xref: /openbsd-src/gnu/llvm/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp (revision 73471bf04ceb096474c7f0fa83b1b65c70a787a1)
109467b48Spatrick //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
209467b48Spatrick //
309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
609467b48Spatrick //
709467b48Spatrick //===----------------------------------------------------------------------===//
809467b48Spatrick //
909467b48Spatrick // This file implements the visit functions for add, fadd, sub, and fsub.
1009467b48Spatrick //
1109467b48Spatrick //===----------------------------------------------------------------------===//
1209467b48Spatrick 
1309467b48Spatrick #include "InstCombineInternal.h"
1409467b48Spatrick #include "llvm/ADT/APFloat.h"
1509467b48Spatrick #include "llvm/ADT/APInt.h"
1609467b48Spatrick #include "llvm/ADT/STLExtras.h"
1709467b48Spatrick #include "llvm/ADT/SmallVector.h"
1809467b48Spatrick #include "llvm/Analysis/InstructionSimplify.h"
1909467b48Spatrick #include "llvm/Analysis/ValueTracking.h"
2009467b48Spatrick #include "llvm/IR/Constant.h"
2109467b48Spatrick #include "llvm/IR/Constants.h"
2209467b48Spatrick #include "llvm/IR/InstrTypes.h"
2309467b48Spatrick #include "llvm/IR/Instruction.h"
2409467b48Spatrick #include "llvm/IR/Instructions.h"
2509467b48Spatrick #include "llvm/IR/Operator.h"
2609467b48Spatrick #include "llvm/IR/PatternMatch.h"
2709467b48Spatrick #include "llvm/IR/Type.h"
2809467b48Spatrick #include "llvm/IR/Value.h"
2909467b48Spatrick #include "llvm/Support/AlignOf.h"
3009467b48Spatrick #include "llvm/Support/Casting.h"
3109467b48Spatrick #include "llvm/Support/KnownBits.h"
32*73471bf0Spatrick #include "llvm/Transforms/InstCombine/InstCombiner.h"
3309467b48Spatrick #include <cassert>
3409467b48Spatrick #include <utility>
3509467b48Spatrick 
3609467b48Spatrick using namespace llvm;
3709467b48Spatrick using namespace PatternMatch;
3809467b48Spatrick 
3909467b48Spatrick #define DEBUG_TYPE "instcombine"
4009467b48Spatrick 
4109467b48Spatrick namespace {
4209467b48Spatrick 
4309467b48Spatrick   /// Class representing coefficient of floating-point addend.
4409467b48Spatrick   /// This class needs to be highly efficient, which is especially true for
4509467b48Spatrick   /// the constructor. As of I write this comment, the cost of the default
4609467b48Spatrick   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
4709467b48Spatrick   /// perform write-merging).
4809467b48Spatrick   ///
4909467b48Spatrick   class FAddendCoef {
5009467b48Spatrick   public:
5109467b48Spatrick     // The constructor has to initialize a APFloat, which is unnecessary for
5209467b48Spatrick     // most addends which have coefficient either 1 or -1. So, the constructor
5309467b48Spatrick     // is expensive. In order to avoid the cost of the constructor, we should
5409467b48Spatrick     // reuse some instances whenever possible. The pre-created instances
5509467b48Spatrick     // FAddCombine::Add[0-5] embodies this idea.
5609467b48Spatrick     FAddendCoef() = default;
5709467b48Spatrick     ~FAddendCoef();
5809467b48Spatrick 
5909467b48Spatrick     // If possible, don't define operator+/operator- etc because these
6009467b48Spatrick     // operators inevitably call FAddendCoef's constructor which is not cheap.
6109467b48Spatrick     void operator=(const FAddendCoef &A);
6209467b48Spatrick     void operator+=(const FAddendCoef &A);
6309467b48Spatrick     void operator*=(const FAddendCoef &S);
6409467b48Spatrick 
6509467b48Spatrick     void set(short C) {
6609467b48Spatrick       assert(!insaneIntVal(C) && "Insane coefficient");
6709467b48Spatrick       IsFp = false; IntVal = C;
6809467b48Spatrick     }
6909467b48Spatrick 
7009467b48Spatrick     void set(const APFloat& C);
7109467b48Spatrick 
7209467b48Spatrick     void negate();
7309467b48Spatrick 
7409467b48Spatrick     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
7509467b48Spatrick     Value *getValue(Type *) const;
7609467b48Spatrick 
7709467b48Spatrick     bool isOne() const { return isInt() && IntVal == 1; }
7809467b48Spatrick     bool isTwo() const { return isInt() && IntVal == 2; }
7909467b48Spatrick     bool isMinusOne() const { return isInt() && IntVal == -1; }
8009467b48Spatrick     bool isMinusTwo() const { return isInt() && IntVal == -2; }
8109467b48Spatrick 
8209467b48Spatrick   private:
8309467b48Spatrick     bool insaneIntVal(int V) { return V > 4 || V < -4; }
8409467b48Spatrick 
85*73471bf0Spatrick     APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
8609467b48Spatrick 
87*73471bf0Spatrick     const APFloat *getFpValPtr() const {
88*73471bf0Spatrick       return reinterpret_cast<const APFloat *>(&FpValBuf);
89*73471bf0Spatrick     }
9009467b48Spatrick 
9109467b48Spatrick     const APFloat &getFpVal() const {
9209467b48Spatrick       assert(IsFp && BufHasFpVal && "Incorret state");
9309467b48Spatrick       return *getFpValPtr();
9409467b48Spatrick     }
9509467b48Spatrick 
9609467b48Spatrick     APFloat &getFpVal() {
9709467b48Spatrick       assert(IsFp && BufHasFpVal && "Incorret state");
9809467b48Spatrick       return *getFpValPtr();
9909467b48Spatrick     }
10009467b48Spatrick 
10109467b48Spatrick     bool isInt() const { return !IsFp; }
10209467b48Spatrick 
10309467b48Spatrick     // If the coefficient is represented by an integer, promote it to a
10409467b48Spatrick     // floating point.
10509467b48Spatrick     void convertToFpType(const fltSemantics &Sem);
10609467b48Spatrick 
10709467b48Spatrick     // Construct an APFloat from a signed integer.
10809467b48Spatrick     // TODO: We should get rid of this function when APFloat can be constructed
10909467b48Spatrick     //       from an *SIGNED* integer.
11009467b48Spatrick     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
11109467b48Spatrick 
11209467b48Spatrick     bool IsFp = false;
11309467b48Spatrick 
11409467b48Spatrick     // True iff FpValBuf contains an instance of APFloat.
11509467b48Spatrick     bool BufHasFpVal = false;
11609467b48Spatrick 
11709467b48Spatrick     // The integer coefficient of an individual addend is either 1 or -1,
11809467b48Spatrick     // and we try to simplify at most 4 addends from neighboring at most
11909467b48Spatrick     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
12009467b48Spatrick     // is overkill of this end.
12109467b48Spatrick     short IntVal = 0;
12209467b48Spatrick 
12309467b48Spatrick     AlignedCharArrayUnion<APFloat> FpValBuf;
12409467b48Spatrick   };
12509467b48Spatrick 
12609467b48Spatrick   /// FAddend is used to represent floating-point addend. An addend is
12709467b48Spatrick   /// represented as <C, V>, where the V is a symbolic value, and C is a
12809467b48Spatrick   /// constant coefficient. A constant addend is represented as <C, 0>.
12909467b48Spatrick   class FAddend {
13009467b48Spatrick   public:
13109467b48Spatrick     FAddend() = default;
13209467b48Spatrick 
13309467b48Spatrick     void operator+=(const FAddend &T) {
13409467b48Spatrick       assert((Val == T.Val) && "Symbolic-values disagree");
13509467b48Spatrick       Coeff += T.Coeff;
13609467b48Spatrick     }
13709467b48Spatrick 
13809467b48Spatrick     Value *getSymVal() const { return Val; }
13909467b48Spatrick     const FAddendCoef &getCoef() const { return Coeff; }
14009467b48Spatrick 
14109467b48Spatrick     bool isConstant() const { return Val == nullptr; }
14209467b48Spatrick     bool isZero() const { return Coeff.isZero(); }
14309467b48Spatrick 
14409467b48Spatrick     void set(short Coefficient, Value *V) {
14509467b48Spatrick       Coeff.set(Coefficient);
14609467b48Spatrick       Val = V;
14709467b48Spatrick     }
14809467b48Spatrick     void set(const APFloat &Coefficient, Value *V) {
14909467b48Spatrick       Coeff.set(Coefficient);
15009467b48Spatrick       Val = V;
15109467b48Spatrick     }
15209467b48Spatrick     void set(const ConstantFP *Coefficient, Value *V) {
15309467b48Spatrick       Coeff.set(Coefficient->getValueAPF());
15409467b48Spatrick       Val = V;
15509467b48Spatrick     }
15609467b48Spatrick 
15709467b48Spatrick     void negate() { Coeff.negate(); }
15809467b48Spatrick 
15909467b48Spatrick     /// Drill down the U-D chain one step to find the definition of V, and
16009467b48Spatrick     /// try to break the definition into one or two addends.
16109467b48Spatrick     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
16209467b48Spatrick 
16309467b48Spatrick     /// Similar to FAddend::drillDownOneStep() except that the value being
16409467b48Spatrick     /// splitted is the addend itself.
16509467b48Spatrick     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
16609467b48Spatrick 
16709467b48Spatrick   private:
16809467b48Spatrick     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
16909467b48Spatrick 
17009467b48Spatrick     // This addend has the value of "Coeff * Val".
17109467b48Spatrick     Value *Val = nullptr;
17209467b48Spatrick     FAddendCoef Coeff;
17309467b48Spatrick   };
17409467b48Spatrick 
17509467b48Spatrick   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
17609467b48Spatrick   /// with its neighboring at most two instructions.
17709467b48Spatrick   ///
17809467b48Spatrick   class FAddCombine {
17909467b48Spatrick   public:
18009467b48Spatrick     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
18109467b48Spatrick 
18209467b48Spatrick     Value *simplify(Instruction *FAdd);
18309467b48Spatrick 
18409467b48Spatrick   private:
18509467b48Spatrick     using AddendVect = SmallVector<const FAddend *, 4>;
18609467b48Spatrick 
18709467b48Spatrick     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
18809467b48Spatrick 
18909467b48Spatrick     /// Convert given addend to a Value
19009467b48Spatrick     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
19109467b48Spatrick 
19209467b48Spatrick     /// Return the number of instructions needed to emit the N-ary addition.
19309467b48Spatrick     unsigned calcInstrNumber(const AddendVect& Vect);
19409467b48Spatrick 
19509467b48Spatrick     Value *createFSub(Value *Opnd0, Value *Opnd1);
19609467b48Spatrick     Value *createFAdd(Value *Opnd0, Value *Opnd1);
19709467b48Spatrick     Value *createFMul(Value *Opnd0, Value *Opnd1);
19809467b48Spatrick     Value *createFNeg(Value *V);
19909467b48Spatrick     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
20009467b48Spatrick     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
20109467b48Spatrick 
20209467b48Spatrick      // Debugging stuff are clustered here.
20309467b48Spatrick     #ifndef NDEBUG
20409467b48Spatrick       unsigned CreateInstrNum;
20509467b48Spatrick       void initCreateInstNum() { CreateInstrNum = 0; }
20609467b48Spatrick       void incCreateInstNum() { CreateInstrNum++; }
20709467b48Spatrick     #else
20809467b48Spatrick       void initCreateInstNum() {}
20909467b48Spatrick       void incCreateInstNum() {}
21009467b48Spatrick     #endif
21109467b48Spatrick 
21209467b48Spatrick     InstCombiner::BuilderTy &Builder;
21309467b48Spatrick     Instruction *Instr = nullptr;
21409467b48Spatrick   };
21509467b48Spatrick 
21609467b48Spatrick } // end anonymous namespace
21709467b48Spatrick 
21809467b48Spatrick //===----------------------------------------------------------------------===//
21909467b48Spatrick //
22009467b48Spatrick // Implementation of
22109467b48Spatrick //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
22209467b48Spatrick //
22309467b48Spatrick //===----------------------------------------------------------------------===//
22409467b48Spatrick FAddendCoef::~FAddendCoef() {
22509467b48Spatrick   if (BufHasFpVal)
22609467b48Spatrick     getFpValPtr()->~APFloat();
22709467b48Spatrick }
22809467b48Spatrick 
22909467b48Spatrick void FAddendCoef::set(const APFloat& C) {
23009467b48Spatrick   APFloat *P = getFpValPtr();
23109467b48Spatrick 
23209467b48Spatrick   if (isInt()) {
23309467b48Spatrick     // As the buffer is meanless byte stream, we cannot call
23409467b48Spatrick     // APFloat::operator=().
23509467b48Spatrick     new(P) APFloat(C);
23609467b48Spatrick   } else
23709467b48Spatrick     *P = C;
23809467b48Spatrick 
23909467b48Spatrick   IsFp = BufHasFpVal = true;
24009467b48Spatrick }
24109467b48Spatrick 
24209467b48Spatrick void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
24309467b48Spatrick   if (!isInt())
24409467b48Spatrick     return;
24509467b48Spatrick 
24609467b48Spatrick   APFloat *P = getFpValPtr();
24709467b48Spatrick   if (IntVal > 0)
24809467b48Spatrick     new(P) APFloat(Sem, IntVal);
24909467b48Spatrick   else {
25009467b48Spatrick     new(P) APFloat(Sem, 0 - IntVal);
25109467b48Spatrick     P->changeSign();
25209467b48Spatrick   }
25309467b48Spatrick   IsFp = BufHasFpVal = true;
25409467b48Spatrick }
25509467b48Spatrick 
25609467b48Spatrick APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
25709467b48Spatrick   if (Val >= 0)
25809467b48Spatrick     return APFloat(Sem, Val);
25909467b48Spatrick 
26009467b48Spatrick   APFloat T(Sem, 0 - Val);
26109467b48Spatrick   T.changeSign();
26209467b48Spatrick 
26309467b48Spatrick   return T;
26409467b48Spatrick }
26509467b48Spatrick 
26609467b48Spatrick void FAddendCoef::operator=(const FAddendCoef &That) {
26709467b48Spatrick   if (That.isInt())
26809467b48Spatrick     set(That.IntVal);
26909467b48Spatrick   else
27009467b48Spatrick     set(That.getFpVal());
27109467b48Spatrick }
27209467b48Spatrick 
27309467b48Spatrick void FAddendCoef::operator+=(const FAddendCoef &That) {
274097a140dSpatrick   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
27509467b48Spatrick   if (isInt() == That.isInt()) {
27609467b48Spatrick     if (isInt())
27709467b48Spatrick       IntVal += That.IntVal;
27809467b48Spatrick     else
27909467b48Spatrick       getFpVal().add(That.getFpVal(), RndMode);
28009467b48Spatrick     return;
28109467b48Spatrick   }
28209467b48Spatrick 
28309467b48Spatrick   if (isInt()) {
28409467b48Spatrick     const APFloat &T = That.getFpVal();
28509467b48Spatrick     convertToFpType(T.getSemantics());
28609467b48Spatrick     getFpVal().add(T, RndMode);
28709467b48Spatrick     return;
28809467b48Spatrick   }
28909467b48Spatrick 
29009467b48Spatrick   APFloat &T = getFpVal();
29109467b48Spatrick   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
29209467b48Spatrick }
29309467b48Spatrick 
29409467b48Spatrick void FAddendCoef::operator*=(const FAddendCoef &That) {
29509467b48Spatrick   if (That.isOne())
29609467b48Spatrick     return;
29709467b48Spatrick 
29809467b48Spatrick   if (That.isMinusOne()) {
29909467b48Spatrick     negate();
30009467b48Spatrick     return;
30109467b48Spatrick   }
30209467b48Spatrick 
30309467b48Spatrick   if (isInt() && That.isInt()) {
30409467b48Spatrick     int Res = IntVal * (int)That.IntVal;
30509467b48Spatrick     assert(!insaneIntVal(Res) && "Insane int value");
30609467b48Spatrick     IntVal = Res;
30709467b48Spatrick     return;
30809467b48Spatrick   }
30909467b48Spatrick 
31009467b48Spatrick   const fltSemantics &Semantic =
31109467b48Spatrick     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
31209467b48Spatrick 
31309467b48Spatrick   if (isInt())
31409467b48Spatrick     convertToFpType(Semantic);
31509467b48Spatrick   APFloat &F0 = getFpVal();
31609467b48Spatrick 
31709467b48Spatrick   if (That.isInt())
31809467b48Spatrick     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
31909467b48Spatrick                 APFloat::rmNearestTiesToEven);
32009467b48Spatrick   else
32109467b48Spatrick     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
32209467b48Spatrick }
32309467b48Spatrick 
32409467b48Spatrick void FAddendCoef::negate() {
32509467b48Spatrick   if (isInt())
32609467b48Spatrick     IntVal = 0 - IntVal;
32709467b48Spatrick   else
32809467b48Spatrick     getFpVal().changeSign();
32909467b48Spatrick }
33009467b48Spatrick 
33109467b48Spatrick Value *FAddendCoef::getValue(Type *Ty) const {
33209467b48Spatrick   return isInt() ?
33309467b48Spatrick     ConstantFP::get(Ty, float(IntVal)) :
33409467b48Spatrick     ConstantFP::get(Ty->getContext(), getFpVal());
33509467b48Spatrick }
33609467b48Spatrick 
33709467b48Spatrick // The definition of <Val>     Addends
33809467b48Spatrick // =========================================
33909467b48Spatrick //  A + B                     <1, A>, <1,B>
34009467b48Spatrick //  A - B                     <1, A>, <1,B>
34109467b48Spatrick //  0 - B                     <-1, B>
34209467b48Spatrick //  C * A,                    <C, A>
34309467b48Spatrick //  A + C                     <1, A> <C, NULL>
34409467b48Spatrick //  0 +/- 0                   <0, NULL> (corner case)
34509467b48Spatrick //
34609467b48Spatrick // Legend: A and B are not constant, C is constant
34709467b48Spatrick unsigned FAddend::drillValueDownOneStep
34809467b48Spatrick   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
34909467b48Spatrick   Instruction *I = nullptr;
35009467b48Spatrick   if (!Val || !(I = dyn_cast<Instruction>(Val)))
35109467b48Spatrick     return 0;
35209467b48Spatrick 
35309467b48Spatrick   unsigned Opcode = I->getOpcode();
35409467b48Spatrick 
35509467b48Spatrick   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
35609467b48Spatrick     ConstantFP *C0, *C1;
35709467b48Spatrick     Value *Opnd0 = I->getOperand(0);
35809467b48Spatrick     Value *Opnd1 = I->getOperand(1);
35909467b48Spatrick     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
36009467b48Spatrick       Opnd0 = nullptr;
36109467b48Spatrick 
36209467b48Spatrick     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
36309467b48Spatrick       Opnd1 = nullptr;
36409467b48Spatrick 
36509467b48Spatrick     if (Opnd0) {
36609467b48Spatrick       if (!C0)
36709467b48Spatrick         Addend0.set(1, Opnd0);
36809467b48Spatrick       else
36909467b48Spatrick         Addend0.set(C0, nullptr);
37009467b48Spatrick     }
37109467b48Spatrick 
37209467b48Spatrick     if (Opnd1) {
37309467b48Spatrick       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
37409467b48Spatrick       if (!C1)
37509467b48Spatrick         Addend.set(1, Opnd1);
37609467b48Spatrick       else
37709467b48Spatrick         Addend.set(C1, nullptr);
37809467b48Spatrick       if (Opcode == Instruction::FSub)
37909467b48Spatrick         Addend.negate();
38009467b48Spatrick     }
38109467b48Spatrick 
38209467b48Spatrick     if (Opnd0 || Opnd1)
38309467b48Spatrick       return Opnd0 && Opnd1 ? 2 : 1;
38409467b48Spatrick 
38509467b48Spatrick     // Both operands are zero. Weird!
38609467b48Spatrick     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
38709467b48Spatrick     return 1;
38809467b48Spatrick   }
38909467b48Spatrick 
39009467b48Spatrick   if (I->getOpcode() == Instruction::FMul) {
39109467b48Spatrick     Value *V0 = I->getOperand(0);
39209467b48Spatrick     Value *V1 = I->getOperand(1);
39309467b48Spatrick     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
39409467b48Spatrick       Addend0.set(C, V1);
39509467b48Spatrick       return 1;
39609467b48Spatrick     }
39709467b48Spatrick 
39809467b48Spatrick     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
39909467b48Spatrick       Addend0.set(C, V0);
40009467b48Spatrick       return 1;
40109467b48Spatrick     }
40209467b48Spatrick   }
40309467b48Spatrick 
40409467b48Spatrick   return 0;
40509467b48Spatrick }
40609467b48Spatrick 
40709467b48Spatrick // Try to break *this* addend into two addends. e.g. Suppose this addend is
40809467b48Spatrick // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
40909467b48Spatrick // i.e. <2.3, X> and <2.3, Y>.
41009467b48Spatrick unsigned FAddend::drillAddendDownOneStep
41109467b48Spatrick   (FAddend &Addend0, FAddend &Addend1) const {
41209467b48Spatrick   if (isConstant())
41309467b48Spatrick     return 0;
41409467b48Spatrick 
41509467b48Spatrick   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
41609467b48Spatrick   if (!BreakNum || Coeff.isOne())
41709467b48Spatrick     return BreakNum;
41809467b48Spatrick 
41909467b48Spatrick   Addend0.Scale(Coeff);
42009467b48Spatrick 
42109467b48Spatrick   if (BreakNum == 2)
42209467b48Spatrick     Addend1.Scale(Coeff);
42309467b48Spatrick 
42409467b48Spatrick   return BreakNum;
42509467b48Spatrick }
42609467b48Spatrick 
42709467b48Spatrick Value *FAddCombine::simplify(Instruction *I) {
42809467b48Spatrick   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
42909467b48Spatrick          "Expected 'reassoc'+'nsz' instruction");
43009467b48Spatrick 
43109467b48Spatrick   // Currently we are not able to handle vector type.
43209467b48Spatrick   if (I->getType()->isVectorTy())
43309467b48Spatrick     return nullptr;
43409467b48Spatrick 
43509467b48Spatrick   assert((I->getOpcode() == Instruction::FAdd ||
43609467b48Spatrick           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
43709467b48Spatrick 
43809467b48Spatrick   // Save the instruction before calling other member-functions.
43909467b48Spatrick   Instr = I;
44009467b48Spatrick 
44109467b48Spatrick   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
44209467b48Spatrick 
44309467b48Spatrick   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
44409467b48Spatrick 
44509467b48Spatrick   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
44609467b48Spatrick   unsigned Opnd0_ExpNum = 0;
44709467b48Spatrick   unsigned Opnd1_ExpNum = 0;
44809467b48Spatrick 
44909467b48Spatrick   if (!Opnd0.isConstant())
45009467b48Spatrick     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
45109467b48Spatrick 
45209467b48Spatrick   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
45309467b48Spatrick   if (OpndNum == 2 && !Opnd1.isConstant())
45409467b48Spatrick     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
45509467b48Spatrick 
45609467b48Spatrick   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
45709467b48Spatrick   if (Opnd0_ExpNum && Opnd1_ExpNum) {
45809467b48Spatrick     AddendVect AllOpnds;
45909467b48Spatrick     AllOpnds.push_back(&Opnd0_0);
46009467b48Spatrick     AllOpnds.push_back(&Opnd1_0);
46109467b48Spatrick     if (Opnd0_ExpNum == 2)
46209467b48Spatrick       AllOpnds.push_back(&Opnd0_1);
46309467b48Spatrick     if (Opnd1_ExpNum == 2)
46409467b48Spatrick       AllOpnds.push_back(&Opnd1_1);
46509467b48Spatrick 
46609467b48Spatrick     // Compute instruction quota. We should save at least one instruction.
46709467b48Spatrick     unsigned InstQuota = 0;
46809467b48Spatrick 
46909467b48Spatrick     Value *V0 = I->getOperand(0);
47009467b48Spatrick     Value *V1 = I->getOperand(1);
47109467b48Spatrick     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
47209467b48Spatrick                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
47309467b48Spatrick 
47409467b48Spatrick     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
47509467b48Spatrick       return R;
47609467b48Spatrick   }
47709467b48Spatrick 
47809467b48Spatrick   if (OpndNum != 2) {
47909467b48Spatrick     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
48009467b48Spatrick     // splitted into two addends, say "V = X - Y", the instruction would have
48109467b48Spatrick     // been optimized into "I = Y - X" in the previous steps.
48209467b48Spatrick     //
48309467b48Spatrick     const FAddendCoef &CE = Opnd0.getCoef();
48409467b48Spatrick     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
48509467b48Spatrick   }
48609467b48Spatrick 
48709467b48Spatrick   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
48809467b48Spatrick   if (Opnd1_ExpNum) {
48909467b48Spatrick     AddendVect AllOpnds;
49009467b48Spatrick     AllOpnds.push_back(&Opnd0);
49109467b48Spatrick     AllOpnds.push_back(&Opnd1_0);
49209467b48Spatrick     if (Opnd1_ExpNum == 2)
49309467b48Spatrick       AllOpnds.push_back(&Opnd1_1);
49409467b48Spatrick 
49509467b48Spatrick     if (Value *R = simplifyFAdd(AllOpnds, 1))
49609467b48Spatrick       return R;
49709467b48Spatrick   }
49809467b48Spatrick 
49909467b48Spatrick   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
50009467b48Spatrick   if (Opnd0_ExpNum) {
50109467b48Spatrick     AddendVect AllOpnds;
50209467b48Spatrick     AllOpnds.push_back(&Opnd1);
50309467b48Spatrick     AllOpnds.push_back(&Opnd0_0);
50409467b48Spatrick     if (Opnd0_ExpNum == 2)
50509467b48Spatrick       AllOpnds.push_back(&Opnd0_1);
50609467b48Spatrick 
50709467b48Spatrick     if (Value *R = simplifyFAdd(AllOpnds, 1))
50809467b48Spatrick       return R;
50909467b48Spatrick   }
51009467b48Spatrick 
51109467b48Spatrick   return nullptr;
51209467b48Spatrick }
51309467b48Spatrick 
51409467b48Spatrick Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
51509467b48Spatrick   unsigned AddendNum = Addends.size();
51609467b48Spatrick   assert(AddendNum <= 4 && "Too many addends");
51709467b48Spatrick 
51809467b48Spatrick   // For saving intermediate results;
51909467b48Spatrick   unsigned NextTmpIdx = 0;
52009467b48Spatrick   FAddend TmpResult[3];
52109467b48Spatrick 
52209467b48Spatrick   // Points to the constant addend of the resulting simplified expression.
52309467b48Spatrick   // If the resulting expr has constant-addend, this constant-addend is
52409467b48Spatrick   // desirable to reside at the top of the resulting expression tree. Placing
52509467b48Spatrick   // constant close to supper-expr(s) will potentially reveal some optimization
52609467b48Spatrick   // opportunities in super-expr(s).
52709467b48Spatrick   const FAddend *ConstAdd = nullptr;
52809467b48Spatrick 
52909467b48Spatrick   // Simplified addends are placed <SimpVect>.
53009467b48Spatrick   AddendVect SimpVect;
53109467b48Spatrick 
53209467b48Spatrick   // The outer loop works on one symbolic-value at a time. Suppose the input
53309467b48Spatrick   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
53409467b48Spatrick   // The symbolic-values will be processed in this order: x, y, z.
53509467b48Spatrick   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
53609467b48Spatrick 
53709467b48Spatrick     const FAddend *ThisAddend = Addends[SymIdx];
53809467b48Spatrick     if (!ThisAddend) {
53909467b48Spatrick       // This addend was processed before.
54009467b48Spatrick       continue;
54109467b48Spatrick     }
54209467b48Spatrick 
54309467b48Spatrick     Value *Val = ThisAddend->getSymVal();
54409467b48Spatrick     unsigned StartIdx = SimpVect.size();
54509467b48Spatrick     SimpVect.push_back(ThisAddend);
54609467b48Spatrick 
54709467b48Spatrick     // The inner loop collects addends sharing same symbolic-value, and these
54809467b48Spatrick     // addends will be later on folded into a single addend. Following above
54909467b48Spatrick     // example, if the symbolic value "y" is being processed, the inner loop
55009467b48Spatrick     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
55109467b48Spatrick     // be later on folded into "<b1+b2, y>".
55209467b48Spatrick     for (unsigned SameSymIdx = SymIdx + 1;
55309467b48Spatrick          SameSymIdx < AddendNum; SameSymIdx++) {
55409467b48Spatrick       const FAddend *T = Addends[SameSymIdx];
55509467b48Spatrick       if (T && T->getSymVal() == Val) {
55609467b48Spatrick         // Set null such that next iteration of the outer loop will not process
55709467b48Spatrick         // this addend again.
55809467b48Spatrick         Addends[SameSymIdx] = nullptr;
55909467b48Spatrick         SimpVect.push_back(T);
56009467b48Spatrick       }
56109467b48Spatrick     }
56209467b48Spatrick 
56309467b48Spatrick     // If multiple addends share same symbolic value, fold them together.
56409467b48Spatrick     if (StartIdx + 1 != SimpVect.size()) {
56509467b48Spatrick       FAddend &R = TmpResult[NextTmpIdx ++];
56609467b48Spatrick       R = *SimpVect[StartIdx];
56709467b48Spatrick       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
56809467b48Spatrick         R += *SimpVect[Idx];
56909467b48Spatrick 
57009467b48Spatrick       // Pop all addends being folded and push the resulting folded addend.
57109467b48Spatrick       SimpVect.resize(StartIdx);
57209467b48Spatrick       if (Val) {
57309467b48Spatrick         if (!R.isZero()) {
57409467b48Spatrick           SimpVect.push_back(&R);
57509467b48Spatrick         }
57609467b48Spatrick       } else {
57709467b48Spatrick         // Don't push constant addend at this time. It will be the last element
57809467b48Spatrick         // of <SimpVect>.
57909467b48Spatrick         ConstAdd = &R;
58009467b48Spatrick       }
58109467b48Spatrick     }
58209467b48Spatrick   }
58309467b48Spatrick 
58409467b48Spatrick   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
58509467b48Spatrick          "out-of-bound access");
58609467b48Spatrick 
58709467b48Spatrick   if (ConstAdd)
58809467b48Spatrick     SimpVect.push_back(ConstAdd);
58909467b48Spatrick 
59009467b48Spatrick   Value *Result;
59109467b48Spatrick   if (!SimpVect.empty())
59209467b48Spatrick     Result = createNaryFAdd(SimpVect, InstrQuota);
59309467b48Spatrick   else {
59409467b48Spatrick     // The addition is folded to 0.0.
59509467b48Spatrick     Result = ConstantFP::get(Instr->getType(), 0.0);
59609467b48Spatrick   }
59709467b48Spatrick 
59809467b48Spatrick   return Result;
59909467b48Spatrick }
60009467b48Spatrick 
60109467b48Spatrick Value *FAddCombine::createNaryFAdd
60209467b48Spatrick   (const AddendVect &Opnds, unsigned InstrQuota) {
60309467b48Spatrick   assert(!Opnds.empty() && "Expect at least one addend");
60409467b48Spatrick 
60509467b48Spatrick   // Step 1: Check if the # of instructions needed exceeds the quota.
60609467b48Spatrick 
60709467b48Spatrick   unsigned InstrNeeded = calcInstrNumber(Opnds);
60809467b48Spatrick   if (InstrNeeded > InstrQuota)
60909467b48Spatrick     return nullptr;
61009467b48Spatrick 
61109467b48Spatrick   initCreateInstNum();
61209467b48Spatrick 
61309467b48Spatrick   // step 2: Emit the N-ary addition.
61409467b48Spatrick   // Note that at most three instructions are involved in Fadd-InstCombine: the
61509467b48Spatrick   // addition in question, and at most two neighboring instructions.
61609467b48Spatrick   // The resulting optimized addition should have at least one less instruction
61709467b48Spatrick   // than the original addition expression tree. This implies that the resulting
61809467b48Spatrick   // N-ary addition has at most two instructions, and we don't need to worry
61909467b48Spatrick   // about tree-height when constructing the N-ary addition.
62009467b48Spatrick 
62109467b48Spatrick   Value *LastVal = nullptr;
62209467b48Spatrick   bool LastValNeedNeg = false;
62309467b48Spatrick 
62409467b48Spatrick   // Iterate the addends, creating fadd/fsub using adjacent two addends.
62509467b48Spatrick   for (const FAddend *Opnd : Opnds) {
62609467b48Spatrick     bool NeedNeg;
62709467b48Spatrick     Value *V = createAddendVal(*Opnd, NeedNeg);
62809467b48Spatrick     if (!LastVal) {
62909467b48Spatrick       LastVal = V;
63009467b48Spatrick       LastValNeedNeg = NeedNeg;
63109467b48Spatrick       continue;
63209467b48Spatrick     }
63309467b48Spatrick 
63409467b48Spatrick     if (LastValNeedNeg == NeedNeg) {
63509467b48Spatrick       LastVal = createFAdd(LastVal, V);
63609467b48Spatrick       continue;
63709467b48Spatrick     }
63809467b48Spatrick 
63909467b48Spatrick     if (LastValNeedNeg)
64009467b48Spatrick       LastVal = createFSub(V, LastVal);
64109467b48Spatrick     else
64209467b48Spatrick       LastVal = createFSub(LastVal, V);
64309467b48Spatrick 
64409467b48Spatrick     LastValNeedNeg = false;
64509467b48Spatrick   }
64609467b48Spatrick 
64709467b48Spatrick   if (LastValNeedNeg) {
64809467b48Spatrick     LastVal = createFNeg(LastVal);
64909467b48Spatrick   }
65009467b48Spatrick 
65109467b48Spatrick #ifndef NDEBUG
65209467b48Spatrick   assert(CreateInstrNum == InstrNeeded &&
65309467b48Spatrick          "Inconsistent in instruction numbers");
65409467b48Spatrick #endif
65509467b48Spatrick 
65609467b48Spatrick   return LastVal;
65709467b48Spatrick }
65809467b48Spatrick 
65909467b48Spatrick Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
66009467b48Spatrick   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
66109467b48Spatrick   if (Instruction *I = dyn_cast<Instruction>(V))
66209467b48Spatrick     createInstPostProc(I);
66309467b48Spatrick   return V;
66409467b48Spatrick }
66509467b48Spatrick 
66609467b48Spatrick Value *FAddCombine::createFNeg(Value *V) {
667097a140dSpatrick   Value *NewV = Builder.CreateFNeg(V);
66809467b48Spatrick   if (Instruction *I = dyn_cast<Instruction>(NewV))
66909467b48Spatrick     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
67009467b48Spatrick   return NewV;
67109467b48Spatrick }
67209467b48Spatrick 
67309467b48Spatrick Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
67409467b48Spatrick   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
67509467b48Spatrick   if (Instruction *I = dyn_cast<Instruction>(V))
67609467b48Spatrick     createInstPostProc(I);
67709467b48Spatrick   return V;
67809467b48Spatrick }
67909467b48Spatrick 
68009467b48Spatrick Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
68109467b48Spatrick   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
68209467b48Spatrick   if (Instruction *I = dyn_cast<Instruction>(V))
68309467b48Spatrick     createInstPostProc(I);
68409467b48Spatrick   return V;
68509467b48Spatrick }
68609467b48Spatrick 
68709467b48Spatrick void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
68809467b48Spatrick   NewInstr->setDebugLoc(Instr->getDebugLoc());
68909467b48Spatrick 
69009467b48Spatrick   // Keep track of the number of instruction created.
69109467b48Spatrick   if (!NoNumber)
69209467b48Spatrick     incCreateInstNum();
69309467b48Spatrick 
69409467b48Spatrick   // Propagate fast-math flags
69509467b48Spatrick   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
69609467b48Spatrick }
69709467b48Spatrick 
69809467b48Spatrick // Return the number of instruction needed to emit the N-ary addition.
69909467b48Spatrick // NOTE: Keep this function in sync with createAddendVal().
70009467b48Spatrick unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
70109467b48Spatrick   unsigned OpndNum = Opnds.size();
70209467b48Spatrick   unsigned InstrNeeded = OpndNum - 1;
70309467b48Spatrick 
70409467b48Spatrick   // The number of addends in the form of "(-1)*x".
70509467b48Spatrick   unsigned NegOpndNum = 0;
70609467b48Spatrick 
70709467b48Spatrick   // Adjust the number of instructions needed to emit the N-ary add.
70809467b48Spatrick   for (const FAddend *Opnd : Opnds) {
70909467b48Spatrick     if (Opnd->isConstant())
71009467b48Spatrick       continue;
71109467b48Spatrick 
71209467b48Spatrick     // The constant check above is really for a few special constant
71309467b48Spatrick     // coefficients.
71409467b48Spatrick     if (isa<UndefValue>(Opnd->getSymVal()))
71509467b48Spatrick       continue;
71609467b48Spatrick 
71709467b48Spatrick     const FAddendCoef &CE = Opnd->getCoef();
71809467b48Spatrick     if (CE.isMinusOne() || CE.isMinusTwo())
71909467b48Spatrick       NegOpndNum++;
72009467b48Spatrick 
72109467b48Spatrick     // Let the addend be "c * x". If "c == +/-1", the value of the addend
72209467b48Spatrick     // is immediately available; otherwise, it needs exactly one instruction
72309467b48Spatrick     // to evaluate the value.
72409467b48Spatrick     if (!CE.isMinusOne() && !CE.isOne())
72509467b48Spatrick       InstrNeeded++;
72609467b48Spatrick   }
72709467b48Spatrick   return InstrNeeded;
72809467b48Spatrick }
72909467b48Spatrick 
73009467b48Spatrick // Input Addend        Value           NeedNeg(output)
73109467b48Spatrick // ================================================================
73209467b48Spatrick // Constant C          C               false
73309467b48Spatrick // <+/-1, V>           V               coefficient is -1
73409467b48Spatrick // <2/-2, V>          "fadd V, V"      coefficient is -2
73509467b48Spatrick // <C, V>             "fmul V, C"      false
73609467b48Spatrick //
73709467b48Spatrick // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
73809467b48Spatrick Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
73909467b48Spatrick   const FAddendCoef &Coeff = Opnd.getCoef();
74009467b48Spatrick 
74109467b48Spatrick   if (Opnd.isConstant()) {
74209467b48Spatrick     NeedNeg = false;
74309467b48Spatrick     return Coeff.getValue(Instr->getType());
74409467b48Spatrick   }
74509467b48Spatrick 
74609467b48Spatrick   Value *OpndVal = Opnd.getSymVal();
74709467b48Spatrick 
74809467b48Spatrick   if (Coeff.isMinusOne() || Coeff.isOne()) {
74909467b48Spatrick     NeedNeg = Coeff.isMinusOne();
75009467b48Spatrick     return OpndVal;
75109467b48Spatrick   }
75209467b48Spatrick 
75309467b48Spatrick   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
75409467b48Spatrick     NeedNeg = Coeff.isMinusTwo();
75509467b48Spatrick     return createFAdd(OpndVal, OpndVal);
75609467b48Spatrick   }
75709467b48Spatrick 
75809467b48Spatrick   NeedNeg = false;
75909467b48Spatrick   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
76009467b48Spatrick }
76109467b48Spatrick 
76209467b48Spatrick // Checks if any operand is negative and we can convert add to sub.
76309467b48Spatrick // This function checks for following negative patterns
76409467b48Spatrick //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
76509467b48Spatrick //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
76609467b48Spatrick //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
76709467b48Spatrick static Value *checkForNegativeOperand(BinaryOperator &I,
76809467b48Spatrick                                       InstCombiner::BuilderTy &Builder) {
76909467b48Spatrick   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
77009467b48Spatrick 
77109467b48Spatrick   // This function creates 2 instructions to replace ADD, we need at least one
77209467b48Spatrick   // of LHS or RHS to have one use to ensure benefit in transform.
77309467b48Spatrick   if (!LHS->hasOneUse() && !RHS->hasOneUse())
77409467b48Spatrick     return nullptr;
77509467b48Spatrick 
77609467b48Spatrick   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
77709467b48Spatrick   const APInt *C1 = nullptr, *C2 = nullptr;
77809467b48Spatrick 
77909467b48Spatrick   // if ONE is on other side, swap
78009467b48Spatrick   if (match(RHS, m_Add(m_Value(X), m_One())))
78109467b48Spatrick     std::swap(LHS, RHS);
78209467b48Spatrick 
78309467b48Spatrick   if (match(LHS, m_Add(m_Value(X), m_One()))) {
78409467b48Spatrick     // if XOR on other side, swap
78509467b48Spatrick     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
78609467b48Spatrick       std::swap(X, RHS);
78709467b48Spatrick 
78809467b48Spatrick     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
78909467b48Spatrick       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
79009467b48Spatrick       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
79109467b48Spatrick       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
79209467b48Spatrick         Value *NewAnd = Builder.CreateAnd(Z, *C1);
79309467b48Spatrick         return Builder.CreateSub(RHS, NewAnd, "sub");
79409467b48Spatrick       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
79509467b48Spatrick         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
79609467b48Spatrick         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
79709467b48Spatrick         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
79809467b48Spatrick         return Builder.CreateSub(RHS, NewOr, "sub");
79909467b48Spatrick       }
80009467b48Spatrick     }
80109467b48Spatrick   }
80209467b48Spatrick 
80309467b48Spatrick   // Restore LHS and RHS
80409467b48Spatrick   LHS = I.getOperand(0);
80509467b48Spatrick   RHS = I.getOperand(1);
80609467b48Spatrick 
80709467b48Spatrick   // if XOR is on other side, swap
80809467b48Spatrick   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
80909467b48Spatrick     std::swap(LHS, RHS);
81009467b48Spatrick 
81109467b48Spatrick   // C2 is ODD
81209467b48Spatrick   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
81309467b48Spatrick   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
81409467b48Spatrick   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
81509467b48Spatrick     if (C1->countTrailingZeros() == 0)
81609467b48Spatrick       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
81709467b48Spatrick         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
81809467b48Spatrick         return Builder.CreateSub(RHS, NewOr, "sub");
81909467b48Spatrick       }
82009467b48Spatrick   return nullptr;
82109467b48Spatrick }
82209467b48Spatrick 
82309467b48Spatrick /// Wrapping flags may allow combining constants separated by an extend.
82409467b48Spatrick static Instruction *foldNoWrapAdd(BinaryOperator &Add,
82509467b48Spatrick                                   InstCombiner::BuilderTy &Builder) {
82609467b48Spatrick   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
82709467b48Spatrick   Type *Ty = Add.getType();
82809467b48Spatrick   Constant *Op1C;
82909467b48Spatrick   if (!match(Op1, m_Constant(Op1C)))
83009467b48Spatrick     return nullptr;
83109467b48Spatrick 
83209467b48Spatrick   // Try this match first because it results in an add in the narrow type.
83309467b48Spatrick   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
83409467b48Spatrick   Value *X;
83509467b48Spatrick   const APInt *C1, *C2;
83609467b48Spatrick   if (match(Op1, m_APInt(C1)) &&
83709467b48Spatrick       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
83809467b48Spatrick       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
83909467b48Spatrick     Constant *NewC =
84009467b48Spatrick         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
84109467b48Spatrick     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
84209467b48Spatrick   }
84309467b48Spatrick 
84409467b48Spatrick   // More general combining of constants in the wide type.
84509467b48Spatrick   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
84609467b48Spatrick   Constant *NarrowC;
84709467b48Spatrick   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
84809467b48Spatrick     Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
84909467b48Spatrick     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
85009467b48Spatrick     Value *WideX = Builder.CreateSExt(X, Ty);
85109467b48Spatrick     return BinaryOperator::CreateAdd(WideX, NewC);
85209467b48Spatrick   }
85309467b48Spatrick   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
85409467b48Spatrick   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
85509467b48Spatrick     Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
85609467b48Spatrick     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
85709467b48Spatrick     Value *WideX = Builder.CreateZExt(X, Ty);
85809467b48Spatrick     return BinaryOperator::CreateAdd(WideX, NewC);
85909467b48Spatrick   }
86009467b48Spatrick 
86109467b48Spatrick   return nullptr;
86209467b48Spatrick }
86309467b48Spatrick 
864*73471bf0Spatrick Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
86509467b48Spatrick   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
86609467b48Spatrick   Constant *Op1C;
867*73471bf0Spatrick   if (!match(Op1, m_ImmConstant(Op1C)))
86809467b48Spatrick     return nullptr;
86909467b48Spatrick 
87009467b48Spatrick   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
87109467b48Spatrick     return NV;
87209467b48Spatrick 
87309467b48Spatrick   Value *X;
87409467b48Spatrick   Constant *Op00C;
87509467b48Spatrick 
87609467b48Spatrick   // add (sub C1, X), C2 --> sub (add C1, C2), X
87709467b48Spatrick   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
87809467b48Spatrick     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
87909467b48Spatrick 
88009467b48Spatrick   Value *Y;
88109467b48Spatrick 
88209467b48Spatrick   // add (sub X, Y), -1 --> add (not Y), X
88309467b48Spatrick   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
88409467b48Spatrick       match(Op1, m_AllOnes()))
88509467b48Spatrick     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
88609467b48Spatrick 
88709467b48Spatrick   // zext(bool) + C -> bool ? C + 1 : C
88809467b48Spatrick   if (match(Op0, m_ZExt(m_Value(X))) &&
88909467b48Spatrick       X->getType()->getScalarSizeInBits() == 1)
890*73471bf0Spatrick     return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
89109467b48Spatrick   // sext(bool) + C -> bool ? C - 1 : C
89209467b48Spatrick   if (match(Op0, m_SExt(m_Value(X))) &&
89309467b48Spatrick       X->getType()->getScalarSizeInBits() == 1)
894*73471bf0Spatrick     return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
89509467b48Spatrick 
89609467b48Spatrick   // ~X + C --> (C-1) - X
89709467b48Spatrick   if (match(Op0, m_Not(m_Value(X))))
898*73471bf0Spatrick     return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
89909467b48Spatrick 
90009467b48Spatrick   const APInt *C;
90109467b48Spatrick   if (!match(Op1, m_APInt(C)))
90209467b48Spatrick     return nullptr;
90309467b48Spatrick 
904*73471bf0Spatrick   // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
905*73471bf0Spatrick   Constant *Op01C;
906*73471bf0Spatrick   if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
907*73471bf0Spatrick       haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
908*73471bf0Spatrick     return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
909*73471bf0Spatrick 
91009467b48Spatrick   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
91109467b48Spatrick   const APInt *C2;
91209467b48Spatrick   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
91309467b48Spatrick     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
91409467b48Spatrick 
91509467b48Spatrick   if (C->isSignMask()) {
91609467b48Spatrick     // If wrapping is not allowed, then the addition must set the sign bit:
91709467b48Spatrick     // X + (signmask) --> X | signmask
91809467b48Spatrick     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
91909467b48Spatrick       return BinaryOperator::CreateOr(Op0, Op1);
92009467b48Spatrick 
92109467b48Spatrick     // If wrapping is allowed, then the addition flips the sign bit of LHS:
92209467b48Spatrick     // X + (signmask) --> X ^ signmask
92309467b48Spatrick     return BinaryOperator::CreateXor(Op0, Op1);
92409467b48Spatrick   }
92509467b48Spatrick 
92609467b48Spatrick   // Is this add the last step in a convoluted sext?
92709467b48Spatrick   // add(zext(xor i16 X, -32768), -32768) --> sext X
92809467b48Spatrick   Type *Ty = Add.getType();
92909467b48Spatrick   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
93009467b48Spatrick       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
93109467b48Spatrick     return CastInst::Create(Instruction::SExt, X, Ty);
93209467b48Spatrick 
933*73471bf0Spatrick   if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
934*73471bf0Spatrick     // (X ^ signmask) + C --> (X + (signmask ^ C))
935*73471bf0Spatrick     if (C2->isSignMask())
936*73471bf0Spatrick       return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
937*73471bf0Spatrick 
938*73471bf0Spatrick     // If X has no high-bits set above an xor mask:
939*73471bf0Spatrick     // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
940*73471bf0Spatrick     if (C2->isMask()) {
941*73471bf0Spatrick       KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
942*73471bf0Spatrick       if ((*C2 | LHSKnown.Zero).isAllOnesValue())
943*73471bf0Spatrick         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
944*73471bf0Spatrick     }
945*73471bf0Spatrick 
946*73471bf0Spatrick     // Look for a math+logic pattern that corresponds to sext-in-register of a
947*73471bf0Spatrick     // value with cleared high bits. Convert that into a pair of shifts:
948*73471bf0Spatrick     // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
949*73471bf0Spatrick     // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
950*73471bf0Spatrick     if (Op0->hasOneUse() && *C2 == -(*C)) {
951*73471bf0Spatrick       unsigned BitWidth = Ty->getScalarSizeInBits();
952*73471bf0Spatrick       unsigned ShAmt = 0;
953*73471bf0Spatrick       if (C->isPowerOf2())
954*73471bf0Spatrick         ShAmt = BitWidth - C->logBase2() - 1;
955*73471bf0Spatrick       else if (C2->isPowerOf2())
956*73471bf0Spatrick         ShAmt = BitWidth - C2->logBase2() - 1;
957*73471bf0Spatrick       if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
958*73471bf0Spatrick                                      0, &Add)) {
959*73471bf0Spatrick         Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
960*73471bf0Spatrick         Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
961*73471bf0Spatrick         return BinaryOperator::CreateAShr(NewShl, ShAmtC);
962*73471bf0Spatrick       }
963*73471bf0Spatrick     }
964*73471bf0Spatrick   }
965*73471bf0Spatrick 
96609467b48Spatrick   if (C->isOneValue() && Op0->hasOneUse()) {
96709467b48Spatrick     // add (sext i1 X), 1 --> zext (not X)
96809467b48Spatrick     // TODO: The smallest IR representation is (select X, 0, 1), and that would
96909467b48Spatrick     // not require the one-use check. But we need to remove a transform in
97009467b48Spatrick     // visitSelect and make sure that IR value tracking for select is equal or
97109467b48Spatrick     // better than for these ops.
97209467b48Spatrick     if (match(Op0, m_SExt(m_Value(X))) &&
97309467b48Spatrick         X->getType()->getScalarSizeInBits() == 1)
97409467b48Spatrick       return new ZExtInst(Builder.CreateNot(X), Ty);
97509467b48Spatrick 
97609467b48Spatrick     // Shifts and add used to flip and mask off the low bit:
97709467b48Spatrick     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
97809467b48Spatrick     const APInt *C3;
97909467b48Spatrick     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
98009467b48Spatrick         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
98109467b48Spatrick       Value *NotX = Builder.CreateNot(X);
98209467b48Spatrick       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
98309467b48Spatrick     }
98409467b48Spatrick   }
98509467b48Spatrick 
986*73471bf0Spatrick   // If all bits affected by the add are included in a high-bit-mask, do the
987*73471bf0Spatrick   // add before the mask op:
988*73471bf0Spatrick   // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00
989*73471bf0Spatrick   if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) &&
990*73471bf0Spatrick       C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) {
991*73471bf0Spatrick     Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C));
992*73471bf0Spatrick     return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2));
993*73471bf0Spatrick   }
994*73471bf0Spatrick 
99509467b48Spatrick   return nullptr;
99609467b48Spatrick }
99709467b48Spatrick 
99809467b48Spatrick // Matches multiplication expression Op * C where C is a constant. Returns the
99909467b48Spatrick // constant value in C and the other operand in Op. Returns true if such a
100009467b48Spatrick // match is found.
100109467b48Spatrick static bool MatchMul(Value *E, Value *&Op, APInt &C) {
100209467b48Spatrick   const APInt *AI;
100309467b48Spatrick   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
100409467b48Spatrick     C = *AI;
100509467b48Spatrick     return true;
100609467b48Spatrick   }
100709467b48Spatrick   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
100809467b48Spatrick     C = APInt(AI->getBitWidth(), 1);
100909467b48Spatrick     C <<= *AI;
101009467b48Spatrick     return true;
101109467b48Spatrick   }
101209467b48Spatrick   return false;
101309467b48Spatrick }
101409467b48Spatrick 
101509467b48Spatrick // Matches remainder expression Op % C where C is a constant. Returns the
101609467b48Spatrick // constant value in C and the other operand in Op. Returns the signedness of
101709467b48Spatrick // the remainder operation in IsSigned. Returns true if such a match is
101809467b48Spatrick // found.
101909467b48Spatrick static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
102009467b48Spatrick   const APInt *AI;
102109467b48Spatrick   IsSigned = false;
102209467b48Spatrick   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
102309467b48Spatrick     IsSigned = true;
102409467b48Spatrick     C = *AI;
102509467b48Spatrick     return true;
102609467b48Spatrick   }
102709467b48Spatrick   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
102809467b48Spatrick     C = *AI;
102909467b48Spatrick     return true;
103009467b48Spatrick   }
103109467b48Spatrick   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
103209467b48Spatrick     C = *AI + 1;
103309467b48Spatrick     return true;
103409467b48Spatrick   }
103509467b48Spatrick   return false;
103609467b48Spatrick }
103709467b48Spatrick 
103809467b48Spatrick // Matches division expression Op / C with the given signedness as indicated
103909467b48Spatrick // by IsSigned, where C is a constant. Returns the constant value in C and the
104009467b48Spatrick // other operand in Op. Returns true if such a match is found.
104109467b48Spatrick static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
104209467b48Spatrick   const APInt *AI;
104309467b48Spatrick   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
104409467b48Spatrick     C = *AI;
104509467b48Spatrick     return true;
104609467b48Spatrick   }
104709467b48Spatrick   if (!IsSigned) {
104809467b48Spatrick     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
104909467b48Spatrick       C = *AI;
105009467b48Spatrick       return true;
105109467b48Spatrick     }
105209467b48Spatrick     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
105309467b48Spatrick       C = APInt(AI->getBitWidth(), 1);
105409467b48Spatrick       C <<= *AI;
105509467b48Spatrick       return true;
105609467b48Spatrick     }
105709467b48Spatrick   }
105809467b48Spatrick   return false;
105909467b48Spatrick }
106009467b48Spatrick 
106109467b48Spatrick // Returns whether C0 * C1 with the given signedness overflows.
106209467b48Spatrick static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
106309467b48Spatrick   bool overflow;
106409467b48Spatrick   if (IsSigned)
106509467b48Spatrick     (void)C0.smul_ov(C1, overflow);
106609467b48Spatrick   else
106709467b48Spatrick     (void)C0.umul_ov(C1, overflow);
106809467b48Spatrick   return overflow;
106909467b48Spatrick }
107009467b48Spatrick 
107109467b48Spatrick // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
107209467b48Spatrick // does not overflow.
1073*73471bf0Spatrick Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
107409467b48Spatrick   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
107509467b48Spatrick   Value *X, *MulOpV;
107609467b48Spatrick   APInt C0, MulOpC;
107709467b48Spatrick   bool IsSigned;
107809467b48Spatrick   // Match I = X % C0 + MulOpV * C0
107909467b48Spatrick   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
108009467b48Spatrick        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
108109467b48Spatrick       C0 == MulOpC) {
108209467b48Spatrick     Value *RemOpV;
108309467b48Spatrick     APInt C1;
108409467b48Spatrick     bool Rem2IsSigned;
108509467b48Spatrick     // Match MulOpC = RemOpV % C1
108609467b48Spatrick     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
108709467b48Spatrick         IsSigned == Rem2IsSigned) {
108809467b48Spatrick       Value *DivOpV;
108909467b48Spatrick       APInt DivOpC;
109009467b48Spatrick       // Match RemOpV = X / C0
109109467b48Spatrick       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
109209467b48Spatrick           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1093097a140dSpatrick         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
109409467b48Spatrick         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
109509467b48Spatrick                         : Builder.CreateURem(X, NewDivisor, "urem");
109609467b48Spatrick       }
109709467b48Spatrick     }
109809467b48Spatrick   }
109909467b48Spatrick 
110009467b48Spatrick   return nullptr;
110109467b48Spatrick }
110209467b48Spatrick 
110309467b48Spatrick /// Fold
110409467b48Spatrick ///   (1 << NBits) - 1
110509467b48Spatrick /// Into:
110609467b48Spatrick ///   ~(-(1 << NBits))
110709467b48Spatrick /// Because a 'not' is better for bit-tracking analysis and other transforms
110809467b48Spatrick /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
110909467b48Spatrick static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
111009467b48Spatrick                                            InstCombiner::BuilderTy &Builder) {
111109467b48Spatrick   Value *NBits;
111209467b48Spatrick   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
111309467b48Spatrick     return nullptr;
111409467b48Spatrick 
111509467b48Spatrick   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
111609467b48Spatrick   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
111709467b48Spatrick   // Be wary of constant folding.
111809467b48Spatrick   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
111909467b48Spatrick     // Always NSW. But NUW propagates from `add`.
112009467b48Spatrick     BOp->setHasNoSignedWrap();
112109467b48Spatrick     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
112209467b48Spatrick   }
112309467b48Spatrick 
112409467b48Spatrick   return BinaryOperator::CreateNot(NotMask, I.getName());
112509467b48Spatrick }
112609467b48Spatrick 
112709467b48Spatrick static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
112809467b48Spatrick   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
112909467b48Spatrick   Type *Ty = I.getType();
113009467b48Spatrick   auto getUAddSat = [&]() {
113109467b48Spatrick     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
113209467b48Spatrick   };
113309467b48Spatrick 
113409467b48Spatrick   // add (umin X, ~Y), Y --> uaddsat X, Y
113509467b48Spatrick   Value *X, *Y;
113609467b48Spatrick   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
113709467b48Spatrick                         m_Deferred(Y))))
113809467b48Spatrick     return CallInst::Create(getUAddSat(), { X, Y });
113909467b48Spatrick 
114009467b48Spatrick   // add (umin X, ~C), C --> uaddsat X, C
114109467b48Spatrick   const APInt *C, *NotC;
114209467b48Spatrick   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
114309467b48Spatrick       *C == ~*NotC)
114409467b48Spatrick     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
114509467b48Spatrick 
114609467b48Spatrick   return nullptr;
114709467b48Spatrick }
114809467b48Spatrick 
1149*73471bf0Spatrick Instruction *InstCombinerImpl::
1150*73471bf0Spatrick     canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
115109467b48Spatrick         BinaryOperator &I) {
115209467b48Spatrick   assert((I.getOpcode() == Instruction::Add ||
115309467b48Spatrick           I.getOpcode() == Instruction::Or ||
115409467b48Spatrick           I.getOpcode() == Instruction::Sub) &&
115509467b48Spatrick          "Expecting add/or/sub instruction");
115609467b48Spatrick 
115709467b48Spatrick   // We have a subtraction/addition between a (potentially truncated) *logical*
115809467b48Spatrick   // right-shift of X and a "select".
115909467b48Spatrick   Value *X, *Select;
116009467b48Spatrick   Instruction *LowBitsToSkip, *Extract;
116109467b48Spatrick   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
116209467b48Spatrick                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
116309467b48Spatrick                                m_Instruction(Extract))),
116409467b48Spatrick                            m_Value(Select))))
116509467b48Spatrick     return nullptr;
116609467b48Spatrick 
116709467b48Spatrick   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
116809467b48Spatrick   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
116909467b48Spatrick     return nullptr;
117009467b48Spatrick 
117109467b48Spatrick   Type *XTy = X->getType();
117209467b48Spatrick   bool HadTrunc = I.getType() != XTy;
117309467b48Spatrick 
117409467b48Spatrick   // If there was a truncation of extracted value, then we'll need to produce
117509467b48Spatrick   // one extra instruction, so we need to ensure one instruction will go away.
117609467b48Spatrick   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
117709467b48Spatrick     return nullptr;
117809467b48Spatrick 
117909467b48Spatrick   // Extraction should extract high NBits bits, with shift amount calculated as:
118009467b48Spatrick   //   low bits to skip = shift bitwidth - high bits to extract
118109467b48Spatrick   // The shift amount itself may be extended, and we need to look past zero-ext
118209467b48Spatrick   // when matching NBits, that will matter for matching later.
118309467b48Spatrick   Constant *C;
118409467b48Spatrick   Value *NBits;
118509467b48Spatrick   if (!match(
118609467b48Spatrick           LowBitsToSkip,
118709467b48Spatrick           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
118809467b48Spatrick       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
118909467b48Spatrick                                    APInt(C->getType()->getScalarSizeInBits(),
119009467b48Spatrick                                          X->getType()->getScalarSizeInBits()))))
119109467b48Spatrick     return nullptr;
119209467b48Spatrick 
119309467b48Spatrick   // Sign-extending value can be zero-extended if we `sub`tract it,
119409467b48Spatrick   // or sign-extended otherwise.
119509467b48Spatrick   auto SkipExtInMagic = [&I](Value *&V) {
119609467b48Spatrick     if (I.getOpcode() == Instruction::Sub)
119709467b48Spatrick       match(V, m_ZExtOrSelf(m_Value(V)));
119809467b48Spatrick     else
119909467b48Spatrick       match(V, m_SExtOrSelf(m_Value(V)));
120009467b48Spatrick   };
120109467b48Spatrick 
120209467b48Spatrick   // Now, finally validate the sign-extending magic.
120309467b48Spatrick   // `select` itself may be appropriately extended, look past that.
120409467b48Spatrick   SkipExtInMagic(Select);
120509467b48Spatrick 
120609467b48Spatrick   ICmpInst::Predicate Pred;
120709467b48Spatrick   const APInt *Thr;
120809467b48Spatrick   Value *SignExtendingValue, *Zero;
120909467b48Spatrick   bool ShouldSignext;
121009467b48Spatrick   // It must be a select between two values we will later establish to be a
121109467b48Spatrick   // sign-extending value and a zero constant. The condition guarding the
121209467b48Spatrick   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
121309467b48Spatrick   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
121409467b48Spatrick                               m_Value(SignExtendingValue), m_Value(Zero))) ||
121509467b48Spatrick       !isSignBitCheck(Pred, *Thr, ShouldSignext))
121609467b48Spatrick     return nullptr;
121709467b48Spatrick 
121809467b48Spatrick   // icmp-select pair is commutative.
121909467b48Spatrick   if (!ShouldSignext)
122009467b48Spatrick     std::swap(SignExtendingValue, Zero);
122109467b48Spatrick 
122209467b48Spatrick   // If we should not perform sign-extension then we must add/or/subtract zero.
122309467b48Spatrick   if (!match(Zero, m_Zero()))
122409467b48Spatrick     return nullptr;
122509467b48Spatrick   // Otherwise, it should be some constant, left-shifted by the same NBits we
122609467b48Spatrick   // had in `lshr`. Said left-shift can also be appropriately extended.
122709467b48Spatrick   // Again, we must look past zero-ext when looking for NBits.
122809467b48Spatrick   SkipExtInMagic(SignExtendingValue);
122909467b48Spatrick   Constant *SignExtendingValueBaseConstant;
123009467b48Spatrick   if (!match(SignExtendingValue,
123109467b48Spatrick              m_Shl(m_Constant(SignExtendingValueBaseConstant),
123209467b48Spatrick                    m_ZExtOrSelf(m_Specific(NBits)))))
123309467b48Spatrick     return nullptr;
123409467b48Spatrick   // If we `sub`, then the constant should be one, else it should be all-ones.
123509467b48Spatrick   if (I.getOpcode() == Instruction::Sub
123609467b48Spatrick           ? !match(SignExtendingValueBaseConstant, m_One())
123709467b48Spatrick           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
123809467b48Spatrick     return nullptr;
123909467b48Spatrick 
124009467b48Spatrick   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
124109467b48Spatrick                                              Extract->getName() + ".sext");
124209467b48Spatrick   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
124309467b48Spatrick   if (!HadTrunc)
124409467b48Spatrick     return NewAShr;
124509467b48Spatrick 
124609467b48Spatrick   Builder.Insert(NewAShr);
124709467b48Spatrick   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
124809467b48Spatrick }
124909467b48Spatrick 
1250*73471bf0Spatrick /// This is a specialization of a more general transform from
1251*73471bf0Spatrick /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally
1252*73471bf0Spatrick /// for multi-use cases or propagating nsw/nuw, then we would not need this.
1253*73471bf0Spatrick static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1254*73471bf0Spatrick                                             InstCombiner::BuilderTy &Builder) {
1255*73471bf0Spatrick   // TODO: Also handle mul by doubling the shift amount?
1256*73471bf0Spatrick   assert((I.getOpcode() == Instruction::Add ||
1257*73471bf0Spatrick           I.getOpcode() == Instruction::Sub) &&
1258*73471bf0Spatrick          "Expected add/sub");
1259*73471bf0Spatrick   auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1260*73471bf0Spatrick   auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1261*73471bf0Spatrick   if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1262*73471bf0Spatrick     return nullptr;
1263*73471bf0Spatrick 
1264*73471bf0Spatrick   Value *X, *Y, *ShAmt;
1265*73471bf0Spatrick   if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1266*73471bf0Spatrick       !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1267*73471bf0Spatrick     return nullptr;
1268*73471bf0Spatrick 
1269*73471bf0Spatrick   // No-wrap propagates only when all ops have no-wrap.
1270*73471bf0Spatrick   bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1271*73471bf0Spatrick                 Op1->hasNoSignedWrap();
1272*73471bf0Spatrick   bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1273*73471bf0Spatrick                 Op1->hasNoUnsignedWrap();
1274*73471bf0Spatrick 
1275*73471bf0Spatrick   // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1276*73471bf0Spatrick   Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1277*73471bf0Spatrick   if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1278*73471bf0Spatrick     NewI->setHasNoSignedWrap(HasNSW);
1279*73471bf0Spatrick     NewI->setHasNoUnsignedWrap(HasNUW);
1280*73471bf0Spatrick   }
1281*73471bf0Spatrick   auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1282*73471bf0Spatrick   NewShl->setHasNoSignedWrap(HasNSW);
1283*73471bf0Spatrick   NewShl->setHasNoUnsignedWrap(HasNUW);
1284*73471bf0Spatrick   return NewShl;
1285*73471bf0Spatrick }
1286*73471bf0Spatrick 
1287*73471bf0Spatrick Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
128809467b48Spatrick   if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
128909467b48Spatrick                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
129009467b48Spatrick                                  SQ.getWithInstruction(&I)))
129109467b48Spatrick     return replaceInstUsesWith(I, V);
129209467b48Spatrick 
129309467b48Spatrick   if (SimplifyAssociativeOrCommutative(I))
129409467b48Spatrick     return &I;
129509467b48Spatrick 
129609467b48Spatrick   if (Instruction *X = foldVectorBinop(I))
129709467b48Spatrick     return X;
129809467b48Spatrick 
129909467b48Spatrick   // (A*B)+(A*C) -> A*(B+C) etc
130009467b48Spatrick   if (Value *V = SimplifyUsingDistributiveLaws(I))
130109467b48Spatrick     return replaceInstUsesWith(I, V);
130209467b48Spatrick 
1303*73471bf0Spatrick   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1304*73471bf0Spatrick     return R;
1305*73471bf0Spatrick 
130609467b48Spatrick   if (Instruction *X = foldAddWithConstant(I))
130709467b48Spatrick     return X;
130809467b48Spatrick 
130909467b48Spatrick   if (Instruction *X = foldNoWrapAdd(I, Builder))
131009467b48Spatrick     return X;
131109467b48Spatrick 
131209467b48Spatrick   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
131309467b48Spatrick   Type *Ty = I.getType();
131409467b48Spatrick   if (Ty->isIntOrIntVectorTy(1))
131509467b48Spatrick     return BinaryOperator::CreateXor(LHS, RHS);
131609467b48Spatrick 
131709467b48Spatrick   // X + X --> X << 1
131809467b48Spatrick   if (LHS == RHS) {
131909467b48Spatrick     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
132009467b48Spatrick     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
132109467b48Spatrick     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
132209467b48Spatrick     return Shl;
132309467b48Spatrick   }
132409467b48Spatrick 
132509467b48Spatrick   Value *A, *B;
132609467b48Spatrick   if (match(LHS, m_Neg(m_Value(A)))) {
132709467b48Spatrick     // -A + -B --> -(A + B)
132809467b48Spatrick     if (match(RHS, m_Neg(m_Value(B))))
132909467b48Spatrick       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
133009467b48Spatrick 
133109467b48Spatrick     // -A + B --> B - A
133209467b48Spatrick     return BinaryOperator::CreateSub(RHS, A);
133309467b48Spatrick   }
133409467b48Spatrick 
133509467b48Spatrick   // A + -B  -->  A - B
133609467b48Spatrick   if (match(RHS, m_Neg(m_Value(B))))
133709467b48Spatrick     return BinaryOperator::CreateSub(LHS, B);
133809467b48Spatrick 
133909467b48Spatrick   if (Value *V = checkForNegativeOperand(I, Builder))
134009467b48Spatrick     return replaceInstUsesWith(I, V);
134109467b48Spatrick 
134209467b48Spatrick   // (A + 1) + ~B --> A - B
134309467b48Spatrick   // ~B + (A + 1) --> A - B
134409467b48Spatrick   // (~B + A) + 1 --> A - B
134509467b48Spatrick   // (A + ~B) + 1 --> A - B
134609467b48Spatrick   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
134709467b48Spatrick       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
134809467b48Spatrick     return BinaryOperator::CreateSub(A, B);
134909467b48Spatrick 
1350097a140dSpatrick   // (A + RHS) + RHS --> A + (RHS << 1)
1351097a140dSpatrick   if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1352097a140dSpatrick     return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1353097a140dSpatrick 
1354097a140dSpatrick   // LHS + (A + LHS) --> A + (LHS << 1)
1355097a140dSpatrick   if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1356097a140dSpatrick     return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1357097a140dSpatrick 
135809467b48Spatrick   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
135909467b48Spatrick   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
136009467b48Spatrick 
1361097a140dSpatrick   // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1362097a140dSpatrick   const APInt *C1, *C2;
1363097a140dSpatrick   if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1364097a140dSpatrick     APInt one(C2->getBitWidth(), 1);
1365097a140dSpatrick     APInt minusC1 = -(*C1);
1366097a140dSpatrick     if (minusC1 == (one << *C2)) {
1367097a140dSpatrick       Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1368097a140dSpatrick       return BinaryOperator::CreateSRem(RHS, NewRHS);
1369097a140dSpatrick     }
1370097a140dSpatrick   }
1371097a140dSpatrick 
137209467b48Spatrick   // A+B --> A|B iff A and B have no bits set in common.
137309467b48Spatrick   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
137409467b48Spatrick     return BinaryOperator::CreateOr(LHS, RHS);
137509467b48Spatrick 
137609467b48Spatrick   // add (select X 0 (sub n A)) A  -->  select X A n
137709467b48Spatrick   {
137809467b48Spatrick     SelectInst *SI = dyn_cast<SelectInst>(LHS);
137909467b48Spatrick     Value *A = RHS;
138009467b48Spatrick     if (!SI) {
138109467b48Spatrick       SI = dyn_cast<SelectInst>(RHS);
138209467b48Spatrick       A = LHS;
138309467b48Spatrick     }
138409467b48Spatrick     if (SI && SI->hasOneUse()) {
138509467b48Spatrick       Value *TV = SI->getTrueValue();
138609467b48Spatrick       Value *FV = SI->getFalseValue();
138709467b48Spatrick       Value *N;
138809467b48Spatrick 
138909467b48Spatrick       // Can we fold the add into the argument of the select?
139009467b48Spatrick       // We check both true and false select arguments for a matching subtract.
139109467b48Spatrick       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
139209467b48Spatrick         // Fold the add into the true select value.
139309467b48Spatrick         return SelectInst::Create(SI->getCondition(), N, A);
139409467b48Spatrick 
139509467b48Spatrick       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
139609467b48Spatrick         // Fold the add into the false select value.
139709467b48Spatrick         return SelectInst::Create(SI->getCondition(), A, N);
139809467b48Spatrick     }
139909467b48Spatrick   }
140009467b48Spatrick 
140109467b48Spatrick   if (Instruction *Ext = narrowMathIfNoOverflow(I))
140209467b48Spatrick     return Ext;
140309467b48Spatrick 
140409467b48Spatrick   // (add (xor A, B) (and A, B)) --> (or A, B)
140509467b48Spatrick   // (add (and A, B) (xor A, B)) --> (or A, B)
140609467b48Spatrick   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
140709467b48Spatrick                           m_c_And(m_Deferred(A), m_Deferred(B)))))
140809467b48Spatrick     return BinaryOperator::CreateOr(A, B);
140909467b48Spatrick 
141009467b48Spatrick   // (add (or A, B) (and A, B)) --> (add A, B)
141109467b48Spatrick   // (add (and A, B) (or A, B)) --> (add A, B)
141209467b48Spatrick   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
141309467b48Spatrick                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1414097a140dSpatrick     // Replacing operands in-place to preserve nuw/nsw flags.
1415097a140dSpatrick     replaceOperand(I, 0, A);
1416097a140dSpatrick     replaceOperand(I, 1, B);
141709467b48Spatrick     return &I;
141809467b48Spatrick   }
141909467b48Spatrick 
142009467b48Spatrick   // TODO(jingyue): Consider willNotOverflowSignedAdd and
142109467b48Spatrick   // willNotOverflowUnsignedAdd to reduce the number of invocations of
142209467b48Spatrick   // computeKnownBits.
142309467b48Spatrick   bool Changed = false;
142409467b48Spatrick   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
142509467b48Spatrick     Changed = true;
142609467b48Spatrick     I.setHasNoSignedWrap(true);
142709467b48Spatrick   }
142809467b48Spatrick   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
142909467b48Spatrick     Changed = true;
143009467b48Spatrick     I.setHasNoUnsignedWrap(true);
143109467b48Spatrick   }
143209467b48Spatrick 
143309467b48Spatrick   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
143409467b48Spatrick     return V;
143509467b48Spatrick 
143609467b48Spatrick   if (Instruction *V =
143709467b48Spatrick           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
143809467b48Spatrick     return V;
143909467b48Spatrick 
144009467b48Spatrick   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
144109467b48Spatrick     return SatAdd;
144209467b48Spatrick 
1443*73471bf0Spatrick   // usub.sat(A, B) + B => umax(A, B)
1444*73471bf0Spatrick   if (match(&I, m_c_BinOp(
1445*73471bf0Spatrick           m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1446*73471bf0Spatrick           m_Deferred(B)))) {
1447*73471bf0Spatrick     return replaceInstUsesWith(I,
1448*73471bf0Spatrick         Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1449*73471bf0Spatrick   }
1450*73471bf0Spatrick 
1451*73471bf0Spatrick   // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1452*73471bf0Spatrick   if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1453*73471bf0Spatrick       match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1454*73471bf0Spatrick       haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
1455*73471bf0Spatrick     return replaceInstUsesWith(
1456*73471bf0Spatrick         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1457*73471bf0Spatrick                                    {Builder.CreateOr(A, B)}));
1458*73471bf0Spatrick 
145909467b48Spatrick   return Changed ? &I : nullptr;
146009467b48Spatrick }
146109467b48Spatrick 
146209467b48Spatrick /// Eliminate an op from a linear interpolation (lerp) pattern.
146309467b48Spatrick static Instruction *factorizeLerp(BinaryOperator &I,
146409467b48Spatrick                                   InstCombiner::BuilderTy &Builder) {
146509467b48Spatrick   Value *X, *Y, *Z;
146609467b48Spatrick   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
146709467b48Spatrick                                             m_OneUse(m_FSub(m_FPOne(),
146809467b48Spatrick                                                             m_Value(Z))))),
146909467b48Spatrick                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
147009467b48Spatrick     return nullptr;
147109467b48Spatrick 
147209467b48Spatrick   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
147309467b48Spatrick   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
147409467b48Spatrick   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
147509467b48Spatrick   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
147609467b48Spatrick }
147709467b48Spatrick 
147809467b48Spatrick /// Factor a common operand out of fadd/fsub of fmul/fdiv.
147909467b48Spatrick static Instruction *factorizeFAddFSub(BinaryOperator &I,
148009467b48Spatrick                                       InstCombiner::BuilderTy &Builder) {
148109467b48Spatrick   assert((I.getOpcode() == Instruction::FAdd ||
148209467b48Spatrick           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
148309467b48Spatrick   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
148409467b48Spatrick          "FP factorization requires FMF");
148509467b48Spatrick 
148609467b48Spatrick   if (Instruction *Lerp = factorizeLerp(I, Builder))
148709467b48Spatrick     return Lerp;
148809467b48Spatrick 
148909467b48Spatrick   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
149009467b48Spatrick   Value *X, *Y, *Z;
149109467b48Spatrick   bool IsFMul;
149209467b48Spatrick   if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
149309467b48Spatrick        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
149409467b48Spatrick       (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
149509467b48Spatrick        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
149609467b48Spatrick     IsFMul = true;
149709467b48Spatrick   else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
149809467b48Spatrick            match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
149909467b48Spatrick     IsFMul = false;
150009467b48Spatrick   else
150109467b48Spatrick     return nullptr;
150209467b48Spatrick 
150309467b48Spatrick   // (X * Z) + (Y * Z) --> (X + Y) * Z
150409467b48Spatrick   // (X * Z) - (Y * Z) --> (X - Y) * Z
150509467b48Spatrick   // (X / Z) + (Y / Z) --> (X + Y) / Z
150609467b48Spatrick   // (X / Z) - (Y / Z) --> (X - Y) / Z
150709467b48Spatrick   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
150809467b48Spatrick   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
150909467b48Spatrick                      : Builder.CreateFSubFMF(X, Y, &I);
151009467b48Spatrick 
151109467b48Spatrick   // Bail out if we just created a denormal constant.
151209467b48Spatrick   // TODO: This is copied from a previous implementation. Is it necessary?
151309467b48Spatrick   const APFloat *C;
151409467b48Spatrick   if (match(XY, m_APFloat(C)) && !C->isNormal())
151509467b48Spatrick     return nullptr;
151609467b48Spatrick 
151709467b48Spatrick   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
151809467b48Spatrick                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
151909467b48Spatrick }
152009467b48Spatrick 
1521*73471bf0Spatrick Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
152209467b48Spatrick   if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
152309467b48Spatrick                                   I.getFastMathFlags(),
152409467b48Spatrick                                   SQ.getWithInstruction(&I)))
152509467b48Spatrick     return replaceInstUsesWith(I, V);
152609467b48Spatrick 
152709467b48Spatrick   if (SimplifyAssociativeOrCommutative(I))
152809467b48Spatrick     return &I;
152909467b48Spatrick 
153009467b48Spatrick   if (Instruction *X = foldVectorBinop(I))
153109467b48Spatrick     return X;
153209467b48Spatrick 
153309467b48Spatrick   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
153409467b48Spatrick     return FoldedFAdd;
153509467b48Spatrick 
153609467b48Spatrick   // (-X) + Y --> Y - X
153709467b48Spatrick   Value *X, *Y;
153809467b48Spatrick   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
153909467b48Spatrick     return BinaryOperator::CreateFSubFMF(Y, X, &I);
154009467b48Spatrick 
154109467b48Spatrick   // Similar to above, but look through fmul/fdiv for the negated term.
154209467b48Spatrick   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
154309467b48Spatrick   Value *Z;
154409467b48Spatrick   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
154509467b48Spatrick                          m_Value(Z)))) {
154609467b48Spatrick     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
154709467b48Spatrick     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
154809467b48Spatrick   }
154909467b48Spatrick   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
155009467b48Spatrick   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
155109467b48Spatrick   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
155209467b48Spatrick                          m_Value(Z))) ||
155309467b48Spatrick       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
155409467b48Spatrick                          m_Value(Z)))) {
155509467b48Spatrick     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
155609467b48Spatrick     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
155709467b48Spatrick   }
155809467b48Spatrick 
155909467b48Spatrick   // Check for (fadd double (sitofp x), y), see if we can merge this into an
156009467b48Spatrick   // integer add followed by a promotion.
156109467b48Spatrick   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
156209467b48Spatrick   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
156309467b48Spatrick     Value *LHSIntVal = LHSConv->getOperand(0);
156409467b48Spatrick     Type *FPType = LHSConv->getType();
156509467b48Spatrick 
156609467b48Spatrick     // TODO: This check is overly conservative. In many cases known bits
156709467b48Spatrick     // analysis can tell us that the result of the addition has less significant
156809467b48Spatrick     // bits than the integer type can hold.
156909467b48Spatrick     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
157009467b48Spatrick       Type *FScalarTy = FTy->getScalarType();
157109467b48Spatrick       Type *IScalarTy = ITy->getScalarType();
157209467b48Spatrick 
157309467b48Spatrick       // Do we have enough bits in the significand to represent the result of
157409467b48Spatrick       // the integer addition?
157509467b48Spatrick       unsigned MaxRepresentableBits =
157609467b48Spatrick           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
157709467b48Spatrick       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
157809467b48Spatrick     };
157909467b48Spatrick 
158009467b48Spatrick     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
158109467b48Spatrick     // ... if the constant fits in the integer value.  This is useful for things
158209467b48Spatrick     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
158309467b48Spatrick     // requires a constant pool load, and generally allows the add to be better
158409467b48Spatrick     // instcombined.
158509467b48Spatrick     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
158609467b48Spatrick       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
158709467b48Spatrick         Constant *CI =
158809467b48Spatrick           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
158909467b48Spatrick         if (LHSConv->hasOneUse() &&
159009467b48Spatrick             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
159109467b48Spatrick             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
159209467b48Spatrick           // Insert the new integer add.
159309467b48Spatrick           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
159409467b48Spatrick           return new SIToFPInst(NewAdd, I.getType());
159509467b48Spatrick         }
159609467b48Spatrick       }
159709467b48Spatrick 
159809467b48Spatrick     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
159909467b48Spatrick     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
160009467b48Spatrick       Value *RHSIntVal = RHSConv->getOperand(0);
160109467b48Spatrick       // It's enough to check LHS types only because we require int types to
160209467b48Spatrick       // be the same for this transform.
160309467b48Spatrick       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
160409467b48Spatrick         // Only do this if x/y have the same type, if at least one of them has a
160509467b48Spatrick         // single use (so we don't increase the number of int->fp conversions),
160609467b48Spatrick         // and if the integer add will not overflow.
160709467b48Spatrick         if (LHSIntVal->getType() == RHSIntVal->getType() &&
160809467b48Spatrick             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
160909467b48Spatrick             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
161009467b48Spatrick           // Insert the new integer add.
161109467b48Spatrick           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
161209467b48Spatrick           return new SIToFPInst(NewAdd, I.getType());
161309467b48Spatrick         }
161409467b48Spatrick       }
161509467b48Spatrick     }
161609467b48Spatrick   }
161709467b48Spatrick 
161809467b48Spatrick   // Handle specials cases for FAdd with selects feeding the operation
161909467b48Spatrick   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
162009467b48Spatrick     return replaceInstUsesWith(I, V);
162109467b48Spatrick 
162209467b48Spatrick   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
162309467b48Spatrick     if (Instruction *F = factorizeFAddFSub(I, Builder))
162409467b48Spatrick       return F;
1625*73471bf0Spatrick 
1626*73471bf0Spatrick     // Try to fold fadd into start value of reduction intrinsic.
1627*73471bf0Spatrick     if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1628*73471bf0Spatrick                                m_AnyZeroFP(), m_Value(X))),
1629*73471bf0Spatrick                            m_Value(Y)))) {
1630*73471bf0Spatrick       // fadd (rdx 0.0, X), Y --> rdx Y, X
1631*73471bf0Spatrick       return replaceInstUsesWith(
1632*73471bf0Spatrick           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1633*73471bf0Spatrick                                      {X->getType()}, {Y, X}, &I));
1634*73471bf0Spatrick     }
1635*73471bf0Spatrick     const APFloat *StartC, *C;
1636*73471bf0Spatrick     if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1637*73471bf0Spatrick                        m_APFloat(StartC), m_Value(X)))) &&
1638*73471bf0Spatrick         match(RHS, m_APFloat(C))) {
1639*73471bf0Spatrick       // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1640*73471bf0Spatrick       Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1641*73471bf0Spatrick       return replaceInstUsesWith(
1642*73471bf0Spatrick           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1643*73471bf0Spatrick                                      {X->getType()}, {NewStartC, X}, &I));
1644*73471bf0Spatrick     }
1645*73471bf0Spatrick 
164609467b48Spatrick     if (Value *V = FAddCombine(Builder).simplify(&I))
164709467b48Spatrick       return replaceInstUsesWith(I, V);
164809467b48Spatrick   }
164909467b48Spatrick 
165009467b48Spatrick   return nullptr;
165109467b48Spatrick }
165209467b48Spatrick 
165309467b48Spatrick /// Optimize pointer differences into the same array into a size.  Consider:
165409467b48Spatrick ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
165509467b48Spatrick /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1656*73471bf0Spatrick Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
165709467b48Spatrick                                                    Type *Ty, bool IsNUW) {
165809467b48Spatrick   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
165909467b48Spatrick   // this.
166009467b48Spatrick   bool Swapped = false;
166109467b48Spatrick   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1662*73471bf0Spatrick   if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
1663*73471bf0Spatrick     std::swap(LHS, RHS);
1664*73471bf0Spatrick     Swapped = true;
1665*73471bf0Spatrick   }
166609467b48Spatrick 
1667*73471bf0Spatrick   // Require at least one GEP with a common base pointer on both sides.
1668*73471bf0Spatrick   if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
166909467b48Spatrick     // (gep X, ...) - X
167009467b48Spatrick     if (LHSGEP->getOperand(0) == RHS) {
167109467b48Spatrick       GEP1 = LHSGEP;
1672*73471bf0Spatrick     } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
167309467b48Spatrick       // (gep X, ...) - (gep X, ...)
167409467b48Spatrick       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
167509467b48Spatrick           RHSGEP->getOperand(0)->stripPointerCasts()) {
167609467b48Spatrick         GEP1 = LHSGEP;
1677*73471bf0Spatrick         GEP2 = RHSGEP;
167809467b48Spatrick       }
167909467b48Spatrick     }
168009467b48Spatrick   }
168109467b48Spatrick 
168209467b48Spatrick   if (!GEP1)
168309467b48Spatrick     return nullptr;
168409467b48Spatrick 
168509467b48Spatrick   if (GEP2) {
168609467b48Spatrick     // (gep X, ...) - (gep X, ...)
168709467b48Spatrick     //
168809467b48Spatrick     // Avoid duplicating the arithmetic if there are more than one non-constant
168909467b48Spatrick     // indices between the two GEPs and either GEP has a non-constant index and
169009467b48Spatrick     // multiple users. If zero non-constant index, the result is a constant and
169109467b48Spatrick     // there is no duplication. If one non-constant index, the result is an add
169209467b48Spatrick     // or sub with a constant, which is no larger than the original code, and
169309467b48Spatrick     // there's no duplicated arithmetic, even if either GEP has multiple
169409467b48Spatrick     // users. If more than one non-constant indices combined, as long as the GEP
169509467b48Spatrick     // with at least one non-constant index doesn't have multiple users, there
169609467b48Spatrick     // is no duplication.
169709467b48Spatrick     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
169809467b48Spatrick     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
169909467b48Spatrick     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
170009467b48Spatrick         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
170109467b48Spatrick          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
170209467b48Spatrick       return nullptr;
170309467b48Spatrick     }
170409467b48Spatrick   }
170509467b48Spatrick 
170609467b48Spatrick   // Emit the offset of the GEP and an intptr_t.
170709467b48Spatrick   Value *Result = EmitGEPOffset(GEP1);
170809467b48Spatrick 
170909467b48Spatrick   // If this is a single inbounds GEP and the original sub was nuw,
1710*73471bf0Spatrick   // then the final multiplication is also nuw.
1711*73471bf0Spatrick   if (auto *I = dyn_cast<Instruction>(Result))
171209467b48Spatrick     if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
171309467b48Spatrick         I->getOpcode() == Instruction::Mul)
171409467b48Spatrick       I->setHasNoUnsignedWrap();
171509467b48Spatrick 
1716*73471bf0Spatrick   // If we have a 2nd GEP of the same base pointer, subtract the offsets.
1717*73471bf0Spatrick   // If both GEPs are inbounds, then the subtract does not have signed overflow.
171809467b48Spatrick   if (GEP2) {
171909467b48Spatrick     Value *Offset = EmitGEPOffset(GEP2);
1720*73471bf0Spatrick     Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
1721*73471bf0Spatrick                                GEP1->isInBounds() && GEP2->isInBounds());
172209467b48Spatrick   }
172309467b48Spatrick 
172409467b48Spatrick   // If we have p - gep(p, ...)  then we have to negate the result.
172509467b48Spatrick   if (Swapped)
172609467b48Spatrick     Result = Builder.CreateNeg(Result, "diff.neg");
172709467b48Spatrick 
172809467b48Spatrick   return Builder.CreateIntCast(Result, Ty, true);
172909467b48Spatrick }
173009467b48Spatrick 
1731*73471bf0Spatrick Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
173209467b48Spatrick   if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
173309467b48Spatrick                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
173409467b48Spatrick                                  SQ.getWithInstruction(&I)))
173509467b48Spatrick     return replaceInstUsesWith(I, V);
173609467b48Spatrick 
173709467b48Spatrick   if (Instruction *X = foldVectorBinop(I))
173809467b48Spatrick     return X;
173909467b48Spatrick 
1740097a140dSpatrick   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
174109467b48Spatrick 
174209467b48Spatrick   // If this is a 'B = x-(-A)', change to B = x+A.
1743097a140dSpatrick   // We deal with this without involving Negator to preserve NSW flag.
174409467b48Spatrick   if (Value *V = dyn_castNegVal(Op1)) {
174509467b48Spatrick     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
174609467b48Spatrick 
174709467b48Spatrick     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
174809467b48Spatrick       assert(BO->getOpcode() == Instruction::Sub &&
174909467b48Spatrick              "Expected a subtraction operator!");
175009467b48Spatrick       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
175109467b48Spatrick         Res->setHasNoSignedWrap(true);
175209467b48Spatrick     } else {
175309467b48Spatrick       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
175409467b48Spatrick         Res->setHasNoSignedWrap(true);
175509467b48Spatrick     }
175609467b48Spatrick 
175709467b48Spatrick     return Res;
175809467b48Spatrick   }
175909467b48Spatrick 
1760*73471bf0Spatrick   // Try this before Negator to preserve NSW flag.
1761*73471bf0Spatrick   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1762*73471bf0Spatrick     return R;
1763*73471bf0Spatrick 
1764*73471bf0Spatrick   Constant *C;
1765*73471bf0Spatrick   if (match(Op0, m_ImmConstant(C))) {
1766*73471bf0Spatrick     Value *X;
1767*73471bf0Spatrick     Constant *C2;
1768*73471bf0Spatrick 
1769*73471bf0Spatrick     // C-(X+C2) --> (C-C2)-X
1770*73471bf0Spatrick     if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
1771*73471bf0Spatrick       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1772*73471bf0Spatrick   }
1773*73471bf0Spatrick 
1774097a140dSpatrick   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1775097a140dSpatrick     if (Instruction *Ext = narrowMathIfNoOverflow(I))
1776097a140dSpatrick       return Ext;
1777097a140dSpatrick 
1778097a140dSpatrick     bool Changed = false;
1779097a140dSpatrick     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1780097a140dSpatrick       Changed = true;
1781097a140dSpatrick       I.setHasNoSignedWrap(true);
1782097a140dSpatrick     }
1783097a140dSpatrick     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1784097a140dSpatrick       Changed = true;
1785097a140dSpatrick       I.setHasNoUnsignedWrap(true);
1786097a140dSpatrick     }
1787097a140dSpatrick 
1788097a140dSpatrick     return Changed ? &I : nullptr;
1789097a140dSpatrick   };
1790097a140dSpatrick 
1791097a140dSpatrick   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1792097a140dSpatrick   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1793097a140dSpatrick   // a pure negation used by a select that looks like abs/nabs.
1794097a140dSpatrick   bool IsNegation = match(Op0, m_ZeroInt());
1795097a140dSpatrick   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1796097a140dSpatrick         const Instruction *UI = dyn_cast<Instruction>(U);
1797097a140dSpatrick         if (!UI)
1798097a140dSpatrick           return false;
1799097a140dSpatrick         return match(UI,
1800097a140dSpatrick                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1801097a140dSpatrick                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1802097a140dSpatrick       })) {
1803097a140dSpatrick     if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1804097a140dSpatrick       return BinaryOperator::CreateAdd(NegOp1, Op0);
1805097a140dSpatrick   }
1806097a140dSpatrick   if (IsNegation)
1807097a140dSpatrick     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1808097a140dSpatrick 
1809097a140dSpatrick   // (A*B)-(A*C) -> A*(B-C) etc
1810097a140dSpatrick   if (Value *V = SimplifyUsingDistributiveLaws(I))
1811097a140dSpatrick     return replaceInstUsesWith(I, V);
1812097a140dSpatrick 
181309467b48Spatrick   if (I.getType()->isIntOrIntVectorTy(1))
181409467b48Spatrick     return BinaryOperator::CreateXor(Op0, Op1);
181509467b48Spatrick 
181609467b48Spatrick   // Replace (-1 - A) with (~A).
181709467b48Spatrick   if (match(Op0, m_AllOnes()))
181809467b48Spatrick     return BinaryOperator::CreateNot(Op1);
181909467b48Spatrick 
182009467b48Spatrick   // (~X) - (~Y) --> Y - X
182109467b48Spatrick   Value *X, *Y;
182209467b48Spatrick   if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
182309467b48Spatrick     return BinaryOperator::CreateSub(Y, X);
182409467b48Spatrick 
182509467b48Spatrick   // (X + -1) - Y --> ~Y + X
182609467b48Spatrick   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
182709467b48Spatrick     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
182809467b48Spatrick 
1829097a140dSpatrick   // Reassociate sub/add sequences to create more add instructions and
1830097a140dSpatrick   // reduce dependency chains:
1831097a140dSpatrick   // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
1832097a140dSpatrick   Value *Z;
1833097a140dSpatrick   if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
1834097a140dSpatrick                                   m_Value(Z))))) {
1835097a140dSpatrick     Value *XZ = Builder.CreateAdd(X, Z);
1836097a140dSpatrick     Value *YW = Builder.CreateAdd(Y, Op1);
1837097a140dSpatrick     return BinaryOperator::CreateSub(XZ, YW);
1838097a140dSpatrick   }
183909467b48Spatrick 
1840*73471bf0Spatrick   // ((X - Y) - Op1)  -->  X - (Y + Op1)
1841*73471bf0Spatrick   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
1842*73471bf0Spatrick     Value *Add = Builder.CreateAdd(Y, Op1);
1843*73471bf0Spatrick     return BinaryOperator::CreateSub(X, Add);
1844*73471bf0Spatrick   }
1845*73471bf0Spatrick 
1846097a140dSpatrick   auto m_AddRdx = [](Value *&Vec) {
1847*73471bf0Spatrick     return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
1848097a140dSpatrick   };
1849097a140dSpatrick   Value *V0, *V1;
1850097a140dSpatrick   if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
1851097a140dSpatrick       V0->getType() == V1->getType()) {
1852097a140dSpatrick     // Difference of sums is sum of differences:
1853097a140dSpatrick     // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
1854097a140dSpatrick     Value *Sub = Builder.CreateSub(V0, V1);
1855*73471bf0Spatrick     Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
1856*73471bf0Spatrick                                          {Sub->getType()}, {Sub});
1857097a140dSpatrick     return replaceInstUsesWith(I, Rdx);
185809467b48Spatrick   }
185909467b48Spatrick 
186009467b48Spatrick   if (Constant *C = dyn_cast<Constant>(Op0)) {
186109467b48Spatrick     Value *X;
1862097a140dSpatrick     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
186309467b48Spatrick       // C - (zext bool) --> bool ? C - 1 : C
1864*73471bf0Spatrick       return SelectInst::Create(X, InstCombiner::SubOne(C), C);
1865097a140dSpatrick     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
186609467b48Spatrick       // C - (sext bool) --> bool ? C + 1 : C
1867*73471bf0Spatrick       return SelectInst::Create(X, InstCombiner::AddOne(C), C);
186809467b48Spatrick 
186909467b48Spatrick     // C - ~X == X + (1+C)
187009467b48Spatrick     if (match(Op1, m_Not(m_Value(X))))
1871*73471bf0Spatrick       return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
187209467b48Spatrick 
187309467b48Spatrick     // Try to fold constant sub into select arguments.
187409467b48Spatrick     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
187509467b48Spatrick       if (Instruction *R = FoldOpIntoSelect(I, SI))
187609467b48Spatrick         return R;
187709467b48Spatrick 
187809467b48Spatrick     // Try to fold constant sub into PHI values.
187909467b48Spatrick     if (PHINode *PN = dyn_cast<PHINode>(Op1))
188009467b48Spatrick       if (Instruction *R = foldOpIntoPhi(I, PN))
188109467b48Spatrick         return R;
188209467b48Spatrick 
188309467b48Spatrick     Constant *C2;
188409467b48Spatrick 
188509467b48Spatrick     // C-(C2-X) --> X+(C-C2)
1886*73471bf0Spatrick     if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
188709467b48Spatrick       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
188809467b48Spatrick   }
188909467b48Spatrick 
189009467b48Spatrick   const APInt *Op0C;
1891097a140dSpatrick   if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
189209467b48Spatrick     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
189309467b48Spatrick     // zero.
189409467b48Spatrick     KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
189509467b48Spatrick     if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
189609467b48Spatrick       return BinaryOperator::CreateXor(Op1, Op0);
189709467b48Spatrick   }
189809467b48Spatrick 
189909467b48Spatrick   {
190009467b48Spatrick     Value *Y;
190109467b48Spatrick     // X-(X+Y) == -Y    X-(Y+X) == -Y
190209467b48Spatrick     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
190309467b48Spatrick       return BinaryOperator::CreateNeg(Y);
190409467b48Spatrick 
190509467b48Spatrick     // (X-Y)-X == -Y
190609467b48Spatrick     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
190709467b48Spatrick       return BinaryOperator::CreateNeg(Y);
190809467b48Spatrick   }
190909467b48Spatrick 
191009467b48Spatrick   // (sub (or A, B) (and A, B)) --> (xor A, B)
191109467b48Spatrick   {
191209467b48Spatrick     Value *A, *B;
191309467b48Spatrick     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
191409467b48Spatrick         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
191509467b48Spatrick       return BinaryOperator::CreateXor(A, B);
191609467b48Spatrick   }
191709467b48Spatrick 
1918*73471bf0Spatrick   // (sub (add A, B) (or A, B)) --> (and A, B)
1919*73471bf0Spatrick   {
1920*73471bf0Spatrick     Value *A, *B;
1921*73471bf0Spatrick     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
1922*73471bf0Spatrick         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1923*73471bf0Spatrick       return BinaryOperator::CreateAnd(A, B);
1924*73471bf0Spatrick   }
1925*73471bf0Spatrick 
1926*73471bf0Spatrick   // (sub (add A, B) (and A, B)) --> (or A, B)
1927*73471bf0Spatrick   {
1928*73471bf0Spatrick     Value *A, *B;
1929*73471bf0Spatrick     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
1930*73471bf0Spatrick         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
1931*73471bf0Spatrick       return BinaryOperator::CreateOr(A, B);
1932*73471bf0Spatrick   }
1933*73471bf0Spatrick 
193409467b48Spatrick   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
193509467b48Spatrick   {
193609467b48Spatrick     Value *A, *B;
193709467b48Spatrick     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
193809467b48Spatrick         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
193909467b48Spatrick         (Op0->hasOneUse() || Op1->hasOneUse()))
194009467b48Spatrick       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
194109467b48Spatrick   }
194209467b48Spatrick 
194309467b48Spatrick   // (sub (or A, B), (xor A, B)) --> (and A, B)
194409467b48Spatrick   {
194509467b48Spatrick     Value *A, *B;
194609467b48Spatrick     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
194709467b48Spatrick         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
194809467b48Spatrick       return BinaryOperator::CreateAnd(A, B);
194909467b48Spatrick   }
195009467b48Spatrick 
195109467b48Spatrick   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
195209467b48Spatrick   {
195309467b48Spatrick     Value *A, *B;
195409467b48Spatrick     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
195509467b48Spatrick         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
195609467b48Spatrick         (Op0->hasOneUse() || Op1->hasOneUse()))
195709467b48Spatrick       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
195809467b48Spatrick   }
195909467b48Spatrick 
196009467b48Spatrick   {
196109467b48Spatrick     Value *Y;
196209467b48Spatrick     // ((X | Y) - X) --> (~X & Y)
196309467b48Spatrick     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
196409467b48Spatrick       return BinaryOperator::CreateAnd(
196509467b48Spatrick           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
196609467b48Spatrick   }
196709467b48Spatrick 
196809467b48Spatrick   {
196909467b48Spatrick     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
197009467b48Spatrick     Value *X;
197109467b48Spatrick     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
197209467b48Spatrick                                     m_OneUse(m_Neg(m_Value(X))))))) {
197309467b48Spatrick       return BinaryOperator::CreateNeg(Builder.CreateAnd(
197409467b48Spatrick           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
197509467b48Spatrick     }
197609467b48Spatrick   }
197709467b48Spatrick 
197809467b48Spatrick   {
197909467b48Spatrick     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
198009467b48Spatrick     Constant *C;
198109467b48Spatrick     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
198209467b48Spatrick       return BinaryOperator::CreateNeg(
198309467b48Spatrick           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
198409467b48Spatrick     }
198509467b48Spatrick   }
198609467b48Spatrick 
198709467b48Spatrick   {
198809467b48Spatrick     // If we have a subtraction between some value and a select between
198909467b48Spatrick     // said value and something else, sink subtraction into select hands, i.e.:
199009467b48Spatrick     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
199109467b48Spatrick     //     ->
199209467b48Spatrick     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
199309467b48Spatrick     //  or
199409467b48Spatrick     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
199509467b48Spatrick     //     ->
199609467b48Spatrick     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
199709467b48Spatrick     // This will result in select between new subtraction and 0.
199809467b48Spatrick     auto SinkSubIntoSelect =
199909467b48Spatrick         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
200009467b48Spatrick                            auto SubBuilder) -> Instruction * {
200109467b48Spatrick       Value *Cond, *TrueVal, *FalseVal;
200209467b48Spatrick       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
200309467b48Spatrick                                            m_Value(FalseVal)))))
200409467b48Spatrick         return nullptr;
200509467b48Spatrick       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
200609467b48Spatrick         return nullptr;
200709467b48Spatrick       // While it is really tempting to just create two subtractions and let
200809467b48Spatrick       // InstCombine fold one of those to 0, it isn't possible to do so
200909467b48Spatrick       // because of worklist visitation order. So ugly it is.
201009467b48Spatrick       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
201109467b48Spatrick       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
201209467b48Spatrick       Constant *Zero = Constant::getNullValue(Ty);
201309467b48Spatrick       SelectInst *NewSel =
201409467b48Spatrick           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
201509467b48Spatrick                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
201609467b48Spatrick       // Preserve prof metadata if any.
201709467b48Spatrick       NewSel->copyMetadata(cast<Instruction>(*Select));
201809467b48Spatrick       return NewSel;
201909467b48Spatrick     };
202009467b48Spatrick     if (Instruction *NewSel = SinkSubIntoSelect(
202109467b48Spatrick             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
202209467b48Spatrick             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
202309467b48Spatrick               return Builder->CreateSub(OtherHandOfSelect,
202409467b48Spatrick                                         /*OtherHandOfSub=*/Op1);
202509467b48Spatrick             }))
202609467b48Spatrick       return NewSel;
202709467b48Spatrick     if (Instruction *NewSel = SinkSubIntoSelect(
202809467b48Spatrick             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
202909467b48Spatrick             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
203009467b48Spatrick               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
203109467b48Spatrick                                         OtherHandOfSelect);
203209467b48Spatrick             }))
203309467b48Spatrick       return NewSel;
203409467b48Spatrick   }
203509467b48Spatrick 
203609467b48Spatrick   // (X - (X & Y))   -->   (X & ~Y)
2037097a140dSpatrick   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2038097a140dSpatrick       (Op1->hasOneUse() || isa<Constant>(Y)))
2039097a140dSpatrick     return BinaryOperator::CreateAnd(
2040097a140dSpatrick         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
204109467b48Spatrick 
204209467b48Spatrick   {
204309467b48Spatrick     // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
204409467b48Spatrick     // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
204509467b48Spatrick     // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
204609467b48Spatrick     // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
204709467b48Spatrick     // So long as O here is freely invertible, this will be neutral or a win.
204809467b48Spatrick     Value *LHS, *RHS, *A;
204909467b48Spatrick     Value *NotA = Op0, *MinMax = Op1;
205009467b48Spatrick     SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
205109467b48Spatrick     if (!SelectPatternResult::isMinOrMax(SPF)) {
205209467b48Spatrick       NotA = Op1;
205309467b48Spatrick       MinMax = Op0;
205409467b48Spatrick       SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
205509467b48Spatrick     }
205609467b48Spatrick     if (SelectPatternResult::isMinOrMax(SPF) &&
205709467b48Spatrick         match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
205809467b48Spatrick       if (NotA == LHS)
205909467b48Spatrick         std::swap(LHS, RHS);
206009467b48Spatrick       // LHS is now O above and expected to have at least 2 uses (the min/max)
206109467b48Spatrick       // NotA is epected to have 2 uses from the min/max and 1 from the sub.
206209467b48Spatrick       if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
206309467b48Spatrick           !NotA->hasNUsesOrMore(4)) {
206409467b48Spatrick         // Note: We don't generate the inverse max/min, just create the not of
206509467b48Spatrick         // it and let other folds do the rest.
206609467b48Spatrick         Value *Not = Builder.CreateNot(MinMax);
206709467b48Spatrick         if (NotA == Op0)
206809467b48Spatrick           return BinaryOperator::CreateSub(Not, A);
206909467b48Spatrick         else
207009467b48Spatrick           return BinaryOperator::CreateSub(A, Not);
207109467b48Spatrick       }
207209467b48Spatrick     }
207309467b48Spatrick   }
207409467b48Spatrick 
207509467b48Spatrick   // Optimize pointer differences into the same array into a size.  Consider:
207609467b48Spatrick   //  &A[10] - &A[0]: we should compile this to "10".
207709467b48Spatrick   Value *LHSOp, *RHSOp;
207809467b48Spatrick   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
207909467b48Spatrick       match(Op1, m_PtrToInt(m_Value(RHSOp))))
208009467b48Spatrick     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
208109467b48Spatrick                                                I.hasNoUnsignedWrap()))
208209467b48Spatrick       return replaceInstUsesWith(I, Res);
208309467b48Spatrick 
208409467b48Spatrick   // trunc(p)-trunc(q) -> trunc(p-q)
208509467b48Spatrick   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
208609467b48Spatrick       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
208709467b48Spatrick     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
208809467b48Spatrick                                                /* IsNUW */ false))
208909467b48Spatrick       return replaceInstUsesWith(I, Res);
209009467b48Spatrick 
209109467b48Spatrick   // Canonicalize a shifty way to code absolute value to the common pattern.
209209467b48Spatrick   // There are 2 potential commuted variants.
209309467b48Spatrick   // We're relying on the fact that we only do this transform when the shift has
209409467b48Spatrick   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
209509467b48Spatrick   // instructions).
209609467b48Spatrick   Value *A;
209709467b48Spatrick   const APInt *ShAmt;
209809467b48Spatrick   Type *Ty = I.getType();
209909467b48Spatrick   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
210009467b48Spatrick       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
210109467b48Spatrick       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
210209467b48Spatrick     // B = ashr i32 A, 31 ; smear the sign bit
210309467b48Spatrick     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
210409467b48Spatrick     // --> (A < 0) ? -A : A
210509467b48Spatrick     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
210609467b48Spatrick     // Copy the nuw/nsw flags from the sub to the negate.
210709467b48Spatrick     Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
210809467b48Spatrick                                    I.hasNoSignedWrap());
210909467b48Spatrick     return SelectInst::Create(Cmp, Neg, A);
211009467b48Spatrick   }
211109467b48Spatrick 
2112*73471bf0Spatrick   // If we are subtracting a low-bit masked subset of some value from an add
2113*73471bf0Spatrick   // of that same value with no low bits changed, that is clearing some low bits
2114*73471bf0Spatrick   // of the sum:
2115*73471bf0Spatrick   // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2116*73471bf0Spatrick   const APInt *AddC, *AndC;
2117*73471bf0Spatrick   if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2118*73471bf0Spatrick       match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2119*73471bf0Spatrick     unsigned BitWidth = Ty->getScalarSizeInBits();
2120*73471bf0Spatrick     unsigned Cttz = AddC->countTrailingZeros();
2121*73471bf0Spatrick     APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2122*73471bf0Spatrick     if ((HighMask & *AndC).isNullValue())
2123*73471bf0Spatrick       return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2124*73471bf0Spatrick   }
2125*73471bf0Spatrick 
212609467b48Spatrick   if (Instruction *V =
212709467b48Spatrick           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
212809467b48Spatrick     return V;
212909467b48Spatrick 
2130*73471bf0Spatrick   // X - usub.sat(X, Y) => umin(X, Y)
2131*73471bf0Spatrick   if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2132*73471bf0Spatrick                                                            m_Value(Y)))))
2133*73471bf0Spatrick     return replaceInstUsesWith(
2134*73471bf0Spatrick         I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2135*73471bf0Spatrick 
2136*73471bf0Spatrick   // C - ctpop(X) => ctpop(~X) if C is bitwidth
2137*73471bf0Spatrick   if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) &&
2138*73471bf0Spatrick       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2139*73471bf0Spatrick     return replaceInstUsesWith(
2140*73471bf0Spatrick         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2141*73471bf0Spatrick                                    {Builder.CreateNot(X)}));
2142*73471bf0Spatrick 
2143097a140dSpatrick   return TryToNarrowDeduceFlags();
214409467b48Spatrick }
214509467b48Spatrick 
214609467b48Spatrick /// This eliminates floating-point negation in either 'fneg(X)' or
214709467b48Spatrick /// 'fsub(-0.0, X)' form by combining into a constant operand.
214809467b48Spatrick static Instruction *foldFNegIntoConstant(Instruction &I) {
2149*73471bf0Spatrick   // This is limited with one-use because fneg is assumed better for
2150*73471bf0Spatrick   // reassociation and cheaper in codegen than fmul/fdiv.
2151*73471bf0Spatrick   // TODO: Should the m_OneUse restriction be removed?
2152*73471bf0Spatrick   Instruction *FNegOp;
2153*73471bf0Spatrick   if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2154*73471bf0Spatrick     return nullptr;
2155*73471bf0Spatrick 
215609467b48Spatrick   Value *X;
215709467b48Spatrick   Constant *C;
215809467b48Spatrick 
2159*73471bf0Spatrick   // Fold negation into constant operand.
216009467b48Spatrick   // -(X * C) --> X * (-C)
2161*73471bf0Spatrick   if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
216209467b48Spatrick     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
216309467b48Spatrick   // -(X / C) --> X / (-C)
2164*73471bf0Spatrick   if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
216509467b48Spatrick     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
216609467b48Spatrick   // -(C / X) --> (-C) / X
2167*73471bf0Spatrick   if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) {
2168*73471bf0Spatrick     Instruction *FDiv =
2169*73471bf0Spatrick         BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
217009467b48Spatrick 
2171*73471bf0Spatrick     // Intersect 'nsz' and 'ninf' because those special value exceptions may not
2172*73471bf0Spatrick     // apply to the fdiv. Everything else propagates from the fneg.
2173*73471bf0Spatrick     // TODO: We could propagate nsz/ninf from fdiv alone?
2174*73471bf0Spatrick     FastMathFlags FMF = I.getFastMathFlags();
2175*73471bf0Spatrick     FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2176*73471bf0Spatrick     FDiv->setHasNoSignedZeros(FMF.noSignedZeros() & OpFMF.noSignedZeros());
2177*73471bf0Spatrick     FDiv->setHasNoInfs(FMF.noInfs() & OpFMF.noInfs());
2178*73471bf0Spatrick     return FDiv;
2179*73471bf0Spatrick   }
2180097a140dSpatrick   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2181097a140dSpatrick   // -(X + C) --> -X + -C --> -C - X
2182*73471bf0Spatrick   if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2183097a140dSpatrick     return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
2184097a140dSpatrick 
218509467b48Spatrick   return nullptr;
218609467b48Spatrick }
218709467b48Spatrick 
218809467b48Spatrick static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
218909467b48Spatrick                                            InstCombiner::BuilderTy &Builder) {
219009467b48Spatrick   Value *FNeg;
219109467b48Spatrick   if (!match(&I, m_FNeg(m_Value(FNeg))))
219209467b48Spatrick     return nullptr;
219309467b48Spatrick 
219409467b48Spatrick   Value *X, *Y;
219509467b48Spatrick   if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
219609467b48Spatrick     return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
219709467b48Spatrick 
219809467b48Spatrick   if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
219909467b48Spatrick     return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
220009467b48Spatrick 
220109467b48Spatrick   return nullptr;
220209467b48Spatrick }
220309467b48Spatrick 
2204*73471bf0Spatrick Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
220509467b48Spatrick   Value *Op = I.getOperand(0);
220609467b48Spatrick 
220709467b48Spatrick   if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
2208*73471bf0Spatrick                                   getSimplifyQuery().getWithInstruction(&I)))
220909467b48Spatrick     return replaceInstUsesWith(I, V);
221009467b48Spatrick 
221109467b48Spatrick   if (Instruction *X = foldFNegIntoConstant(I))
221209467b48Spatrick     return X;
221309467b48Spatrick 
221409467b48Spatrick   Value *X, *Y;
221509467b48Spatrick 
221609467b48Spatrick   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
221709467b48Spatrick   if (I.hasNoSignedZeros() &&
221809467b48Spatrick       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
221909467b48Spatrick     return BinaryOperator::CreateFSubFMF(Y, X, &I);
222009467b48Spatrick 
222109467b48Spatrick   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
222209467b48Spatrick     return R;
222309467b48Spatrick 
2224*73471bf0Spatrick   // Try to eliminate fneg if at least 1 arm of the select is negated.
2225*73471bf0Spatrick   Value *Cond;
2226*73471bf0Spatrick   if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) {
2227*73471bf0Spatrick     // Unlike most transforms, this one is not safe to propagate nsz unless
2228*73471bf0Spatrick     // it is present on the original select. (We are conservatively intersecting
2229*73471bf0Spatrick     // the nsz flags from the select and root fneg instruction.)
2230*73471bf0Spatrick     auto propagateSelectFMF = [&](SelectInst *S) {
2231*73471bf0Spatrick       S->copyFastMathFlags(&I);
2232*73471bf0Spatrick       if (auto *OldSel = dyn_cast<SelectInst>(Op))
2233*73471bf0Spatrick         if (!OldSel->hasNoSignedZeros())
2234*73471bf0Spatrick           S->setHasNoSignedZeros(false);
2235*73471bf0Spatrick     };
2236*73471bf0Spatrick     // -(Cond ? -P : Y) --> Cond ? P : -Y
2237*73471bf0Spatrick     Value *P;
2238*73471bf0Spatrick     if (match(X, m_FNeg(m_Value(P)))) {
2239*73471bf0Spatrick       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2240*73471bf0Spatrick       SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2241*73471bf0Spatrick       propagateSelectFMF(NewSel);
2242*73471bf0Spatrick       return NewSel;
2243*73471bf0Spatrick     }
2244*73471bf0Spatrick     // -(Cond ? X : -P) --> Cond ? -X : P
2245*73471bf0Spatrick     if (match(Y, m_FNeg(m_Value(P)))) {
2246*73471bf0Spatrick       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2247*73471bf0Spatrick       SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2248*73471bf0Spatrick       propagateSelectFMF(NewSel);
2249*73471bf0Spatrick       return NewSel;
2250*73471bf0Spatrick     }
2251*73471bf0Spatrick   }
2252*73471bf0Spatrick 
225309467b48Spatrick   return nullptr;
225409467b48Spatrick }
225509467b48Spatrick 
2256*73471bf0Spatrick Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
225709467b48Spatrick   if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
225809467b48Spatrick                                   I.getFastMathFlags(),
2259*73471bf0Spatrick                                   getSimplifyQuery().getWithInstruction(&I)))
226009467b48Spatrick     return replaceInstUsesWith(I, V);
226109467b48Spatrick 
226209467b48Spatrick   if (Instruction *X = foldVectorBinop(I))
226309467b48Spatrick     return X;
226409467b48Spatrick 
226509467b48Spatrick   // Subtraction from -0.0 is the canonical form of fneg.
2266097a140dSpatrick   // fsub -0.0, X ==> fneg X
2267097a140dSpatrick   // fsub nsz 0.0, X ==> fneg nsz X
2268097a140dSpatrick   //
2269097a140dSpatrick   // FIXME This matcher does not respect FTZ or DAZ yet:
2270097a140dSpatrick   // fsub -0.0, Denorm ==> +-0
2271097a140dSpatrick   // fneg Denorm ==> -Denorm
2272097a140dSpatrick   Value *Op;
2273097a140dSpatrick   if (match(&I, m_FNeg(m_Value(Op))))
2274097a140dSpatrick     return UnaryOperator::CreateFNegFMF(Op, &I);
227509467b48Spatrick 
227609467b48Spatrick   if (Instruction *X = foldFNegIntoConstant(I))
227709467b48Spatrick     return X;
227809467b48Spatrick 
227909467b48Spatrick   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
228009467b48Spatrick     return R;
228109467b48Spatrick 
228209467b48Spatrick   Value *X, *Y;
228309467b48Spatrick   Constant *C;
228409467b48Spatrick 
2285097a140dSpatrick   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
228609467b48Spatrick   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
228709467b48Spatrick   // Canonicalize to fadd to make analysis easier.
228809467b48Spatrick   // This can also help codegen because fadd is commutative.
228909467b48Spatrick   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
229009467b48Spatrick   // killed later. We still limit that particular transform with 'hasOneUse'
229109467b48Spatrick   // because an fneg is assumed better/cheaper than a generic fsub.
229209467b48Spatrick   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
229309467b48Spatrick     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
229409467b48Spatrick       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
229509467b48Spatrick       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
229609467b48Spatrick     }
229709467b48Spatrick   }
229809467b48Spatrick 
2299097a140dSpatrick   // (-X) - Op1 --> -(X + Op1)
2300097a140dSpatrick   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2301097a140dSpatrick       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2302097a140dSpatrick     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2303097a140dSpatrick     return UnaryOperator::CreateFNegFMF(FAdd, &I);
2304097a140dSpatrick   }
2305097a140dSpatrick 
230609467b48Spatrick   if (isa<Constant>(Op0))
230709467b48Spatrick     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
230809467b48Spatrick       if (Instruction *NV = FoldOpIntoSelect(I, SI))
230909467b48Spatrick         return NV;
231009467b48Spatrick 
231109467b48Spatrick   // X - C --> X + (-C)
231209467b48Spatrick   // But don't transform constant expressions because there's an inverse fold
231309467b48Spatrick   // for X + (-Y) --> X - Y.
2314*73471bf0Spatrick   if (match(Op1, m_ImmConstant(C)))
231509467b48Spatrick     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
231609467b48Spatrick 
231709467b48Spatrick   // X - (-Y) --> X + Y
231809467b48Spatrick   if (match(Op1, m_FNeg(m_Value(Y))))
231909467b48Spatrick     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
232009467b48Spatrick 
232109467b48Spatrick   // Similar to above, but look through a cast of the negated value:
232209467b48Spatrick   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
232309467b48Spatrick   Type *Ty = I.getType();
232409467b48Spatrick   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
232509467b48Spatrick     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
232609467b48Spatrick 
232709467b48Spatrick   // X - (fpext(-Y)) --> X + fpext(Y)
232809467b48Spatrick   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
232909467b48Spatrick     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
233009467b48Spatrick 
233109467b48Spatrick   // Similar to above, but look through fmul/fdiv of the negated value:
233209467b48Spatrick   // Op0 - (-X * Y) --> Op0 + (X * Y)
233309467b48Spatrick   // Op0 - (Y * -X) --> Op0 + (X * Y)
233409467b48Spatrick   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
233509467b48Spatrick     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
233609467b48Spatrick     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
233709467b48Spatrick   }
233809467b48Spatrick   // Op0 - (-X / Y) --> Op0 + (X / Y)
233909467b48Spatrick   // Op0 - (X / -Y) --> Op0 + (X / Y)
234009467b48Spatrick   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
234109467b48Spatrick       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
234209467b48Spatrick     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
234309467b48Spatrick     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
234409467b48Spatrick   }
234509467b48Spatrick 
234609467b48Spatrick   // Handle special cases for FSub with selects feeding the operation
234709467b48Spatrick   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
234809467b48Spatrick     return replaceInstUsesWith(I, V);
234909467b48Spatrick 
235009467b48Spatrick   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
235109467b48Spatrick     // (Y - X) - Y --> -X
235209467b48Spatrick     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2353097a140dSpatrick       return UnaryOperator::CreateFNegFMF(X, &I);
235409467b48Spatrick 
235509467b48Spatrick     // Y - (X + Y) --> -X
235609467b48Spatrick     // Y - (Y + X) --> -X
235709467b48Spatrick     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2358097a140dSpatrick       return UnaryOperator::CreateFNegFMF(X, &I);
235909467b48Spatrick 
236009467b48Spatrick     // (X * C) - X --> X * (C - 1.0)
236109467b48Spatrick     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
236209467b48Spatrick       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
236309467b48Spatrick       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
236409467b48Spatrick     }
236509467b48Spatrick     // X - (X * C) --> X * (1.0 - C)
236609467b48Spatrick     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
236709467b48Spatrick       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
236809467b48Spatrick       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
236909467b48Spatrick     }
237009467b48Spatrick 
2371097a140dSpatrick     // Reassociate fsub/fadd sequences to create more fadd instructions and
2372097a140dSpatrick     // reduce dependency chains:
2373097a140dSpatrick     // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2374097a140dSpatrick     Value *Z;
2375097a140dSpatrick     if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2376097a140dSpatrick                                      m_Value(Z))))) {
2377097a140dSpatrick       Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2378097a140dSpatrick       Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2379097a140dSpatrick       return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2380097a140dSpatrick     }
2381097a140dSpatrick 
2382097a140dSpatrick     auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2383*73471bf0Spatrick       return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2384*73471bf0Spatrick                                                                  m_Value(Vec)));
2385097a140dSpatrick     };
2386097a140dSpatrick     Value *A0, *A1, *V0, *V1;
2387097a140dSpatrick     if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2388097a140dSpatrick         V0->getType() == V1->getType()) {
2389097a140dSpatrick       // Difference of sums is sum of differences:
2390097a140dSpatrick       // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2391097a140dSpatrick       Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2392*73471bf0Spatrick       Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2393*73471bf0Spatrick                                            {Sub->getType()}, {A0, Sub}, &I);
2394097a140dSpatrick       return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2395097a140dSpatrick     }
2396097a140dSpatrick 
239709467b48Spatrick     if (Instruction *F = factorizeFAddFSub(I, Builder))
239809467b48Spatrick       return F;
239909467b48Spatrick 
240009467b48Spatrick     // TODO: This performs reassociative folds for FP ops. Some fraction of the
240109467b48Spatrick     // functionality has been subsumed by simple pattern matching here and in
240209467b48Spatrick     // InstSimplify. We should let a dedicated reassociation pass handle more
240309467b48Spatrick     // complex pattern matching and remove this from InstCombine.
240409467b48Spatrick     if (Value *V = FAddCombine(Builder).simplify(&I))
240509467b48Spatrick       return replaceInstUsesWith(I, V);
2406097a140dSpatrick 
2407097a140dSpatrick     // (X - Y) - Op1 --> X - (Y + Op1)
2408097a140dSpatrick     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2409097a140dSpatrick       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2410097a140dSpatrick       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2411097a140dSpatrick     }
241209467b48Spatrick   }
241309467b48Spatrick 
241409467b48Spatrick   return nullptr;
241509467b48Spatrick }
2416