1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86ReturnProtectorLowering.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/WinEHFuncInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include <cstdlib> 36 37 #define DEBUG_TYPE "x86-fl" 38 39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 40 STATISTIC(NumFrameExtraProbe, 41 "Number of extra stack probes generated in prologue"); 42 43 using namespace llvm; 44 45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 46 MaybeAlign StackAlignOverride) 47 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 48 STI.is64Bit() ? -8 : -4), 49 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()), RPL() { 50 // Cache a bunch of frame-related predicates for this subtarget. 51 SlotSize = TRI->getSlotSize(); 52 Is64Bit = STI.is64Bit(); 53 IsLP64 = STI.isTarget64BitLP64(); 54 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 55 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 56 StackPtr = TRI->getStackRegister(); 57 SaveArgs = Is64Bit ? STI.getSaveArgs() : 0; 58 } 59 60 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 61 return !MF.getFrameInfo().hasVarSizedObjects() && 62 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 63 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 64 } 65 66 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 67 /// call frame pseudos can be simplified. Having a FP, as in the default 68 /// implementation, is not sufficient here since we can't always use it. 69 /// Use a more nuanced condition. 70 bool 71 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 72 return hasReservedCallFrame(MF) || 73 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 74 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 75 TRI->hasBasePointer(MF); 76 } 77 78 // needsFrameIndexResolution - Do we need to perform FI resolution for 79 // this function. Normally, this is required only when the function 80 // has any stack objects. However, FI resolution actually has another job, 81 // not apparent from the title - it resolves callframesetup/destroy 82 // that were not simplified earlier. 83 // So, this is required for x86 functions that have push sequences even 84 // when there are no stack objects. 85 bool 86 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 87 return MF.getFrameInfo().hasStackObjects() || 88 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 89 } 90 91 /// hasFP - Return true if the specified function should have a dedicated frame 92 /// pointer register. This is true if the function has variable sized allocas 93 /// or if frame pointer elimination is disabled. 94 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 95 const MachineFrameInfo &MFI = MF.getFrameInfo(); 96 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 97 TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects() || 98 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 99 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 100 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 101 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 102 MFI.hasStackMap() || MFI.hasPatchPoint() || 103 MFI.hasCopyImplyingStackAdjustment() || 104 SaveArgs); 105 } 106 107 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 108 if (IsLP64) { 109 if (isInt<8>(Imm)) 110 return X86::SUB64ri8; 111 return X86::SUB64ri32; 112 } else { 113 if (isInt<8>(Imm)) 114 return X86::SUB32ri8; 115 return X86::SUB32ri; 116 } 117 } 118 119 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 120 if (IsLP64) { 121 if (isInt<8>(Imm)) 122 return X86::ADD64ri8; 123 return X86::ADD64ri32; 124 } else { 125 if (isInt<8>(Imm)) 126 return X86::ADD32ri8; 127 return X86::ADD32ri; 128 } 129 } 130 131 static unsigned getSUBrrOpcode(bool IsLP64) { 132 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 133 } 134 135 static unsigned getADDrrOpcode(bool IsLP64) { 136 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 137 } 138 139 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 140 if (IsLP64) { 141 if (isInt<8>(Imm)) 142 return X86::AND64ri8; 143 return X86::AND64ri32; 144 } 145 if (isInt<8>(Imm)) 146 return X86::AND32ri8; 147 return X86::AND32ri; 148 } 149 150 static unsigned getLEArOpcode(bool IsLP64) { 151 return IsLP64 ? X86::LEA64r : X86::LEA32r; 152 } 153 154 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 155 /// when it reaches the "return" instruction. We can then pop a stack object 156 /// to this register without worry about clobbering it. 157 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 158 MachineBasicBlock::iterator &MBBI, 159 const X86RegisterInfo *TRI, 160 bool Is64Bit) { 161 const MachineFunction *MF = MBB.getParent(); 162 if (MF->callsEHReturn()) 163 return 0; 164 165 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 166 167 if (MBBI == MBB.end()) 168 return 0; 169 170 switch (MBBI->getOpcode()) { 171 default: return 0; 172 case TargetOpcode::PATCHABLE_RET: 173 case X86::RET: 174 case X86::RETL: 175 case X86::RETQ: 176 case X86::RETIL: 177 case X86::RETIQ: 178 case X86::TCRETURNdi: 179 case X86::TCRETURNri: 180 case X86::TCRETURNmi: 181 case X86::TCRETURNdi64: 182 case X86::TCRETURNri64: 183 case X86::TCRETURNmi64: 184 case X86::EH_RETURN: 185 case X86::EH_RETURN64: { 186 SmallSet<uint16_t, 8> Uses; 187 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 188 MachineOperand &MO = MBBI->getOperand(i); 189 if (!MO.isReg() || MO.isDef()) 190 continue; 191 Register Reg = MO.getReg(); 192 if (!Reg) 193 continue; 194 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 195 Uses.insert(*AI); 196 } 197 198 for (auto CS : AvailableRegs) 199 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && 200 CS != X86::ESP) 201 return CS; 202 } 203 } 204 205 return 0; 206 } 207 208 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 209 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 210 unsigned Reg = RegMask.PhysReg; 211 212 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 213 Reg == X86::AH || Reg == X86::AL) 214 return true; 215 } 216 217 return false; 218 } 219 220 /// Check if the flags need to be preserved before the terminators. 221 /// This would be the case, if the eflags is live-in of the region 222 /// composed by the terminators or live-out of that region, without 223 /// being defined by a terminator. 224 static bool 225 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 226 for (const MachineInstr &MI : MBB.terminators()) { 227 bool BreakNext = false; 228 for (const MachineOperand &MO : MI.operands()) { 229 if (!MO.isReg()) 230 continue; 231 Register Reg = MO.getReg(); 232 if (Reg != X86::EFLAGS) 233 continue; 234 235 // This terminator needs an eflags that is not defined 236 // by a previous another terminator: 237 // EFLAGS is live-in of the region composed by the terminators. 238 if (!MO.isDef()) 239 return true; 240 // This terminator defines the eflags, i.e., we don't need to preserve it. 241 // However, we still need to check this specific terminator does not 242 // read a live-in value. 243 BreakNext = true; 244 } 245 // We found a definition of the eflags, no need to preserve them. 246 if (BreakNext) 247 return false; 248 } 249 250 // None of the terminators use or define the eflags. 251 // Check if they are live-out, that would imply we need to preserve them. 252 for (const MachineBasicBlock *Succ : MBB.successors()) 253 if (Succ->isLiveIn(X86::EFLAGS)) 254 return true; 255 256 return false; 257 } 258 259 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 260 /// stack pointer by a constant value. 261 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 262 MachineBasicBlock::iterator &MBBI, 263 const DebugLoc &DL, 264 int64_t NumBytes, bool InEpilogue) const { 265 bool isSub = NumBytes < 0; 266 uint64_t Offset = isSub ? -NumBytes : NumBytes; 267 MachineInstr::MIFlag Flag = 268 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 269 270 uint64_t Chunk = (1LL << 31) - 1; 271 272 MachineFunction &MF = *MBB.getParent(); 273 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 274 const X86TargetLowering &TLI = *STI.getTargetLowering(); 275 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 276 277 // It's ok to not take into account large chunks when probing, as the 278 // allocation is split in smaller chunks anyway. 279 if (EmitInlineStackProbe && !InEpilogue) { 280 281 // This pseudo-instruction is going to be expanded, potentially using a 282 // loop, by inlineStackProbe(). 283 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 284 return; 285 } else if (Offset > Chunk) { 286 // Rather than emit a long series of instructions for large offsets, 287 // load the offset into a register and do one sub/add 288 unsigned Reg = 0; 289 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 290 291 if (isSub && !isEAXLiveIn(MBB)) 292 Reg = Rax; 293 else 294 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 295 296 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 297 unsigned AddSubRROpc = 298 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 299 if (Reg) { 300 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 301 .addImm(Offset) 302 .setMIFlag(Flag); 303 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 304 .addReg(StackPtr) 305 .addReg(Reg); 306 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 307 return; 308 } else if (Offset > 8 * Chunk) { 309 // If we would need more than 8 add or sub instructions (a >16GB stack 310 // frame), it's worth spilling RAX to materialize this immediate. 311 // pushq %rax 312 // movabsq +-$Offset+-SlotSize, %rax 313 // addq %rsp, %rax 314 // xchg %rax, (%rsp) 315 // movq (%rsp), %rsp 316 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 317 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 318 .addReg(Rax, RegState::Kill) 319 .setMIFlag(Flag); 320 // Subtract is not commutative, so negate the offset and always use add. 321 // Subtract 8 less and add 8 more to account for the PUSH we just did. 322 if (isSub) 323 Offset = -(Offset - SlotSize); 324 else 325 Offset = Offset + SlotSize; 326 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 327 .addImm(Offset) 328 .setMIFlag(Flag); 329 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 330 .addReg(Rax) 331 .addReg(StackPtr); 332 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 333 // Exchange the new SP in RAX with the top of the stack. 334 addRegOffset( 335 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 336 StackPtr, false, 0); 337 // Load new SP from the top of the stack into RSP. 338 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 339 StackPtr, false, 0); 340 return; 341 } 342 } 343 344 while (Offset) { 345 uint64_t ThisVal = std::min(Offset, Chunk); 346 if (ThisVal == SlotSize) { 347 // Use push / pop for slot sized adjustments as a size optimization. We 348 // need to find a dead register when using pop. 349 unsigned Reg = isSub 350 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 351 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 352 if (Reg) { 353 unsigned Opc = isSub 354 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 355 : (Is64Bit ? X86::POP64r : X86::POP32r); 356 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 357 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 358 .setMIFlag(Flag); 359 Offset -= ThisVal; 360 continue; 361 } 362 } 363 364 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 365 .setMIFlag(Flag); 366 367 Offset -= ThisVal; 368 } 369 } 370 371 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 372 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 373 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 374 assert(Offset != 0 && "zero offset stack adjustment requested"); 375 376 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 377 // is tricky. 378 bool UseLEA; 379 if (!InEpilogue) { 380 // Check if inserting the prologue at the beginning 381 // of MBB would require to use LEA operations. 382 // We need to use LEA operations if EFLAGS is live in, because 383 // it means an instruction will read it before it gets defined. 384 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 385 } else { 386 // If we can use LEA for SP but we shouldn't, check that none 387 // of the terminators uses the eflags. Otherwise we will insert 388 // a ADD that will redefine the eflags and break the condition. 389 // Alternatively, we could move the ADD, but this may not be possible 390 // and is an optimization anyway. 391 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 392 if (UseLEA && !STI.useLeaForSP()) 393 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 394 // If that assert breaks, that means we do not do the right thing 395 // in canUseAsEpilogue. 396 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 397 "We shouldn't have allowed this insertion point"); 398 } 399 400 MachineInstrBuilder MI; 401 if (UseLEA) { 402 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 403 TII.get(getLEArOpcode(Uses64BitFramePtr)), 404 StackPtr), 405 StackPtr, false, Offset); 406 } else { 407 bool IsSub = Offset < 0; 408 uint64_t AbsOffset = IsSub ? -Offset : Offset; 409 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 410 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 411 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 412 .addReg(StackPtr) 413 .addImm(AbsOffset); 414 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 415 } 416 return MI; 417 } 418 419 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 420 MachineBasicBlock::iterator &MBBI, 421 bool doMergeWithPrevious) const { 422 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 423 (!doMergeWithPrevious && MBBI == MBB.end())) 424 return 0; 425 426 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 427 428 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 429 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 430 // instruction, and that there are no DBG_VALUE or other instructions between 431 // ADD/SUB/LEA and its corresponding CFI instruction. 432 /* TODO: Add support for the case where there are multiple CFI instructions 433 below the ADD/SUB/LEA, e.g.: 434 ... 435 add 436 cfi_def_cfa_offset 437 cfi_offset 438 ... 439 */ 440 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 441 PI = std::prev(PI); 442 443 unsigned Opc = PI->getOpcode(); 444 int Offset = 0; 445 446 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 447 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 448 PI->getOperand(0).getReg() == StackPtr){ 449 assert(PI->getOperand(1).getReg() == StackPtr); 450 Offset = PI->getOperand(2).getImm(); 451 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 452 PI->getOperand(0).getReg() == StackPtr && 453 PI->getOperand(1).getReg() == StackPtr && 454 PI->getOperand(2).getImm() == 1 && 455 PI->getOperand(3).getReg() == X86::NoRegister && 456 PI->getOperand(5).getReg() == X86::NoRegister) { 457 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 458 Offset = PI->getOperand(4).getImm(); 459 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 460 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 461 PI->getOperand(0).getReg() == StackPtr) { 462 assert(PI->getOperand(1).getReg() == StackPtr); 463 Offset = -PI->getOperand(2).getImm(); 464 } else 465 return 0; 466 467 PI = MBB.erase(PI); 468 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 469 if (!doMergeWithPrevious) 470 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 471 472 return Offset; 473 } 474 475 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 476 MachineBasicBlock::iterator MBBI, 477 const DebugLoc &DL, 478 const MCCFIInstruction &CFIInst) const { 479 MachineFunction &MF = *MBB.getParent(); 480 unsigned CFIIndex = MF.addFrameInst(CFIInst); 481 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 482 .addCFIIndex(CFIIndex); 483 } 484 485 /// Emits Dwarf Info specifying offsets of callee saved registers and 486 /// frame pointer. This is called only when basic block sections are enabled. 487 void X86FrameLowering::emitCalleeSavedFrameMoves( 488 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 489 MachineFunction &MF = *MBB.getParent(); 490 if (!hasFP(MF)) { 491 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 492 return; 493 } 494 const MachineModuleInfo &MMI = MF.getMMI(); 495 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 496 const unsigned FramePtr = TRI->getFrameRegister(MF); 497 const unsigned MachineFramePtr = 498 STI.isTarget64BitILP32() ? unsigned(getX86SubSuperRegister(FramePtr, 64)) 499 : FramePtr; 500 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 501 // Offset = space for return address + size of the frame pointer itself. 502 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 503 BuildCFI(MBB, MBBI, DebugLoc{}, 504 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 505 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 506 } 507 508 void X86FrameLowering::emitCalleeSavedFrameMoves( 509 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 510 const DebugLoc &DL, bool IsPrologue) const { 511 MachineFunction &MF = *MBB.getParent(); 512 MachineFrameInfo &MFI = MF.getFrameInfo(); 513 MachineModuleInfo &MMI = MF.getMMI(); 514 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 515 516 // Add callee saved registers to move list. 517 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 518 if (CSI.empty()) return; 519 520 // Calculate offsets. 521 for (std::vector<CalleeSavedInfo>::const_iterator 522 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 523 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 524 unsigned Reg = I->getReg(); 525 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 526 527 if (IsPrologue) { 528 BuildCFI(MBB, MBBI, DL, 529 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 530 } else { 531 BuildCFI(MBB, MBBI, DL, 532 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 533 } 534 } 535 } 536 537 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 538 MachineBasicBlock &MBB, 539 MachineBasicBlock::iterator MBBI, 540 const DebugLoc &DL, bool InProlog) const { 541 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 542 if (STI.isTargetWindowsCoreCLR()) { 543 if (InProlog) { 544 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 545 .addImm(0 /* no explicit stack size */); 546 } else { 547 emitStackProbeInline(MF, MBB, MBBI, DL, false); 548 } 549 } else { 550 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 551 } 552 } 553 554 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 555 MachineBasicBlock &PrologMBB) const { 556 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 557 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 558 }); 559 if (Where != PrologMBB.end()) { 560 DebugLoc DL = PrologMBB.findDebugLoc(Where); 561 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 562 Where->eraseFromParent(); 563 } 564 } 565 566 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 567 MachineBasicBlock &MBB, 568 MachineBasicBlock::iterator MBBI, 569 const DebugLoc &DL, 570 bool InProlog) const { 571 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 572 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 573 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 574 else 575 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 576 } 577 578 void X86FrameLowering::emitStackProbeInlineGeneric( 579 MachineFunction &MF, MachineBasicBlock &MBB, 580 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 581 MachineInstr &AllocWithProbe = *MBBI; 582 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 583 584 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 585 const X86TargetLowering &TLI = *STI.getTargetLowering(); 586 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 587 "different expansion expected for CoreCLR 64 bit"); 588 589 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 590 uint64_t ProbeChunk = StackProbeSize * 8; 591 592 uint64_t MaxAlign = 593 TRI->needsStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 594 595 // Synthesize a loop or unroll it, depending on the number of iterations. 596 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 597 // between the unaligned rsp and current rsp. 598 if (Offset > ProbeChunk) { 599 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 600 MaxAlign % StackProbeSize); 601 } else { 602 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 603 MaxAlign % StackProbeSize); 604 } 605 } 606 607 void X86FrameLowering::emitStackProbeInlineGenericBlock( 608 MachineFunction &MF, MachineBasicBlock &MBB, 609 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 610 uint64_t AlignOffset) const { 611 612 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 613 const X86TargetLowering &TLI = *STI.getTargetLowering(); 614 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 615 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 616 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 617 618 uint64_t CurrentOffset = 0; 619 620 assert(AlignOffset < StackProbeSize); 621 622 // If the offset is so small it fits within a page, there's nothing to do. 623 if (StackProbeSize < Offset + AlignOffset) { 624 625 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 626 .addReg(StackPtr) 627 .addImm(StackProbeSize - AlignOffset) 628 .setMIFlag(MachineInstr::FrameSetup); 629 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 630 631 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 632 .setMIFlag(MachineInstr::FrameSetup), 633 StackPtr, false, 0) 634 .addImm(0) 635 .setMIFlag(MachineInstr::FrameSetup); 636 NumFrameExtraProbe++; 637 CurrentOffset = StackProbeSize - AlignOffset; 638 } 639 640 // For the next N - 1 pages, just probe. I tried to take advantage of 641 // natural probes but it implies much more logic and there was very few 642 // interesting natural probes to interleave. 643 while (CurrentOffset + StackProbeSize < Offset) { 644 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 645 .addReg(StackPtr) 646 .addImm(StackProbeSize) 647 .setMIFlag(MachineInstr::FrameSetup); 648 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 649 650 651 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 652 .setMIFlag(MachineInstr::FrameSetup), 653 StackPtr, false, 0) 654 .addImm(0) 655 .setMIFlag(MachineInstr::FrameSetup); 656 NumFrameExtraProbe++; 657 CurrentOffset += StackProbeSize; 658 } 659 660 // No need to probe the tail, it is smaller than a Page. 661 uint64_t ChunkSize = Offset - CurrentOffset; 662 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 663 .addReg(StackPtr) 664 .addImm(ChunkSize) 665 .setMIFlag(MachineInstr::FrameSetup); 666 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 667 } 668 669 void X86FrameLowering::emitStackProbeInlineGenericLoop( 670 MachineFunction &MF, MachineBasicBlock &MBB, 671 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 672 uint64_t AlignOffset) const { 673 assert(Offset && "null offset"); 674 675 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 676 const X86TargetLowering &TLI = *STI.getTargetLowering(); 677 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 678 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 679 680 if (AlignOffset) { 681 if (AlignOffset < StackProbeSize) { 682 // Perform a first smaller allocation followed by a probe. 683 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 684 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 685 .addReg(StackPtr) 686 .addImm(AlignOffset) 687 .setMIFlag(MachineInstr::FrameSetup); 688 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 689 690 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 691 .setMIFlag(MachineInstr::FrameSetup), 692 StackPtr, false, 0) 693 .addImm(0) 694 .setMIFlag(MachineInstr::FrameSetup); 695 NumFrameExtraProbe++; 696 Offset -= AlignOffset; 697 } 698 } 699 700 // Synthesize a loop 701 NumFrameLoopProbe++; 702 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 703 704 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 705 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 706 707 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 708 MF.insert(MBBIter, testMBB); 709 MF.insert(MBBIter, tailMBB); 710 711 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D; 712 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 713 .addReg(StackPtr) 714 .setMIFlag(MachineInstr::FrameSetup); 715 716 // save loop bound 717 { 718 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset); 719 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 720 .addReg(FinalStackProbed) 721 .addImm(Offset / StackProbeSize * StackProbeSize) 722 .setMIFlag(MachineInstr::FrameSetup); 723 } 724 725 // allocate a page 726 { 727 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 728 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 729 .addReg(StackPtr) 730 .addImm(StackProbeSize) 731 .setMIFlag(MachineInstr::FrameSetup); 732 } 733 734 // touch the page 735 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 736 .setMIFlag(MachineInstr::FrameSetup), 737 StackPtr, false, 0) 738 .addImm(0) 739 .setMIFlag(MachineInstr::FrameSetup); 740 741 // cmp with stack pointer bound 742 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 743 .addReg(StackPtr) 744 .addReg(FinalStackProbed) 745 .setMIFlag(MachineInstr::FrameSetup); 746 747 // jump 748 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 749 .addMBB(testMBB) 750 .addImm(X86::COND_NE) 751 .setMIFlag(MachineInstr::FrameSetup); 752 testMBB->addSuccessor(testMBB); 753 testMBB->addSuccessor(tailMBB); 754 755 // BB management 756 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 757 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 758 MBB.addSuccessor(testMBB); 759 760 // handle tail 761 unsigned TailOffset = Offset % StackProbeSize; 762 if (TailOffset) { 763 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 764 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 765 .addReg(StackPtr) 766 .addImm(TailOffset) 767 .setMIFlag(MachineInstr::FrameSetup); 768 } 769 770 // Update Live In information 771 recomputeLiveIns(*testMBB); 772 recomputeLiveIns(*tailMBB); 773 } 774 775 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 776 MachineFunction &MF, MachineBasicBlock &MBB, 777 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 778 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 779 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 780 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 781 const TargetInstrInfo &TII = *STI.getInstrInfo(); 782 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 783 784 // RAX contains the number of bytes of desired stack adjustment. 785 // The handling here assumes this value has already been updated so as to 786 // maintain stack alignment. 787 // 788 // We need to exit with RSP modified by this amount and execute suitable 789 // page touches to notify the OS that we're growing the stack responsibly. 790 // All stack probing must be done without modifying RSP. 791 // 792 // MBB: 793 // SizeReg = RAX; 794 // ZeroReg = 0 795 // CopyReg = RSP 796 // Flags, TestReg = CopyReg - SizeReg 797 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 798 // LimitReg = gs magic thread env access 799 // if FinalReg >= LimitReg goto ContinueMBB 800 // RoundBB: 801 // RoundReg = page address of FinalReg 802 // LoopMBB: 803 // LoopReg = PHI(LimitReg,ProbeReg) 804 // ProbeReg = LoopReg - PageSize 805 // [ProbeReg] = 0 806 // if (ProbeReg > RoundReg) goto LoopMBB 807 // ContinueMBB: 808 // RSP = RSP - RAX 809 // [rest of original MBB] 810 811 // Set up the new basic blocks 812 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 813 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 814 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 815 816 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 817 MF.insert(MBBIter, RoundMBB); 818 MF.insert(MBBIter, LoopMBB); 819 MF.insert(MBBIter, ContinueMBB); 820 821 // Split MBB and move the tail portion down to ContinueMBB. 822 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 823 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 824 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 825 826 // Some useful constants 827 const int64_t ThreadEnvironmentStackLimit = 0x10; 828 const int64_t PageSize = 0x1000; 829 const int64_t PageMask = ~(PageSize - 1); 830 831 // Registers we need. For the normal case we use virtual 832 // registers. For the prolog expansion we use RAX, RCX and RDX. 833 MachineRegisterInfo &MRI = MF.getRegInfo(); 834 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 835 const Register SizeReg = InProlog ? X86::RAX 836 : MRI.createVirtualRegister(RegClass), 837 ZeroReg = InProlog ? X86::RCX 838 : MRI.createVirtualRegister(RegClass), 839 CopyReg = InProlog ? X86::RDX 840 : MRI.createVirtualRegister(RegClass), 841 TestReg = InProlog ? X86::RDX 842 : MRI.createVirtualRegister(RegClass), 843 FinalReg = InProlog ? X86::RDX 844 : MRI.createVirtualRegister(RegClass), 845 RoundedReg = InProlog ? X86::RDX 846 : MRI.createVirtualRegister(RegClass), 847 LimitReg = InProlog ? X86::RCX 848 : MRI.createVirtualRegister(RegClass), 849 JoinReg = InProlog ? X86::RCX 850 : MRI.createVirtualRegister(RegClass), 851 ProbeReg = InProlog ? X86::RCX 852 : MRI.createVirtualRegister(RegClass); 853 854 // SP-relative offsets where we can save RCX and RDX. 855 int64_t RCXShadowSlot = 0; 856 int64_t RDXShadowSlot = 0; 857 858 // If inlining in the prolog, save RCX and RDX. 859 if (InProlog) { 860 // Compute the offsets. We need to account for things already 861 // pushed onto the stack at this point: return address, frame 862 // pointer (if used), and callee saves. 863 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 864 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 865 const bool HasFP = hasFP(MF); 866 867 // Check if we need to spill RCX and/or RDX. 868 // Here we assume that no earlier prologue instruction changes RCX and/or 869 // RDX, so checking the block live-ins is enough. 870 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 871 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 872 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 873 // Assign the initial slot to both registers, then change RDX's slot if both 874 // need to be spilled. 875 if (IsRCXLiveIn) 876 RCXShadowSlot = InitSlot; 877 if (IsRDXLiveIn) 878 RDXShadowSlot = InitSlot; 879 if (IsRDXLiveIn && IsRCXLiveIn) 880 RDXShadowSlot += 8; 881 // Emit the saves if needed. 882 if (IsRCXLiveIn) 883 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 884 RCXShadowSlot) 885 .addReg(X86::RCX); 886 if (IsRDXLiveIn) 887 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 888 RDXShadowSlot) 889 .addReg(X86::RDX); 890 } else { 891 // Not in the prolog. Copy RAX to a virtual reg. 892 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 893 } 894 895 // Add code to MBB to check for overflow and set the new target stack pointer 896 // to zero if so. 897 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 898 .addReg(ZeroReg, RegState::Undef) 899 .addReg(ZeroReg, RegState::Undef); 900 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 901 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 902 .addReg(CopyReg) 903 .addReg(SizeReg); 904 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 905 .addReg(TestReg) 906 .addReg(ZeroReg) 907 .addImm(X86::COND_B); 908 909 // FinalReg now holds final stack pointer value, or zero if 910 // allocation would overflow. Compare against the current stack 911 // limit from the thread environment block. Note this limit is the 912 // lowest touched page on the stack, not the point at which the OS 913 // will cause an overflow exception, so this is just an optimization 914 // to avoid unnecessarily touching pages that are below the current 915 // SP but already committed to the stack by the OS. 916 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 917 .addReg(0) 918 .addImm(1) 919 .addReg(0) 920 .addImm(ThreadEnvironmentStackLimit) 921 .addReg(X86::GS); 922 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 923 // Jump if the desired stack pointer is at or above the stack limit. 924 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 925 926 // Add code to roundMBB to round the final stack pointer to a page boundary. 927 RoundMBB->addLiveIn(FinalReg); 928 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 929 .addReg(FinalReg) 930 .addImm(PageMask); 931 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 932 933 // LimitReg now holds the current stack limit, RoundedReg page-rounded 934 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 935 // and probe until we reach RoundedReg. 936 if (!InProlog) { 937 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 938 .addReg(LimitReg) 939 .addMBB(RoundMBB) 940 .addReg(ProbeReg) 941 .addMBB(LoopMBB); 942 } 943 944 LoopMBB->addLiveIn(JoinReg); 945 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 946 false, -PageSize); 947 948 // Probe by storing a byte onto the stack. 949 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 950 .addReg(ProbeReg) 951 .addImm(1) 952 .addReg(0) 953 .addImm(0) 954 .addReg(0) 955 .addImm(0); 956 957 LoopMBB->addLiveIn(RoundedReg); 958 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 959 .addReg(RoundedReg) 960 .addReg(ProbeReg); 961 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 962 963 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 964 965 // If in prolog, restore RDX and RCX. 966 if (InProlog) { 967 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 968 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 969 TII.get(X86::MOV64rm), X86::RCX), 970 X86::RSP, false, RCXShadowSlot); 971 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 972 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 973 TII.get(X86::MOV64rm), X86::RDX), 974 X86::RSP, false, RDXShadowSlot); 975 } 976 977 // Now that the probing is done, add code to continueMBB to update 978 // the stack pointer for real. 979 ContinueMBB->addLiveIn(SizeReg); 980 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 981 .addReg(X86::RSP) 982 .addReg(SizeReg); 983 984 // Add the control flow edges we need. 985 MBB.addSuccessor(ContinueMBB); 986 MBB.addSuccessor(RoundMBB); 987 RoundMBB->addSuccessor(LoopMBB); 988 LoopMBB->addSuccessor(ContinueMBB); 989 LoopMBB->addSuccessor(LoopMBB); 990 991 // Mark all the instructions added to the prolog as frame setup. 992 if (InProlog) { 993 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 994 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 995 } 996 for (MachineInstr &MI : *RoundMBB) { 997 MI.setFlag(MachineInstr::FrameSetup); 998 } 999 for (MachineInstr &MI : *LoopMBB) { 1000 MI.setFlag(MachineInstr::FrameSetup); 1001 } 1002 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 1003 CMBBI != ContinueMBBI; ++CMBBI) { 1004 CMBBI->setFlag(MachineInstr::FrameSetup); 1005 } 1006 } 1007 } 1008 1009 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 1010 MachineBasicBlock &MBB, 1011 MachineBasicBlock::iterator MBBI, 1012 const DebugLoc &DL, 1013 bool InProlog) const { 1014 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1015 1016 // FIXME: Add indirect thunk support and remove this. 1017 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1018 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1019 "code model and indirect thunks not yet implemented."); 1020 1021 unsigned CallOp; 1022 if (Is64Bit) 1023 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1024 else 1025 CallOp = X86::CALLpcrel32; 1026 1027 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1028 1029 MachineInstrBuilder CI; 1030 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1031 1032 // All current stack probes take AX and SP as input, clobber flags, and 1033 // preserve all registers. x86_64 probes leave RSP unmodified. 1034 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1035 // For the large code model, we have to call through a register. Use R11, 1036 // as it is scratch in all supported calling conventions. 1037 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1038 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1039 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1040 } else { 1041 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1042 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1043 } 1044 1045 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1046 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1047 CI.addReg(AX, RegState::Implicit) 1048 .addReg(SP, RegState::Implicit) 1049 .addReg(AX, RegState::Define | RegState::Implicit) 1050 .addReg(SP, RegState::Define | RegState::Implicit) 1051 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1052 1053 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1054 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1055 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1056 // themselves. They also does not clobber %rax so we can reuse it when 1057 // adjusting %rsp. 1058 // All other platforms do not specify a particular ABI for the stack probe 1059 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1060 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1061 .addReg(SP) 1062 .addReg(AX); 1063 } 1064 1065 if (InProlog) { 1066 // Apply the frame setup flag to all inserted instrs. 1067 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1068 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1069 } 1070 } 1071 1072 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1073 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1074 // and might require smaller successive adjustments. 1075 const uint64_t Win64MaxSEHOffset = 128; 1076 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1077 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1078 return SEHFrameOffset & -16; 1079 } 1080 1081 // If we're forcing a stack realignment we can't rely on just the frame 1082 // info, we need to know the ABI stack alignment as well in case we 1083 // have a call out. Otherwise just make sure we have some alignment - we'll 1084 // go with the minimum SlotSize. 1085 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1086 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1087 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1088 Align StackAlign = getStackAlign(); 1089 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1090 if (MFI.hasCalls()) 1091 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1092 else if (MaxAlign < SlotSize) 1093 MaxAlign = Align(SlotSize); 1094 } 1095 return MaxAlign.value(); 1096 } 1097 1098 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1099 MachineBasicBlock::iterator MBBI, 1100 const DebugLoc &DL, unsigned Reg, 1101 uint64_t MaxAlign) const { 1102 uint64_t Val = -MaxAlign; 1103 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1104 1105 MachineFunction &MF = *MBB.getParent(); 1106 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1107 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1108 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1109 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1110 1111 // We want to make sure that (in worst case) less than StackProbeSize bytes 1112 // are not probed after the AND. This assumption is used in 1113 // emitStackProbeInlineGeneric. 1114 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1115 { 1116 NumFrameLoopProbe++; 1117 MachineBasicBlock *entryMBB = 1118 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1119 MachineBasicBlock *headMBB = 1120 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1121 MachineBasicBlock *bodyMBB = 1122 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1123 MachineBasicBlock *footMBB = 1124 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1125 1126 MachineFunction::iterator MBBIter = MBB.getIterator(); 1127 MF.insert(MBBIter, entryMBB); 1128 MF.insert(MBBIter, headMBB); 1129 MF.insert(MBBIter, bodyMBB); 1130 MF.insert(MBBIter, footMBB); 1131 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1132 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D; 1133 1134 // Setup entry block 1135 { 1136 1137 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1138 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1139 .addReg(StackPtr) 1140 .setMIFlag(MachineInstr::FrameSetup); 1141 MachineInstr *MI = 1142 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1143 .addReg(FinalStackProbed) 1144 .addImm(Val) 1145 .setMIFlag(MachineInstr::FrameSetup); 1146 1147 // The EFLAGS implicit def is dead. 1148 MI->getOperand(3).setIsDead(); 1149 1150 BuildMI(entryMBB, DL, 1151 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1152 .addReg(FinalStackProbed) 1153 .addReg(StackPtr) 1154 .setMIFlag(MachineInstr::FrameSetup); 1155 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1156 .addMBB(&MBB) 1157 .addImm(X86::COND_E) 1158 .setMIFlag(MachineInstr::FrameSetup); 1159 entryMBB->addSuccessor(headMBB); 1160 entryMBB->addSuccessor(&MBB); 1161 } 1162 1163 // Loop entry block 1164 1165 { 1166 const unsigned SUBOpc = 1167 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1168 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1169 .addReg(StackPtr) 1170 .addImm(StackProbeSize) 1171 .setMIFlag(MachineInstr::FrameSetup); 1172 1173 BuildMI(headMBB, DL, 1174 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1175 .addReg(FinalStackProbed) 1176 .addReg(StackPtr) 1177 .setMIFlag(MachineInstr::FrameSetup); 1178 1179 // jump 1180 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1181 .addMBB(footMBB) 1182 .addImm(X86::COND_B) 1183 .setMIFlag(MachineInstr::FrameSetup); 1184 1185 headMBB->addSuccessor(bodyMBB); 1186 headMBB->addSuccessor(footMBB); 1187 } 1188 1189 // setup loop body 1190 { 1191 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1192 .setMIFlag(MachineInstr::FrameSetup), 1193 StackPtr, false, 0) 1194 .addImm(0) 1195 .setMIFlag(MachineInstr::FrameSetup); 1196 1197 const unsigned SUBOpc = 1198 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1199 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1200 .addReg(StackPtr) 1201 .addImm(StackProbeSize) 1202 .setMIFlag(MachineInstr::FrameSetup); 1203 1204 // cmp with stack pointer bound 1205 BuildMI(bodyMBB, DL, 1206 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1207 .addReg(FinalStackProbed) 1208 .addReg(StackPtr) 1209 .setMIFlag(MachineInstr::FrameSetup); 1210 1211 // jump 1212 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1213 .addMBB(bodyMBB) 1214 .addImm(X86::COND_B) 1215 .setMIFlag(MachineInstr::FrameSetup); 1216 bodyMBB->addSuccessor(bodyMBB); 1217 bodyMBB->addSuccessor(footMBB); 1218 } 1219 1220 // setup loop footer 1221 { 1222 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1223 .addReg(FinalStackProbed) 1224 .setMIFlag(MachineInstr::FrameSetup); 1225 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1226 .setMIFlag(MachineInstr::FrameSetup), 1227 StackPtr, false, 0) 1228 .addImm(0) 1229 .setMIFlag(MachineInstr::FrameSetup); 1230 footMBB->addSuccessor(&MBB); 1231 } 1232 1233 recomputeLiveIns(*headMBB); 1234 recomputeLiveIns(*bodyMBB); 1235 recomputeLiveIns(*footMBB); 1236 recomputeLiveIns(MBB); 1237 } 1238 } else { 1239 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1240 .addReg(Reg) 1241 .addImm(Val) 1242 .setMIFlag(MachineInstr::FrameSetup); 1243 1244 // The EFLAGS implicit def is dead. 1245 MI->getOperand(3).setIsDead(); 1246 } 1247 } 1248 1249 // FIXME: Get this from tablegen. 1250 static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, 1251 const X86Subtarget &Subtarget) { 1252 assert(Subtarget.is64Bit()); 1253 1254 if (Subtarget.isCallingConvWin64(CallConv)) { 1255 static const MCPhysReg GPR64ArgRegsWin64[] = { 1256 X86::RCX, X86::RDX, X86::R8, X86::R9 1257 }; 1258 return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); 1259 } 1260 1261 static const MCPhysReg GPR64ArgRegs64Bit[] = { 1262 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 1263 }; 1264 return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); 1265 } 1266 1267 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1268 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1269 // clobbered by any interrupt handler. 1270 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1271 "MF used frame lowering for wrong subtarget"); 1272 const Function &Fn = MF.getFunction(); 1273 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1274 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1275 } 1276 1277 1278 /// emitPrologue - Push callee-saved registers onto the stack, which 1279 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1280 /// space for local variables. Also emit labels used by the exception handler to 1281 /// generate the exception handling frames. 1282 1283 /* 1284 Here's a gist of what gets emitted: 1285 1286 ; Establish frame pointer, if needed 1287 [if needs FP] 1288 push %rbp 1289 .cfi_def_cfa_offset 16 1290 .cfi_offset %rbp, -16 1291 .seh_pushreg %rpb 1292 mov %rsp, %rbp 1293 .cfi_def_cfa_register %rbp 1294 1295 ; Spill general-purpose registers 1296 [for all callee-saved GPRs] 1297 pushq %<reg> 1298 [if not needs FP] 1299 .cfi_def_cfa_offset (offset from RETADDR) 1300 .seh_pushreg %<reg> 1301 1302 ; If the required stack alignment > default stack alignment 1303 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1304 ; of unknown size in the stack frame. 1305 [if stack needs re-alignment] 1306 and $MASK, %rsp 1307 1308 ; Allocate space for locals 1309 [if target is Windows and allocated space > 4096 bytes] 1310 ; Windows needs special care for allocations larger 1311 ; than one page. 1312 mov $NNN, %rax 1313 call ___chkstk_ms/___chkstk 1314 sub %rax, %rsp 1315 [else] 1316 sub $NNN, %rsp 1317 1318 [if needs FP] 1319 .seh_stackalloc (size of XMM spill slots) 1320 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1321 [else] 1322 .seh_stackalloc NNN 1323 1324 ; Spill XMMs 1325 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1326 ; they may get spilled on any platform, if the current function 1327 ; calls @llvm.eh.unwind.init 1328 [if needs FP] 1329 [for all callee-saved XMM registers] 1330 movaps %<xmm reg>, -MMM(%rbp) 1331 [for all callee-saved XMM registers] 1332 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1333 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1334 [else] 1335 [for all callee-saved XMM registers] 1336 movaps %<xmm reg>, KKK(%rsp) 1337 [for all callee-saved XMM registers] 1338 .seh_savexmm %<xmm reg>, KKK 1339 1340 .seh_endprologue 1341 1342 [if needs base pointer] 1343 mov %rsp, %rbx 1344 [if needs to restore base pointer] 1345 mov %rsp, -MMM(%rbp) 1346 1347 ; Emit CFI info 1348 [if needs FP] 1349 [for all callee-saved registers] 1350 .cfi_offset %<reg>, (offset from %rbp) 1351 [else] 1352 .cfi_def_cfa_offset (offset from RETADDR) 1353 [for all callee-saved registers] 1354 .cfi_offset %<reg>, (offset from %rsp) 1355 1356 Notes: 1357 - .seh directives are emitted only for Windows 64 ABI 1358 - .cv_fpo directives are emitted on win32 when emitting CodeView 1359 - .cfi directives are emitted for all other ABIs 1360 - for 32-bit code, substitute %e?? registers for %r?? 1361 */ 1362 1363 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1364 MachineBasicBlock &MBB) const { 1365 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1366 "MF used frame lowering for wrong subtarget"); 1367 MachineBasicBlock::iterator MBBI = MBB.begin(); 1368 MachineFrameInfo &MFI = MF.getFrameInfo(); 1369 const Function &Fn = MF.getFunction(); 1370 MachineModuleInfo &MMI = MF.getMMI(); 1371 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1372 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1373 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1374 bool IsFunclet = MBB.isEHFuncletEntry(); 1375 EHPersonality Personality = EHPersonality::Unknown; 1376 if (Fn.hasPersonalityFn()) 1377 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1378 bool FnHasClrFunclet = 1379 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1380 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1381 bool HasFP = hasFP(MF); 1382 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1383 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1384 // FIXME: Emit FPO data for EH funclets. 1385 bool NeedsWinFPO = 1386 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1387 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1388 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 1389 Register FramePtr = TRI->getFrameRegister(MF); 1390 const Register MachineFramePtr = 1391 STI.isTarget64BitILP32() 1392 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1393 Register BasePtr = TRI->getBaseRegister(); 1394 bool HasWinCFI = false; 1395 1396 // Debug location must be unknown since the first debug location is used 1397 // to determine the end of the prologue. 1398 DebugLoc DL; 1399 1400 // Add RETADDR move area to callee saved frame size. 1401 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1402 if (TailCallReturnAddrDelta && IsWin64Prologue) 1403 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1404 1405 if (TailCallReturnAddrDelta < 0) 1406 X86FI->setCalleeSavedFrameSize( 1407 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1408 1409 const bool EmitStackProbeCall = 1410 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1411 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1412 1413 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1414 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1415 // stack alignment. 1416 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1417 Fn.arg_size() == 2) { 1418 StackSize += 8; 1419 MFI.setStackSize(StackSize); 1420 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1421 } 1422 1423 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1424 // function, and use up to 128 bytes of stack space, don't have a frame 1425 // pointer, calls, or dynamic alloca then we do not need to adjust the 1426 // stack pointer (we fit in the Red Zone). We also check that we don't 1427 // push and pop from the stack. 1428 if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) && 1429 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1430 !MFI.adjustsStack() && // No calls. 1431 !EmitStackProbeCall && // No stack probes. 1432 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1433 !MF.shouldSplitStack()) { // Regular stack 1434 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1435 if (HasFP) MinSize += SlotSize; 1436 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1437 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1438 MFI.setStackSize(StackSize); 1439 } 1440 1441 // Insert stack pointer adjustment for later moving of return addr. Only 1442 // applies to tail call optimized functions where the callee argument stack 1443 // size is bigger than the callers. 1444 if (TailCallReturnAddrDelta < 0) { 1445 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1446 /*InEpilogue=*/false) 1447 .setMIFlag(MachineInstr::FrameSetup); 1448 } 1449 1450 // Mapping for machine moves: 1451 // 1452 // DST: VirtualFP AND 1453 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1454 // ELSE => DW_CFA_def_cfa 1455 // 1456 // SRC: VirtualFP AND 1457 // DST: Register => DW_CFA_def_cfa_register 1458 // 1459 // ELSE 1460 // OFFSET < 0 => DW_CFA_offset_extended_sf 1461 // REG < 64 => DW_CFA_offset + Reg 1462 // ELSE => DW_CFA_offset_extended 1463 1464 uint64_t NumBytes = 0; 1465 int stackGrowth = -SlotSize; 1466 1467 // Find the funclet establisher parameter 1468 Register Establisher = X86::NoRegister; 1469 if (IsClrFunclet) 1470 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1471 else if (IsFunclet) 1472 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1473 1474 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1475 // Immediately spill establisher into the home slot. 1476 // The runtime cares about this. 1477 // MOV64mr %rdx, 16(%rsp) 1478 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1479 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1480 .addReg(Establisher) 1481 .setMIFlag(MachineInstr::FrameSetup); 1482 MBB.addLiveIn(Establisher); 1483 } 1484 1485 if (HasFP) { 1486 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1487 1488 // Calculate required stack adjustment. 1489 uint64_t FrameSize = StackSize - SlotSize; 1490 // If required, include space for extra hidden slot for stashing base pointer. 1491 if (X86FI->getRestoreBasePointer()) 1492 FrameSize += SlotSize; 1493 1494 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1495 1496 // Callee-saved registers are pushed on stack before the stack is realigned. 1497 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1498 NumBytes = alignTo(NumBytes, MaxAlign); 1499 1500 // Save EBP/RBP into the appropriate stack slot. 1501 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1502 .addReg(MachineFramePtr, RegState::Kill) 1503 .setMIFlag(MachineInstr::FrameSetup); 1504 1505 if (NeedsDwarfCFI) { 1506 // Mark the place where EBP/RBP was saved. 1507 // Define the current CFA rule to use the provided offset. 1508 assert(StackSize); 1509 BuildCFI(MBB, MBBI, DL, 1510 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1511 1512 // Change the rule for the FramePtr to be an "offset" rule. 1513 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1514 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1515 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1516 } 1517 1518 if (NeedsWinCFI) { 1519 HasWinCFI = true; 1520 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1521 .addImm(FramePtr) 1522 .setMIFlag(MachineInstr::FrameSetup); 1523 } 1524 1525 if (!IsWin64Prologue && !IsFunclet) { 1526 // Update EBP with the new base value. 1527 BuildMI(MBB, MBBI, DL, 1528 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1529 FramePtr) 1530 .addReg(StackPtr) 1531 .setMIFlag(MachineInstr::FrameSetup); 1532 1533 if (NeedsDwarfCFI) { 1534 // Mark effective beginning of when frame pointer becomes valid. 1535 // Define the current CFA to use the EBP/RBP register. 1536 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1537 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1538 nullptr, DwarfFramePtr)); 1539 } 1540 1541 if (SaveArgs && !Fn.arg_empty()) { 1542 ArrayRef<MCPhysReg> GPRs = 1543 get64BitArgumentGPRs(Fn.getCallingConv(), STI); 1544 unsigned arg_size = Fn.arg_size(); 1545 unsigned RI = 0; 1546 int64_t SaveSize = 0; 1547 1548 if (Fn.hasStructRetAttr()) { 1549 GPRs = GPRs.drop_front(1); 1550 arg_size--; 1551 } 1552 1553 for (MCPhysReg Reg : GPRs) { 1554 if (++RI > arg_size) 1555 break; 1556 1557 SaveSize += SlotSize; 1558 1559 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1560 .addReg(Reg) 1561 .setMIFlag(MachineInstr::FrameSetup); 1562 } 1563 1564 // Realign the stack. PUSHes are the most space efficient. 1565 while (SaveSize % getStackAlignment()) { 1566 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1567 .addReg(GPRs.front()) 1568 .setMIFlag(MachineInstr::FrameSetup); 1569 1570 SaveSize += SlotSize; 1571 } 1572 1573 //dlg StackSize -= SaveSize; 1574 //dlg MFI.setStackSize(StackSize); 1575 X86FI->setSaveArgSize(SaveSize); 1576 } 1577 1578 if (NeedsWinFPO) { 1579 // .cv_fpo_setframe $FramePtr 1580 HasWinCFI = true; 1581 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1582 .addImm(FramePtr) 1583 .addImm(0) 1584 .setMIFlag(MachineInstr::FrameSetup); 1585 } 1586 } 1587 } else { 1588 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1589 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1590 } 1591 1592 // Update the offset adjustment, which is mainly used by codeview to translate 1593 // from ESP to VFRAME relative local variable offsets. 1594 if (!IsFunclet) { 1595 if (HasFP && TRI->needsStackRealignment(MF)) 1596 MFI.setOffsetAdjustment(-NumBytes); 1597 else 1598 MFI.setOffsetAdjustment(-StackSize); 1599 } 1600 1601 // For EH funclets, only allocate enough space for outgoing calls. Save the 1602 // NumBytes value that we would've used for the parent frame. 1603 unsigned ParentFrameNumBytes = NumBytes; 1604 if (IsFunclet) 1605 NumBytes = getWinEHFuncletFrameSize(MF); 1606 1607 // Skip the callee-saved push instructions. 1608 bool PushedRegs = false; 1609 int StackOffset = 2 * stackGrowth; 1610 1611 while (MBBI != MBB.end() && 1612 MBBI->getFlag(MachineInstr::FrameSetup) && 1613 (MBBI->getOpcode() == X86::PUSH32r || 1614 MBBI->getOpcode() == X86::PUSH64r)) { 1615 PushedRegs = true; 1616 Register Reg = MBBI->getOperand(0).getReg(); 1617 ++MBBI; 1618 1619 if (!HasFP && NeedsDwarfCFI) { 1620 // Mark callee-saved push instruction. 1621 // Define the current CFA rule to use the provided offset. 1622 assert(StackSize); 1623 BuildCFI(MBB, MBBI, DL, 1624 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1625 StackOffset += stackGrowth; 1626 } 1627 1628 if (NeedsWinCFI) { 1629 HasWinCFI = true; 1630 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1631 .addImm(Reg) 1632 .setMIFlag(MachineInstr::FrameSetup); 1633 } 1634 } 1635 1636 // Realign stack after we pushed callee-saved registers (so that we'll be 1637 // able to calculate their offsets from the frame pointer). 1638 // Don't do this for Win64, it needs to realign the stack after the prologue. 1639 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1640 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1641 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1642 1643 if (NeedsWinCFI) { 1644 HasWinCFI = true; 1645 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1646 .addImm(MaxAlign) 1647 .setMIFlag(MachineInstr::FrameSetup); 1648 } 1649 } 1650 1651 // If there is an SUB32ri of ESP immediately before this instruction, merge 1652 // the two. This can be the case when tail call elimination is enabled and 1653 // the callee has more arguments then the caller. 1654 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1655 1656 // Adjust stack pointer: ESP -= numbytes. 1657 1658 // Windows and cygwin/mingw require a prologue helper routine when allocating 1659 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1660 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1661 // stack and adjust the stack pointer in one go. The 64-bit version of 1662 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1663 // responsible for adjusting the stack pointer. Touching the stack at 4K 1664 // increments is necessary to ensure that the guard pages used by the OS 1665 // virtual memory manager are allocated in correct sequence. 1666 uint64_t AlignedNumBytes = NumBytes; 1667 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1668 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1669 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1670 assert(!X86FI->getUsesRedZone() && 1671 "The Red Zone is not accounted for in stack probes"); 1672 1673 // Check whether EAX is livein for this block. 1674 bool isEAXAlive = isEAXLiveIn(MBB); 1675 1676 if (isEAXAlive) { 1677 if (Is64Bit) { 1678 // Save RAX 1679 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1680 .addReg(X86::RAX, RegState::Kill) 1681 .setMIFlag(MachineInstr::FrameSetup); 1682 } else { 1683 // Save EAX 1684 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1685 .addReg(X86::EAX, RegState::Kill) 1686 .setMIFlag(MachineInstr::FrameSetup); 1687 } 1688 } 1689 1690 if (Is64Bit) { 1691 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1692 // Function prologue is responsible for adjusting the stack pointer. 1693 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1694 if (isUInt<32>(Alloc)) { 1695 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1696 .addImm(Alloc) 1697 .setMIFlag(MachineInstr::FrameSetup); 1698 } else if (isInt<32>(Alloc)) { 1699 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1700 .addImm(Alloc) 1701 .setMIFlag(MachineInstr::FrameSetup); 1702 } else { 1703 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1704 .addImm(Alloc) 1705 .setMIFlag(MachineInstr::FrameSetup); 1706 } 1707 } else { 1708 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1709 // We'll also use 4 already allocated bytes for EAX. 1710 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1711 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1712 .setMIFlag(MachineInstr::FrameSetup); 1713 } 1714 1715 // Call __chkstk, __chkstk_ms, or __alloca. 1716 emitStackProbe(MF, MBB, MBBI, DL, true); 1717 1718 if (isEAXAlive) { 1719 // Restore RAX/EAX 1720 MachineInstr *MI; 1721 if (Is64Bit) 1722 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1723 StackPtr, false, NumBytes - 8); 1724 else 1725 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1726 StackPtr, false, NumBytes - 4); 1727 MI->setFlag(MachineInstr::FrameSetup); 1728 MBB.insert(MBBI, MI); 1729 } 1730 } else if (NumBytes) { 1731 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1732 } 1733 1734 if (NeedsWinCFI && NumBytes) { 1735 HasWinCFI = true; 1736 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1737 .addImm(NumBytes) 1738 .setMIFlag(MachineInstr::FrameSetup); 1739 } 1740 1741 int SEHFrameOffset = 0; 1742 unsigned SPOrEstablisher; 1743 if (IsFunclet) { 1744 if (IsClrFunclet) { 1745 // The establisher parameter passed to a CLR funclet is actually a pointer 1746 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1747 // to find the root function establisher frame by loading the PSPSym from 1748 // the intermediate frame. 1749 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1750 MachinePointerInfo NoInfo; 1751 MBB.addLiveIn(Establisher); 1752 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1753 Establisher, false, PSPSlotOffset) 1754 .addMemOperand(MF.getMachineMemOperand( 1755 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1756 ; 1757 // Save the root establisher back into the current funclet's (mostly 1758 // empty) frame, in case a sub-funclet or the GC needs it. 1759 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1760 false, PSPSlotOffset) 1761 .addReg(Establisher) 1762 .addMemOperand(MF.getMachineMemOperand( 1763 NoInfo, 1764 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1765 SlotSize, Align(SlotSize))); 1766 } 1767 SPOrEstablisher = Establisher; 1768 } else { 1769 SPOrEstablisher = StackPtr; 1770 } 1771 1772 if (IsWin64Prologue && HasFP) { 1773 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1774 // this calculation on the incoming establisher, which holds the value of 1775 // RSP from the parent frame at the end of the prologue. 1776 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1777 if (SEHFrameOffset) 1778 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1779 SPOrEstablisher, false, SEHFrameOffset); 1780 else 1781 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1782 .addReg(SPOrEstablisher); 1783 1784 // If this is not a funclet, emit the CFI describing our frame pointer. 1785 if (NeedsWinCFI && !IsFunclet) { 1786 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1787 HasWinCFI = true; 1788 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1789 .addImm(FramePtr) 1790 .addImm(SEHFrameOffset) 1791 .setMIFlag(MachineInstr::FrameSetup); 1792 if (isAsynchronousEHPersonality(Personality)) 1793 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1794 } 1795 } else if (IsFunclet && STI.is32Bit()) { 1796 // Reset EBP / ESI to something good for funclets. 1797 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1798 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1799 // into the registration node so that the runtime will restore it for us. 1800 if (!MBB.isCleanupFuncletEntry()) { 1801 assert(Personality == EHPersonality::MSVC_CXX); 1802 Register FrameReg; 1803 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1804 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1805 // ESP is the first field, so no extra displacement is needed. 1806 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1807 false, EHRegOffset) 1808 .addReg(X86::ESP); 1809 } 1810 } 1811 1812 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1813 const MachineInstr &FrameInstr = *MBBI; 1814 ++MBBI; 1815 1816 if (NeedsWinCFI) { 1817 int FI; 1818 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1819 if (X86::FR64RegClass.contains(Reg)) { 1820 int Offset; 1821 Register IgnoredFrameReg; 1822 if (IsWin64Prologue && IsFunclet) 1823 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1824 else 1825 Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) + 1826 SEHFrameOffset; 1827 1828 HasWinCFI = true; 1829 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1830 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1831 .addImm(Reg) 1832 .addImm(Offset) 1833 .setMIFlag(MachineInstr::FrameSetup); 1834 } 1835 } 1836 } 1837 } 1838 1839 if (NeedsWinCFI && HasWinCFI) 1840 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1841 .setMIFlag(MachineInstr::FrameSetup); 1842 1843 if (FnHasClrFunclet && !IsFunclet) { 1844 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1845 // immediately after the prolog) into the PSPSlot so that funclets 1846 // and the GC can recover it. 1847 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1848 auto PSPInfo = MachinePointerInfo::getFixedStack( 1849 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1850 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1851 PSPSlotOffset) 1852 .addReg(StackPtr) 1853 .addMemOperand(MF.getMachineMemOperand( 1854 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1855 SlotSize, Align(SlotSize))); 1856 } 1857 1858 // Realign stack after we spilled callee-saved registers (so that we'll be 1859 // able to calculate their offsets from the frame pointer). 1860 // Win64 requires aligning the stack after the prologue. 1861 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1862 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1863 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1864 } 1865 1866 // We already dealt with stack realignment and funclets above. 1867 if (IsFunclet && STI.is32Bit()) 1868 return; 1869 1870 // If we need a base pointer, set it up here. It's whatever the value 1871 // of the stack pointer is at this point. Any variable size objects 1872 // will be allocated after this, so we can still use the base pointer 1873 // to reference locals. 1874 if (TRI->hasBasePointer(MF)) { 1875 // Update the base pointer with the current stack pointer. 1876 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1877 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1878 .addReg(SPOrEstablisher) 1879 .setMIFlag(MachineInstr::FrameSetup); 1880 if (X86FI->getRestoreBasePointer()) { 1881 // Stash value of base pointer. Saving RSP instead of EBP shortens 1882 // dependence chain. Used by SjLj EH. 1883 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1884 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1885 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1886 .addReg(SPOrEstablisher) 1887 .setMIFlag(MachineInstr::FrameSetup); 1888 } 1889 1890 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1891 // Stash the value of the frame pointer relative to the base pointer for 1892 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1893 // it recovers the frame pointer from the base pointer rather than the 1894 // other way around. 1895 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1896 Register UsedReg; 1897 int Offset = 1898 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1899 assert(UsedReg == BasePtr); 1900 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1901 .addReg(FramePtr) 1902 .setMIFlag(MachineInstr::FrameSetup); 1903 } 1904 } 1905 1906 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1907 // Mark end of stack pointer adjustment. 1908 if (!HasFP && NumBytes) { 1909 // Define the current CFA rule to use the provided offset. 1910 assert(StackSize); 1911 BuildCFI( 1912 MBB, MBBI, DL, 1913 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1914 } 1915 1916 // Emit DWARF info specifying the offsets of the callee-saved registers. 1917 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1918 } 1919 1920 // X86 Interrupt handling function cannot assume anything about the direction 1921 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1922 // in each prologue of interrupt handler function. 1923 // 1924 // FIXME: Create "cld" instruction only in these cases: 1925 // 1. The interrupt handling function uses any of the "rep" instructions. 1926 // 2. Interrupt handling function calls another function. 1927 // 1928 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1929 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1930 .setMIFlag(MachineInstr::FrameSetup); 1931 1932 // At this point we know if the function has WinCFI or not. 1933 MF.setHasWinCFI(HasWinCFI); 1934 } 1935 1936 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1937 const MachineFunction &MF) const { 1938 // We can't use LEA instructions for adjusting the stack pointer if we don't 1939 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1940 // to deallocate the stack. 1941 // This means that we can use LEA for SP in two situations: 1942 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1943 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1944 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1945 } 1946 1947 static bool isFuncletReturnInstr(MachineInstr &MI) { 1948 switch (MI.getOpcode()) { 1949 case X86::CATCHRET: 1950 case X86::CLEANUPRET: 1951 return true; 1952 default: 1953 return false; 1954 } 1955 llvm_unreachable("impossible"); 1956 } 1957 1958 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1959 // stack. It holds a pointer to the bottom of the root function frame. The 1960 // establisher frame pointer passed to a nested funclet may point to the 1961 // (mostly empty) frame of its parent funclet, but it will need to find 1962 // the frame of the root function to access locals. To facilitate this, 1963 // every funclet copies the pointer to the bottom of the root function 1964 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1965 // same offset for the PSPSym in the root function frame that's used in the 1966 // funclets' frames allows each funclet to dynamically accept any ancestor 1967 // frame as its establisher argument (the runtime doesn't guarantee the 1968 // immediate parent for some reason lost to history), and also allows the GC, 1969 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1970 // frame with only a single offset reported for the entire method. 1971 unsigned 1972 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1973 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1974 Register SPReg; 1975 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1976 /*IgnoreSPUpdates*/ true); 1977 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1978 return static_cast<unsigned>(Offset); 1979 } 1980 1981 unsigned 1982 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1983 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1984 // This is the size of the pushed CSRs. 1985 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1986 // This is the size of callee saved XMMs. 1987 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1988 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1989 TRI->getSpillSize(X86::VR128RegClass); 1990 // This is the amount of stack a funclet needs to allocate. 1991 unsigned UsedSize; 1992 EHPersonality Personality = 1993 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1994 if (Personality == EHPersonality::CoreCLR) { 1995 // CLR funclets need to hold enough space to include the PSPSym, at the 1996 // same offset from the stack pointer (immediately after the prolog) as it 1997 // resides at in the main function. 1998 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1999 } else { 2000 // Other funclets just need enough stack for outgoing call arguments. 2001 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2002 } 2003 // RBP is not included in the callee saved register block. After pushing RBP, 2004 // everything is 16 byte aligned. Everything we allocate before an outgoing 2005 // call must also be 16 byte aligned. 2006 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2007 // Subtract out the size of the callee saved registers. This is how much stack 2008 // each funclet will allocate. 2009 return FrameSizeMinusRBP + XMMSize - CSSize; 2010 } 2011 2012 static bool isTailCallOpcode(unsigned Opc) { 2013 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2014 Opc == X86::TCRETURNmi || 2015 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2016 Opc == X86::TCRETURNmi64; 2017 } 2018 2019 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2020 MachineBasicBlock &MBB) const { 2021 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2022 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2023 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2024 MachineBasicBlock::iterator MBBI = Terminator; 2025 DebugLoc DL; 2026 if (MBBI != MBB.end()) 2027 DL = MBBI->getDebugLoc(); 2028 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2029 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2030 Register FramePtr = TRI->getFrameRegister(MF); 2031 unsigned MachineFramePtr = 2032 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2033 2034 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2035 bool NeedsWin64CFI = 2036 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2037 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2038 2039 // Get the number of bytes to allocate from the FrameInfo. 2040 uint64_t StackSize = MFI.getStackSize(); 2041 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2042 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2043 bool HasFP = hasFP(MF); 2044 uint64_t NumBytes = 0; 2045 2046 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2047 !MF.getTarget().getTargetTriple().isOSWindows()) && 2048 MF.needsFrameMoves(); 2049 2050 if (IsFunclet) { 2051 assert(HasFP && "EH funclets without FP not yet implemented"); 2052 NumBytes = getWinEHFuncletFrameSize(MF); 2053 } else if (HasFP) { 2054 // Calculate required stack adjustment. 2055 uint64_t FrameSize = StackSize - SlotSize; 2056 NumBytes = FrameSize - CSSize; 2057 2058 // Callee-saved registers were pushed on stack before the stack was 2059 // realigned. 2060 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 2061 NumBytes = alignTo(FrameSize, MaxAlign); 2062 } else { 2063 NumBytes = StackSize - CSSize; 2064 } 2065 uint64_t SEHStackAllocAmt = NumBytes; 2066 2067 // AfterPop is the position to insert .cfi_restore. 2068 MachineBasicBlock::iterator AfterPop = MBBI; 2069 if (HasFP) { 2070 if (X86FI->getSaveArgSize()) { 2071 // LEAVE is effectively mov rbp,rsp; pop rbp 2072 BuildMI(MBB, MBBI, DL, TII.get(X86::LEAVE64)) 2073 .setMIFlag(MachineInstr::FrameDestroy); 2074 } else { 2075 // Pop EBP. 2076 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2077 MachineFramePtr) 2078 .setMIFlag(MachineInstr::FrameDestroy); 2079 } 2080 if (NeedsDwarfCFI) { 2081 unsigned DwarfStackPtr = 2082 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2083 BuildCFI(MBB, MBBI, DL, 2084 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2085 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2086 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2087 BuildCFI(MBB, AfterPop, DL, 2088 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2089 --MBBI; 2090 --AfterPop; 2091 } 2092 --MBBI; 2093 } 2094 } 2095 2096 MachineBasicBlock::iterator FirstCSPop = MBBI; 2097 // Skip the callee-saved pop instructions. 2098 while (MBBI != MBB.begin()) { 2099 MachineBasicBlock::iterator PI = std::prev(MBBI); 2100 unsigned Opc = PI->getOpcode(); 2101 2102 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2103 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2104 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2105 (Opc != X86::LEAVE64 || !PI->getFlag(MachineInstr::FrameDestroy))) 2106 break; 2107 FirstCSPop = PI; 2108 } 2109 2110 --MBBI; 2111 } 2112 MBBI = FirstCSPop; 2113 2114 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2115 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2116 2117 if (MBBI != MBB.end()) 2118 DL = MBBI->getDebugLoc(); 2119 2120 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2121 // instruction, merge the two instructions. 2122 if (NumBytes || MFI.hasVarSizedObjects()) 2123 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2124 2125 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2126 // slot before popping them off! Same applies for the case, when stack was 2127 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2128 // will not do realignment or dynamic stack allocation. 2129 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 2130 !IsFunclet) { 2131 if (TRI->needsStackRealignment(MF)) 2132 MBBI = FirstCSPop; 2133 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2134 uint64_t LEAAmount = 2135 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2136 2137 // There are only two legal forms of epilogue: 2138 // - add SEHAllocationSize, %rsp 2139 // - lea SEHAllocationSize(%FramePtr), %rsp 2140 // 2141 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2142 // However, we may use this sequence if we have a frame pointer because the 2143 // effects of the prologue can safely be undone. 2144 if (LEAAmount != 0) { 2145 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2146 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2147 FramePtr, false, LEAAmount); 2148 --MBBI; 2149 } else { 2150 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2151 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2152 .addReg(FramePtr); 2153 --MBBI; 2154 } 2155 } else if (NumBytes) { 2156 // Adjust stack pointer back: ESP += numbytes. 2157 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2158 if (!hasFP(MF) && NeedsDwarfCFI) { 2159 // Define the current CFA rule to use the provided offset. 2160 BuildCFI(MBB, MBBI, DL, 2161 MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize)); 2162 } 2163 --MBBI; 2164 } 2165 2166 // Windows unwinder will not invoke function's exception handler if IP is 2167 // either in prologue or in epilogue. This behavior causes a problem when a 2168 // call immediately precedes an epilogue, because the return address points 2169 // into the epilogue. To cope with that, we insert an epilogue marker here, 2170 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2171 // final emitted code. 2172 if (NeedsWin64CFI && MF.hasWinCFI()) 2173 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2174 2175 if (!hasFP(MF) && NeedsDwarfCFI) { 2176 MBBI = FirstCSPop; 2177 int64_t Offset = -CSSize - SlotSize; 2178 // Mark callee-saved pop instruction. 2179 // Define the current CFA rule to use the provided offset. 2180 while (MBBI != MBB.end()) { 2181 MachineBasicBlock::iterator PI = MBBI; 2182 unsigned Opc = PI->getOpcode(); 2183 ++MBBI; 2184 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2185 Offset += SlotSize; 2186 BuildCFI(MBB, MBBI, DL, 2187 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2188 } 2189 } 2190 } 2191 2192 // Emit DWARF info specifying the restores of the callee-saved registers. 2193 // For epilogue with return inside or being other block without successor, 2194 // no need to generate .cfi_restore for callee-saved registers. 2195 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) { 2196 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2197 } 2198 2199 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2200 // Add the return addr area delta back since we are not tail calling. 2201 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2202 assert(Offset >= 0 && "TCDelta should never be positive"); 2203 if (Offset) { 2204 // Check for possible merge with preceding ADD instruction. 2205 Offset += mergeSPUpdates(MBB, Terminator, true); 2206 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2207 } 2208 } 2209 } 2210 2211 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 2212 Register &FrameReg) const { 2213 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2214 2215 bool IsFixed = MFI.isFixedObjectIndex(FI); 2216 // We can't calculate offset from frame pointer if the stack is realigned, 2217 // so enforce usage of stack/base pointer. The base pointer is used when we 2218 // have dynamic allocas in addition to dynamic realignment. 2219 if (TRI->hasBasePointer(MF)) 2220 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2221 else if (TRI->needsStackRealignment(MF)) 2222 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2223 else 2224 FrameReg = TRI->getFrameRegister(MF); 2225 2226 // Offset will hold the offset from the stack pointer at function entry to the 2227 // object. 2228 // We need to factor in additional offsets applied during the prologue to the 2229 // frame, base, and stack pointer depending on which is used. 2230 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2231 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2232 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2233 uint64_t StackSize = MFI.getStackSize(); 2234 bool HasFP = hasFP(MF); 2235 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2236 int64_t FPDelta = 0; 2237 2238 // In an x86 interrupt, remove the offset we added to account for the return 2239 // address from any stack object allocated in the caller's frame. Interrupts 2240 // do not have a standard return address. Fixed objects in the current frame, 2241 // such as SSE register spills, should not get this treatment. 2242 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2243 Offset >= 0) { 2244 Offset += getOffsetOfLocalArea(); 2245 } 2246 2247 if (IsWin64Prologue) { 2248 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2249 2250 // Calculate required stack adjustment. 2251 uint64_t FrameSize = StackSize - SlotSize; 2252 // If required, include space for extra hidden slot for stashing base pointer. 2253 if (X86FI->getRestoreBasePointer()) 2254 FrameSize += SlotSize; 2255 uint64_t NumBytes = FrameSize - CSSize; 2256 2257 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2258 if (FI && FI == X86FI->getFAIndex()) 2259 return -SEHFrameOffset; 2260 2261 // FPDelta is the offset from the "traditional" FP location of the old base 2262 // pointer followed by return address and the location required by the 2263 // restricted Win64 prologue. 2264 // Add FPDelta to all offsets below that go through the frame pointer. 2265 FPDelta = FrameSize - SEHFrameOffset; 2266 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2267 "FPDelta isn't aligned per the Win64 ABI!"); 2268 } 2269 2270 if (FI >= 0) 2271 Offset -= X86FI->getSaveArgSize(); 2272 2273 if (TRI->hasBasePointer(MF)) { 2274 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 2275 if (FI < 0) { 2276 // Skip the saved EBP. 2277 return Offset + SlotSize + FPDelta; 2278 } else { 2279 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2280 return Offset + StackSize; 2281 } 2282 } else if (TRI->needsStackRealignment(MF)) { 2283 if (FI < 0) { 2284 // Skip the saved EBP. 2285 return Offset + SlotSize + FPDelta; 2286 } else { 2287 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2288 return Offset + StackSize; 2289 } 2290 // FIXME: Support tail calls 2291 } else { 2292 if (!HasFP) 2293 return Offset + StackSize; 2294 2295 // Skip the saved EBP. 2296 Offset += SlotSize; 2297 2298 // Skip the RETADDR move area 2299 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2300 if (TailCallReturnAddrDelta < 0) 2301 Offset -= TailCallReturnAddrDelta; 2302 } 2303 2304 return Offset + FPDelta; 2305 } 2306 2307 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2308 Register &FrameReg) const { 2309 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2310 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2311 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2312 const auto it = WinEHXMMSlotInfo.find(FI); 2313 2314 if (it == WinEHXMMSlotInfo.end()) 2315 return getFrameIndexReference(MF, FI, FrameReg); 2316 2317 FrameReg = TRI->getStackRegister(); 2318 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2319 it->second; 2320 } 2321 2322 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 2323 int FI, Register &FrameReg, 2324 int Adjustment) const { 2325 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2326 FrameReg = TRI->getStackRegister(); 2327 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 2328 } 2329 2330 int X86FrameLowering::getFrameIndexReferencePreferSP( 2331 const MachineFunction &MF, int FI, Register &FrameReg, 2332 bool IgnoreSPUpdates) const { 2333 2334 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2335 // Does not include any dynamic realign. 2336 const uint64_t StackSize = MFI.getStackSize(); 2337 // LLVM arranges the stack as follows: 2338 // ... 2339 // ARG2 2340 // ARG1 2341 // RETADDR 2342 // PUSH RBP <-- RBP points here 2343 // PUSH CSRs 2344 // ~~~~~~~ <-- possible stack realignment (non-win64) 2345 // ... 2346 // STACK OBJECTS 2347 // ... <-- RSP after prologue points here 2348 // ~~~~~~~ <-- possible stack realignment (win64) 2349 // 2350 // if (hasVarSizedObjects()): 2351 // ... <-- "base pointer" (ESI/RBX) points here 2352 // DYNAMIC ALLOCAS 2353 // ... <-- RSP points here 2354 // 2355 // Case 1: In the simple case of no stack realignment and no dynamic 2356 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2357 // with fixed offsets from RSP. 2358 // 2359 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2360 // stack objects are addressed with RBP and regular stack objects with RSP. 2361 // 2362 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2363 // to address stack arguments for outgoing calls and nothing else. The "base 2364 // pointer" points to local variables, and RBP points to fixed objects. 2365 // 2366 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2367 // answer we give is relative to the SP after the prologue, and not the 2368 // SP in the middle of the function. 2369 2370 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 2371 !STI.isTargetWin64()) 2372 return getFrameIndexReference(MF, FI, FrameReg); 2373 2374 // If !hasReservedCallFrame the function might have SP adjustement in the 2375 // body. So, even though the offset is statically known, it depends on where 2376 // we are in the function. 2377 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2378 return getFrameIndexReference(MF, FI, FrameReg); 2379 2380 // We don't handle tail calls, and shouldn't be seeing them either. 2381 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2382 "we don't handle this case!"); 2383 2384 // This is how the math works out: 2385 // 2386 // %rsp grows (i.e. gets lower) left to right. Each box below is 2387 // one word (eight bytes). Obj0 is the stack slot we're trying to 2388 // get to. 2389 // 2390 // ---------------------------------- 2391 // | BP | Obj0 | Obj1 | ... | ObjN | 2392 // ---------------------------------- 2393 // ^ ^ ^ ^ 2394 // A B C E 2395 // 2396 // A is the incoming stack pointer. 2397 // (B - A) is the local area offset (-8 for x86-64) [1] 2398 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2399 // 2400 // |(E - B)| is the StackSize (absolute value, positive). For a 2401 // stack that grown down, this works out to be (B - E). [3] 2402 // 2403 // E is also the value of %rsp after stack has been set up, and we 2404 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2405 // (C - E) == (C - A) - (B - A) + (B - E) 2406 // { Using [1], [2] and [3] above } 2407 // == getObjectOffset - LocalAreaOffset + StackSize 2408 2409 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2410 } 2411 2412 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2413 MachineFunction &MF, const TargetRegisterInfo *TRI, 2414 std::vector<CalleeSavedInfo> &CSI) const { 2415 MachineFrameInfo &MFI = MF.getFrameInfo(); 2416 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2417 2418 unsigned CalleeSavedFrameSize = 0; 2419 unsigned XMMCalleeSavedFrameSize = 0; 2420 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2421 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2422 2423 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2424 2425 if (TailCallReturnAddrDelta < 0) { 2426 // create RETURNADDR area 2427 // arg 2428 // arg 2429 // RETADDR 2430 // { ... 2431 // RETADDR area 2432 // ... 2433 // } 2434 // [EBP] 2435 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2436 TailCallReturnAddrDelta - SlotSize, true); 2437 } 2438 2439 // Spill the BasePtr if it's used. 2440 if (this->TRI->hasBasePointer(MF)) { 2441 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2442 if (MF.hasEHFunclets()) { 2443 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2444 X86FI->setHasSEHFramePtrSave(true); 2445 X86FI->setSEHFramePtrSaveIndex(FI); 2446 } 2447 } 2448 2449 if (hasFP(MF)) { 2450 // emitPrologue always spills frame register the first thing. 2451 SpillSlotOffset -= SlotSize; 2452 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2453 2454 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2455 // the frame register, we can delete it from CSI list and not have to worry 2456 // about avoiding it later. 2457 Register FPReg = TRI->getFrameRegister(MF); 2458 for (unsigned i = 0; i < CSI.size(); ++i) { 2459 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2460 CSI.erase(CSI.begin() + i); 2461 break; 2462 } 2463 } 2464 } 2465 2466 // Assign slots for GPRs. It increases frame size. 2467 for (unsigned i = CSI.size(); i != 0; --i) { 2468 unsigned Reg = CSI[i - 1].getReg(); 2469 2470 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2471 continue; 2472 2473 SpillSlotOffset -= SlotSize; 2474 CalleeSavedFrameSize += SlotSize; 2475 2476 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2477 CSI[i - 1].setFrameIdx(SlotIndex); 2478 } 2479 2480 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2481 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2482 2483 // Assign slots for XMMs. 2484 for (unsigned i = CSI.size(); i != 0; --i) { 2485 unsigned Reg = CSI[i - 1].getReg(); 2486 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2487 continue; 2488 2489 // If this is k-register make sure we lookup via the largest legal type. 2490 MVT VT = MVT::Other; 2491 if (X86::VK16RegClass.contains(Reg)) 2492 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2493 2494 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2495 unsigned Size = TRI->getSpillSize(*RC); 2496 Align Alignment = TRI->getSpillAlign(*RC); 2497 // ensure alignment 2498 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2499 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2500 2501 // spill into slot 2502 SpillSlotOffset -= Size; 2503 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2504 CSI[i - 1].setFrameIdx(SlotIndex); 2505 MFI.ensureMaxAlignment(Alignment); 2506 2507 // Save the start offset and size of XMM in stack frame for funclets. 2508 if (X86::VR128RegClass.contains(Reg)) { 2509 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2510 XMMCalleeSavedFrameSize += Size; 2511 } 2512 } 2513 2514 return true; 2515 } 2516 2517 bool X86FrameLowering::spillCalleeSavedRegisters( 2518 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2519 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2520 DebugLoc DL = MBB.findDebugLoc(MI); 2521 2522 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2523 // for us, and there are no XMM CSRs on Win32. 2524 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2525 return true; 2526 2527 // Push GPRs. It increases frame size. 2528 const MachineFunction &MF = *MBB.getParent(); 2529 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2530 for (unsigned i = CSI.size(); i != 0; --i) { 2531 unsigned Reg = CSI[i - 1].getReg(); 2532 2533 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2534 continue; 2535 2536 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2537 bool isLiveIn = MRI.isLiveIn(Reg); 2538 if (!isLiveIn) 2539 MBB.addLiveIn(Reg); 2540 2541 // Decide whether we can add a kill flag to the use. 2542 bool CanKill = !isLiveIn; 2543 // Check if any subregister is live-in 2544 if (CanKill) { 2545 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2546 if (MRI.isLiveIn(*AReg)) { 2547 CanKill = false; 2548 break; 2549 } 2550 } 2551 } 2552 2553 // Do not set a kill flag on values that are also marked as live-in. This 2554 // happens with the @llvm-returnaddress intrinsic and with arguments 2555 // passed in callee saved registers. 2556 // Omitting the kill flags is conservatively correct even if the live-in 2557 // is not used after all. 2558 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2559 .setMIFlag(MachineInstr::FrameSetup); 2560 } 2561 2562 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2563 // It can be done by spilling XMMs to stack frame. 2564 for (unsigned i = CSI.size(); i != 0; --i) { 2565 unsigned Reg = CSI[i-1].getReg(); 2566 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2567 continue; 2568 2569 // If this is k-register make sure we lookup via the largest legal type. 2570 MVT VT = MVT::Other; 2571 if (X86::VK16RegClass.contains(Reg)) 2572 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2573 2574 // Add the callee-saved register as live-in. It's killed at the spill. 2575 MBB.addLiveIn(Reg); 2576 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2577 2578 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2579 TRI); 2580 --MI; 2581 MI->setFlag(MachineInstr::FrameSetup); 2582 ++MI; 2583 } 2584 2585 return true; 2586 } 2587 2588 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2589 MachineBasicBlock::iterator MBBI, 2590 MachineInstr *CatchRet) const { 2591 // SEH shouldn't use catchret. 2592 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2593 MBB.getParent()->getFunction().getPersonalityFn())) && 2594 "SEH should not use CATCHRET"); 2595 DebugLoc DL = CatchRet->getDebugLoc(); 2596 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2597 2598 // Fill EAX/RAX with the address of the target block. 2599 if (STI.is64Bit()) { 2600 // LEA64r CatchRetTarget(%rip), %rax 2601 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2602 .addReg(X86::RIP) 2603 .addImm(0) 2604 .addReg(0) 2605 .addMBB(CatchRetTarget) 2606 .addReg(0); 2607 } else { 2608 // MOV32ri $CatchRetTarget, %eax 2609 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2610 .addMBB(CatchRetTarget); 2611 } 2612 2613 // Record that we've taken the address of CatchRetTarget and no longer just 2614 // reference it in a terminator. 2615 CatchRetTarget->setHasAddressTaken(); 2616 } 2617 2618 bool X86FrameLowering::restoreCalleeSavedRegisters( 2619 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2620 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2621 if (CSI.empty()) 2622 return false; 2623 2624 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2625 // Don't restore CSRs in 32-bit EH funclets. Matches 2626 // spillCalleeSavedRegisters. 2627 if (STI.is32Bit()) 2628 return true; 2629 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2630 // funclets. emitEpilogue transforms these to normal jumps. 2631 if (MI->getOpcode() == X86::CATCHRET) { 2632 const Function &F = MBB.getParent()->getFunction(); 2633 bool IsSEH = isAsynchronousEHPersonality( 2634 classifyEHPersonality(F.getPersonalityFn())); 2635 if (IsSEH) 2636 return true; 2637 } 2638 } 2639 2640 DebugLoc DL = MBB.findDebugLoc(MI); 2641 2642 // Reload XMMs from stack frame. 2643 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2644 unsigned Reg = CSI[i].getReg(); 2645 if (X86::GR64RegClass.contains(Reg) || 2646 X86::GR32RegClass.contains(Reg)) 2647 continue; 2648 2649 // If this is k-register make sure we lookup via the largest legal type. 2650 MVT VT = MVT::Other; 2651 if (X86::VK16RegClass.contains(Reg)) 2652 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2653 2654 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2655 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2656 } 2657 2658 // POP GPRs. 2659 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2660 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2661 unsigned Reg = CSI[i].getReg(); 2662 if (!X86::GR64RegClass.contains(Reg) && 2663 !X86::GR32RegClass.contains(Reg)) 2664 continue; 2665 2666 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2667 .setMIFlag(MachineInstr::FrameDestroy); 2668 } 2669 return true; 2670 } 2671 2672 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2673 BitVector &SavedRegs, 2674 RegScavenger *RS) const { 2675 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2676 2677 // Spill the BasePtr if it's used. 2678 if (TRI->hasBasePointer(MF)){ 2679 Register BasePtr = TRI->getBaseRegister(); 2680 if (STI.isTarget64BitILP32()) 2681 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2682 SavedRegs.set(BasePtr); 2683 } 2684 } 2685 2686 static bool 2687 HasNestArgument(const MachineFunction *MF) { 2688 const Function &F = MF->getFunction(); 2689 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2690 I != E; I++) { 2691 if (I->hasNestAttr() && !I->use_empty()) 2692 return true; 2693 } 2694 return false; 2695 } 2696 2697 /// GetScratchRegister - Get a temp register for performing work in the 2698 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2699 /// and the properties of the function either one or two registers will be 2700 /// needed. Set primary to true for the first register, false for the second. 2701 static unsigned 2702 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2703 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2704 2705 // Erlang stuff. 2706 if (CallingConvention == CallingConv::HiPE) { 2707 if (Is64Bit) 2708 return Primary ? X86::R14 : X86::R13; 2709 else 2710 return Primary ? X86::EBX : X86::EDI; 2711 } 2712 2713 if (Is64Bit) { 2714 if (IsLP64) 2715 return Primary ? X86::R11 : X86::R12; 2716 else 2717 return Primary ? X86::R11D : X86::R12D; 2718 } 2719 2720 bool IsNested = HasNestArgument(&MF); 2721 2722 if (CallingConvention == CallingConv::X86_FastCall || 2723 CallingConvention == CallingConv::Fast || 2724 CallingConvention == CallingConv::Tail) { 2725 if (IsNested) 2726 report_fatal_error("Segmented stacks does not support fastcall with " 2727 "nested function."); 2728 return Primary ? X86::EAX : X86::ECX; 2729 } 2730 if (IsNested) 2731 return Primary ? X86::EDX : X86::EAX; 2732 return Primary ? X86::ECX : X86::EAX; 2733 } 2734 2735 // The stack limit in the TCB is set to this many bytes above the actual stack 2736 // limit. 2737 static const uint64_t kSplitStackAvailable = 256; 2738 2739 void X86FrameLowering::adjustForSegmentedStacks( 2740 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2741 MachineFrameInfo &MFI = MF.getFrameInfo(); 2742 uint64_t StackSize; 2743 unsigned TlsReg, TlsOffset; 2744 DebugLoc DL; 2745 2746 // To support shrink-wrapping we would need to insert the new blocks 2747 // at the right place and update the branches to PrologueMBB. 2748 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2749 2750 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2751 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2752 "Scratch register is live-in"); 2753 2754 if (MF.getFunction().isVarArg()) 2755 report_fatal_error("Segmented stacks do not support vararg functions."); 2756 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2757 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2758 !STI.isTargetDragonFly()) 2759 report_fatal_error("Segmented stacks not supported on this platform."); 2760 2761 // Eventually StackSize will be calculated by a link-time pass; which will 2762 // also decide whether checking code needs to be injected into this particular 2763 // prologue. 2764 StackSize = MFI.getStackSize(); 2765 2766 // Do not generate a prologue for leaf functions with a stack of size zero. 2767 // For non-leaf functions we have to allow for the possibility that the 2768 // callis to a non-split function, as in PR37807. This function could also 2769 // take the address of a non-split function. When the linker tries to adjust 2770 // its non-existent prologue, it would fail with an error. Mark the object 2771 // file so that such failures are not errors. See this Go language bug-report 2772 // https://go-review.googlesource.com/c/go/+/148819/ 2773 if (StackSize == 0 && !MFI.hasTailCall()) { 2774 MF.getMMI().setHasNosplitStack(true); 2775 return; 2776 } 2777 2778 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2779 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2780 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2781 bool IsNested = false; 2782 2783 // We need to know if the function has a nest argument only in 64 bit mode. 2784 if (Is64Bit) 2785 IsNested = HasNestArgument(&MF); 2786 2787 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2788 // allocMBB needs to be last (terminating) instruction. 2789 2790 for (const auto &LI : PrologueMBB.liveins()) { 2791 allocMBB->addLiveIn(LI); 2792 checkMBB->addLiveIn(LI); 2793 } 2794 2795 if (IsNested) 2796 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2797 2798 MF.push_front(allocMBB); 2799 MF.push_front(checkMBB); 2800 2801 // When the frame size is less than 256 we just compare the stack 2802 // boundary directly to the value of the stack pointer, per gcc. 2803 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2804 2805 // Read the limit off the current stacklet off the stack_guard location. 2806 if (Is64Bit) { 2807 if (STI.isTargetLinux()) { 2808 TlsReg = X86::FS; 2809 TlsOffset = IsLP64 ? 0x70 : 0x40; 2810 } else if (STI.isTargetDarwin()) { 2811 TlsReg = X86::GS; 2812 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2813 } else if (STI.isTargetWin64()) { 2814 TlsReg = X86::GS; 2815 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2816 } else if (STI.isTargetFreeBSD()) { 2817 TlsReg = X86::FS; 2818 TlsOffset = 0x18; 2819 } else if (STI.isTargetDragonFly()) { 2820 TlsReg = X86::FS; 2821 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2822 } else { 2823 report_fatal_error("Segmented stacks not supported on this platform."); 2824 } 2825 2826 if (CompareStackPointer) 2827 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2828 else 2829 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2830 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2831 2832 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2833 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2834 } else { 2835 if (STI.isTargetLinux()) { 2836 TlsReg = X86::GS; 2837 TlsOffset = 0x30; 2838 } else if (STI.isTargetDarwin()) { 2839 TlsReg = X86::GS; 2840 TlsOffset = 0x48 + 90*4; 2841 } else if (STI.isTargetWin32()) { 2842 TlsReg = X86::FS; 2843 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2844 } else if (STI.isTargetDragonFly()) { 2845 TlsReg = X86::FS; 2846 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2847 } else if (STI.isTargetFreeBSD()) { 2848 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2849 } else { 2850 report_fatal_error("Segmented stacks not supported on this platform."); 2851 } 2852 2853 if (CompareStackPointer) 2854 ScratchReg = X86::ESP; 2855 else 2856 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2857 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2858 2859 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2860 STI.isTargetDragonFly()) { 2861 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2862 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2863 } else if (STI.isTargetDarwin()) { 2864 2865 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2866 unsigned ScratchReg2; 2867 bool SaveScratch2; 2868 if (CompareStackPointer) { 2869 // The primary scratch register is available for holding the TLS offset. 2870 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2871 SaveScratch2 = false; 2872 } else { 2873 // Need to use a second register to hold the TLS offset 2874 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2875 2876 // Unfortunately, with fastcc the second scratch register may hold an 2877 // argument. 2878 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2879 } 2880 2881 // If Scratch2 is live-in then it needs to be saved. 2882 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2883 "Scratch register is live-in and not saved"); 2884 2885 if (SaveScratch2) 2886 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2887 .addReg(ScratchReg2, RegState::Kill); 2888 2889 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2890 .addImm(TlsOffset); 2891 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2892 .addReg(ScratchReg) 2893 .addReg(ScratchReg2).addImm(1).addReg(0) 2894 .addImm(0) 2895 .addReg(TlsReg); 2896 2897 if (SaveScratch2) 2898 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2899 } 2900 } 2901 2902 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2903 // It jumps to normal execution of the function body. 2904 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2905 2906 // On 32 bit we first push the arguments size and then the frame size. On 64 2907 // bit, we pass the stack frame size in r10 and the argument size in r11. 2908 if (Is64Bit) { 2909 // Functions with nested arguments use R10, so it needs to be saved across 2910 // the call to _morestack 2911 2912 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2913 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2914 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2915 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2916 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2917 2918 if (IsNested) 2919 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2920 2921 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2922 .addImm(StackSize); 2923 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2924 .addImm(X86FI->getArgumentStackSize()); 2925 } else { 2926 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2927 .addImm(X86FI->getArgumentStackSize()); 2928 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2929 .addImm(StackSize); 2930 } 2931 2932 // __morestack is in libgcc 2933 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2934 // Under the large code model, we cannot assume that __morestack lives 2935 // within 2^31 bytes of the call site, so we cannot use pc-relative 2936 // addressing. We cannot perform the call via a temporary register, 2937 // as the rax register may be used to store the static chain, and all 2938 // other suitable registers may be either callee-save or used for 2939 // parameter passing. We cannot use the stack at this point either 2940 // because __morestack manipulates the stack directly. 2941 // 2942 // To avoid these issues, perform an indirect call via a read-only memory 2943 // location containing the address. 2944 // 2945 // This solution is not perfect, as it assumes that the .rodata section 2946 // is laid out within 2^31 bytes of each function body, but this seems 2947 // to be sufficient for JIT. 2948 // FIXME: Add retpoline support and remove the error here.. 2949 if (STI.useIndirectThunkCalls()) 2950 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2951 "code model and thunks not yet implemented."); 2952 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2953 .addReg(X86::RIP) 2954 .addImm(0) 2955 .addReg(0) 2956 .addExternalSymbol("__morestack_addr") 2957 .addReg(0); 2958 MF.getMMI().setUsesMorestackAddr(true); 2959 } else { 2960 if (Is64Bit) 2961 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2962 .addExternalSymbol("__morestack"); 2963 else 2964 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2965 .addExternalSymbol("__morestack"); 2966 } 2967 2968 if (IsNested) 2969 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2970 else 2971 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2972 2973 allocMBB->addSuccessor(&PrologueMBB); 2974 2975 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2976 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2977 2978 #ifdef EXPENSIVE_CHECKS 2979 MF.verify(); 2980 #endif 2981 } 2982 2983 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2984 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2985 /// to fields it needs, through a named metadata node "hipe.literals" containing 2986 /// name-value pairs. 2987 static unsigned getHiPELiteral( 2988 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2989 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2990 MDNode *Node = HiPELiteralsMD->getOperand(i); 2991 if (Node->getNumOperands() != 2) continue; 2992 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2993 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2994 if (!NodeName || !NodeVal) continue; 2995 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2996 if (ValConst && NodeName->getString() == LiteralName) { 2997 return ValConst->getZExtValue(); 2998 } 2999 } 3000 3001 report_fatal_error("HiPE literal " + LiteralName 3002 + " required but not provided"); 3003 } 3004 3005 // Return true if there are no non-ehpad successors to MBB and there are no 3006 // non-meta instructions between MBBI and MBB.end(). 3007 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3008 MachineBasicBlock::const_iterator MBBI) { 3009 return std::all_of( 3010 MBB.succ_begin(), MBB.succ_end(), 3011 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3012 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3013 return MI.isMetaInstruction(); 3014 }); 3015 } 3016 3017 /// Erlang programs may need a special prologue to handle the stack size they 3018 /// might need at runtime. That is because Erlang/OTP does not implement a C 3019 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3020 /// (for more information see Eric Stenman's Ph.D. thesis: 3021 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3022 /// 3023 /// CheckStack: 3024 /// temp0 = sp - MaxStack 3025 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3026 /// OldStart: 3027 /// ... 3028 /// IncStack: 3029 /// call inc_stack # doubles the stack space 3030 /// temp0 = sp - MaxStack 3031 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3032 void X86FrameLowering::adjustForHiPEPrologue( 3033 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3034 MachineFrameInfo &MFI = MF.getFrameInfo(); 3035 DebugLoc DL; 3036 3037 // To support shrink-wrapping we would need to insert the new blocks 3038 // at the right place and update the branches to PrologueMBB. 3039 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3040 3041 // HiPE-specific values 3042 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3043 ->getNamedMetadata("hipe.literals"); 3044 if (!HiPELiteralsMD) 3045 report_fatal_error( 3046 "Can't generate HiPE prologue without runtime parameters"); 3047 const unsigned HipeLeafWords 3048 = getHiPELiteral(HiPELiteralsMD, 3049 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3050 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3051 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3052 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3053 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3054 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3055 3056 assert(STI.isTargetLinux() && 3057 "HiPE prologue is only supported on Linux operating systems."); 3058 3059 // Compute the largest caller's frame that is needed to fit the callees' 3060 // frames. This 'MaxStack' is computed from: 3061 // 3062 // a) the fixed frame size, which is the space needed for all spilled temps, 3063 // b) outgoing on-stack parameter areas, and 3064 // c) the minimum stack space this function needs to make available for the 3065 // functions it calls (a tunable ABI property). 3066 if (MFI.hasCalls()) { 3067 unsigned MoreStackForCalls = 0; 3068 3069 for (auto &MBB : MF) { 3070 for (auto &MI : MBB) { 3071 if (!MI.isCall()) 3072 continue; 3073 3074 // Get callee operand. 3075 const MachineOperand &MO = MI.getOperand(0); 3076 3077 // Only take account of global function calls (no closures etc.). 3078 if (!MO.isGlobal()) 3079 continue; 3080 3081 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3082 if (!F) 3083 continue; 3084 3085 // Do not update 'MaxStack' for primitive and built-in functions 3086 // (encoded with names either starting with "erlang."/"bif_" or not 3087 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3088 // "_", such as the BIF "suspend_0") as they are executed on another 3089 // stack. 3090 if (F->getName().find("erlang.") != StringRef::npos || 3091 F->getName().find("bif_") != StringRef::npos || 3092 F->getName().find_first_of("._") == StringRef::npos) 3093 continue; 3094 3095 unsigned CalleeStkArity = 3096 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3097 if (HipeLeafWords - 1 > CalleeStkArity) 3098 MoreStackForCalls = std::max(MoreStackForCalls, 3099 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3100 } 3101 } 3102 MaxStack += MoreStackForCalls; 3103 } 3104 3105 // If the stack frame needed is larger than the guaranteed then runtime checks 3106 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3107 if (MaxStack > Guaranteed) { 3108 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3109 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3110 3111 for (const auto &LI : PrologueMBB.liveins()) { 3112 stackCheckMBB->addLiveIn(LI); 3113 incStackMBB->addLiveIn(LI); 3114 } 3115 3116 MF.push_front(incStackMBB); 3117 MF.push_front(stackCheckMBB); 3118 3119 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3120 unsigned LEAop, CMPop, CALLop; 3121 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3122 if (Is64Bit) { 3123 SPReg = X86::RSP; 3124 PReg = X86::RBP; 3125 LEAop = X86::LEA64r; 3126 CMPop = X86::CMP64rm; 3127 CALLop = X86::CALL64pcrel32; 3128 } else { 3129 SPReg = X86::ESP; 3130 PReg = X86::EBP; 3131 LEAop = X86::LEA32r; 3132 CMPop = X86::CMP32rm; 3133 CALLop = X86::CALLpcrel32; 3134 } 3135 3136 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3137 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3138 "HiPE prologue scratch register is live-in"); 3139 3140 // Create new MBB for StackCheck: 3141 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3142 SPReg, false, -MaxStack); 3143 // SPLimitOffset is in a fixed heap location (pointed by BP). 3144 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3145 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3146 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3147 3148 // Create new MBB for IncStack: 3149 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3150 addExternalSymbol("inc_stack_0"); 3151 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3152 SPReg, false, -MaxStack); 3153 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3154 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3155 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3156 3157 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3158 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3159 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3160 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3161 } 3162 #ifdef EXPENSIVE_CHECKS 3163 MF.verify(); 3164 #endif 3165 } 3166 3167 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3168 MachineBasicBlock::iterator MBBI, 3169 const DebugLoc &DL, 3170 int Offset) const { 3171 3172 if (Offset <= 0) 3173 return false; 3174 3175 if (Offset % SlotSize) 3176 return false; 3177 3178 int NumPops = Offset / SlotSize; 3179 // This is only worth it if we have at most 2 pops. 3180 if (NumPops != 1 && NumPops != 2) 3181 return false; 3182 3183 // Handle only the trivial case where the adjustment directly follows 3184 // a call. This is the most common one, anyway. 3185 if (MBBI == MBB.begin()) 3186 return false; 3187 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3188 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3189 return false; 3190 3191 unsigned Regs[2]; 3192 unsigned FoundRegs = 0; 3193 3194 auto &MRI = MBB.getParent()->getRegInfo(); 3195 auto RegMask = Prev->getOperand(1); 3196 3197 auto &RegClass = 3198 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3199 // Try to find up to NumPops free registers. 3200 for (auto Candidate : RegClass) { 3201 3202 // Poor man's liveness: 3203 // Since we're immediately after a call, any register that is clobbered 3204 // by the call and not defined by it can be considered dead. 3205 if (!RegMask.clobbersPhysReg(Candidate)) 3206 continue; 3207 3208 // Don't clobber reserved registers 3209 if (MRI.isReserved(Candidate)) 3210 continue; 3211 3212 bool IsDef = false; 3213 for (const MachineOperand &MO : Prev->implicit_operands()) { 3214 if (MO.isReg() && MO.isDef() && 3215 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3216 IsDef = true; 3217 break; 3218 } 3219 } 3220 3221 if (IsDef) 3222 continue; 3223 3224 Regs[FoundRegs++] = Candidate; 3225 if (FoundRegs == (unsigned)NumPops) 3226 break; 3227 } 3228 3229 if (FoundRegs == 0) 3230 return false; 3231 3232 // If we found only one free register, but need two, reuse the same one twice. 3233 while (FoundRegs < (unsigned)NumPops) 3234 Regs[FoundRegs++] = Regs[0]; 3235 3236 for (int i = 0; i < NumPops; ++i) 3237 BuildMI(MBB, MBBI, DL, 3238 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3239 3240 return true; 3241 } 3242 3243 MachineBasicBlock::iterator X86FrameLowering:: 3244 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3245 MachineBasicBlock::iterator I) const { 3246 bool reserveCallFrame = hasReservedCallFrame(MF); 3247 unsigned Opcode = I->getOpcode(); 3248 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3249 DebugLoc DL = I->getDebugLoc(); 3250 uint64_t Amount = TII.getFrameSize(*I); 3251 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3252 I = MBB.erase(I); 3253 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3254 3255 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3256 // typically because the function is marked noreturn (abort, throw, 3257 // assert_fail, etc). 3258 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3259 return I; 3260 3261 if (!reserveCallFrame) { 3262 // If the stack pointer can be changed after prologue, turn the 3263 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3264 // adjcallstackdown instruction into 'add ESP, <amt>' 3265 3266 // We need to keep the stack aligned properly. To do this, we round the 3267 // amount of space needed for the outgoing arguments up to the next 3268 // alignment boundary. 3269 Amount = alignTo(Amount, getStackAlign()); 3270 3271 const Function &F = MF.getFunction(); 3272 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3273 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3274 3275 // If we have any exception handlers in this function, and we adjust 3276 // the SP before calls, we may need to indicate this to the unwinder 3277 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3278 // Amount == 0, because the preceding function may have set a non-0 3279 // GNU_ARGS_SIZE. 3280 // TODO: We don't need to reset this between subsequent functions, 3281 // if it didn't change. 3282 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3283 3284 if (HasDwarfEHHandlers && !isDestroy && 3285 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3286 BuildCFI(MBB, InsertPos, DL, 3287 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3288 3289 if (Amount == 0) 3290 return I; 3291 3292 // Factor out the amount that gets handled inside the sequence 3293 // (Pushes of argument for frame setup, callee pops for frame destroy) 3294 Amount -= InternalAmt; 3295 3296 // TODO: This is needed only if we require precise CFA. 3297 // If this is a callee-pop calling convention, emit a CFA adjust for 3298 // the amount the callee popped. 3299 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3300 BuildCFI(MBB, InsertPos, DL, 3301 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3302 3303 // Add Amount to SP to destroy a frame, or subtract to setup. 3304 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3305 3306 if (StackAdjustment) { 3307 // Merge with any previous or following adjustment instruction. Note: the 3308 // instructions merged with here do not have CFI, so their stack 3309 // adjustments do not feed into CfaAdjustment. 3310 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3311 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3312 3313 if (StackAdjustment) { 3314 if (!(F.hasMinSize() && 3315 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3316 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3317 /*InEpilogue=*/false); 3318 } 3319 } 3320 3321 if (DwarfCFI && !hasFP(MF)) { 3322 // If we don't have FP, but need to generate unwind information, 3323 // we need to set the correct CFA offset after the stack adjustment. 3324 // How much we adjust the CFA offset depends on whether we're emitting 3325 // CFI only for EH purposes or for debugging. EH only requires the CFA 3326 // offset to be correct at each call site, while for debugging we want 3327 // it to be more precise. 3328 3329 int64_t CfaAdjustment = -StackAdjustment; 3330 // TODO: When not using precise CFA, we also need to adjust for the 3331 // InternalAmt here. 3332 if (CfaAdjustment) { 3333 BuildCFI(MBB, InsertPos, DL, 3334 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3335 CfaAdjustment)); 3336 } 3337 } 3338 3339 return I; 3340 } 3341 3342 if (InternalAmt) { 3343 MachineBasicBlock::iterator CI = I; 3344 MachineBasicBlock::iterator B = MBB.begin(); 3345 while (CI != B && !std::prev(CI)->isCall()) 3346 --CI; 3347 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3348 } 3349 3350 return I; 3351 } 3352 3353 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3354 assert(MBB.getParent() && "Block is not attached to a function!"); 3355 const MachineFunction &MF = *MBB.getParent(); 3356 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 3357 } 3358 3359 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3360 assert(MBB.getParent() && "Block is not attached to a function!"); 3361 3362 // Win64 has strict requirements in terms of epilogue and we are 3363 // not taking a chance at messing with them. 3364 // I.e., unless this block is already an exit block, we can't use 3365 // it as an epilogue. 3366 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3367 return false; 3368 3369 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3370 return true; 3371 3372 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3373 // clobbers the EFLAGS. Check that we do not need to preserve it, 3374 // otherwise, conservatively assume this is not 3375 // safe to insert the epilogue here. 3376 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3377 } 3378 3379 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3380 // If we may need to emit frameless compact unwind information, give 3381 // up as this is currently broken: PR25614. 3382 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 3383 // The lowering of segmented stack and HiPE only support entry blocks 3384 // as prologue blocks: PR26107. 3385 // This limitation may be lifted if we fix: 3386 // - adjustForSegmentedStacks 3387 // - adjustForHiPEPrologue 3388 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3389 !MF.shouldSplitStack(); 3390 } 3391 3392 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3393 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3394 const DebugLoc &DL, bool RestoreSP) const { 3395 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3396 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3397 assert(STI.is32Bit() && !Uses64BitFramePtr && 3398 "restoring EBP/ESI on non-32-bit target"); 3399 3400 MachineFunction &MF = *MBB.getParent(); 3401 Register FramePtr = TRI->getFrameRegister(MF); 3402 Register BasePtr = TRI->getBaseRegister(); 3403 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3404 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3405 MachineFrameInfo &MFI = MF.getFrameInfo(); 3406 3407 // FIXME: Don't set FrameSetup flag in catchret case. 3408 3409 int FI = FuncInfo.EHRegNodeFrameIndex; 3410 int EHRegSize = MFI.getObjectSize(FI); 3411 3412 if (RestoreSP) { 3413 // MOV32rm -EHRegSize(%ebp), %esp 3414 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3415 X86::EBP, true, -EHRegSize) 3416 .setMIFlag(MachineInstr::FrameSetup); 3417 } 3418 3419 Register UsedReg; 3420 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 3421 int EndOffset = -EHRegOffset - EHRegSize; 3422 FuncInfo.EHRegNodeEndOffset = EndOffset; 3423 3424 if (UsedReg == FramePtr) { 3425 // ADD $offset, %ebp 3426 unsigned ADDri = getADDriOpcode(false, EndOffset); 3427 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3428 .addReg(FramePtr) 3429 .addImm(EndOffset) 3430 .setMIFlag(MachineInstr::FrameSetup) 3431 ->getOperand(3) 3432 .setIsDead(); 3433 assert(EndOffset >= 0 && 3434 "end of registration object above normal EBP position!"); 3435 } else if (UsedReg == BasePtr) { 3436 // LEA offset(%ebp), %esi 3437 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3438 FramePtr, false, EndOffset) 3439 .setMIFlag(MachineInstr::FrameSetup); 3440 // MOV32rm SavedEBPOffset(%esi), %ebp 3441 assert(X86FI->getHasSEHFramePtrSave()); 3442 int Offset = 3443 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 3444 assert(UsedReg == BasePtr); 3445 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3446 UsedReg, true, Offset) 3447 .setMIFlag(MachineInstr::FrameSetup); 3448 } else { 3449 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3450 } 3451 return MBBI; 3452 } 3453 3454 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3455 return TRI->getSlotSize(); 3456 } 3457 3458 Register 3459 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3460 return TRI->getDwarfRegNum(StackPtr, true); 3461 } 3462 3463 namespace { 3464 // Struct used by orderFrameObjects to help sort the stack objects. 3465 struct X86FrameSortingObject { 3466 bool IsValid = false; // true if we care about this Object. 3467 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3468 unsigned ObjectSize = 0; // Size of Object in bytes. 3469 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3470 unsigned ObjectNumUses = 0; // Object static number of uses. 3471 }; 3472 3473 // The comparison function we use for std::sort to order our local 3474 // stack symbols. The current algorithm is to use an estimated 3475 // "density". This takes into consideration the size and number of 3476 // uses each object has in order to roughly minimize code size. 3477 // So, for example, an object of size 16B that is referenced 5 times 3478 // will get higher priority than 4 4B objects referenced 1 time each. 3479 // It's not perfect and we may be able to squeeze a few more bytes out of 3480 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3481 // fringe end can have special consideration, given their size is less 3482 // important, etc.), but the algorithmic complexity grows too much to be 3483 // worth the extra gains we get. This gets us pretty close. 3484 // The final order leaves us with objects with highest priority going 3485 // at the end of our list. 3486 struct X86FrameSortingComparator { 3487 inline bool operator()(const X86FrameSortingObject &A, 3488 const X86FrameSortingObject &B) { 3489 uint64_t DensityAScaled, DensityBScaled; 3490 3491 // For consistency in our comparison, all invalid objects are placed 3492 // at the end. This also allows us to stop walking when we hit the 3493 // first invalid item after it's all sorted. 3494 if (!A.IsValid) 3495 return false; 3496 if (!B.IsValid) 3497 return true; 3498 3499 // The density is calculated by doing : 3500 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3501 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3502 // Since this approach may cause inconsistencies in 3503 // the floating point <, >, == comparisons, depending on the floating 3504 // point model with which the compiler was built, we're going 3505 // to scale both sides by multiplying with 3506 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3507 // the division and, with it, the need for any floating point 3508 // arithmetic. 3509 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3510 static_cast<uint64_t>(B.ObjectSize); 3511 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3512 static_cast<uint64_t>(A.ObjectSize); 3513 3514 // If the two densities are equal, prioritize highest alignment 3515 // objects. This allows for similar alignment objects 3516 // to be packed together (given the same density). 3517 // There's room for improvement here, also, since we can pack 3518 // similar alignment (different density) objects next to each 3519 // other to save padding. This will also require further 3520 // complexity/iterations, and the overall gain isn't worth it, 3521 // in general. Something to keep in mind, though. 3522 if (DensityAScaled == DensityBScaled) 3523 return A.ObjectAlignment < B.ObjectAlignment; 3524 3525 return DensityAScaled < DensityBScaled; 3526 } 3527 }; 3528 } // namespace 3529 3530 // Order the symbols in the local stack. 3531 // We want to place the local stack objects in some sort of sensible order. 3532 // The heuristic we use is to try and pack them according to static number 3533 // of uses and size of object in order to minimize code size. 3534 void X86FrameLowering::orderFrameObjects( 3535 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3536 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3537 3538 // Don't waste time if there's nothing to do. 3539 if (ObjectsToAllocate.empty()) 3540 return; 3541 3542 // Create an array of all MFI objects. We won't need all of these 3543 // objects, but we're going to create a full array of them to make 3544 // it easier to index into when we're counting "uses" down below. 3545 // We want to be able to easily/cheaply access an object by simply 3546 // indexing into it, instead of having to search for it every time. 3547 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3548 3549 // Walk the objects we care about and mark them as such in our working 3550 // struct. 3551 for (auto &Obj : ObjectsToAllocate) { 3552 SortingObjects[Obj].IsValid = true; 3553 SortingObjects[Obj].ObjectIndex = Obj; 3554 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3555 // Set the size. 3556 int ObjectSize = MFI.getObjectSize(Obj); 3557 if (ObjectSize == 0) 3558 // Variable size. Just use 4. 3559 SortingObjects[Obj].ObjectSize = 4; 3560 else 3561 SortingObjects[Obj].ObjectSize = ObjectSize; 3562 } 3563 3564 // Count the number of uses for each object. 3565 for (auto &MBB : MF) { 3566 for (auto &MI : MBB) { 3567 if (MI.isDebugInstr()) 3568 continue; 3569 for (const MachineOperand &MO : MI.operands()) { 3570 // Check to see if it's a local stack symbol. 3571 if (!MO.isFI()) 3572 continue; 3573 int Index = MO.getIndex(); 3574 // Check to see if it falls within our range, and is tagged 3575 // to require ordering. 3576 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3577 SortingObjects[Index].IsValid) 3578 SortingObjects[Index].ObjectNumUses++; 3579 } 3580 } 3581 } 3582 3583 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3584 // info). 3585 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3586 3587 // Now modify the original list to represent the final order that 3588 // we want. The order will depend on whether we're going to access them 3589 // from the stack pointer or the frame pointer. For SP, the list should 3590 // end up with the END containing objects that we want with smaller offsets. 3591 // For FP, it should be flipped. 3592 int i = 0; 3593 for (auto &Obj : SortingObjects) { 3594 // All invalid items are sorted at the end, so it's safe to stop. 3595 if (!Obj.IsValid) 3596 break; 3597 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3598 } 3599 3600 // Flip it if we're accessing off of the FP. 3601 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3602 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3603 } 3604 3605 3606 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3607 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3608 unsigned Offset = 16; 3609 // RBP is immediately pushed. 3610 Offset += SlotSize; 3611 // All callee-saved registers are then pushed. 3612 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3613 // Every funclet allocates enough stack space for the largest outgoing call. 3614 Offset += getWinEHFuncletFrameSize(MF); 3615 return Offset; 3616 } 3617 3618 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3619 MachineFunction &MF, RegScavenger *RS) const { 3620 // Mark the function as not having WinCFI. We will set it back to true in 3621 // emitPrologue if it gets called and emits CFI. 3622 MF.setHasWinCFI(false); 3623 3624 // If this function isn't doing Win64-style C++ EH, we don't need to do 3625 // anything. 3626 const Function &F = MF.getFunction(); 3627 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3628 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3629 return; 3630 3631 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3632 // relative to RSP after the prologue. Find the offset of the last fixed 3633 // object, so that we can allocate a slot immediately following it. If there 3634 // were no fixed objects, use offset -SlotSize, which is immediately after the 3635 // return address. Fixed objects have negative frame indices. 3636 MachineFrameInfo &MFI = MF.getFrameInfo(); 3637 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3638 int64_t MinFixedObjOffset = -SlotSize; 3639 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3640 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3641 3642 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3643 for (WinEHHandlerType &H : TBME.HandlerArray) { 3644 int FrameIndex = H.CatchObj.FrameIndex; 3645 if (FrameIndex != INT_MAX) { 3646 // Ensure alignment. 3647 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3648 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3649 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3650 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3651 } 3652 } 3653 } 3654 3655 // Ensure alignment. 3656 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3657 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3658 int UnwindHelpFI = 3659 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3660 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3661 3662 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3663 // other frame setup instructions. 3664 MachineBasicBlock &MBB = MF.front(); 3665 auto MBBI = MBB.begin(); 3666 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3667 ++MBBI; 3668 3669 DebugLoc DL = MBB.findDebugLoc(MBBI); 3670 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3671 UnwindHelpFI) 3672 .addImm(-2); 3673 } 3674 3675 const ReturnProtectorLowering *X86FrameLowering::getReturnProtector() const { 3676 return &RPL; 3677 } 3678 3679 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3680 MachineFunction &MF, RegScavenger *RS) const { 3681 if (STI.is32Bit() && MF.hasEHFunclets()) 3682 restoreWinEHStackPointersInParent(MF); 3683 } 3684 3685 void X86FrameLowering::restoreWinEHStackPointersInParent( 3686 MachineFunction &MF) const { 3687 // 32-bit functions have to restore stack pointers when control is transferred 3688 // back to the parent function. These blocks are identified as eh pads that 3689 // are not funclet entries. 3690 bool IsSEH = isAsynchronousEHPersonality( 3691 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3692 for (MachineBasicBlock &MBB : MF) { 3693 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3694 if (NeedsRestore) 3695 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3696 /*RestoreSP=*/IsSEH); 3697 } 3698 } 3699