109467b48Spatrick //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
209467b48Spatrick //
309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
609467b48Spatrick //
709467b48Spatrick //===----------------------------------------------------------------------===//
809467b48Spatrick //
909467b48Spatrick // This file implements the visit functions for add, fadd, sub, and fsub.
1009467b48Spatrick //
1109467b48Spatrick //===----------------------------------------------------------------------===//
1209467b48Spatrick
1309467b48Spatrick #include "InstCombineInternal.h"
1409467b48Spatrick #include "llvm/ADT/APFloat.h"
1509467b48Spatrick #include "llvm/ADT/APInt.h"
1609467b48Spatrick #include "llvm/ADT/STLExtras.h"
1709467b48Spatrick #include "llvm/ADT/SmallVector.h"
1809467b48Spatrick #include "llvm/Analysis/InstructionSimplify.h"
1909467b48Spatrick #include "llvm/Analysis/ValueTracking.h"
2009467b48Spatrick #include "llvm/IR/Constant.h"
2109467b48Spatrick #include "llvm/IR/Constants.h"
2209467b48Spatrick #include "llvm/IR/InstrTypes.h"
2309467b48Spatrick #include "llvm/IR/Instruction.h"
2409467b48Spatrick #include "llvm/IR/Instructions.h"
2509467b48Spatrick #include "llvm/IR/Operator.h"
2609467b48Spatrick #include "llvm/IR/PatternMatch.h"
2709467b48Spatrick #include "llvm/IR/Type.h"
2809467b48Spatrick #include "llvm/IR/Value.h"
2909467b48Spatrick #include "llvm/Support/AlignOf.h"
3009467b48Spatrick #include "llvm/Support/Casting.h"
3109467b48Spatrick #include "llvm/Support/KnownBits.h"
3273471bf0Spatrick #include "llvm/Transforms/InstCombine/InstCombiner.h"
3309467b48Spatrick #include <cassert>
3409467b48Spatrick #include <utility>
3509467b48Spatrick
3609467b48Spatrick using namespace llvm;
3709467b48Spatrick using namespace PatternMatch;
3809467b48Spatrick
3909467b48Spatrick #define DEBUG_TYPE "instcombine"
4009467b48Spatrick
4109467b48Spatrick namespace {
4209467b48Spatrick
4309467b48Spatrick /// Class representing coefficient of floating-point addend.
4409467b48Spatrick /// This class needs to be highly efficient, which is especially true for
4509467b48Spatrick /// the constructor. As of I write this comment, the cost of the default
4609467b48Spatrick /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
4709467b48Spatrick /// perform write-merging).
4809467b48Spatrick ///
4909467b48Spatrick class FAddendCoef {
5009467b48Spatrick public:
5109467b48Spatrick // The constructor has to initialize a APFloat, which is unnecessary for
5209467b48Spatrick // most addends which have coefficient either 1 or -1. So, the constructor
5309467b48Spatrick // is expensive. In order to avoid the cost of the constructor, we should
5409467b48Spatrick // reuse some instances whenever possible. The pre-created instances
5509467b48Spatrick // FAddCombine::Add[0-5] embodies this idea.
5609467b48Spatrick FAddendCoef() = default;
5709467b48Spatrick ~FAddendCoef();
5809467b48Spatrick
5909467b48Spatrick // If possible, don't define operator+/operator- etc because these
6009467b48Spatrick // operators inevitably call FAddendCoef's constructor which is not cheap.
6109467b48Spatrick void operator=(const FAddendCoef &A);
6209467b48Spatrick void operator+=(const FAddendCoef &A);
6309467b48Spatrick void operator*=(const FAddendCoef &S);
6409467b48Spatrick
set(short C)6509467b48Spatrick void set(short C) {
6609467b48Spatrick assert(!insaneIntVal(C) && "Insane coefficient");
6709467b48Spatrick IsFp = false; IntVal = C;
6809467b48Spatrick }
6909467b48Spatrick
7009467b48Spatrick void set(const APFloat& C);
7109467b48Spatrick
7209467b48Spatrick void negate();
7309467b48Spatrick
isZero() const7409467b48Spatrick bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
7509467b48Spatrick Value *getValue(Type *) const;
7609467b48Spatrick
isOne() const7709467b48Spatrick bool isOne() const { return isInt() && IntVal == 1; }
isTwo() const7809467b48Spatrick bool isTwo() const { return isInt() && IntVal == 2; }
isMinusOne() const7909467b48Spatrick bool isMinusOne() const { return isInt() && IntVal == -1; }
isMinusTwo() const8009467b48Spatrick bool isMinusTwo() const { return isInt() && IntVal == -2; }
8109467b48Spatrick
8209467b48Spatrick private:
insaneIntVal(int V)8309467b48Spatrick bool insaneIntVal(int V) { return V > 4 || V < -4; }
8409467b48Spatrick
getFpValPtr()8573471bf0Spatrick APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
8609467b48Spatrick
getFpValPtr() const8773471bf0Spatrick const APFloat *getFpValPtr() const {
8873471bf0Spatrick return reinterpret_cast<const APFloat *>(&FpValBuf);
8973471bf0Spatrick }
9009467b48Spatrick
getFpVal() const9109467b48Spatrick const APFloat &getFpVal() const {
9209467b48Spatrick assert(IsFp && BufHasFpVal && "Incorret state");
9309467b48Spatrick return *getFpValPtr();
9409467b48Spatrick }
9509467b48Spatrick
getFpVal()9609467b48Spatrick APFloat &getFpVal() {
9709467b48Spatrick assert(IsFp && BufHasFpVal && "Incorret state");
9809467b48Spatrick return *getFpValPtr();
9909467b48Spatrick }
10009467b48Spatrick
isInt() const10109467b48Spatrick bool isInt() const { return !IsFp; }
10209467b48Spatrick
10309467b48Spatrick // If the coefficient is represented by an integer, promote it to a
10409467b48Spatrick // floating point.
10509467b48Spatrick void convertToFpType(const fltSemantics &Sem);
10609467b48Spatrick
10709467b48Spatrick // Construct an APFloat from a signed integer.
10809467b48Spatrick // TODO: We should get rid of this function when APFloat can be constructed
10909467b48Spatrick // from an *SIGNED* integer.
11009467b48Spatrick APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
11109467b48Spatrick
11209467b48Spatrick bool IsFp = false;
11309467b48Spatrick
11409467b48Spatrick // True iff FpValBuf contains an instance of APFloat.
11509467b48Spatrick bool BufHasFpVal = false;
11609467b48Spatrick
11709467b48Spatrick // The integer coefficient of an individual addend is either 1 or -1,
11809467b48Spatrick // and we try to simplify at most 4 addends from neighboring at most
11909467b48Spatrick // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
12009467b48Spatrick // is overkill of this end.
12109467b48Spatrick short IntVal = 0;
12209467b48Spatrick
12309467b48Spatrick AlignedCharArrayUnion<APFloat> FpValBuf;
12409467b48Spatrick };
12509467b48Spatrick
12609467b48Spatrick /// FAddend is used to represent floating-point addend. An addend is
12709467b48Spatrick /// represented as <C, V>, where the V is a symbolic value, and C is a
12809467b48Spatrick /// constant coefficient. A constant addend is represented as <C, 0>.
12909467b48Spatrick class FAddend {
13009467b48Spatrick public:
13109467b48Spatrick FAddend() = default;
13209467b48Spatrick
operator +=(const FAddend & T)13309467b48Spatrick void operator+=(const FAddend &T) {
13409467b48Spatrick assert((Val == T.Val) && "Symbolic-values disagree");
13509467b48Spatrick Coeff += T.Coeff;
13609467b48Spatrick }
13709467b48Spatrick
getSymVal() const13809467b48Spatrick Value *getSymVal() const { return Val; }
getCoef() const13909467b48Spatrick const FAddendCoef &getCoef() const { return Coeff; }
14009467b48Spatrick
isConstant() const14109467b48Spatrick bool isConstant() const { return Val == nullptr; }
isZero() const14209467b48Spatrick bool isZero() const { return Coeff.isZero(); }
14309467b48Spatrick
set(short Coefficient,Value * V)14409467b48Spatrick void set(short Coefficient, Value *V) {
14509467b48Spatrick Coeff.set(Coefficient);
14609467b48Spatrick Val = V;
14709467b48Spatrick }
set(const APFloat & Coefficient,Value * V)14809467b48Spatrick void set(const APFloat &Coefficient, Value *V) {
14909467b48Spatrick Coeff.set(Coefficient);
15009467b48Spatrick Val = V;
15109467b48Spatrick }
set(const ConstantFP * Coefficient,Value * V)15209467b48Spatrick void set(const ConstantFP *Coefficient, Value *V) {
15309467b48Spatrick Coeff.set(Coefficient->getValueAPF());
15409467b48Spatrick Val = V;
15509467b48Spatrick }
15609467b48Spatrick
negate()15709467b48Spatrick void negate() { Coeff.negate(); }
15809467b48Spatrick
15909467b48Spatrick /// Drill down the U-D chain one step to find the definition of V, and
16009467b48Spatrick /// try to break the definition into one or two addends.
16109467b48Spatrick static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
16209467b48Spatrick
16309467b48Spatrick /// Similar to FAddend::drillDownOneStep() except that the value being
16409467b48Spatrick /// splitted is the addend itself.
16509467b48Spatrick unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
16609467b48Spatrick
16709467b48Spatrick private:
Scale(const FAddendCoef & ScaleAmt)16809467b48Spatrick void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
16909467b48Spatrick
17009467b48Spatrick // This addend has the value of "Coeff * Val".
17109467b48Spatrick Value *Val = nullptr;
17209467b48Spatrick FAddendCoef Coeff;
17309467b48Spatrick };
17409467b48Spatrick
17509467b48Spatrick /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
17609467b48Spatrick /// with its neighboring at most two instructions.
17709467b48Spatrick ///
17809467b48Spatrick class FAddCombine {
17909467b48Spatrick public:
FAddCombine(InstCombiner::BuilderTy & B)18009467b48Spatrick FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
18109467b48Spatrick
18209467b48Spatrick Value *simplify(Instruction *FAdd);
18309467b48Spatrick
18409467b48Spatrick private:
18509467b48Spatrick using AddendVect = SmallVector<const FAddend *, 4>;
18609467b48Spatrick
18709467b48Spatrick Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
18809467b48Spatrick
18909467b48Spatrick /// Convert given addend to a Value
19009467b48Spatrick Value *createAddendVal(const FAddend &A, bool& NeedNeg);
19109467b48Spatrick
19209467b48Spatrick /// Return the number of instructions needed to emit the N-ary addition.
19309467b48Spatrick unsigned calcInstrNumber(const AddendVect& Vect);
19409467b48Spatrick
19509467b48Spatrick Value *createFSub(Value *Opnd0, Value *Opnd1);
19609467b48Spatrick Value *createFAdd(Value *Opnd0, Value *Opnd1);
19709467b48Spatrick Value *createFMul(Value *Opnd0, Value *Opnd1);
19809467b48Spatrick Value *createFNeg(Value *V);
19909467b48Spatrick Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
20009467b48Spatrick void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
20109467b48Spatrick
20209467b48Spatrick // Debugging stuff are clustered here.
20309467b48Spatrick #ifndef NDEBUG
20409467b48Spatrick unsigned CreateInstrNum;
initCreateInstNum()20509467b48Spatrick void initCreateInstNum() { CreateInstrNum = 0; }
incCreateInstNum()20609467b48Spatrick void incCreateInstNum() { CreateInstrNum++; }
20709467b48Spatrick #else
initCreateInstNum()20809467b48Spatrick void initCreateInstNum() {}
incCreateInstNum()20909467b48Spatrick void incCreateInstNum() {}
21009467b48Spatrick #endif
21109467b48Spatrick
21209467b48Spatrick InstCombiner::BuilderTy &Builder;
21309467b48Spatrick Instruction *Instr = nullptr;
21409467b48Spatrick };
21509467b48Spatrick
21609467b48Spatrick } // end anonymous namespace
21709467b48Spatrick
21809467b48Spatrick //===----------------------------------------------------------------------===//
21909467b48Spatrick //
22009467b48Spatrick // Implementation of
22109467b48Spatrick // {FAddendCoef, FAddend, FAddition, FAddCombine}.
22209467b48Spatrick //
22309467b48Spatrick //===----------------------------------------------------------------------===//
~FAddendCoef()22409467b48Spatrick FAddendCoef::~FAddendCoef() {
22509467b48Spatrick if (BufHasFpVal)
22609467b48Spatrick getFpValPtr()->~APFloat();
22709467b48Spatrick }
22809467b48Spatrick
set(const APFloat & C)22909467b48Spatrick void FAddendCoef::set(const APFloat& C) {
23009467b48Spatrick APFloat *P = getFpValPtr();
23109467b48Spatrick
23209467b48Spatrick if (isInt()) {
23309467b48Spatrick // As the buffer is meanless byte stream, we cannot call
23409467b48Spatrick // APFloat::operator=().
23509467b48Spatrick new(P) APFloat(C);
23609467b48Spatrick } else
23709467b48Spatrick *P = C;
23809467b48Spatrick
23909467b48Spatrick IsFp = BufHasFpVal = true;
24009467b48Spatrick }
24109467b48Spatrick
convertToFpType(const fltSemantics & Sem)24209467b48Spatrick void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
24309467b48Spatrick if (!isInt())
24409467b48Spatrick return;
24509467b48Spatrick
24609467b48Spatrick APFloat *P = getFpValPtr();
24709467b48Spatrick if (IntVal > 0)
24809467b48Spatrick new(P) APFloat(Sem, IntVal);
24909467b48Spatrick else {
25009467b48Spatrick new(P) APFloat(Sem, 0 - IntVal);
25109467b48Spatrick P->changeSign();
25209467b48Spatrick }
25309467b48Spatrick IsFp = BufHasFpVal = true;
25409467b48Spatrick }
25509467b48Spatrick
createAPFloatFromInt(const fltSemantics & Sem,int Val)25609467b48Spatrick APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
25709467b48Spatrick if (Val >= 0)
25809467b48Spatrick return APFloat(Sem, Val);
25909467b48Spatrick
26009467b48Spatrick APFloat T(Sem, 0 - Val);
26109467b48Spatrick T.changeSign();
26209467b48Spatrick
26309467b48Spatrick return T;
26409467b48Spatrick }
26509467b48Spatrick
operator =(const FAddendCoef & That)26609467b48Spatrick void FAddendCoef::operator=(const FAddendCoef &That) {
26709467b48Spatrick if (That.isInt())
26809467b48Spatrick set(That.IntVal);
26909467b48Spatrick else
27009467b48Spatrick set(That.getFpVal());
27109467b48Spatrick }
27209467b48Spatrick
operator +=(const FAddendCoef & That)27309467b48Spatrick void FAddendCoef::operator+=(const FAddendCoef &That) {
274097a140dSpatrick RoundingMode RndMode = RoundingMode::NearestTiesToEven;
27509467b48Spatrick if (isInt() == That.isInt()) {
27609467b48Spatrick if (isInt())
27709467b48Spatrick IntVal += That.IntVal;
27809467b48Spatrick else
27909467b48Spatrick getFpVal().add(That.getFpVal(), RndMode);
28009467b48Spatrick return;
28109467b48Spatrick }
28209467b48Spatrick
28309467b48Spatrick if (isInt()) {
28409467b48Spatrick const APFloat &T = That.getFpVal();
28509467b48Spatrick convertToFpType(T.getSemantics());
28609467b48Spatrick getFpVal().add(T, RndMode);
28709467b48Spatrick return;
28809467b48Spatrick }
28909467b48Spatrick
29009467b48Spatrick APFloat &T = getFpVal();
29109467b48Spatrick T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
29209467b48Spatrick }
29309467b48Spatrick
operator *=(const FAddendCoef & That)29409467b48Spatrick void FAddendCoef::operator*=(const FAddendCoef &That) {
29509467b48Spatrick if (That.isOne())
29609467b48Spatrick return;
29709467b48Spatrick
29809467b48Spatrick if (That.isMinusOne()) {
29909467b48Spatrick negate();
30009467b48Spatrick return;
30109467b48Spatrick }
30209467b48Spatrick
30309467b48Spatrick if (isInt() && That.isInt()) {
30409467b48Spatrick int Res = IntVal * (int)That.IntVal;
30509467b48Spatrick assert(!insaneIntVal(Res) && "Insane int value");
30609467b48Spatrick IntVal = Res;
30709467b48Spatrick return;
30809467b48Spatrick }
30909467b48Spatrick
31009467b48Spatrick const fltSemantics &Semantic =
31109467b48Spatrick isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
31209467b48Spatrick
31309467b48Spatrick if (isInt())
31409467b48Spatrick convertToFpType(Semantic);
31509467b48Spatrick APFloat &F0 = getFpVal();
31609467b48Spatrick
31709467b48Spatrick if (That.isInt())
31809467b48Spatrick F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
31909467b48Spatrick APFloat::rmNearestTiesToEven);
32009467b48Spatrick else
32109467b48Spatrick F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
32209467b48Spatrick }
32309467b48Spatrick
negate()32409467b48Spatrick void FAddendCoef::negate() {
32509467b48Spatrick if (isInt())
32609467b48Spatrick IntVal = 0 - IntVal;
32709467b48Spatrick else
32809467b48Spatrick getFpVal().changeSign();
32909467b48Spatrick }
33009467b48Spatrick
getValue(Type * Ty) const33109467b48Spatrick Value *FAddendCoef::getValue(Type *Ty) const {
33209467b48Spatrick return isInt() ?
33309467b48Spatrick ConstantFP::get(Ty, float(IntVal)) :
33409467b48Spatrick ConstantFP::get(Ty->getContext(), getFpVal());
33509467b48Spatrick }
33609467b48Spatrick
33709467b48Spatrick // The definition of <Val> Addends
33809467b48Spatrick // =========================================
33909467b48Spatrick // A + B <1, A>, <1,B>
34009467b48Spatrick // A - B <1, A>, <1,B>
34109467b48Spatrick // 0 - B <-1, B>
34209467b48Spatrick // C * A, <C, A>
34309467b48Spatrick // A + C <1, A> <C, NULL>
34409467b48Spatrick // 0 +/- 0 <0, NULL> (corner case)
34509467b48Spatrick //
34609467b48Spatrick // Legend: A and B are not constant, C is constant
drillValueDownOneStep(Value * Val,FAddend & Addend0,FAddend & Addend1)34709467b48Spatrick unsigned FAddend::drillValueDownOneStep
34809467b48Spatrick (Value *Val, FAddend &Addend0, FAddend &Addend1) {
34909467b48Spatrick Instruction *I = nullptr;
35009467b48Spatrick if (!Val || !(I = dyn_cast<Instruction>(Val)))
35109467b48Spatrick return 0;
35209467b48Spatrick
35309467b48Spatrick unsigned Opcode = I->getOpcode();
35409467b48Spatrick
35509467b48Spatrick if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
35609467b48Spatrick ConstantFP *C0, *C1;
35709467b48Spatrick Value *Opnd0 = I->getOperand(0);
35809467b48Spatrick Value *Opnd1 = I->getOperand(1);
35909467b48Spatrick if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
36009467b48Spatrick Opnd0 = nullptr;
36109467b48Spatrick
36209467b48Spatrick if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
36309467b48Spatrick Opnd1 = nullptr;
36409467b48Spatrick
36509467b48Spatrick if (Opnd0) {
36609467b48Spatrick if (!C0)
36709467b48Spatrick Addend0.set(1, Opnd0);
36809467b48Spatrick else
36909467b48Spatrick Addend0.set(C0, nullptr);
37009467b48Spatrick }
37109467b48Spatrick
37209467b48Spatrick if (Opnd1) {
37309467b48Spatrick FAddend &Addend = Opnd0 ? Addend1 : Addend0;
37409467b48Spatrick if (!C1)
37509467b48Spatrick Addend.set(1, Opnd1);
37609467b48Spatrick else
37709467b48Spatrick Addend.set(C1, nullptr);
37809467b48Spatrick if (Opcode == Instruction::FSub)
37909467b48Spatrick Addend.negate();
38009467b48Spatrick }
38109467b48Spatrick
38209467b48Spatrick if (Opnd0 || Opnd1)
38309467b48Spatrick return Opnd0 && Opnd1 ? 2 : 1;
38409467b48Spatrick
38509467b48Spatrick // Both operands are zero. Weird!
38609467b48Spatrick Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
38709467b48Spatrick return 1;
38809467b48Spatrick }
38909467b48Spatrick
39009467b48Spatrick if (I->getOpcode() == Instruction::FMul) {
39109467b48Spatrick Value *V0 = I->getOperand(0);
39209467b48Spatrick Value *V1 = I->getOperand(1);
39309467b48Spatrick if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
39409467b48Spatrick Addend0.set(C, V1);
39509467b48Spatrick return 1;
39609467b48Spatrick }
39709467b48Spatrick
39809467b48Spatrick if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
39909467b48Spatrick Addend0.set(C, V0);
40009467b48Spatrick return 1;
40109467b48Spatrick }
40209467b48Spatrick }
40309467b48Spatrick
40409467b48Spatrick return 0;
40509467b48Spatrick }
40609467b48Spatrick
40709467b48Spatrick // Try to break *this* addend into two addends. e.g. Suppose this addend is
40809467b48Spatrick // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
40909467b48Spatrick // i.e. <2.3, X> and <2.3, Y>.
drillAddendDownOneStep(FAddend & Addend0,FAddend & Addend1) const41009467b48Spatrick unsigned FAddend::drillAddendDownOneStep
41109467b48Spatrick (FAddend &Addend0, FAddend &Addend1) const {
41209467b48Spatrick if (isConstant())
41309467b48Spatrick return 0;
41409467b48Spatrick
41509467b48Spatrick unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
41609467b48Spatrick if (!BreakNum || Coeff.isOne())
41709467b48Spatrick return BreakNum;
41809467b48Spatrick
41909467b48Spatrick Addend0.Scale(Coeff);
42009467b48Spatrick
42109467b48Spatrick if (BreakNum == 2)
42209467b48Spatrick Addend1.Scale(Coeff);
42309467b48Spatrick
42409467b48Spatrick return BreakNum;
42509467b48Spatrick }
42609467b48Spatrick
simplify(Instruction * I)42709467b48Spatrick Value *FAddCombine::simplify(Instruction *I) {
42809467b48Spatrick assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
42909467b48Spatrick "Expected 'reassoc'+'nsz' instruction");
43009467b48Spatrick
43109467b48Spatrick // Currently we are not able to handle vector type.
43209467b48Spatrick if (I->getType()->isVectorTy())
43309467b48Spatrick return nullptr;
43409467b48Spatrick
43509467b48Spatrick assert((I->getOpcode() == Instruction::FAdd ||
43609467b48Spatrick I->getOpcode() == Instruction::FSub) && "Expect add/sub");
43709467b48Spatrick
43809467b48Spatrick // Save the instruction before calling other member-functions.
43909467b48Spatrick Instr = I;
44009467b48Spatrick
44109467b48Spatrick FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
44209467b48Spatrick
44309467b48Spatrick unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
44409467b48Spatrick
44509467b48Spatrick // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
44609467b48Spatrick unsigned Opnd0_ExpNum = 0;
44709467b48Spatrick unsigned Opnd1_ExpNum = 0;
44809467b48Spatrick
44909467b48Spatrick if (!Opnd0.isConstant())
45009467b48Spatrick Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
45109467b48Spatrick
45209467b48Spatrick // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
45309467b48Spatrick if (OpndNum == 2 && !Opnd1.isConstant())
45409467b48Spatrick Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
45509467b48Spatrick
45609467b48Spatrick // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
45709467b48Spatrick if (Opnd0_ExpNum && Opnd1_ExpNum) {
45809467b48Spatrick AddendVect AllOpnds;
45909467b48Spatrick AllOpnds.push_back(&Opnd0_0);
46009467b48Spatrick AllOpnds.push_back(&Opnd1_0);
46109467b48Spatrick if (Opnd0_ExpNum == 2)
46209467b48Spatrick AllOpnds.push_back(&Opnd0_1);
46309467b48Spatrick if (Opnd1_ExpNum == 2)
46409467b48Spatrick AllOpnds.push_back(&Opnd1_1);
46509467b48Spatrick
46609467b48Spatrick // Compute instruction quota. We should save at least one instruction.
46709467b48Spatrick unsigned InstQuota = 0;
46809467b48Spatrick
46909467b48Spatrick Value *V0 = I->getOperand(0);
47009467b48Spatrick Value *V1 = I->getOperand(1);
47109467b48Spatrick InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
47209467b48Spatrick (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
47309467b48Spatrick
47409467b48Spatrick if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
47509467b48Spatrick return R;
47609467b48Spatrick }
47709467b48Spatrick
47809467b48Spatrick if (OpndNum != 2) {
47909467b48Spatrick // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
48009467b48Spatrick // splitted into two addends, say "V = X - Y", the instruction would have
48109467b48Spatrick // been optimized into "I = Y - X" in the previous steps.
48209467b48Spatrick //
48309467b48Spatrick const FAddendCoef &CE = Opnd0.getCoef();
48409467b48Spatrick return CE.isOne() ? Opnd0.getSymVal() : nullptr;
48509467b48Spatrick }
48609467b48Spatrick
48709467b48Spatrick // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
48809467b48Spatrick if (Opnd1_ExpNum) {
48909467b48Spatrick AddendVect AllOpnds;
49009467b48Spatrick AllOpnds.push_back(&Opnd0);
49109467b48Spatrick AllOpnds.push_back(&Opnd1_0);
49209467b48Spatrick if (Opnd1_ExpNum == 2)
49309467b48Spatrick AllOpnds.push_back(&Opnd1_1);
49409467b48Spatrick
49509467b48Spatrick if (Value *R = simplifyFAdd(AllOpnds, 1))
49609467b48Spatrick return R;
49709467b48Spatrick }
49809467b48Spatrick
49909467b48Spatrick // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
50009467b48Spatrick if (Opnd0_ExpNum) {
50109467b48Spatrick AddendVect AllOpnds;
50209467b48Spatrick AllOpnds.push_back(&Opnd1);
50309467b48Spatrick AllOpnds.push_back(&Opnd0_0);
50409467b48Spatrick if (Opnd0_ExpNum == 2)
50509467b48Spatrick AllOpnds.push_back(&Opnd0_1);
50609467b48Spatrick
50709467b48Spatrick if (Value *R = simplifyFAdd(AllOpnds, 1))
50809467b48Spatrick return R;
50909467b48Spatrick }
51009467b48Spatrick
51109467b48Spatrick return nullptr;
51209467b48Spatrick }
51309467b48Spatrick
simplifyFAdd(AddendVect & Addends,unsigned InstrQuota)51409467b48Spatrick Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
51509467b48Spatrick unsigned AddendNum = Addends.size();
51609467b48Spatrick assert(AddendNum <= 4 && "Too many addends");
51709467b48Spatrick
51809467b48Spatrick // For saving intermediate results;
51909467b48Spatrick unsigned NextTmpIdx = 0;
52009467b48Spatrick FAddend TmpResult[3];
52109467b48Spatrick
52209467b48Spatrick // Simplified addends are placed <SimpVect>.
52309467b48Spatrick AddendVect SimpVect;
52409467b48Spatrick
52509467b48Spatrick // The outer loop works on one symbolic-value at a time. Suppose the input
52609467b48Spatrick // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
52709467b48Spatrick // The symbolic-values will be processed in this order: x, y, z.
52809467b48Spatrick for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
52909467b48Spatrick
53009467b48Spatrick const FAddend *ThisAddend = Addends[SymIdx];
53109467b48Spatrick if (!ThisAddend) {
53209467b48Spatrick // This addend was processed before.
53309467b48Spatrick continue;
53409467b48Spatrick }
53509467b48Spatrick
53609467b48Spatrick Value *Val = ThisAddend->getSymVal();
537*d415bd75Srobert
538*d415bd75Srobert // If the resulting expr has constant-addend, this constant-addend is
539*d415bd75Srobert // desirable to reside at the top of the resulting expression tree. Placing
540*d415bd75Srobert // constant close to super-expr(s) will potentially reveal some
541*d415bd75Srobert // optimization opportunities in super-expr(s). Here we do not implement
542*d415bd75Srobert // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543*d415bd75Srobert // call later.
544*d415bd75Srobert
54509467b48Spatrick unsigned StartIdx = SimpVect.size();
54609467b48Spatrick SimpVect.push_back(ThisAddend);
54709467b48Spatrick
54809467b48Spatrick // The inner loop collects addends sharing same symbolic-value, and these
54909467b48Spatrick // addends will be later on folded into a single addend. Following above
55009467b48Spatrick // example, if the symbolic value "y" is being processed, the inner loop
55109467b48Spatrick // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
55209467b48Spatrick // be later on folded into "<b1+b2, y>".
55309467b48Spatrick for (unsigned SameSymIdx = SymIdx + 1;
55409467b48Spatrick SameSymIdx < AddendNum; SameSymIdx++) {
55509467b48Spatrick const FAddend *T = Addends[SameSymIdx];
55609467b48Spatrick if (T && T->getSymVal() == Val) {
55709467b48Spatrick // Set null such that next iteration of the outer loop will not process
55809467b48Spatrick // this addend again.
55909467b48Spatrick Addends[SameSymIdx] = nullptr;
56009467b48Spatrick SimpVect.push_back(T);
56109467b48Spatrick }
56209467b48Spatrick }
56309467b48Spatrick
56409467b48Spatrick // If multiple addends share same symbolic value, fold them together.
56509467b48Spatrick if (StartIdx + 1 != SimpVect.size()) {
56609467b48Spatrick FAddend &R = TmpResult[NextTmpIdx ++];
56709467b48Spatrick R = *SimpVect[StartIdx];
56809467b48Spatrick for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
56909467b48Spatrick R += *SimpVect[Idx];
57009467b48Spatrick
57109467b48Spatrick // Pop all addends being folded and push the resulting folded addend.
57209467b48Spatrick SimpVect.resize(StartIdx);
57309467b48Spatrick if (!R.isZero()) {
57409467b48Spatrick SimpVect.push_back(&R);
57509467b48Spatrick }
57609467b48Spatrick }
57709467b48Spatrick }
57809467b48Spatrick
579*d415bd75Srobert assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
58009467b48Spatrick
58109467b48Spatrick Value *Result;
58209467b48Spatrick if (!SimpVect.empty())
58309467b48Spatrick Result = createNaryFAdd(SimpVect, InstrQuota);
58409467b48Spatrick else {
58509467b48Spatrick // The addition is folded to 0.0.
58609467b48Spatrick Result = ConstantFP::get(Instr->getType(), 0.0);
58709467b48Spatrick }
58809467b48Spatrick
58909467b48Spatrick return Result;
59009467b48Spatrick }
59109467b48Spatrick
createNaryFAdd(const AddendVect & Opnds,unsigned InstrQuota)59209467b48Spatrick Value *FAddCombine::createNaryFAdd
59309467b48Spatrick (const AddendVect &Opnds, unsigned InstrQuota) {
59409467b48Spatrick assert(!Opnds.empty() && "Expect at least one addend");
59509467b48Spatrick
59609467b48Spatrick // Step 1: Check if the # of instructions needed exceeds the quota.
59709467b48Spatrick
59809467b48Spatrick unsigned InstrNeeded = calcInstrNumber(Opnds);
59909467b48Spatrick if (InstrNeeded > InstrQuota)
60009467b48Spatrick return nullptr;
60109467b48Spatrick
60209467b48Spatrick initCreateInstNum();
60309467b48Spatrick
60409467b48Spatrick // step 2: Emit the N-ary addition.
60509467b48Spatrick // Note that at most three instructions are involved in Fadd-InstCombine: the
60609467b48Spatrick // addition in question, and at most two neighboring instructions.
60709467b48Spatrick // The resulting optimized addition should have at least one less instruction
60809467b48Spatrick // than the original addition expression tree. This implies that the resulting
60909467b48Spatrick // N-ary addition has at most two instructions, and we don't need to worry
61009467b48Spatrick // about tree-height when constructing the N-ary addition.
61109467b48Spatrick
61209467b48Spatrick Value *LastVal = nullptr;
61309467b48Spatrick bool LastValNeedNeg = false;
61409467b48Spatrick
61509467b48Spatrick // Iterate the addends, creating fadd/fsub using adjacent two addends.
61609467b48Spatrick for (const FAddend *Opnd : Opnds) {
61709467b48Spatrick bool NeedNeg;
61809467b48Spatrick Value *V = createAddendVal(*Opnd, NeedNeg);
61909467b48Spatrick if (!LastVal) {
62009467b48Spatrick LastVal = V;
62109467b48Spatrick LastValNeedNeg = NeedNeg;
62209467b48Spatrick continue;
62309467b48Spatrick }
62409467b48Spatrick
62509467b48Spatrick if (LastValNeedNeg == NeedNeg) {
62609467b48Spatrick LastVal = createFAdd(LastVal, V);
62709467b48Spatrick continue;
62809467b48Spatrick }
62909467b48Spatrick
63009467b48Spatrick if (LastValNeedNeg)
63109467b48Spatrick LastVal = createFSub(V, LastVal);
63209467b48Spatrick else
63309467b48Spatrick LastVal = createFSub(LastVal, V);
63409467b48Spatrick
63509467b48Spatrick LastValNeedNeg = false;
63609467b48Spatrick }
63709467b48Spatrick
63809467b48Spatrick if (LastValNeedNeg) {
63909467b48Spatrick LastVal = createFNeg(LastVal);
64009467b48Spatrick }
64109467b48Spatrick
64209467b48Spatrick #ifndef NDEBUG
64309467b48Spatrick assert(CreateInstrNum == InstrNeeded &&
64409467b48Spatrick "Inconsistent in instruction numbers");
64509467b48Spatrick #endif
64609467b48Spatrick
64709467b48Spatrick return LastVal;
64809467b48Spatrick }
64909467b48Spatrick
createFSub(Value * Opnd0,Value * Opnd1)65009467b48Spatrick Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
65109467b48Spatrick Value *V = Builder.CreateFSub(Opnd0, Opnd1);
65209467b48Spatrick if (Instruction *I = dyn_cast<Instruction>(V))
65309467b48Spatrick createInstPostProc(I);
65409467b48Spatrick return V;
65509467b48Spatrick }
65609467b48Spatrick
createFNeg(Value * V)65709467b48Spatrick Value *FAddCombine::createFNeg(Value *V) {
658097a140dSpatrick Value *NewV = Builder.CreateFNeg(V);
65909467b48Spatrick if (Instruction *I = dyn_cast<Instruction>(NewV))
66009467b48Spatrick createInstPostProc(I, true); // fneg's don't receive instruction numbers.
66109467b48Spatrick return NewV;
66209467b48Spatrick }
66309467b48Spatrick
createFAdd(Value * Opnd0,Value * Opnd1)66409467b48Spatrick Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
66509467b48Spatrick Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
66609467b48Spatrick if (Instruction *I = dyn_cast<Instruction>(V))
66709467b48Spatrick createInstPostProc(I);
66809467b48Spatrick return V;
66909467b48Spatrick }
67009467b48Spatrick
createFMul(Value * Opnd0,Value * Opnd1)67109467b48Spatrick Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
67209467b48Spatrick Value *V = Builder.CreateFMul(Opnd0, Opnd1);
67309467b48Spatrick if (Instruction *I = dyn_cast<Instruction>(V))
67409467b48Spatrick createInstPostProc(I);
67509467b48Spatrick return V;
67609467b48Spatrick }
67709467b48Spatrick
createInstPostProc(Instruction * NewInstr,bool NoNumber)67809467b48Spatrick void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
67909467b48Spatrick NewInstr->setDebugLoc(Instr->getDebugLoc());
68009467b48Spatrick
68109467b48Spatrick // Keep track of the number of instruction created.
68209467b48Spatrick if (!NoNumber)
68309467b48Spatrick incCreateInstNum();
68409467b48Spatrick
68509467b48Spatrick // Propagate fast-math flags
68609467b48Spatrick NewInstr->setFastMathFlags(Instr->getFastMathFlags());
68709467b48Spatrick }
68809467b48Spatrick
68909467b48Spatrick // Return the number of instruction needed to emit the N-ary addition.
69009467b48Spatrick // NOTE: Keep this function in sync with createAddendVal().
calcInstrNumber(const AddendVect & Opnds)69109467b48Spatrick unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
69209467b48Spatrick unsigned OpndNum = Opnds.size();
69309467b48Spatrick unsigned InstrNeeded = OpndNum - 1;
69409467b48Spatrick
69509467b48Spatrick // Adjust the number of instructions needed to emit the N-ary add.
69609467b48Spatrick for (const FAddend *Opnd : Opnds) {
69709467b48Spatrick if (Opnd->isConstant())
69809467b48Spatrick continue;
69909467b48Spatrick
70009467b48Spatrick // The constant check above is really for a few special constant
70109467b48Spatrick // coefficients.
70209467b48Spatrick if (isa<UndefValue>(Opnd->getSymVal()))
70309467b48Spatrick continue;
70409467b48Spatrick
70509467b48Spatrick const FAddendCoef &CE = Opnd->getCoef();
70609467b48Spatrick // Let the addend be "c * x". If "c == +/-1", the value of the addend
70709467b48Spatrick // is immediately available; otherwise, it needs exactly one instruction
70809467b48Spatrick // to evaluate the value.
70909467b48Spatrick if (!CE.isMinusOne() && !CE.isOne())
71009467b48Spatrick InstrNeeded++;
71109467b48Spatrick }
71209467b48Spatrick return InstrNeeded;
71309467b48Spatrick }
71409467b48Spatrick
71509467b48Spatrick // Input Addend Value NeedNeg(output)
71609467b48Spatrick // ================================================================
71709467b48Spatrick // Constant C C false
71809467b48Spatrick // <+/-1, V> V coefficient is -1
71909467b48Spatrick // <2/-2, V> "fadd V, V" coefficient is -2
72009467b48Spatrick // <C, V> "fmul V, C" false
72109467b48Spatrick //
72209467b48Spatrick // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
createAddendVal(const FAddend & Opnd,bool & NeedNeg)72309467b48Spatrick Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
72409467b48Spatrick const FAddendCoef &Coeff = Opnd.getCoef();
72509467b48Spatrick
72609467b48Spatrick if (Opnd.isConstant()) {
72709467b48Spatrick NeedNeg = false;
72809467b48Spatrick return Coeff.getValue(Instr->getType());
72909467b48Spatrick }
73009467b48Spatrick
73109467b48Spatrick Value *OpndVal = Opnd.getSymVal();
73209467b48Spatrick
73309467b48Spatrick if (Coeff.isMinusOne() || Coeff.isOne()) {
73409467b48Spatrick NeedNeg = Coeff.isMinusOne();
73509467b48Spatrick return OpndVal;
73609467b48Spatrick }
73709467b48Spatrick
73809467b48Spatrick if (Coeff.isTwo() || Coeff.isMinusTwo()) {
73909467b48Spatrick NeedNeg = Coeff.isMinusTwo();
74009467b48Spatrick return createFAdd(OpndVal, OpndVal);
74109467b48Spatrick }
74209467b48Spatrick
74309467b48Spatrick NeedNeg = false;
74409467b48Spatrick return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
74509467b48Spatrick }
74609467b48Spatrick
74709467b48Spatrick // Checks if any operand is negative and we can convert add to sub.
74809467b48Spatrick // This function checks for following negative patterns
74909467b48Spatrick // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
75009467b48Spatrick // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
75109467b48Spatrick // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
checkForNegativeOperand(BinaryOperator & I,InstCombiner::BuilderTy & Builder)75209467b48Spatrick static Value *checkForNegativeOperand(BinaryOperator &I,
75309467b48Spatrick InstCombiner::BuilderTy &Builder) {
75409467b48Spatrick Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
75509467b48Spatrick
75609467b48Spatrick // This function creates 2 instructions to replace ADD, we need at least one
75709467b48Spatrick // of LHS or RHS to have one use to ensure benefit in transform.
75809467b48Spatrick if (!LHS->hasOneUse() && !RHS->hasOneUse())
75909467b48Spatrick return nullptr;
76009467b48Spatrick
76109467b48Spatrick Value *X = nullptr, *Y = nullptr, *Z = nullptr;
76209467b48Spatrick const APInt *C1 = nullptr, *C2 = nullptr;
76309467b48Spatrick
76409467b48Spatrick // if ONE is on other side, swap
76509467b48Spatrick if (match(RHS, m_Add(m_Value(X), m_One())))
76609467b48Spatrick std::swap(LHS, RHS);
76709467b48Spatrick
76809467b48Spatrick if (match(LHS, m_Add(m_Value(X), m_One()))) {
76909467b48Spatrick // if XOR on other side, swap
77009467b48Spatrick if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
77109467b48Spatrick std::swap(X, RHS);
77209467b48Spatrick
77309467b48Spatrick if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
77409467b48Spatrick // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
77509467b48Spatrick // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
77609467b48Spatrick if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
77709467b48Spatrick Value *NewAnd = Builder.CreateAnd(Z, *C1);
77809467b48Spatrick return Builder.CreateSub(RHS, NewAnd, "sub");
77909467b48Spatrick } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
78009467b48Spatrick // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
78109467b48Spatrick // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
78209467b48Spatrick Value *NewOr = Builder.CreateOr(Z, ~(*C1));
78309467b48Spatrick return Builder.CreateSub(RHS, NewOr, "sub");
78409467b48Spatrick }
78509467b48Spatrick }
78609467b48Spatrick }
78709467b48Spatrick
78809467b48Spatrick // Restore LHS and RHS
78909467b48Spatrick LHS = I.getOperand(0);
79009467b48Spatrick RHS = I.getOperand(1);
79109467b48Spatrick
79209467b48Spatrick // if XOR is on other side, swap
79309467b48Spatrick if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
79409467b48Spatrick std::swap(LHS, RHS);
79509467b48Spatrick
79609467b48Spatrick // C2 is ODD
79709467b48Spatrick // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
79809467b48Spatrick // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
79909467b48Spatrick if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
80009467b48Spatrick if (C1->countTrailingZeros() == 0)
80109467b48Spatrick if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
80209467b48Spatrick Value *NewOr = Builder.CreateOr(Z, ~(*C2));
80309467b48Spatrick return Builder.CreateSub(RHS, NewOr, "sub");
80409467b48Spatrick }
80509467b48Spatrick return nullptr;
80609467b48Spatrick }
80709467b48Spatrick
80809467b48Spatrick /// Wrapping flags may allow combining constants separated by an extend.
foldNoWrapAdd(BinaryOperator & Add,InstCombiner::BuilderTy & Builder)80909467b48Spatrick static Instruction *foldNoWrapAdd(BinaryOperator &Add,
81009467b48Spatrick InstCombiner::BuilderTy &Builder) {
81109467b48Spatrick Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
81209467b48Spatrick Type *Ty = Add.getType();
81309467b48Spatrick Constant *Op1C;
81409467b48Spatrick if (!match(Op1, m_Constant(Op1C)))
81509467b48Spatrick return nullptr;
81609467b48Spatrick
81709467b48Spatrick // Try this match first because it results in an add in the narrow type.
81809467b48Spatrick // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
81909467b48Spatrick Value *X;
82009467b48Spatrick const APInt *C1, *C2;
82109467b48Spatrick if (match(Op1, m_APInt(C1)) &&
82209467b48Spatrick match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
82309467b48Spatrick C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
82409467b48Spatrick Constant *NewC =
82509467b48Spatrick ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
82609467b48Spatrick return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
82709467b48Spatrick }
82809467b48Spatrick
82909467b48Spatrick // More general combining of constants in the wide type.
83009467b48Spatrick // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
83109467b48Spatrick Constant *NarrowC;
83209467b48Spatrick if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
83309467b48Spatrick Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
83409467b48Spatrick Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
83509467b48Spatrick Value *WideX = Builder.CreateSExt(X, Ty);
83609467b48Spatrick return BinaryOperator::CreateAdd(WideX, NewC);
83709467b48Spatrick }
83809467b48Spatrick // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
83909467b48Spatrick if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
84009467b48Spatrick Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
84109467b48Spatrick Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
84209467b48Spatrick Value *WideX = Builder.CreateZExt(X, Ty);
84309467b48Spatrick return BinaryOperator::CreateAdd(WideX, NewC);
84409467b48Spatrick }
84509467b48Spatrick
84609467b48Spatrick return nullptr;
84709467b48Spatrick }
84809467b48Spatrick
foldAddWithConstant(BinaryOperator & Add)84973471bf0Spatrick Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
85009467b48Spatrick Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
851*d415bd75Srobert Type *Ty = Add.getType();
85209467b48Spatrick Constant *Op1C;
85373471bf0Spatrick if (!match(Op1, m_ImmConstant(Op1C)))
85409467b48Spatrick return nullptr;
85509467b48Spatrick
85609467b48Spatrick if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
85709467b48Spatrick return NV;
85809467b48Spatrick
85909467b48Spatrick Value *X;
86009467b48Spatrick Constant *Op00C;
86109467b48Spatrick
86209467b48Spatrick // add (sub C1, X), C2 --> sub (add C1, C2), X
86309467b48Spatrick if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
86409467b48Spatrick return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
86509467b48Spatrick
86609467b48Spatrick Value *Y;
86709467b48Spatrick
86809467b48Spatrick // add (sub X, Y), -1 --> add (not Y), X
86909467b48Spatrick if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
87009467b48Spatrick match(Op1, m_AllOnes()))
87109467b48Spatrick return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
87209467b48Spatrick
87309467b48Spatrick // zext(bool) + C -> bool ? C + 1 : C
87409467b48Spatrick if (match(Op0, m_ZExt(m_Value(X))) &&
87509467b48Spatrick X->getType()->getScalarSizeInBits() == 1)
87673471bf0Spatrick return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
87709467b48Spatrick // sext(bool) + C -> bool ? C - 1 : C
87809467b48Spatrick if (match(Op0, m_SExt(m_Value(X))) &&
87909467b48Spatrick X->getType()->getScalarSizeInBits() == 1)
88073471bf0Spatrick return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
88109467b48Spatrick
88209467b48Spatrick // ~X + C --> (C-1) - X
88309467b48Spatrick if (match(Op0, m_Not(m_Value(X))))
88473471bf0Spatrick return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
88509467b48Spatrick
886*d415bd75Srobert // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
88709467b48Spatrick const APInt *C;
888*d415bd75Srobert unsigned BitWidth = Ty->getScalarSizeInBits();
889*d415bd75Srobert if (match(Op0, m_OneUse(m_AShr(m_Value(X),
890*d415bd75Srobert m_SpecificIntAllowUndef(BitWidth - 1)))) &&
891*d415bd75Srobert match(Op1, m_One()))
892*d415bd75Srobert return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
893*d415bd75Srobert
89409467b48Spatrick if (!match(Op1, m_APInt(C)))
89509467b48Spatrick return nullptr;
89609467b48Spatrick
89773471bf0Spatrick // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
89873471bf0Spatrick Constant *Op01C;
89973471bf0Spatrick if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
90073471bf0Spatrick haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
90173471bf0Spatrick return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
90273471bf0Spatrick
90309467b48Spatrick // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
90409467b48Spatrick const APInt *C2;
90509467b48Spatrick if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
90609467b48Spatrick return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
90709467b48Spatrick
90809467b48Spatrick if (C->isSignMask()) {
90909467b48Spatrick // If wrapping is not allowed, then the addition must set the sign bit:
91009467b48Spatrick // X + (signmask) --> X | signmask
91109467b48Spatrick if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
91209467b48Spatrick return BinaryOperator::CreateOr(Op0, Op1);
91309467b48Spatrick
91409467b48Spatrick // If wrapping is allowed, then the addition flips the sign bit of LHS:
91509467b48Spatrick // X + (signmask) --> X ^ signmask
91609467b48Spatrick return BinaryOperator::CreateXor(Op0, Op1);
91709467b48Spatrick }
91809467b48Spatrick
91909467b48Spatrick // Is this add the last step in a convoluted sext?
92009467b48Spatrick // add(zext(xor i16 X, -32768), -32768) --> sext X
92109467b48Spatrick if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
92209467b48Spatrick C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
92309467b48Spatrick return CastInst::Create(Instruction::SExt, X, Ty);
92409467b48Spatrick
92573471bf0Spatrick if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
92673471bf0Spatrick // (X ^ signmask) + C --> (X + (signmask ^ C))
92773471bf0Spatrick if (C2->isSignMask())
92873471bf0Spatrick return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
92973471bf0Spatrick
93073471bf0Spatrick // If X has no high-bits set above an xor mask:
93173471bf0Spatrick // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
93273471bf0Spatrick if (C2->isMask()) {
93373471bf0Spatrick KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
934*d415bd75Srobert if ((*C2 | LHSKnown.Zero).isAllOnes())
93573471bf0Spatrick return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
93673471bf0Spatrick }
93773471bf0Spatrick
93873471bf0Spatrick // Look for a math+logic pattern that corresponds to sext-in-register of a
93973471bf0Spatrick // value with cleared high bits. Convert that into a pair of shifts:
94073471bf0Spatrick // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
94173471bf0Spatrick // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
94273471bf0Spatrick if (Op0->hasOneUse() && *C2 == -(*C)) {
94373471bf0Spatrick unsigned BitWidth = Ty->getScalarSizeInBits();
94473471bf0Spatrick unsigned ShAmt = 0;
94573471bf0Spatrick if (C->isPowerOf2())
94673471bf0Spatrick ShAmt = BitWidth - C->logBase2() - 1;
94773471bf0Spatrick else if (C2->isPowerOf2())
94873471bf0Spatrick ShAmt = BitWidth - C2->logBase2() - 1;
94973471bf0Spatrick if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
95073471bf0Spatrick 0, &Add)) {
95173471bf0Spatrick Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
95273471bf0Spatrick Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
95373471bf0Spatrick return BinaryOperator::CreateAShr(NewShl, ShAmtC);
95473471bf0Spatrick }
95573471bf0Spatrick }
95673471bf0Spatrick }
95773471bf0Spatrick
958*d415bd75Srobert if (C->isOne() && Op0->hasOneUse()) {
95909467b48Spatrick // add (sext i1 X), 1 --> zext (not X)
96009467b48Spatrick // TODO: The smallest IR representation is (select X, 0, 1), and that would
96109467b48Spatrick // not require the one-use check. But we need to remove a transform in
96209467b48Spatrick // visitSelect and make sure that IR value tracking for select is equal or
96309467b48Spatrick // better than for these ops.
96409467b48Spatrick if (match(Op0, m_SExt(m_Value(X))) &&
96509467b48Spatrick X->getType()->getScalarSizeInBits() == 1)
96609467b48Spatrick return new ZExtInst(Builder.CreateNot(X), Ty);
96709467b48Spatrick
96809467b48Spatrick // Shifts and add used to flip and mask off the low bit:
96909467b48Spatrick // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
97009467b48Spatrick const APInt *C3;
97109467b48Spatrick if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
97209467b48Spatrick C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
97309467b48Spatrick Value *NotX = Builder.CreateNot(X);
97409467b48Spatrick return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
97509467b48Spatrick }
97609467b48Spatrick }
97709467b48Spatrick
97809467b48Spatrick return nullptr;
97909467b48Spatrick }
98009467b48Spatrick
98109467b48Spatrick // Matches multiplication expression Op * C where C is a constant. Returns the
98209467b48Spatrick // constant value in C and the other operand in Op. Returns true if such a
98309467b48Spatrick // match is found.
MatchMul(Value * E,Value * & Op,APInt & C)98409467b48Spatrick static bool MatchMul(Value *E, Value *&Op, APInt &C) {
98509467b48Spatrick const APInt *AI;
98609467b48Spatrick if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
98709467b48Spatrick C = *AI;
98809467b48Spatrick return true;
98909467b48Spatrick }
99009467b48Spatrick if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
99109467b48Spatrick C = APInt(AI->getBitWidth(), 1);
99209467b48Spatrick C <<= *AI;
99309467b48Spatrick return true;
99409467b48Spatrick }
99509467b48Spatrick return false;
99609467b48Spatrick }
99709467b48Spatrick
99809467b48Spatrick // Matches remainder expression Op % C where C is a constant. Returns the
99909467b48Spatrick // constant value in C and the other operand in Op. Returns the signedness of
100009467b48Spatrick // the remainder operation in IsSigned. Returns true if such a match is
100109467b48Spatrick // found.
MatchRem(Value * E,Value * & Op,APInt & C,bool & IsSigned)100209467b48Spatrick static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
100309467b48Spatrick const APInt *AI;
100409467b48Spatrick IsSigned = false;
100509467b48Spatrick if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
100609467b48Spatrick IsSigned = true;
100709467b48Spatrick C = *AI;
100809467b48Spatrick return true;
100909467b48Spatrick }
101009467b48Spatrick if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
101109467b48Spatrick C = *AI;
101209467b48Spatrick return true;
101309467b48Spatrick }
101409467b48Spatrick if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
101509467b48Spatrick C = *AI + 1;
101609467b48Spatrick return true;
101709467b48Spatrick }
101809467b48Spatrick return false;
101909467b48Spatrick }
102009467b48Spatrick
102109467b48Spatrick // Matches division expression Op / C with the given signedness as indicated
102209467b48Spatrick // by IsSigned, where C is a constant. Returns the constant value in C and the
102309467b48Spatrick // other operand in Op. Returns true if such a match is found.
MatchDiv(Value * E,Value * & Op,APInt & C,bool IsSigned)102409467b48Spatrick static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
102509467b48Spatrick const APInt *AI;
102609467b48Spatrick if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
102709467b48Spatrick C = *AI;
102809467b48Spatrick return true;
102909467b48Spatrick }
103009467b48Spatrick if (!IsSigned) {
103109467b48Spatrick if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
103209467b48Spatrick C = *AI;
103309467b48Spatrick return true;
103409467b48Spatrick }
103509467b48Spatrick if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
103609467b48Spatrick C = APInt(AI->getBitWidth(), 1);
103709467b48Spatrick C <<= *AI;
103809467b48Spatrick return true;
103909467b48Spatrick }
104009467b48Spatrick }
104109467b48Spatrick return false;
104209467b48Spatrick }
104309467b48Spatrick
104409467b48Spatrick // Returns whether C0 * C1 with the given signedness overflows.
MulWillOverflow(APInt & C0,APInt & C1,bool IsSigned)104509467b48Spatrick static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
104609467b48Spatrick bool overflow;
104709467b48Spatrick if (IsSigned)
104809467b48Spatrick (void)C0.smul_ov(C1, overflow);
104909467b48Spatrick else
105009467b48Spatrick (void)C0.umul_ov(C1, overflow);
105109467b48Spatrick return overflow;
105209467b48Spatrick }
105309467b48Spatrick
105409467b48Spatrick // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
105509467b48Spatrick // does not overflow.
SimplifyAddWithRemainder(BinaryOperator & I)105673471bf0Spatrick Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
105709467b48Spatrick Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
105809467b48Spatrick Value *X, *MulOpV;
105909467b48Spatrick APInt C0, MulOpC;
106009467b48Spatrick bool IsSigned;
106109467b48Spatrick // Match I = X % C0 + MulOpV * C0
106209467b48Spatrick if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
106309467b48Spatrick (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
106409467b48Spatrick C0 == MulOpC) {
106509467b48Spatrick Value *RemOpV;
106609467b48Spatrick APInt C1;
106709467b48Spatrick bool Rem2IsSigned;
106809467b48Spatrick // Match MulOpC = RemOpV % C1
106909467b48Spatrick if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
107009467b48Spatrick IsSigned == Rem2IsSigned) {
107109467b48Spatrick Value *DivOpV;
107209467b48Spatrick APInt DivOpC;
107309467b48Spatrick // Match RemOpV = X / C0
107409467b48Spatrick if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
107509467b48Spatrick C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1076097a140dSpatrick Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
107709467b48Spatrick return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
107809467b48Spatrick : Builder.CreateURem(X, NewDivisor, "urem");
107909467b48Spatrick }
108009467b48Spatrick }
108109467b48Spatrick }
108209467b48Spatrick
108309467b48Spatrick return nullptr;
108409467b48Spatrick }
108509467b48Spatrick
108609467b48Spatrick /// Fold
108709467b48Spatrick /// (1 << NBits) - 1
108809467b48Spatrick /// Into:
108909467b48Spatrick /// ~(-(1 << NBits))
109009467b48Spatrick /// Because a 'not' is better for bit-tracking analysis and other transforms
109109467b48Spatrick /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
canonicalizeLowbitMask(BinaryOperator & I,InstCombiner::BuilderTy & Builder)109209467b48Spatrick static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
109309467b48Spatrick InstCombiner::BuilderTy &Builder) {
109409467b48Spatrick Value *NBits;
109509467b48Spatrick if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
109609467b48Spatrick return nullptr;
109709467b48Spatrick
109809467b48Spatrick Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
109909467b48Spatrick Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
110009467b48Spatrick // Be wary of constant folding.
110109467b48Spatrick if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
110209467b48Spatrick // Always NSW. But NUW propagates from `add`.
110309467b48Spatrick BOp->setHasNoSignedWrap();
110409467b48Spatrick BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
110509467b48Spatrick }
110609467b48Spatrick
110709467b48Spatrick return BinaryOperator::CreateNot(NotMask, I.getName());
110809467b48Spatrick }
110909467b48Spatrick
foldToUnsignedSaturatedAdd(BinaryOperator & I)111009467b48Spatrick static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
111109467b48Spatrick assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
111209467b48Spatrick Type *Ty = I.getType();
111309467b48Spatrick auto getUAddSat = [&]() {
111409467b48Spatrick return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
111509467b48Spatrick };
111609467b48Spatrick
111709467b48Spatrick // add (umin X, ~Y), Y --> uaddsat X, Y
111809467b48Spatrick Value *X, *Y;
111909467b48Spatrick if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
112009467b48Spatrick m_Deferred(Y))))
112109467b48Spatrick return CallInst::Create(getUAddSat(), { X, Y });
112209467b48Spatrick
112309467b48Spatrick // add (umin X, ~C), C --> uaddsat X, C
112409467b48Spatrick const APInt *C, *NotC;
112509467b48Spatrick if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
112609467b48Spatrick *C == ~*NotC)
112709467b48Spatrick return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
112809467b48Spatrick
112909467b48Spatrick return nullptr;
113009467b48Spatrick }
113109467b48Spatrick
1132*d415bd75Srobert /// Try to reduce signed division by power-of-2 to an arithmetic shift right.
foldAddToAshr(BinaryOperator & Add)1133*d415bd75Srobert static Instruction *foldAddToAshr(BinaryOperator &Add) {
1134*d415bd75Srobert // Division must be by power-of-2, but not the minimum signed value.
1135*d415bd75Srobert Value *X;
1136*d415bd75Srobert const APInt *DivC;
1137*d415bd75Srobert if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
1138*d415bd75Srobert DivC->isNegative())
1139*d415bd75Srobert return nullptr;
1140*d415bd75Srobert
1141*d415bd75Srobert // Rounding is done by adding -1 if the dividend (X) is negative and has any
1142*d415bd75Srobert // low bits set. The canonical pattern for that is an "ugt" compare with SMIN:
1143*d415bd75Srobert // sext (icmp ugt (X & (DivC - 1)), SMIN)
1144*d415bd75Srobert const APInt *MaskC;
1145*d415bd75Srobert ICmpInst::Predicate Pred;
1146*d415bd75Srobert if (!match(Add.getOperand(1),
1147*d415bd75Srobert m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
1148*d415bd75Srobert m_SignMask()))) ||
1149*d415bd75Srobert Pred != ICmpInst::ICMP_UGT)
1150*d415bd75Srobert return nullptr;
1151*d415bd75Srobert
1152*d415bd75Srobert APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
1153*d415bd75Srobert if (*MaskC != (SMin | (*DivC - 1)))
1154*d415bd75Srobert return nullptr;
1155*d415bd75Srobert
1156*d415bd75Srobert // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1157*d415bd75Srobert return BinaryOperator::CreateAShr(
1158*d415bd75Srobert X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
1159*d415bd75Srobert }
1160*d415bd75Srobert
116173471bf0Spatrick Instruction *InstCombinerImpl::
canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator & I)116273471bf0Spatrick canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
116309467b48Spatrick BinaryOperator &I) {
116409467b48Spatrick assert((I.getOpcode() == Instruction::Add ||
116509467b48Spatrick I.getOpcode() == Instruction::Or ||
116609467b48Spatrick I.getOpcode() == Instruction::Sub) &&
116709467b48Spatrick "Expecting add/or/sub instruction");
116809467b48Spatrick
116909467b48Spatrick // We have a subtraction/addition between a (potentially truncated) *logical*
117009467b48Spatrick // right-shift of X and a "select".
117109467b48Spatrick Value *X, *Select;
117209467b48Spatrick Instruction *LowBitsToSkip, *Extract;
117309467b48Spatrick if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
117409467b48Spatrick m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
117509467b48Spatrick m_Instruction(Extract))),
117609467b48Spatrick m_Value(Select))))
117709467b48Spatrick return nullptr;
117809467b48Spatrick
117909467b48Spatrick // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
118009467b48Spatrick if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
118109467b48Spatrick return nullptr;
118209467b48Spatrick
118309467b48Spatrick Type *XTy = X->getType();
118409467b48Spatrick bool HadTrunc = I.getType() != XTy;
118509467b48Spatrick
118609467b48Spatrick // If there was a truncation of extracted value, then we'll need to produce
118709467b48Spatrick // one extra instruction, so we need to ensure one instruction will go away.
118809467b48Spatrick if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
118909467b48Spatrick return nullptr;
119009467b48Spatrick
119109467b48Spatrick // Extraction should extract high NBits bits, with shift amount calculated as:
119209467b48Spatrick // low bits to skip = shift bitwidth - high bits to extract
119309467b48Spatrick // The shift amount itself may be extended, and we need to look past zero-ext
119409467b48Spatrick // when matching NBits, that will matter for matching later.
119509467b48Spatrick Constant *C;
119609467b48Spatrick Value *NBits;
119709467b48Spatrick if (!match(
119809467b48Spatrick LowBitsToSkip,
119909467b48Spatrick m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
120009467b48Spatrick !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
120109467b48Spatrick APInt(C->getType()->getScalarSizeInBits(),
120209467b48Spatrick X->getType()->getScalarSizeInBits()))))
120309467b48Spatrick return nullptr;
120409467b48Spatrick
120509467b48Spatrick // Sign-extending value can be zero-extended if we `sub`tract it,
120609467b48Spatrick // or sign-extended otherwise.
120709467b48Spatrick auto SkipExtInMagic = [&I](Value *&V) {
120809467b48Spatrick if (I.getOpcode() == Instruction::Sub)
120909467b48Spatrick match(V, m_ZExtOrSelf(m_Value(V)));
121009467b48Spatrick else
121109467b48Spatrick match(V, m_SExtOrSelf(m_Value(V)));
121209467b48Spatrick };
121309467b48Spatrick
121409467b48Spatrick // Now, finally validate the sign-extending magic.
121509467b48Spatrick // `select` itself may be appropriately extended, look past that.
121609467b48Spatrick SkipExtInMagic(Select);
121709467b48Spatrick
121809467b48Spatrick ICmpInst::Predicate Pred;
121909467b48Spatrick const APInt *Thr;
122009467b48Spatrick Value *SignExtendingValue, *Zero;
122109467b48Spatrick bool ShouldSignext;
122209467b48Spatrick // It must be a select between two values we will later establish to be a
122309467b48Spatrick // sign-extending value and a zero constant. The condition guarding the
122409467b48Spatrick // sign-extension must be based on a sign bit of the same X we had in `lshr`.
122509467b48Spatrick if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
122609467b48Spatrick m_Value(SignExtendingValue), m_Value(Zero))) ||
122709467b48Spatrick !isSignBitCheck(Pred, *Thr, ShouldSignext))
122809467b48Spatrick return nullptr;
122909467b48Spatrick
123009467b48Spatrick // icmp-select pair is commutative.
123109467b48Spatrick if (!ShouldSignext)
123209467b48Spatrick std::swap(SignExtendingValue, Zero);
123309467b48Spatrick
123409467b48Spatrick // If we should not perform sign-extension then we must add/or/subtract zero.
123509467b48Spatrick if (!match(Zero, m_Zero()))
123609467b48Spatrick return nullptr;
123709467b48Spatrick // Otherwise, it should be some constant, left-shifted by the same NBits we
123809467b48Spatrick // had in `lshr`. Said left-shift can also be appropriately extended.
123909467b48Spatrick // Again, we must look past zero-ext when looking for NBits.
124009467b48Spatrick SkipExtInMagic(SignExtendingValue);
124109467b48Spatrick Constant *SignExtendingValueBaseConstant;
124209467b48Spatrick if (!match(SignExtendingValue,
124309467b48Spatrick m_Shl(m_Constant(SignExtendingValueBaseConstant),
124409467b48Spatrick m_ZExtOrSelf(m_Specific(NBits)))))
124509467b48Spatrick return nullptr;
124609467b48Spatrick // If we `sub`, then the constant should be one, else it should be all-ones.
124709467b48Spatrick if (I.getOpcode() == Instruction::Sub
124809467b48Spatrick ? !match(SignExtendingValueBaseConstant, m_One())
124909467b48Spatrick : !match(SignExtendingValueBaseConstant, m_AllOnes()))
125009467b48Spatrick return nullptr;
125109467b48Spatrick
125209467b48Spatrick auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
125309467b48Spatrick Extract->getName() + ".sext");
125409467b48Spatrick NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
125509467b48Spatrick if (!HadTrunc)
125609467b48Spatrick return NewAShr;
125709467b48Spatrick
125809467b48Spatrick Builder.Insert(NewAShr);
125909467b48Spatrick return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
126009467b48Spatrick }
126109467b48Spatrick
126273471bf0Spatrick /// This is a specialization of a more general transform from
1263*d415bd75Srobert /// foldUsingDistributiveLaws. If that code can be made to work optimally
126473471bf0Spatrick /// for multi-use cases or propagating nsw/nuw, then we would not need this.
factorizeMathWithShlOps(BinaryOperator & I,InstCombiner::BuilderTy & Builder)126573471bf0Spatrick static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
126673471bf0Spatrick InstCombiner::BuilderTy &Builder) {
126773471bf0Spatrick // TODO: Also handle mul by doubling the shift amount?
126873471bf0Spatrick assert((I.getOpcode() == Instruction::Add ||
126973471bf0Spatrick I.getOpcode() == Instruction::Sub) &&
127073471bf0Spatrick "Expected add/sub");
127173471bf0Spatrick auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
127273471bf0Spatrick auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
127373471bf0Spatrick if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
127473471bf0Spatrick return nullptr;
127573471bf0Spatrick
127673471bf0Spatrick Value *X, *Y, *ShAmt;
127773471bf0Spatrick if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
127873471bf0Spatrick !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
127973471bf0Spatrick return nullptr;
128073471bf0Spatrick
128173471bf0Spatrick // No-wrap propagates only when all ops have no-wrap.
128273471bf0Spatrick bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
128373471bf0Spatrick Op1->hasNoSignedWrap();
128473471bf0Spatrick bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
128573471bf0Spatrick Op1->hasNoUnsignedWrap();
128673471bf0Spatrick
128773471bf0Spatrick // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
128873471bf0Spatrick Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
128973471bf0Spatrick if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
129073471bf0Spatrick NewI->setHasNoSignedWrap(HasNSW);
129173471bf0Spatrick NewI->setHasNoUnsignedWrap(HasNUW);
129273471bf0Spatrick }
129373471bf0Spatrick auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
129473471bf0Spatrick NewShl->setHasNoSignedWrap(HasNSW);
129573471bf0Spatrick NewShl->setHasNoUnsignedWrap(HasNUW);
129673471bf0Spatrick return NewShl;
129773471bf0Spatrick }
129873471bf0Spatrick
1299*d415bd75Srobert /// Reduce a sequence of masked half-width multiplies to a single multiply.
1300*d415bd75Srobert /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
foldBoxMultiply(BinaryOperator & I)1301*d415bd75Srobert static Instruction *foldBoxMultiply(BinaryOperator &I) {
1302*d415bd75Srobert unsigned BitWidth = I.getType()->getScalarSizeInBits();
1303*d415bd75Srobert // Skip the odd bitwidth types.
1304*d415bd75Srobert if ((BitWidth & 0x1))
1305*d415bd75Srobert return nullptr;
1306*d415bd75Srobert
1307*d415bd75Srobert unsigned HalfBits = BitWidth >> 1;
1308*d415bd75Srobert APInt HalfMask = APInt::getMaxValue(HalfBits);
1309*d415bd75Srobert
1310*d415bd75Srobert // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1311*d415bd75Srobert Value *XLo, *YLo;
1312*d415bd75Srobert Value *CrossSum;
1313*d415bd75Srobert if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
1314*d415bd75Srobert m_Mul(m_Value(YLo), m_Value(XLo)))))
1315*d415bd75Srobert return nullptr;
1316*d415bd75Srobert
1317*d415bd75Srobert // XLo = X & HalfMask
1318*d415bd75Srobert // YLo = Y & HalfMask
1319*d415bd75Srobert // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1320*d415bd75Srobert // to enhance robustness
1321*d415bd75Srobert Value *X, *Y;
1322*d415bd75Srobert if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
1323*d415bd75Srobert !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
1324*d415bd75Srobert return nullptr;
1325*d415bd75Srobert
1326*d415bd75Srobert // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1327*d415bd75Srobert // X' can be either X or XLo in the pattern (and the same for Y')
1328*d415bd75Srobert if (match(CrossSum,
1329*d415bd75Srobert m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)),
1330*d415bd75Srobert m_CombineOr(m_Specific(X), m_Specific(XLo))),
1331*d415bd75Srobert m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)),
1332*d415bd75Srobert m_CombineOr(m_Specific(Y), m_Specific(YLo))))))
1333*d415bd75Srobert return BinaryOperator::CreateMul(X, Y);
1334*d415bd75Srobert
1335*d415bd75Srobert return nullptr;
1336*d415bd75Srobert }
1337*d415bd75Srobert
visitAdd(BinaryOperator & I)133873471bf0Spatrick Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1339*d415bd75Srobert if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
134009467b48Spatrick I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
134109467b48Spatrick SQ.getWithInstruction(&I)))
134209467b48Spatrick return replaceInstUsesWith(I, V);
134309467b48Spatrick
134409467b48Spatrick if (SimplifyAssociativeOrCommutative(I))
134509467b48Spatrick return &I;
134609467b48Spatrick
134709467b48Spatrick if (Instruction *X = foldVectorBinop(I))
134809467b48Spatrick return X;
134909467b48Spatrick
1350*d415bd75Srobert if (Instruction *Phi = foldBinopWithPhiOperands(I))
1351*d415bd75Srobert return Phi;
1352*d415bd75Srobert
135309467b48Spatrick // (A*B)+(A*C) -> A*(B+C) etc
1354*d415bd75Srobert if (Value *V = foldUsingDistributiveLaws(I))
135509467b48Spatrick return replaceInstUsesWith(I, V);
135609467b48Spatrick
1357*d415bd75Srobert if (Instruction *R = foldBoxMultiply(I))
1358*d415bd75Srobert return R;
1359*d415bd75Srobert
136073471bf0Spatrick if (Instruction *R = factorizeMathWithShlOps(I, Builder))
136173471bf0Spatrick return R;
136273471bf0Spatrick
136309467b48Spatrick if (Instruction *X = foldAddWithConstant(I))
136409467b48Spatrick return X;
136509467b48Spatrick
136609467b48Spatrick if (Instruction *X = foldNoWrapAdd(I, Builder))
136709467b48Spatrick return X;
136809467b48Spatrick
136909467b48Spatrick Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
137009467b48Spatrick Type *Ty = I.getType();
137109467b48Spatrick if (Ty->isIntOrIntVectorTy(1))
137209467b48Spatrick return BinaryOperator::CreateXor(LHS, RHS);
137309467b48Spatrick
137409467b48Spatrick // X + X --> X << 1
137509467b48Spatrick if (LHS == RHS) {
137609467b48Spatrick auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
137709467b48Spatrick Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
137809467b48Spatrick Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
137909467b48Spatrick return Shl;
138009467b48Spatrick }
138109467b48Spatrick
138209467b48Spatrick Value *A, *B;
138309467b48Spatrick if (match(LHS, m_Neg(m_Value(A)))) {
138409467b48Spatrick // -A + -B --> -(A + B)
138509467b48Spatrick if (match(RHS, m_Neg(m_Value(B))))
138609467b48Spatrick return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
138709467b48Spatrick
138809467b48Spatrick // -A + B --> B - A
138909467b48Spatrick return BinaryOperator::CreateSub(RHS, A);
139009467b48Spatrick }
139109467b48Spatrick
139209467b48Spatrick // A + -B --> A - B
139309467b48Spatrick if (match(RHS, m_Neg(m_Value(B))))
139409467b48Spatrick return BinaryOperator::CreateSub(LHS, B);
139509467b48Spatrick
139609467b48Spatrick if (Value *V = checkForNegativeOperand(I, Builder))
139709467b48Spatrick return replaceInstUsesWith(I, V);
139809467b48Spatrick
139909467b48Spatrick // (A + 1) + ~B --> A - B
140009467b48Spatrick // ~B + (A + 1) --> A - B
140109467b48Spatrick // (~B + A) + 1 --> A - B
140209467b48Spatrick // (A + ~B) + 1 --> A - B
140309467b48Spatrick if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
140409467b48Spatrick match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
140509467b48Spatrick return BinaryOperator::CreateSub(A, B);
140609467b48Spatrick
1407097a140dSpatrick // (A + RHS) + RHS --> A + (RHS << 1)
1408097a140dSpatrick if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1409097a140dSpatrick return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1410097a140dSpatrick
1411097a140dSpatrick // LHS + (A + LHS) --> A + (LHS << 1)
1412097a140dSpatrick if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1413097a140dSpatrick return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1414097a140dSpatrick
1415*d415bd75Srobert {
1416*d415bd75Srobert // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1417*d415bd75Srobert Constant *C1, *C2;
1418*d415bd75Srobert if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1419*d415bd75Srobert m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1420*d415bd75Srobert (LHS->hasOneUse() || RHS->hasOneUse())) {
1421*d415bd75Srobert Value *Sub = Builder.CreateSub(A, B);
1422*d415bd75Srobert return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1423*d415bd75Srobert }
1424*d415bd75Srobert }
1425*d415bd75Srobert
142609467b48Spatrick // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
142709467b48Spatrick if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
142809467b48Spatrick
1429097a140dSpatrick // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1430097a140dSpatrick const APInt *C1, *C2;
1431097a140dSpatrick if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1432097a140dSpatrick APInt one(C2->getBitWidth(), 1);
1433097a140dSpatrick APInt minusC1 = -(*C1);
1434097a140dSpatrick if (minusC1 == (one << *C2)) {
1435097a140dSpatrick Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1436097a140dSpatrick return BinaryOperator::CreateSRem(RHS, NewRHS);
1437097a140dSpatrick }
1438097a140dSpatrick }
1439097a140dSpatrick
1440*d415bd75Srobert // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1441*d415bd75Srobert if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1442*d415bd75Srobert C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countLeadingZeros())) {
1443*d415bd75Srobert Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1444*d415bd75Srobert return BinaryOperator::CreateAnd(A, NewMask);
1445*d415bd75Srobert }
1446*d415bd75Srobert
1447*d415bd75Srobert // ZExt (B - A) + ZExt(A) --> ZExt(B)
1448*d415bd75Srobert if ((match(RHS, m_ZExt(m_Value(A))) &&
1449*d415bd75Srobert match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) ||
1450*d415bd75Srobert (match(LHS, m_ZExt(m_Value(A))) &&
1451*d415bd75Srobert match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))))
1452*d415bd75Srobert return new ZExtInst(B, LHS->getType());
1453*d415bd75Srobert
145409467b48Spatrick // A+B --> A|B iff A and B have no bits set in common.
145509467b48Spatrick if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
145609467b48Spatrick return BinaryOperator::CreateOr(LHS, RHS);
145709467b48Spatrick
145809467b48Spatrick if (Instruction *Ext = narrowMathIfNoOverflow(I))
145909467b48Spatrick return Ext;
146009467b48Spatrick
146109467b48Spatrick // (add (xor A, B) (and A, B)) --> (or A, B)
146209467b48Spatrick // (add (and A, B) (xor A, B)) --> (or A, B)
146309467b48Spatrick if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
146409467b48Spatrick m_c_And(m_Deferred(A), m_Deferred(B)))))
146509467b48Spatrick return BinaryOperator::CreateOr(A, B);
146609467b48Spatrick
146709467b48Spatrick // (add (or A, B) (and A, B)) --> (add A, B)
146809467b48Spatrick // (add (and A, B) (or A, B)) --> (add A, B)
146909467b48Spatrick if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
147009467b48Spatrick m_c_And(m_Deferred(A), m_Deferred(B))))) {
1471097a140dSpatrick // Replacing operands in-place to preserve nuw/nsw flags.
1472097a140dSpatrick replaceOperand(I, 0, A);
1473097a140dSpatrick replaceOperand(I, 1, B);
147409467b48Spatrick return &I;
147509467b48Spatrick }
147609467b48Spatrick
1477*d415bd75Srobert // (add A (or A, -A)) --> (and (add A, -1) A)
1478*d415bd75Srobert // (add A (or -A, A)) --> (and (add A, -1) A)
1479*d415bd75Srobert // (add (or A, -A) A) --> (and (add A, -1) A)
1480*d415bd75Srobert // (add (or -A, A) A) --> (and (add A, -1) A)
1481*d415bd75Srobert if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)),
1482*d415bd75Srobert m_Deferred(A)))))) {
1483*d415bd75Srobert Value *Add =
1484*d415bd75Srobert Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "",
1485*d415bd75Srobert I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
1486*d415bd75Srobert return BinaryOperator::CreateAnd(Add, A);
1487*d415bd75Srobert }
1488*d415bd75Srobert
1489*d415bd75Srobert // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1490*d415bd75Srobert // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1491*d415bd75Srobert if (match(&I,
1492*d415bd75Srobert m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))),
1493*d415bd75Srobert m_AllOnes()))) {
1494*d415bd75Srobert Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType());
1495*d415bd75Srobert Value *Dec = Builder.CreateAdd(A, AllOnes);
1496*d415bd75Srobert Value *Not = Builder.CreateXor(A, AllOnes);
1497*d415bd75Srobert return BinaryOperator::CreateAnd(Dec, Not);
1498*d415bd75Srobert }
1499*d415bd75Srobert
1500*d415bd75Srobert // Disguised reassociation/factorization:
1501*d415bd75Srobert // ~(A * C1) + A
1502*d415bd75Srobert // ((A * -C1) - 1) + A
1503*d415bd75Srobert // ((A * -C1) + A) - 1
1504*d415bd75Srobert // (A * (1 - C1)) - 1
1505*d415bd75Srobert if (match(&I,
1506*d415bd75Srobert m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))),
1507*d415bd75Srobert m_Deferred(A)))) {
1508*d415bd75Srobert Type *Ty = I.getType();
1509*d415bd75Srobert Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1510*d415bd75Srobert Value *NewMul = Builder.CreateMul(A, NewMulC);
1511*d415bd75Srobert return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
1512*d415bd75Srobert }
1513*d415bd75Srobert
1514*d415bd75Srobert // (A * -2**C) + B --> B - (A << C)
1515*d415bd75Srobert const APInt *NegPow2C;
1516*d415bd75Srobert if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
1517*d415bd75Srobert m_Value(B)))) {
1518*d415bd75Srobert Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countTrailingZeros());
1519*d415bd75Srobert Value *Shl = Builder.CreateShl(A, ShiftAmtC);
1520*d415bd75Srobert return BinaryOperator::CreateSub(B, Shl);
1521*d415bd75Srobert }
1522*d415bd75Srobert
1523*d415bd75Srobert // Canonicalize signum variant that ends in add:
1524*d415bd75Srobert // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1525*d415bd75Srobert ICmpInst::Predicate Pred;
1526*d415bd75Srobert uint64_t BitWidth = Ty->getScalarSizeInBits();
1527*d415bd75Srobert if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowUndef(BitWidth - 1))) &&
1528*d415bd75Srobert match(RHS, m_OneUse(m_ZExt(
1529*d415bd75Srobert m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) &&
1530*d415bd75Srobert Pred == CmpInst::ICMP_SGT) {
1531*d415bd75Srobert Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
1532*d415bd75Srobert Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
1533*d415bd75Srobert return BinaryOperator::CreateOr(LHS, Zext);
1534*d415bd75Srobert }
1535*d415bd75Srobert
1536*d415bd75Srobert if (Instruction *Ashr = foldAddToAshr(I))
1537*d415bd75Srobert return Ashr;
1538*d415bd75Srobert
153909467b48Spatrick // TODO(jingyue): Consider willNotOverflowSignedAdd and
154009467b48Spatrick // willNotOverflowUnsignedAdd to reduce the number of invocations of
154109467b48Spatrick // computeKnownBits.
154209467b48Spatrick bool Changed = false;
154309467b48Spatrick if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
154409467b48Spatrick Changed = true;
154509467b48Spatrick I.setHasNoSignedWrap(true);
154609467b48Spatrick }
154709467b48Spatrick if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
154809467b48Spatrick Changed = true;
154909467b48Spatrick I.setHasNoUnsignedWrap(true);
155009467b48Spatrick }
155109467b48Spatrick
155209467b48Spatrick if (Instruction *V = canonicalizeLowbitMask(I, Builder))
155309467b48Spatrick return V;
155409467b48Spatrick
155509467b48Spatrick if (Instruction *V =
155609467b48Spatrick canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
155709467b48Spatrick return V;
155809467b48Spatrick
155909467b48Spatrick if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
156009467b48Spatrick return SatAdd;
156109467b48Spatrick
156273471bf0Spatrick // usub.sat(A, B) + B => umax(A, B)
156373471bf0Spatrick if (match(&I, m_c_BinOp(
156473471bf0Spatrick m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
156573471bf0Spatrick m_Deferred(B)))) {
156673471bf0Spatrick return replaceInstUsesWith(I,
156773471bf0Spatrick Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
156873471bf0Spatrick }
156973471bf0Spatrick
157073471bf0Spatrick // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
157173471bf0Spatrick if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
157273471bf0Spatrick match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
157373471bf0Spatrick haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
157473471bf0Spatrick return replaceInstUsesWith(
157573471bf0Spatrick I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
157673471bf0Spatrick {Builder.CreateOr(A, B)}));
157773471bf0Spatrick
157809467b48Spatrick return Changed ? &I : nullptr;
157909467b48Spatrick }
158009467b48Spatrick
158109467b48Spatrick /// Eliminate an op from a linear interpolation (lerp) pattern.
factorizeLerp(BinaryOperator & I,InstCombiner::BuilderTy & Builder)158209467b48Spatrick static Instruction *factorizeLerp(BinaryOperator &I,
158309467b48Spatrick InstCombiner::BuilderTy &Builder) {
158409467b48Spatrick Value *X, *Y, *Z;
158509467b48Spatrick if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
158609467b48Spatrick m_OneUse(m_FSub(m_FPOne(),
158709467b48Spatrick m_Value(Z))))),
158809467b48Spatrick m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
158909467b48Spatrick return nullptr;
159009467b48Spatrick
159109467b48Spatrick // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
159209467b48Spatrick Value *XY = Builder.CreateFSubFMF(X, Y, &I);
159309467b48Spatrick Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
159409467b48Spatrick return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
159509467b48Spatrick }
159609467b48Spatrick
159709467b48Spatrick /// Factor a common operand out of fadd/fsub of fmul/fdiv.
factorizeFAddFSub(BinaryOperator & I,InstCombiner::BuilderTy & Builder)159809467b48Spatrick static Instruction *factorizeFAddFSub(BinaryOperator &I,
159909467b48Spatrick InstCombiner::BuilderTy &Builder) {
160009467b48Spatrick assert((I.getOpcode() == Instruction::FAdd ||
160109467b48Spatrick I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
160209467b48Spatrick assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
160309467b48Spatrick "FP factorization requires FMF");
160409467b48Spatrick
160509467b48Spatrick if (Instruction *Lerp = factorizeLerp(I, Builder))
160609467b48Spatrick return Lerp;
160709467b48Spatrick
160809467b48Spatrick Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1609*d415bd75Srobert if (!Op0->hasOneUse() || !Op1->hasOneUse())
1610*d415bd75Srobert return nullptr;
1611*d415bd75Srobert
161209467b48Spatrick Value *X, *Y, *Z;
161309467b48Spatrick bool IsFMul;
1614*d415bd75Srobert if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1615*d415bd75Srobert match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1616*d415bd75Srobert (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1617*d415bd75Srobert match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
161809467b48Spatrick IsFMul = true;
1619*d415bd75Srobert else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1620*d415bd75Srobert match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
162109467b48Spatrick IsFMul = false;
162209467b48Spatrick else
162309467b48Spatrick return nullptr;
162409467b48Spatrick
162509467b48Spatrick // (X * Z) + (Y * Z) --> (X + Y) * Z
162609467b48Spatrick // (X * Z) - (Y * Z) --> (X - Y) * Z
162709467b48Spatrick // (X / Z) + (Y / Z) --> (X + Y) / Z
162809467b48Spatrick // (X / Z) - (Y / Z) --> (X - Y) / Z
162909467b48Spatrick bool IsFAdd = I.getOpcode() == Instruction::FAdd;
163009467b48Spatrick Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
163109467b48Spatrick : Builder.CreateFSubFMF(X, Y, &I);
163209467b48Spatrick
163309467b48Spatrick // Bail out if we just created a denormal constant.
163409467b48Spatrick // TODO: This is copied from a previous implementation. Is it necessary?
163509467b48Spatrick const APFloat *C;
163609467b48Spatrick if (match(XY, m_APFloat(C)) && !C->isNormal())
163709467b48Spatrick return nullptr;
163809467b48Spatrick
163909467b48Spatrick return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
164009467b48Spatrick : BinaryOperator::CreateFDivFMF(XY, Z, &I);
164109467b48Spatrick }
164209467b48Spatrick
visitFAdd(BinaryOperator & I)164373471bf0Spatrick Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1644*d415bd75Srobert if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
164509467b48Spatrick I.getFastMathFlags(),
164609467b48Spatrick SQ.getWithInstruction(&I)))
164709467b48Spatrick return replaceInstUsesWith(I, V);
164809467b48Spatrick
164909467b48Spatrick if (SimplifyAssociativeOrCommutative(I))
165009467b48Spatrick return &I;
165109467b48Spatrick
165209467b48Spatrick if (Instruction *X = foldVectorBinop(I))
165309467b48Spatrick return X;
165409467b48Spatrick
1655*d415bd75Srobert if (Instruction *Phi = foldBinopWithPhiOperands(I))
1656*d415bd75Srobert return Phi;
1657*d415bd75Srobert
165809467b48Spatrick if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
165909467b48Spatrick return FoldedFAdd;
166009467b48Spatrick
166109467b48Spatrick // (-X) + Y --> Y - X
166209467b48Spatrick Value *X, *Y;
166309467b48Spatrick if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
166409467b48Spatrick return BinaryOperator::CreateFSubFMF(Y, X, &I);
166509467b48Spatrick
166609467b48Spatrick // Similar to above, but look through fmul/fdiv for the negated term.
166709467b48Spatrick // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
166809467b48Spatrick Value *Z;
166909467b48Spatrick if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
167009467b48Spatrick m_Value(Z)))) {
167109467b48Spatrick Value *XY = Builder.CreateFMulFMF(X, Y, &I);
167209467b48Spatrick return BinaryOperator::CreateFSubFMF(Z, XY, &I);
167309467b48Spatrick }
167409467b48Spatrick // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
167509467b48Spatrick // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
167609467b48Spatrick if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
167709467b48Spatrick m_Value(Z))) ||
167809467b48Spatrick match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
167909467b48Spatrick m_Value(Z)))) {
168009467b48Spatrick Value *XY = Builder.CreateFDivFMF(X, Y, &I);
168109467b48Spatrick return BinaryOperator::CreateFSubFMF(Z, XY, &I);
168209467b48Spatrick }
168309467b48Spatrick
168409467b48Spatrick // Check for (fadd double (sitofp x), y), see if we can merge this into an
168509467b48Spatrick // integer add followed by a promotion.
168609467b48Spatrick Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
168709467b48Spatrick if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
168809467b48Spatrick Value *LHSIntVal = LHSConv->getOperand(0);
168909467b48Spatrick Type *FPType = LHSConv->getType();
169009467b48Spatrick
169109467b48Spatrick // TODO: This check is overly conservative. In many cases known bits
169209467b48Spatrick // analysis can tell us that the result of the addition has less significant
169309467b48Spatrick // bits than the integer type can hold.
169409467b48Spatrick auto IsValidPromotion = [](Type *FTy, Type *ITy) {
169509467b48Spatrick Type *FScalarTy = FTy->getScalarType();
169609467b48Spatrick Type *IScalarTy = ITy->getScalarType();
169709467b48Spatrick
169809467b48Spatrick // Do we have enough bits in the significand to represent the result of
169909467b48Spatrick // the integer addition?
170009467b48Spatrick unsigned MaxRepresentableBits =
170109467b48Spatrick APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
170209467b48Spatrick return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
170309467b48Spatrick };
170409467b48Spatrick
170509467b48Spatrick // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
170609467b48Spatrick // ... if the constant fits in the integer value. This is useful for things
170709467b48Spatrick // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
170809467b48Spatrick // requires a constant pool load, and generally allows the add to be better
170909467b48Spatrick // instcombined.
171009467b48Spatrick if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
171109467b48Spatrick if (IsValidPromotion(FPType, LHSIntVal->getType())) {
171209467b48Spatrick Constant *CI =
171309467b48Spatrick ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
171409467b48Spatrick if (LHSConv->hasOneUse() &&
171509467b48Spatrick ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
171609467b48Spatrick willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
171709467b48Spatrick // Insert the new integer add.
171809467b48Spatrick Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
171909467b48Spatrick return new SIToFPInst(NewAdd, I.getType());
172009467b48Spatrick }
172109467b48Spatrick }
172209467b48Spatrick
172309467b48Spatrick // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
172409467b48Spatrick if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
172509467b48Spatrick Value *RHSIntVal = RHSConv->getOperand(0);
172609467b48Spatrick // It's enough to check LHS types only because we require int types to
172709467b48Spatrick // be the same for this transform.
172809467b48Spatrick if (IsValidPromotion(FPType, LHSIntVal->getType())) {
172909467b48Spatrick // Only do this if x/y have the same type, if at least one of them has a
173009467b48Spatrick // single use (so we don't increase the number of int->fp conversions),
173109467b48Spatrick // and if the integer add will not overflow.
173209467b48Spatrick if (LHSIntVal->getType() == RHSIntVal->getType() &&
173309467b48Spatrick (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
173409467b48Spatrick willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
173509467b48Spatrick // Insert the new integer add.
173609467b48Spatrick Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
173709467b48Spatrick return new SIToFPInst(NewAdd, I.getType());
173809467b48Spatrick }
173909467b48Spatrick }
174009467b48Spatrick }
174109467b48Spatrick }
174209467b48Spatrick
174309467b48Spatrick // Handle specials cases for FAdd with selects feeding the operation
174409467b48Spatrick if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
174509467b48Spatrick return replaceInstUsesWith(I, V);
174609467b48Spatrick
174709467b48Spatrick if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
174809467b48Spatrick if (Instruction *F = factorizeFAddFSub(I, Builder))
174909467b48Spatrick return F;
175073471bf0Spatrick
175173471bf0Spatrick // Try to fold fadd into start value of reduction intrinsic.
175273471bf0Spatrick if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
175373471bf0Spatrick m_AnyZeroFP(), m_Value(X))),
175473471bf0Spatrick m_Value(Y)))) {
175573471bf0Spatrick // fadd (rdx 0.0, X), Y --> rdx Y, X
175673471bf0Spatrick return replaceInstUsesWith(
175773471bf0Spatrick I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
175873471bf0Spatrick {X->getType()}, {Y, X}, &I));
175973471bf0Spatrick }
176073471bf0Spatrick const APFloat *StartC, *C;
176173471bf0Spatrick if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
176273471bf0Spatrick m_APFloat(StartC), m_Value(X)))) &&
176373471bf0Spatrick match(RHS, m_APFloat(C))) {
176473471bf0Spatrick // fadd (rdx StartC, X), C --> rdx (C + StartC), X
176573471bf0Spatrick Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
176673471bf0Spatrick return replaceInstUsesWith(
176773471bf0Spatrick I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
176873471bf0Spatrick {X->getType()}, {NewStartC, X}, &I));
176973471bf0Spatrick }
177073471bf0Spatrick
1771*d415bd75Srobert // (X * MulC) + X --> X * (MulC + 1.0)
1772*d415bd75Srobert Constant *MulC;
1773*d415bd75Srobert if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
1774*d415bd75Srobert m_Deferred(X)))) {
1775*d415bd75Srobert if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
1776*d415bd75Srobert Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
1777*d415bd75Srobert return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
1778*d415bd75Srobert }
1779*d415bd75Srobert
1780*d415bd75Srobert // (-X - Y) + (X + Z) --> Z - Y
1781*d415bd75Srobert if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)),
1782*d415bd75Srobert m_c_FAdd(m_Deferred(X), m_Value(Z)))))
1783*d415bd75Srobert return BinaryOperator::CreateFSubFMF(Z, Y, &I);
1784*d415bd75Srobert
178509467b48Spatrick if (Value *V = FAddCombine(Builder).simplify(&I))
178609467b48Spatrick return replaceInstUsesWith(I, V);
178709467b48Spatrick }
178809467b48Spatrick
178909467b48Spatrick return nullptr;
179009467b48Spatrick }
179109467b48Spatrick
179209467b48Spatrick /// Optimize pointer differences into the same array into a size. Consider:
179309467b48Spatrick /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
179409467b48Spatrick /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty,bool IsNUW)179573471bf0Spatrick Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
179609467b48Spatrick Type *Ty, bool IsNUW) {
179709467b48Spatrick // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
179809467b48Spatrick // this.
179909467b48Spatrick bool Swapped = false;
180009467b48Spatrick GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
180173471bf0Spatrick if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
180273471bf0Spatrick std::swap(LHS, RHS);
180373471bf0Spatrick Swapped = true;
180473471bf0Spatrick }
180509467b48Spatrick
180673471bf0Spatrick // Require at least one GEP with a common base pointer on both sides.
180773471bf0Spatrick if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
180809467b48Spatrick // (gep X, ...) - X
1809*d415bd75Srobert if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1810*d415bd75Srobert RHS->stripPointerCasts()) {
181109467b48Spatrick GEP1 = LHSGEP;
181273471bf0Spatrick } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
181309467b48Spatrick // (gep X, ...) - (gep X, ...)
181409467b48Spatrick if (LHSGEP->getOperand(0)->stripPointerCasts() ==
181509467b48Spatrick RHSGEP->getOperand(0)->stripPointerCasts()) {
181609467b48Spatrick GEP1 = LHSGEP;
181773471bf0Spatrick GEP2 = RHSGEP;
181809467b48Spatrick }
181909467b48Spatrick }
182009467b48Spatrick }
182109467b48Spatrick
182209467b48Spatrick if (!GEP1)
182309467b48Spatrick return nullptr;
182409467b48Spatrick
182509467b48Spatrick if (GEP2) {
182609467b48Spatrick // (gep X, ...) - (gep X, ...)
182709467b48Spatrick //
182809467b48Spatrick // Avoid duplicating the arithmetic if there are more than one non-constant
182909467b48Spatrick // indices between the two GEPs and either GEP has a non-constant index and
183009467b48Spatrick // multiple users. If zero non-constant index, the result is a constant and
183109467b48Spatrick // there is no duplication. If one non-constant index, the result is an add
183209467b48Spatrick // or sub with a constant, which is no larger than the original code, and
183309467b48Spatrick // there's no duplicated arithmetic, even if either GEP has multiple
183409467b48Spatrick // users. If more than one non-constant indices combined, as long as the GEP
183509467b48Spatrick // with at least one non-constant index doesn't have multiple users, there
183609467b48Spatrick // is no duplication.
183709467b48Spatrick unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
183809467b48Spatrick unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
183909467b48Spatrick if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
184009467b48Spatrick ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
184109467b48Spatrick (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
184209467b48Spatrick return nullptr;
184309467b48Spatrick }
184409467b48Spatrick }
184509467b48Spatrick
184609467b48Spatrick // Emit the offset of the GEP and an intptr_t.
184709467b48Spatrick Value *Result = EmitGEPOffset(GEP1);
184809467b48Spatrick
184909467b48Spatrick // If this is a single inbounds GEP and the original sub was nuw,
185073471bf0Spatrick // then the final multiplication is also nuw.
185173471bf0Spatrick if (auto *I = dyn_cast<Instruction>(Result))
185209467b48Spatrick if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
185309467b48Spatrick I->getOpcode() == Instruction::Mul)
185409467b48Spatrick I->setHasNoUnsignedWrap();
185509467b48Spatrick
185673471bf0Spatrick // If we have a 2nd GEP of the same base pointer, subtract the offsets.
185773471bf0Spatrick // If both GEPs are inbounds, then the subtract does not have signed overflow.
185809467b48Spatrick if (GEP2) {
185909467b48Spatrick Value *Offset = EmitGEPOffset(GEP2);
186073471bf0Spatrick Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
186173471bf0Spatrick GEP1->isInBounds() && GEP2->isInBounds());
186209467b48Spatrick }
186309467b48Spatrick
186409467b48Spatrick // If we have p - gep(p, ...) then we have to negate the result.
186509467b48Spatrick if (Swapped)
186609467b48Spatrick Result = Builder.CreateNeg(Result, "diff.neg");
186709467b48Spatrick
186809467b48Spatrick return Builder.CreateIntCast(Result, Ty, true);
186909467b48Spatrick }
187009467b48Spatrick
foldSubOfMinMax(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1871*d415bd75Srobert static Instruction *foldSubOfMinMax(BinaryOperator &I,
1872*d415bd75Srobert InstCombiner::BuilderTy &Builder) {
1873*d415bd75Srobert Value *Op0 = I.getOperand(0);
1874*d415bd75Srobert Value *Op1 = I.getOperand(1);
1875*d415bd75Srobert Type *Ty = I.getType();
1876*d415bd75Srobert auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
1877*d415bd75Srobert if (!MinMax)
1878*d415bd75Srobert return nullptr;
1879*d415bd75Srobert
1880*d415bd75Srobert // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
1881*d415bd75Srobert // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
1882*d415bd75Srobert Value *X = MinMax->getLHS();
1883*d415bd75Srobert Value *Y = MinMax->getRHS();
1884*d415bd75Srobert if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
1885*d415bd75Srobert (Op0->hasOneUse() || Op1->hasOneUse())) {
1886*d415bd75Srobert Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1887*d415bd75Srobert Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1888*d415bd75Srobert return CallInst::Create(F, {X, Y});
1889*d415bd75Srobert }
1890*d415bd75Srobert
1891*d415bd75Srobert // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
1892*d415bd75Srobert // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
1893*d415bd75Srobert Value *Z;
1894*d415bd75Srobert if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
1895*d415bd75Srobert if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
1896*d415bd75Srobert Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
1897*d415bd75Srobert return BinaryOperator::CreateAdd(X, USub);
1898*d415bd75Srobert }
1899*d415bd75Srobert if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
1900*d415bd75Srobert Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
1901*d415bd75Srobert return BinaryOperator::CreateAdd(X, USub);
1902*d415bd75Srobert }
1903*d415bd75Srobert }
1904*d415bd75Srobert
1905*d415bd75Srobert // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
1906*d415bd75Srobert // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
1907*d415bd75Srobert if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
1908*d415bd75Srobert match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
1909*d415bd75Srobert Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1910*d415bd75Srobert Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1911*d415bd75Srobert return CallInst::Create(F, {Op0, Z});
1912*d415bd75Srobert }
1913*d415bd75Srobert
1914*d415bd75Srobert return nullptr;
1915*d415bd75Srobert }
1916*d415bd75Srobert
visitSub(BinaryOperator & I)191773471bf0Spatrick Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
1918*d415bd75Srobert if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
191909467b48Spatrick I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
192009467b48Spatrick SQ.getWithInstruction(&I)))
192109467b48Spatrick return replaceInstUsesWith(I, V);
192209467b48Spatrick
192309467b48Spatrick if (Instruction *X = foldVectorBinop(I))
192409467b48Spatrick return X;
192509467b48Spatrick
1926*d415bd75Srobert if (Instruction *Phi = foldBinopWithPhiOperands(I))
1927*d415bd75Srobert return Phi;
1928*d415bd75Srobert
1929097a140dSpatrick Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
193009467b48Spatrick
193109467b48Spatrick // If this is a 'B = x-(-A)', change to B = x+A.
1932097a140dSpatrick // We deal with this without involving Negator to preserve NSW flag.
193309467b48Spatrick if (Value *V = dyn_castNegVal(Op1)) {
193409467b48Spatrick BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
193509467b48Spatrick
193609467b48Spatrick if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
193709467b48Spatrick assert(BO->getOpcode() == Instruction::Sub &&
193809467b48Spatrick "Expected a subtraction operator!");
193909467b48Spatrick if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
194009467b48Spatrick Res->setHasNoSignedWrap(true);
194109467b48Spatrick } else {
194209467b48Spatrick if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
194309467b48Spatrick Res->setHasNoSignedWrap(true);
194409467b48Spatrick }
194509467b48Spatrick
194609467b48Spatrick return Res;
194709467b48Spatrick }
194809467b48Spatrick
194973471bf0Spatrick // Try this before Negator to preserve NSW flag.
195073471bf0Spatrick if (Instruction *R = factorizeMathWithShlOps(I, Builder))
195173471bf0Spatrick return R;
195273471bf0Spatrick
195373471bf0Spatrick Constant *C;
195473471bf0Spatrick if (match(Op0, m_ImmConstant(C))) {
195573471bf0Spatrick Value *X;
195673471bf0Spatrick Constant *C2;
195773471bf0Spatrick
195873471bf0Spatrick // C-(X+C2) --> (C-C2)-X
195973471bf0Spatrick if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
196073471bf0Spatrick return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
196173471bf0Spatrick }
196273471bf0Spatrick
1963097a140dSpatrick auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1964097a140dSpatrick if (Instruction *Ext = narrowMathIfNoOverflow(I))
1965097a140dSpatrick return Ext;
1966097a140dSpatrick
1967097a140dSpatrick bool Changed = false;
1968097a140dSpatrick if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1969097a140dSpatrick Changed = true;
1970097a140dSpatrick I.setHasNoSignedWrap(true);
1971097a140dSpatrick }
1972097a140dSpatrick if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1973097a140dSpatrick Changed = true;
1974097a140dSpatrick I.setHasNoUnsignedWrap(true);
1975097a140dSpatrick }
1976097a140dSpatrick
1977097a140dSpatrick return Changed ? &I : nullptr;
1978097a140dSpatrick };
1979097a140dSpatrick
1980097a140dSpatrick // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1981097a140dSpatrick // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1982097a140dSpatrick // a pure negation used by a select that looks like abs/nabs.
1983097a140dSpatrick bool IsNegation = match(Op0, m_ZeroInt());
1984097a140dSpatrick if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1985097a140dSpatrick const Instruction *UI = dyn_cast<Instruction>(U);
1986097a140dSpatrick if (!UI)
1987097a140dSpatrick return false;
1988097a140dSpatrick return match(UI,
1989097a140dSpatrick m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1990097a140dSpatrick match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1991097a140dSpatrick })) {
1992097a140dSpatrick if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1993097a140dSpatrick return BinaryOperator::CreateAdd(NegOp1, Op0);
1994097a140dSpatrick }
1995097a140dSpatrick if (IsNegation)
1996097a140dSpatrick return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1997097a140dSpatrick
1998097a140dSpatrick // (A*B)-(A*C) -> A*(B-C) etc
1999*d415bd75Srobert if (Value *V = foldUsingDistributiveLaws(I))
2000097a140dSpatrick return replaceInstUsesWith(I, V);
2001097a140dSpatrick
200209467b48Spatrick if (I.getType()->isIntOrIntVectorTy(1))
200309467b48Spatrick return BinaryOperator::CreateXor(Op0, Op1);
200409467b48Spatrick
200509467b48Spatrick // Replace (-1 - A) with (~A).
200609467b48Spatrick if (match(Op0, m_AllOnes()))
200709467b48Spatrick return BinaryOperator::CreateNot(Op1);
200809467b48Spatrick
200909467b48Spatrick // (X + -1) - Y --> ~Y + X
2010*d415bd75Srobert Value *X, *Y;
201109467b48Spatrick if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
201209467b48Spatrick return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
201309467b48Spatrick
2014097a140dSpatrick // Reassociate sub/add sequences to create more add instructions and
2015097a140dSpatrick // reduce dependency chains:
2016097a140dSpatrick // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2017097a140dSpatrick Value *Z;
2018097a140dSpatrick if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
2019097a140dSpatrick m_Value(Z))))) {
2020097a140dSpatrick Value *XZ = Builder.CreateAdd(X, Z);
2021097a140dSpatrick Value *YW = Builder.CreateAdd(Y, Op1);
2022097a140dSpatrick return BinaryOperator::CreateSub(XZ, YW);
2023097a140dSpatrick }
202409467b48Spatrick
202573471bf0Spatrick // ((X - Y) - Op1) --> X - (Y + Op1)
202673471bf0Spatrick if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
202773471bf0Spatrick Value *Add = Builder.CreateAdd(Y, Op1);
202873471bf0Spatrick return BinaryOperator::CreateSub(X, Add);
202973471bf0Spatrick }
203073471bf0Spatrick
2031*d415bd75Srobert // (~X) - (~Y) --> Y - X
2032*d415bd75Srobert // This is placed after the other reassociations and explicitly excludes a
2033*d415bd75Srobert // sub-of-sub pattern to avoid infinite looping.
2034*d415bd75Srobert if (isFreeToInvert(Op0, Op0->hasOneUse()) &&
2035*d415bd75Srobert isFreeToInvert(Op1, Op1->hasOneUse()) &&
2036*d415bd75Srobert !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) {
2037*d415bd75Srobert Value *NotOp0 = Builder.CreateNot(Op0);
2038*d415bd75Srobert Value *NotOp1 = Builder.CreateNot(Op1);
2039*d415bd75Srobert return BinaryOperator::CreateSub(NotOp1, NotOp0);
2040*d415bd75Srobert }
2041*d415bd75Srobert
2042097a140dSpatrick auto m_AddRdx = [](Value *&Vec) {
204373471bf0Spatrick return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
2044097a140dSpatrick };
2045097a140dSpatrick Value *V0, *V1;
2046097a140dSpatrick if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
2047097a140dSpatrick V0->getType() == V1->getType()) {
2048097a140dSpatrick // Difference of sums is sum of differences:
2049097a140dSpatrick // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
2050097a140dSpatrick Value *Sub = Builder.CreateSub(V0, V1);
205173471bf0Spatrick Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
205273471bf0Spatrick {Sub->getType()}, {Sub});
2053097a140dSpatrick return replaceInstUsesWith(I, Rdx);
205409467b48Spatrick }
205509467b48Spatrick
205609467b48Spatrick if (Constant *C = dyn_cast<Constant>(Op0)) {
205709467b48Spatrick Value *X;
2058097a140dSpatrick if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
205909467b48Spatrick // C - (zext bool) --> bool ? C - 1 : C
206073471bf0Spatrick return SelectInst::Create(X, InstCombiner::SubOne(C), C);
2061097a140dSpatrick if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
206209467b48Spatrick // C - (sext bool) --> bool ? C + 1 : C
206373471bf0Spatrick return SelectInst::Create(X, InstCombiner::AddOne(C), C);
206409467b48Spatrick
206509467b48Spatrick // C - ~X == X + (1+C)
206609467b48Spatrick if (match(Op1, m_Not(m_Value(X))))
206773471bf0Spatrick return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
206809467b48Spatrick
206909467b48Spatrick // Try to fold constant sub into select arguments.
207009467b48Spatrick if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
207109467b48Spatrick if (Instruction *R = FoldOpIntoSelect(I, SI))
207209467b48Spatrick return R;
207309467b48Spatrick
207409467b48Spatrick // Try to fold constant sub into PHI values.
207509467b48Spatrick if (PHINode *PN = dyn_cast<PHINode>(Op1))
207609467b48Spatrick if (Instruction *R = foldOpIntoPhi(I, PN))
207709467b48Spatrick return R;
207809467b48Spatrick
207909467b48Spatrick Constant *C2;
208009467b48Spatrick
208109467b48Spatrick // C-(C2-X) --> X+(C-C2)
208273471bf0Spatrick if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
208309467b48Spatrick return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
208409467b48Spatrick }
208509467b48Spatrick
208609467b48Spatrick const APInt *Op0C;
2087*d415bd75Srobert if (match(Op0, m_APInt(Op0C))) {
2088*d415bd75Srobert if (Op0C->isMask()) {
208909467b48Spatrick // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
209009467b48Spatrick // zero.
209109467b48Spatrick KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
2092*d415bd75Srobert if ((*Op0C | RHSKnown.Zero).isAllOnes())
209309467b48Spatrick return BinaryOperator::CreateXor(Op1, Op0);
209409467b48Spatrick }
209509467b48Spatrick
2096*d415bd75Srobert // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2097*d415bd75Srobert // (C3 - ((C2 & C3) - 1)) is pow2
2098*d415bd75Srobert // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2099*d415bd75Srobert // C2 is negative pow2 || sub nuw
2100*d415bd75Srobert const APInt *C2, *C3;
2101*d415bd75Srobert BinaryOperator *InnerSub;
2102*d415bd75Srobert if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
2103*d415bd75Srobert match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
2104*d415bd75Srobert (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2105*d415bd75Srobert APInt C2AndC3 = *C2 & *C3;
2106*d415bd75Srobert APInt C2AndC3Minus1 = C2AndC3 - 1;
2107*d415bd75Srobert APInt C2AddC3 = *C2 + *C3;
2108*d415bd75Srobert if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2109*d415bd75Srobert C2AndC3Minus1.isSubsetOf(C2AddC3)) {
2110*d415bd75Srobert Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
2111*d415bd75Srobert return BinaryOperator::CreateAdd(
2112*d415bd75Srobert And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
2113*d415bd75Srobert }
2114*d415bd75Srobert }
2115*d415bd75Srobert }
2116*d415bd75Srobert
211709467b48Spatrick {
211809467b48Spatrick Value *Y;
211909467b48Spatrick // X-(X+Y) == -Y X-(Y+X) == -Y
212009467b48Spatrick if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
212109467b48Spatrick return BinaryOperator::CreateNeg(Y);
212209467b48Spatrick
212309467b48Spatrick // (X-Y)-X == -Y
212409467b48Spatrick if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
212509467b48Spatrick return BinaryOperator::CreateNeg(Y);
212609467b48Spatrick }
212709467b48Spatrick
212809467b48Spatrick // (sub (or A, B) (and A, B)) --> (xor A, B)
212909467b48Spatrick {
213009467b48Spatrick Value *A, *B;
213109467b48Spatrick if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
213209467b48Spatrick match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
213309467b48Spatrick return BinaryOperator::CreateXor(A, B);
213409467b48Spatrick }
213509467b48Spatrick
213673471bf0Spatrick // (sub (add A, B) (or A, B)) --> (and A, B)
213773471bf0Spatrick {
213873471bf0Spatrick Value *A, *B;
213973471bf0Spatrick if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
214073471bf0Spatrick match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
214173471bf0Spatrick return BinaryOperator::CreateAnd(A, B);
214273471bf0Spatrick }
214373471bf0Spatrick
214473471bf0Spatrick // (sub (add A, B) (and A, B)) --> (or A, B)
214573471bf0Spatrick {
214673471bf0Spatrick Value *A, *B;
214773471bf0Spatrick if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
214873471bf0Spatrick match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
214973471bf0Spatrick return BinaryOperator::CreateOr(A, B);
215073471bf0Spatrick }
215173471bf0Spatrick
215209467b48Spatrick // (sub (and A, B) (or A, B)) --> neg (xor A, B)
215309467b48Spatrick {
215409467b48Spatrick Value *A, *B;
215509467b48Spatrick if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
215609467b48Spatrick match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
215709467b48Spatrick (Op0->hasOneUse() || Op1->hasOneUse()))
215809467b48Spatrick return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
215909467b48Spatrick }
216009467b48Spatrick
216109467b48Spatrick // (sub (or A, B), (xor A, B)) --> (and A, B)
216209467b48Spatrick {
216309467b48Spatrick Value *A, *B;
216409467b48Spatrick if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
216509467b48Spatrick match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
216609467b48Spatrick return BinaryOperator::CreateAnd(A, B);
216709467b48Spatrick }
216809467b48Spatrick
216909467b48Spatrick // (sub (xor A, B) (or A, B)) --> neg (and A, B)
217009467b48Spatrick {
217109467b48Spatrick Value *A, *B;
217209467b48Spatrick if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
217309467b48Spatrick match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
217409467b48Spatrick (Op0->hasOneUse() || Op1->hasOneUse()))
217509467b48Spatrick return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
217609467b48Spatrick }
217709467b48Spatrick
217809467b48Spatrick {
217909467b48Spatrick Value *Y;
218009467b48Spatrick // ((X | Y) - X) --> (~X & Y)
218109467b48Spatrick if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
218209467b48Spatrick return BinaryOperator::CreateAnd(
218309467b48Spatrick Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
218409467b48Spatrick }
218509467b48Spatrick
218609467b48Spatrick {
218709467b48Spatrick // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
218809467b48Spatrick Value *X;
218909467b48Spatrick if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
219009467b48Spatrick m_OneUse(m_Neg(m_Value(X))))))) {
219109467b48Spatrick return BinaryOperator::CreateNeg(Builder.CreateAnd(
219209467b48Spatrick Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
219309467b48Spatrick }
219409467b48Spatrick }
219509467b48Spatrick
219609467b48Spatrick {
219709467b48Spatrick // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
219809467b48Spatrick Constant *C;
219909467b48Spatrick if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
220009467b48Spatrick return BinaryOperator::CreateNeg(
220109467b48Spatrick Builder.CreateAnd(Op1, Builder.CreateNot(C)));
220209467b48Spatrick }
220309467b48Spatrick }
220409467b48Spatrick
2205*d415bd75Srobert if (Instruction *R = foldSubOfMinMax(I, Builder))
2206*d415bd75Srobert return R;
2207*d415bd75Srobert
220809467b48Spatrick {
220909467b48Spatrick // If we have a subtraction between some value and a select between
221009467b48Spatrick // said value and something else, sink subtraction into select hands, i.e.:
221109467b48Spatrick // sub (select %Cond, %TrueVal, %FalseVal), %Op1
221209467b48Spatrick // ->
221309467b48Spatrick // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
221409467b48Spatrick // or
221509467b48Spatrick // sub %Op0, (select %Cond, %TrueVal, %FalseVal)
221609467b48Spatrick // ->
221709467b48Spatrick // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
221809467b48Spatrick // This will result in select between new subtraction and 0.
221909467b48Spatrick auto SinkSubIntoSelect =
222009467b48Spatrick [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
222109467b48Spatrick auto SubBuilder) -> Instruction * {
222209467b48Spatrick Value *Cond, *TrueVal, *FalseVal;
222309467b48Spatrick if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
222409467b48Spatrick m_Value(FalseVal)))))
222509467b48Spatrick return nullptr;
222609467b48Spatrick if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
222709467b48Spatrick return nullptr;
222809467b48Spatrick // While it is really tempting to just create two subtractions and let
222909467b48Spatrick // InstCombine fold one of those to 0, it isn't possible to do so
223009467b48Spatrick // because of worklist visitation order. So ugly it is.
223109467b48Spatrick bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
223209467b48Spatrick Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
223309467b48Spatrick Constant *Zero = Constant::getNullValue(Ty);
223409467b48Spatrick SelectInst *NewSel =
223509467b48Spatrick SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
223609467b48Spatrick OtherHandOfSubIsTrueVal ? NewSub : Zero);
223709467b48Spatrick // Preserve prof metadata if any.
223809467b48Spatrick NewSel->copyMetadata(cast<Instruction>(*Select));
223909467b48Spatrick return NewSel;
224009467b48Spatrick };
224109467b48Spatrick if (Instruction *NewSel = SinkSubIntoSelect(
224209467b48Spatrick /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
224309467b48Spatrick [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
224409467b48Spatrick return Builder->CreateSub(OtherHandOfSelect,
224509467b48Spatrick /*OtherHandOfSub=*/Op1);
224609467b48Spatrick }))
224709467b48Spatrick return NewSel;
224809467b48Spatrick if (Instruction *NewSel = SinkSubIntoSelect(
224909467b48Spatrick /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
225009467b48Spatrick [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
225109467b48Spatrick return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
225209467b48Spatrick OtherHandOfSelect);
225309467b48Spatrick }))
225409467b48Spatrick return NewSel;
225509467b48Spatrick }
225609467b48Spatrick
225709467b48Spatrick // (X - (X & Y)) --> (X & ~Y)
2258097a140dSpatrick if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2259097a140dSpatrick (Op1->hasOneUse() || isa<Constant>(Y)))
2260097a140dSpatrick return BinaryOperator::CreateAnd(
2261097a140dSpatrick Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
226209467b48Spatrick
2263*d415bd75Srobert // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2264*d415bd75Srobert // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2265*d415bd75Srobert // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2266*d415bd75Srobert // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2267*d415bd75Srobert // As long as Y is freely invertible, this will be neutral or a win.
2268*d415bd75Srobert // Note: We don't generate the inverse max/min, just create the 'not' of
226909467b48Spatrick // it and let other folds do the rest.
2270*d415bd75Srobert if (match(Op0, m_Not(m_Value(X))) &&
2271*d415bd75Srobert match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2272*d415bd75Srobert !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2273*d415bd75Srobert Value *Not = Builder.CreateNot(Op1);
2274*d415bd75Srobert return BinaryOperator::CreateSub(Not, X);
227509467b48Spatrick }
2276*d415bd75Srobert if (match(Op1, m_Not(m_Value(X))) &&
2277*d415bd75Srobert match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2278*d415bd75Srobert !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2279*d415bd75Srobert Value *Not = Builder.CreateNot(Op0);
2280*d415bd75Srobert return BinaryOperator::CreateSub(X, Not);
228109467b48Spatrick }
228209467b48Spatrick
228309467b48Spatrick // Optimize pointer differences into the same array into a size. Consider:
228409467b48Spatrick // &A[10] - &A[0]: we should compile this to "10".
228509467b48Spatrick Value *LHSOp, *RHSOp;
228609467b48Spatrick if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
228709467b48Spatrick match(Op1, m_PtrToInt(m_Value(RHSOp))))
228809467b48Spatrick if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
228909467b48Spatrick I.hasNoUnsignedWrap()))
229009467b48Spatrick return replaceInstUsesWith(I, Res);
229109467b48Spatrick
229209467b48Spatrick // trunc(p)-trunc(q) -> trunc(p-q)
229309467b48Spatrick if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
229409467b48Spatrick match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
229509467b48Spatrick if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
229609467b48Spatrick /* IsNUW */ false))
229709467b48Spatrick return replaceInstUsesWith(I, Res);
229809467b48Spatrick
229909467b48Spatrick // Canonicalize a shifty way to code absolute value to the common pattern.
230009467b48Spatrick // There are 2 potential commuted variants.
230109467b48Spatrick // We're relying on the fact that we only do this transform when the shift has
230209467b48Spatrick // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
230309467b48Spatrick // instructions).
230409467b48Spatrick Value *A;
230509467b48Spatrick const APInt *ShAmt;
230609467b48Spatrick Type *Ty = I.getType();
2307*d415bd75Srobert unsigned BitWidth = Ty->getScalarSizeInBits();
230809467b48Spatrick if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2309*d415bd75Srobert Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
231009467b48Spatrick match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
231109467b48Spatrick // B = ashr i32 A, 31 ; smear the sign bit
231209467b48Spatrick // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
231309467b48Spatrick // --> (A < 0) ? -A : A
2314*d415bd75Srobert Value *IsNeg = Builder.CreateIsNeg(A);
231509467b48Spatrick // Copy the nuw/nsw flags from the sub to the negate.
2316*d415bd75Srobert Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
231709467b48Spatrick I.hasNoSignedWrap());
2318*d415bd75Srobert return SelectInst::Create(IsNeg, NegA, A);
231909467b48Spatrick }
232009467b48Spatrick
232173471bf0Spatrick // If we are subtracting a low-bit masked subset of some value from an add
232273471bf0Spatrick // of that same value with no low bits changed, that is clearing some low bits
232373471bf0Spatrick // of the sum:
232473471bf0Spatrick // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
232573471bf0Spatrick const APInt *AddC, *AndC;
232673471bf0Spatrick if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
232773471bf0Spatrick match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
232873471bf0Spatrick unsigned Cttz = AddC->countTrailingZeros();
232973471bf0Spatrick APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2330*d415bd75Srobert if ((HighMask & *AndC).isZero())
233173471bf0Spatrick return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
233273471bf0Spatrick }
233373471bf0Spatrick
233409467b48Spatrick if (Instruction *V =
233509467b48Spatrick canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
233609467b48Spatrick return V;
233709467b48Spatrick
233873471bf0Spatrick // X - usub.sat(X, Y) => umin(X, Y)
233973471bf0Spatrick if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
234073471bf0Spatrick m_Value(Y)))))
234173471bf0Spatrick return replaceInstUsesWith(
234273471bf0Spatrick I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
234373471bf0Spatrick
2344*d415bd75Srobert // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2345*d415bd75Srobert // TODO: The one-use restriction is not strictly necessary, but it may
2346*d415bd75Srobert // require improving other pattern matching and/or codegen.
2347*d415bd75Srobert if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2348*d415bd75Srobert return replaceInstUsesWith(
2349*d415bd75Srobert I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2350*d415bd75Srobert
2351*d415bd75Srobert // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2352*d415bd75Srobert if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2353*d415bd75Srobert return replaceInstUsesWith(
2354*d415bd75Srobert I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2355*d415bd75Srobert
2356*d415bd75Srobert // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2357*d415bd75Srobert if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2358*d415bd75Srobert Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2359*d415bd75Srobert return BinaryOperator::CreateNeg(USub);
2360*d415bd75Srobert }
2361*d415bd75Srobert
2362*d415bd75Srobert // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2363*d415bd75Srobert if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2364*d415bd75Srobert Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2365*d415bd75Srobert return BinaryOperator::CreateNeg(USub);
2366*d415bd75Srobert }
2367*d415bd75Srobert
236873471bf0Spatrick // C - ctpop(X) => ctpop(~X) if C is bitwidth
2369*d415bd75Srobert if (match(Op0, m_SpecificInt(BitWidth)) &&
237073471bf0Spatrick match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
237173471bf0Spatrick return replaceInstUsesWith(
237273471bf0Spatrick I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
237373471bf0Spatrick {Builder.CreateNot(X)}));
237473471bf0Spatrick
2375*d415bd75Srobert // Reduce multiplies for difference-of-squares by factoring:
2376*d415bd75Srobert // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2377*d415bd75Srobert if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
2378*d415bd75Srobert match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
2379*d415bd75Srobert auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2380*d415bd75Srobert auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2381*d415bd75Srobert bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2382*d415bd75Srobert OBO1->hasNoSignedWrap() && BitWidth > 2;
2383*d415bd75Srobert bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2384*d415bd75Srobert OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2385*d415bd75Srobert Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
2386*d415bd75Srobert Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
2387*d415bd75Srobert Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
2388*d415bd75Srobert return replaceInstUsesWith(I, Mul);
2389*d415bd75Srobert }
2390*d415bd75Srobert
2391097a140dSpatrick return TryToNarrowDeduceFlags();
239209467b48Spatrick }
239309467b48Spatrick
239409467b48Spatrick /// This eliminates floating-point negation in either 'fneg(X)' or
239509467b48Spatrick /// 'fsub(-0.0, X)' form by combining into a constant operand.
foldFNegIntoConstant(Instruction & I,const DataLayout & DL)2396*d415bd75Srobert static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) {
239773471bf0Spatrick // This is limited with one-use because fneg is assumed better for
239873471bf0Spatrick // reassociation and cheaper in codegen than fmul/fdiv.
239973471bf0Spatrick // TODO: Should the m_OneUse restriction be removed?
240073471bf0Spatrick Instruction *FNegOp;
240173471bf0Spatrick if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
240273471bf0Spatrick return nullptr;
240373471bf0Spatrick
240409467b48Spatrick Value *X;
240509467b48Spatrick Constant *C;
240609467b48Spatrick
240773471bf0Spatrick // Fold negation into constant operand.
240809467b48Spatrick // -(X * C) --> X * (-C)
240973471bf0Spatrick if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2410*d415bd75Srobert if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2411*d415bd75Srobert return BinaryOperator::CreateFMulFMF(X, NegC, &I);
241209467b48Spatrick // -(X / C) --> X / (-C)
241373471bf0Spatrick if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2414*d415bd75Srobert if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2415*d415bd75Srobert return BinaryOperator::CreateFDivFMF(X, NegC, &I);
241609467b48Spatrick // -(C / X) --> (-C) / X
2417*d415bd75Srobert if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
2418*d415bd75Srobert if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2419*d415bd75Srobert Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I);
242009467b48Spatrick
2421*d415bd75Srobert // Intersect 'nsz' and 'ninf' because those special value exceptions may
2422*d415bd75Srobert // not apply to the fdiv. Everything else propagates from the fneg.
242373471bf0Spatrick // TODO: We could propagate nsz/ninf from fdiv alone?
242473471bf0Spatrick FastMathFlags FMF = I.getFastMathFlags();
242573471bf0Spatrick FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2426*d415bd75Srobert FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2427*d415bd75Srobert FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
242873471bf0Spatrick return FDiv;
242973471bf0Spatrick }
2430097a140dSpatrick // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2431097a140dSpatrick // -(X + C) --> -X + -C --> -C - X
243273471bf0Spatrick if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2433*d415bd75Srobert if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2434*d415bd75Srobert return BinaryOperator::CreateFSubFMF(NegC, X, &I);
2435097a140dSpatrick
243609467b48Spatrick return nullptr;
243709467b48Spatrick }
243809467b48Spatrick
hoistFNegAboveFMulFDiv(Instruction & I,InstCombiner::BuilderTy & Builder)243909467b48Spatrick static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
244009467b48Spatrick InstCombiner::BuilderTy &Builder) {
244109467b48Spatrick Value *FNeg;
244209467b48Spatrick if (!match(&I, m_FNeg(m_Value(FNeg))))
244309467b48Spatrick return nullptr;
244409467b48Spatrick
244509467b48Spatrick Value *X, *Y;
244609467b48Spatrick if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
244709467b48Spatrick return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
244809467b48Spatrick
244909467b48Spatrick if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
245009467b48Spatrick return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
245109467b48Spatrick
245209467b48Spatrick return nullptr;
245309467b48Spatrick }
245409467b48Spatrick
visitFNeg(UnaryOperator & I)245573471bf0Spatrick Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
245609467b48Spatrick Value *Op = I.getOperand(0);
245709467b48Spatrick
2458*d415bd75Srobert if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
245973471bf0Spatrick getSimplifyQuery().getWithInstruction(&I)))
246009467b48Spatrick return replaceInstUsesWith(I, V);
246109467b48Spatrick
2462*d415bd75Srobert if (Instruction *X = foldFNegIntoConstant(I, DL))
246309467b48Spatrick return X;
246409467b48Spatrick
246509467b48Spatrick Value *X, *Y;
246609467b48Spatrick
246709467b48Spatrick // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
246809467b48Spatrick if (I.hasNoSignedZeros() &&
246909467b48Spatrick match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
247009467b48Spatrick return BinaryOperator::CreateFSubFMF(Y, X, &I);
247109467b48Spatrick
247209467b48Spatrick if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
247309467b48Spatrick return R;
247409467b48Spatrick
2475*d415bd75Srobert Value *OneUse;
2476*d415bd75Srobert if (!match(Op, m_OneUse(m_Value(OneUse))))
2477*d415bd75Srobert return nullptr;
2478*d415bd75Srobert
247973471bf0Spatrick // Try to eliminate fneg if at least 1 arm of the select is negated.
248073471bf0Spatrick Value *Cond;
2481*d415bd75Srobert if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
248273471bf0Spatrick // Unlike most transforms, this one is not safe to propagate nsz unless
2483*d415bd75Srobert // it is present on the original select. We union the flags from the select
2484*d415bd75Srobert // and fneg and then remove nsz if needed.
2485*d415bd75Srobert auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
248673471bf0Spatrick S->copyFastMathFlags(&I);
2487*d415bd75Srobert if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
2488*d415bd75Srobert FastMathFlags FMF = I.getFastMathFlags();
2489*d415bd75Srobert FMF |= OldSel->getFastMathFlags();
2490*d415bd75Srobert S->setFastMathFlags(FMF);
2491*d415bd75Srobert if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2492*d415bd75Srobert !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
249373471bf0Spatrick S->setHasNoSignedZeros(false);
2494*d415bd75Srobert }
249573471bf0Spatrick };
249673471bf0Spatrick // -(Cond ? -P : Y) --> Cond ? P : -Y
249773471bf0Spatrick Value *P;
249873471bf0Spatrick if (match(X, m_FNeg(m_Value(P)))) {
249973471bf0Spatrick Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
250073471bf0Spatrick SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2501*d415bd75Srobert propagateSelectFMF(NewSel, P == Y);
250273471bf0Spatrick return NewSel;
250373471bf0Spatrick }
250473471bf0Spatrick // -(Cond ? X : -P) --> Cond ? -X : P
250573471bf0Spatrick if (match(Y, m_FNeg(m_Value(P)))) {
250673471bf0Spatrick Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
250773471bf0Spatrick SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2508*d415bd75Srobert propagateSelectFMF(NewSel, P == X);
250973471bf0Spatrick return NewSel;
251073471bf0Spatrick }
251173471bf0Spatrick }
251273471bf0Spatrick
2513*d415bd75Srobert // fneg (copysign x, y) -> copysign x, (fneg y)
2514*d415bd75Srobert if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
2515*d415bd75Srobert // The source copysign has an additional value input, so we can't propagate
2516*d415bd75Srobert // flags the copysign doesn't also have.
2517*d415bd75Srobert FastMathFlags FMF = I.getFastMathFlags();
2518*d415bd75Srobert FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
2519*d415bd75Srobert
2520*d415bd75Srobert IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2521*d415bd75Srobert Builder.setFastMathFlags(FMF);
2522*d415bd75Srobert
2523*d415bd75Srobert Value *NegY = Builder.CreateFNeg(Y);
2524*d415bd75Srobert Value *NewCopySign = Builder.CreateCopySign(X, NegY);
2525*d415bd75Srobert return replaceInstUsesWith(I, NewCopySign);
2526*d415bd75Srobert }
2527*d415bd75Srobert
252809467b48Spatrick return nullptr;
252909467b48Spatrick }
253009467b48Spatrick
visitFSub(BinaryOperator & I)253173471bf0Spatrick Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2532*d415bd75Srobert if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
253309467b48Spatrick I.getFastMathFlags(),
253473471bf0Spatrick getSimplifyQuery().getWithInstruction(&I)))
253509467b48Spatrick return replaceInstUsesWith(I, V);
253609467b48Spatrick
253709467b48Spatrick if (Instruction *X = foldVectorBinop(I))
253809467b48Spatrick return X;
253909467b48Spatrick
2540*d415bd75Srobert if (Instruction *Phi = foldBinopWithPhiOperands(I))
2541*d415bd75Srobert return Phi;
2542*d415bd75Srobert
254309467b48Spatrick // Subtraction from -0.0 is the canonical form of fneg.
2544097a140dSpatrick // fsub -0.0, X ==> fneg X
2545097a140dSpatrick // fsub nsz 0.0, X ==> fneg nsz X
2546097a140dSpatrick //
2547097a140dSpatrick // FIXME This matcher does not respect FTZ or DAZ yet:
2548097a140dSpatrick // fsub -0.0, Denorm ==> +-0
2549097a140dSpatrick // fneg Denorm ==> -Denorm
2550097a140dSpatrick Value *Op;
2551097a140dSpatrick if (match(&I, m_FNeg(m_Value(Op))))
2552097a140dSpatrick return UnaryOperator::CreateFNegFMF(Op, &I);
255309467b48Spatrick
2554*d415bd75Srobert if (Instruction *X = foldFNegIntoConstant(I, DL))
255509467b48Spatrick return X;
255609467b48Spatrick
255709467b48Spatrick if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
255809467b48Spatrick return R;
255909467b48Spatrick
256009467b48Spatrick Value *X, *Y;
256109467b48Spatrick Constant *C;
256209467b48Spatrick
2563097a140dSpatrick Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
256409467b48Spatrick // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
256509467b48Spatrick // Canonicalize to fadd to make analysis easier.
256609467b48Spatrick // This can also help codegen because fadd is commutative.
256709467b48Spatrick // Note that if this fsub was really an fneg, the fadd with -0.0 will get
256809467b48Spatrick // killed later. We still limit that particular transform with 'hasOneUse'
256909467b48Spatrick // because an fneg is assumed better/cheaper than a generic fsub.
257009467b48Spatrick if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
257109467b48Spatrick if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
257209467b48Spatrick Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
257309467b48Spatrick return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
257409467b48Spatrick }
257509467b48Spatrick }
257609467b48Spatrick
2577097a140dSpatrick // (-X) - Op1 --> -(X + Op1)
2578097a140dSpatrick if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2579097a140dSpatrick match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2580097a140dSpatrick Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2581097a140dSpatrick return UnaryOperator::CreateFNegFMF(FAdd, &I);
2582097a140dSpatrick }
2583097a140dSpatrick
258409467b48Spatrick if (isa<Constant>(Op0))
258509467b48Spatrick if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
258609467b48Spatrick if (Instruction *NV = FoldOpIntoSelect(I, SI))
258709467b48Spatrick return NV;
258809467b48Spatrick
258909467b48Spatrick // X - C --> X + (-C)
259009467b48Spatrick // But don't transform constant expressions because there's an inverse fold
259109467b48Spatrick // for X + (-Y) --> X - Y.
259273471bf0Spatrick if (match(Op1, m_ImmConstant(C)))
2593*d415bd75Srobert if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2594*d415bd75Srobert return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
259509467b48Spatrick
259609467b48Spatrick // X - (-Y) --> X + Y
259709467b48Spatrick if (match(Op1, m_FNeg(m_Value(Y))))
259809467b48Spatrick return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
259909467b48Spatrick
260009467b48Spatrick // Similar to above, but look through a cast of the negated value:
260109467b48Spatrick // X - (fptrunc(-Y)) --> X + fptrunc(Y)
260209467b48Spatrick Type *Ty = I.getType();
260309467b48Spatrick if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
260409467b48Spatrick return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
260509467b48Spatrick
260609467b48Spatrick // X - (fpext(-Y)) --> X + fpext(Y)
260709467b48Spatrick if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
260809467b48Spatrick return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
260909467b48Spatrick
261009467b48Spatrick // Similar to above, but look through fmul/fdiv of the negated value:
261109467b48Spatrick // Op0 - (-X * Y) --> Op0 + (X * Y)
261209467b48Spatrick // Op0 - (Y * -X) --> Op0 + (X * Y)
261309467b48Spatrick if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
261409467b48Spatrick Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
261509467b48Spatrick return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
261609467b48Spatrick }
261709467b48Spatrick // Op0 - (-X / Y) --> Op0 + (X / Y)
261809467b48Spatrick // Op0 - (X / -Y) --> Op0 + (X / Y)
261909467b48Spatrick if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
262009467b48Spatrick match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
262109467b48Spatrick Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
262209467b48Spatrick return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
262309467b48Spatrick }
262409467b48Spatrick
262509467b48Spatrick // Handle special cases for FSub with selects feeding the operation
262609467b48Spatrick if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
262709467b48Spatrick return replaceInstUsesWith(I, V);
262809467b48Spatrick
262909467b48Spatrick if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
263009467b48Spatrick // (Y - X) - Y --> -X
263109467b48Spatrick if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2632097a140dSpatrick return UnaryOperator::CreateFNegFMF(X, &I);
263309467b48Spatrick
263409467b48Spatrick // Y - (X + Y) --> -X
263509467b48Spatrick // Y - (Y + X) --> -X
263609467b48Spatrick if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2637097a140dSpatrick return UnaryOperator::CreateFNegFMF(X, &I);
263809467b48Spatrick
263909467b48Spatrick // (X * C) - X --> X * (C - 1.0)
264009467b48Spatrick if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2641*d415bd75Srobert if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
2642*d415bd75Srobert Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
264309467b48Spatrick return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
264409467b48Spatrick }
264509467b48Spatrick // X - (X * C) --> X * (1.0 - C)
264609467b48Spatrick if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2647*d415bd75Srobert if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
2648*d415bd75Srobert Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
264909467b48Spatrick return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
265009467b48Spatrick }
265109467b48Spatrick
2652097a140dSpatrick // Reassociate fsub/fadd sequences to create more fadd instructions and
2653097a140dSpatrick // reduce dependency chains:
2654097a140dSpatrick // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2655097a140dSpatrick Value *Z;
2656097a140dSpatrick if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2657097a140dSpatrick m_Value(Z))))) {
2658097a140dSpatrick Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2659097a140dSpatrick Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2660097a140dSpatrick return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2661097a140dSpatrick }
2662097a140dSpatrick
2663097a140dSpatrick auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
266473471bf0Spatrick return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
266573471bf0Spatrick m_Value(Vec)));
2666097a140dSpatrick };
2667097a140dSpatrick Value *A0, *A1, *V0, *V1;
2668097a140dSpatrick if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2669097a140dSpatrick V0->getType() == V1->getType()) {
2670097a140dSpatrick // Difference of sums is sum of differences:
2671097a140dSpatrick // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2672097a140dSpatrick Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
267373471bf0Spatrick Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
267473471bf0Spatrick {Sub->getType()}, {A0, Sub}, &I);
2675097a140dSpatrick return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2676097a140dSpatrick }
2677097a140dSpatrick
267809467b48Spatrick if (Instruction *F = factorizeFAddFSub(I, Builder))
267909467b48Spatrick return F;
268009467b48Spatrick
268109467b48Spatrick // TODO: This performs reassociative folds for FP ops. Some fraction of the
268209467b48Spatrick // functionality has been subsumed by simple pattern matching here and in
268309467b48Spatrick // InstSimplify. We should let a dedicated reassociation pass handle more
268409467b48Spatrick // complex pattern matching and remove this from InstCombine.
268509467b48Spatrick if (Value *V = FAddCombine(Builder).simplify(&I))
268609467b48Spatrick return replaceInstUsesWith(I, V);
2687097a140dSpatrick
2688097a140dSpatrick // (X - Y) - Op1 --> X - (Y + Op1)
2689097a140dSpatrick if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2690097a140dSpatrick Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2691097a140dSpatrick return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2692097a140dSpatrick }
269309467b48Spatrick }
269409467b48Spatrick
269509467b48Spatrick return nullptr;
269609467b48Spatrick }
2697