342*097a140dSpatrick   GuardBlocks.push_back(FirstGuardBlock);
1343*097a140dSpatrick   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1344*097a140dSpatrick 
1345*097a140dSpatrick   // Update the PHINodes in each outgoing block to match the new control flow.
1346*097a140dSpatrick   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1347*097a140dSpatrick     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1348*097a140dSpatrick   }
1349*097a140dSpatrick   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1350*097a140dSpatrick 
1351*097a140dSpatrick   if (DTU) {
1352*097a140dSpatrick     int NumGuards = GuardBlocks.size();
1353*097a140dSpatrick     assert((int)Outgoing.size() == NumGuards + 1);
1354*097a140dSpatrick     for (int i = 0; i != NumGuards - 1; ++i) {
1355*097a140dSpatrick       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1356*097a140dSpatrick       Updates.push_back(
1357*097a140dSpatrick           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1358*097a140dSpatrick     }
1359*097a140dSpatrick     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1360*097a140dSpatrick                        Outgoing[NumGuards - 1]});
1361*097a140dSpatrick     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1362*097a140dSpatrick                        Outgoing[NumGuards]});
1363*097a140dSpatrick     DTU->applyUpdates(Updates);
1364*097a140dSpatrick   }
1365*097a140dSpatrick 
1366*097a140dSpatrick   for (auto I : DeletionCandidates) {
1367*097a140dSpatrick     if (I->use_empty())
1368*097a140dSpatrick       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1369*097a140dSpatrick         Inst->eraseFromParent();
1370*097a140dSpatrick   }
1371*097a140dSpatrick 
1372*097a140dSpatrick   return FirstGuardBlock;
1373*097a140dSpatrick }
1374