xref: /openbsd-src/gnu/llvm/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 09467b48e8bc8b4905716062da846024139afbf2)
1*09467b48Spatrick //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2*09467b48Spatrick //
3*09467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*09467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
5*09467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*09467b48Spatrick //
7*09467b48Spatrick //===----------------------------------------------------------------------===//
8*09467b48Spatrick //
9*09467b48Spatrick // This family of functions perform manipulations on basic blocks, and
10*09467b48Spatrick // instructions contained within basic blocks.
11*09467b48Spatrick //
12*09467b48Spatrick //===----------------------------------------------------------------------===//
13*09467b48Spatrick 
14*09467b48Spatrick #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15*09467b48Spatrick #include "llvm/ADT/ArrayRef.h"
16*09467b48Spatrick #include "llvm/ADT/SmallPtrSet.h"
17*09467b48Spatrick #include "llvm/ADT/SmallVector.h"
18*09467b48Spatrick #include "llvm/ADT/Twine.h"
19*09467b48Spatrick #include "llvm/Analysis/CFG.h"
20*09467b48Spatrick #include "llvm/Analysis/DomTreeUpdater.h"
21*09467b48Spatrick #include "llvm/Analysis/LoopInfo.h"
22*09467b48Spatrick #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23*09467b48Spatrick #include "llvm/Analysis/MemorySSAUpdater.h"
24*09467b48Spatrick #include "llvm/Analysis/PostDominators.h"
25*09467b48Spatrick #include "llvm/IR/BasicBlock.h"
26*09467b48Spatrick #include "llvm/IR/CFG.h"
27*09467b48Spatrick #include "llvm/IR/Constants.h"
28*09467b48Spatrick #include "llvm/IR/DebugInfoMetadata.h"
29*09467b48Spatrick #include "llvm/IR/Dominators.h"
30*09467b48Spatrick #include "llvm/IR/Function.h"
31*09467b48Spatrick #include "llvm/IR/InstrTypes.h"
32*09467b48Spatrick #include "llvm/IR/Instruction.h"
33*09467b48Spatrick #include "llvm/IR/Instructions.h"
34*09467b48Spatrick #include "llvm/IR/IntrinsicInst.h"
35*09467b48Spatrick #include "llvm/IR/LLVMContext.h"
36*09467b48Spatrick #include "llvm/IR/Type.h"
37*09467b48Spatrick #include "llvm/IR/User.h"
38*09467b48Spatrick #include "llvm/IR/Value.h"
39*09467b48Spatrick #include "llvm/IR/ValueHandle.h"
40*09467b48Spatrick #include "llvm/Support/Casting.h"
41*09467b48Spatrick #include "llvm/Support/Debug.h"
42*09467b48Spatrick #include "llvm/Support/raw_ostream.h"
43*09467b48Spatrick #include "llvm/Transforms/Utils/Local.h"
44*09467b48Spatrick #include <cassert>
45*09467b48Spatrick #include <cstdint>
46*09467b48Spatrick #include <string>
47*09467b48Spatrick #include <utility>
48*09467b48Spatrick #include <vector>
49*09467b48Spatrick 
50*09467b48Spatrick using namespace llvm;
51*09467b48Spatrick 
52*09467b48Spatrick #define DEBUG_TYPE "basicblock-utils"
53*09467b48Spatrick 
54*09467b48Spatrick void llvm::DetatchDeadBlocks(
55*09467b48Spatrick     ArrayRef<BasicBlock *> BBs,
56*09467b48Spatrick     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57*09467b48Spatrick     bool KeepOneInputPHIs) {
58*09467b48Spatrick   for (auto *BB : BBs) {
59*09467b48Spatrick     // Loop through all of our successors and make sure they know that one
60*09467b48Spatrick     // of their predecessors is going away.
61*09467b48Spatrick     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62*09467b48Spatrick     for (BasicBlock *Succ : successors(BB)) {
63*09467b48Spatrick       Succ->removePredecessor(BB, KeepOneInputPHIs);
64*09467b48Spatrick       if (Updates && UniqueSuccessors.insert(Succ).second)
65*09467b48Spatrick         Updates->push_back({DominatorTree::Delete, BB, Succ});
66*09467b48Spatrick     }
67*09467b48Spatrick 
68*09467b48Spatrick     // Zap all the instructions in the block.
69*09467b48Spatrick     while (!BB->empty()) {
70*09467b48Spatrick       Instruction &I = BB->back();
71*09467b48Spatrick       // If this instruction is used, replace uses with an arbitrary value.
72*09467b48Spatrick       // Because control flow can't get here, we don't care what we replace the
73*09467b48Spatrick       // value with.  Note that since this block is unreachable, and all values
74*09467b48Spatrick       // contained within it must dominate their uses, that all uses will
75*09467b48Spatrick       // eventually be removed (they are themselves dead).
76*09467b48Spatrick       if (!I.use_empty())
77*09467b48Spatrick         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78*09467b48Spatrick       BB->getInstList().pop_back();
79*09467b48Spatrick     }
80*09467b48Spatrick     new UnreachableInst(BB->getContext(), BB);
81*09467b48Spatrick     assert(BB->getInstList().size() == 1 &&
82*09467b48Spatrick            isa<UnreachableInst>(BB->getTerminator()) &&
83*09467b48Spatrick            "The successor list of BB isn't empty before "
84*09467b48Spatrick            "applying corresponding DTU updates.");
85*09467b48Spatrick   }
86*09467b48Spatrick }
87*09467b48Spatrick 
88*09467b48Spatrick void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89*09467b48Spatrick                            bool KeepOneInputPHIs) {
90*09467b48Spatrick   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91*09467b48Spatrick }
92*09467b48Spatrick 
93*09467b48Spatrick void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94*09467b48Spatrick                             bool KeepOneInputPHIs) {
95*09467b48Spatrick #ifndef NDEBUG
96*09467b48Spatrick   // Make sure that all predecessors of each dead block is also dead.
97*09467b48Spatrick   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98*09467b48Spatrick   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99*09467b48Spatrick   for (auto *BB : Dead)
100*09467b48Spatrick     for (BasicBlock *Pred : predecessors(BB))
101*09467b48Spatrick       assert(Dead.count(Pred) && "All predecessors must be dead!");
102*09467b48Spatrick #endif
103*09467b48Spatrick 
104*09467b48Spatrick   SmallVector<DominatorTree::UpdateType, 4> Updates;
105*09467b48Spatrick   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106*09467b48Spatrick 
107*09467b48Spatrick   if (DTU)
108*09467b48Spatrick     DTU->applyUpdatesPermissive(Updates);
109*09467b48Spatrick 
110*09467b48Spatrick   for (BasicBlock *BB : BBs)
111*09467b48Spatrick     if (DTU)
112*09467b48Spatrick       DTU->deleteBB(BB);
113*09467b48Spatrick     else
114*09467b48Spatrick       BB->eraseFromParent();
115*09467b48Spatrick }
116*09467b48Spatrick 
117*09467b48Spatrick bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118*09467b48Spatrick                                       bool KeepOneInputPHIs) {
119*09467b48Spatrick   df_iterator_default_set<BasicBlock*> Reachable;
120*09467b48Spatrick 
121*09467b48Spatrick   // Mark all reachable blocks.
122*09467b48Spatrick   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123*09467b48Spatrick     (void)BB/* Mark all reachable blocks */;
124*09467b48Spatrick 
125*09467b48Spatrick   // Collect all dead blocks.
126*09467b48Spatrick   std::vector<BasicBlock*> DeadBlocks;
127*09467b48Spatrick   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128*09467b48Spatrick     if (!Reachable.count(&*I)) {
129*09467b48Spatrick       BasicBlock *BB = &*I;
130*09467b48Spatrick       DeadBlocks.push_back(BB);
131*09467b48Spatrick     }
132*09467b48Spatrick 
133*09467b48Spatrick   // Delete the dead blocks.
134*09467b48Spatrick   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135*09467b48Spatrick 
136*09467b48Spatrick   return !DeadBlocks.empty();
137*09467b48Spatrick }
138*09467b48Spatrick 
139*09467b48Spatrick void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140*09467b48Spatrick                                    MemoryDependenceResults *MemDep) {
141*09467b48Spatrick   if (!isa<PHINode>(BB->begin())) return;
142*09467b48Spatrick 
143*09467b48Spatrick   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144*09467b48Spatrick     if (PN->getIncomingValue(0) != PN)
145*09467b48Spatrick       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146*09467b48Spatrick     else
147*09467b48Spatrick       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148*09467b48Spatrick 
149*09467b48Spatrick     if (MemDep)
150*09467b48Spatrick       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151*09467b48Spatrick 
152*09467b48Spatrick     PN->eraseFromParent();
153*09467b48Spatrick   }
154*09467b48Spatrick }
155*09467b48Spatrick 
156*09467b48Spatrick bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157*09467b48Spatrick   // Recursively deleting a PHI may cause multiple PHIs to be deleted
158*09467b48Spatrick   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159*09467b48Spatrick   SmallVector<WeakTrackingVH, 8> PHIs;
160*09467b48Spatrick   for (PHINode &PN : BB->phis())
161*09467b48Spatrick     PHIs.push_back(&PN);
162*09467b48Spatrick 
163*09467b48Spatrick   bool Changed = false;
164*09467b48Spatrick   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165*09467b48Spatrick     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166*09467b48Spatrick       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
167*09467b48Spatrick 
168*09467b48Spatrick   return Changed;
169*09467b48Spatrick }
170*09467b48Spatrick 
171*09467b48Spatrick bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172*09467b48Spatrick                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
173*09467b48Spatrick                                      MemoryDependenceResults *MemDep,
174*09467b48Spatrick                                      bool PredecessorWithTwoSuccessors) {
175*09467b48Spatrick   if (BB->hasAddressTaken())
176*09467b48Spatrick     return false;
177*09467b48Spatrick 
178*09467b48Spatrick   // Can't merge if there are multiple predecessors, or no predecessors.
179*09467b48Spatrick   BasicBlock *PredBB = BB->getUniquePredecessor();
180*09467b48Spatrick   if (!PredBB) return false;
181*09467b48Spatrick 
182*09467b48Spatrick   // Don't break self-loops.
183*09467b48Spatrick   if (PredBB == BB) return false;
184*09467b48Spatrick   // Don't break unwinding instructions.
185*09467b48Spatrick   if (PredBB->getTerminator()->isExceptionalTerminator())
186*09467b48Spatrick     return false;
187*09467b48Spatrick 
188*09467b48Spatrick   // Can't merge if there are multiple distinct successors.
189*09467b48Spatrick   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
190*09467b48Spatrick     return false;
191*09467b48Spatrick 
192*09467b48Spatrick   // Currently only allow PredBB to have two predecessors, one being BB.
193*09467b48Spatrick   // Update BI to branch to BB's only successor instead of BB.
194*09467b48Spatrick   BranchInst *PredBB_BI;
195*09467b48Spatrick   BasicBlock *NewSucc = nullptr;
196*09467b48Spatrick   unsigned FallThruPath;
197*09467b48Spatrick   if (PredecessorWithTwoSuccessors) {
198*09467b48Spatrick     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
199*09467b48Spatrick       return false;
200*09467b48Spatrick     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
201*09467b48Spatrick     if (!BB_JmpI || !BB_JmpI->isUnconditional())
202*09467b48Spatrick       return false;
203*09467b48Spatrick     NewSucc = BB_JmpI->getSuccessor(0);
204*09467b48Spatrick     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
205*09467b48Spatrick   }
206*09467b48Spatrick 
207*09467b48Spatrick   // Can't merge if there is PHI loop.
208*09467b48Spatrick   for (PHINode &PN : BB->phis())
209*09467b48Spatrick     for (Value *IncValue : PN.incoming_values())
210*09467b48Spatrick       if (IncValue == &PN)
211*09467b48Spatrick         return false;
212*09467b48Spatrick 
213*09467b48Spatrick   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
214*09467b48Spatrick                     << PredBB->getName() << "\n");
215*09467b48Spatrick 
216*09467b48Spatrick   // Begin by getting rid of unneeded PHIs.
217*09467b48Spatrick   SmallVector<AssertingVH<Value>, 4> IncomingValues;
218*09467b48Spatrick   if (isa<PHINode>(BB->front())) {
219*09467b48Spatrick     for (PHINode &PN : BB->phis())
220*09467b48Spatrick       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
221*09467b48Spatrick           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
222*09467b48Spatrick         IncomingValues.push_back(PN.getIncomingValue(0));
223*09467b48Spatrick     FoldSingleEntryPHINodes(BB, MemDep);
224*09467b48Spatrick   }
225*09467b48Spatrick 
226*09467b48Spatrick   // DTU update: Collect all the edges that exit BB.
227*09467b48Spatrick   // These dominator edges will be redirected from Pred.
228*09467b48Spatrick   std::vector<DominatorTree::UpdateType> Updates;
229*09467b48Spatrick   if (DTU) {
230*09467b48Spatrick     Updates.reserve(1 + (2 * succ_size(BB)));
231*09467b48Spatrick     // Add insert edges first. Experimentally, for the particular case of two
232*09467b48Spatrick     // blocks that can be merged, with a single successor and single predecessor
233*09467b48Spatrick     // respectively, it is beneficial to have all insert updates first. Deleting
234*09467b48Spatrick     // edges first may lead to unreachable blocks, followed by inserting edges
235*09467b48Spatrick     // making the blocks reachable again. Such DT updates lead to high compile
236*09467b48Spatrick     // times. We add inserts before deletes here to reduce compile time.
237*09467b48Spatrick     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
238*09467b48Spatrick       // This successor of BB may already have PredBB as a predecessor.
239*09467b48Spatrick       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
240*09467b48Spatrick         Updates.push_back({DominatorTree::Insert, PredBB, *I});
241*09467b48Spatrick     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
242*09467b48Spatrick       Updates.push_back({DominatorTree::Delete, BB, *I});
243*09467b48Spatrick     Updates.push_back({DominatorTree::Delete, PredBB, BB});
244*09467b48Spatrick   }
245*09467b48Spatrick 
246*09467b48Spatrick   Instruction *PTI = PredBB->getTerminator();
247*09467b48Spatrick   Instruction *STI = BB->getTerminator();
248*09467b48Spatrick   Instruction *Start = &*BB->begin();
249*09467b48Spatrick   // If there's nothing to move, mark the starting instruction as the last
250*09467b48Spatrick   // instruction in the block. Terminator instruction is handled separately.
251*09467b48Spatrick   if (Start == STI)
252*09467b48Spatrick     Start = PTI;
253*09467b48Spatrick 
254*09467b48Spatrick   // Move all definitions in the successor to the predecessor...
255*09467b48Spatrick   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
256*09467b48Spatrick                                BB->begin(), STI->getIterator());
257*09467b48Spatrick 
258*09467b48Spatrick   if (MSSAU)
259*09467b48Spatrick     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
260*09467b48Spatrick 
261*09467b48Spatrick   // Make all PHI nodes that referred to BB now refer to Pred as their
262*09467b48Spatrick   // source...
263*09467b48Spatrick   BB->replaceAllUsesWith(PredBB);
264*09467b48Spatrick 
265*09467b48Spatrick   if (PredecessorWithTwoSuccessors) {
266*09467b48Spatrick     // Delete the unconditional branch from BB.
267*09467b48Spatrick     BB->getInstList().pop_back();
268*09467b48Spatrick 
269*09467b48Spatrick     // Update branch in the predecessor.
270*09467b48Spatrick     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
271*09467b48Spatrick   } else {
272*09467b48Spatrick     // Delete the unconditional branch from the predecessor.
273*09467b48Spatrick     PredBB->getInstList().pop_back();
274*09467b48Spatrick 
275*09467b48Spatrick     // Move terminator instruction.
276*09467b48Spatrick     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
277*09467b48Spatrick 
278*09467b48Spatrick     // Terminator may be a memory accessing instruction too.
279*09467b48Spatrick     if (MSSAU)
280*09467b48Spatrick       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
281*09467b48Spatrick               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
282*09467b48Spatrick         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
283*09467b48Spatrick   }
284*09467b48Spatrick   // Add unreachable to now empty BB.
285*09467b48Spatrick   new UnreachableInst(BB->getContext(), BB);
286*09467b48Spatrick 
287*09467b48Spatrick   // Eliminate duplicate/redundant dbg.values. This seems to be a good place to
288*09467b48Spatrick   // do that since we might end up with redundant dbg.values describing the
289*09467b48Spatrick   // entry PHI node post-splice.
290*09467b48Spatrick   RemoveRedundantDbgInstrs(PredBB);
291*09467b48Spatrick 
292*09467b48Spatrick   // Inherit predecessors name if it exists.
293*09467b48Spatrick   if (!PredBB->hasName())
294*09467b48Spatrick     PredBB->takeName(BB);
295*09467b48Spatrick 
296*09467b48Spatrick   if (LI)
297*09467b48Spatrick     LI->removeBlock(BB);
298*09467b48Spatrick 
299*09467b48Spatrick   if (MemDep)
300*09467b48Spatrick     MemDep->invalidateCachedPredecessors();
301*09467b48Spatrick 
302*09467b48Spatrick   // Finally, erase the old block and update dominator info.
303*09467b48Spatrick   if (DTU) {
304*09467b48Spatrick     assert(BB->getInstList().size() == 1 &&
305*09467b48Spatrick            isa<UnreachableInst>(BB->getTerminator()) &&
306*09467b48Spatrick            "The successor list of BB isn't empty before "
307*09467b48Spatrick            "applying corresponding DTU updates.");
308*09467b48Spatrick     DTU->applyUpdatesPermissive(Updates);
309*09467b48Spatrick     DTU->deleteBB(BB);
310*09467b48Spatrick   } else {
311*09467b48Spatrick     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
312*09467b48Spatrick   }
313*09467b48Spatrick 
314*09467b48Spatrick   return true;
315*09467b48Spatrick }
316*09467b48Spatrick 
317*09467b48Spatrick /// Remove redundant instructions within sequences of consecutive dbg.value
318*09467b48Spatrick /// instructions. This is done using a backward scan to keep the last dbg.value
319*09467b48Spatrick /// describing a specific variable/fragment.
320*09467b48Spatrick ///
321*09467b48Spatrick /// BackwardScan strategy:
322*09467b48Spatrick /// ----------------------
323*09467b48Spatrick /// Given a sequence of consecutive DbgValueInst like this
324*09467b48Spatrick ///
325*09467b48Spatrick ///   dbg.value ..., "x", FragmentX1  (*)
326*09467b48Spatrick ///   dbg.value ..., "y", FragmentY1
327*09467b48Spatrick ///   dbg.value ..., "x", FragmentX2
328*09467b48Spatrick ///   dbg.value ..., "x", FragmentX1  (**)
329*09467b48Spatrick ///
330*09467b48Spatrick /// then the instruction marked with (*) can be removed (it is guaranteed to be
331*09467b48Spatrick /// obsoleted by the instruction marked with (**) as the latter instruction is
332*09467b48Spatrick /// describing the same variable using the same fragment info).
333*09467b48Spatrick ///
334*09467b48Spatrick /// Possible improvements:
335*09467b48Spatrick /// - Check fully overlapping fragments and not only identical fragments.
336*09467b48Spatrick /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
337*09467b48Spatrick ///   instructions being part of the sequence of consecutive instructions.
338*09467b48Spatrick static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
339*09467b48Spatrick   SmallVector<DbgValueInst *, 8> ToBeRemoved;
340*09467b48Spatrick   SmallDenseSet<DebugVariable> VariableSet;
341*09467b48Spatrick   for (auto &I : reverse(*BB)) {
342*09467b48Spatrick     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
343*09467b48Spatrick       DebugVariable Key(DVI->getVariable(),
344*09467b48Spatrick                         DVI->getExpression(),
345*09467b48Spatrick                         DVI->getDebugLoc()->getInlinedAt());
346*09467b48Spatrick       auto R = VariableSet.insert(Key);
347*09467b48Spatrick       // If the same variable fragment is described more than once it is enough
348*09467b48Spatrick       // to keep the last one (i.e. the first found since we for reverse
349*09467b48Spatrick       // iteration).
350*09467b48Spatrick       if (!R.second)
351*09467b48Spatrick         ToBeRemoved.push_back(DVI);
352*09467b48Spatrick       continue;
353*09467b48Spatrick     }
354*09467b48Spatrick     // Sequence with consecutive dbg.value instrs ended. Clear the map to
355*09467b48Spatrick     // restart identifying redundant instructions if case we find another
356*09467b48Spatrick     // dbg.value sequence.
357*09467b48Spatrick     VariableSet.clear();
358*09467b48Spatrick   }
359*09467b48Spatrick 
360*09467b48Spatrick   for (auto &Instr : ToBeRemoved)
361*09467b48Spatrick     Instr->eraseFromParent();
362*09467b48Spatrick 
363*09467b48Spatrick   return !ToBeRemoved.empty();
364*09467b48Spatrick }
365*09467b48Spatrick 
366*09467b48Spatrick /// Remove redundant dbg.value instructions using a forward scan. This can
367*09467b48Spatrick /// remove a dbg.value instruction that is redundant due to indicating that a
368*09467b48Spatrick /// variable has the same value as already being indicated by an earlier
369*09467b48Spatrick /// dbg.value.
370*09467b48Spatrick ///
371*09467b48Spatrick /// ForwardScan strategy:
372*09467b48Spatrick /// ---------------------
373*09467b48Spatrick /// Given two identical dbg.value instructions, separated by a block of
374*09467b48Spatrick /// instructions that isn't describing the same variable, like this
375*09467b48Spatrick ///
376*09467b48Spatrick ///   dbg.value X1, "x", FragmentX1  (**)
377*09467b48Spatrick ///   <block of instructions, none being "dbg.value ..., "x", ...">
378*09467b48Spatrick ///   dbg.value X1, "x", FragmentX1  (*)
379*09467b48Spatrick ///
380*09467b48Spatrick /// then the instruction marked with (*) can be removed. Variable "x" is already
381*09467b48Spatrick /// described as being mapped to the SSA value X1.
382*09467b48Spatrick ///
383*09467b48Spatrick /// Possible improvements:
384*09467b48Spatrick /// - Keep track of non-overlapping fragments.
385*09467b48Spatrick static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
386*09467b48Spatrick   SmallVector<DbgValueInst *, 8> ToBeRemoved;
387*09467b48Spatrick   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
388*09467b48Spatrick   for (auto &I : *BB) {
389*09467b48Spatrick     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
390*09467b48Spatrick       DebugVariable Key(DVI->getVariable(),
391*09467b48Spatrick                         NoneType(),
392*09467b48Spatrick                         DVI->getDebugLoc()->getInlinedAt());
393*09467b48Spatrick       auto VMI = VariableMap.find(Key);
394*09467b48Spatrick       // Update the map if we found a new value/expression describing the
395*09467b48Spatrick       // variable, or if the variable wasn't mapped already.
396*09467b48Spatrick       if (VMI == VariableMap.end() ||
397*09467b48Spatrick           VMI->second.first != DVI->getValue() ||
398*09467b48Spatrick           VMI->second.second != DVI->getExpression()) {
399*09467b48Spatrick         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
400*09467b48Spatrick         continue;
401*09467b48Spatrick       }
402*09467b48Spatrick       // Found an identical mapping. Remember the instruction for later removal.
403*09467b48Spatrick       ToBeRemoved.push_back(DVI);
404*09467b48Spatrick     }
405*09467b48Spatrick   }
406*09467b48Spatrick 
407*09467b48Spatrick   for (auto &Instr : ToBeRemoved)
408*09467b48Spatrick     Instr->eraseFromParent();
409*09467b48Spatrick 
410*09467b48Spatrick   return !ToBeRemoved.empty();
411*09467b48Spatrick }
412*09467b48Spatrick 
413*09467b48Spatrick bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
414*09467b48Spatrick   bool MadeChanges = false;
415*09467b48Spatrick   // By using the "backward scan" strategy before the "forward scan" strategy we
416*09467b48Spatrick   // can remove both dbg.value (2) and (3) in a situation like this:
417*09467b48Spatrick   //
418*09467b48Spatrick   //   (1) dbg.value V1, "x", DIExpression()
419*09467b48Spatrick   //       ...
420*09467b48Spatrick   //   (2) dbg.value V2, "x", DIExpression()
421*09467b48Spatrick   //   (3) dbg.value V1, "x", DIExpression()
422*09467b48Spatrick   //
423*09467b48Spatrick   // The backward scan will remove (2), it is made obsolete by (3). After
424*09467b48Spatrick   // getting (2) out of the way, the foward scan will remove (3) since "x"
425*09467b48Spatrick   // already is described as having the value V1 at (1).
426*09467b48Spatrick   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
427*09467b48Spatrick   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
428*09467b48Spatrick 
429*09467b48Spatrick   if (MadeChanges)
430*09467b48Spatrick     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
431*09467b48Spatrick                       << BB->getName() << "\n");
432*09467b48Spatrick   return MadeChanges;
433*09467b48Spatrick }
434*09467b48Spatrick 
435*09467b48Spatrick void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
436*09467b48Spatrick                                 BasicBlock::iterator &BI, Value *V) {
437*09467b48Spatrick   Instruction &I = *BI;
438*09467b48Spatrick   // Replaces all of the uses of the instruction with uses of the value
439*09467b48Spatrick   I.replaceAllUsesWith(V);
440*09467b48Spatrick 
441*09467b48Spatrick   // Make sure to propagate a name if there is one already.
442*09467b48Spatrick   if (I.hasName() && !V->hasName())
443*09467b48Spatrick     V->takeName(&I);
444*09467b48Spatrick 
445*09467b48Spatrick   // Delete the unnecessary instruction now...
446*09467b48Spatrick   BI = BIL.erase(BI);
447*09467b48Spatrick }
448*09467b48Spatrick 
449*09467b48Spatrick void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
450*09467b48Spatrick                                BasicBlock::iterator &BI, Instruction *I) {
451*09467b48Spatrick   assert(I->getParent() == nullptr &&
452*09467b48Spatrick          "ReplaceInstWithInst: Instruction already inserted into basic block!");
453*09467b48Spatrick 
454*09467b48Spatrick   // Copy debug location to newly added instruction, if it wasn't already set
455*09467b48Spatrick   // by the caller.
456*09467b48Spatrick   if (!I->getDebugLoc())
457*09467b48Spatrick     I->setDebugLoc(BI->getDebugLoc());
458*09467b48Spatrick 
459*09467b48Spatrick   // Insert the new instruction into the basic block...
460*09467b48Spatrick   BasicBlock::iterator New = BIL.insert(BI, I);
461*09467b48Spatrick 
462*09467b48Spatrick   // Replace all uses of the old instruction, and delete it.
463*09467b48Spatrick   ReplaceInstWithValue(BIL, BI, I);
464*09467b48Spatrick 
465*09467b48Spatrick   // Move BI back to point to the newly inserted instruction
466*09467b48Spatrick   BI = New;
467*09467b48Spatrick }
468*09467b48Spatrick 
469*09467b48Spatrick void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
470*09467b48Spatrick   BasicBlock::iterator BI(From);
471*09467b48Spatrick   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
472*09467b48Spatrick }
473*09467b48Spatrick 
474*09467b48Spatrick BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
475*09467b48Spatrick                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
476*09467b48Spatrick   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
477*09467b48Spatrick 
478*09467b48Spatrick   // If this is a critical edge, let SplitCriticalEdge do it.
479*09467b48Spatrick   Instruction *LatchTerm = BB->getTerminator();
480*09467b48Spatrick   if (SplitCriticalEdge(
481*09467b48Spatrick           LatchTerm, SuccNum,
482*09467b48Spatrick           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
483*09467b48Spatrick     return LatchTerm->getSuccessor(SuccNum);
484*09467b48Spatrick 
485*09467b48Spatrick   // If the edge isn't critical, then BB has a single successor or Succ has a
486*09467b48Spatrick   // single pred.  Split the block.
487*09467b48Spatrick   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
488*09467b48Spatrick     // If the successor only has a single pred, split the top of the successor
489*09467b48Spatrick     // block.
490*09467b48Spatrick     assert(SP == BB && "CFG broken");
491*09467b48Spatrick     SP = nullptr;
492*09467b48Spatrick     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
493*09467b48Spatrick   }
494*09467b48Spatrick 
495*09467b48Spatrick   // Otherwise, if BB has a single successor, split it at the bottom of the
496*09467b48Spatrick   // block.
497*09467b48Spatrick   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
498*09467b48Spatrick          "Should have a single succ!");
499*09467b48Spatrick   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
500*09467b48Spatrick }
501*09467b48Spatrick 
502*09467b48Spatrick unsigned
503*09467b48Spatrick llvm::SplitAllCriticalEdges(Function &F,
504*09467b48Spatrick                             const CriticalEdgeSplittingOptions &Options) {
505*09467b48Spatrick   unsigned NumBroken = 0;
506*09467b48Spatrick   for (BasicBlock &BB : F) {
507*09467b48Spatrick     Instruction *TI = BB.getTerminator();
508*09467b48Spatrick     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
509*09467b48Spatrick         !isa<CallBrInst>(TI))
510*09467b48Spatrick       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
511*09467b48Spatrick         if (SplitCriticalEdge(TI, i, Options))
512*09467b48Spatrick           ++NumBroken;
513*09467b48Spatrick   }
514*09467b48Spatrick   return NumBroken;
515*09467b48Spatrick }
516*09467b48Spatrick 
517*09467b48Spatrick BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
518*09467b48Spatrick                              DominatorTree *DT, LoopInfo *LI,
519*09467b48Spatrick                              MemorySSAUpdater *MSSAU, const Twine &BBName) {
520*09467b48Spatrick   BasicBlock::iterator SplitIt = SplitPt->getIterator();
521*09467b48Spatrick   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
522*09467b48Spatrick     ++SplitIt;
523*09467b48Spatrick   std::string Name = BBName.str();
524*09467b48Spatrick   BasicBlock *New = Old->splitBasicBlock(
525*09467b48Spatrick       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
526*09467b48Spatrick 
527*09467b48Spatrick   // The new block lives in whichever loop the old one did. This preserves
528*09467b48Spatrick   // LCSSA as well, because we force the split point to be after any PHI nodes.
529*09467b48Spatrick   if (LI)
530*09467b48Spatrick     if (Loop *L = LI->getLoopFor(Old))
531*09467b48Spatrick       L->addBasicBlockToLoop(New, *LI);
532*09467b48Spatrick 
533*09467b48Spatrick   if (DT)
534*09467b48Spatrick     // Old dominates New. New node dominates all other nodes dominated by Old.
535*09467b48Spatrick     if (DomTreeNode *OldNode = DT->getNode(Old)) {
536*09467b48Spatrick       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
537*09467b48Spatrick 
538*09467b48Spatrick       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
539*09467b48Spatrick       for (DomTreeNode *I : Children)
540*09467b48Spatrick         DT->changeImmediateDominator(I, NewNode);
541*09467b48Spatrick     }
542*09467b48Spatrick 
543*09467b48Spatrick   // Move MemoryAccesses still tracked in Old, but part of New now.
544*09467b48Spatrick   // Update accesses in successor blocks accordingly.
545*09467b48Spatrick   if (MSSAU)
546*09467b48Spatrick     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
547*09467b48Spatrick 
548*09467b48Spatrick   return New;
549*09467b48Spatrick }
550*09467b48Spatrick 
551*09467b48Spatrick /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
552*09467b48Spatrick static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
553*09467b48Spatrick                                       ArrayRef<BasicBlock *> Preds,
554*09467b48Spatrick                                       DominatorTree *DT, LoopInfo *LI,
555*09467b48Spatrick                                       MemorySSAUpdater *MSSAU,
556*09467b48Spatrick                                       bool PreserveLCSSA, bool &HasLoopExit) {
557*09467b48Spatrick   // Update dominator tree if available.
558*09467b48Spatrick   if (DT) {
559*09467b48Spatrick     if (OldBB == DT->getRootNode()->getBlock()) {
560*09467b48Spatrick       assert(NewBB == &NewBB->getParent()->getEntryBlock());
561*09467b48Spatrick       DT->setNewRoot(NewBB);
562*09467b48Spatrick     } else {
563*09467b48Spatrick       // Split block expects NewBB to have a non-empty set of predecessors.
564*09467b48Spatrick       DT->splitBlock(NewBB);
565*09467b48Spatrick     }
566*09467b48Spatrick   }
567*09467b48Spatrick 
568*09467b48Spatrick   // Update MemoryPhis after split if MemorySSA is available
569*09467b48Spatrick   if (MSSAU)
570*09467b48Spatrick     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
571*09467b48Spatrick 
572*09467b48Spatrick   // The rest of the logic is only relevant for updating the loop structures.
573*09467b48Spatrick   if (!LI)
574*09467b48Spatrick     return;
575*09467b48Spatrick 
576*09467b48Spatrick   assert(DT && "DT should be available to update LoopInfo!");
577*09467b48Spatrick   Loop *L = LI->getLoopFor(OldBB);
578*09467b48Spatrick 
579*09467b48Spatrick   // If we need to preserve loop analyses, collect some information about how
580*09467b48Spatrick   // this split will affect loops.
581*09467b48Spatrick   bool IsLoopEntry = !!L;
582*09467b48Spatrick   bool SplitMakesNewLoopHeader = false;
583*09467b48Spatrick   for (BasicBlock *Pred : Preds) {
584*09467b48Spatrick     // Preds that are not reachable from entry should not be used to identify if
585*09467b48Spatrick     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
586*09467b48Spatrick     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
587*09467b48Spatrick     // as true and make the NewBB the header of some loop. This breaks LI.
588*09467b48Spatrick     if (!DT->isReachableFromEntry(Pred))
589*09467b48Spatrick       continue;
590*09467b48Spatrick     // If we need to preserve LCSSA, determine if any of the preds is a loop
591*09467b48Spatrick     // exit.
592*09467b48Spatrick     if (PreserveLCSSA)
593*09467b48Spatrick       if (Loop *PL = LI->getLoopFor(Pred))
594*09467b48Spatrick         if (!PL->contains(OldBB))
595*09467b48Spatrick           HasLoopExit = true;
596*09467b48Spatrick 
597*09467b48Spatrick     // If we need to preserve LoopInfo, note whether any of the preds crosses
598*09467b48Spatrick     // an interesting loop boundary.
599*09467b48Spatrick     if (!L)
600*09467b48Spatrick       continue;
601*09467b48Spatrick     if (L->contains(Pred))
602*09467b48Spatrick       IsLoopEntry = false;
603*09467b48Spatrick     else
604*09467b48Spatrick       SplitMakesNewLoopHeader = true;
605*09467b48Spatrick   }
606*09467b48Spatrick 
607*09467b48Spatrick   // Unless we have a loop for OldBB, nothing else to do here.
608*09467b48Spatrick   if (!L)
609*09467b48Spatrick     return;
610*09467b48Spatrick 
611*09467b48Spatrick   if (IsLoopEntry) {
612*09467b48Spatrick     // Add the new block to the nearest enclosing loop (and not an adjacent
613*09467b48Spatrick     // loop). To find this, examine each of the predecessors and determine which
614*09467b48Spatrick     // loops enclose them, and select the most-nested loop which contains the
615*09467b48Spatrick     // loop containing the block being split.
616*09467b48Spatrick     Loop *InnermostPredLoop = nullptr;
617*09467b48Spatrick     for (BasicBlock *Pred : Preds) {
618*09467b48Spatrick       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
619*09467b48Spatrick         // Seek a loop which actually contains the block being split (to avoid
620*09467b48Spatrick         // adjacent loops).
621*09467b48Spatrick         while (PredLoop && !PredLoop->contains(OldBB))
622*09467b48Spatrick           PredLoop = PredLoop->getParentLoop();
623*09467b48Spatrick 
624*09467b48Spatrick         // Select the most-nested of these loops which contains the block.
625*09467b48Spatrick         if (PredLoop && PredLoop->contains(OldBB) &&
626*09467b48Spatrick             (!InnermostPredLoop ||
627*09467b48Spatrick              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
628*09467b48Spatrick           InnermostPredLoop = PredLoop;
629*09467b48Spatrick       }
630*09467b48Spatrick     }
631*09467b48Spatrick 
632*09467b48Spatrick     if (InnermostPredLoop)
633*09467b48Spatrick       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
634*09467b48Spatrick   } else {
635*09467b48Spatrick     L->addBasicBlockToLoop(NewBB, *LI);
636*09467b48Spatrick     if (SplitMakesNewLoopHeader)
637*09467b48Spatrick       L->moveToHeader(NewBB);
638*09467b48Spatrick   }
639*09467b48Spatrick }
640*09467b48Spatrick 
641*09467b48Spatrick /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
642*09467b48Spatrick /// This also updates AliasAnalysis, if available.
643*09467b48Spatrick static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
644*09467b48Spatrick                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
645*09467b48Spatrick                            bool HasLoopExit) {
646*09467b48Spatrick   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
647*09467b48Spatrick   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
648*09467b48Spatrick   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
649*09467b48Spatrick     PHINode *PN = cast<PHINode>(I++);
650*09467b48Spatrick 
651*09467b48Spatrick     // Check to see if all of the values coming in are the same.  If so, we
652*09467b48Spatrick     // don't need to create a new PHI node, unless it's needed for LCSSA.
653*09467b48Spatrick     Value *InVal = nullptr;
654*09467b48Spatrick     if (!HasLoopExit) {
655*09467b48Spatrick       InVal = PN->getIncomingValueForBlock(Preds[0]);
656*09467b48Spatrick       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
657*09467b48Spatrick         if (!PredSet.count(PN->getIncomingBlock(i)))
658*09467b48Spatrick           continue;
659*09467b48Spatrick         if (!InVal)
660*09467b48Spatrick           InVal = PN->getIncomingValue(i);
661*09467b48Spatrick         else if (InVal != PN->getIncomingValue(i)) {
662*09467b48Spatrick           InVal = nullptr;
663*09467b48Spatrick           break;
664*09467b48Spatrick         }
665*09467b48Spatrick       }
666*09467b48Spatrick     }
667*09467b48Spatrick 
668*09467b48Spatrick     if (InVal) {
669*09467b48Spatrick       // If all incoming values for the new PHI would be the same, just don't
670*09467b48Spatrick       // make a new PHI.  Instead, just remove the incoming values from the old
671*09467b48Spatrick       // PHI.
672*09467b48Spatrick 
673*09467b48Spatrick       // NOTE! This loop walks backwards for a reason! First off, this minimizes
674*09467b48Spatrick       // the cost of removal if we end up removing a large number of values, and
675*09467b48Spatrick       // second off, this ensures that the indices for the incoming values
676*09467b48Spatrick       // aren't invalidated when we remove one.
677*09467b48Spatrick       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
678*09467b48Spatrick         if (PredSet.count(PN->getIncomingBlock(i)))
679*09467b48Spatrick           PN->removeIncomingValue(i, false);
680*09467b48Spatrick 
681*09467b48Spatrick       // Add an incoming value to the PHI node in the loop for the preheader
682*09467b48Spatrick       // edge.
683*09467b48Spatrick       PN->addIncoming(InVal, NewBB);
684*09467b48Spatrick       continue;
685*09467b48Spatrick     }
686*09467b48Spatrick 
687*09467b48Spatrick     // If the values coming into the block are not the same, we need a new
688*09467b48Spatrick     // PHI.
689*09467b48Spatrick     // Create the new PHI node, insert it into NewBB at the end of the block
690*09467b48Spatrick     PHINode *NewPHI =
691*09467b48Spatrick         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
692*09467b48Spatrick 
693*09467b48Spatrick     // NOTE! This loop walks backwards for a reason! First off, this minimizes
694*09467b48Spatrick     // the cost of removal if we end up removing a large number of values, and
695*09467b48Spatrick     // second off, this ensures that the indices for the incoming values aren't
696*09467b48Spatrick     // invalidated when we remove one.
697*09467b48Spatrick     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
698*09467b48Spatrick       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
699*09467b48Spatrick       if (PredSet.count(IncomingBB)) {
700*09467b48Spatrick         Value *V = PN->removeIncomingValue(i, false);
701*09467b48Spatrick         NewPHI->addIncoming(V, IncomingBB);
702*09467b48Spatrick       }
703*09467b48Spatrick     }
704*09467b48Spatrick 
705*09467b48Spatrick     PN->addIncoming(NewPHI, NewBB);
706*09467b48Spatrick   }
707*09467b48Spatrick }
708*09467b48Spatrick 
709*09467b48Spatrick BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
710*09467b48Spatrick                                          ArrayRef<BasicBlock *> Preds,
711*09467b48Spatrick                                          const char *Suffix, DominatorTree *DT,
712*09467b48Spatrick                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
713*09467b48Spatrick                                          bool PreserveLCSSA) {
714*09467b48Spatrick   // Do not attempt to split that which cannot be split.
715*09467b48Spatrick   if (!BB->canSplitPredecessors())
716*09467b48Spatrick     return nullptr;
717*09467b48Spatrick 
718*09467b48Spatrick   // For the landingpads we need to act a bit differently.
719*09467b48Spatrick   // Delegate this work to the SplitLandingPadPredecessors.
720*09467b48Spatrick   if (BB->isLandingPad()) {
721*09467b48Spatrick     SmallVector<BasicBlock*, 2> NewBBs;
722*09467b48Spatrick     std::string NewName = std::string(Suffix) + ".split-lp";
723*09467b48Spatrick 
724*09467b48Spatrick     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
725*09467b48Spatrick                                 LI, MSSAU, PreserveLCSSA);
726*09467b48Spatrick     return NewBBs[0];
727*09467b48Spatrick   }
728*09467b48Spatrick 
729*09467b48Spatrick   // Create new basic block, insert right before the original block.
730*09467b48Spatrick   BasicBlock *NewBB = BasicBlock::Create(
731*09467b48Spatrick       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
732*09467b48Spatrick 
733*09467b48Spatrick   // The new block unconditionally branches to the old block.
734*09467b48Spatrick   BranchInst *BI = BranchInst::Create(BB, NewBB);
735*09467b48Spatrick   // Splitting the predecessors of a loop header creates a preheader block.
736*09467b48Spatrick   if (LI && LI->isLoopHeader(BB))
737*09467b48Spatrick     // Using the loop start line number prevents debuggers stepping into the
738*09467b48Spatrick     // loop body for this instruction.
739*09467b48Spatrick     BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
740*09467b48Spatrick   else
741*09467b48Spatrick     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
742*09467b48Spatrick 
743*09467b48Spatrick   // Move the edges from Preds to point to NewBB instead of BB.
744*09467b48Spatrick   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
745*09467b48Spatrick     // This is slightly more strict than necessary; the minimum requirement
746*09467b48Spatrick     // is that there be no more than one indirectbr branching to BB. And
747*09467b48Spatrick     // all BlockAddress uses would need to be updated.
748*09467b48Spatrick     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
749*09467b48Spatrick            "Cannot split an edge from an IndirectBrInst");
750*09467b48Spatrick     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
751*09467b48Spatrick            "Cannot split an edge from a CallBrInst");
752*09467b48Spatrick     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
753*09467b48Spatrick   }
754*09467b48Spatrick 
755*09467b48Spatrick   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
756*09467b48Spatrick   // node becomes an incoming value for BB's phi node.  However, if the Preds
757*09467b48Spatrick   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
758*09467b48Spatrick   // account for the newly created predecessor.
759*09467b48Spatrick   if (Preds.empty()) {
760*09467b48Spatrick     // Insert dummy values as the incoming value.
761*09467b48Spatrick     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
762*09467b48Spatrick       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
763*09467b48Spatrick   }
764*09467b48Spatrick 
765*09467b48Spatrick   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
766*09467b48Spatrick   bool HasLoopExit = false;
767*09467b48Spatrick   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
768*09467b48Spatrick                             HasLoopExit);
769*09467b48Spatrick 
770*09467b48Spatrick   if (!Preds.empty()) {
771*09467b48Spatrick     // Update the PHI nodes in BB with the values coming from NewBB.
772*09467b48Spatrick     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
773*09467b48Spatrick   }
774*09467b48Spatrick 
775*09467b48Spatrick   return NewBB;
776*09467b48Spatrick }
777*09467b48Spatrick 
778*09467b48Spatrick void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
779*09467b48Spatrick                                        ArrayRef<BasicBlock *> Preds,
780*09467b48Spatrick                                        const char *Suffix1, const char *Suffix2,
781*09467b48Spatrick                                        SmallVectorImpl<BasicBlock *> &NewBBs,
782*09467b48Spatrick                                        DominatorTree *DT, LoopInfo *LI,
783*09467b48Spatrick                                        MemorySSAUpdater *MSSAU,
784*09467b48Spatrick                                        bool PreserveLCSSA) {
785*09467b48Spatrick   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
786*09467b48Spatrick 
787*09467b48Spatrick   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
788*09467b48Spatrick   // it right before the original block.
789*09467b48Spatrick   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
790*09467b48Spatrick                                           OrigBB->getName() + Suffix1,
791*09467b48Spatrick                                           OrigBB->getParent(), OrigBB);
792*09467b48Spatrick   NewBBs.push_back(NewBB1);
793*09467b48Spatrick 
794*09467b48Spatrick   // The new block unconditionally branches to the old block.
795*09467b48Spatrick   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
796*09467b48Spatrick   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
797*09467b48Spatrick 
798*09467b48Spatrick   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
799*09467b48Spatrick   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
800*09467b48Spatrick     // This is slightly more strict than necessary; the minimum requirement
801*09467b48Spatrick     // is that there be no more than one indirectbr branching to BB. And
802*09467b48Spatrick     // all BlockAddress uses would need to be updated.
803*09467b48Spatrick     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
804*09467b48Spatrick            "Cannot split an edge from an IndirectBrInst");
805*09467b48Spatrick     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
806*09467b48Spatrick   }
807*09467b48Spatrick 
808*09467b48Spatrick   bool HasLoopExit = false;
809*09467b48Spatrick   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
810*09467b48Spatrick                             HasLoopExit);
811*09467b48Spatrick 
812*09467b48Spatrick   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
813*09467b48Spatrick   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
814*09467b48Spatrick 
815*09467b48Spatrick   // Move the remaining edges from OrigBB to point to NewBB2.
816*09467b48Spatrick   SmallVector<BasicBlock*, 8> NewBB2Preds;
817*09467b48Spatrick   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
818*09467b48Spatrick        i != e; ) {
819*09467b48Spatrick     BasicBlock *Pred = *i++;
820*09467b48Spatrick     if (Pred == NewBB1) continue;
821*09467b48Spatrick     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
822*09467b48Spatrick            "Cannot split an edge from an IndirectBrInst");
823*09467b48Spatrick     NewBB2Preds.push_back(Pred);
824*09467b48Spatrick     e = pred_end(OrigBB);
825*09467b48Spatrick   }
826*09467b48Spatrick 
827*09467b48Spatrick   BasicBlock *NewBB2 = nullptr;
828*09467b48Spatrick   if (!NewBB2Preds.empty()) {
829*09467b48Spatrick     // Create another basic block for the rest of OrigBB's predecessors.
830*09467b48Spatrick     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
831*09467b48Spatrick                                 OrigBB->getName() + Suffix2,
832*09467b48Spatrick                                 OrigBB->getParent(), OrigBB);
833*09467b48Spatrick     NewBBs.push_back(NewBB2);
834*09467b48Spatrick 
835*09467b48Spatrick     // The new block unconditionally branches to the old block.
836*09467b48Spatrick     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
837*09467b48Spatrick     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
838*09467b48Spatrick 
839*09467b48Spatrick     // Move the remaining edges from OrigBB to point to NewBB2.
840*09467b48Spatrick     for (BasicBlock *NewBB2Pred : NewBB2Preds)
841*09467b48Spatrick       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
842*09467b48Spatrick 
843*09467b48Spatrick     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
844*09467b48Spatrick     HasLoopExit = false;
845*09467b48Spatrick     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
846*09467b48Spatrick                               PreserveLCSSA, HasLoopExit);
847*09467b48Spatrick 
848*09467b48Spatrick     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
849*09467b48Spatrick     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
850*09467b48Spatrick   }
851*09467b48Spatrick 
852*09467b48Spatrick   LandingPadInst *LPad = OrigBB->getLandingPadInst();
853*09467b48Spatrick   Instruction *Clone1 = LPad->clone();
854*09467b48Spatrick   Clone1->setName(Twine("lpad") + Suffix1);
855*09467b48Spatrick   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
856*09467b48Spatrick 
857*09467b48Spatrick   if (NewBB2) {
858*09467b48Spatrick     Instruction *Clone2 = LPad->clone();
859*09467b48Spatrick     Clone2->setName(Twine("lpad") + Suffix2);
860*09467b48Spatrick     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
861*09467b48Spatrick 
862*09467b48Spatrick     // Create a PHI node for the two cloned landingpad instructions only
863*09467b48Spatrick     // if the original landingpad instruction has some uses.
864*09467b48Spatrick     if (!LPad->use_empty()) {
865*09467b48Spatrick       assert(!LPad->getType()->isTokenTy() &&
866*09467b48Spatrick              "Split cannot be applied if LPad is token type. Otherwise an "
867*09467b48Spatrick              "invalid PHINode of token type would be created.");
868*09467b48Spatrick       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
869*09467b48Spatrick       PN->addIncoming(Clone1, NewBB1);
870*09467b48Spatrick       PN->addIncoming(Clone2, NewBB2);
871*09467b48Spatrick       LPad->replaceAllUsesWith(PN);
872*09467b48Spatrick     }
873*09467b48Spatrick     LPad->eraseFromParent();
874*09467b48Spatrick   } else {
875*09467b48Spatrick     // There is no second clone. Just replace the landing pad with the first
876*09467b48Spatrick     // clone.
877*09467b48Spatrick     LPad->replaceAllUsesWith(Clone1);
878*09467b48Spatrick     LPad->eraseFromParent();
879*09467b48Spatrick   }
880*09467b48Spatrick }
881*09467b48Spatrick 
882*09467b48Spatrick ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
883*09467b48Spatrick                                              BasicBlock *Pred,
884*09467b48Spatrick                                              DomTreeUpdater *DTU) {
885*09467b48Spatrick   Instruction *UncondBranch = Pred->getTerminator();
886*09467b48Spatrick   // Clone the return and add it to the end of the predecessor.
887*09467b48Spatrick   Instruction *NewRet = RI->clone();
888*09467b48Spatrick   Pred->getInstList().push_back(NewRet);
889*09467b48Spatrick 
890*09467b48Spatrick   // If the return instruction returns a value, and if the value was a
891*09467b48Spatrick   // PHI node in "BB", propagate the right value into the return.
892*09467b48Spatrick   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
893*09467b48Spatrick        i != e; ++i) {
894*09467b48Spatrick     Value *V = *i;
895*09467b48Spatrick     Instruction *NewBC = nullptr;
896*09467b48Spatrick     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
897*09467b48Spatrick       // Return value might be bitcasted. Clone and insert it before the
898*09467b48Spatrick       // return instruction.
899*09467b48Spatrick       V = BCI->getOperand(0);
900*09467b48Spatrick       NewBC = BCI->clone();
901*09467b48Spatrick       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
902*09467b48Spatrick       *i = NewBC;
903*09467b48Spatrick     }
904*09467b48Spatrick     if (PHINode *PN = dyn_cast<PHINode>(V)) {
905*09467b48Spatrick       if (PN->getParent() == BB) {
906*09467b48Spatrick         if (NewBC)
907*09467b48Spatrick           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
908*09467b48Spatrick         else
909*09467b48Spatrick           *i = PN->getIncomingValueForBlock(Pred);
910*09467b48Spatrick       }
911*09467b48Spatrick     }
912*09467b48Spatrick   }
913*09467b48Spatrick 
914*09467b48Spatrick   // Update any PHI nodes in the returning block to realize that we no
915*09467b48Spatrick   // longer branch to them.
916*09467b48Spatrick   BB->removePredecessor(Pred);
917*09467b48Spatrick   UncondBranch->eraseFromParent();
918*09467b48Spatrick 
919*09467b48Spatrick   if (DTU)
920*09467b48Spatrick     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
921*09467b48Spatrick 
922*09467b48Spatrick   return cast<ReturnInst>(NewRet);
923*09467b48Spatrick }
924*09467b48Spatrick 
925*09467b48Spatrick Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
926*09467b48Spatrick                                              Instruction *SplitBefore,
927*09467b48Spatrick                                              bool Unreachable,
928*09467b48Spatrick                                              MDNode *BranchWeights,
929*09467b48Spatrick                                              DominatorTree *DT, LoopInfo *LI,
930*09467b48Spatrick                                              BasicBlock *ThenBlock) {
931*09467b48Spatrick   BasicBlock *Head = SplitBefore->getParent();
932*09467b48Spatrick   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
933*09467b48Spatrick   Instruction *HeadOldTerm = Head->getTerminator();
934*09467b48Spatrick   LLVMContext &C = Head->getContext();
935*09467b48Spatrick   Instruction *CheckTerm;
936*09467b48Spatrick   bool CreateThenBlock = (ThenBlock == nullptr);
937*09467b48Spatrick   if (CreateThenBlock) {
938*09467b48Spatrick     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
939*09467b48Spatrick     if (Unreachable)
940*09467b48Spatrick       CheckTerm = new UnreachableInst(C, ThenBlock);
941*09467b48Spatrick     else
942*09467b48Spatrick       CheckTerm = BranchInst::Create(Tail, ThenBlock);
943*09467b48Spatrick     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
944*09467b48Spatrick   } else
945*09467b48Spatrick     CheckTerm = ThenBlock->getTerminator();
946*09467b48Spatrick   BranchInst *HeadNewTerm =
947*09467b48Spatrick     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
948*09467b48Spatrick   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
949*09467b48Spatrick   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
950*09467b48Spatrick 
951*09467b48Spatrick   if (DT) {
952*09467b48Spatrick     if (DomTreeNode *OldNode = DT->getNode(Head)) {
953*09467b48Spatrick       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
954*09467b48Spatrick 
955*09467b48Spatrick       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
956*09467b48Spatrick       for (DomTreeNode *Child : Children)
957*09467b48Spatrick         DT->changeImmediateDominator(Child, NewNode);
958*09467b48Spatrick 
959*09467b48Spatrick       // Head dominates ThenBlock.
960*09467b48Spatrick       if (CreateThenBlock)
961*09467b48Spatrick         DT->addNewBlock(ThenBlock, Head);
962*09467b48Spatrick       else
963*09467b48Spatrick         DT->changeImmediateDominator(ThenBlock, Head);
964*09467b48Spatrick     }
965*09467b48Spatrick   }
966*09467b48Spatrick 
967*09467b48Spatrick   if (LI) {
968*09467b48Spatrick     if (Loop *L = LI->getLoopFor(Head)) {
969*09467b48Spatrick       L->addBasicBlockToLoop(ThenBlock, *LI);
970*09467b48Spatrick       L->addBasicBlockToLoop(Tail, *LI);
971*09467b48Spatrick     }
972*09467b48Spatrick   }
973*09467b48Spatrick 
974*09467b48Spatrick   return CheckTerm;
975*09467b48Spatrick }
976*09467b48Spatrick 
977*09467b48Spatrick void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
978*09467b48Spatrick                                          Instruction **ThenTerm,
979*09467b48Spatrick                                          Instruction **ElseTerm,
980*09467b48Spatrick                                          MDNode *BranchWeights) {
981*09467b48Spatrick   BasicBlock *Head = SplitBefore->getParent();
982*09467b48Spatrick   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
983*09467b48Spatrick   Instruction *HeadOldTerm = Head->getTerminator();
984*09467b48Spatrick   LLVMContext &C = Head->getContext();
985*09467b48Spatrick   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
986*09467b48Spatrick   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
987*09467b48Spatrick   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
988*09467b48Spatrick   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
989*09467b48Spatrick   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
990*09467b48Spatrick   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
991*09467b48Spatrick   BranchInst *HeadNewTerm =
992*09467b48Spatrick     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
993*09467b48Spatrick   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
994*09467b48Spatrick   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
995*09467b48Spatrick }
996*09467b48Spatrick 
997*09467b48Spatrick Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
998*09467b48Spatrick                              BasicBlock *&IfFalse) {
999*09467b48Spatrick   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1000*09467b48Spatrick   BasicBlock *Pred1 = nullptr;
1001*09467b48Spatrick   BasicBlock *Pred2 = nullptr;
1002*09467b48Spatrick 
1003*09467b48Spatrick   if (SomePHI) {
1004*09467b48Spatrick     if (SomePHI->getNumIncomingValues() != 2)
1005*09467b48Spatrick       return nullptr;
1006*09467b48Spatrick     Pred1 = SomePHI->getIncomingBlock(0);
1007*09467b48Spatrick     Pred2 = SomePHI->getIncomingBlock(1);
1008*09467b48Spatrick   } else {
1009*09467b48Spatrick     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1010*09467b48Spatrick     if (PI == PE) // No predecessor
1011*09467b48Spatrick       return nullptr;
1012*09467b48Spatrick     Pred1 = *PI++;
1013*09467b48Spatrick     if (PI == PE) // Only one predecessor
1014*09467b48Spatrick       return nullptr;
1015*09467b48Spatrick     Pred2 = *PI++;
1016*09467b48Spatrick     if (PI != PE) // More than two predecessors
1017*09467b48Spatrick       return nullptr;
1018*09467b48Spatrick   }
1019*09467b48Spatrick 
1020*09467b48Spatrick   // We can only handle branches.  Other control flow will be lowered to
1021*09467b48Spatrick   // branches if possible anyway.
1022*09467b48Spatrick   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1023*09467b48Spatrick   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1024*09467b48Spatrick   if (!Pred1Br || !Pred2Br)
1025*09467b48Spatrick     return nullptr;
1026*09467b48Spatrick 
1027*09467b48Spatrick   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1028*09467b48Spatrick   // either are.
1029*09467b48Spatrick   if (Pred2Br->isConditional()) {
1030*09467b48Spatrick     // If both branches are conditional, we don't have an "if statement".  In
1031*09467b48Spatrick     // reality, we could transform this case, but since the condition will be
1032*09467b48Spatrick     // required anyway, we stand no chance of eliminating it, so the xform is
1033*09467b48Spatrick     // probably not profitable.
1034*09467b48Spatrick     if (Pred1Br->isConditional())
1035*09467b48Spatrick       return nullptr;
1036*09467b48Spatrick 
1037*09467b48Spatrick     std::swap(Pred1, Pred2);
1038*09467b48Spatrick     std::swap(Pred1Br, Pred2Br);
1039*09467b48Spatrick   }
1040*09467b48Spatrick 
1041*09467b48Spatrick   if (Pred1Br->isConditional()) {
1042*09467b48Spatrick     // The only thing we have to watch out for here is to make sure that Pred2
1043*09467b48Spatrick     // doesn't have incoming edges from other blocks.  If it does, the condition
1044*09467b48Spatrick     // doesn't dominate BB.
1045*09467b48Spatrick     if (!Pred2->getSinglePredecessor())
1046*09467b48Spatrick       return nullptr;
1047*09467b48Spatrick 
1048*09467b48Spatrick     // If we found a conditional branch predecessor, make sure that it branches
1049*09467b48Spatrick     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1050*09467b48Spatrick     if (Pred1Br->getSuccessor(0) == BB &&
1051*09467b48Spatrick         Pred1Br->getSuccessor(1) == Pred2) {
1052*09467b48Spatrick       IfTrue = Pred1;
1053*09467b48Spatrick       IfFalse = Pred2;
1054*09467b48Spatrick     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1055*09467b48Spatrick                Pred1Br->getSuccessor(1) == BB) {
1056*09467b48Spatrick       IfTrue = Pred2;
1057*09467b48Spatrick       IfFalse = Pred1;
1058*09467b48Spatrick     } else {
1059*09467b48Spatrick       // We know that one arm of the conditional goes to BB, so the other must
1060*09467b48Spatrick       // go somewhere unrelated, and this must not be an "if statement".
1061*09467b48Spatrick       return nullptr;
1062*09467b48Spatrick     }
1063*09467b48Spatrick 
1064*09467b48Spatrick     return Pred1Br->getCondition();
1065*09467b48Spatrick   }
1066*09467b48Spatrick 
1067*09467b48Spatrick   // Ok, if we got here, both predecessors end with an unconditional branch to
1068*09467b48Spatrick   // BB.  Don't panic!  If both blocks only have a single (identical)
1069*09467b48Spatrick   // predecessor, and THAT is a conditional branch, then we're all ok!
1070*09467b48Spatrick   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1071*09467b48Spatrick   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1072*09467b48Spatrick     return nullptr;
1073*09467b48Spatrick 
1074*09467b48Spatrick   // Otherwise, if this is a conditional branch, then we can use it!
1075*09467b48Spatrick   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1076*09467b48Spatrick   if (!BI) return nullptr;
1077*09467b48Spatrick 
1078*09467b48Spatrick   assert(BI->isConditional() && "Two successors but not conditional?");
1079*09467b48Spatrick   if (BI->getSuccessor(0) == Pred1) {
1080*09467b48Spatrick     IfTrue = Pred1;
1081*09467b48Spatrick     IfFalse = Pred2;
1082*09467b48Spatrick   } else {
1083*09467b48Spatrick     IfTrue = Pred2;
1084*09467b48Spatrick     IfFalse = Pred1;
1085*09467b48Spatrick   }
1086*09467b48Spatrick   return BI->getCondition();
1087*09467b48Spatrick }
1088