xref: /openbsd-src/gnu/llvm/llvm/lib/Transforms/Instrumentation/CFGMST.h (revision f1dd7b858388b4a23f4f67a4957ec5ff656ebbe8)
1 //===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a Union-find algorithm to compute Minimum Spanning Tree
10 // for a given CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
15 #define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include <utility>
28 #include <vector>
29 
30 #define DEBUG_TYPE "cfgmst"
31 
32 using namespace llvm;
33 static cl::opt<bool> PGOInstrumentEntry(
34     "pgo-instrument-entry", cl::init(false), cl::Hidden,
35     cl::desc("Force to instrument function entry basicblock."));
36 
37 namespace llvm {
38 
39 /// An union-find based Minimum Spanning Tree for CFG
40 ///
41 /// Implements a Union-find algorithm to compute Minimum Spanning Tree
42 /// for a given CFG.
43 template <class Edge, class BBInfo> class CFGMST {
44 public:
45   Function &F;
46 
47   // Store all the edges in CFG. It may contain some stale edges
48   // when Removed is set.
49   std::vector<std::unique_ptr<Edge>> AllEdges;
50 
51   // This map records the auxiliary information for each BB.
52   DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
53 
54   // Whehter the function has an exit block with no successors.
55   // (For function with an infinite loop, this block may be absent)
56   bool ExitBlockFound = false;
57 
58   // Find the root group of the G and compress the path from G to the root.
59   BBInfo *findAndCompressGroup(BBInfo *G) {
60     if (G->Group != G)
61       G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
62     return static_cast<BBInfo *>(G->Group);
63   }
64 
65   // Union BB1 and BB2 into the same group and return true.
66   // Returns false if BB1 and BB2 are already in the same group.
67   bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
68     BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
69     BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
70 
71     if (BB1G == BB2G)
72       return false;
73 
74     // Make the smaller rank tree a direct child or the root of high rank tree.
75     if (BB1G->Rank < BB2G->Rank)
76       BB1G->Group = BB2G;
77     else {
78       BB2G->Group = BB1G;
79       // If the ranks are the same, increment root of one tree by one.
80       if (BB1G->Rank == BB2G->Rank)
81         BB1G->Rank++;
82     }
83     return true;
84   }
85 
86   // Give BB, return the auxiliary information.
87   BBInfo &getBBInfo(const BasicBlock *BB) const {
88     auto It = BBInfos.find(BB);
89     assert(It->second.get() != nullptr);
90     return *It->second.get();
91   }
92 
93   // Give BB, return the auxiliary information if it's available.
94   BBInfo *findBBInfo(const BasicBlock *BB) const {
95     auto It = BBInfos.find(BB);
96     if (It == BBInfos.end())
97       return nullptr;
98     return It->second.get();
99   }
100 
101   // Traverse the CFG using a stack. Find all the edges and assign the weight.
102   // Edges with large weight will be put into MST first so they are less likely
103   // to be instrumented.
104   void buildEdges() {
105     LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
106 
107     const BasicBlock *Entry = &(F.getEntryBlock());
108     uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
109     // If we want to instrument the entry count, lower the weight to 0.
110     if (PGOInstrumentEntry)
111       EntryWeight = 0;
112     Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr,
113          *ExitOutgoing = nullptr, *ExitIncoming = nullptr;
114     uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0;
115 
116     // Add a fake edge to the entry.
117     EntryIncoming = &addEdge(nullptr, Entry, EntryWeight);
118     LLVM_DEBUG(dbgs() << "  Edge: from fake node to " << Entry->getName()
119                       << " w = " << EntryWeight << "\n");
120 
121     // Special handling for single BB functions.
122     if (succ_empty(Entry)) {
123       addEdge(Entry, nullptr, EntryWeight);
124       return;
125     }
126 
127     static const uint32_t CriticalEdgeMultiplier = 1000;
128 
129     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
130       Instruction *TI = BB->getTerminator();
131       uint64_t BBWeight =
132           (BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2);
133       uint64_t Weight = 2;
134       if (int successors = TI->getNumSuccessors()) {
135         for (int i = 0; i != successors; ++i) {
136           BasicBlock *TargetBB = TI->getSuccessor(i);
137           bool Critical = isCriticalEdge(TI, i);
138           uint64_t scaleFactor = BBWeight;
139           if (Critical) {
140             if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
141               scaleFactor *= CriticalEdgeMultiplier;
142             else
143               scaleFactor = UINT64_MAX;
144           }
145           if (BPI != nullptr)
146             Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor);
147           if (Weight == 0)
148             Weight++;
149           auto *E = &addEdge(&*BB, TargetBB, Weight);
150           E->IsCritical = Critical;
151           LLVM_DEBUG(dbgs() << "  Edge: from " << BB->getName() << " to "
152                             << TargetBB->getName() << "  w=" << Weight << "\n");
153 
154           // Keep track of entry/exit edges:
155           if (&*BB == Entry) {
156             if (Weight > MaxEntryOutWeight) {
157               MaxEntryOutWeight = Weight;
158               EntryOutgoing = E;
159             }
160           }
161 
162           auto *TargetTI = TargetBB->getTerminator();
163           if (TargetTI && !TargetTI->getNumSuccessors()) {
164             if (Weight > MaxExitInWeight) {
165               MaxExitInWeight = Weight;
166               ExitIncoming = E;
167             }
168           }
169         }
170       } else {
171         ExitBlockFound = true;
172         Edge *ExitO = &addEdge(&*BB, nullptr, BBWeight);
173         if (BBWeight > MaxExitOutWeight) {
174           MaxExitOutWeight = BBWeight;
175           ExitOutgoing = ExitO;
176         }
177         LLVM_DEBUG(dbgs() << "  Edge: from " << BB->getName() << " to fake exit"
178                           << " w = " << BBWeight << "\n");
179       }
180     }
181 
182     // Entry/exit edge adjustment heurisitic:
183     // prefer instrumenting entry edge over exit edge
184     // if possible. Those exit edges may never have a chance to be
185     // executed (for instance the program is an event handling loop)
186     // before the profile is asynchronously dumped.
187     //
188     // If EntryIncoming and ExitOutgoing has similar weight, make sure
189     // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing
190     // and ExitIncoming has similar weight, make sure ExitIncoming becomes
191     // the min-edge.
192     uint64_t EntryInWeight = EntryWeight;
193 
194     if (EntryInWeight >= MaxExitOutWeight &&
195         EntryInWeight * 2 < MaxExitOutWeight * 3) {
196       EntryIncoming->Weight = MaxExitOutWeight;
197       ExitOutgoing->Weight = EntryInWeight + 1;
198     }
199 
200     if (MaxEntryOutWeight >= MaxExitInWeight &&
201         MaxEntryOutWeight * 2 < MaxExitInWeight * 3) {
202       EntryOutgoing->Weight = MaxExitInWeight;
203       ExitIncoming->Weight = MaxEntryOutWeight + 1;
204     }
205   }
206 
207   // Sort CFG edges based on its weight.
208   void sortEdgesByWeight() {
209     llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1,
210                                    const std::unique_ptr<Edge> &Edge2) {
211       return Edge1->Weight > Edge2->Weight;
212     });
213   }
214 
215   // Traverse all the edges and compute the Minimum Weight Spanning Tree
216   // using union-find algorithm.
217   void computeMinimumSpanningTree() {
218     // First, put all the critical edge with landing-pad as the Dest to MST.
219     // This works around the insufficient support of critical edges split
220     // when destination BB is a landing pad.
221     for (auto &Ei : AllEdges) {
222       if (Ei->Removed)
223         continue;
224       if (Ei->IsCritical) {
225         if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
226           if (unionGroups(Ei->SrcBB, Ei->DestBB))
227             Ei->InMST = true;
228         }
229       }
230     }
231 
232     for (auto &Ei : AllEdges) {
233       if (Ei->Removed)
234         continue;
235       // If we detect infinite loops, force
236       // instrumenting the entry edge:
237       if (!ExitBlockFound && Ei->SrcBB == nullptr)
238         continue;
239       if (unionGroups(Ei->SrcBB, Ei->DestBB))
240         Ei->InMST = true;
241     }
242   }
243 
244   // Dump the Debug information about the instrumentation.
245   void dumpEdges(raw_ostream &OS, const Twine &Message) const {
246     if (!Message.str().empty())
247       OS << Message << "\n";
248     OS << "  Number of Basic Blocks: " << BBInfos.size() << "\n";
249     for (auto &BI : BBInfos) {
250       const BasicBlock *BB = BI.first;
251       OS << "  BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << "  "
252          << BI.second->infoString() << "\n";
253     }
254 
255     OS << "  Number of Edges: " << AllEdges.size()
256        << " (*: Instrument, C: CriticalEdge, -: Removed)\n";
257     uint32_t Count = 0;
258     for (auto &EI : AllEdges)
259       OS << "  Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
260          << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
261   }
262 
263   // Add an edge to AllEdges with weight W.
264   Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
265     uint32_t Index = BBInfos.size();
266     auto Iter = BBInfos.end();
267     bool Inserted;
268     std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
269     if (Inserted) {
270       // Newly inserted, update the real info.
271       Iter->second = std::move(std::make_unique<BBInfo>(Index));
272       Index++;
273     }
274     std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
275     if (Inserted)
276       // Newly inserted, update the real info.
277       Iter->second = std::move(std::make_unique<BBInfo>(Index));
278     AllEdges.emplace_back(new Edge(Src, Dest, W));
279     return *AllEdges.back();
280   }
281 
282   BranchProbabilityInfo *BPI;
283   BlockFrequencyInfo *BFI;
284 
285 public:
286   CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr,
287          BlockFrequencyInfo *BFI_ = nullptr)
288       : F(Func), BPI(BPI_), BFI(BFI_) {
289     buildEdges();
290     sortEdgesByWeight();
291     computeMinimumSpanningTree();
292     if (PGOInstrumentEntry && (AllEdges.size() > 1))
293       std::iter_swap(std::move(AllEdges.begin()),
294                      std::move(AllEdges.begin() + AllEdges.size() - 1));
295   }
296 };
297 
298 } // end namespace llvm
299 
300 #undef DEBUG_TYPE // "cfgmst"
301 
302 #endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
303