1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86ReturnProtectorLowering.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/WinEHFuncInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCSymbol.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Target/TargetOptions.h" 36 #include <cstdlib> 37 38 #define DEBUG_TYPE "x86-fl" 39 40 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 41 STATISTIC(NumFrameExtraProbe, 42 "Number of extra stack probes generated in prologue"); 43 44 using namespace llvm; 45 46 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 47 MaybeAlign StackAlignOverride) 48 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 49 STI.is64Bit() ? -8 : -4), 50 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()), RPL() { 51 // Cache a bunch of frame-related predicates for this subtarget. 52 SlotSize = TRI->getSlotSize(); 53 Is64Bit = STI.is64Bit(); 54 IsLP64 = STI.isTarget64BitLP64(); 55 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 56 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 57 StackPtr = TRI->getStackRegister(); 58 SaveArgs = Is64Bit ? STI.getSaveArgs() : 0; 59 } 60 61 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 62 return !MF.getFrameInfo().hasVarSizedObjects() && 63 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 64 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 65 } 66 67 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 68 /// call frame pseudos can be simplified. Having a FP, as in the default 69 /// implementation, is not sufficient here since we can't always use it. 70 /// Use a more nuanced condition. 71 bool 72 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 73 return hasReservedCallFrame(MF) || 74 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 75 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 76 TRI->hasBasePointer(MF); 77 } 78 79 // needsFrameIndexResolution - Do we need to perform FI resolution for 80 // this function. Normally, this is required only when the function 81 // has any stack objects. However, FI resolution actually has another job, 82 // not apparent from the title - it resolves callframesetup/destroy 83 // that were not simplified earlier. 84 // So, this is required for x86 functions that have push sequences even 85 // when there are no stack objects. 86 bool 87 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 88 return MF.getFrameInfo().hasStackObjects() || 89 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 90 } 91 92 /// hasFP - Return true if the specified function should have a dedicated frame 93 /// pointer register. This is true if the function has variable sized allocas 94 /// or if frame pointer elimination is disabled. 95 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 96 const MachineFrameInfo &MFI = MF.getFrameInfo(); 97 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 98 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 99 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 100 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 101 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 102 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 103 MFI.hasStackMap() || MFI.hasPatchPoint() || 104 MFI.hasCopyImplyingStackAdjustment() || 105 SaveArgs); 106 } 107 108 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 109 if (IsLP64) { 110 if (isInt<8>(Imm)) 111 return X86::SUB64ri8; 112 return X86::SUB64ri32; 113 } else { 114 if (isInt<8>(Imm)) 115 return X86::SUB32ri8; 116 return X86::SUB32ri; 117 } 118 } 119 120 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 121 if (IsLP64) { 122 if (isInt<8>(Imm)) 123 return X86::ADD64ri8; 124 return X86::ADD64ri32; 125 } else { 126 if (isInt<8>(Imm)) 127 return X86::ADD32ri8; 128 return X86::ADD32ri; 129 } 130 } 131 132 static unsigned getSUBrrOpcode(bool IsLP64) { 133 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 134 } 135 136 static unsigned getADDrrOpcode(bool IsLP64) { 137 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 138 } 139 140 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 141 if (IsLP64) { 142 if (isInt<8>(Imm)) 143 return X86::AND64ri8; 144 return X86::AND64ri32; 145 } 146 if (isInt<8>(Imm)) 147 return X86::AND32ri8; 148 return X86::AND32ri; 149 } 150 151 static unsigned getLEArOpcode(bool IsLP64) { 152 return IsLP64 ? X86::LEA64r : X86::LEA32r; 153 } 154 155 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 156 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 157 unsigned Reg = RegMask.PhysReg; 158 159 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 160 Reg == X86::AH || Reg == X86::AL) 161 return true; 162 } 163 164 return false; 165 } 166 167 /// Check if the flags need to be preserved before the terminators. 168 /// This would be the case, if the eflags is live-in of the region 169 /// composed by the terminators or live-out of that region, without 170 /// being defined by a terminator. 171 static bool 172 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 173 for (const MachineInstr &MI : MBB.terminators()) { 174 bool BreakNext = false; 175 for (const MachineOperand &MO : MI.operands()) { 176 if (!MO.isReg()) 177 continue; 178 Register Reg = MO.getReg(); 179 if (Reg != X86::EFLAGS) 180 continue; 181 182 // This terminator needs an eflags that is not defined 183 // by a previous another terminator: 184 // EFLAGS is live-in of the region composed by the terminators. 185 if (!MO.isDef()) 186 return true; 187 // This terminator defines the eflags, i.e., we don't need to preserve it. 188 // However, we still need to check this specific terminator does not 189 // read a live-in value. 190 BreakNext = true; 191 } 192 // We found a definition of the eflags, no need to preserve them. 193 if (BreakNext) 194 return false; 195 } 196 197 // None of the terminators use or define the eflags. 198 // Check if they are live-out, that would imply we need to preserve them. 199 for (const MachineBasicBlock *Succ : MBB.successors()) 200 if (Succ->isLiveIn(X86::EFLAGS)) 201 return true; 202 203 return false; 204 } 205 206 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 207 /// stack pointer by a constant value. 208 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 209 MachineBasicBlock::iterator &MBBI, 210 const DebugLoc &DL, 211 int64_t NumBytes, bool InEpilogue) const { 212 bool isSub = NumBytes < 0; 213 uint64_t Offset = isSub ? -NumBytes : NumBytes; 214 MachineInstr::MIFlag Flag = 215 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 216 217 uint64_t Chunk = (1LL << 31) - 1; 218 219 MachineFunction &MF = *MBB.getParent(); 220 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 221 const X86TargetLowering &TLI = *STI.getTargetLowering(); 222 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 223 224 // It's ok to not take into account large chunks when probing, as the 225 // allocation is split in smaller chunks anyway. 226 if (EmitInlineStackProbe && !InEpilogue) { 227 228 // This pseudo-instruction is going to be expanded, potentially using a 229 // loop, by inlineStackProbe(). 230 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 231 return; 232 } else if (Offset > Chunk) { 233 // Rather than emit a long series of instructions for large offsets, 234 // load the offset into a register and do one sub/add 235 unsigned Reg = 0; 236 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 237 238 if (isSub && !isEAXLiveIn(MBB)) 239 Reg = Rax; 240 else 241 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 242 243 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 244 unsigned AddSubRROpc = 245 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 246 if (Reg) { 247 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 248 .addImm(Offset) 249 .setMIFlag(Flag); 250 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 251 .addReg(StackPtr) 252 .addReg(Reg); 253 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 254 return; 255 } else if (Offset > 8 * Chunk) { 256 // If we would need more than 8 add or sub instructions (a >16GB stack 257 // frame), it's worth spilling RAX to materialize this immediate. 258 // pushq %rax 259 // movabsq +-$Offset+-SlotSize, %rax 260 // addq %rsp, %rax 261 // xchg %rax, (%rsp) 262 // movq (%rsp), %rsp 263 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 264 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 265 .addReg(Rax, RegState::Kill) 266 .setMIFlag(Flag); 267 // Subtract is not commutative, so negate the offset and always use add. 268 // Subtract 8 less and add 8 more to account for the PUSH we just did. 269 if (isSub) 270 Offset = -(Offset - SlotSize); 271 else 272 Offset = Offset + SlotSize; 273 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 274 .addImm(Offset) 275 .setMIFlag(Flag); 276 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 277 .addReg(Rax) 278 .addReg(StackPtr); 279 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 280 // Exchange the new SP in RAX with the top of the stack. 281 addRegOffset( 282 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 283 StackPtr, false, 0); 284 // Load new SP from the top of the stack into RSP. 285 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 286 StackPtr, false, 0); 287 return; 288 } 289 } 290 291 while (Offset) { 292 uint64_t ThisVal = std::min(Offset, Chunk); 293 if (ThisVal == SlotSize) { 294 // Use push / pop for slot sized adjustments as a size optimization. We 295 // need to find a dead register when using pop. 296 unsigned Reg = isSub 297 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 298 : TRI->findDeadCallerSavedReg(MBB, MBBI); 299 if (Reg) { 300 unsigned Opc = isSub 301 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 302 : (Is64Bit ? X86::POP64r : X86::POP32r); 303 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 304 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 305 .setMIFlag(Flag); 306 Offset -= ThisVal; 307 continue; 308 } 309 } 310 311 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 312 .setMIFlag(Flag); 313 314 Offset -= ThisVal; 315 } 316 } 317 318 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 319 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 320 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 321 assert(Offset != 0 && "zero offset stack adjustment requested"); 322 323 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 324 // is tricky. 325 bool UseLEA; 326 if (!InEpilogue) { 327 // Check if inserting the prologue at the beginning 328 // of MBB would require to use LEA operations. 329 // We need to use LEA operations if EFLAGS is live in, because 330 // it means an instruction will read it before it gets defined. 331 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 332 } else { 333 // If we can use LEA for SP but we shouldn't, check that none 334 // of the terminators uses the eflags. Otherwise we will insert 335 // a ADD that will redefine the eflags and break the condition. 336 // Alternatively, we could move the ADD, but this may not be possible 337 // and is an optimization anyway. 338 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 339 if (UseLEA && !STI.useLeaForSP()) 340 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 341 // If that assert breaks, that means we do not do the right thing 342 // in canUseAsEpilogue. 343 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 344 "We shouldn't have allowed this insertion point"); 345 } 346 347 MachineInstrBuilder MI; 348 if (UseLEA) { 349 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 350 TII.get(getLEArOpcode(Uses64BitFramePtr)), 351 StackPtr), 352 StackPtr, false, Offset); 353 } else { 354 bool IsSub = Offset < 0; 355 uint64_t AbsOffset = IsSub ? -Offset : Offset; 356 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 357 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 358 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 359 .addReg(StackPtr) 360 .addImm(AbsOffset); 361 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 362 } 363 return MI; 364 } 365 366 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 367 MachineBasicBlock::iterator &MBBI, 368 bool doMergeWithPrevious) const { 369 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 370 (!doMergeWithPrevious && MBBI == MBB.end())) 371 return 0; 372 373 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 374 375 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 376 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 377 // instruction, and that there are no DBG_VALUE or other instructions between 378 // ADD/SUB/LEA and its corresponding CFI instruction. 379 /* TODO: Add support for the case where there are multiple CFI instructions 380 below the ADD/SUB/LEA, e.g.: 381 ... 382 add 383 cfi_def_cfa_offset 384 cfi_offset 385 ... 386 */ 387 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 388 PI = std::prev(PI); 389 390 unsigned Opc = PI->getOpcode(); 391 int Offset = 0; 392 393 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 394 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 395 PI->getOperand(0).getReg() == StackPtr){ 396 assert(PI->getOperand(1).getReg() == StackPtr); 397 Offset = PI->getOperand(2).getImm(); 398 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 399 PI->getOperand(0).getReg() == StackPtr && 400 PI->getOperand(1).getReg() == StackPtr && 401 PI->getOperand(2).getImm() == 1 && 402 PI->getOperand(3).getReg() == X86::NoRegister && 403 PI->getOperand(5).getReg() == X86::NoRegister) { 404 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 405 Offset = PI->getOperand(4).getImm(); 406 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 407 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 408 PI->getOperand(0).getReg() == StackPtr) { 409 assert(PI->getOperand(1).getReg() == StackPtr); 410 Offset = -PI->getOperand(2).getImm(); 411 } else 412 return 0; 413 414 PI = MBB.erase(PI); 415 if (PI != MBB.end() && PI->isCFIInstruction()) { 416 auto CIs = MBB.getParent()->getFrameInstructions(); 417 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 418 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 419 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 420 PI = MBB.erase(PI); 421 } 422 if (!doMergeWithPrevious) 423 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 424 425 return Offset; 426 } 427 428 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 429 MachineBasicBlock::iterator MBBI, 430 const DebugLoc &DL, 431 const MCCFIInstruction &CFIInst) const { 432 MachineFunction &MF = *MBB.getParent(); 433 unsigned CFIIndex = MF.addFrameInst(CFIInst); 434 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 435 .addCFIIndex(CFIIndex); 436 } 437 438 /// Emits Dwarf Info specifying offsets of callee saved registers and 439 /// frame pointer. This is called only when basic block sections are enabled. 440 void X86FrameLowering::emitCalleeSavedFrameMoves( 441 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 442 MachineFunction &MF = *MBB.getParent(); 443 if (!hasFP(MF)) { 444 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 445 return; 446 } 447 const MachineModuleInfo &MMI = MF.getMMI(); 448 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 449 const Register FramePtr = TRI->getFrameRegister(MF); 450 const Register MachineFramePtr = 451 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 452 : FramePtr; 453 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 454 // Offset = space for return address + size of the frame pointer itself. 455 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 456 BuildCFI(MBB, MBBI, DebugLoc{}, 457 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 458 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 459 } 460 461 void X86FrameLowering::emitCalleeSavedFrameMoves( 462 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 463 const DebugLoc &DL, bool IsPrologue) const { 464 MachineFunction &MF = *MBB.getParent(); 465 MachineFrameInfo &MFI = MF.getFrameInfo(); 466 MachineModuleInfo &MMI = MF.getMMI(); 467 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 468 469 // Add callee saved registers to move list. 470 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 471 if (CSI.empty()) return; 472 473 // Calculate offsets. 474 for (std::vector<CalleeSavedInfo>::const_iterator 475 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 476 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 477 unsigned Reg = I->getReg(); 478 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 479 480 if (IsPrologue) { 481 BuildCFI(MBB, MBBI, DL, 482 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 483 } else { 484 BuildCFI(MBB, MBBI, DL, 485 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 486 } 487 } 488 } 489 490 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 491 MachineBasicBlock &MBB, 492 MachineBasicBlock::iterator MBBI, 493 const DebugLoc &DL, bool InProlog) const { 494 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 495 if (STI.isTargetWindowsCoreCLR()) { 496 if (InProlog) { 497 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 498 .addImm(0 /* no explicit stack size */); 499 } else { 500 emitStackProbeInline(MF, MBB, MBBI, DL, false); 501 } 502 } else { 503 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 504 } 505 } 506 507 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 508 MachineBasicBlock &PrologMBB) const { 509 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 510 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 511 }); 512 if (Where != PrologMBB.end()) { 513 DebugLoc DL = PrologMBB.findDebugLoc(Where); 514 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 515 Where->eraseFromParent(); 516 } 517 } 518 519 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 520 MachineBasicBlock &MBB, 521 MachineBasicBlock::iterator MBBI, 522 const DebugLoc &DL, 523 bool InProlog) const { 524 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 525 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 526 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 527 else 528 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 529 } 530 531 void X86FrameLowering::emitStackProbeInlineGeneric( 532 MachineFunction &MF, MachineBasicBlock &MBB, 533 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 534 MachineInstr &AllocWithProbe = *MBBI; 535 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 536 537 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 538 const X86TargetLowering &TLI = *STI.getTargetLowering(); 539 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 540 "different expansion expected for CoreCLR 64 bit"); 541 542 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 543 uint64_t ProbeChunk = StackProbeSize * 8; 544 545 uint64_t MaxAlign = 546 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 547 548 // Synthesize a loop or unroll it, depending on the number of iterations. 549 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 550 // between the unaligned rsp and current rsp. 551 if (Offset > ProbeChunk) { 552 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 553 MaxAlign % StackProbeSize); 554 } else { 555 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 556 MaxAlign % StackProbeSize); 557 } 558 } 559 560 void X86FrameLowering::emitStackProbeInlineGenericBlock( 561 MachineFunction &MF, MachineBasicBlock &MBB, 562 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 563 uint64_t AlignOffset) const { 564 565 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 566 const bool HasFP = hasFP(MF); 567 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 568 const X86TargetLowering &TLI = *STI.getTargetLowering(); 569 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 570 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 571 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 572 573 uint64_t CurrentOffset = 0; 574 575 assert(AlignOffset < StackProbeSize); 576 577 // If the offset is so small it fits within a page, there's nothing to do. 578 if (StackProbeSize < Offset + AlignOffset) { 579 580 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 581 .addReg(StackPtr) 582 .addImm(StackProbeSize - AlignOffset) 583 .setMIFlag(MachineInstr::FrameSetup); 584 if (!HasFP && NeedsDwarfCFI) { 585 BuildCFI(MBB, MBBI, DL, 586 MCCFIInstruction::createAdjustCfaOffset( 587 nullptr, StackProbeSize - AlignOffset)); 588 } 589 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 590 591 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 592 .setMIFlag(MachineInstr::FrameSetup), 593 StackPtr, false, 0) 594 .addImm(0) 595 .setMIFlag(MachineInstr::FrameSetup); 596 NumFrameExtraProbe++; 597 CurrentOffset = StackProbeSize - AlignOffset; 598 } 599 600 // For the next N - 1 pages, just probe. I tried to take advantage of 601 // natural probes but it implies much more logic and there was very few 602 // interesting natural probes to interleave. 603 while (CurrentOffset + StackProbeSize < Offset) { 604 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 605 .addReg(StackPtr) 606 .addImm(StackProbeSize) 607 .setMIFlag(MachineInstr::FrameSetup); 608 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 609 610 if (!HasFP && NeedsDwarfCFI) { 611 BuildCFI( 612 MBB, MBBI, DL, 613 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 614 } 615 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 616 .setMIFlag(MachineInstr::FrameSetup), 617 StackPtr, false, 0) 618 .addImm(0) 619 .setMIFlag(MachineInstr::FrameSetup); 620 NumFrameExtraProbe++; 621 CurrentOffset += StackProbeSize; 622 } 623 624 // No need to probe the tail, it is smaller than a Page. 625 uint64_t ChunkSize = Offset - CurrentOffset; 626 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 627 .addReg(StackPtr) 628 .addImm(ChunkSize) 629 .setMIFlag(MachineInstr::FrameSetup); 630 // No need to adjust Dwarf CFA offset here, the last position of the stack has 631 // been defined 632 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 633 } 634 635 void X86FrameLowering::emitStackProbeInlineGenericLoop( 636 MachineFunction &MF, MachineBasicBlock &MBB, 637 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 638 uint64_t AlignOffset) const { 639 assert(Offset && "null offset"); 640 641 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 642 const X86TargetLowering &TLI = *STI.getTargetLowering(); 643 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 644 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 645 646 if (AlignOffset) { 647 if (AlignOffset < StackProbeSize) { 648 // Perform a first smaller allocation followed by a probe. 649 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 650 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 651 .addReg(StackPtr) 652 .addImm(AlignOffset) 653 .setMIFlag(MachineInstr::FrameSetup); 654 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 655 656 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 657 .setMIFlag(MachineInstr::FrameSetup), 658 StackPtr, false, 0) 659 .addImm(0) 660 .setMIFlag(MachineInstr::FrameSetup); 661 NumFrameExtraProbe++; 662 Offset -= AlignOffset; 663 } 664 } 665 666 // Synthesize a loop 667 NumFrameLoopProbe++; 668 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 669 670 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 671 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 672 673 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 674 MF.insert(MBBIter, testMBB); 675 MF.insert(MBBIter, tailMBB); 676 677 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 678 : Is64Bit ? X86::R11D 679 : X86::EAX; 680 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 681 .addReg(StackPtr) 682 .setMIFlag(MachineInstr::FrameSetup); 683 684 // save loop bound 685 { 686 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset); 687 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 688 .addReg(FinalStackProbed) 689 .addImm(Offset / StackProbeSize * StackProbeSize) 690 .setMIFlag(MachineInstr::FrameSetup); 691 } 692 693 // allocate a page 694 { 695 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 696 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 697 .addReg(StackPtr) 698 .addImm(StackProbeSize) 699 .setMIFlag(MachineInstr::FrameSetup); 700 } 701 702 // touch the page 703 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 704 .setMIFlag(MachineInstr::FrameSetup), 705 StackPtr, false, 0) 706 .addImm(0) 707 .setMIFlag(MachineInstr::FrameSetup); 708 709 // cmp with stack pointer bound 710 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 711 .addReg(StackPtr) 712 .addReg(FinalStackProbed) 713 .setMIFlag(MachineInstr::FrameSetup); 714 715 // jump 716 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 717 .addMBB(testMBB) 718 .addImm(X86::COND_NE) 719 .setMIFlag(MachineInstr::FrameSetup); 720 testMBB->addSuccessor(testMBB); 721 testMBB->addSuccessor(tailMBB); 722 723 // BB management 724 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 725 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 726 MBB.addSuccessor(testMBB); 727 728 // handle tail 729 unsigned TailOffset = Offset % StackProbeSize; 730 if (TailOffset) { 731 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 732 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 733 .addReg(StackPtr) 734 .addImm(TailOffset) 735 .setMIFlag(MachineInstr::FrameSetup); 736 } 737 738 // Update Live In information 739 recomputeLiveIns(*testMBB); 740 recomputeLiveIns(*tailMBB); 741 } 742 743 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 744 MachineFunction &MF, MachineBasicBlock &MBB, 745 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 746 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 747 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 748 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 749 const TargetInstrInfo &TII = *STI.getInstrInfo(); 750 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 751 752 // RAX contains the number of bytes of desired stack adjustment. 753 // The handling here assumes this value has already been updated so as to 754 // maintain stack alignment. 755 // 756 // We need to exit with RSP modified by this amount and execute suitable 757 // page touches to notify the OS that we're growing the stack responsibly. 758 // All stack probing must be done without modifying RSP. 759 // 760 // MBB: 761 // SizeReg = RAX; 762 // ZeroReg = 0 763 // CopyReg = RSP 764 // Flags, TestReg = CopyReg - SizeReg 765 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 766 // LimitReg = gs magic thread env access 767 // if FinalReg >= LimitReg goto ContinueMBB 768 // RoundBB: 769 // RoundReg = page address of FinalReg 770 // LoopMBB: 771 // LoopReg = PHI(LimitReg,ProbeReg) 772 // ProbeReg = LoopReg - PageSize 773 // [ProbeReg] = 0 774 // if (ProbeReg > RoundReg) goto LoopMBB 775 // ContinueMBB: 776 // RSP = RSP - RAX 777 // [rest of original MBB] 778 779 // Set up the new basic blocks 780 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 781 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 782 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 783 784 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 785 MF.insert(MBBIter, RoundMBB); 786 MF.insert(MBBIter, LoopMBB); 787 MF.insert(MBBIter, ContinueMBB); 788 789 // Split MBB and move the tail portion down to ContinueMBB. 790 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 791 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 792 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 793 794 // Some useful constants 795 const int64_t ThreadEnvironmentStackLimit = 0x10; 796 const int64_t PageSize = 0x1000; 797 const int64_t PageMask = ~(PageSize - 1); 798 799 // Registers we need. For the normal case we use virtual 800 // registers. For the prolog expansion we use RAX, RCX and RDX. 801 MachineRegisterInfo &MRI = MF.getRegInfo(); 802 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 803 const Register SizeReg = InProlog ? X86::RAX 804 : MRI.createVirtualRegister(RegClass), 805 ZeroReg = InProlog ? X86::RCX 806 : MRI.createVirtualRegister(RegClass), 807 CopyReg = InProlog ? X86::RDX 808 : MRI.createVirtualRegister(RegClass), 809 TestReg = InProlog ? X86::RDX 810 : MRI.createVirtualRegister(RegClass), 811 FinalReg = InProlog ? X86::RDX 812 : MRI.createVirtualRegister(RegClass), 813 RoundedReg = InProlog ? X86::RDX 814 : MRI.createVirtualRegister(RegClass), 815 LimitReg = InProlog ? X86::RCX 816 : MRI.createVirtualRegister(RegClass), 817 JoinReg = InProlog ? X86::RCX 818 : MRI.createVirtualRegister(RegClass), 819 ProbeReg = InProlog ? X86::RCX 820 : MRI.createVirtualRegister(RegClass); 821 822 // SP-relative offsets where we can save RCX and RDX. 823 int64_t RCXShadowSlot = 0; 824 int64_t RDXShadowSlot = 0; 825 826 // If inlining in the prolog, save RCX and RDX. 827 if (InProlog) { 828 // Compute the offsets. We need to account for things already 829 // pushed onto the stack at this point: return address, frame 830 // pointer (if used), and callee saves. 831 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 832 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 833 const bool HasFP = hasFP(MF); 834 835 // Check if we need to spill RCX and/or RDX. 836 // Here we assume that no earlier prologue instruction changes RCX and/or 837 // RDX, so checking the block live-ins is enough. 838 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 839 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 840 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 841 // Assign the initial slot to both registers, then change RDX's slot if both 842 // need to be spilled. 843 if (IsRCXLiveIn) 844 RCXShadowSlot = InitSlot; 845 if (IsRDXLiveIn) 846 RDXShadowSlot = InitSlot; 847 if (IsRDXLiveIn && IsRCXLiveIn) 848 RDXShadowSlot += 8; 849 // Emit the saves if needed. 850 if (IsRCXLiveIn) 851 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 852 RCXShadowSlot) 853 .addReg(X86::RCX); 854 if (IsRDXLiveIn) 855 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 856 RDXShadowSlot) 857 .addReg(X86::RDX); 858 } else { 859 // Not in the prolog. Copy RAX to a virtual reg. 860 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 861 } 862 863 // Add code to MBB to check for overflow and set the new target stack pointer 864 // to zero if so. 865 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 866 .addReg(ZeroReg, RegState::Undef) 867 .addReg(ZeroReg, RegState::Undef); 868 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 869 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 870 .addReg(CopyReg) 871 .addReg(SizeReg); 872 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 873 .addReg(TestReg) 874 .addReg(ZeroReg) 875 .addImm(X86::COND_B); 876 877 // FinalReg now holds final stack pointer value, or zero if 878 // allocation would overflow. Compare against the current stack 879 // limit from the thread environment block. Note this limit is the 880 // lowest touched page on the stack, not the point at which the OS 881 // will cause an overflow exception, so this is just an optimization 882 // to avoid unnecessarily touching pages that are below the current 883 // SP but already committed to the stack by the OS. 884 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 885 .addReg(0) 886 .addImm(1) 887 .addReg(0) 888 .addImm(ThreadEnvironmentStackLimit) 889 .addReg(X86::GS); 890 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 891 // Jump if the desired stack pointer is at or above the stack limit. 892 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 893 894 // Add code to roundMBB to round the final stack pointer to a page boundary. 895 RoundMBB->addLiveIn(FinalReg); 896 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 897 .addReg(FinalReg) 898 .addImm(PageMask); 899 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 900 901 // LimitReg now holds the current stack limit, RoundedReg page-rounded 902 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 903 // and probe until we reach RoundedReg. 904 if (!InProlog) { 905 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 906 .addReg(LimitReg) 907 .addMBB(RoundMBB) 908 .addReg(ProbeReg) 909 .addMBB(LoopMBB); 910 } 911 912 LoopMBB->addLiveIn(JoinReg); 913 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 914 false, -PageSize); 915 916 // Probe by storing a byte onto the stack. 917 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 918 .addReg(ProbeReg) 919 .addImm(1) 920 .addReg(0) 921 .addImm(0) 922 .addReg(0) 923 .addImm(0); 924 925 LoopMBB->addLiveIn(RoundedReg); 926 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 927 .addReg(RoundedReg) 928 .addReg(ProbeReg); 929 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 930 931 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 932 933 // If in prolog, restore RDX and RCX. 934 if (InProlog) { 935 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 936 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 937 TII.get(X86::MOV64rm), X86::RCX), 938 X86::RSP, false, RCXShadowSlot); 939 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 940 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 941 TII.get(X86::MOV64rm), X86::RDX), 942 X86::RSP, false, RDXShadowSlot); 943 } 944 945 // Now that the probing is done, add code to continueMBB to update 946 // the stack pointer for real. 947 ContinueMBB->addLiveIn(SizeReg); 948 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 949 .addReg(X86::RSP) 950 .addReg(SizeReg); 951 952 // Add the control flow edges we need. 953 MBB.addSuccessor(ContinueMBB); 954 MBB.addSuccessor(RoundMBB); 955 RoundMBB->addSuccessor(LoopMBB); 956 LoopMBB->addSuccessor(ContinueMBB); 957 LoopMBB->addSuccessor(LoopMBB); 958 959 // Mark all the instructions added to the prolog as frame setup. 960 if (InProlog) { 961 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 962 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 963 } 964 for (MachineInstr &MI : *RoundMBB) { 965 MI.setFlag(MachineInstr::FrameSetup); 966 } 967 for (MachineInstr &MI : *LoopMBB) { 968 MI.setFlag(MachineInstr::FrameSetup); 969 } 970 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 971 CMBBI != ContinueMBBI; ++CMBBI) { 972 CMBBI->setFlag(MachineInstr::FrameSetup); 973 } 974 } 975 } 976 977 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 978 MachineBasicBlock &MBB, 979 MachineBasicBlock::iterator MBBI, 980 const DebugLoc &DL, 981 bool InProlog) const { 982 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 983 984 // FIXME: Add indirect thunk support and remove this. 985 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 986 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 987 "code model and indirect thunks not yet implemented."); 988 989 unsigned CallOp; 990 if (Is64Bit) 991 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 992 else 993 CallOp = X86::CALLpcrel32; 994 995 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 996 997 MachineInstrBuilder CI; 998 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 999 1000 // All current stack probes take AX and SP as input, clobber flags, and 1001 // preserve all registers. x86_64 probes leave RSP unmodified. 1002 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1003 // For the large code model, we have to call through a register. Use R11, 1004 // as it is scratch in all supported calling conventions. 1005 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1006 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1007 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1008 } else { 1009 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1010 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1011 } 1012 1013 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1014 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1015 CI.addReg(AX, RegState::Implicit) 1016 .addReg(SP, RegState::Implicit) 1017 .addReg(AX, RegState::Define | RegState::Implicit) 1018 .addReg(SP, RegState::Define | RegState::Implicit) 1019 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1020 1021 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1022 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1023 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1024 // themselves. They also does not clobber %rax so we can reuse it when 1025 // adjusting %rsp. 1026 // All other platforms do not specify a particular ABI for the stack probe 1027 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1028 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1029 .addReg(SP) 1030 .addReg(AX); 1031 } 1032 1033 if (InProlog) { 1034 // Apply the frame setup flag to all inserted instrs. 1035 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1036 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1037 } 1038 } 1039 1040 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1041 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1042 // and might require smaller successive adjustments. 1043 const uint64_t Win64MaxSEHOffset = 128; 1044 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1045 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1046 return SEHFrameOffset & -16; 1047 } 1048 1049 // If we're forcing a stack realignment we can't rely on just the frame 1050 // info, we need to know the ABI stack alignment as well in case we 1051 // have a call out. Otherwise just make sure we have some alignment - we'll 1052 // go with the minimum SlotSize. 1053 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1054 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1055 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1056 Align StackAlign = getStackAlign(); 1057 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1058 if (MFI.hasCalls()) 1059 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1060 else if (MaxAlign < SlotSize) 1061 MaxAlign = Align(SlotSize); 1062 } 1063 return MaxAlign.value(); 1064 } 1065 1066 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1067 MachineBasicBlock::iterator MBBI, 1068 const DebugLoc &DL, unsigned Reg, 1069 uint64_t MaxAlign) const { 1070 uint64_t Val = -MaxAlign; 1071 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1072 1073 MachineFunction &MF = *MBB.getParent(); 1074 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1075 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1076 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1077 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1078 1079 // We want to make sure that (in worst case) less than StackProbeSize bytes 1080 // are not probed after the AND. This assumption is used in 1081 // emitStackProbeInlineGeneric. 1082 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1083 { 1084 NumFrameLoopProbe++; 1085 MachineBasicBlock *entryMBB = 1086 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1087 MachineBasicBlock *headMBB = 1088 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1089 MachineBasicBlock *bodyMBB = 1090 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1091 MachineBasicBlock *footMBB = 1092 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1093 1094 MachineFunction::iterator MBBIter = MBB.getIterator(); 1095 MF.insert(MBBIter, entryMBB); 1096 MF.insert(MBBIter, headMBB); 1097 MF.insert(MBBIter, bodyMBB); 1098 MF.insert(MBBIter, footMBB); 1099 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1100 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1101 : Is64Bit ? X86::R11D 1102 : X86::EAX; 1103 1104 // Setup entry block 1105 { 1106 1107 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1108 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1109 .addReg(StackPtr) 1110 .setMIFlag(MachineInstr::FrameSetup); 1111 MachineInstr *MI = 1112 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1113 .addReg(FinalStackProbed) 1114 .addImm(Val) 1115 .setMIFlag(MachineInstr::FrameSetup); 1116 1117 // The EFLAGS implicit def is dead. 1118 MI->getOperand(3).setIsDead(); 1119 1120 BuildMI(entryMBB, DL, 1121 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1122 .addReg(FinalStackProbed) 1123 .addReg(StackPtr) 1124 .setMIFlag(MachineInstr::FrameSetup); 1125 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1126 .addMBB(&MBB) 1127 .addImm(X86::COND_E) 1128 .setMIFlag(MachineInstr::FrameSetup); 1129 entryMBB->addSuccessor(headMBB); 1130 entryMBB->addSuccessor(&MBB); 1131 } 1132 1133 // Loop entry block 1134 1135 { 1136 const unsigned SUBOpc = 1137 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1138 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1139 .addReg(StackPtr) 1140 .addImm(StackProbeSize) 1141 .setMIFlag(MachineInstr::FrameSetup); 1142 1143 BuildMI(headMBB, DL, 1144 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1145 .addReg(FinalStackProbed) 1146 .addReg(StackPtr) 1147 .setMIFlag(MachineInstr::FrameSetup); 1148 1149 // jump 1150 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1151 .addMBB(footMBB) 1152 .addImm(X86::COND_B) 1153 .setMIFlag(MachineInstr::FrameSetup); 1154 1155 headMBB->addSuccessor(bodyMBB); 1156 headMBB->addSuccessor(footMBB); 1157 } 1158 1159 // setup loop body 1160 { 1161 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1162 .setMIFlag(MachineInstr::FrameSetup), 1163 StackPtr, false, 0) 1164 .addImm(0) 1165 .setMIFlag(MachineInstr::FrameSetup); 1166 1167 const unsigned SUBOpc = 1168 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1169 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1170 .addReg(StackPtr) 1171 .addImm(StackProbeSize) 1172 .setMIFlag(MachineInstr::FrameSetup); 1173 1174 // cmp with stack pointer bound 1175 BuildMI(bodyMBB, DL, 1176 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1177 .addReg(FinalStackProbed) 1178 .addReg(StackPtr) 1179 .setMIFlag(MachineInstr::FrameSetup); 1180 1181 // jump 1182 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1183 .addMBB(bodyMBB) 1184 .addImm(X86::COND_B) 1185 .setMIFlag(MachineInstr::FrameSetup); 1186 bodyMBB->addSuccessor(bodyMBB); 1187 bodyMBB->addSuccessor(footMBB); 1188 } 1189 1190 // setup loop footer 1191 { 1192 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1193 .addReg(FinalStackProbed) 1194 .setMIFlag(MachineInstr::FrameSetup); 1195 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1196 .setMIFlag(MachineInstr::FrameSetup), 1197 StackPtr, false, 0) 1198 .addImm(0) 1199 .setMIFlag(MachineInstr::FrameSetup); 1200 footMBB->addSuccessor(&MBB); 1201 } 1202 1203 recomputeLiveIns(*headMBB); 1204 recomputeLiveIns(*bodyMBB); 1205 recomputeLiveIns(*footMBB); 1206 recomputeLiveIns(MBB); 1207 } 1208 } else { 1209 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1210 .addReg(Reg) 1211 .addImm(Val) 1212 .setMIFlag(MachineInstr::FrameSetup); 1213 1214 // The EFLAGS implicit def is dead. 1215 MI->getOperand(3).setIsDead(); 1216 } 1217 } 1218 1219 // FIXME: Get this from tablegen. 1220 static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, 1221 const X86Subtarget &Subtarget) { 1222 assert(Subtarget.is64Bit()); 1223 1224 if (Subtarget.isCallingConvWin64(CallConv)) { 1225 static const MCPhysReg GPR64ArgRegsWin64[] = { 1226 X86::RCX, X86::RDX, X86::R8, X86::R9 1227 }; 1228 return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); 1229 } 1230 1231 static const MCPhysReg GPR64ArgRegs64Bit[] = { 1232 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 1233 }; 1234 return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); 1235 } 1236 1237 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1238 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1239 // clobbered by any interrupt handler. 1240 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1241 "MF used frame lowering for wrong subtarget"); 1242 const Function &Fn = MF.getFunction(); 1243 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1244 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1245 } 1246 1247 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1248 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1249 } 1250 1251 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1252 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1253 } 1254 1255 /// emitPrologue - Push callee-saved registers onto the stack, which 1256 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1257 /// space for local variables. Also emit labels used by the exception handler to 1258 /// generate the exception handling frames. 1259 1260 /* 1261 Here's a gist of what gets emitted: 1262 1263 ; Establish frame pointer, if needed 1264 [if needs FP] 1265 push %rbp 1266 .cfi_def_cfa_offset 16 1267 .cfi_offset %rbp, -16 1268 .seh_pushreg %rpb 1269 mov %rsp, %rbp 1270 .cfi_def_cfa_register %rbp 1271 1272 ; Spill general-purpose registers 1273 [for all callee-saved GPRs] 1274 pushq %<reg> 1275 [if not needs FP] 1276 .cfi_def_cfa_offset (offset from RETADDR) 1277 .seh_pushreg %<reg> 1278 1279 ; If the required stack alignment > default stack alignment 1280 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1281 ; of unknown size in the stack frame. 1282 [if stack needs re-alignment] 1283 and $MASK, %rsp 1284 1285 ; Allocate space for locals 1286 [if target is Windows and allocated space > 4096 bytes] 1287 ; Windows needs special care for allocations larger 1288 ; than one page. 1289 mov $NNN, %rax 1290 call ___chkstk_ms/___chkstk 1291 sub %rax, %rsp 1292 [else] 1293 sub $NNN, %rsp 1294 1295 [if needs FP] 1296 .seh_stackalloc (size of XMM spill slots) 1297 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1298 [else] 1299 .seh_stackalloc NNN 1300 1301 ; Spill XMMs 1302 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1303 ; they may get spilled on any platform, if the current function 1304 ; calls @llvm.eh.unwind.init 1305 [if needs FP] 1306 [for all callee-saved XMM registers] 1307 movaps %<xmm reg>, -MMM(%rbp) 1308 [for all callee-saved XMM registers] 1309 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1310 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1311 [else] 1312 [for all callee-saved XMM registers] 1313 movaps %<xmm reg>, KKK(%rsp) 1314 [for all callee-saved XMM registers] 1315 .seh_savexmm %<xmm reg>, KKK 1316 1317 .seh_endprologue 1318 1319 [if needs base pointer] 1320 mov %rsp, %rbx 1321 [if needs to restore base pointer] 1322 mov %rsp, -MMM(%rbp) 1323 1324 ; Emit CFI info 1325 [if needs FP] 1326 [for all callee-saved registers] 1327 .cfi_offset %<reg>, (offset from %rbp) 1328 [else] 1329 .cfi_def_cfa_offset (offset from RETADDR) 1330 [for all callee-saved registers] 1331 .cfi_offset %<reg>, (offset from %rsp) 1332 1333 Notes: 1334 - .seh directives are emitted only for Windows 64 ABI 1335 - .cv_fpo directives are emitted on win32 when emitting CodeView 1336 - .cfi directives are emitted for all other ABIs 1337 - for 32-bit code, substitute %e?? registers for %r?? 1338 */ 1339 1340 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1341 MachineBasicBlock &MBB) const { 1342 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1343 "MF used frame lowering for wrong subtarget"); 1344 MachineBasicBlock::iterator MBBI = MBB.begin(); 1345 MachineFrameInfo &MFI = MF.getFrameInfo(); 1346 const Function &Fn = MF.getFunction(); 1347 MachineModuleInfo &MMI = MF.getMMI(); 1348 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1349 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1350 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1351 bool IsFunclet = MBB.isEHFuncletEntry(); 1352 EHPersonality Personality = EHPersonality::Unknown; 1353 if (Fn.hasPersonalityFn()) 1354 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1355 bool FnHasClrFunclet = 1356 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1357 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1358 bool HasFP = hasFP(MF); 1359 bool IsWin64Prologue = isWin64Prologue(MF); 1360 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1361 // FIXME: Emit FPO data for EH funclets. 1362 bool NeedsWinFPO = 1363 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1364 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1365 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1366 Register FramePtr = TRI->getFrameRegister(MF); 1367 const Register MachineFramePtr = 1368 STI.isTarget64BitILP32() 1369 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1370 Register BasePtr = TRI->getBaseRegister(); 1371 bool HasWinCFI = false; 1372 1373 // Debug location must be unknown since the first debug location is used 1374 // to determine the end of the prologue. 1375 DebugLoc DL; 1376 1377 // Add RETADDR move area to callee saved frame size. 1378 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1379 if (TailCallReturnAddrDelta && IsWin64Prologue) 1380 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1381 1382 if (TailCallReturnAddrDelta < 0) 1383 X86FI->setCalleeSavedFrameSize( 1384 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1385 1386 const bool EmitStackProbeCall = 1387 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1388 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1389 1390 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1391 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), 1392 MachineFramePtr) 1393 .addUse(MachineFramePtr) 1394 .addImm(60) 1395 .setMIFlag(MachineInstr::FrameSetup); 1396 } 1397 1398 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1399 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1400 // stack alignment. 1401 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1402 Fn.arg_size() == 2) { 1403 StackSize += 8; 1404 MFI.setStackSize(StackSize); 1405 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1406 } 1407 1408 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1409 // function, and use up to 128 bytes of stack space, don't have a frame 1410 // pointer, calls, or dynamic alloca then we do not need to adjust the 1411 // stack pointer (we fit in the Red Zone). We also check that we don't 1412 // push and pop from the stack. 1413 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1414 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1415 !MFI.adjustsStack() && // No calls. 1416 !EmitStackProbeCall && // No stack probes. 1417 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1418 !MF.shouldSplitStack()) { // Regular stack 1419 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1420 if (HasFP) MinSize += SlotSize; 1421 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1422 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1423 MFI.setStackSize(StackSize); 1424 } 1425 1426 // Insert stack pointer adjustment for later moving of return addr. Only 1427 // applies to tail call optimized functions where the callee argument stack 1428 // size is bigger than the callers. 1429 if (TailCallReturnAddrDelta < 0) { 1430 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1431 /*InEpilogue=*/false) 1432 .setMIFlag(MachineInstr::FrameSetup); 1433 } 1434 1435 // Mapping for machine moves: 1436 // 1437 // DST: VirtualFP AND 1438 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1439 // ELSE => DW_CFA_def_cfa 1440 // 1441 // SRC: VirtualFP AND 1442 // DST: Register => DW_CFA_def_cfa_register 1443 // 1444 // ELSE 1445 // OFFSET < 0 => DW_CFA_offset_extended_sf 1446 // REG < 64 => DW_CFA_offset + Reg 1447 // ELSE => DW_CFA_offset_extended 1448 1449 uint64_t NumBytes = 0; 1450 int stackGrowth = -SlotSize; 1451 1452 // Find the funclet establisher parameter 1453 Register Establisher = X86::NoRegister; 1454 if (IsClrFunclet) 1455 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1456 else if (IsFunclet) 1457 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1458 1459 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1460 // Immediately spill establisher into the home slot. 1461 // The runtime cares about this. 1462 // MOV64mr %rdx, 16(%rsp) 1463 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1464 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1465 .addReg(Establisher) 1466 .setMIFlag(MachineInstr::FrameSetup); 1467 MBB.addLiveIn(Establisher); 1468 } 1469 1470 if (HasFP) { 1471 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1472 1473 // Calculate required stack adjustment. 1474 uint64_t FrameSize = StackSize - SlotSize; 1475 // If required, include space for extra hidden slot for stashing base pointer. 1476 if (X86FI->getRestoreBasePointer()) 1477 FrameSize += SlotSize; 1478 1479 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1480 1481 // Callee-saved registers are pushed on stack before the stack is realigned. 1482 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1483 NumBytes = alignTo(NumBytes, MaxAlign); 1484 1485 // Save EBP/RBP into the appropriate stack slot. 1486 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1487 .addReg(MachineFramePtr, RegState::Kill) 1488 .setMIFlag(MachineInstr::FrameSetup); 1489 1490 if (NeedsDwarfCFI) { 1491 // Mark the place where EBP/RBP was saved. 1492 // Define the current CFA rule to use the provided offset. 1493 assert(StackSize); 1494 BuildCFI(MBB, MBBI, DL, 1495 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1496 1497 // Change the rule for the FramePtr to be an "offset" rule. 1498 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1499 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1500 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1501 } 1502 1503 if (NeedsWinCFI) { 1504 HasWinCFI = true; 1505 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1506 .addImm(FramePtr) 1507 .setMIFlag(MachineInstr::FrameSetup); 1508 } 1509 1510 if (!IsFunclet) { 1511 if (X86FI->hasSwiftAsyncContext()) { 1512 const auto &Attrs = MF.getFunction().getAttributes(); 1513 1514 // Before we update the live frame pointer we have to ensure there's a 1515 // valid (or null) asynchronous context in its slot just before FP in 1516 // the frame record, so store it now. 1517 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1518 // We have an initial context in r14, store it just before the frame 1519 // pointer. 1520 MBB.addLiveIn(X86::R14); 1521 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1522 .addReg(X86::R14) 1523 .setMIFlag(MachineInstr::FrameSetup); 1524 } else { 1525 // No initial context, store null so that there's no pointer that 1526 // could be misused. 1527 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1528 .addImm(0) 1529 .setMIFlag(MachineInstr::FrameSetup); 1530 } 1531 1532 if (NeedsWinCFI) { 1533 HasWinCFI = true; 1534 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1535 .addImm(X86::R14) 1536 .setMIFlag(MachineInstr::FrameSetup); 1537 } 1538 1539 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1540 .addUse(X86::RSP) 1541 .addImm(1) 1542 .addUse(X86::NoRegister) 1543 .addImm(8) 1544 .addUse(X86::NoRegister) 1545 .setMIFlag(MachineInstr::FrameSetup); 1546 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1547 .addUse(X86::RSP) 1548 .addImm(8) 1549 .setMIFlag(MachineInstr::FrameSetup); 1550 } 1551 1552 if (!IsWin64Prologue && !IsFunclet) { 1553 // Update EBP with the new base value. 1554 if (!X86FI->hasSwiftAsyncContext()) 1555 BuildMI(MBB, MBBI, DL, 1556 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1557 FramePtr) 1558 .addReg(StackPtr) 1559 .setMIFlag(MachineInstr::FrameSetup); 1560 1561 if (SaveArgs && !Fn.arg_empty()) { 1562 ArrayRef<MCPhysReg> GPRs = 1563 get64BitArgumentGPRs(Fn.getCallingConv(), STI); 1564 unsigned arg_size = Fn.arg_size(); 1565 unsigned RI = 0; 1566 int64_t SaveSize = 0; 1567 1568 if (Fn.hasStructRetAttr()) { 1569 GPRs = GPRs.drop_front(1); 1570 arg_size--; 1571 } 1572 1573 for (MCPhysReg Reg : GPRs) { 1574 if (++RI > arg_size) 1575 break; 1576 1577 SaveSize += SlotSize; 1578 1579 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1580 .addReg(Reg) 1581 .setMIFlag(MachineInstr::FrameSetup); 1582 } 1583 1584 // Realign the stack. PUSHes are the most space efficient. 1585 while (SaveSize % getStackAlignment()) { 1586 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1587 .addReg(GPRs.front()) 1588 .setMIFlag(MachineInstr::FrameSetup); 1589 1590 SaveSize += SlotSize; 1591 } 1592 1593 //dlg StackSize -= SaveSize; 1594 //dlg MFI.setStackSize(StackSize); 1595 X86FI->setSaveArgSize(SaveSize); 1596 } 1597 1598 if (NeedsDwarfCFI) { 1599 // Mark effective beginning of when frame pointer becomes valid. 1600 // Define the current CFA to use the EBP/RBP register. 1601 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1602 BuildCFI( 1603 MBB, MBBI, DL, 1604 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); 1605 } 1606 1607 if (NeedsWinFPO) { 1608 // .cv_fpo_setframe $FramePtr 1609 HasWinCFI = true; 1610 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1611 .addImm(FramePtr) 1612 .addImm(0) 1613 .setMIFlag(MachineInstr::FrameSetup); 1614 } 1615 } 1616 } 1617 } else { 1618 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1619 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1620 } 1621 1622 // Update the offset adjustment, which is mainly used by codeview to translate 1623 // from ESP to VFRAME relative local variable offsets. 1624 if (!IsFunclet) { 1625 if (HasFP && TRI->hasStackRealignment(MF)) 1626 MFI.setOffsetAdjustment(-NumBytes); 1627 else 1628 MFI.setOffsetAdjustment(-StackSize); 1629 } 1630 1631 // For EH funclets, only allocate enough space for outgoing calls. Save the 1632 // NumBytes value that we would've used for the parent frame. 1633 unsigned ParentFrameNumBytes = NumBytes; 1634 if (IsFunclet) 1635 NumBytes = getWinEHFuncletFrameSize(MF); 1636 1637 // Skip the callee-saved push instructions. 1638 bool PushedRegs = false; 1639 int StackOffset = 2 * stackGrowth; 1640 1641 while (MBBI != MBB.end() && 1642 MBBI->getFlag(MachineInstr::FrameSetup) && 1643 (MBBI->getOpcode() == X86::PUSH32r || 1644 MBBI->getOpcode() == X86::PUSH64r)) { 1645 PushedRegs = true; 1646 Register Reg = MBBI->getOperand(0).getReg(); 1647 ++MBBI; 1648 1649 if (!HasFP && NeedsDwarfCFI) { 1650 // Mark callee-saved push instruction. 1651 // Define the current CFA rule to use the provided offset. 1652 assert(StackSize); 1653 BuildCFI(MBB, MBBI, DL, 1654 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1655 StackOffset += stackGrowth; 1656 } 1657 1658 if (NeedsWinCFI) { 1659 HasWinCFI = true; 1660 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1661 .addImm(Reg) 1662 .setMIFlag(MachineInstr::FrameSetup); 1663 } 1664 } 1665 1666 // Realign stack after we pushed callee-saved registers (so that we'll be 1667 // able to calculate their offsets from the frame pointer). 1668 // Don't do this for Win64, it needs to realign the stack after the prologue. 1669 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1670 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1671 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1672 1673 if (NeedsWinCFI) { 1674 HasWinCFI = true; 1675 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1676 .addImm(MaxAlign) 1677 .setMIFlag(MachineInstr::FrameSetup); 1678 } 1679 } 1680 1681 // If there is an SUB32ri of ESP immediately before this instruction, merge 1682 // the two. This can be the case when tail call elimination is enabled and 1683 // the callee has more arguments then the caller. 1684 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1685 1686 // Adjust stack pointer: ESP -= numbytes. 1687 1688 // Windows and cygwin/mingw require a prologue helper routine when allocating 1689 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1690 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1691 // stack and adjust the stack pointer in one go. The 64-bit version of 1692 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1693 // responsible for adjusting the stack pointer. Touching the stack at 4K 1694 // increments is necessary to ensure that the guard pages used by the OS 1695 // virtual memory manager are allocated in correct sequence. 1696 uint64_t AlignedNumBytes = NumBytes; 1697 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1698 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1699 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1700 assert(!X86FI->getUsesRedZone() && 1701 "The Red Zone is not accounted for in stack probes"); 1702 1703 // Check whether EAX is livein for this block. 1704 bool isEAXAlive = isEAXLiveIn(MBB); 1705 1706 if (isEAXAlive) { 1707 if (Is64Bit) { 1708 // Save RAX 1709 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1710 .addReg(X86::RAX, RegState::Kill) 1711 .setMIFlag(MachineInstr::FrameSetup); 1712 } else { 1713 // Save EAX 1714 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1715 .addReg(X86::EAX, RegState::Kill) 1716 .setMIFlag(MachineInstr::FrameSetup); 1717 } 1718 } 1719 1720 if (Is64Bit) { 1721 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1722 // Function prologue is responsible for adjusting the stack pointer. 1723 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1724 if (isUInt<32>(Alloc)) { 1725 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1726 .addImm(Alloc) 1727 .setMIFlag(MachineInstr::FrameSetup); 1728 } else if (isInt<32>(Alloc)) { 1729 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1730 .addImm(Alloc) 1731 .setMIFlag(MachineInstr::FrameSetup); 1732 } else { 1733 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1734 .addImm(Alloc) 1735 .setMIFlag(MachineInstr::FrameSetup); 1736 } 1737 } else { 1738 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1739 // We'll also use 4 already allocated bytes for EAX. 1740 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1741 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1742 .setMIFlag(MachineInstr::FrameSetup); 1743 } 1744 1745 // Call __chkstk, __chkstk_ms, or __alloca. 1746 emitStackProbe(MF, MBB, MBBI, DL, true); 1747 1748 if (isEAXAlive) { 1749 // Restore RAX/EAX 1750 MachineInstr *MI; 1751 if (Is64Bit) 1752 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1753 StackPtr, false, NumBytes - 8); 1754 else 1755 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1756 StackPtr, false, NumBytes - 4); 1757 MI->setFlag(MachineInstr::FrameSetup); 1758 MBB.insert(MBBI, MI); 1759 } 1760 } else if (NumBytes) { 1761 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1762 } 1763 1764 if (NeedsWinCFI && NumBytes) { 1765 HasWinCFI = true; 1766 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1767 .addImm(NumBytes) 1768 .setMIFlag(MachineInstr::FrameSetup); 1769 } 1770 1771 int SEHFrameOffset = 0; 1772 unsigned SPOrEstablisher; 1773 if (IsFunclet) { 1774 if (IsClrFunclet) { 1775 // The establisher parameter passed to a CLR funclet is actually a pointer 1776 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1777 // to find the root function establisher frame by loading the PSPSym from 1778 // the intermediate frame. 1779 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1780 MachinePointerInfo NoInfo; 1781 MBB.addLiveIn(Establisher); 1782 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1783 Establisher, false, PSPSlotOffset) 1784 .addMemOperand(MF.getMachineMemOperand( 1785 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1786 ; 1787 // Save the root establisher back into the current funclet's (mostly 1788 // empty) frame, in case a sub-funclet or the GC needs it. 1789 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1790 false, PSPSlotOffset) 1791 .addReg(Establisher) 1792 .addMemOperand(MF.getMachineMemOperand( 1793 NoInfo, 1794 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1795 SlotSize, Align(SlotSize))); 1796 } 1797 SPOrEstablisher = Establisher; 1798 } else { 1799 SPOrEstablisher = StackPtr; 1800 } 1801 1802 if (IsWin64Prologue && HasFP) { 1803 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1804 // this calculation on the incoming establisher, which holds the value of 1805 // RSP from the parent frame at the end of the prologue. 1806 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1807 if (SEHFrameOffset) 1808 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1809 SPOrEstablisher, false, SEHFrameOffset); 1810 else 1811 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1812 .addReg(SPOrEstablisher); 1813 1814 // If this is not a funclet, emit the CFI describing our frame pointer. 1815 if (NeedsWinCFI && !IsFunclet) { 1816 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1817 HasWinCFI = true; 1818 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1819 .addImm(FramePtr) 1820 .addImm(SEHFrameOffset) 1821 .setMIFlag(MachineInstr::FrameSetup); 1822 if (isAsynchronousEHPersonality(Personality)) 1823 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1824 } 1825 } else if (IsFunclet && STI.is32Bit()) { 1826 // Reset EBP / ESI to something good for funclets. 1827 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1828 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1829 // into the registration node so that the runtime will restore it for us. 1830 if (!MBB.isCleanupFuncletEntry()) { 1831 assert(Personality == EHPersonality::MSVC_CXX); 1832 Register FrameReg; 1833 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1834 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1835 // ESP is the first field, so no extra displacement is needed. 1836 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1837 false, EHRegOffset) 1838 .addReg(X86::ESP); 1839 } 1840 } 1841 1842 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1843 const MachineInstr &FrameInstr = *MBBI; 1844 ++MBBI; 1845 1846 if (NeedsWinCFI) { 1847 int FI; 1848 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1849 if (X86::FR64RegClass.contains(Reg)) { 1850 int Offset; 1851 Register IgnoredFrameReg; 1852 if (IsWin64Prologue && IsFunclet) 1853 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1854 else 1855 Offset = 1856 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1857 SEHFrameOffset; 1858 1859 HasWinCFI = true; 1860 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1861 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1862 .addImm(Reg) 1863 .addImm(Offset) 1864 .setMIFlag(MachineInstr::FrameSetup); 1865 } 1866 } 1867 } 1868 } 1869 1870 if (NeedsWinCFI && HasWinCFI) 1871 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1872 .setMIFlag(MachineInstr::FrameSetup); 1873 1874 if (FnHasClrFunclet && !IsFunclet) { 1875 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1876 // immediately after the prolog) into the PSPSlot so that funclets 1877 // and the GC can recover it. 1878 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1879 auto PSPInfo = MachinePointerInfo::getFixedStack( 1880 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1881 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1882 PSPSlotOffset) 1883 .addReg(StackPtr) 1884 .addMemOperand(MF.getMachineMemOperand( 1885 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1886 SlotSize, Align(SlotSize))); 1887 } 1888 1889 // Realign stack after we spilled callee-saved registers (so that we'll be 1890 // able to calculate their offsets from the frame pointer). 1891 // Win64 requires aligning the stack after the prologue. 1892 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 1893 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1894 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1895 } 1896 1897 // We already dealt with stack realignment and funclets above. 1898 if (IsFunclet && STI.is32Bit()) 1899 return; 1900 1901 // If we need a base pointer, set it up here. It's whatever the value 1902 // of the stack pointer is at this point. Any variable size objects 1903 // will be allocated after this, so we can still use the base pointer 1904 // to reference locals. 1905 if (TRI->hasBasePointer(MF)) { 1906 // Update the base pointer with the current stack pointer. 1907 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1908 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1909 .addReg(SPOrEstablisher) 1910 .setMIFlag(MachineInstr::FrameSetup); 1911 if (X86FI->getRestoreBasePointer()) { 1912 // Stash value of base pointer. Saving RSP instead of EBP shortens 1913 // dependence chain. Used by SjLj EH. 1914 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1915 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1916 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1917 .addReg(SPOrEstablisher) 1918 .setMIFlag(MachineInstr::FrameSetup); 1919 } 1920 1921 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1922 // Stash the value of the frame pointer relative to the base pointer for 1923 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1924 // it recovers the frame pointer from the base pointer rather than the 1925 // other way around. 1926 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1927 Register UsedReg; 1928 int Offset = 1929 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 1930 .getFixed(); 1931 assert(UsedReg == BasePtr); 1932 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1933 .addReg(FramePtr) 1934 .setMIFlag(MachineInstr::FrameSetup); 1935 } 1936 } 1937 1938 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1939 // Mark end of stack pointer adjustment. 1940 if (!HasFP && NumBytes) { 1941 // Define the current CFA rule to use the provided offset. 1942 assert(StackSize); 1943 BuildCFI( 1944 MBB, MBBI, DL, 1945 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1946 } 1947 1948 // Emit DWARF info specifying the offsets of the callee-saved registers. 1949 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1950 } 1951 1952 // X86 Interrupt handling function cannot assume anything about the direction 1953 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1954 // in each prologue of interrupt handler function. 1955 // 1956 // FIXME: Create "cld" instruction only in these cases: 1957 // 1. The interrupt handling function uses any of the "rep" instructions. 1958 // 2. Interrupt handling function calls another function. 1959 // 1960 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1961 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1962 .setMIFlag(MachineInstr::FrameSetup); 1963 1964 // At this point we know if the function has WinCFI or not. 1965 MF.setHasWinCFI(HasWinCFI); 1966 } 1967 1968 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1969 const MachineFunction &MF) const { 1970 // We can't use LEA instructions for adjusting the stack pointer if we don't 1971 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1972 // to deallocate the stack. 1973 // This means that we can use LEA for SP in two situations: 1974 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1975 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1976 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1977 } 1978 1979 static bool isFuncletReturnInstr(MachineInstr &MI) { 1980 switch (MI.getOpcode()) { 1981 case X86::CATCHRET: 1982 case X86::CLEANUPRET: 1983 return true; 1984 default: 1985 return false; 1986 } 1987 llvm_unreachable("impossible"); 1988 } 1989 1990 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1991 // stack. It holds a pointer to the bottom of the root function frame. The 1992 // establisher frame pointer passed to a nested funclet may point to the 1993 // (mostly empty) frame of its parent funclet, but it will need to find 1994 // the frame of the root function to access locals. To facilitate this, 1995 // every funclet copies the pointer to the bottom of the root function 1996 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1997 // same offset for the PSPSym in the root function frame that's used in the 1998 // funclets' frames allows each funclet to dynamically accept any ancestor 1999 // frame as its establisher argument (the runtime doesn't guarantee the 2000 // immediate parent for some reason lost to history), and also allows the GC, 2001 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2002 // frame with only a single offset reported for the entire method. 2003 unsigned 2004 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2005 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2006 Register SPReg; 2007 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2008 /*IgnoreSPUpdates*/ true) 2009 .getFixed(); 2010 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2011 return static_cast<unsigned>(Offset); 2012 } 2013 2014 unsigned 2015 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2016 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2017 // This is the size of the pushed CSRs. 2018 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2019 // This is the size of callee saved XMMs. 2020 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2021 unsigned XMMSize = WinEHXMMSlotInfo.size() * 2022 TRI->getSpillSize(X86::VR128RegClass); 2023 // This is the amount of stack a funclet needs to allocate. 2024 unsigned UsedSize; 2025 EHPersonality Personality = 2026 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2027 if (Personality == EHPersonality::CoreCLR) { 2028 // CLR funclets need to hold enough space to include the PSPSym, at the 2029 // same offset from the stack pointer (immediately after the prolog) as it 2030 // resides at in the main function. 2031 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2032 } else { 2033 // Other funclets just need enough stack for outgoing call arguments. 2034 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2035 } 2036 // RBP is not included in the callee saved register block. After pushing RBP, 2037 // everything is 16 byte aligned. Everything we allocate before an outgoing 2038 // call must also be 16 byte aligned. 2039 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2040 // Subtract out the size of the callee saved registers. This is how much stack 2041 // each funclet will allocate. 2042 return FrameSizeMinusRBP + XMMSize - CSSize; 2043 } 2044 2045 static bool isTailCallOpcode(unsigned Opc) { 2046 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2047 Opc == X86::TCRETURNmi || 2048 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2049 Opc == X86::TCRETURNmi64; 2050 } 2051 2052 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2053 MachineBasicBlock &MBB) const { 2054 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2055 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2056 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2057 MachineBasicBlock::iterator MBBI = Terminator; 2058 DebugLoc DL; 2059 if (MBBI != MBB.end()) 2060 DL = MBBI->getDebugLoc(); 2061 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2062 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2063 Register FramePtr = TRI->getFrameRegister(MF); 2064 Register MachineFramePtr = 2065 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2066 2067 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2068 bool NeedsWin64CFI = 2069 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2070 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2071 2072 // Get the number of bytes to allocate from the FrameInfo. 2073 uint64_t StackSize = MFI.getStackSize(); 2074 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2075 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2076 bool HasFP = hasFP(MF); 2077 uint64_t NumBytes = 0; 2078 2079 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2080 !MF.getTarget().getTargetTriple().isOSWindows()) && 2081 MF.needsFrameMoves(); 2082 2083 if (IsFunclet) { 2084 assert(HasFP && "EH funclets without FP not yet implemented"); 2085 NumBytes = getWinEHFuncletFrameSize(MF); 2086 } else if (HasFP) { 2087 // Calculate required stack adjustment. 2088 uint64_t FrameSize = StackSize - SlotSize; 2089 NumBytes = FrameSize - CSSize; 2090 2091 // Callee-saved registers were pushed on stack before the stack was 2092 // realigned. 2093 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2094 NumBytes = alignTo(FrameSize, MaxAlign); 2095 } else { 2096 NumBytes = StackSize - CSSize; 2097 } 2098 uint64_t SEHStackAllocAmt = NumBytes; 2099 2100 // AfterPop is the position to insert .cfi_restore. 2101 MachineBasicBlock::iterator AfterPop = MBBI; 2102 if (HasFP) { 2103 if (X86FI->hasSwiftAsyncContext()) { 2104 // Discard the context. 2105 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2106 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2107 } 2108 2109 if (X86FI->getSaveArgSize()) { 2110 // LEAVE is effectively mov rbp,rsp; pop rbp 2111 BuildMI(MBB, MBBI, DL, TII.get(X86::LEAVE64)) 2112 .setMIFlag(MachineInstr::FrameDestroy); 2113 } else { 2114 // Pop EBP. 2115 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2116 MachineFramePtr) 2117 .setMIFlag(MachineInstr::FrameDestroy); 2118 } 2119 2120 // We need to reset FP to its untagged state on return. Bit 60 is currently 2121 // used to show the presence of an extended frame. 2122 if (X86FI->hasSwiftAsyncContext()) { 2123 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2124 MachineFramePtr) 2125 .addUse(MachineFramePtr) 2126 .addImm(60) 2127 .setMIFlag(MachineInstr::FrameDestroy); 2128 } 2129 2130 if (NeedsDwarfCFI) { 2131 unsigned DwarfStackPtr = 2132 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2133 BuildCFI(MBB, MBBI, DL, 2134 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2135 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2136 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2137 BuildCFI(MBB, AfterPop, DL, 2138 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2139 --MBBI; 2140 --AfterPop; 2141 } 2142 --MBBI; 2143 } 2144 } 2145 2146 MachineBasicBlock::iterator FirstCSPop = MBBI; 2147 // Skip the callee-saved pop instructions. 2148 while (MBBI != MBB.begin()) { 2149 MachineBasicBlock::iterator PI = std::prev(MBBI); 2150 unsigned Opc = PI->getOpcode(); 2151 2152 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2153 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2154 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2155 (Opc != X86::LEAVE64 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2156 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2157 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2158 break; 2159 FirstCSPop = PI; 2160 } 2161 2162 --MBBI; 2163 } 2164 MBBI = FirstCSPop; 2165 2166 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2167 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2168 2169 if (MBBI != MBB.end()) 2170 DL = MBBI->getDebugLoc(); 2171 2172 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2173 // instruction, merge the two instructions. 2174 if (NumBytes || MFI.hasVarSizedObjects()) 2175 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2176 2177 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2178 // slot before popping them off! Same applies for the case, when stack was 2179 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2180 // will not do realignment or dynamic stack allocation. 2181 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2182 !IsFunclet) { 2183 if (TRI->hasStackRealignment(MF)) 2184 MBBI = FirstCSPop; 2185 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2186 uint64_t LEAAmount = 2187 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2188 2189 if (X86FI->hasSwiftAsyncContext()) 2190 LEAAmount -= 16; 2191 2192 // There are only two legal forms of epilogue: 2193 // - add SEHAllocationSize, %rsp 2194 // - lea SEHAllocationSize(%FramePtr), %rsp 2195 // 2196 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2197 // However, we may use this sequence if we have a frame pointer because the 2198 // effects of the prologue can safely be undone. 2199 if (LEAAmount != 0) { 2200 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2201 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2202 FramePtr, false, LEAAmount); 2203 --MBBI; 2204 } else { 2205 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2206 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2207 .addReg(FramePtr); 2208 --MBBI; 2209 } 2210 } else if (NumBytes) { 2211 // Adjust stack pointer back: ESP += numbytes. 2212 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2213 if (!hasFP(MF) && NeedsDwarfCFI) { 2214 // Define the current CFA rule to use the provided offset. 2215 BuildCFI(MBB, MBBI, DL, 2216 MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize)); 2217 } 2218 --MBBI; 2219 } 2220 2221 // Windows unwinder will not invoke function's exception handler if IP is 2222 // either in prologue or in epilogue. This behavior causes a problem when a 2223 // call immediately precedes an epilogue, because the return address points 2224 // into the epilogue. To cope with that, we insert an epilogue marker here, 2225 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2226 // final emitted code. 2227 if (NeedsWin64CFI && MF.hasWinCFI()) 2228 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2229 2230 if (!hasFP(MF) && NeedsDwarfCFI) { 2231 MBBI = FirstCSPop; 2232 int64_t Offset = -CSSize - SlotSize; 2233 // Mark callee-saved pop instruction. 2234 // Define the current CFA rule to use the provided offset. 2235 while (MBBI != MBB.end()) { 2236 MachineBasicBlock::iterator PI = MBBI; 2237 unsigned Opc = PI->getOpcode(); 2238 ++MBBI; 2239 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2240 Offset += SlotSize; 2241 BuildCFI(MBB, MBBI, DL, 2242 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2243 } 2244 } 2245 } 2246 2247 // Emit DWARF info specifying the restores of the callee-saved registers. 2248 // For epilogue with return inside or being other block without successor, 2249 // no need to generate .cfi_restore for callee-saved registers. 2250 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) { 2251 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2252 } 2253 2254 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2255 // Add the return addr area delta back since we are not tail calling. 2256 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2257 assert(Offset >= 0 && "TCDelta should never be positive"); 2258 if (Offset) { 2259 // Check for possible merge with preceding ADD instruction. 2260 Offset += mergeSPUpdates(MBB, Terminator, true); 2261 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2262 } 2263 } 2264 2265 // Emit tilerelease for AMX kernel. 2266 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2267 const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID); 2268 for (unsigned I = 0; I < RC->getNumRegs(); I++) 2269 if (!MRI.reg_nodbg_empty(X86::TMM0 + I)) { 2270 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2271 break; 2272 } 2273 } 2274 2275 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2276 int FI, 2277 Register &FrameReg) const { 2278 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2279 2280 bool IsFixed = MFI.isFixedObjectIndex(FI); 2281 // We can't calculate offset from frame pointer if the stack is realigned, 2282 // so enforce usage of stack/base pointer. The base pointer is used when we 2283 // have dynamic allocas in addition to dynamic realignment. 2284 if (TRI->hasBasePointer(MF)) 2285 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2286 else if (TRI->hasStackRealignment(MF)) 2287 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2288 else 2289 FrameReg = TRI->getFrameRegister(MF); 2290 2291 // Offset will hold the offset from the stack pointer at function entry to the 2292 // object. 2293 // We need to factor in additional offsets applied during the prologue to the 2294 // frame, base, and stack pointer depending on which is used. 2295 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2296 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2297 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2298 uint64_t StackSize = MFI.getStackSize(); 2299 bool HasFP = hasFP(MF); 2300 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2301 int64_t FPDelta = 0; 2302 2303 // In an x86 interrupt, remove the offset we added to account for the return 2304 // address from any stack object allocated in the caller's frame. Interrupts 2305 // do not have a standard return address. Fixed objects in the current frame, 2306 // such as SSE register spills, should not get this treatment. 2307 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2308 Offset >= 0) { 2309 Offset += getOffsetOfLocalArea(); 2310 } 2311 2312 if (IsWin64Prologue) { 2313 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2314 2315 // Calculate required stack adjustment. 2316 uint64_t FrameSize = StackSize - SlotSize; 2317 // If required, include space for extra hidden slot for stashing base pointer. 2318 if (X86FI->getRestoreBasePointer()) 2319 FrameSize += SlotSize; 2320 uint64_t NumBytes = FrameSize - CSSize; 2321 2322 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2323 if (FI && FI == X86FI->getFAIndex()) 2324 return StackOffset::getFixed(-SEHFrameOffset); 2325 2326 // FPDelta is the offset from the "traditional" FP location of the old base 2327 // pointer followed by return address and the location required by the 2328 // restricted Win64 prologue. 2329 // Add FPDelta to all offsets below that go through the frame pointer. 2330 FPDelta = FrameSize - SEHFrameOffset; 2331 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2332 "FPDelta isn't aligned per the Win64 ABI!"); 2333 } 2334 2335 if (FI >= 0) 2336 Offset -= X86FI->getSaveArgSize(); 2337 2338 if (TRI->hasBasePointer(MF)) { 2339 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 2340 if (FI < 0) { 2341 // Skip the saved EBP. 2342 return StackOffset::getFixed(Offset + SlotSize + FPDelta); 2343 } else { 2344 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2345 return StackOffset::getFixed(Offset + StackSize); 2346 } 2347 } else if (TRI->hasStackRealignment(MF)) { 2348 if (FI < 0) { 2349 // Skip the saved EBP. 2350 return StackOffset::getFixed(Offset + SlotSize + FPDelta); 2351 } else { 2352 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2353 return StackOffset::getFixed(Offset + StackSize); 2354 } 2355 // FIXME: Support tail calls 2356 } else { 2357 if (!HasFP) 2358 return StackOffset::getFixed(Offset + StackSize); 2359 2360 // Skip the saved EBP. 2361 Offset += SlotSize; 2362 2363 // Skip the RETADDR move area 2364 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2365 if (TailCallReturnAddrDelta < 0) 2366 Offset -= TailCallReturnAddrDelta; 2367 } 2368 2369 return StackOffset::getFixed(Offset + FPDelta); 2370 } 2371 2372 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2373 Register &FrameReg) const { 2374 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2375 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2376 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2377 const auto it = WinEHXMMSlotInfo.find(FI); 2378 2379 if (it == WinEHXMMSlotInfo.end()) 2380 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2381 2382 FrameReg = TRI->getStackRegister(); 2383 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2384 it->second; 2385 } 2386 2387 StackOffset 2388 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2389 Register &FrameReg, 2390 int Adjustment) const { 2391 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2392 FrameReg = TRI->getStackRegister(); 2393 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2394 getOffsetOfLocalArea() + Adjustment); 2395 } 2396 2397 StackOffset 2398 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2399 int FI, Register &FrameReg, 2400 bool IgnoreSPUpdates) const { 2401 2402 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2403 // Does not include any dynamic realign. 2404 const uint64_t StackSize = MFI.getStackSize(); 2405 // LLVM arranges the stack as follows: 2406 // ... 2407 // ARG2 2408 // ARG1 2409 // RETADDR 2410 // PUSH RBP <-- RBP points here 2411 // PUSH CSRs 2412 // ~~~~~~~ <-- possible stack realignment (non-win64) 2413 // ... 2414 // STACK OBJECTS 2415 // ... <-- RSP after prologue points here 2416 // ~~~~~~~ <-- possible stack realignment (win64) 2417 // 2418 // if (hasVarSizedObjects()): 2419 // ... <-- "base pointer" (ESI/RBX) points here 2420 // DYNAMIC ALLOCAS 2421 // ... <-- RSP points here 2422 // 2423 // Case 1: In the simple case of no stack realignment and no dynamic 2424 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2425 // with fixed offsets from RSP. 2426 // 2427 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2428 // stack objects are addressed with RBP and regular stack objects with RSP. 2429 // 2430 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2431 // to address stack arguments for outgoing calls and nothing else. The "base 2432 // pointer" points to local variables, and RBP points to fixed objects. 2433 // 2434 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2435 // answer we give is relative to the SP after the prologue, and not the 2436 // SP in the middle of the function. 2437 2438 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2439 !STI.isTargetWin64()) 2440 return getFrameIndexReference(MF, FI, FrameReg); 2441 2442 // If !hasReservedCallFrame the function might have SP adjustement in the 2443 // body. So, even though the offset is statically known, it depends on where 2444 // we are in the function. 2445 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2446 return getFrameIndexReference(MF, FI, FrameReg); 2447 2448 // We don't handle tail calls, and shouldn't be seeing them either. 2449 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2450 "we don't handle this case!"); 2451 2452 // This is how the math works out: 2453 // 2454 // %rsp grows (i.e. gets lower) left to right. Each box below is 2455 // one word (eight bytes). Obj0 is the stack slot we're trying to 2456 // get to. 2457 // 2458 // ---------------------------------- 2459 // | BP | Obj0 | Obj1 | ... | ObjN | 2460 // ---------------------------------- 2461 // ^ ^ ^ ^ 2462 // A B C E 2463 // 2464 // A is the incoming stack pointer. 2465 // (B - A) is the local area offset (-8 for x86-64) [1] 2466 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2467 // 2468 // |(E - B)| is the StackSize (absolute value, positive). For a 2469 // stack that grown down, this works out to be (B - E). [3] 2470 // 2471 // E is also the value of %rsp after stack has been set up, and we 2472 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2473 // (C - E) == (C - A) - (B - A) + (B - E) 2474 // { Using [1], [2] and [3] above } 2475 // == getObjectOffset - LocalAreaOffset + StackSize 2476 2477 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2478 } 2479 2480 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2481 MachineFunction &MF, const TargetRegisterInfo *TRI, 2482 std::vector<CalleeSavedInfo> &CSI) const { 2483 MachineFrameInfo &MFI = MF.getFrameInfo(); 2484 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2485 2486 unsigned CalleeSavedFrameSize = 0; 2487 unsigned XMMCalleeSavedFrameSize = 0; 2488 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2489 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2490 2491 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2492 2493 if (TailCallReturnAddrDelta < 0) { 2494 // create RETURNADDR area 2495 // arg 2496 // arg 2497 // RETADDR 2498 // { ... 2499 // RETADDR area 2500 // ... 2501 // } 2502 // [EBP] 2503 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2504 TailCallReturnAddrDelta - SlotSize, true); 2505 } 2506 2507 // Spill the BasePtr if it's used. 2508 if (this->TRI->hasBasePointer(MF)) { 2509 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2510 if (MF.hasEHFunclets()) { 2511 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2512 X86FI->setHasSEHFramePtrSave(true); 2513 X86FI->setSEHFramePtrSaveIndex(FI); 2514 } 2515 } 2516 2517 if (hasFP(MF)) { 2518 // emitPrologue always spills frame register the first thing. 2519 SpillSlotOffset -= SlotSize; 2520 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2521 2522 // The async context lives directly before the frame pointer, and we 2523 // allocate a second slot to preserve stack alignment. 2524 if (X86FI->hasSwiftAsyncContext()) { 2525 SpillSlotOffset -= SlotSize; 2526 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2527 SpillSlotOffset -= SlotSize; 2528 } 2529 2530 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2531 // the frame register, we can delete it from CSI list and not have to worry 2532 // about avoiding it later. 2533 Register FPReg = TRI->getFrameRegister(MF); 2534 for (unsigned i = 0; i < CSI.size(); ++i) { 2535 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2536 CSI.erase(CSI.begin() + i); 2537 break; 2538 } 2539 } 2540 } 2541 2542 // Assign slots for GPRs. It increases frame size. 2543 for (unsigned i = CSI.size(); i != 0; --i) { 2544 unsigned Reg = CSI[i - 1].getReg(); 2545 2546 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2547 continue; 2548 2549 SpillSlotOffset -= SlotSize; 2550 CalleeSavedFrameSize += SlotSize; 2551 2552 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2553 CSI[i - 1].setFrameIdx(SlotIndex); 2554 } 2555 2556 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2557 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2558 2559 // Assign slots for XMMs. 2560 for (unsigned i = CSI.size(); i != 0; --i) { 2561 unsigned Reg = CSI[i - 1].getReg(); 2562 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2563 continue; 2564 2565 // If this is k-register make sure we lookup via the largest legal type. 2566 MVT VT = MVT::Other; 2567 if (X86::VK16RegClass.contains(Reg)) 2568 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2569 2570 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2571 unsigned Size = TRI->getSpillSize(*RC); 2572 Align Alignment = TRI->getSpillAlign(*RC); 2573 // ensure alignment 2574 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2575 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2576 2577 // spill into slot 2578 SpillSlotOffset -= Size; 2579 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2580 CSI[i - 1].setFrameIdx(SlotIndex); 2581 MFI.ensureMaxAlignment(Alignment); 2582 2583 // Save the start offset and size of XMM in stack frame for funclets. 2584 if (X86::VR128RegClass.contains(Reg)) { 2585 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2586 XMMCalleeSavedFrameSize += Size; 2587 } 2588 } 2589 2590 return true; 2591 } 2592 2593 bool X86FrameLowering::spillCalleeSavedRegisters( 2594 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2595 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2596 DebugLoc DL = MBB.findDebugLoc(MI); 2597 2598 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2599 // for us, and there are no XMM CSRs on Win32. 2600 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2601 return true; 2602 2603 // Push GPRs. It increases frame size. 2604 const MachineFunction &MF = *MBB.getParent(); 2605 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2606 for (unsigned i = CSI.size(); i != 0; --i) { 2607 unsigned Reg = CSI[i - 1].getReg(); 2608 2609 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2610 continue; 2611 2612 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2613 bool isLiveIn = MRI.isLiveIn(Reg); 2614 if (!isLiveIn) 2615 MBB.addLiveIn(Reg); 2616 2617 // Decide whether we can add a kill flag to the use. 2618 bool CanKill = !isLiveIn; 2619 // Check if any subregister is live-in 2620 if (CanKill) { 2621 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2622 if (MRI.isLiveIn(*AReg)) { 2623 CanKill = false; 2624 break; 2625 } 2626 } 2627 } 2628 2629 // Do not set a kill flag on values that are also marked as live-in. This 2630 // happens with the @llvm-returnaddress intrinsic and with arguments 2631 // passed in callee saved registers. 2632 // Omitting the kill flags is conservatively correct even if the live-in 2633 // is not used after all. 2634 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2635 .setMIFlag(MachineInstr::FrameSetup); 2636 } 2637 2638 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2639 // It can be done by spilling XMMs to stack frame. 2640 for (unsigned i = CSI.size(); i != 0; --i) { 2641 unsigned Reg = CSI[i-1].getReg(); 2642 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2643 continue; 2644 2645 // If this is k-register make sure we lookup via the largest legal type. 2646 MVT VT = MVT::Other; 2647 if (X86::VK16RegClass.contains(Reg)) 2648 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2649 2650 // Add the callee-saved register as live-in. It's killed at the spill. 2651 MBB.addLiveIn(Reg); 2652 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2653 2654 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2655 TRI); 2656 --MI; 2657 MI->setFlag(MachineInstr::FrameSetup); 2658 ++MI; 2659 } 2660 2661 return true; 2662 } 2663 2664 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2665 MachineBasicBlock::iterator MBBI, 2666 MachineInstr *CatchRet) const { 2667 // SEH shouldn't use catchret. 2668 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2669 MBB.getParent()->getFunction().getPersonalityFn())) && 2670 "SEH should not use CATCHRET"); 2671 const DebugLoc &DL = CatchRet->getDebugLoc(); 2672 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2673 2674 // Fill EAX/RAX with the address of the target block. 2675 if (STI.is64Bit()) { 2676 // LEA64r CatchRetTarget(%rip), %rax 2677 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2678 .addReg(X86::RIP) 2679 .addImm(0) 2680 .addReg(0) 2681 .addMBB(CatchRetTarget) 2682 .addReg(0); 2683 } else { 2684 // MOV32ri $CatchRetTarget, %eax 2685 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2686 .addMBB(CatchRetTarget); 2687 } 2688 2689 // Record that we've taken the address of CatchRetTarget and no longer just 2690 // reference it in a terminator. 2691 CatchRetTarget->setHasAddressTaken(); 2692 } 2693 2694 bool X86FrameLowering::restoreCalleeSavedRegisters( 2695 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2696 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2697 if (CSI.empty()) 2698 return false; 2699 2700 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2701 // Don't restore CSRs in 32-bit EH funclets. Matches 2702 // spillCalleeSavedRegisters. 2703 if (STI.is32Bit()) 2704 return true; 2705 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2706 // funclets. emitEpilogue transforms these to normal jumps. 2707 if (MI->getOpcode() == X86::CATCHRET) { 2708 const Function &F = MBB.getParent()->getFunction(); 2709 bool IsSEH = isAsynchronousEHPersonality( 2710 classifyEHPersonality(F.getPersonalityFn())); 2711 if (IsSEH) 2712 return true; 2713 } 2714 } 2715 2716 DebugLoc DL = MBB.findDebugLoc(MI); 2717 2718 // Reload XMMs from stack frame. 2719 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2720 unsigned Reg = CSI[i].getReg(); 2721 if (X86::GR64RegClass.contains(Reg) || 2722 X86::GR32RegClass.contains(Reg)) 2723 continue; 2724 2725 // If this is k-register make sure we lookup via the largest legal type. 2726 MVT VT = MVT::Other; 2727 if (X86::VK16RegClass.contains(Reg)) 2728 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2729 2730 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2731 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2732 } 2733 2734 // POP GPRs. 2735 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2736 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2737 unsigned Reg = CSI[i].getReg(); 2738 if (!X86::GR64RegClass.contains(Reg) && 2739 !X86::GR32RegClass.contains(Reg)) 2740 continue; 2741 2742 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2743 .setMIFlag(MachineInstr::FrameDestroy); 2744 } 2745 return true; 2746 } 2747 2748 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2749 BitVector &SavedRegs, 2750 RegScavenger *RS) const { 2751 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2752 2753 // Spill the BasePtr if it's used. 2754 if (TRI->hasBasePointer(MF)){ 2755 Register BasePtr = TRI->getBaseRegister(); 2756 if (STI.isTarget64BitILP32()) 2757 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2758 SavedRegs.set(BasePtr); 2759 } 2760 } 2761 2762 static bool 2763 HasNestArgument(const MachineFunction *MF) { 2764 const Function &F = MF->getFunction(); 2765 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2766 I != E; I++) { 2767 if (I->hasNestAttr() && !I->use_empty()) 2768 return true; 2769 } 2770 return false; 2771 } 2772 2773 /// GetScratchRegister - Get a temp register for performing work in the 2774 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2775 /// and the properties of the function either one or two registers will be 2776 /// needed. Set primary to true for the first register, false for the second. 2777 static unsigned 2778 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2779 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2780 2781 // Erlang stuff. 2782 if (CallingConvention == CallingConv::HiPE) { 2783 if (Is64Bit) 2784 return Primary ? X86::R14 : X86::R13; 2785 else 2786 return Primary ? X86::EBX : X86::EDI; 2787 } 2788 2789 if (Is64Bit) { 2790 if (IsLP64) 2791 return Primary ? X86::R11 : X86::R12; 2792 else 2793 return Primary ? X86::R11D : X86::R12D; 2794 } 2795 2796 bool IsNested = HasNestArgument(&MF); 2797 2798 if (CallingConvention == CallingConv::X86_FastCall || 2799 CallingConvention == CallingConv::Fast || 2800 CallingConvention == CallingConv::Tail) { 2801 if (IsNested) 2802 report_fatal_error("Segmented stacks does not support fastcall with " 2803 "nested function."); 2804 return Primary ? X86::EAX : X86::ECX; 2805 } 2806 if (IsNested) 2807 return Primary ? X86::EDX : X86::EAX; 2808 return Primary ? X86::ECX : X86::EAX; 2809 } 2810 2811 // The stack limit in the TCB is set to this many bytes above the actual stack 2812 // limit. 2813 static const uint64_t kSplitStackAvailable = 256; 2814 2815 void X86FrameLowering::adjustForSegmentedStacks( 2816 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2817 MachineFrameInfo &MFI = MF.getFrameInfo(); 2818 uint64_t StackSize; 2819 unsigned TlsReg, TlsOffset; 2820 DebugLoc DL; 2821 2822 // To support shrink-wrapping we would need to insert the new blocks 2823 // at the right place and update the branches to PrologueMBB. 2824 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2825 2826 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2827 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2828 "Scratch register is live-in"); 2829 2830 if (MF.getFunction().isVarArg()) 2831 report_fatal_error("Segmented stacks do not support vararg functions."); 2832 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2833 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2834 !STI.isTargetDragonFly()) 2835 report_fatal_error("Segmented stacks not supported on this platform."); 2836 2837 // Eventually StackSize will be calculated by a link-time pass; which will 2838 // also decide whether checking code needs to be injected into this particular 2839 // prologue. 2840 StackSize = MFI.getStackSize(); 2841 2842 // Do not generate a prologue for leaf functions with a stack of size zero. 2843 // For non-leaf functions we have to allow for the possibility that the 2844 // callis to a non-split function, as in PR37807. This function could also 2845 // take the address of a non-split function. When the linker tries to adjust 2846 // its non-existent prologue, it would fail with an error. Mark the object 2847 // file so that such failures are not errors. See this Go language bug-report 2848 // https://go-review.googlesource.com/c/go/+/148819/ 2849 if (StackSize == 0 && !MFI.hasTailCall()) { 2850 MF.getMMI().setHasNosplitStack(true); 2851 return; 2852 } 2853 2854 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2855 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2856 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2857 bool IsNested = false; 2858 2859 // We need to know if the function has a nest argument only in 64 bit mode. 2860 if (Is64Bit) 2861 IsNested = HasNestArgument(&MF); 2862 2863 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2864 // allocMBB needs to be last (terminating) instruction. 2865 2866 for (const auto &LI : PrologueMBB.liveins()) { 2867 allocMBB->addLiveIn(LI); 2868 checkMBB->addLiveIn(LI); 2869 } 2870 2871 if (IsNested) 2872 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2873 2874 MF.push_front(allocMBB); 2875 MF.push_front(checkMBB); 2876 2877 // When the frame size is less than 256 we just compare the stack 2878 // boundary directly to the value of the stack pointer, per gcc. 2879 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2880 2881 // Read the limit off the current stacklet off the stack_guard location. 2882 if (Is64Bit) { 2883 if (STI.isTargetLinux()) { 2884 TlsReg = X86::FS; 2885 TlsOffset = IsLP64 ? 0x70 : 0x40; 2886 } else if (STI.isTargetDarwin()) { 2887 TlsReg = X86::GS; 2888 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2889 } else if (STI.isTargetWin64()) { 2890 TlsReg = X86::GS; 2891 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2892 } else if (STI.isTargetFreeBSD()) { 2893 TlsReg = X86::FS; 2894 TlsOffset = 0x18; 2895 } else if (STI.isTargetDragonFly()) { 2896 TlsReg = X86::FS; 2897 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2898 } else { 2899 report_fatal_error("Segmented stacks not supported on this platform."); 2900 } 2901 2902 if (CompareStackPointer) 2903 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2904 else 2905 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2906 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2907 2908 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2909 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2910 } else { 2911 if (STI.isTargetLinux()) { 2912 TlsReg = X86::GS; 2913 TlsOffset = 0x30; 2914 } else if (STI.isTargetDarwin()) { 2915 TlsReg = X86::GS; 2916 TlsOffset = 0x48 + 90*4; 2917 } else if (STI.isTargetWin32()) { 2918 TlsReg = X86::FS; 2919 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2920 } else if (STI.isTargetDragonFly()) { 2921 TlsReg = X86::FS; 2922 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2923 } else if (STI.isTargetFreeBSD()) { 2924 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2925 } else { 2926 report_fatal_error("Segmented stacks not supported on this platform."); 2927 } 2928 2929 if (CompareStackPointer) 2930 ScratchReg = X86::ESP; 2931 else 2932 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2933 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2934 2935 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2936 STI.isTargetDragonFly()) { 2937 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2938 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2939 } else if (STI.isTargetDarwin()) { 2940 2941 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2942 unsigned ScratchReg2; 2943 bool SaveScratch2; 2944 if (CompareStackPointer) { 2945 // The primary scratch register is available for holding the TLS offset. 2946 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2947 SaveScratch2 = false; 2948 } else { 2949 // Need to use a second register to hold the TLS offset 2950 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2951 2952 // Unfortunately, with fastcc the second scratch register may hold an 2953 // argument. 2954 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2955 } 2956 2957 // If Scratch2 is live-in then it needs to be saved. 2958 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2959 "Scratch register is live-in and not saved"); 2960 2961 if (SaveScratch2) 2962 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2963 .addReg(ScratchReg2, RegState::Kill); 2964 2965 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2966 .addImm(TlsOffset); 2967 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2968 .addReg(ScratchReg) 2969 .addReg(ScratchReg2).addImm(1).addReg(0) 2970 .addImm(0) 2971 .addReg(TlsReg); 2972 2973 if (SaveScratch2) 2974 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2975 } 2976 } 2977 2978 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2979 // It jumps to normal execution of the function body. 2980 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2981 2982 // On 32 bit we first push the arguments size and then the frame size. On 64 2983 // bit, we pass the stack frame size in r10 and the argument size in r11. 2984 if (Is64Bit) { 2985 // Functions with nested arguments use R10, so it needs to be saved across 2986 // the call to _morestack 2987 2988 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2989 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2990 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2991 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2992 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2993 2994 if (IsNested) 2995 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2996 2997 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2998 .addImm(StackSize); 2999 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 3000 .addImm(X86FI->getArgumentStackSize()); 3001 } else { 3002 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3003 .addImm(X86FI->getArgumentStackSize()); 3004 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3005 .addImm(StackSize); 3006 } 3007 3008 // __morestack is in libgcc 3009 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3010 // Under the large code model, we cannot assume that __morestack lives 3011 // within 2^31 bytes of the call site, so we cannot use pc-relative 3012 // addressing. We cannot perform the call via a temporary register, 3013 // as the rax register may be used to store the static chain, and all 3014 // other suitable registers may be either callee-save or used for 3015 // parameter passing. We cannot use the stack at this point either 3016 // because __morestack manipulates the stack directly. 3017 // 3018 // To avoid these issues, perform an indirect call via a read-only memory 3019 // location containing the address. 3020 // 3021 // This solution is not perfect, as it assumes that the .rodata section 3022 // is laid out within 2^31 bytes of each function body, but this seems 3023 // to be sufficient for JIT. 3024 // FIXME: Add retpoline support and remove the error here.. 3025 if (STI.useIndirectThunkCalls()) 3026 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3027 "code model and thunks not yet implemented."); 3028 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3029 .addReg(X86::RIP) 3030 .addImm(0) 3031 .addReg(0) 3032 .addExternalSymbol("__morestack_addr") 3033 .addReg(0); 3034 MF.getMMI().setUsesMorestackAddr(true); 3035 } else { 3036 if (Is64Bit) 3037 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3038 .addExternalSymbol("__morestack"); 3039 else 3040 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3041 .addExternalSymbol("__morestack"); 3042 } 3043 3044 if (IsNested) 3045 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3046 else 3047 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3048 3049 allocMBB->addSuccessor(&PrologueMBB); 3050 3051 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3052 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3053 3054 #ifdef EXPENSIVE_CHECKS 3055 MF.verify(); 3056 #endif 3057 } 3058 3059 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3060 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3061 /// to fields it needs, through a named metadata node "hipe.literals" containing 3062 /// name-value pairs. 3063 static unsigned getHiPELiteral( 3064 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3065 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3066 MDNode *Node = HiPELiteralsMD->getOperand(i); 3067 if (Node->getNumOperands() != 2) continue; 3068 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3069 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3070 if (!NodeName || !NodeVal) continue; 3071 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3072 if (ValConst && NodeName->getString() == LiteralName) { 3073 return ValConst->getZExtValue(); 3074 } 3075 } 3076 3077 report_fatal_error("HiPE literal " + LiteralName 3078 + " required but not provided"); 3079 } 3080 3081 // Return true if there are no non-ehpad successors to MBB and there are no 3082 // non-meta instructions between MBBI and MBB.end(). 3083 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3084 MachineBasicBlock::const_iterator MBBI) { 3085 return llvm::all_of( 3086 MBB.successors(), 3087 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3088 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3089 return MI.isMetaInstruction(); 3090 }); 3091 } 3092 3093 /// Erlang programs may need a special prologue to handle the stack size they 3094 /// might need at runtime. That is because Erlang/OTP does not implement a C 3095 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3096 /// (for more information see Eric Stenman's Ph.D. thesis: 3097 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3098 /// 3099 /// CheckStack: 3100 /// temp0 = sp - MaxStack 3101 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3102 /// OldStart: 3103 /// ... 3104 /// IncStack: 3105 /// call inc_stack # doubles the stack space 3106 /// temp0 = sp - MaxStack 3107 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3108 void X86FrameLowering::adjustForHiPEPrologue( 3109 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3110 MachineFrameInfo &MFI = MF.getFrameInfo(); 3111 DebugLoc DL; 3112 3113 // To support shrink-wrapping we would need to insert the new blocks 3114 // at the right place and update the branches to PrologueMBB. 3115 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3116 3117 // HiPE-specific values 3118 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3119 ->getNamedMetadata("hipe.literals"); 3120 if (!HiPELiteralsMD) 3121 report_fatal_error( 3122 "Can't generate HiPE prologue without runtime parameters"); 3123 const unsigned HipeLeafWords 3124 = getHiPELiteral(HiPELiteralsMD, 3125 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3126 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3127 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3128 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3129 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3130 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3131 3132 assert(STI.isTargetLinux() && 3133 "HiPE prologue is only supported on Linux operating systems."); 3134 3135 // Compute the largest caller's frame that is needed to fit the callees' 3136 // frames. This 'MaxStack' is computed from: 3137 // 3138 // a) the fixed frame size, which is the space needed for all spilled temps, 3139 // b) outgoing on-stack parameter areas, and 3140 // c) the minimum stack space this function needs to make available for the 3141 // functions it calls (a tunable ABI property). 3142 if (MFI.hasCalls()) { 3143 unsigned MoreStackForCalls = 0; 3144 3145 for (auto &MBB : MF) { 3146 for (auto &MI : MBB) { 3147 if (!MI.isCall()) 3148 continue; 3149 3150 // Get callee operand. 3151 const MachineOperand &MO = MI.getOperand(0); 3152 3153 // Only take account of global function calls (no closures etc.). 3154 if (!MO.isGlobal()) 3155 continue; 3156 3157 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3158 if (!F) 3159 continue; 3160 3161 // Do not update 'MaxStack' for primitive and built-in functions 3162 // (encoded with names either starting with "erlang."/"bif_" or not 3163 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3164 // "_", such as the BIF "suspend_0") as they are executed on another 3165 // stack. 3166 if (F->getName().find("erlang.") != StringRef::npos || 3167 F->getName().find("bif_") != StringRef::npos || 3168 F->getName().find_first_of("._") == StringRef::npos) 3169 continue; 3170 3171 unsigned CalleeStkArity = 3172 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3173 if (HipeLeafWords - 1 > CalleeStkArity) 3174 MoreStackForCalls = std::max(MoreStackForCalls, 3175 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3176 } 3177 } 3178 MaxStack += MoreStackForCalls; 3179 } 3180 3181 // If the stack frame needed is larger than the guaranteed then runtime checks 3182 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3183 if (MaxStack > Guaranteed) { 3184 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3185 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3186 3187 for (const auto &LI : PrologueMBB.liveins()) { 3188 stackCheckMBB->addLiveIn(LI); 3189 incStackMBB->addLiveIn(LI); 3190 } 3191 3192 MF.push_front(incStackMBB); 3193 MF.push_front(stackCheckMBB); 3194 3195 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3196 unsigned LEAop, CMPop, CALLop; 3197 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3198 if (Is64Bit) { 3199 SPReg = X86::RSP; 3200 PReg = X86::RBP; 3201 LEAop = X86::LEA64r; 3202 CMPop = X86::CMP64rm; 3203 CALLop = X86::CALL64pcrel32; 3204 } else { 3205 SPReg = X86::ESP; 3206 PReg = X86::EBP; 3207 LEAop = X86::LEA32r; 3208 CMPop = X86::CMP32rm; 3209 CALLop = X86::CALLpcrel32; 3210 } 3211 3212 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3213 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3214 "HiPE prologue scratch register is live-in"); 3215 3216 // Create new MBB for StackCheck: 3217 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3218 SPReg, false, -MaxStack); 3219 // SPLimitOffset is in a fixed heap location (pointed by BP). 3220 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3221 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3222 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3223 3224 // Create new MBB for IncStack: 3225 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3226 addExternalSymbol("inc_stack_0"); 3227 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3228 SPReg, false, -MaxStack); 3229 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3230 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3231 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3232 3233 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3234 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3235 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3236 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3237 } 3238 #ifdef EXPENSIVE_CHECKS 3239 MF.verify(); 3240 #endif 3241 } 3242 3243 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3244 MachineBasicBlock::iterator MBBI, 3245 const DebugLoc &DL, 3246 int Offset) const { 3247 if (Offset <= 0) 3248 return false; 3249 3250 if (Offset % SlotSize) 3251 return false; 3252 3253 int NumPops = Offset / SlotSize; 3254 // This is only worth it if we have at most 2 pops. 3255 if (NumPops != 1 && NumPops != 2) 3256 return false; 3257 3258 // Handle only the trivial case where the adjustment directly follows 3259 // a call. This is the most common one, anyway. 3260 if (MBBI == MBB.begin()) 3261 return false; 3262 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3263 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3264 return false; 3265 3266 unsigned Regs[2]; 3267 unsigned FoundRegs = 0; 3268 3269 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3270 const MachineOperand &RegMask = Prev->getOperand(1); 3271 3272 auto &RegClass = 3273 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3274 // Try to find up to NumPops free registers. 3275 for (auto Candidate : RegClass) { 3276 // Poor man's liveness: 3277 // Since we're immediately after a call, any register that is clobbered 3278 // by the call and not defined by it can be considered dead. 3279 if (!RegMask.clobbersPhysReg(Candidate)) 3280 continue; 3281 3282 // Don't clobber reserved registers 3283 if (MRI.isReserved(Candidate)) 3284 continue; 3285 3286 bool IsDef = false; 3287 for (const MachineOperand &MO : Prev->implicit_operands()) { 3288 if (MO.isReg() && MO.isDef() && 3289 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3290 IsDef = true; 3291 break; 3292 } 3293 } 3294 3295 if (IsDef) 3296 continue; 3297 3298 Regs[FoundRegs++] = Candidate; 3299 if (FoundRegs == (unsigned)NumPops) 3300 break; 3301 } 3302 3303 if (FoundRegs == 0) 3304 return false; 3305 3306 // If we found only one free register, but need two, reuse the same one twice. 3307 while (FoundRegs < (unsigned)NumPops) 3308 Regs[FoundRegs++] = Regs[0]; 3309 3310 for (int i = 0; i < NumPops; ++i) 3311 BuildMI(MBB, MBBI, DL, 3312 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3313 3314 return true; 3315 } 3316 3317 MachineBasicBlock::iterator X86FrameLowering:: 3318 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3319 MachineBasicBlock::iterator I) const { 3320 bool reserveCallFrame = hasReservedCallFrame(MF); 3321 unsigned Opcode = I->getOpcode(); 3322 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3323 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3324 uint64_t Amount = TII.getFrameSize(*I); 3325 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3326 I = MBB.erase(I); 3327 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3328 3329 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3330 // typically because the function is marked noreturn (abort, throw, 3331 // assert_fail, etc). 3332 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3333 return I; 3334 3335 if (!reserveCallFrame) { 3336 // If the stack pointer can be changed after prologue, turn the 3337 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3338 // adjcallstackdown instruction into 'add ESP, <amt>' 3339 3340 // We need to keep the stack aligned properly. To do this, we round the 3341 // amount of space needed for the outgoing arguments up to the next 3342 // alignment boundary. 3343 Amount = alignTo(Amount, getStackAlign()); 3344 3345 const Function &F = MF.getFunction(); 3346 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3347 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3348 3349 // If we have any exception handlers in this function, and we adjust 3350 // the SP before calls, we may need to indicate this to the unwinder 3351 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3352 // Amount == 0, because the preceding function may have set a non-0 3353 // GNU_ARGS_SIZE. 3354 // TODO: We don't need to reset this between subsequent functions, 3355 // if it didn't change. 3356 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3357 3358 if (HasDwarfEHHandlers && !isDestroy && 3359 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3360 BuildCFI(MBB, InsertPos, DL, 3361 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3362 3363 if (Amount == 0) 3364 return I; 3365 3366 // Factor out the amount that gets handled inside the sequence 3367 // (Pushes of argument for frame setup, callee pops for frame destroy) 3368 Amount -= InternalAmt; 3369 3370 // TODO: This is needed only if we require precise CFA. 3371 // If this is a callee-pop calling convention, emit a CFA adjust for 3372 // the amount the callee popped. 3373 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3374 BuildCFI(MBB, InsertPos, DL, 3375 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3376 3377 // Add Amount to SP to destroy a frame, or subtract to setup. 3378 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3379 3380 if (StackAdjustment) { 3381 // Merge with any previous or following adjustment instruction. Note: the 3382 // instructions merged with here do not have CFI, so their stack 3383 // adjustments do not feed into CfaAdjustment. 3384 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3385 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3386 3387 if (StackAdjustment) { 3388 if (!(F.hasMinSize() && 3389 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3390 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3391 /*InEpilogue=*/false); 3392 } 3393 } 3394 3395 if (DwarfCFI && !hasFP(MF)) { 3396 // If we don't have FP, but need to generate unwind information, 3397 // we need to set the correct CFA offset after the stack adjustment. 3398 // How much we adjust the CFA offset depends on whether we're emitting 3399 // CFI only for EH purposes or for debugging. EH only requires the CFA 3400 // offset to be correct at each call site, while for debugging we want 3401 // it to be more precise. 3402 3403 int64_t CfaAdjustment = -StackAdjustment; 3404 // TODO: When not using precise CFA, we also need to adjust for the 3405 // InternalAmt here. 3406 if (CfaAdjustment) { 3407 BuildCFI(MBB, InsertPos, DL, 3408 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3409 CfaAdjustment)); 3410 } 3411 } 3412 3413 return I; 3414 } 3415 3416 if (InternalAmt) { 3417 MachineBasicBlock::iterator CI = I; 3418 MachineBasicBlock::iterator B = MBB.begin(); 3419 while (CI != B && !std::prev(CI)->isCall()) 3420 --CI; 3421 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3422 } 3423 3424 return I; 3425 } 3426 3427 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3428 assert(MBB.getParent() && "Block is not attached to a function!"); 3429 const MachineFunction &MF = *MBB.getParent(); 3430 if (!MBB.isLiveIn(X86::EFLAGS)) 3431 return true; 3432 3433 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3434 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3435 } 3436 3437 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3438 assert(MBB.getParent() && "Block is not attached to a function!"); 3439 3440 // Win64 has strict requirements in terms of epilogue and we are 3441 // not taking a chance at messing with them. 3442 // I.e., unless this block is already an exit block, we can't use 3443 // it as an epilogue. 3444 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3445 return false; 3446 3447 // Swift async context epilogue has a BTR instruction that clobbers parts of 3448 // EFLAGS. 3449 const MachineFunction &MF = *MBB.getParent(); 3450 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3451 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3452 3453 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3454 return true; 3455 3456 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3457 // clobbers the EFLAGS. Check that we do not need to preserve it, 3458 // otherwise, conservatively assume this is not 3459 // safe to insert the epilogue here. 3460 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3461 } 3462 3463 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3464 // If we may need to emit frameless compact unwind information, give 3465 // up as this is currently broken: PR25614. 3466 bool CompactUnwind = 3467 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3468 nullptr; 3469 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3470 !CompactUnwind) && 3471 // The lowering of segmented stack and HiPE only support entry 3472 // blocks as prologue blocks: PR26107. This limitation may be 3473 // lifted if we fix: 3474 // - adjustForSegmentedStacks 3475 // - adjustForHiPEPrologue 3476 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3477 !MF.shouldSplitStack(); 3478 } 3479 3480 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3481 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3482 const DebugLoc &DL, bool RestoreSP) const { 3483 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3484 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3485 assert(STI.is32Bit() && !Uses64BitFramePtr && 3486 "restoring EBP/ESI on non-32-bit target"); 3487 3488 MachineFunction &MF = *MBB.getParent(); 3489 Register FramePtr = TRI->getFrameRegister(MF); 3490 Register BasePtr = TRI->getBaseRegister(); 3491 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3492 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3493 MachineFrameInfo &MFI = MF.getFrameInfo(); 3494 3495 // FIXME: Don't set FrameSetup flag in catchret case. 3496 3497 int FI = FuncInfo.EHRegNodeFrameIndex; 3498 int EHRegSize = MFI.getObjectSize(FI); 3499 3500 if (RestoreSP) { 3501 // MOV32rm -EHRegSize(%ebp), %esp 3502 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3503 X86::EBP, true, -EHRegSize) 3504 .setMIFlag(MachineInstr::FrameSetup); 3505 } 3506 3507 Register UsedReg; 3508 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3509 int EndOffset = -EHRegOffset - EHRegSize; 3510 FuncInfo.EHRegNodeEndOffset = EndOffset; 3511 3512 if (UsedReg == FramePtr) { 3513 // ADD $offset, %ebp 3514 unsigned ADDri = getADDriOpcode(false, EndOffset); 3515 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3516 .addReg(FramePtr) 3517 .addImm(EndOffset) 3518 .setMIFlag(MachineInstr::FrameSetup) 3519 ->getOperand(3) 3520 .setIsDead(); 3521 assert(EndOffset >= 0 && 3522 "end of registration object above normal EBP position!"); 3523 } else if (UsedReg == BasePtr) { 3524 // LEA offset(%ebp), %esi 3525 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3526 FramePtr, false, EndOffset) 3527 .setMIFlag(MachineInstr::FrameSetup); 3528 // MOV32rm SavedEBPOffset(%esi), %ebp 3529 assert(X86FI->getHasSEHFramePtrSave()); 3530 int Offset = 3531 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3532 .getFixed(); 3533 assert(UsedReg == BasePtr); 3534 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3535 UsedReg, true, Offset) 3536 .setMIFlag(MachineInstr::FrameSetup); 3537 } else { 3538 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3539 } 3540 return MBBI; 3541 } 3542 3543 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3544 return TRI->getSlotSize(); 3545 } 3546 3547 Register 3548 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3549 return TRI->getDwarfRegNum(StackPtr, true); 3550 } 3551 3552 namespace { 3553 // Struct used by orderFrameObjects to help sort the stack objects. 3554 struct X86FrameSortingObject { 3555 bool IsValid = false; // true if we care about this Object. 3556 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3557 unsigned ObjectSize = 0; // Size of Object in bytes. 3558 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3559 unsigned ObjectNumUses = 0; // Object static number of uses. 3560 }; 3561 3562 // The comparison function we use for std::sort to order our local 3563 // stack symbols. The current algorithm is to use an estimated 3564 // "density". This takes into consideration the size and number of 3565 // uses each object has in order to roughly minimize code size. 3566 // So, for example, an object of size 16B that is referenced 5 times 3567 // will get higher priority than 4 4B objects referenced 1 time each. 3568 // It's not perfect and we may be able to squeeze a few more bytes out of 3569 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3570 // fringe end can have special consideration, given their size is less 3571 // important, etc.), but the algorithmic complexity grows too much to be 3572 // worth the extra gains we get. This gets us pretty close. 3573 // The final order leaves us with objects with highest priority going 3574 // at the end of our list. 3575 struct X86FrameSortingComparator { 3576 inline bool operator()(const X86FrameSortingObject &A, 3577 const X86FrameSortingObject &B) const { 3578 uint64_t DensityAScaled, DensityBScaled; 3579 3580 // For consistency in our comparison, all invalid objects are placed 3581 // at the end. This also allows us to stop walking when we hit the 3582 // first invalid item after it's all sorted. 3583 if (!A.IsValid) 3584 return false; 3585 if (!B.IsValid) 3586 return true; 3587 3588 // The density is calculated by doing : 3589 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3590 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3591 // Since this approach may cause inconsistencies in 3592 // the floating point <, >, == comparisons, depending on the floating 3593 // point model with which the compiler was built, we're going 3594 // to scale both sides by multiplying with 3595 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3596 // the division and, with it, the need for any floating point 3597 // arithmetic. 3598 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3599 static_cast<uint64_t>(B.ObjectSize); 3600 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3601 static_cast<uint64_t>(A.ObjectSize); 3602 3603 // If the two densities are equal, prioritize highest alignment 3604 // objects. This allows for similar alignment objects 3605 // to be packed together (given the same density). 3606 // There's room for improvement here, also, since we can pack 3607 // similar alignment (different density) objects next to each 3608 // other to save padding. This will also require further 3609 // complexity/iterations, and the overall gain isn't worth it, 3610 // in general. Something to keep in mind, though. 3611 if (DensityAScaled == DensityBScaled) 3612 return A.ObjectAlignment < B.ObjectAlignment; 3613 3614 return DensityAScaled < DensityBScaled; 3615 } 3616 }; 3617 } // namespace 3618 3619 // Order the symbols in the local stack. 3620 // We want to place the local stack objects in some sort of sensible order. 3621 // The heuristic we use is to try and pack them according to static number 3622 // of uses and size of object in order to minimize code size. 3623 void X86FrameLowering::orderFrameObjects( 3624 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3625 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3626 3627 // Don't waste time if there's nothing to do. 3628 if (ObjectsToAllocate.empty()) 3629 return; 3630 3631 // Create an array of all MFI objects. We won't need all of these 3632 // objects, but we're going to create a full array of them to make 3633 // it easier to index into when we're counting "uses" down below. 3634 // We want to be able to easily/cheaply access an object by simply 3635 // indexing into it, instead of having to search for it every time. 3636 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3637 3638 // Walk the objects we care about and mark them as such in our working 3639 // struct. 3640 for (auto &Obj : ObjectsToAllocate) { 3641 SortingObjects[Obj].IsValid = true; 3642 SortingObjects[Obj].ObjectIndex = Obj; 3643 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3644 // Set the size. 3645 int ObjectSize = MFI.getObjectSize(Obj); 3646 if (ObjectSize == 0) 3647 // Variable size. Just use 4. 3648 SortingObjects[Obj].ObjectSize = 4; 3649 else 3650 SortingObjects[Obj].ObjectSize = ObjectSize; 3651 } 3652 3653 // Count the number of uses for each object. 3654 for (auto &MBB : MF) { 3655 for (auto &MI : MBB) { 3656 if (MI.isDebugInstr()) 3657 continue; 3658 for (const MachineOperand &MO : MI.operands()) { 3659 // Check to see if it's a local stack symbol. 3660 if (!MO.isFI()) 3661 continue; 3662 int Index = MO.getIndex(); 3663 // Check to see if it falls within our range, and is tagged 3664 // to require ordering. 3665 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3666 SortingObjects[Index].IsValid) 3667 SortingObjects[Index].ObjectNumUses++; 3668 } 3669 } 3670 } 3671 3672 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3673 // info). 3674 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3675 3676 // Now modify the original list to represent the final order that 3677 // we want. The order will depend on whether we're going to access them 3678 // from the stack pointer or the frame pointer. For SP, the list should 3679 // end up with the END containing objects that we want with smaller offsets. 3680 // For FP, it should be flipped. 3681 int i = 0; 3682 for (auto &Obj : SortingObjects) { 3683 // All invalid items are sorted at the end, so it's safe to stop. 3684 if (!Obj.IsValid) 3685 break; 3686 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3687 } 3688 3689 // Flip it if we're accessing off of the FP. 3690 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3691 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3692 } 3693 3694 3695 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3696 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3697 unsigned Offset = 16; 3698 // RBP is immediately pushed. 3699 Offset += SlotSize; 3700 // All callee-saved registers are then pushed. 3701 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3702 // Every funclet allocates enough stack space for the largest outgoing call. 3703 Offset += getWinEHFuncletFrameSize(MF); 3704 return Offset; 3705 } 3706 3707 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3708 MachineFunction &MF, RegScavenger *RS) const { 3709 // Mark the function as not having WinCFI. We will set it back to true in 3710 // emitPrologue if it gets called and emits CFI. 3711 MF.setHasWinCFI(false); 3712 3713 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3714 // aligned. The format doesn't support misaligned stack adjustments. 3715 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3716 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3717 3718 // If this function isn't doing Win64-style C++ EH, we don't need to do 3719 // anything. 3720 if (STI.is64Bit() && MF.hasEHFunclets() && 3721 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3722 EHPersonality::MSVC_CXX) { 3723 adjustFrameForMsvcCxxEh(MF); 3724 } 3725 } 3726 3727 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3728 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3729 // relative to RSP after the prologue. Find the offset of the last fixed 3730 // object, so that we can allocate a slot immediately following it. If there 3731 // were no fixed objects, use offset -SlotSize, which is immediately after the 3732 // return address. Fixed objects have negative frame indices. 3733 MachineFrameInfo &MFI = MF.getFrameInfo(); 3734 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3735 int64_t MinFixedObjOffset = -SlotSize; 3736 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3737 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3738 3739 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3740 for (WinEHHandlerType &H : TBME.HandlerArray) { 3741 int FrameIndex = H.CatchObj.FrameIndex; 3742 if (FrameIndex != INT_MAX) { 3743 // Ensure alignment. 3744 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3745 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3746 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3747 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3748 } 3749 } 3750 } 3751 3752 // Ensure alignment. 3753 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3754 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3755 int UnwindHelpFI = 3756 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3757 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3758 3759 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3760 // other frame setup instructions. 3761 MachineBasicBlock &MBB = MF.front(); 3762 auto MBBI = MBB.begin(); 3763 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3764 ++MBBI; 3765 3766 DebugLoc DL = MBB.findDebugLoc(MBBI); 3767 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3768 UnwindHelpFI) 3769 .addImm(-2); 3770 } 3771 3772 const ReturnProtectorLowering *X86FrameLowering::getReturnProtector() const { 3773 return &RPL; 3774 } 3775 3776 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3777 MachineFunction &MF, RegScavenger *RS) const { 3778 if (STI.is32Bit() && MF.hasEHFunclets()) 3779 restoreWinEHStackPointersInParent(MF); 3780 } 3781 3782 void X86FrameLowering::restoreWinEHStackPointersInParent( 3783 MachineFunction &MF) const { 3784 // 32-bit functions have to restore stack pointers when control is transferred 3785 // back to the parent function. These blocks are identified as eh pads that 3786 // are not funclet entries. 3787 bool IsSEH = isAsynchronousEHPersonality( 3788 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3789 for (MachineBasicBlock &MBB : MF) { 3790 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3791 if (NeedsRestore) 3792 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3793 /*RestoreSP=*/IsSEH); 3794 } 3795 } 3796