1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86ReturnProtectorLowering.h" 19 #include "X86Subtarget.h" 20 #include "X86TargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/WinEHFuncInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCObjectFileInfo.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include <cstdlib> 39 40 #define DEBUG_TYPE "x86-fl" 41 42 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 43 STATISTIC(NumFrameExtraProbe, 44 "Number of extra stack probes generated in prologue"); 45 46 using namespace llvm; 47 48 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 49 MaybeAlign StackAlignOverride) 50 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 51 STI.is64Bit() ? -8 : -4), 52 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()), RPL() { 53 // Cache a bunch of frame-related predicates for this subtarget. 54 SlotSize = TRI->getSlotSize(); 55 Is64Bit = STI.is64Bit(); 56 IsLP64 = STI.isTarget64BitLP64(); 57 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 58 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 59 StackPtr = TRI->getStackRegister(); 60 SaveArgs = Is64Bit ? STI.getSaveArgs() : 0; 61 } 62 63 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 64 return !MF.getFrameInfo().hasVarSizedObjects() && 65 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 66 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 67 } 68 69 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 70 /// call frame pseudos can be simplified. Having a FP, as in the default 71 /// implementation, is not sufficient here since we can't always use it. 72 /// Use a more nuanced condition. 73 bool 74 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 75 return hasReservedCallFrame(MF) || 76 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 77 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 78 TRI->hasBasePointer(MF); 79 } 80 81 // needsFrameIndexResolution - Do we need to perform FI resolution for 82 // this function. Normally, this is required only when the function 83 // has any stack objects. However, FI resolution actually has another job, 84 // not apparent from the title - it resolves callframesetup/destroy 85 // that were not simplified earlier. 86 // So, this is required for x86 functions that have push sequences even 87 // when there are no stack objects. 88 bool 89 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 90 return MF.getFrameInfo().hasStackObjects() || 91 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 92 } 93 94 /// hasFP - Return true if the specified function should have a dedicated frame 95 /// pointer register. This is true if the function has variable sized allocas 96 /// or if frame pointer elimination is disabled. 97 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 98 const MachineFrameInfo &MFI = MF.getFrameInfo(); 99 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 100 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 101 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 102 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 103 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 104 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 105 MFI.hasStackMap() || MFI.hasPatchPoint() || 106 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment()) || 107 SaveArgs); 108 } 109 110 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 111 if (IsLP64) { 112 if (isInt<8>(Imm)) 113 return X86::SUB64ri8; 114 return X86::SUB64ri32; 115 } else { 116 if (isInt<8>(Imm)) 117 return X86::SUB32ri8; 118 return X86::SUB32ri; 119 } 120 } 121 122 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 123 if (IsLP64) { 124 if (isInt<8>(Imm)) 125 return X86::ADD64ri8; 126 return X86::ADD64ri32; 127 } else { 128 if (isInt<8>(Imm)) 129 return X86::ADD32ri8; 130 return X86::ADD32ri; 131 } 132 } 133 134 static unsigned getSUBrrOpcode(bool IsLP64) { 135 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 136 } 137 138 static unsigned getADDrrOpcode(bool IsLP64) { 139 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 140 } 141 142 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 143 if (IsLP64) { 144 if (isInt<8>(Imm)) 145 return X86::AND64ri8; 146 return X86::AND64ri32; 147 } 148 if (isInt<8>(Imm)) 149 return X86::AND32ri8; 150 return X86::AND32ri; 151 } 152 153 static unsigned getLEArOpcode(bool IsLP64) { 154 return IsLP64 ? X86::LEA64r : X86::LEA32r; 155 } 156 157 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { 158 if (Use64BitReg) { 159 if (isUInt<32>(Imm)) 160 return X86::MOV32ri64; 161 if (isInt<32>(Imm)) 162 return X86::MOV64ri32; 163 return X86::MOV64ri; 164 } 165 return X86::MOV32ri; 166 } 167 168 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 169 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 170 unsigned Reg = RegMask.PhysReg; 171 172 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 173 Reg == X86::AH || Reg == X86::AL) 174 return true; 175 } 176 177 return false; 178 } 179 180 /// Check if the flags need to be preserved before the terminators. 181 /// This would be the case, if the eflags is live-in of the region 182 /// composed by the terminators or live-out of that region, without 183 /// being defined by a terminator. 184 static bool 185 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 186 for (const MachineInstr &MI : MBB.terminators()) { 187 bool BreakNext = false; 188 for (const MachineOperand &MO : MI.operands()) { 189 if (!MO.isReg()) 190 continue; 191 Register Reg = MO.getReg(); 192 if (Reg != X86::EFLAGS) 193 continue; 194 195 // This terminator needs an eflags that is not defined 196 // by a previous another terminator: 197 // EFLAGS is live-in of the region composed by the terminators. 198 if (!MO.isDef()) 199 return true; 200 // This terminator defines the eflags, i.e., we don't need to preserve it. 201 // However, we still need to check this specific terminator does not 202 // read a live-in value. 203 BreakNext = true; 204 } 205 // We found a definition of the eflags, no need to preserve them. 206 if (BreakNext) 207 return false; 208 } 209 210 // None of the terminators use or define the eflags. 211 // Check if they are live-out, that would imply we need to preserve them. 212 for (const MachineBasicBlock *Succ : MBB.successors()) 213 if (Succ->isLiveIn(X86::EFLAGS)) 214 return true; 215 216 return false; 217 } 218 219 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 220 /// stack pointer by a constant value. 221 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 222 MachineBasicBlock::iterator &MBBI, 223 const DebugLoc &DL, 224 int64_t NumBytes, bool InEpilogue) const { 225 bool isSub = NumBytes < 0; 226 uint64_t Offset = isSub ? -NumBytes : NumBytes; 227 MachineInstr::MIFlag Flag = 228 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 229 230 uint64_t Chunk = (1LL << 31) - 1; 231 232 MachineFunction &MF = *MBB.getParent(); 233 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 234 const X86TargetLowering &TLI = *STI.getTargetLowering(); 235 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 236 237 // It's ok to not take into account large chunks when probing, as the 238 // allocation is split in smaller chunks anyway. 239 if (EmitInlineStackProbe && !InEpilogue) { 240 241 // This pseudo-instruction is going to be expanded, potentially using a 242 // loop, by inlineStackProbe(). 243 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 244 return; 245 } else if (Offset > Chunk) { 246 // Rather than emit a long series of instructions for large offsets, 247 // load the offset into a register and do one sub/add 248 unsigned Reg = 0; 249 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 250 251 if (isSub && !isEAXLiveIn(MBB)) 252 Reg = Rax; 253 else 254 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 255 256 unsigned AddSubRROpc = 257 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 258 if (Reg) { 259 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) 260 .addImm(Offset) 261 .setMIFlag(Flag); 262 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 263 .addReg(StackPtr) 264 .addReg(Reg); 265 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 266 return; 267 } else if (Offset > 8 * Chunk) { 268 // If we would need more than 8 add or sub instructions (a >16GB stack 269 // frame), it's worth spilling RAX to materialize this immediate. 270 // pushq %rax 271 // movabsq +-$Offset+-SlotSize, %rax 272 // addq %rsp, %rax 273 // xchg %rax, (%rsp) 274 // movq (%rsp), %rsp 275 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 276 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 277 .addReg(Rax, RegState::Kill) 278 .setMIFlag(Flag); 279 // Subtract is not commutative, so negate the offset and always use add. 280 // Subtract 8 less and add 8 more to account for the PUSH we just did. 281 if (isSub) 282 Offset = -(Offset - SlotSize); 283 else 284 Offset = Offset + SlotSize; 285 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) 286 .addImm(Offset) 287 .setMIFlag(Flag); 288 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 289 .addReg(Rax) 290 .addReg(StackPtr); 291 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 292 // Exchange the new SP in RAX with the top of the stack. 293 addRegOffset( 294 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 295 StackPtr, false, 0); 296 // Load new SP from the top of the stack into RSP. 297 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 298 StackPtr, false, 0); 299 return; 300 } 301 } 302 303 while (Offset) { 304 uint64_t ThisVal = std::min(Offset, Chunk); 305 if (ThisVal == SlotSize) { 306 // Use push / pop for slot sized adjustments as a size optimization. We 307 // need to find a dead register when using pop. 308 unsigned Reg = isSub 309 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 310 : TRI->findDeadCallerSavedReg(MBB, MBBI); 311 if (Reg) { 312 unsigned Opc = isSub 313 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 314 : (Is64Bit ? X86::POP64r : X86::POP32r); 315 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 316 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 317 .setMIFlag(Flag); 318 Offset -= ThisVal; 319 continue; 320 } 321 } 322 323 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 324 .setMIFlag(Flag); 325 326 Offset -= ThisVal; 327 } 328 } 329 330 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 331 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 332 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 333 assert(Offset != 0 && "zero offset stack adjustment requested"); 334 335 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 336 // is tricky. 337 bool UseLEA; 338 if (!InEpilogue) { 339 // Check if inserting the prologue at the beginning 340 // of MBB would require to use LEA operations. 341 // We need to use LEA operations if EFLAGS is live in, because 342 // it means an instruction will read it before it gets defined. 343 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 344 } else { 345 // If we can use LEA for SP but we shouldn't, check that none 346 // of the terminators uses the eflags. Otherwise we will insert 347 // a ADD that will redefine the eflags and break the condition. 348 // Alternatively, we could move the ADD, but this may not be possible 349 // and is an optimization anyway. 350 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 351 if (UseLEA && !STI.useLeaForSP()) 352 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 353 // If that assert breaks, that means we do not do the right thing 354 // in canUseAsEpilogue. 355 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 356 "We shouldn't have allowed this insertion point"); 357 } 358 359 MachineInstrBuilder MI; 360 if (UseLEA) { 361 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 362 TII.get(getLEArOpcode(Uses64BitFramePtr)), 363 StackPtr), 364 StackPtr, false, Offset); 365 } else { 366 bool IsSub = Offset < 0; 367 uint64_t AbsOffset = IsSub ? -Offset : Offset; 368 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 369 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 370 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 371 .addReg(StackPtr) 372 .addImm(AbsOffset); 373 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 374 } 375 return MI; 376 } 377 378 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 379 MachineBasicBlock::iterator &MBBI, 380 bool doMergeWithPrevious) const { 381 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 382 (!doMergeWithPrevious && MBBI == MBB.end())) 383 return 0; 384 385 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 386 387 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 388 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 389 // instruction, and that there are no DBG_VALUE or other instructions between 390 // ADD/SUB/LEA and its corresponding CFI instruction. 391 /* TODO: Add support for the case where there are multiple CFI instructions 392 below the ADD/SUB/LEA, e.g.: 393 ... 394 add 395 cfi_def_cfa_offset 396 cfi_offset 397 ... 398 */ 399 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 400 PI = std::prev(PI); 401 402 unsigned Opc = PI->getOpcode(); 403 int Offset = 0; 404 405 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 406 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 407 PI->getOperand(0).getReg() == StackPtr){ 408 assert(PI->getOperand(1).getReg() == StackPtr); 409 Offset = PI->getOperand(2).getImm(); 410 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 411 PI->getOperand(0).getReg() == StackPtr && 412 PI->getOperand(1).getReg() == StackPtr && 413 PI->getOperand(2).getImm() == 1 && 414 PI->getOperand(3).getReg() == X86::NoRegister && 415 PI->getOperand(5).getReg() == X86::NoRegister) { 416 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 417 Offset = PI->getOperand(4).getImm(); 418 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 419 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 420 PI->getOperand(0).getReg() == StackPtr) { 421 assert(PI->getOperand(1).getReg() == StackPtr); 422 Offset = -PI->getOperand(2).getImm(); 423 } else 424 return 0; 425 426 PI = MBB.erase(PI); 427 if (PI != MBB.end() && PI->isCFIInstruction()) { 428 auto CIs = MBB.getParent()->getFrameInstructions(); 429 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 430 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 431 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 432 PI = MBB.erase(PI); 433 } 434 if (!doMergeWithPrevious) 435 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 436 437 return Offset; 438 } 439 440 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 441 MachineBasicBlock::iterator MBBI, 442 const DebugLoc &DL, 443 const MCCFIInstruction &CFIInst, 444 MachineInstr::MIFlag Flag) const { 445 MachineFunction &MF = *MBB.getParent(); 446 unsigned CFIIndex = MF.addFrameInst(CFIInst); 447 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 448 .addCFIIndex(CFIIndex) 449 .setMIFlag(Flag); 450 } 451 452 /// Emits Dwarf Info specifying offsets of callee saved registers and 453 /// frame pointer. This is called only when basic block sections are enabled. 454 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( 455 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 456 MachineFunction &MF = *MBB.getParent(); 457 if (!hasFP(MF)) { 458 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 459 return; 460 } 461 const MachineModuleInfo &MMI = MF.getMMI(); 462 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 463 const Register FramePtr = TRI->getFrameRegister(MF); 464 const Register MachineFramePtr = 465 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 466 : FramePtr; 467 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 468 // Offset = space for return address + size of the frame pointer itself. 469 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 470 BuildCFI(MBB, MBBI, DebugLoc{}, 471 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 472 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 473 } 474 475 void X86FrameLowering::emitCalleeSavedFrameMoves( 476 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 477 const DebugLoc &DL, bool IsPrologue) const { 478 MachineFunction &MF = *MBB.getParent(); 479 MachineFrameInfo &MFI = MF.getFrameInfo(); 480 MachineModuleInfo &MMI = MF.getMMI(); 481 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 482 483 // Add callee saved registers to move list. 484 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 485 486 // Calculate offsets. 487 for (const CalleeSavedInfo &I : CSI) { 488 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 489 Register Reg = I.getReg(); 490 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 491 492 if (IsPrologue) { 493 BuildCFI(MBB, MBBI, DL, 494 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 495 } else { 496 BuildCFI(MBB, MBBI, DL, 497 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 498 } 499 } 500 } 501 502 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 503 MachineBasicBlock &MBB) const { 504 const MachineFunction &MF = *MBB.getParent(); 505 506 // Insertion point. 507 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 508 509 // Fake a debug loc. 510 DebugLoc DL; 511 if (MBBI != MBB.end()) 512 DL = MBBI->getDebugLoc(); 513 514 // Zero out FP stack if referenced. Do this outside of the loop below so that 515 // it's done only once. 516 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 517 for (MCRegister Reg : RegsToZero.set_bits()) { 518 if (!X86::RFP80RegClass.contains(Reg)) 519 continue; 520 521 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; 522 for (unsigned i = 0; i != NumFPRegs; ++i) 523 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); 524 525 for (unsigned i = 0; i != NumFPRegs; ++i) 526 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); 527 break; 528 } 529 530 // For GPRs, we only care to clear out the 32-bit register. 531 BitVector GPRsToZero(TRI->getNumRegs()); 532 for (MCRegister Reg : RegsToZero.set_bits()) 533 if (TRI->isGeneralPurposeRegister(MF, Reg)) { 534 GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32)); 535 RegsToZero.reset(Reg); 536 } 537 538 for (MCRegister Reg : GPRsToZero.set_bits()) 539 BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg) 540 .addReg(Reg, RegState::Undef) 541 .addReg(Reg, RegState::Undef); 542 543 // Zero out registers. 544 for (MCRegister Reg : RegsToZero.set_bits()) { 545 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) 546 // FIXME: Ignore MMX registers? 547 continue; 548 549 unsigned XorOp; 550 if (X86::VR128RegClass.contains(Reg)) { 551 // XMM# 552 if (!ST.hasSSE1()) 553 continue; 554 XorOp = X86::PXORrr; 555 } else if (X86::VR256RegClass.contains(Reg)) { 556 // YMM# 557 if (!ST.hasAVX()) 558 continue; 559 XorOp = X86::VPXORrr; 560 } else if (X86::VR512RegClass.contains(Reg)) { 561 // ZMM# 562 if (!ST.hasAVX512()) 563 continue; 564 XorOp = X86::VPXORYrr; 565 } else if (X86::VK1RegClass.contains(Reg) || 566 X86::VK2RegClass.contains(Reg) || 567 X86::VK4RegClass.contains(Reg) || 568 X86::VK8RegClass.contains(Reg) || 569 X86::VK16RegClass.contains(Reg)) { 570 if (!ST.hasVLX()) 571 continue; 572 XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr; 573 } else { 574 continue; 575 } 576 577 BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg) 578 .addReg(Reg, RegState::Undef) 579 .addReg(Reg, RegState::Undef); 580 } 581 } 582 583 void X86FrameLowering::emitStackProbe( 584 MachineFunction &MF, MachineBasicBlock &MBB, 585 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 586 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 587 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 588 if (STI.isTargetWindowsCoreCLR()) { 589 if (InProlog) { 590 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 591 .addImm(0 /* no explicit stack size */); 592 } else { 593 emitStackProbeInline(MF, MBB, MBBI, DL, false); 594 } 595 } else { 596 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 597 } 598 } 599 600 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 601 return STI.isOSWindows() && !STI.isTargetWin64(); 602 } 603 604 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 605 MachineBasicBlock &PrologMBB) const { 606 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 607 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 608 }); 609 if (Where != PrologMBB.end()) { 610 DebugLoc DL = PrologMBB.findDebugLoc(Where); 611 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 612 Where->eraseFromParent(); 613 } 614 } 615 616 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 617 MachineBasicBlock &MBB, 618 MachineBasicBlock::iterator MBBI, 619 const DebugLoc &DL, 620 bool InProlog) const { 621 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 622 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 623 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 624 else 625 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 626 } 627 628 void X86FrameLowering::emitStackProbeInlineGeneric( 629 MachineFunction &MF, MachineBasicBlock &MBB, 630 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 631 MachineInstr &AllocWithProbe = *MBBI; 632 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 633 634 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 635 const X86TargetLowering &TLI = *STI.getTargetLowering(); 636 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 637 "different expansion expected for CoreCLR 64 bit"); 638 639 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 640 uint64_t ProbeChunk = StackProbeSize * 8; 641 642 uint64_t MaxAlign = 643 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 644 645 // Synthesize a loop or unroll it, depending on the number of iterations. 646 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 647 // between the unaligned rsp and current rsp. 648 if (Offset > ProbeChunk) { 649 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 650 MaxAlign % StackProbeSize); 651 } else { 652 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 653 MaxAlign % StackProbeSize); 654 } 655 } 656 657 void X86FrameLowering::emitStackProbeInlineGenericBlock( 658 MachineFunction &MF, MachineBasicBlock &MBB, 659 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 660 uint64_t AlignOffset) const { 661 662 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 663 const bool HasFP = hasFP(MF); 664 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 665 const X86TargetLowering &TLI = *STI.getTargetLowering(); 666 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 667 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 668 669 uint64_t CurrentOffset = 0; 670 671 assert(AlignOffset < StackProbeSize); 672 673 // If the offset is so small it fits within a page, there's nothing to do. 674 if (StackProbeSize < Offset + AlignOffset) { 675 676 uint64_t StackAdjustment = StackProbeSize - AlignOffset; 677 BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false) 678 .setMIFlag(MachineInstr::FrameSetup); 679 if (!HasFP && NeedsDwarfCFI) { 680 BuildCFI( 681 MBB, MBBI, DL, 682 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 683 } 684 685 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 686 .setMIFlag(MachineInstr::FrameSetup), 687 StackPtr, false, 0) 688 .addImm(0) 689 .setMIFlag(MachineInstr::FrameSetup); 690 NumFrameExtraProbe++; 691 CurrentOffset = StackProbeSize - AlignOffset; 692 } 693 694 // For the next N - 1 pages, just probe. I tried to take advantage of 695 // natural probes but it implies much more logic and there was very few 696 // interesting natural probes to interleave. 697 while (CurrentOffset + StackProbeSize < Offset) { 698 BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false) 699 .setMIFlag(MachineInstr::FrameSetup); 700 701 if (!HasFP && NeedsDwarfCFI) { 702 BuildCFI( 703 MBB, MBBI, DL, 704 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 705 } 706 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 707 .setMIFlag(MachineInstr::FrameSetup), 708 StackPtr, false, 0) 709 .addImm(0) 710 .setMIFlag(MachineInstr::FrameSetup); 711 NumFrameExtraProbe++; 712 CurrentOffset += StackProbeSize; 713 } 714 715 // No need to probe the tail, it is smaller than a Page. 716 uint64_t ChunkSize = Offset - CurrentOffset; 717 if (ChunkSize == SlotSize) { 718 // Use push for slot sized adjustments as a size optimization, 719 // like emitSPUpdate does when not probing. 720 unsigned Reg = Is64Bit ? X86::RAX : X86::EAX; 721 unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 722 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 723 .addReg(Reg, RegState::Undef) 724 .setMIFlag(MachineInstr::FrameSetup); 725 } else { 726 BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false) 727 .setMIFlag(MachineInstr::FrameSetup); 728 } 729 // No need to adjust Dwarf CFA offset here, the last position of the stack has 730 // been defined 731 } 732 733 void X86FrameLowering::emitStackProbeInlineGenericLoop( 734 MachineFunction &MF, MachineBasicBlock &MBB, 735 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 736 uint64_t AlignOffset) const { 737 assert(Offset && "null offset"); 738 739 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 740 MachineBasicBlock::LQR_Live && 741 "Inline stack probe loop will clobber live EFLAGS."); 742 743 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 744 const bool HasFP = hasFP(MF); 745 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 746 const X86TargetLowering &TLI = *STI.getTargetLowering(); 747 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 748 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 749 750 if (AlignOffset) { 751 if (AlignOffset < StackProbeSize) { 752 // Perform a first smaller allocation followed by a probe. 753 BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false) 754 .setMIFlag(MachineInstr::FrameSetup); 755 756 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 757 .setMIFlag(MachineInstr::FrameSetup), 758 StackPtr, false, 0) 759 .addImm(0) 760 .setMIFlag(MachineInstr::FrameSetup); 761 NumFrameExtraProbe++; 762 Offset -= AlignOffset; 763 } 764 } 765 766 // Synthesize a loop 767 NumFrameLoopProbe++; 768 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 769 770 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 771 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 772 773 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 774 MF.insert(MBBIter, testMBB); 775 MF.insert(MBBIter, tailMBB); 776 777 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 778 : Is64Bit ? X86::R11D 779 : X86::EAX; 780 781 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 782 .addReg(StackPtr) 783 .setMIFlag(MachineInstr::FrameSetup); 784 785 // save loop bound 786 { 787 const unsigned BoundOffset = alignDown(Offset, StackProbeSize); 788 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset); 789 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 790 .addReg(FinalStackProbed) 791 .addImm(BoundOffset) 792 .setMIFlag(MachineInstr::FrameSetup); 793 794 // while in the loop, use loop-invariant reg for CFI, 795 // instead of the stack pointer, which changes during the loop 796 if (!HasFP && NeedsDwarfCFI) { 797 // x32 uses the same DWARF register numbers as x86-64, 798 // so there isn't a register number for r11d, we must use r11 instead 799 const Register DwarfFinalStackProbed = 800 STI.isTarget64BitILP32() 801 ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) 802 : FinalStackProbed; 803 804 BuildCFI(MBB, MBBI, DL, 805 MCCFIInstruction::createDefCfaRegister( 806 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); 807 BuildCFI(MBB, MBBI, DL, 808 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); 809 } 810 } 811 812 // allocate a page 813 BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize, 814 /*InEpilogue=*/false) 815 .setMIFlag(MachineInstr::FrameSetup); 816 817 // touch the page 818 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 819 .setMIFlag(MachineInstr::FrameSetup), 820 StackPtr, false, 0) 821 .addImm(0) 822 .setMIFlag(MachineInstr::FrameSetup); 823 824 // cmp with stack pointer bound 825 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 826 .addReg(StackPtr) 827 .addReg(FinalStackProbed) 828 .setMIFlag(MachineInstr::FrameSetup); 829 830 // jump 831 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 832 .addMBB(testMBB) 833 .addImm(X86::COND_NE) 834 .setMIFlag(MachineInstr::FrameSetup); 835 testMBB->addSuccessor(testMBB); 836 testMBB->addSuccessor(tailMBB); 837 838 // BB management 839 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 840 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 841 MBB.addSuccessor(testMBB); 842 843 // handle tail 844 const uint64_t TailOffset = Offset % StackProbeSize; 845 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); 846 if (TailOffset) { 847 BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset, 848 /*InEpilogue=*/false) 849 .setMIFlag(MachineInstr::FrameSetup); 850 } 851 852 // after the loop, switch back to stack pointer for CFI 853 if (!HasFP && NeedsDwarfCFI) { 854 // x32 uses the same DWARF register numbers as x86-64, 855 // so there isn't a register number for esp, we must use rsp instead 856 const Register DwarfStackPtr = 857 STI.isTarget64BitILP32() 858 ? Register(getX86SubSuperRegister(StackPtr, 64)) 859 : Register(StackPtr); 860 861 BuildCFI(*tailMBB, TailMBBIter, DL, 862 MCCFIInstruction::createDefCfaRegister( 863 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); 864 } 865 866 // Update Live In information 867 recomputeLiveIns(*testMBB); 868 recomputeLiveIns(*tailMBB); 869 } 870 871 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 872 MachineFunction &MF, MachineBasicBlock &MBB, 873 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 874 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 875 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 876 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 877 const TargetInstrInfo &TII = *STI.getInstrInfo(); 878 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 879 880 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 881 MachineBasicBlock::LQR_Live && 882 "Inline stack probe loop will clobber live EFLAGS."); 883 884 // RAX contains the number of bytes of desired stack adjustment. 885 // The handling here assumes this value has already been updated so as to 886 // maintain stack alignment. 887 // 888 // We need to exit with RSP modified by this amount and execute suitable 889 // page touches to notify the OS that we're growing the stack responsibly. 890 // All stack probing must be done without modifying RSP. 891 // 892 // MBB: 893 // SizeReg = RAX; 894 // ZeroReg = 0 895 // CopyReg = RSP 896 // Flags, TestReg = CopyReg - SizeReg 897 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 898 // LimitReg = gs magic thread env access 899 // if FinalReg >= LimitReg goto ContinueMBB 900 // RoundBB: 901 // RoundReg = page address of FinalReg 902 // LoopMBB: 903 // LoopReg = PHI(LimitReg,ProbeReg) 904 // ProbeReg = LoopReg - PageSize 905 // [ProbeReg] = 0 906 // if (ProbeReg > RoundReg) goto LoopMBB 907 // ContinueMBB: 908 // RSP = RSP - RAX 909 // [rest of original MBB] 910 911 // Set up the new basic blocks 912 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 913 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 914 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 915 916 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 917 MF.insert(MBBIter, RoundMBB); 918 MF.insert(MBBIter, LoopMBB); 919 MF.insert(MBBIter, ContinueMBB); 920 921 // Split MBB and move the tail portion down to ContinueMBB. 922 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 923 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 924 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 925 926 // Some useful constants 927 const int64_t ThreadEnvironmentStackLimit = 0x10; 928 const int64_t PageSize = 0x1000; 929 const int64_t PageMask = ~(PageSize - 1); 930 931 // Registers we need. For the normal case we use virtual 932 // registers. For the prolog expansion we use RAX, RCX and RDX. 933 MachineRegisterInfo &MRI = MF.getRegInfo(); 934 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 935 const Register SizeReg = InProlog ? X86::RAX 936 : MRI.createVirtualRegister(RegClass), 937 ZeroReg = InProlog ? X86::RCX 938 : MRI.createVirtualRegister(RegClass), 939 CopyReg = InProlog ? X86::RDX 940 : MRI.createVirtualRegister(RegClass), 941 TestReg = InProlog ? X86::RDX 942 : MRI.createVirtualRegister(RegClass), 943 FinalReg = InProlog ? X86::RDX 944 : MRI.createVirtualRegister(RegClass), 945 RoundedReg = InProlog ? X86::RDX 946 : MRI.createVirtualRegister(RegClass), 947 LimitReg = InProlog ? X86::RCX 948 : MRI.createVirtualRegister(RegClass), 949 JoinReg = InProlog ? X86::RCX 950 : MRI.createVirtualRegister(RegClass), 951 ProbeReg = InProlog ? X86::RCX 952 : MRI.createVirtualRegister(RegClass); 953 954 // SP-relative offsets where we can save RCX and RDX. 955 int64_t RCXShadowSlot = 0; 956 int64_t RDXShadowSlot = 0; 957 958 // If inlining in the prolog, save RCX and RDX. 959 if (InProlog) { 960 // Compute the offsets. We need to account for things already 961 // pushed onto the stack at this point: return address, frame 962 // pointer (if used), and callee saves. 963 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 964 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 965 const bool HasFP = hasFP(MF); 966 967 // Check if we need to spill RCX and/or RDX. 968 // Here we assume that no earlier prologue instruction changes RCX and/or 969 // RDX, so checking the block live-ins is enough. 970 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 971 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 972 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 973 // Assign the initial slot to both registers, then change RDX's slot if both 974 // need to be spilled. 975 if (IsRCXLiveIn) 976 RCXShadowSlot = InitSlot; 977 if (IsRDXLiveIn) 978 RDXShadowSlot = InitSlot; 979 if (IsRDXLiveIn && IsRCXLiveIn) 980 RDXShadowSlot += 8; 981 // Emit the saves if needed. 982 if (IsRCXLiveIn) 983 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 984 RCXShadowSlot) 985 .addReg(X86::RCX); 986 if (IsRDXLiveIn) 987 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 988 RDXShadowSlot) 989 .addReg(X86::RDX); 990 } else { 991 // Not in the prolog. Copy RAX to a virtual reg. 992 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 993 } 994 995 // Add code to MBB to check for overflow and set the new target stack pointer 996 // to zero if so. 997 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 998 .addReg(ZeroReg, RegState::Undef) 999 .addReg(ZeroReg, RegState::Undef); 1000 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 1001 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 1002 .addReg(CopyReg) 1003 .addReg(SizeReg); 1004 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 1005 .addReg(TestReg) 1006 .addReg(ZeroReg) 1007 .addImm(X86::COND_B); 1008 1009 // FinalReg now holds final stack pointer value, or zero if 1010 // allocation would overflow. Compare against the current stack 1011 // limit from the thread environment block. Note this limit is the 1012 // lowest touched page on the stack, not the point at which the OS 1013 // will cause an overflow exception, so this is just an optimization 1014 // to avoid unnecessarily touching pages that are below the current 1015 // SP but already committed to the stack by the OS. 1016 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 1017 .addReg(0) 1018 .addImm(1) 1019 .addReg(0) 1020 .addImm(ThreadEnvironmentStackLimit) 1021 .addReg(X86::GS); 1022 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 1023 // Jump if the desired stack pointer is at or above the stack limit. 1024 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 1025 1026 // Add code to roundMBB to round the final stack pointer to a page boundary. 1027 RoundMBB->addLiveIn(FinalReg); 1028 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 1029 .addReg(FinalReg) 1030 .addImm(PageMask); 1031 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 1032 1033 // LimitReg now holds the current stack limit, RoundedReg page-rounded 1034 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 1035 // and probe until we reach RoundedReg. 1036 if (!InProlog) { 1037 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 1038 .addReg(LimitReg) 1039 .addMBB(RoundMBB) 1040 .addReg(ProbeReg) 1041 .addMBB(LoopMBB); 1042 } 1043 1044 LoopMBB->addLiveIn(JoinReg); 1045 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 1046 false, -PageSize); 1047 1048 // Probe by storing a byte onto the stack. 1049 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 1050 .addReg(ProbeReg) 1051 .addImm(1) 1052 .addReg(0) 1053 .addImm(0) 1054 .addReg(0) 1055 .addImm(0); 1056 1057 LoopMBB->addLiveIn(RoundedReg); 1058 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 1059 .addReg(RoundedReg) 1060 .addReg(ProbeReg); 1061 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 1062 1063 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 1064 1065 // If in prolog, restore RDX and RCX. 1066 if (InProlog) { 1067 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 1068 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1069 TII.get(X86::MOV64rm), X86::RCX), 1070 X86::RSP, false, RCXShadowSlot); 1071 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 1072 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1073 TII.get(X86::MOV64rm), X86::RDX), 1074 X86::RSP, false, RDXShadowSlot); 1075 } 1076 1077 // Now that the probing is done, add code to continueMBB to update 1078 // the stack pointer for real. 1079 ContinueMBB->addLiveIn(SizeReg); 1080 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 1081 .addReg(X86::RSP) 1082 .addReg(SizeReg); 1083 1084 // Add the control flow edges we need. 1085 MBB.addSuccessor(ContinueMBB); 1086 MBB.addSuccessor(RoundMBB); 1087 RoundMBB->addSuccessor(LoopMBB); 1088 LoopMBB->addSuccessor(ContinueMBB); 1089 LoopMBB->addSuccessor(LoopMBB); 1090 1091 // Mark all the instructions added to the prolog as frame setup. 1092 if (InProlog) { 1093 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 1094 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 1095 } 1096 for (MachineInstr &MI : *RoundMBB) { 1097 MI.setFlag(MachineInstr::FrameSetup); 1098 } 1099 for (MachineInstr &MI : *LoopMBB) { 1100 MI.setFlag(MachineInstr::FrameSetup); 1101 } 1102 for (MachineInstr &MI : 1103 llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) { 1104 MI.setFlag(MachineInstr::FrameSetup); 1105 } 1106 } 1107 } 1108 1109 void X86FrameLowering::emitStackProbeCall( 1110 MachineFunction &MF, MachineBasicBlock &MBB, 1111 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 1112 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 1113 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1114 1115 // FIXME: Add indirect thunk support and remove this. 1116 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1117 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1118 "code model and indirect thunks not yet implemented."); 1119 1120 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 1121 MachineBasicBlock::LQR_Live && 1122 "Stack probe calls will clobber live EFLAGS."); 1123 1124 unsigned CallOp; 1125 if (Is64Bit) 1126 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1127 else 1128 CallOp = X86::CALLpcrel32; 1129 1130 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1131 1132 MachineInstrBuilder CI; 1133 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1134 1135 // All current stack probes take AX and SP as input, clobber flags, and 1136 // preserve all registers. x86_64 probes leave RSP unmodified. 1137 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1138 // For the large code model, we have to call through a register. Use R11, 1139 // as it is scratch in all supported calling conventions. 1140 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1141 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1142 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1143 } else { 1144 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1145 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1146 } 1147 1148 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1149 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1150 CI.addReg(AX, RegState::Implicit) 1151 .addReg(SP, RegState::Implicit) 1152 .addReg(AX, RegState::Define | RegState::Implicit) 1153 .addReg(SP, RegState::Define | RegState::Implicit) 1154 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1155 1156 MachineInstr *ModInst = CI; 1157 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1158 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1159 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1160 // themselves. They also does not clobber %rax so we can reuse it when 1161 // adjusting %rsp. 1162 // All other platforms do not specify a particular ABI for the stack probe 1163 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1164 ModInst = 1165 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1166 .addReg(SP) 1167 .addReg(AX); 1168 } 1169 1170 // DebugInfo variable locations -- if there's an instruction number for the 1171 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1172 // modifies SP. 1173 if (InstrNum) { 1174 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1175 // Label destination operand of the subtract. 1176 MF.makeDebugValueSubstitution(*InstrNum, 1177 {ModInst->getDebugInstrNum(), 0}); 1178 } else { 1179 // Label the call. The operand number is the penultimate operand, zero 1180 // based. 1181 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1182 MF.makeDebugValueSubstitution( 1183 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1184 } 1185 } 1186 1187 if (InProlog) { 1188 // Apply the frame setup flag to all inserted instrs. 1189 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1190 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1191 } 1192 } 1193 1194 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1195 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1196 // and might require smaller successive adjustments. 1197 const uint64_t Win64MaxSEHOffset = 128; 1198 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1199 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1200 return SEHFrameOffset & -16; 1201 } 1202 1203 // If we're forcing a stack realignment we can't rely on just the frame 1204 // info, we need to know the ABI stack alignment as well in case we 1205 // have a call out. Otherwise just make sure we have some alignment - we'll 1206 // go with the minimum SlotSize. 1207 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1208 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1209 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1210 Align StackAlign = getStackAlign(); 1211 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1212 if (MFI.hasCalls()) 1213 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1214 else if (MaxAlign < SlotSize) 1215 MaxAlign = Align(SlotSize); 1216 } 1217 return MaxAlign.value(); 1218 } 1219 1220 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1221 MachineBasicBlock::iterator MBBI, 1222 const DebugLoc &DL, unsigned Reg, 1223 uint64_t MaxAlign) const { 1224 uint64_t Val = -MaxAlign; 1225 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1226 1227 MachineFunction &MF = *MBB.getParent(); 1228 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1229 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1230 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1231 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1232 1233 // We want to make sure that (in worst case) less than StackProbeSize bytes 1234 // are not probed after the AND. This assumption is used in 1235 // emitStackProbeInlineGeneric. 1236 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1237 { 1238 NumFrameLoopProbe++; 1239 MachineBasicBlock *entryMBB = 1240 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1241 MachineBasicBlock *headMBB = 1242 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1243 MachineBasicBlock *bodyMBB = 1244 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1245 MachineBasicBlock *footMBB = 1246 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1247 1248 MachineFunction::iterator MBBIter = MBB.getIterator(); 1249 MF.insert(MBBIter, entryMBB); 1250 MF.insert(MBBIter, headMBB); 1251 MF.insert(MBBIter, bodyMBB); 1252 MF.insert(MBBIter, footMBB); 1253 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1254 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1255 : Is64Bit ? X86::R11D 1256 : X86::EAX; 1257 1258 // Setup entry block 1259 { 1260 1261 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1262 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1263 .addReg(StackPtr) 1264 .setMIFlag(MachineInstr::FrameSetup); 1265 MachineInstr *MI = 1266 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1267 .addReg(FinalStackProbed) 1268 .addImm(Val) 1269 .setMIFlag(MachineInstr::FrameSetup); 1270 1271 // The EFLAGS implicit def is dead. 1272 MI->getOperand(3).setIsDead(); 1273 1274 BuildMI(entryMBB, DL, 1275 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1276 .addReg(FinalStackProbed) 1277 .addReg(StackPtr) 1278 .setMIFlag(MachineInstr::FrameSetup); 1279 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1280 .addMBB(&MBB) 1281 .addImm(X86::COND_E) 1282 .setMIFlag(MachineInstr::FrameSetup); 1283 entryMBB->addSuccessor(headMBB); 1284 entryMBB->addSuccessor(&MBB); 1285 } 1286 1287 // Loop entry block 1288 1289 { 1290 const unsigned SUBOpc = 1291 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1292 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1293 .addReg(StackPtr) 1294 .addImm(StackProbeSize) 1295 .setMIFlag(MachineInstr::FrameSetup); 1296 1297 BuildMI(headMBB, DL, 1298 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1299 .addReg(StackPtr) 1300 .addReg(FinalStackProbed) 1301 .setMIFlag(MachineInstr::FrameSetup); 1302 1303 // jump to the footer if StackPtr < FinalStackProbed 1304 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1305 .addMBB(footMBB) 1306 .addImm(X86::COND_B) 1307 .setMIFlag(MachineInstr::FrameSetup); 1308 1309 headMBB->addSuccessor(bodyMBB); 1310 headMBB->addSuccessor(footMBB); 1311 } 1312 1313 // setup loop body 1314 { 1315 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1316 .setMIFlag(MachineInstr::FrameSetup), 1317 StackPtr, false, 0) 1318 .addImm(0) 1319 .setMIFlag(MachineInstr::FrameSetup); 1320 1321 const unsigned SUBOpc = 1322 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1323 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1324 .addReg(StackPtr) 1325 .addImm(StackProbeSize) 1326 .setMIFlag(MachineInstr::FrameSetup); 1327 1328 // cmp with stack pointer bound 1329 BuildMI(bodyMBB, DL, 1330 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1331 .addReg(FinalStackProbed) 1332 .addReg(StackPtr) 1333 .setMIFlag(MachineInstr::FrameSetup); 1334 1335 // jump back while FinalStackProbed < StackPtr 1336 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1337 .addMBB(bodyMBB) 1338 .addImm(X86::COND_B) 1339 .setMIFlag(MachineInstr::FrameSetup); 1340 bodyMBB->addSuccessor(bodyMBB); 1341 bodyMBB->addSuccessor(footMBB); 1342 } 1343 1344 // setup loop footer 1345 { 1346 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1347 .addReg(FinalStackProbed) 1348 .setMIFlag(MachineInstr::FrameSetup); 1349 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1350 .setMIFlag(MachineInstr::FrameSetup), 1351 StackPtr, false, 0) 1352 .addImm(0) 1353 .setMIFlag(MachineInstr::FrameSetup); 1354 footMBB->addSuccessor(&MBB); 1355 } 1356 1357 recomputeLiveIns(*headMBB); 1358 recomputeLiveIns(*bodyMBB); 1359 recomputeLiveIns(*footMBB); 1360 recomputeLiveIns(MBB); 1361 } 1362 } else { 1363 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1364 .addReg(Reg) 1365 .addImm(Val) 1366 .setMIFlag(MachineInstr::FrameSetup); 1367 1368 // The EFLAGS implicit def is dead. 1369 MI->getOperand(3).setIsDead(); 1370 } 1371 } 1372 1373 // FIXME: Get this from tablegen. 1374 static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, 1375 const X86Subtarget &Subtarget) { 1376 assert(Subtarget.is64Bit()); 1377 1378 if (Subtarget.isCallingConvWin64(CallConv)) { 1379 static const MCPhysReg GPR64ArgRegsWin64[] = { 1380 X86::RCX, X86::RDX, X86::R8, X86::R9 1381 }; 1382 return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); 1383 } 1384 1385 static const MCPhysReg GPR64ArgRegs64Bit[] = { 1386 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 1387 }; 1388 return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); 1389 } 1390 1391 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1392 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1393 // clobbered by any interrupt handler. 1394 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1395 "MF used frame lowering for wrong subtarget"); 1396 const Function &Fn = MF.getFunction(); 1397 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1398 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1399 } 1400 1401 /// Return true if we need to use the restricted Windows x64 prologue and 1402 /// epilogue code patterns that can be described with WinCFI (.seh_* 1403 /// directives). 1404 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1405 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1406 } 1407 1408 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1409 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1410 } 1411 1412 /// emitPrologue - Push callee-saved registers onto the stack, which 1413 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1414 /// space for local variables. Also emit labels used by the exception handler to 1415 /// generate the exception handling frames. 1416 1417 /* 1418 Here's a gist of what gets emitted: 1419 1420 ; Establish frame pointer, if needed 1421 [if needs FP] 1422 push %rbp 1423 .cfi_def_cfa_offset 16 1424 .cfi_offset %rbp, -16 1425 .seh_pushreg %rpb 1426 mov %rsp, %rbp 1427 .cfi_def_cfa_register %rbp 1428 1429 ; Spill general-purpose registers 1430 [for all callee-saved GPRs] 1431 pushq %<reg> 1432 [if not needs FP] 1433 .cfi_def_cfa_offset (offset from RETADDR) 1434 .seh_pushreg %<reg> 1435 1436 ; If the required stack alignment > default stack alignment 1437 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1438 ; of unknown size in the stack frame. 1439 [if stack needs re-alignment] 1440 and $MASK, %rsp 1441 1442 ; Allocate space for locals 1443 [if target is Windows and allocated space > 4096 bytes] 1444 ; Windows needs special care for allocations larger 1445 ; than one page. 1446 mov $NNN, %rax 1447 call ___chkstk_ms/___chkstk 1448 sub %rax, %rsp 1449 [else] 1450 sub $NNN, %rsp 1451 1452 [if needs FP] 1453 .seh_stackalloc (size of XMM spill slots) 1454 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1455 [else] 1456 .seh_stackalloc NNN 1457 1458 ; Spill XMMs 1459 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1460 ; they may get spilled on any platform, if the current function 1461 ; calls @llvm.eh.unwind.init 1462 [if needs FP] 1463 [for all callee-saved XMM registers] 1464 movaps %<xmm reg>, -MMM(%rbp) 1465 [for all callee-saved XMM registers] 1466 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1467 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1468 [else] 1469 [for all callee-saved XMM registers] 1470 movaps %<xmm reg>, KKK(%rsp) 1471 [for all callee-saved XMM registers] 1472 .seh_savexmm %<xmm reg>, KKK 1473 1474 .seh_endprologue 1475 1476 [if needs base pointer] 1477 mov %rsp, %rbx 1478 [if needs to restore base pointer] 1479 mov %rsp, -MMM(%rbp) 1480 1481 ; Emit CFI info 1482 [if needs FP] 1483 [for all callee-saved registers] 1484 .cfi_offset %<reg>, (offset from %rbp) 1485 [else] 1486 .cfi_def_cfa_offset (offset from RETADDR) 1487 [for all callee-saved registers] 1488 .cfi_offset %<reg>, (offset from %rsp) 1489 1490 Notes: 1491 - .seh directives are emitted only for Windows 64 ABI 1492 - .cv_fpo directives are emitted on win32 when emitting CodeView 1493 - .cfi directives are emitted for all other ABIs 1494 - for 32-bit code, substitute %e?? registers for %r?? 1495 */ 1496 1497 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1498 MachineBasicBlock &MBB) const { 1499 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1500 "MF used frame lowering for wrong subtarget"); 1501 MachineBasicBlock::iterator MBBI = MBB.begin(); 1502 MachineFrameInfo &MFI = MF.getFrameInfo(); 1503 const Function &Fn = MF.getFunction(); 1504 MachineModuleInfo &MMI = MF.getMMI(); 1505 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1506 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1507 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1508 bool IsFunclet = MBB.isEHFuncletEntry(); 1509 EHPersonality Personality = EHPersonality::Unknown; 1510 if (Fn.hasPersonalityFn()) 1511 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1512 bool FnHasClrFunclet = 1513 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1514 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1515 bool HasFP = hasFP(MF); 1516 bool IsWin64Prologue = isWin64Prologue(MF); 1517 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1518 // FIXME: Emit FPO data for EH funclets. 1519 bool NeedsWinFPO = 1520 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1521 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1522 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1523 Register FramePtr = TRI->getFrameRegister(MF); 1524 const Register MachineFramePtr = 1525 STI.isTarget64BitILP32() 1526 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1527 Register BasePtr = TRI->getBaseRegister(); 1528 bool HasWinCFI = false; 1529 1530 // Debug location must be unknown since the first debug location is used 1531 // to determine the end of the prologue. 1532 DebugLoc DL; 1533 1534 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1535 // tail call. 1536 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1537 if (TailCallArgReserveSize && IsWin64Prologue) 1538 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1539 1540 const bool EmitStackProbeCall = 1541 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1542 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1543 1544 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1545 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1546 case SwiftAsyncFramePointerMode::DeploymentBased: 1547 if (STI.swiftAsyncContextIsDynamicallySet()) { 1548 // The special symbol below is absolute and has a *value* suitable to be 1549 // combined with the frame pointer directly. 1550 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1551 .addUse(MachineFramePtr) 1552 .addUse(X86::RIP) 1553 .addImm(1) 1554 .addUse(X86::NoRegister) 1555 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1556 X86II::MO_GOTPCREL) 1557 .addUse(X86::NoRegister); 1558 break; 1559 } 1560 [[fallthrough]]; 1561 1562 case SwiftAsyncFramePointerMode::Always: 1563 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1564 .addUse(MachineFramePtr) 1565 .addImm(60) 1566 .setMIFlag(MachineInstr::FrameSetup); 1567 break; 1568 1569 case SwiftAsyncFramePointerMode::Never: 1570 break; 1571 } 1572 } 1573 1574 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1575 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1576 // stack alignment. 1577 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1578 Fn.arg_size() == 2) { 1579 StackSize += 8; 1580 MFI.setStackSize(StackSize); 1581 1582 // Update the stack pointer by pushing a register. This is the instruction 1583 // emitted that would be end up being emitted by a call to `emitSPUpdate`. 1584 // Hard-coding the update to a push avoids emitting a second 1585 // `STACKALLOC_W_PROBING` instruction in the save block: We know that stack 1586 // probing isn't needed anyways for an 8-byte update. 1587 // Pushing a register leaves us in a similar situation to a regular 1588 // function call where we know that the address at (rsp-8) is writeable. 1589 // That way we avoid any off-by-ones with stack probing for additional 1590 // stack pointer updates later on. 1591 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1592 .addReg(X86::RAX, RegState::Undef) 1593 .setMIFlag(MachineInstr::FrameSetup); 1594 } 1595 1596 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1597 // function, and use up to 128 bytes of stack space, don't have a frame 1598 // pointer, calls, or dynamic alloca then we do not need to adjust the 1599 // stack pointer (we fit in the Red Zone). We also check that we don't 1600 // push and pop from the stack. 1601 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1602 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1603 !MFI.adjustsStack() && // No calls. 1604 !EmitStackProbeCall && // No stack probes. 1605 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1606 !MF.shouldSplitStack()) { // Regular stack 1607 uint64_t MinSize = 1608 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1609 if (HasFP) MinSize += SlotSize; 1610 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1611 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1612 MFI.setStackSize(StackSize); 1613 } 1614 1615 // Insert stack pointer adjustment for later moving of return addr. Only 1616 // applies to tail call optimized functions where the callee argument stack 1617 // size is bigger than the callers. 1618 if (TailCallArgReserveSize != 0) { 1619 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1620 /*InEpilogue=*/false) 1621 .setMIFlag(MachineInstr::FrameSetup); 1622 } 1623 1624 // Mapping for machine moves: 1625 // 1626 // DST: VirtualFP AND 1627 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1628 // ELSE => DW_CFA_def_cfa 1629 // 1630 // SRC: VirtualFP AND 1631 // DST: Register => DW_CFA_def_cfa_register 1632 // 1633 // ELSE 1634 // OFFSET < 0 => DW_CFA_offset_extended_sf 1635 // REG < 64 => DW_CFA_offset + Reg 1636 // ELSE => DW_CFA_offset_extended 1637 1638 uint64_t NumBytes = 0; 1639 int stackGrowth = -SlotSize; 1640 1641 // Find the funclet establisher parameter 1642 Register Establisher = X86::NoRegister; 1643 if (IsClrFunclet) 1644 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1645 else if (IsFunclet) 1646 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1647 1648 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1649 // Immediately spill establisher into the home slot. 1650 // The runtime cares about this. 1651 // MOV64mr %rdx, 16(%rsp) 1652 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1653 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1654 .addReg(Establisher) 1655 .setMIFlag(MachineInstr::FrameSetup); 1656 MBB.addLiveIn(Establisher); 1657 } 1658 1659 if (HasFP) { 1660 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1661 1662 // Calculate required stack adjustment. 1663 uint64_t FrameSize = StackSize - SlotSize; 1664 // If required, include space for extra hidden slot for stashing base pointer. 1665 if (X86FI->getRestoreBasePointer()) 1666 FrameSize += SlotSize; 1667 1668 NumBytes = FrameSize - 1669 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1670 1671 // Callee-saved registers are pushed on stack before the stack is realigned. 1672 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1673 NumBytes = alignTo(NumBytes, MaxAlign); 1674 1675 // Save EBP/RBP into the appropriate stack slot. 1676 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1677 .addReg(MachineFramePtr, RegState::Kill) 1678 .setMIFlag(MachineInstr::FrameSetup); 1679 1680 if (NeedsDwarfCFI) { 1681 // Mark the place where EBP/RBP was saved. 1682 // Define the current CFA rule to use the provided offset. 1683 assert(StackSize); 1684 BuildCFI(MBB, MBBI, DL, 1685 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth), 1686 MachineInstr::FrameSetup); 1687 1688 // Change the rule for the FramePtr to be an "offset" rule. 1689 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1690 BuildCFI(MBB, MBBI, DL, 1691 MCCFIInstruction::createOffset(nullptr, DwarfFramePtr, 1692 2 * stackGrowth), 1693 MachineInstr::FrameSetup); 1694 } 1695 1696 if (NeedsWinCFI) { 1697 HasWinCFI = true; 1698 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1699 .addImm(FramePtr) 1700 .setMIFlag(MachineInstr::FrameSetup); 1701 } 1702 1703 if (!IsFunclet) { 1704 if (X86FI->hasSwiftAsyncContext()) { 1705 const auto &Attrs = MF.getFunction().getAttributes(); 1706 1707 // Before we update the live frame pointer we have to ensure there's a 1708 // valid (or null) asynchronous context in its slot just before FP in 1709 // the frame record, so store it now. 1710 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1711 // We have an initial context in r14, store it just before the frame 1712 // pointer. 1713 MBB.addLiveIn(X86::R14); 1714 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1715 .addReg(X86::R14) 1716 .setMIFlag(MachineInstr::FrameSetup); 1717 } else { 1718 // No initial context, store null so that there's no pointer that 1719 // could be misused. 1720 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1721 .addImm(0) 1722 .setMIFlag(MachineInstr::FrameSetup); 1723 } 1724 1725 if (NeedsWinCFI) { 1726 HasWinCFI = true; 1727 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1728 .addImm(X86::R14) 1729 .setMIFlag(MachineInstr::FrameSetup); 1730 } 1731 1732 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1733 .addUse(X86::RSP) 1734 .addImm(1) 1735 .addUse(X86::NoRegister) 1736 .addImm(8) 1737 .addUse(X86::NoRegister) 1738 .setMIFlag(MachineInstr::FrameSetup); 1739 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1740 .addUse(X86::RSP) 1741 .addImm(8) 1742 .setMIFlag(MachineInstr::FrameSetup); 1743 } 1744 1745 if (!IsWin64Prologue && !IsFunclet) { 1746 // Update EBP with the new base value. 1747 if (!X86FI->hasSwiftAsyncContext()) 1748 BuildMI(MBB, MBBI, DL, 1749 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1750 FramePtr) 1751 .addReg(StackPtr) 1752 .setMIFlag(MachineInstr::FrameSetup); 1753 1754 if (SaveArgs && !Fn.arg_empty()) { 1755 ArrayRef<MCPhysReg> GPRs = 1756 get64BitArgumentGPRs(Fn.getCallingConv(), STI); 1757 unsigned arg_size = Fn.arg_size(); 1758 unsigned RI = 0; 1759 int64_t SaveSize = 0; 1760 1761 if (Fn.hasStructRetAttr()) { 1762 GPRs = GPRs.drop_front(1); 1763 arg_size--; 1764 } 1765 1766 for (MCPhysReg Reg : GPRs) { 1767 if (++RI > arg_size) 1768 break; 1769 1770 SaveSize += SlotSize; 1771 1772 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1773 .addReg(Reg) 1774 .setMIFlag(MachineInstr::FrameSetup); 1775 } 1776 1777 // Realign the stack. PUSHes are the most space efficient. 1778 while (SaveSize % getStackAlignment()) { 1779 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1780 .addReg(GPRs.front()) 1781 .setMIFlag(MachineInstr::FrameSetup); 1782 1783 SaveSize += SlotSize; 1784 } 1785 1786 //dlg StackSize -= SaveSize; 1787 //dlg MFI.setStackSize(StackSize); 1788 X86FI->setSaveArgSize(SaveSize); 1789 } 1790 1791 if (NeedsDwarfCFI) { 1792 // Mark effective beginning of when frame pointer becomes valid. 1793 // Define the current CFA to use the EBP/RBP register. 1794 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1795 BuildCFI( 1796 MBB, MBBI, DL, 1797 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr), 1798 MachineInstr::FrameSetup); 1799 } 1800 1801 if (NeedsWinFPO) { 1802 // .cv_fpo_setframe $FramePtr 1803 HasWinCFI = true; 1804 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1805 .addImm(FramePtr) 1806 .addImm(0) 1807 .setMIFlag(MachineInstr::FrameSetup); 1808 } 1809 } 1810 } 1811 } else { 1812 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1813 NumBytes = StackSize - 1814 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1815 } 1816 1817 // Update the offset adjustment, which is mainly used by codeview to translate 1818 // from ESP to VFRAME relative local variable offsets. 1819 if (!IsFunclet) { 1820 if (HasFP && TRI->hasStackRealignment(MF)) 1821 MFI.setOffsetAdjustment(-NumBytes); 1822 else 1823 MFI.setOffsetAdjustment(-StackSize); 1824 } 1825 1826 // For EH funclets, only allocate enough space for outgoing calls. Save the 1827 // NumBytes value that we would've used for the parent frame. 1828 unsigned ParentFrameNumBytes = NumBytes; 1829 if (IsFunclet) 1830 NumBytes = getWinEHFuncletFrameSize(MF); 1831 1832 // Skip the callee-saved push instructions. 1833 bool PushedRegs = false; 1834 int StackOffset = 2 * stackGrowth; 1835 1836 while (MBBI != MBB.end() && 1837 MBBI->getFlag(MachineInstr::FrameSetup) && 1838 (MBBI->getOpcode() == X86::PUSH32r || 1839 MBBI->getOpcode() == X86::PUSH64r)) { 1840 PushedRegs = true; 1841 Register Reg = MBBI->getOperand(0).getReg(); 1842 ++MBBI; 1843 1844 if (!HasFP && NeedsDwarfCFI) { 1845 // Mark callee-saved push instruction. 1846 // Define the current CFA rule to use the provided offset. 1847 assert(StackSize); 1848 BuildCFI(MBB, MBBI, DL, 1849 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset), 1850 MachineInstr::FrameSetup); 1851 StackOffset += stackGrowth; 1852 } 1853 1854 if (NeedsWinCFI) { 1855 HasWinCFI = true; 1856 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1857 .addImm(Reg) 1858 .setMIFlag(MachineInstr::FrameSetup); 1859 } 1860 } 1861 1862 // Realign stack after we pushed callee-saved registers (so that we'll be 1863 // able to calculate their offsets from the frame pointer). 1864 // Don't do this for Win64, it needs to realign the stack after the prologue. 1865 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1866 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1867 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1868 1869 if (NeedsWinCFI) { 1870 HasWinCFI = true; 1871 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1872 .addImm(MaxAlign) 1873 .setMIFlag(MachineInstr::FrameSetup); 1874 } 1875 } 1876 1877 // If there is an SUB32ri of ESP immediately before this instruction, merge 1878 // the two. This can be the case when tail call elimination is enabled and 1879 // the callee has more arguments then the caller. 1880 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1881 1882 // Adjust stack pointer: ESP -= numbytes. 1883 1884 // Windows and cygwin/mingw require a prologue helper routine when allocating 1885 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1886 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1887 // stack and adjust the stack pointer in one go. The 64-bit version of 1888 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1889 // responsible for adjusting the stack pointer. Touching the stack at 4K 1890 // increments is necessary to ensure that the guard pages used by the OS 1891 // virtual memory manager are allocated in correct sequence. 1892 uint64_t AlignedNumBytes = NumBytes; 1893 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1894 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1895 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1896 assert(!X86FI->getUsesRedZone() && 1897 "The Red Zone is not accounted for in stack probes"); 1898 1899 // Check whether EAX is livein for this block. 1900 bool isEAXAlive = isEAXLiveIn(MBB); 1901 1902 if (isEAXAlive) { 1903 if (Is64Bit) { 1904 // Save RAX 1905 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1906 .addReg(X86::RAX, RegState::Kill) 1907 .setMIFlag(MachineInstr::FrameSetup); 1908 } else { 1909 // Save EAX 1910 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1911 .addReg(X86::EAX, RegState::Kill) 1912 .setMIFlag(MachineInstr::FrameSetup); 1913 } 1914 } 1915 1916 if (Is64Bit) { 1917 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1918 // Function prologue is responsible for adjusting the stack pointer. 1919 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1920 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) 1921 .addImm(Alloc) 1922 .setMIFlag(MachineInstr::FrameSetup); 1923 } else { 1924 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1925 // We'll also use 4 already allocated bytes for EAX. 1926 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1927 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1928 .setMIFlag(MachineInstr::FrameSetup); 1929 } 1930 1931 // Call __chkstk, __chkstk_ms, or __alloca. 1932 emitStackProbe(MF, MBB, MBBI, DL, true); 1933 1934 if (isEAXAlive) { 1935 // Restore RAX/EAX 1936 MachineInstr *MI; 1937 if (Is64Bit) 1938 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1939 StackPtr, false, NumBytes - 8); 1940 else 1941 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1942 StackPtr, false, NumBytes - 4); 1943 MI->setFlag(MachineInstr::FrameSetup); 1944 MBB.insert(MBBI, MI); 1945 } 1946 } else if (NumBytes) { 1947 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1948 } 1949 1950 if (NeedsWinCFI && NumBytes) { 1951 HasWinCFI = true; 1952 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1953 .addImm(NumBytes) 1954 .setMIFlag(MachineInstr::FrameSetup); 1955 } 1956 1957 int SEHFrameOffset = 0; 1958 unsigned SPOrEstablisher; 1959 if (IsFunclet) { 1960 if (IsClrFunclet) { 1961 // The establisher parameter passed to a CLR funclet is actually a pointer 1962 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1963 // to find the root function establisher frame by loading the PSPSym from 1964 // the intermediate frame. 1965 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1966 MachinePointerInfo NoInfo; 1967 MBB.addLiveIn(Establisher); 1968 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1969 Establisher, false, PSPSlotOffset) 1970 .addMemOperand(MF.getMachineMemOperand( 1971 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1972 ; 1973 // Save the root establisher back into the current funclet's (mostly 1974 // empty) frame, in case a sub-funclet or the GC needs it. 1975 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1976 false, PSPSlotOffset) 1977 .addReg(Establisher) 1978 .addMemOperand(MF.getMachineMemOperand( 1979 NoInfo, 1980 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1981 SlotSize, Align(SlotSize))); 1982 } 1983 SPOrEstablisher = Establisher; 1984 } else { 1985 SPOrEstablisher = StackPtr; 1986 } 1987 1988 if (IsWin64Prologue && HasFP) { 1989 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1990 // this calculation on the incoming establisher, which holds the value of 1991 // RSP from the parent frame at the end of the prologue. 1992 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1993 if (SEHFrameOffset) 1994 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1995 SPOrEstablisher, false, SEHFrameOffset); 1996 else 1997 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1998 .addReg(SPOrEstablisher); 1999 2000 // If this is not a funclet, emit the CFI describing our frame pointer. 2001 if (NeedsWinCFI && !IsFunclet) { 2002 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 2003 HasWinCFI = true; 2004 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 2005 .addImm(FramePtr) 2006 .addImm(SEHFrameOffset) 2007 .setMIFlag(MachineInstr::FrameSetup); 2008 if (isAsynchronousEHPersonality(Personality)) 2009 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 2010 } 2011 } else if (IsFunclet && STI.is32Bit()) { 2012 // Reset EBP / ESI to something good for funclets. 2013 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 2014 // If we're a catch funclet, we can be returned to via catchret. Save ESP 2015 // into the registration node so that the runtime will restore it for us. 2016 if (!MBB.isCleanupFuncletEntry()) { 2017 assert(Personality == EHPersonality::MSVC_CXX); 2018 Register FrameReg; 2019 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 2020 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2021 // ESP is the first field, so no extra displacement is needed. 2022 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 2023 false, EHRegOffset) 2024 .addReg(X86::ESP); 2025 } 2026 } 2027 2028 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 2029 const MachineInstr &FrameInstr = *MBBI; 2030 ++MBBI; 2031 2032 if (NeedsWinCFI) { 2033 int FI; 2034 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 2035 if (X86::FR64RegClass.contains(Reg)) { 2036 int Offset; 2037 Register IgnoredFrameReg; 2038 if (IsWin64Prologue && IsFunclet) 2039 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 2040 else 2041 Offset = 2042 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 2043 SEHFrameOffset; 2044 2045 HasWinCFI = true; 2046 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 2047 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 2048 .addImm(Reg) 2049 .addImm(Offset) 2050 .setMIFlag(MachineInstr::FrameSetup); 2051 } 2052 } 2053 } 2054 } 2055 2056 if (NeedsWinCFI && HasWinCFI) 2057 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 2058 .setMIFlag(MachineInstr::FrameSetup); 2059 2060 if (FnHasClrFunclet && !IsFunclet) { 2061 // Save the so-called Initial-SP (i.e. the value of the stack pointer 2062 // immediately after the prolog) into the PSPSlot so that funclets 2063 // and the GC can recover it. 2064 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 2065 auto PSPInfo = MachinePointerInfo::getFixedStack( 2066 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 2067 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 2068 PSPSlotOffset) 2069 .addReg(StackPtr) 2070 .addMemOperand(MF.getMachineMemOperand( 2071 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2072 SlotSize, Align(SlotSize))); 2073 } 2074 2075 // Realign stack after we spilled callee-saved registers (so that we'll be 2076 // able to calculate their offsets from the frame pointer). 2077 // Win64 requires aligning the stack after the prologue. 2078 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 2079 assert(HasFP && "There should be a frame pointer if stack is realigned."); 2080 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 2081 } 2082 2083 // We already dealt with stack realignment and funclets above. 2084 if (IsFunclet && STI.is32Bit()) 2085 return; 2086 2087 // If we need a base pointer, set it up here. It's whatever the value 2088 // of the stack pointer is at this point. Any variable size objects 2089 // will be allocated after this, so we can still use the base pointer 2090 // to reference locals. 2091 if (TRI->hasBasePointer(MF)) { 2092 // Update the base pointer with the current stack pointer. 2093 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 2094 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 2095 .addReg(SPOrEstablisher) 2096 .setMIFlag(MachineInstr::FrameSetup); 2097 if (X86FI->getRestoreBasePointer()) { 2098 // Stash value of base pointer. Saving RSP instead of EBP shortens 2099 // dependence chain. Used by SjLj EH. 2100 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2101 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 2102 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 2103 .addReg(SPOrEstablisher) 2104 .setMIFlag(MachineInstr::FrameSetup); 2105 } 2106 2107 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 2108 // Stash the value of the frame pointer relative to the base pointer for 2109 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 2110 // it recovers the frame pointer from the base pointer rather than the 2111 // other way around. 2112 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2113 Register UsedReg; 2114 int Offset = 2115 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 2116 .getFixed(); 2117 assert(UsedReg == BasePtr); 2118 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 2119 .addReg(FramePtr) 2120 .setMIFlag(MachineInstr::FrameSetup); 2121 } 2122 } 2123 2124 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 2125 // Mark end of stack pointer adjustment. 2126 if (!HasFP && NumBytes) { 2127 // Define the current CFA rule to use the provided offset. 2128 assert(StackSize); 2129 BuildCFI( 2130 MBB, MBBI, DL, 2131 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth), 2132 MachineInstr::FrameSetup); 2133 } 2134 2135 // Emit DWARF info specifying the offsets of the callee-saved registers. 2136 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 2137 } 2138 2139 // X86 Interrupt handling function cannot assume anything about the direction 2140 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 2141 // in each prologue of interrupt handler function. 2142 // 2143 // FIXME: Create "cld" instruction only in these cases: 2144 // 1. The interrupt handling function uses any of the "rep" instructions. 2145 // 2. Interrupt handling function calls another function. 2146 // 2147 if (Fn.getCallingConv() == CallingConv::X86_INTR) 2148 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 2149 .setMIFlag(MachineInstr::FrameSetup); 2150 2151 // At this point we know if the function has WinCFI or not. 2152 MF.setHasWinCFI(HasWinCFI); 2153 } 2154 2155 bool X86FrameLowering::canUseLEAForSPInEpilogue( 2156 const MachineFunction &MF) const { 2157 // We can't use LEA instructions for adjusting the stack pointer if we don't 2158 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 2159 // to deallocate the stack. 2160 // This means that we can use LEA for SP in two situations: 2161 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 2162 // 2. We *have* a frame pointer which means we are permitted to use LEA. 2163 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 2164 } 2165 2166 static bool isFuncletReturnInstr(MachineInstr &MI) { 2167 switch (MI.getOpcode()) { 2168 case X86::CATCHRET: 2169 case X86::CLEANUPRET: 2170 return true; 2171 default: 2172 return false; 2173 } 2174 llvm_unreachable("impossible"); 2175 } 2176 2177 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 2178 // stack. It holds a pointer to the bottom of the root function frame. The 2179 // establisher frame pointer passed to a nested funclet may point to the 2180 // (mostly empty) frame of its parent funclet, but it will need to find 2181 // the frame of the root function to access locals. To facilitate this, 2182 // every funclet copies the pointer to the bottom of the root function 2183 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 2184 // same offset for the PSPSym in the root function frame that's used in the 2185 // funclets' frames allows each funclet to dynamically accept any ancestor 2186 // frame as its establisher argument (the runtime doesn't guarantee the 2187 // immediate parent for some reason lost to history), and also allows the GC, 2188 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2189 // frame with only a single offset reported for the entire method. 2190 unsigned 2191 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2192 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2193 Register SPReg; 2194 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2195 /*IgnoreSPUpdates*/ true) 2196 .getFixed(); 2197 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2198 return static_cast<unsigned>(Offset); 2199 } 2200 2201 unsigned 2202 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2203 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2204 // This is the size of the pushed CSRs. 2205 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2206 // This is the size of callee saved XMMs. 2207 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2208 unsigned XMMSize = WinEHXMMSlotInfo.size() * 2209 TRI->getSpillSize(X86::VR128RegClass); 2210 // This is the amount of stack a funclet needs to allocate. 2211 unsigned UsedSize; 2212 EHPersonality Personality = 2213 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2214 if (Personality == EHPersonality::CoreCLR) { 2215 // CLR funclets need to hold enough space to include the PSPSym, at the 2216 // same offset from the stack pointer (immediately after the prolog) as it 2217 // resides at in the main function. 2218 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2219 } else { 2220 // Other funclets just need enough stack for outgoing call arguments. 2221 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2222 } 2223 // RBP is not included in the callee saved register block. After pushing RBP, 2224 // everything is 16 byte aligned. Everything we allocate before an outgoing 2225 // call must also be 16 byte aligned. 2226 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2227 // Subtract out the size of the callee saved registers. This is how much stack 2228 // each funclet will allocate. 2229 return FrameSizeMinusRBP + XMMSize - CSSize; 2230 } 2231 2232 static bool isTailCallOpcode(unsigned Opc) { 2233 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2234 Opc == X86::TCRETURNmi || 2235 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2236 Opc == X86::TCRETURNmi64; 2237 } 2238 2239 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2240 MachineBasicBlock &MBB) const { 2241 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2242 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2243 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2244 MachineBasicBlock::iterator MBBI = Terminator; 2245 DebugLoc DL; 2246 if (MBBI != MBB.end()) 2247 DL = MBBI->getDebugLoc(); 2248 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2249 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2250 Register FramePtr = TRI->getFrameRegister(MF); 2251 Register MachineFramePtr = 2252 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2253 2254 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2255 bool NeedsWin64CFI = 2256 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2257 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2258 2259 // Get the number of bytes to allocate from the FrameInfo. 2260 uint64_t StackSize = MFI.getStackSize(); 2261 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2262 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2263 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2264 bool HasFP = hasFP(MF); 2265 uint64_t NumBytes = 0; 2266 2267 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2268 !MF.getTarget().getTargetTriple().isOSWindows()) && 2269 MF.needsFrameMoves(); 2270 2271 if (IsFunclet) { 2272 assert(HasFP && "EH funclets without FP not yet implemented"); 2273 NumBytes = getWinEHFuncletFrameSize(MF); 2274 } else if (HasFP) { 2275 // Calculate required stack adjustment. 2276 uint64_t FrameSize = StackSize - SlotSize; 2277 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2278 2279 // Callee-saved registers were pushed on stack before the stack was 2280 // realigned. 2281 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2282 NumBytes = alignTo(FrameSize, MaxAlign); 2283 } else { 2284 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2285 } 2286 uint64_t SEHStackAllocAmt = NumBytes; 2287 2288 // AfterPop is the position to insert .cfi_restore. 2289 MachineBasicBlock::iterator AfterPop = MBBI; 2290 if (HasFP) { 2291 if (X86FI->hasSwiftAsyncContext()) { 2292 // Discard the context. 2293 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2294 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2295 } 2296 2297 if (X86FI->getSaveArgSize()) { 2298 // LEAVE is effectively mov rbp,rsp; pop rbp 2299 BuildMI(MBB, MBBI, DL, TII.get(X86::LEAVE64)) 2300 .setMIFlag(MachineInstr::FrameDestroy); 2301 } else { 2302 // Pop EBP. 2303 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2304 MachineFramePtr) 2305 .setMIFlag(MachineInstr::FrameDestroy); 2306 } 2307 2308 // We need to reset FP to its untagged state on return. Bit 60 is currently 2309 // used to show the presence of an extended frame. 2310 if (X86FI->hasSwiftAsyncContext()) { 2311 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2312 MachineFramePtr) 2313 .addUse(MachineFramePtr) 2314 .addImm(60) 2315 .setMIFlag(MachineInstr::FrameDestroy); 2316 } 2317 2318 if (NeedsDwarfCFI) { 2319 unsigned DwarfStackPtr = 2320 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2321 BuildCFI(MBB, MBBI, DL, 2322 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), 2323 MachineInstr::FrameDestroy); 2324 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2325 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2326 BuildCFI(MBB, AfterPop, DL, 2327 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr), 2328 MachineInstr::FrameDestroy); 2329 --MBBI; 2330 --AfterPop; 2331 } 2332 --MBBI; 2333 } 2334 } 2335 2336 MachineBasicBlock::iterator FirstCSPop = MBBI; 2337 // Skip the callee-saved pop instructions. 2338 while (MBBI != MBB.begin()) { 2339 MachineBasicBlock::iterator PI = std::prev(MBBI); 2340 unsigned Opc = PI->getOpcode(); 2341 2342 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2343 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2344 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2345 (Opc != X86::LEAVE64 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2346 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2347 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2348 break; 2349 FirstCSPop = PI; 2350 } 2351 2352 --MBBI; 2353 } 2354 MBBI = FirstCSPop; 2355 2356 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2357 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2358 2359 if (MBBI != MBB.end()) 2360 DL = MBBI->getDebugLoc(); 2361 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2362 // instruction, merge the two instructions. 2363 if (NumBytes || MFI.hasVarSizedObjects()) 2364 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2365 2366 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2367 // slot before popping them off! Same applies for the case, when stack was 2368 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2369 // will not do realignment or dynamic stack allocation. 2370 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2371 !IsFunclet) { 2372 if (TRI->hasStackRealignment(MF)) 2373 MBBI = FirstCSPop; 2374 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2375 uint64_t LEAAmount = 2376 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2377 2378 if (X86FI->hasSwiftAsyncContext()) 2379 LEAAmount -= 16; 2380 2381 // There are only two legal forms of epilogue: 2382 // - add SEHAllocationSize, %rsp 2383 // - lea SEHAllocationSize(%FramePtr), %rsp 2384 // 2385 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2386 // However, we may use this sequence if we have a frame pointer because the 2387 // effects of the prologue can safely be undone. 2388 if (LEAAmount != 0) { 2389 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2390 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2391 FramePtr, false, LEAAmount); 2392 --MBBI; 2393 } else { 2394 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2395 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2396 .addReg(FramePtr); 2397 --MBBI; 2398 } 2399 } else if (NumBytes) { 2400 // Adjust stack pointer back: ESP += numbytes. 2401 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2402 if (!HasFP && NeedsDwarfCFI) { 2403 // Define the current CFA rule to use the provided offset. 2404 BuildCFI(MBB, MBBI, DL, 2405 MCCFIInstruction::cfiDefCfaOffset( 2406 nullptr, CSSize + TailCallArgReserveSize + SlotSize), 2407 MachineInstr::FrameDestroy); 2408 } 2409 --MBBI; 2410 } 2411 2412 // Windows unwinder will not invoke function's exception handler if IP is 2413 // either in prologue or in epilogue. This behavior causes a problem when a 2414 // call immediately precedes an epilogue, because the return address points 2415 // into the epilogue. To cope with that, we insert an epilogue marker here, 2416 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2417 // final emitted code. 2418 if (NeedsWin64CFI && MF.hasWinCFI()) 2419 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2420 2421 if (!HasFP && NeedsDwarfCFI) { 2422 MBBI = FirstCSPop; 2423 int64_t Offset = -CSSize - SlotSize; 2424 // Mark callee-saved pop instruction. 2425 // Define the current CFA rule to use the provided offset. 2426 while (MBBI != MBB.end()) { 2427 MachineBasicBlock::iterator PI = MBBI; 2428 unsigned Opc = PI->getOpcode(); 2429 ++MBBI; 2430 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2431 Offset += SlotSize; 2432 BuildCFI(MBB, MBBI, DL, 2433 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset), 2434 MachineInstr::FrameDestroy); 2435 } 2436 } 2437 } 2438 2439 // Emit DWARF info specifying the restores of the callee-saved registers. 2440 // For epilogue with return inside or being other block without successor, 2441 // no need to generate .cfi_restore for callee-saved registers. 2442 if (NeedsDwarfCFI && !MBB.succ_empty()) 2443 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2444 2445 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2446 // Add the return addr area delta back since we are not tail calling. 2447 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2448 assert(Offset >= 0 && "TCDelta should never be positive"); 2449 if (Offset) { 2450 // Check for possible merge with preceding ADD instruction. 2451 Offset += mergeSPUpdates(MBB, Terminator, true); 2452 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2453 } 2454 } 2455 2456 // Emit tilerelease for AMX kernel. 2457 if (X86FI->hasVirtualTileReg()) 2458 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2459 } 2460 2461 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2462 int FI, 2463 Register &FrameReg) const { 2464 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2465 2466 bool IsFixed = MFI.isFixedObjectIndex(FI); 2467 // We can't calculate offset from frame pointer if the stack is realigned, 2468 // so enforce usage of stack/base pointer. The base pointer is used when we 2469 // have dynamic allocas in addition to dynamic realignment. 2470 if (TRI->hasBasePointer(MF)) 2471 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2472 else if (TRI->hasStackRealignment(MF)) 2473 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2474 else 2475 FrameReg = TRI->getFrameRegister(MF); 2476 2477 // Offset will hold the offset from the stack pointer at function entry to the 2478 // object. 2479 // We need to factor in additional offsets applied during the prologue to the 2480 // frame, base, and stack pointer depending on which is used. 2481 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2482 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2483 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2484 uint64_t StackSize = MFI.getStackSize(); 2485 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2486 int64_t FPDelta = 0; 2487 2488 // In an x86 interrupt, remove the offset we added to account for the return 2489 // address from any stack object allocated in the caller's frame. Interrupts 2490 // do not have a standard return address. Fixed objects in the current frame, 2491 // such as SSE register spills, should not get this treatment. 2492 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2493 Offset >= 0) { 2494 Offset += getOffsetOfLocalArea(); 2495 } 2496 2497 if (IsWin64Prologue) { 2498 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2499 2500 // Calculate required stack adjustment. 2501 uint64_t FrameSize = StackSize - SlotSize; 2502 // If required, include space for extra hidden slot for stashing base pointer. 2503 if (X86FI->getRestoreBasePointer()) 2504 FrameSize += SlotSize; 2505 uint64_t NumBytes = FrameSize - CSSize; 2506 2507 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2508 if (FI && FI == X86FI->getFAIndex()) 2509 return StackOffset::getFixed(-SEHFrameOffset); 2510 2511 // FPDelta is the offset from the "traditional" FP location of the old base 2512 // pointer followed by return address and the location required by the 2513 // restricted Win64 prologue. 2514 // Add FPDelta to all offsets below that go through the frame pointer. 2515 FPDelta = FrameSize - SEHFrameOffset; 2516 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2517 "FPDelta isn't aligned per the Win64 ABI!"); 2518 } 2519 2520 if (FI >= 0) 2521 Offset -= X86FI->getSaveArgSize(); 2522 2523 if (FrameReg == TRI->getFramePtr()) { 2524 // Skip saved EBP/RBP 2525 Offset += SlotSize; 2526 2527 // Account for restricted Windows prologue. 2528 Offset += FPDelta; 2529 2530 // Skip the RETADDR move area 2531 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2532 if (TailCallReturnAddrDelta < 0) 2533 Offset -= TailCallReturnAddrDelta; 2534 2535 return StackOffset::getFixed(Offset); 2536 } 2537 2538 // FrameReg is either the stack pointer or a base pointer. But the base is 2539 // located at the end of the statically known StackSize so the distinction 2540 // doesn't really matter. 2541 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2542 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2543 return StackOffset::getFixed(Offset + StackSize); 2544 } 2545 2546 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2547 Register &FrameReg) const { 2548 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2549 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2550 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2551 const auto it = WinEHXMMSlotInfo.find(FI); 2552 2553 if (it == WinEHXMMSlotInfo.end()) 2554 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2555 2556 FrameReg = TRI->getStackRegister(); 2557 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2558 it->second; 2559 } 2560 2561 StackOffset 2562 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2563 Register &FrameReg, 2564 int Adjustment) const { 2565 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2566 FrameReg = TRI->getStackRegister(); 2567 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2568 getOffsetOfLocalArea() + Adjustment); 2569 } 2570 2571 StackOffset 2572 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2573 int FI, Register &FrameReg, 2574 bool IgnoreSPUpdates) const { 2575 2576 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2577 // Does not include any dynamic realign. 2578 const uint64_t StackSize = MFI.getStackSize(); 2579 // LLVM arranges the stack as follows: 2580 // ... 2581 // ARG2 2582 // ARG1 2583 // RETADDR 2584 // PUSH RBP <-- RBP points here 2585 // PUSH CSRs 2586 // ~~~~~~~ <-- possible stack realignment (non-win64) 2587 // ... 2588 // STACK OBJECTS 2589 // ... <-- RSP after prologue points here 2590 // ~~~~~~~ <-- possible stack realignment (win64) 2591 // 2592 // if (hasVarSizedObjects()): 2593 // ... <-- "base pointer" (ESI/RBX) points here 2594 // DYNAMIC ALLOCAS 2595 // ... <-- RSP points here 2596 // 2597 // Case 1: In the simple case of no stack realignment and no dynamic 2598 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2599 // with fixed offsets from RSP. 2600 // 2601 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2602 // stack objects are addressed with RBP and regular stack objects with RSP. 2603 // 2604 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2605 // to address stack arguments for outgoing calls and nothing else. The "base 2606 // pointer" points to local variables, and RBP points to fixed objects. 2607 // 2608 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2609 // answer we give is relative to the SP after the prologue, and not the 2610 // SP in the middle of the function. 2611 2612 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2613 !STI.isTargetWin64()) 2614 return getFrameIndexReference(MF, FI, FrameReg); 2615 2616 // If !hasReservedCallFrame the function might have SP adjustement in the 2617 // body. So, even though the offset is statically known, it depends on where 2618 // we are in the function. 2619 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2620 return getFrameIndexReference(MF, FI, FrameReg); 2621 2622 // We don't handle tail calls, and shouldn't be seeing them either. 2623 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2624 "we don't handle this case!"); 2625 2626 // This is how the math works out: 2627 // 2628 // %rsp grows (i.e. gets lower) left to right. Each box below is 2629 // one word (eight bytes). Obj0 is the stack slot we're trying to 2630 // get to. 2631 // 2632 // ---------------------------------- 2633 // | BP | Obj0 | Obj1 | ... | ObjN | 2634 // ---------------------------------- 2635 // ^ ^ ^ ^ 2636 // A B C E 2637 // 2638 // A is the incoming stack pointer. 2639 // (B - A) is the local area offset (-8 for x86-64) [1] 2640 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2641 // 2642 // |(E - B)| is the StackSize (absolute value, positive). For a 2643 // stack that grown down, this works out to be (B - E). [3] 2644 // 2645 // E is also the value of %rsp after stack has been set up, and we 2646 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2647 // (C - E) == (C - A) - (B - A) + (B - E) 2648 // { Using [1], [2] and [3] above } 2649 // == getObjectOffset - LocalAreaOffset + StackSize 2650 2651 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2652 } 2653 2654 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2655 MachineFunction &MF, const TargetRegisterInfo *TRI, 2656 std::vector<CalleeSavedInfo> &CSI) const { 2657 MachineFrameInfo &MFI = MF.getFrameInfo(); 2658 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2659 2660 unsigned CalleeSavedFrameSize = 0; 2661 unsigned XMMCalleeSavedFrameSize = 0; 2662 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2663 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2664 2665 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2666 2667 if (TailCallReturnAddrDelta < 0) { 2668 // create RETURNADDR area 2669 // arg 2670 // arg 2671 // RETADDR 2672 // { ... 2673 // RETADDR area 2674 // ... 2675 // } 2676 // [EBP] 2677 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2678 TailCallReturnAddrDelta - SlotSize, true); 2679 } 2680 2681 // Spill the BasePtr if it's used. 2682 if (this->TRI->hasBasePointer(MF)) { 2683 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2684 if (MF.hasEHFunclets()) { 2685 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2686 X86FI->setHasSEHFramePtrSave(true); 2687 X86FI->setSEHFramePtrSaveIndex(FI); 2688 } 2689 } 2690 2691 if (hasFP(MF)) { 2692 // emitPrologue always spills frame register the first thing. 2693 SpillSlotOffset -= SlotSize; 2694 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2695 2696 // The async context lives directly before the frame pointer, and we 2697 // allocate a second slot to preserve stack alignment. 2698 if (X86FI->hasSwiftAsyncContext()) { 2699 SpillSlotOffset -= SlotSize; 2700 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2701 SpillSlotOffset -= SlotSize; 2702 } 2703 2704 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2705 // the frame register, we can delete it from CSI list and not have to worry 2706 // about avoiding it later. 2707 Register FPReg = TRI->getFrameRegister(MF); 2708 for (unsigned i = 0; i < CSI.size(); ++i) { 2709 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2710 CSI.erase(CSI.begin() + i); 2711 break; 2712 } 2713 } 2714 } 2715 2716 // Assign slots for GPRs. It increases frame size. 2717 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2718 Register Reg = I.getReg(); 2719 2720 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2721 continue; 2722 2723 SpillSlotOffset -= SlotSize; 2724 CalleeSavedFrameSize += SlotSize; 2725 2726 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2727 I.setFrameIdx(SlotIndex); 2728 } 2729 2730 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2731 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2732 2733 // Assign slots for XMMs. 2734 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2735 Register Reg = I.getReg(); 2736 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2737 continue; 2738 2739 // If this is k-register make sure we lookup via the largest legal type. 2740 MVT VT = MVT::Other; 2741 if (X86::VK16RegClass.contains(Reg)) 2742 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2743 2744 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2745 unsigned Size = TRI->getSpillSize(*RC); 2746 Align Alignment = TRI->getSpillAlign(*RC); 2747 // ensure alignment 2748 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2749 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2750 2751 // spill into slot 2752 SpillSlotOffset -= Size; 2753 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2754 I.setFrameIdx(SlotIndex); 2755 MFI.ensureMaxAlignment(Alignment); 2756 2757 // Save the start offset and size of XMM in stack frame for funclets. 2758 if (X86::VR128RegClass.contains(Reg)) { 2759 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2760 XMMCalleeSavedFrameSize += Size; 2761 } 2762 } 2763 2764 return true; 2765 } 2766 2767 bool X86FrameLowering::spillCalleeSavedRegisters( 2768 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2769 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2770 DebugLoc DL = MBB.findDebugLoc(MI); 2771 2772 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2773 // for us, and there are no XMM CSRs on Win32. 2774 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2775 return true; 2776 2777 // Push GPRs. It increases frame size. 2778 const MachineFunction &MF = *MBB.getParent(); 2779 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2780 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2781 Register Reg = I.getReg(); 2782 2783 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2784 continue; 2785 2786 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2787 bool isLiveIn = MRI.isLiveIn(Reg); 2788 if (!isLiveIn) 2789 MBB.addLiveIn(Reg); 2790 2791 // Decide whether we can add a kill flag to the use. 2792 bool CanKill = !isLiveIn; 2793 // Check if any subregister is live-in 2794 if (CanKill) { 2795 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2796 if (MRI.isLiveIn(*AReg)) { 2797 CanKill = false; 2798 break; 2799 } 2800 } 2801 } 2802 2803 // Do not set a kill flag on values that are also marked as live-in. This 2804 // happens with the @llvm-returnaddress intrinsic and with arguments 2805 // passed in callee saved registers. 2806 // Omitting the kill flags is conservatively correct even if the live-in 2807 // is not used after all. 2808 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2809 .setMIFlag(MachineInstr::FrameSetup); 2810 } 2811 2812 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2813 // It can be done by spilling XMMs to stack frame. 2814 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2815 Register Reg = I.getReg(); 2816 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2817 continue; 2818 2819 // If this is k-register make sure we lookup via the largest legal type. 2820 MVT VT = MVT::Other; 2821 if (X86::VK16RegClass.contains(Reg)) 2822 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2823 2824 // Add the callee-saved register as live-in. It's killed at the spill. 2825 MBB.addLiveIn(Reg); 2826 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2827 2828 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI, 2829 Register()); 2830 --MI; 2831 MI->setFlag(MachineInstr::FrameSetup); 2832 ++MI; 2833 } 2834 2835 return true; 2836 } 2837 2838 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2839 MachineBasicBlock::iterator MBBI, 2840 MachineInstr *CatchRet) const { 2841 // SEH shouldn't use catchret. 2842 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2843 MBB.getParent()->getFunction().getPersonalityFn())) && 2844 "SEH should not use CATCHRET"); 2845 const DebugLoc &DL = CatchRet->getDebugLoc(); 2846 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2847 2848 // Fill EAX/RAX with the address of the target block. 2849 if (STI.is64Bit()) { 2850 // LEA64r CatchRetTarget(%rip), %rax 2851 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2852 .addReg(X86::RIP) 2853 .addImm(0) 2854 .addReg(0) 2855 .addMBB(CatchRetTarget) 2856 .addReg(0); 2857 } else { 2858 // MOV32ri $CatchRetTarget, %eax 2859 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2860 .addMBB(CatchRetTarget); 2861 } 2862 2863 // Record that we've taken the address of CatchRetTarget and no longer just 2864 // reference it in a terminator. 2865 CatchRetTarget->setMachineBlockAddressTaken(); 2866 } 2867 2868 bool X86FrameLowering::restoreCalleeSavedRegisters( 2869 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2870 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2871 if (CSI.empty()) 2872 return false; 2873 2874 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2875 // Don't restore CSRs in 32-bit EH funclets. Matches 2876 // spillCalleeSavedRegisters. 2877 if (STI.is32Bit()) 2878 return true; 2879 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2880 // funclets. emitEpilogue transforms these to normal jumps. 2881 if (MI->getOpcode() == X86::CATCHRET) { 2882 const Function &F = MBB.getParent()->getFunction(); 2883 bool IsSEH = isAsynchronousEHPersonality( 2884 classifyEHPersonality(F.getPersonalityFn())); 2885 if (IsSEH) 2886 return true; 2887 } 2888 } 2889 2890 DebugLoc DL = MBB.findDebugLoc(MI); 2891 2892 // Reload XMMs from stack frame. 2893 for (const CalleeSavedInfo &I : CSI) { 2894 Register Reg = I.getReg(); 2895 if (X86::GR64RegClass.contains(Reg) || 2896 X86::GR32RegClass.contains(Reg)) 2897 continue; 2898 2899 // If this is k-register make sure we lookup via the largest legal type. 2900 MVT VT = MVT::Other; 2901 if (X86::VK16RegClass.contains(Reg)) 2902 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2903 2904 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2905 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI, 2906 Register()); 2907 } 2908 2909 // POP GPRs. 2910 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2911 for (const CalleeSavedInfo &I : CSI) { 2912 Register Reg = I.getReg(); 2913 if (!X86::GR64RegClass.contains(Reg) && 2914 !X86::GR32RegClass.contains(Reg)) 2915 continue; 2916 2917 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2918 .setMIFlag(MachineInstr::FrameDestroy); 2919 } 2920 return true; 2921 } 2922 2923 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2924 BitVector &SavedRegs, 2925 RegScavenger *RS) const { 2926 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2927 2928 // Spill the BasePtr if it's used. 2929 if (TRI->hasBasePointer(MF)){ 2930 Register BasePtr = TRI->getBaseRegister(); 2931 if (STI.isTarget64BitILP32()) 2932 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2933 SavedRegs.set(BasePtr); 2934 } 2935 } 2936 2937 static bool 2938 HasNestArgument(const MachineFunction *MF) { 2939 const Function &F = MF->getFunction(); 2940 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2941 I != E; I++) { 2942 if (I->hasNestAttr() && !I->use_empty()) 2943 return true; 2944 } 2945 return false; 2946 } 2947 2948 /// GetScratchRegister - Get a temp register for performing work in the 2949 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2950 /// and the properties of the function either one or two registers will be 2951 /// needed. Set primary to true for the first register, false for the second. 2952 static unsigned 2953 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2954 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2955 2956 // Erlang stuff. 2957 if (CallingConvention == CallingConv::HiPE) { 2958 if (Is64Bit) 2959 return Primary ? X86::R14 : X86::R13; 2960 else 2961 return Primary ? X86::EBX : X86::EDI; 2962 } 2963 2964 if (Is64Bit) { 2965 if (IsLP64) 2966 return Primary ? X86::R11 : X86::R12; 2967 else 2968 return Primary ? X86::R11D : X86::R12D; 2969 } 2970 2971 bool IsNested = HasNestArgument(&MF); 2972 2973 if (CallingConvention == CallingConv::X86_FastCall || 2974 CallingConvention == CallingConv::Fast || 2975 CallingConvention == CallingConv::Tail) { 2976 if (IsNested) 2977 report_fatal_error("Segmented stacks does not support fastcall with " 2978 "nested function."); 2979 return Primary ? X86::EAX : X86::ECX; 2980 } 2981 if (IsNested) 2982 return Primary ? X86::EDX : X86::EAX; 2983 return Primary ? X86::ECX : X86::EAX; 2984 } 2985 2986 // The stack limit in the TCB is set to this many bytes above the actual stack 2987 // limit. 2988 static const uint64_t kSplitStackAvailable = 256; 2989 2990 void X86FrameLowering::adjustForSegmentedStacks( 2991 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2992 MachineFrameInfo &MFI = MF.getFrameInfo(); 2993 uint64_t StackSize; 2994 unsigned TlsReg, TlsOffset; 2995 DebugLoc DL; 2996 2997 // To support shrink-wrapping we would need to insert the new blocks 2998 // at the right place and update the branches to PrologueMBB. 2999 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3000 3001 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3002 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3003 "Scratch register is live-in"); 3004 3005 if (MF.getFunction().isVarArg()) 3006 report_fatal_error("Segmented stacks do not support vararg functions."); 3007 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 3008 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 3009 !STI.isTargetDragonFly()) 3010 report_fatal_error("Segmented stacks not supported on this platform."); 3011 3012 // Eventually StackSize will be calculated by a link-time pass; which will 3013 // also decide whether checking code needs to be injected into this particular 3014 // prologue. 3015 StackSize = MFI.getStackSize(); 3016 3017 if (!MFI.needsSplitStackProlog()) 3018 return; 3019 3020 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 3021 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 3022 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3023 bool IsNested = false; 3024 3025 // We need to know if the function has a nest argument only in 64 bit mode. 3026 if (Is64Bit) 3027 IsNested = HasNestArgument(&MF); 3028 3029 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 3030 // allocMBB needs to be last (terminating) instruction. 3031 3032 for (const auto &LI : PrologueMBB.liveins()) { 3033 allocMBB->addLiveIn(LI); 3034 checkMBB->addLiveIn(LI); 3035 } 3036 3037 if (IsNested) 3038 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 3039 3040 MF.push_front(allocMBB); 3041 MF.push_front(checkMBB); 3042 3043 // When the frame size is less than 256 we just compare the stack 3044 // boundary directly to the value of the stack pointer, per gcc. 3045 bool CompareStackPointer = StackSize < kSplitStackAvailable; 3046 3047 // Read the limit off the current stacklet off the stack_guard location. 3048 if (Is64Bit) { 3049 if (STI.isTargetLinux()) { 3050 TlsReg = X86::FS; 3051 TlsOffset = IsLP64 ? 0x70 : 0x40; 3052 } else if (STI.isTargetDarwin()) { 3053 TlsReg = X86::GS; 3054 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 3055 } else if (STI.isTargetWin64()) { 3056 TlsReg = X86::GS; 3057 TlsOffset = 0x28; // pvArbitrary, reserved for application use 3058 } else if (STI.isTargetFreeBSD()) { 3059 TlsReg = X86::FS; 3060 TlsOffset = 0x18; 3061 } else if (STI.isTargetDragonFly()) { 3062 TlsReg = X86::FS; 3063 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 3064 } else { 3065 report_fatal_error("Segmented stacks not supported on this platform."); 3066 } 3067 3068 if (CompareStackPointer) 3069 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 3070 else 3071 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 3072 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 3073 3074 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 3075 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3076 } else { 3077 if (STI.isTargetLinux()) { 3078 TlsReg = X86::GS; 3079 TlsOffset = 0x30; 3080 } else if (STI.isTargetDarwin()) { 3081 TlsReg = X86::GS; 3082 TlsOffset = 0x48 + 90*4; 3083 } else if (STI.isTargetWin32()) { 3084 TlsReg = X86::FS; 3085 TlsOffset = 0x14; // pvArbitrary, reserved for application use 3086 } else if (STI.isTargetDragonFly()) { 3087 TlsReg = X86::FS; 3088 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 3089 } else if (STI.isTargetFreeBSD()) { 3090 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 3091 } else { 3092 report_fatal_error("Segmented stacks not supported on this platform."); 3093 } 3094 3095 if (CompareStackPointer) 3096 ScratchReg = X86::ESP; 3097 else 3098 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 3099 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 3100 3101 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 3102 STI.isTargetDragonFly()) { 3103 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 3104 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3105 } else if (STI.isTargetDarwin()) { 3106 3107 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 3108 unsigned ScratchReg2; 3109 bool SaveScratch2; 3110 if (CompareStackPointer) { 3111 // The primary scratch register is available for holding the TLS offset. 3112 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3113 SaveScratch2 = false; 3114 } else { 3115 // Need to use a second register to hold the TLS offset 3116 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 3117 3118 // Unfortunately, with fastcc the second scratch register may hold an 3119 // argument. 3120 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 3121 } 3122 3123 // If Scratch2 is live-in then it needs to be saved. 3124 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 3125 "Scratch register is live-in and not saved"); 3126 3127 if (SaveScratch2) 3128 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 3129 .addReg(ScratchReg2, RegState::Kill); 3130 3131 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 3132 .addImm(TlsOffset); 3133 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3134 .addReg(ScratchReg) 3135 .addReg(ScratchReg2).addImm(1).addReg(0) 3136 .addImm(0) 3137 .addReg(TlsReg); 3138 3139 if (SaveScratch2) 3140 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 3141 } 3142 } 3143 3144 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 3145 // It jumps to normal execution of the function body. 3146 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 3147 3148 // On 32 bit we first push the arguments size and then the frame size. On 64 3149 // bit, we pass the stack frame size in r10 and the argument size in r11. 3150 if (Is64Bit) { 3151 // Functions with nested arguments use R10, so it needs to be saved across 3152 // the call to _morestack 3153 3154 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 3155 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 3156 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 3157 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 3158 3159 if (IsNested) 3160 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 3161 3162 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) 3163 .addImm(StackSize); 3164 BuildMI(allocMBB, DL, 3165 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), 3166 Reg11) 3167 .addImm(X86FI->getArgumentStackSize()); 3168 } else { 3169 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3170 .addImm(X86FI->getArgumentStackSize()); 3171 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3172 .addImm(StackSize); 3173 } 3174 3175 // __morestack is in libgcc 3176 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3177 // Under the large code model, we cannot assume that __morestack lives 3178 // within 2^31 bytes of the call site, so we cannot use pc-relative 3179 // addressing. We cannot perform the call via a temporary register, 3180 // as the rax register may be used to store the static chain, and all 3181 // other suitable registers may be either callee-save or used for 3182 // parameter passing. We cannot use the stack at this point either 3183 // because __morestack manipulates the stack directly. 3184 // 3185 // To avoid these issues, perform an indirect call via a read-only memory 3186 // location containing the address. 3187 // 3188 // This solution is not perfect, as it assumes that the .rodata section 3189 // is laid out within 2^31 bytes of each function body, but this seems 3190 // to be sufficient for JIT. 3191 // FIXME: Add retpoline support and remove the error here.. 3192 if (STI.useIndirectThunkCalls()) 3193 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3194 "code model and thunks not yet implemented."); 3195 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3196 .addReg(X86::RIP) 3197 .addImm(0) 3198 .addReg(0) 3199 .addExternalSymbol("__morestack_addr") 3200 .addReg(0); 3201 } else { 3202 if (Is64Bit) 3203 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3204 .addExternalSymbol("__morestack"); 3205 else 3206 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3207 .addExternalSymbol("__morestack"); 3208 } 3209 3210 if (IsNested) 3211 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3212 else 3213 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3214 3215 allocMBB->addSuccessor(&PrologueMBB); 3216 3217 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3218 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3219 3220 #ifdef EXPENSIVE_CHECKS 3221 MF.verify(); 3222 #endif 3223 } 3224 3225 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3226 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3227 /// to fields it needs, through a named metadata node "hipe.literals" containing 3228 /// name-value pairs. 3229 static unsigned getHiPELiteral( 3230 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3231 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3232 MDNode *Node = HiPELiteralsMD->getOperand(i); 3233 if (Node->getNumOperands() != 2) continue; 3234 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3235 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3236 if (!NodeName || !NodeVal) continue; 3237 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3238 if (ValConst && NodeName->getString() == LiteralName) { 3239 return ValConst->getZExtValue(); 3240 } 3241 } 3242 3243 report_fatal_error("HiPE literal " + LiteralName 3244 + " required but not provided"); 3245 } 3246 3247 // Return true if there are no non-ehpad successors to MBB and there are no 3248 // non-meta instructions between MBBI and MBB.end(). 3249 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3250 MachineBasicBlock::const_iterator MBBI) { 3251 return llvm::all_of( 3252 MBB.successors(), 3253 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3254 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3255 return MI.isMetaInstruction(); 3256 }); 3257 } 3258 3259 /// Erlang programs may need a special prologue to handle the stack size they 3260 /// might need at runtime. That is because Erlang/OTP does not implement a C 3261 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3262 /// (for more information see Eric Stenman's Ph.D. thesis: 3263 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3264 /// 3265 /// CheckStack: 3266 /// temp0 = sp - MaxStack 3267 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3268 /// OldStart: 3269 /// ... 3270 /// IncStack: 3271 /// call inc_stack # doubles the stack space 3272 /// temp0 = sp - MaxStack 3273 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3274 void X86FrameLowering::adjustForHiPEPrologue( 3275 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3276 MachineFrameInfo &MFI = MF.getFrameInfo(); 3277 DebugLoc DL; 3278 3279 // To support shrink-wrapping we would need to insert the new blocks 3280 // at the right place and update the branches to PrologueMBB. 3281 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3282 3283 // HiPE-specific values 3284 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3285 ->getNamedMetadata("hipe.literals"); 3286 if (!HiPELiteralsMD) 3287 report_fatal_error( 3288 "Can't generate HiPE prologue without runtime parameters"); 3289 const unsigned HipeLeafWords 3290 = getHiPELiteral(HiPELiteralsMD, 3291 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3292 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3293 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3294 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3295 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3296 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3297 3298 assert(STI.isTargetLinux() && 3299 "HiPE prologue is only supported on Linux operating systems."); 3300 3301 // Compute the largest caller's frame that is needed to fit the callees' 3302 // frames. This 'MaxStack' is computed from: 3303 // 3304 // a) the fixed frame size, which is the space needed for all spilled temps, 3305 // b) outgoing on-stack parameter areas, and 3306 // c) the minimum stack space this function needs to make available for the 3307 // functions it calls (a tunable ABI property). 3308 if (MFI.hasCalls()) { 3309 unsigned MoreStackForCalls = 0; 3310 3311 for (auto &MBB : MF) { 3312 for (auto &MI : MBB) { 3313 if (!MI.isCall()) 3314 continue; 3315 3316 // Get callee operand. 3317 const MachineOperand &MO = MI.getOperand(0); 3318 3319 // Only take account of global function calls (no closures etc.). 3320 if (!MO.isGlobal()) 3321 continue; 3322 3323 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3324 if (!F) 3325 continue; 3326 3327 // Do not update 'MaxStack' for primitive and built-in functions 3328 // (encoded with names either starting with "erlang."/"bif_" or not 3329 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3330 // "_", such as the BIF "suspend_0") as they are executed on another 3331 // stack. 3332 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3333 F->getName().find_first_of("._") == StringRef::npos) 3334 continue; 3335 3336 unsigned CalleeStkArity = 3337 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3338 if (HipeLeafWords - 1 > CalleeStkArity) 3339 MoreStackForCalls = std::max(MoreStackForCalls, 3340 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3341 } 3342 } 3343 MaxStack += MoreStackForCalls; 3344 } 3345 3346 // If the stack frame needed is larger than the guaranteed then runtime checks 3347 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3348 if (MaxStack > Guaranteed) { 3349 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3350 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3351 3352 for (const auto &LI : PrologueMBB.liveins()) { 3353 stackCheckMBB->addLiveIn(LI); 3354 incStackMBB->addLiveIn(LI); 3355 } 3356 3357 MF.push_front(incStackMBB); 3358 MF.push_front(stackCheckMBB); 3359 3360 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3361 unsigned LEAop, CMPop, CALLop; 3362 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3363 if (Is64Bit) { 3364 SPReg = X86::RSP; 3365 PReg = X86::RBP; 3366 LEAop = X86::LEA64r; 3367 CMPop = X86::CMP64rm; 3368 CALLop = X86::CALL64pcrel32; 3369 } else { 3370 SPReg = X86::ESP; 3371 PReg = X86::EBP; 3372 LEAop = X86::LEA32r; 3373 CMPop = X86::CMP32rm; 3374 CALLop = X86::CALLpcrel32; 3375 } 3376 3377 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3378 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3379 "HiPE prologue scratch register is live-in"); 3380 3381 // Create new MBB for StackCheck: 3382 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3383 SPReg, false, -MaxStack); 3384 // SPLimitOffset is in a fixed heap location (pointed by BP). 3385 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3386 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3387 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3388 3389 // Create new MBB for IncStack: 3390 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3391 addExternalSymbol("inc_stack_0"); 3392 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3393 SPReg, false, -MaxStack); 3394 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3395 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3396 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3397 3398 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3399 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3400 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3401 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3402 } 3403 #ifdef EXPENSIVE_CHECKS 3404 MF.verify(); 3405 #endif 3406 } 3407 3408 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3409 MachineBasicBlock::iterator MBBI, 3410 const DebugLoc &DL, 3411 int Offset) const { 3412 if (Offset <= 0) 3413 return false; 3414 3415 if (Offset % SlotSize) 3416 return false; 3417 3418 int NumPops = Offset / SlotSize; 3419 // This is only worth it if we have at most 2 pops. 3420 if (NumPops != 1 && NumPops != 2) 3421 return false; 3422 3423 // Handle only the trivial case where the adjustment directly follows 3424 // a call. This is the most common one, anyway. 3425 if (MBBI == MBB.begin()) 3426 return false; 3427 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3428 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3429 return false; 3430 3431 unsigned Regs[2]; 3432 unsigned FoundRegs = 0; 3433 3434 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3435 const MachineOperand &RegMask = Prev->getOperand(1); 3436 3437 auto &RegClass = 3438 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3439 // Try to find up to NumPops free registers. 3440 for (auto Candidate : RegClass) { 3441 // Poor man's liveness: 3442 // Since we're immediately after a call, any register that is clobbered 3443 // by the call and not defined by it can be considered dead. 3444 if (!RegMask.clobbersPhysReg(Candidate)) 3445 continue; 3446 3447 // Don't clobber reserved registers 3448 if (MRI.isReserved(Candidate)) 3449 continue; 3450 3451 bool IsDef = false; 3452 for (const MachineOperand &MO : Prev->implicit_operands()) { 3453 if (MO.isReg() && MO.isDef() && 3454 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3455 IsDef = true; 3456 break; 3457 } 3458 } 3459 3460 if (IsDef) 3461 continue; 3462 3463 Regs[FoundRegs++] = Candidate; 3464 if (FoundRegs == (unsigned)NumPops) 3465 break; 3466 } 3467 3468 if (FoundRegs == 0) 3469 return false; 3470 3471 // If we found only one free register, but need two, reuse the same one twice. 3472 while (FoundRegs < (unsigned)NumPops) 3473 Regs[FoundRegs++] = Regs[0]; 3474 3475 for (int i = 0; i < NumPops; ++i) 3476 BuildMI(MBB, MBBI, DL, 3477 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3478 3479 return true; 3480 } 3481 3482 MachineBasicBlock::iterator X86FrameLowering:: 3483 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3484 MachineBasicBlock::iterator I) const { 3485 bool reserveCallFrame = hasReservedCallFrame(MF); 3486 unsigned Opcode = I->getOpcode(); 3487 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3488 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3489 uint64_t Amount = TII.getFrameSize(*I); 3490 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3491 I = MBB.erase(I); 3492 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3493 3494 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3495 // typically because the function is marked noreturn (abort, throw, 3496 // assert_fail, etc). 3497 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3498 return I; 3499 3500 if (!reserveCallFrame) { 3501 // If the stack pointer can be changed after prologue, turn the 3502 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3503 // adjcallstackdown instruction into 'add ESP, <amt>' 3504 3505 // We need to keep the stack aligned properly. To do this, we round the 3506 // amount of space needed for the outgoing arguments up to the next 3507 // alignment boundary. 3508 Amount = alignTo(Amount, getStackAlign()); 3509 3510 const Function &F = MF.getFunction(); 3511 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3512 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3513 3514 // If we have any exception handlers in this function, and we adjust 3515 // the SP before calls, we may need to indicate this to the unwinder 3516 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3517 // Amount == 0, because the preceding function may have set a non-0 3518 // GNU_ARGS_SIZE. 3519 // TODO: We don't need to reset this between subsequent functions, 3520 // if it didn't change. 3521 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3522 3523 if (HasDwarfEHHandlers && !isDestroy && 3524 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3525 BuildCFI(MBB, InsertPos, DL, 3526 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3527 3528 if (Amount == 0) 3529 return I; 3530 3531 // Factor out the amount that gets handled inside the sequence 3532 // (Pushes of argument for frame setup, callee pops for frame destroy) 3533 Amount -= InternalAmt; 3534 3535 // TODO: This is needed only if we require precise CFA. 3536 // If this is a callee-pop calling convention, emit a CFA adjust for 3537 // the amount the callee popped. 3538 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3539 BuildCFI(MBB, InsertPos, DL, 3540 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3541 3542 // Add Amount to SP to destroy a frame, or subtract to setup. 3543 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3544 3545 if (StackAdjustment) { 3546 // Merge with any previous or following adjustment instruction. Note: the 3547 // instructions merged with here do not have CFI, so their stack 3548 // adjustments do not feed into CfaAdjustment. 3549 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3550 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3551 3552 if (StackAdjustment) { 3553 if (!(F.hasMinSize() && 3554 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3555 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3556 /*InEpilogue=*/false); 3557 } 3558 } 3559 3560 if (DwarfCFI && !hasFP(MF)) { 3561 // If we don't have FP, but need to generate unwind information, 3562 // we need to set the correct CFA offset after the stack adjustment. 3563 // How much we adjust the CFA offset depends on whether we're emitting 3564 // CFI only for EH purposes or for debugging. EH only requires the CFA 3565 // offset to be correct at each call site, while for debugging we want 3566 // it to be more precise. 3567 3568 int64_t CfaAdjustment = -StackAdjustment; 3569 // TODO: When not using precise CFA, we also need to adjust for the 3570 // InternalAmt here. 3571 if (CfaAdjustment) { 3572 BuildCFI(MBB, InsertPos, DL, 3573 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3574 CfaAdjustment)); 3575 } 3576 } 3577 3578 return I; 3579 } 3580 3581 if (InternalAmt) { 3582 MachineBasicBlock::iterator CI = I; 3583 MachineBasicBlock::iterator B = MBB.begin(); 3584 while (CI != B && !std::prev(CI)->isCall()) 3585 --CI; 3586 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3587 } 3588 3589 return I; 3590 } 3591 3592 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3593 assert(MBB.getParent() && "Block is not attached to a function!"); 3594 const MachineFunction &MF = *MBB.getParent(); 3595 if (!MBB.isLiveIn(X86::EFLAGS)) 3596 return true; 3597 3598 // If stack probes have to loop inline or call, that will clobber EFLAGS. 3599 // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock. 3600 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 3601 const X86TargetLowering &TLI = *STI.getTargetLowering(); 3602 if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF)) 3603 return false; 3604 3605 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3606 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3607 } 3608 3609 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3610 assert(MBB.getParent() && "Block is not attached to a function!"); 3611 3612 // Win64 has strict requirements in terms of epilogue and we are 3613 // not taking a chance at messing with them. 3614 // I.e., unless this block is already an exit block, we can't use 3615 // it as an epilogue. 3616 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3617 return false; 3618 3619 // Swift async context epilogue has a BTR instruction that clobbers parts of 3620 // EFLAGS. 3621 const MachineFunction &MF = *MBB.getParent(); 3622 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3623 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3624 3625 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3626 return true; 3627 3628 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3629 // clobbers the EFLAGS. Check that we do not need to preserve it, 3630 // otherwise, conservatively assume this is not 3631 // safe to insert the epilogue here. 3632 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3633 } 3634 3635 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3636 // If we may need to emit frameless compact unwind information, give 3637 // up as this is currently broken: PR25614. 3638 bool CompactUnwind = 3639 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3640 nullptr; 3641 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3642 !CompactUnwind) && 3643 // The lowering of segmented stack and HiPE only support entry 3644 // blocks as prologue blocks: PR26107. This limitation may be 3645 // lifted if we fix: 3646 // - adjustForSegmentedStacks 3647 // - adjustForHiPEPrologue 3648 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3649 !MF.shouldSplitStack(); 3650 } 3651 3652 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3653 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3654 const DebugLoc &DL, bool RestoreSP) const { 3655 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3656 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3657 assert(STI.is32Bit() && !Uses64BitFramePtr && 3658 "restoring EBP/ESI on non-32-bit target"); 3659 3660 MachineFunction &MF = *MBB.getParent(); 3661 Register FramePtr = TRI->getFrameRegister(MF); 3662 Register BasePtr = TRI->getBaseRegister(); 3663 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3664 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3665 MachineFrameInfo &MFI = MF.getFrameInfo(); 3666 3667 // FIXME: Don't set FrameSetup flag in catchret case. 3668 3669 int FI = FuncInfo.EHRegNodeFrameIndex; 3670 int EHRegSize = MFI.getObjectSize(FI); 3671 3672 if (RestoreSP) { 3673 // MOV32rm -EHRegSize(%ebp), %esp 3674 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3675 X86::EBP, true, -EHRegSize) 3676 .setMIFlag(MachineInstr::FrameSetup); 3677 } 3678 3679 Register UsedReg; 3680 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3681 int EndOffset = -EHRegOffset - EHRegSize; 3682 FuncInfo.EHRegNodeEndOffset = EndOffset; 3683 3684 if (UsedReg == FramePtr) { 3685 // ADD $offset, %ebp 3686 unsigned ADDri = getADDriOpcode(false, EndOffset); 3687 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3688 .addReg(FramePtr) 3689 .addImm(EndOffset) 3690 .setMIFlag(MachineInstr::FrameSetup) 3691 ->getOperand(3) 3692 .setIsDead(); 3693 assert(EndOffset >= 0 && 3694 "end of registration object above normal EBP position!"); 3695 } else if (UsedReg == BasePtr) { 3696 // LEA offset(%ebp), %esi 3697 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3698 FramePtr, false, EndOffset) 3699 .setMIFlag(MachineInstr::FrameSetup); 3700 // MOV32rm SavedEBPOffset(%esi), %ebp 3701 assert(X86FI->getHasSEHFramePtrSave()); 3702 int Offset = 3703 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3704 .getFixed(); 3705 assert(UsedReg == BasePtr); 3706 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3707 UsedReg, true, Offset) 3708 .setMIFlag(MachineInstr::FrameSetup); 3709 } else { 3710 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3711 } 3712 return MBBI; 3713 } 3714 3715 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3716 return TRI->getSlotSize(); 3717 } 3718 3719 Register 3720 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3721 return TRI->getDwarfRegNum(StackPtr, true); 3722 } 3723 3724 namespace { 3725 // Struct used by orderFrameObjects to help sort the stack objects. 3726 struct X86FrameSortingObject { 3727 bool IsValid = false; // true if we care about this Object. 3728 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3729 unsigned ObjectSize = 0; // Size of Object in bytes. 3730 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3731 unsigned ObjectNumUses = 0; // Object static number of uses. 3732 }; 3733 3734 // The comparison function we use for std::sort to order our local 3735 // stack symbols. The current algorithm is to use an estimated 3736 // "density". This takes into consideration the size and number of 3737 // uses each object has in order to roughly minimize code size. 3738 // So, for example, an object of size 16B that is referenced 5 times 3739 // will get higher priority than 4 4B objects referenced 1 time each. 3740 // It's not perfect and we may be able to squeeze a few more bytes out of 3741 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3742 // fringe end can have special consideration, given their size is less 3743 // important, etc.), but the algorithmic complexity grows too much to be 3744 // worth the extra gains we get. This gets us pretty close. 3745 // The final order leaves us with objects with highest priority going 3746 // at the end of our list. 3747 struct X86FrameSortingComparator { 3748 inline bool operator()(const X86FrameSortingObject &A, 3749 const X86FrameSortingObject &B) const { 3750 uint64_t DensityAScaled, DensityBScaled; 3751 3752 // For consistency in our comparison, all invalid objects are placed 3753 // at the end. This also allows us to stop walking when we hit the 3754 // first invalid item after it's all sorted. 3755 if (!A.IsValid) 3756 return false; 3757 if (!B.IsValid) 3758 return true; 3759 3760 // The density is calculated by doing : 3761 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3762 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3763 // Since this approach may cause inconsistencies in 3764 // the floating point <, >, == comparisons, depending on the floating 3765 // point model with which the compiler was built, we're going 3766 // to scale both sides by multiplying with 3767 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3768 // the division and, with it, the need for any floating point 3769 // arithmetic. 3770 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3771 static_cast<uint64_t>(B.ObjectSize); 3772 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3773 static_cast<uint64_t>(A.ObjectSize); 3774 3775 // If the two densities are equal, prioritize highest alignment 3776 // objects. This allows for similar alignment objects 3777 // to be packed together (given the same density). 3778 // There's room for improvement here, also, since we can pack 3779 // similar alignment (different density) objects next to each 3780 // other to save padding. This will also require further 3781 // complexity/iterations, and the overall gain isn't worth it, 3782 // in general. Something to keep in mind, though. 3783 if (DensityAScaled == DensityBScaled) 3784 return A.ObjectAlignment < B.ObjectAlignment; 3785 3786 return DensityAScaled < DensityBScaled; 3787 } 3788 }; 3789 } // namespace 3790 3791 // Order the symbols in the local stack. 3792 // We want to place the local stack objects in some sort of sensible order. 3793 // The heuristic we use is to try and pack them according to static number 3794 // of uses and size of object in order to minimize code size. 3795 void X86FrameLowering::orderFrameObjects( 3796 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3797 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3798 3799 // Don't waste time if there's nothing to do. 3800 if (ObjectsToAllocate.empty()) 3801 return; 3802 3803 // Create an array of all MFI objects. We won't need all of these 3804 // objects, but we're going to create a full array of them to make 3805 // it easier to index into when we're counting "uses" down below. 3806 // We want to be able to easily/cheaply access an object by simply 3807 // indexing into it, instead of having to search for it every time. 3808 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3809 3810 // Walk the objects we care about and mark them as such in our working 3811 // struct. 3812 for (auto &Obj : ObjectsToAllocate) { 3813 SortingObjects[Obj].IsValid = true; 3814 SortingObjects[Obj].ObjectIndex = Obj; 3815 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3816 // Set the size. 3817 int ObjectSize = MFI.getObjectSize(Obj); 3818 if (ObjectSize == 0) 3819 // Variable size. Just use 4. 3820 SortingObjects[Obj].ObjectSize = 4; 3821 else 3822 SortingObjects[Obj].ObjectSize = ObjectSize; 3823 } 3824 3825 // Count the number of uses for each object. 3826 for (auto &MBB : MF) { 3827 for (auto &MI : MBB) { 3828 if (MI.isDebugInstr()) 3829 continue; 3830 for (const MachineOperand &MO : MI.operands()) { 3831 // Check to see if it's a local stack symbol. 3832 if (!MO.isFI()) 3833 continue; 3834 int Index = MO.getIndex(); 3835 // Check to see if it falls within our range, and is tagged 3836 // to require ordering. 3837 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3838 SortingObjects[Index].IsValid) 3839 SortingObjects[Index].ObjectNumUses++; 3840 } 3841 } 3842 } 3843 3844 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3845 // info). 3846 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3847 3848 // Now modify the original list to represent the final order that 3849 // we want. The order will depend on whether we're going to access them 3850 // from the stack pointer or the frame pointer. For SP, the list should 3851 // end up with the END containing objects that we want with smaller offsets. 3852 // For FP, it should be flipped. 3853 int i = 0; 3854 for (auto &Obj : SortingObjects) { 3855 // All invalid items are sorted at the end, so it's safe to stop. 3856 if (!Obj.IsValid) 3857 break; 3858 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3859 } 3860 3861 // Flip it if we're accessing off of the FP. 3862 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3863 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3864 } 3865 3866 3867 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3868 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3869 unsigned Offset = 16; 3870 // RBP is immediately pushed. 3871 Offset += SlotSize; 3872 // All callee-saved registers are then pushed. 3873 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3874 // Every funclet allocates enough stack space for the largest outgoing call. 3875 Offset += getWinEHFuncletFrameSize(MF); 3876 return Offset; 3877 } 3878 3879 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3880 MachineFunction &MF, RegScavenger *RS) const { 3881 // Mark the function as not having WinCFI. We will set it back to true in 3882 // emitPrologue if it gets called and emits CFI. 3883 MF.setHasWinCFI(false); 3884 3885 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3886 // aligned. The format doesn't support misaligned stack adjustments. 3887 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3888 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3889 3890 // If this function isn't doing Win64-style C++ EH, we don't need to do 3891 // anything. 3892 if (STI.is64Bit() && MF.hasEHFunclets() && 3893 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3894 EHPersonality::MSVC_CXX) { 3895 adjustFrameForMsvcCxxEh(MF); 3896 } 3897 } 3898 3899 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3900 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3901 // relative to RSP after the prologue. Find the offset of the last fixed 3902 // object, so that we can allocate a slot immediately following it. If there 3903 // were no fixed objects, use offset -SlotSize, which is immediately after the 3904 // return address. Fixed objects have negative frame indices. 3905 MachineFrameInfo &MFI = MF.getFrameInfo(); 3906 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3907 int64_t MinFixedObjOffset = -SlotSize; 3908 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3909 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3910 3911 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3912 for (WinEHHandlerType &H : TBME.HandlerArray) { 3913 int FrameIndex = H.CatchObj.FrameIndex; 3914 if (FrameIndex != INT_MAX) { 3915 // Ensure alignment. 3916 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3917 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3918 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3919 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3920 } 3921 } 3922 } 3923 3924 // Ensure alignment. 3925 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3926 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3927 int UnwindHelpFI = 3928 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3929 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3930 3931 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3932 // other frame setup instructions. 3933 MachineBasicBlock &MBB = MF.front(); 3934 auto MBBI = MBB.begin(); 3935 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3936 ++MBBI; 3937 3938 DebugLoc DL = MBB.findDebugLoc(MBBI); 3939 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3940 UnwindHelpFI) 3941 .addImm(-2); 3942 } 3943 3944 const ReturnProtectorLowering *X86FrameLowering::getReturnProtector() const { 3945 return &RPL; 3946 } 3947 3948 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3949 MachineFunction &MF, RegScavenger *RS) const { 3950 if (STI.is32Bit() && MF.hasEHFunclets()) 3951 restoreWinEHStackPointersInParent(MF); 3952 } 3953 3954 void X86FrameLowering::restoreWinEHStackPointersInParent( 3955 MachineFunction &MF) const { 3956 // 32-bit functions have to restore stack pointers when control is transferred 3957 // back to the parent function. These blocks are identified as eh pads that 3958 // are not funclet entries. 3959 bool IsSEH = isAsynchronousEHPersonality( 3960 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3961 for (MachineBasicBlock &MBB : MF) { 3962 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3963 if (NeedsRestore) 3964 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3965 /*RestoreSP=*/IsSEH); 3966 } 3967 } 3968