1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86ReturnProtectorLowering.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetOptions.h" 34 #include <cstdlib> 35 36 using namespace llvm; 37 38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 39 MaybeAlign StackAlignOverride) 40 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 41 STI.is64Bit() ? -8 : -4), 42 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()), RPL() { 43 // Cache a bunch of frame-related predicates for this subtarget. 44 SlotSize = TRI->getSlotSize(); 45 Is64Bit = STI.is64Bit(); 46 IsLP64 = STI.isTarget64BitLP64(); 47 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 48 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 49 StackPtr = TRI->getStackRegister(); 50 SaveArgs = Is64Bit ? STI.getSaveArgs() : 0; 51 } 52 53 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 54 return !MF.getFrameInfo().hasVarSizedObjects() && 55 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 56 } 57 58 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 59 /// call frame pseudos can be simplified. Having a FP, as in the default 60 /// implementation, is not sufficient here since we can't always use it. 61 /// Use a more nuanced condition. 62 bool 63 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 64 return hasReservedCallFrame(MF) || 65 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 66 TRI->hasBasePointer(MF); 67 } 68 69 // needsFrameIndexResolution - Do we need to perform FI resolution for 70 // this function. Normally, this is required only when the function 71 // has any stack objects. However, FI resolution actually has another job, 72 // not apparent from the title - it resolves callframesetup/destroy 73 // that were not simplified earlier. 74 // So, this is required for x86 functions that have push sequences even 75 // when there are no stack objects. 76 bool 77 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 78 return MF.getFrameInfo().hasStackObjects() || 79 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 80 } 81 82 /// hasFP - Return true if the specified function should have a dedicated frame 83 /// pointer register. This is true if the function has variable sized allocas 84 /// or if frame pointer elimination is disabled. 85 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 86 const MachineFrameInfo &MFI = MF.getFrameInfo(); 87 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 88 TRI->needsStackRealignment(MF) || 89 MFI.hasVarSizedObjects() || 90 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 91 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 92 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 93 MFI.hasStackMap() || MFI.hasPatchPoint() || 94 MFI.hasCopyImplyingStackAdjustment() || 95 SaveArgs); 96 } 97 98 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 99 if (IsLP64) { 100 if (isInt<8>(Imm)) 101 return X86::SUB64ri8; 102 return X86::SUB64ri32; 103 } else { 104 if (isInt<8>(Imm)) 105 return X86::SUB32ri8; 106 return X86::SUB32ri; 107 } 108 } 109 110 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 111 if (IsLP64) { 112 if (isInt<8>(Imm)) 113 return X86::ADD64ri8; 114 return X86::ADD64ri32; 115 } else { 116 if (isInt<8>(Imm)) 117 return X86::ADD32ri8; 118 return X86::ADD32ri; 119 } 120 } 121 122 static unsigned getSUBrrOpcode(bool IsLP64) { 123 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 124 } 125 126 static unsigned getADDrrOpcode(bool IsLP64) { 127 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 128 } 129 130 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 131 if (IsLP64) { 132 if (isInt<8>(Imm)) 133 return X86::AND64ri8; 134 return X86::AND64ri32; 135 } 136 if (isInt<8>(Imm)) 137 return X86::AND32ri8; 138 return X86::AND32ri; 139 } 140 141 static unsigned getLEArOpcode(bool IsLP64) { 142 return IsLP64 ? X86::LEA64r : X86::LEA32r; 143 } 144 145 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 146 /// when it reaches the "return" instruction. We can then pop a stack object 147 /// to this register without worry about clobbering it. 148 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 149 MachineBasicBlock::iterator &MBBI, 150 const X86RegisterInfo *TRI, 151 bool Is64Bit) { 152 const MachineFunction *MF = MBB.getParent(); 153 if (MF->callsEHReturn()) 154 return 0; 155 156 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 157 158 if (MBBI == MBB.end()) 159 return 0; 160 161 switch (MBBI->getOpcode()) { 162 default: return 0; 163 case TargetOpcode::PATCHABLE_RET: 164 case X86::RET: 165 case X86::RETL: 166 case X86::RETQ: 167 case X86::RETIL: 168 case X86::RETIQ: 169 case X86::TCRETURNdi: 170 case X86::TCRETURNri: 171 case X86::TCRETURNmi: 172 case X86::TCRETURNdi64: 173 case X86::TCRETURNri64: 174 case X86::TCRETURNmi64: 175 case X86::EH_RETURN: 176 case X86::EH_RETURN64: { 177 SmallSet<uint16_t, 8> Uses; 178 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 179 MachineOperand &MO = MBBI->getOperand(i); 180 if (!MO.isReg() || MO.isDef()) 181 continue; 182 Register Reg = MO.getReg(); 183 if (!Reg) 184 continue; 185 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 186 Uses.insert(*AI); 187 } 188 189 for (auto CS : AvailableRegs) 190 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && 191 CS != X86::ESP) 192 return CS; 193 } 194 } 195 196 return 0; 197 } 198 199 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 200 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 201 unsigned Reg = RegMask.PhysReg; 202 203 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 204 Reg == X86::AH || Reg == X86::AL) 205 return true; 206 } 207 208 return false; 209 } 210 211 /// Check if the flags need to be preserved before the terminators. 212 /// This would be the case, if the eflags is live-in of the region 213 /// composed by the terminators or live-out of that region, without 214 /// being defined by a terminator. 215 static bool 216 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 217 for (const MachineInstr &MI : MBB.terminators()) { 218 bool BreakNext = false; 219 for (const MachineOperand &MO : MI.operands()) { 220 if (!MO.isReg()) 221 continue; 222 Register Reg = MO.getReg(); 223 if (Reg != X86::EFLAGS) 224 continue; 225 226 // This terminator needs an eflags that is not defined 227 // by a previous another terminator: 228 // EFLAGS is live-in of the region composed by the terminators. 229 if (!MO.isDef()) 230 return true; 231 // This terminator defines the eflags, i.e., we don't need to preserve it. 232 // However, we still need to check this specific terminator does not 233 // read a live-in value. 234 BreakNext = true; 235 } 236 // We found a definition of the eflags, no need to preserve them. 237 if (BreakNext) 238 return false; 239 } 240 241 // None of the terminators use or define the eflags. 242 // Check if they are live-out, that would imply we need to preserve them. 243 for (const MachineBasicBlock *Succ : MBB.successors()) 244 if (Succ->isLiveIn(X86::EFLAGS)) 245 return true; 246 247 return false; 248 } 249 250 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 251 /// stack pointer by a constant value. 252 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 253 MachineBasicBlock::iterator &MBBI, 254 const DebugLoc &DL, 255 int64_t NumBytes, bool InEpilogue) const { 256 bool isSub = NumBytes < 0; 257 uint64_t Offset = isSub ? -NumBytes : NumBytes; 258 MachineInstr::MIFlag Flag = 259 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 260 261 uint64_t Chunk = (1LL << 31) - 1; 262 263 if (Offset > Chunk) { 264 // Rather than emit a long series of instructions for large offsets, 265 // load the offset into a register and do one sub/add 266 unsigned Reg = 0; 267 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 268 269 if (isSub && !isEAXLiveIn(MBB)) 270 Reg = Rax; 271 else 272 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 273 274 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 275 unsigned AddSubRROpc = 276 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 277 if (Reg) { 278 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 279 .addImm(Offset) 280 .setMIFlag(Flag); 281 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 282 .addReg(StackPtr) 283 .addReg(Reg); 284 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 285 return; 286 } else if (Offset > 8 * Chunk) { 287 // If we would need more than 8 add or sub instructions (a >16GB stack 288 // frame), it's worth spilling RAX to materialize this immediate. 289 // pushq %rax 290 // movabsq +-$Offset+-SlotSize, %rax 291 // addq %rsp, %rax 292 // xchg %rax, (%rsp) 293 // movq (%rsp), %rsp 294 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 295 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 296 .addReg(Rax, RegState::Kill) 297 .setMIFlag(Flag); 298 // Subtract is not commutative, so negate the offset and always use add. 299 // Subtract 8 less and add 8 more to account for the PUSH we just did. 300 if (isSub) 301 Offset = -(Offset - SlotSize); 302 else 303 Offset = Offset + SlotSize; 304 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 305 .addImm(Offset) 306 .setMIFlag(Flag); 307 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 308 .addReg(Rax) 309 .addReg(StackPtr); 310 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 311 // Exchange the new SP in RAX with the top of the stack. 312 addRegOffset( 313 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 314 StackPtr, false, 0); 315 // Load new SP from the top of the stack into RSP. 316 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 317 StackPtr, false, 0); 318 return; 319 } 320 } 321 322 while (Offset) { 323 uint64_t ThisVal = std::min(Offset, Chunk); 324 if (ThisVal == SlotSize) { 325 // Use push / pop for slot sized adjustments as a size optimization. We 326 // need to find a dead register when using pop. 327 unsigned Reg = isSub 328 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 329 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 330 if (Reg) { 331 unsigned Opc = isSub 332 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 333 : (Is64Bit ? X86::POP64r : X86::POP32r); 334 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 335 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 336 .setMIFlag(Flag); 337 Offset -= ThisVal; 338 continue; 339 } 340 } 341 342 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 343 .setMIFlag(Flag); 344 345 Offset -= ThisVal; 346 } 347 } 348 349 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 350 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 351 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 352 assert(Offset != 0 && "zero offset stack adjustment requested"); 353 354 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 355 // is tricky. 356 bool UseLEA; 357 if (!InEpilogue) { 358 // Check if inserting the prologue at the beginning 359 // of MBB would require to use LEA operations. 360 // We need to use LEA operations if EFLAGS is live in, because 361 // it means an instruction will read it before it gets defined. 362 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 363 } else { 364 // If we can use LEA for SP but we shouldn't, check that none 365 // of the terminators uses the eflags. Otherwise we will insert 366 // a ADD that will redefine the eflags and break the condition. 367 // Alternatively, we could move the ADD, but this may not be possible 368 // and is an optimization anyway. 369 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 370 if (UseLEA && !STI.useLeaForSP()) 371 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 372 // If that assert breaks, that means we do not do the right thing 373 // in canUseAsEpilogue. 374 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 375 "We shouldn't have allowed this insertion point"); 376 } 377 378 MachineInstrBuilder MI; 379 if (UseLEA) { 380 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 381 TII.get(getLEArOpcode(Uses64BitFramePtr)), 382 StackPtr), 383 StackPtr, false, Offset); 384 } else { 385 bool IsSub = Offset < 0; 386 uint64_t AbsOffset = IsSub ? -Offset : Offset; 387 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 388 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 389 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 390 .addReg(StackPtr) 391 .addImm(AbsOffset); 392 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 393 } 394 return MI; 395 } 396 397 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 398 MachineBasicBlock::iterator &MBBI, 399 bool doMergeWithPrevious) const { 400 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 401 (!doMergeWithPrevious && MBBI == MBB.end())) 402 return 0; 403 404 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 405 406 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 407 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 408 // instruction, and that there are no DBG_VALUE or other instructions between 409 // ADD/SUB/LEA and its corresponding CFI instruction. 410 /* TODO: Add support for the case where there are multiple CFI instructions 411 below the ADD/SUB/LEA, e.g.: 412 ... 413 add 414 cfi_def_cfa_offset 415 cfi_offset 416 ... 417 */ 418 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 419 PI = std::prev(PI); 420 421 unsigned Opc = PI->getOpcode(); 422 int Offset = 0; 423 424 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 425 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 426 PI->getOperand(0).getReg() == StackPtr){ 427 assert(PI->getOperand(1).getReg() == StackPtr); 428 Offset = PI->getOperand(2).getImm(); 429 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 430 PI->getOperand(0).getReg() == StackPtr && 431 PI->getOperand(1).getReg() == StackPtr && 432 PI->getOperand(2).getImm() == 1 && 433 PI->getOperand(3).getReg() == X86::NoRegister && 434 PI->getOperand(5).getReg() == X86::NoRegister) { 435 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 436 Offset = PI->getOperand(4).getImm(); 437 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 438 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 439 PI->getOperand(0).getReg() == StackPtr) { 440 assert(PI->getOperand(1).getReg() == StackPtr); 441 Offset = -PI->getOperand(2).getImm(); 442 } else 443 return 0; 444 445 PI = MBB.erase(PI); 446 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 447 if (!doMergeWithPrevious) 448 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 449 450 return Offset; 451 } 452 453 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 454 MachineBasicBlock::iterator MBBI, 455 const DebugLoc &DL, 456 const MCCFIInstruction &CFIInst) const { 457 MachineFunction &MF = *MBB.getParent(); 458 unsigned CFIIndex = MF.addFrameInst(CFIInst); 459 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 460 .addCFIIndex(CFIIndex); 461 } 462 463 void X86FrameLowering::emitCalleeSavedFrameMoves( 464 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 465 const DebugLoc &DL) const { 466 MachineFunction &MF = *MBB.getParent(); 467 MachineFrameInfo &MFI = MF.getFrameInfo(); 468 MachineModuleInfo &MMI = MF.getMMI(); 469 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 470 471 // Add callee saved registers to move list. 472 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 473 if (CSI.empty()) return; 474 475 // Calculate offsets. 476 for (std::vector<CalleeSavedInfo>::const_iterator 477 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 478 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 479 unsigned Reg = I->getReg(); 480 481 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 482 BuildCFI(MBB, MBBI, DL, 483 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 484 } 485 } 486 487 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 488 MachineBasicBlock &MBB, 489 MachineBasicBlock::iterator MBBI, 490 const DebugLoc &DL, bool InProlog) const { 491 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 492 if (STI.isTargetWindowsCoreCLR()) { 493 if (InProlog) { 494 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); 495 } else { 496 emitStackProbeInline(MF, MBB, MBBI, DL, false); 497 } 498 } else { 499 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 500 } 501 } 502 503 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 504 MachineBasicBlock &PrologMBB) const { 505 const StringRef ChkStkStubSymbol = "__chkstk_stub"; 506 MachineInstr *ChkStkStub = nullptr; 507 508 for (MachineInstr &MI : PrologMBB) { 509 if (MI.isCall() && MI.getOperand(0).isSymbol() && 510 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { 511 ChkStkStub = &MI; 512 break; 513 } 514 } 515 516 if (ChkStkStub != nullptr) { 517 assert(!ChkStkStub->isBundled() && 518 "Not expecting bundled instructions here"); 519 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); 520 assert(std::prev(MBBI) == ChkStkStub && 521 "MBBI expected after __chkstk_stub."); 522 DebugLoc DL = PrologMBB.findDebugLoc(MBBI); 523 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); 524 ChkStkStub->eraseFromParent(); 525 } 526 } 527 528 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 529 MachineBasicBlock &MBB, 530 MachineBasicBlock::iterator MBBI, 531 const DebugLoc &DL, 532 bool InProlog) const { 533 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 534 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 535 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 536 const TargetInstrInfo &TII = *STI.getInstrInfo(); 537 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 538 539 // RAX contains the number of bytes of desired stack adjustment. 540 // The handling here assumes this value has already been updated so as to 541 // maintain stack alignment. 542 // 543 // We need to exit with RSP modified by this amount and execute suitable 544 // page touches to notify the OS that we're growing the stack responsibly. 545 // All stack probing must be done without modifying RSP. 546 // 547 // MBB: 548 // SizeReg = RAX; 549 // ZeroReg = 0 550 // CopyReg = RSP 551 // Flags, TestReg = CopyReg - SizeReg 552 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 553 // LimitReg = gs magic thread env access 554 // if FinalReg >= LimitReg goto ContinueMBB 555 // RoundBB: 556 // RoundReg = page address of FinalReg 557 // LoopMBB: 558 // LoopReg = PHI(LimitReg,ProbeReg) 559 // ProbeReg = LoopReg - PageSize 560 // [ProbeReg] = 0 561 // if (ProbeReg > RoundReg) goto LoopMBB 562 // ContinueMBB: 563 // RSP = RSP - RAX 564 // [rest of original MBB] 565 566 // Set up the new basic blocks 567 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 568 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 569 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 570 571 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 572 MF.insert(MBBIter, RoundMBB); 573 MF.insert(MBBIter, LoopMBB); 574 MF.insert(MBBIter, ContinueMBB); 575 576 // Split MBB and move the tail portion down to ContinueMBB. 577 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 578 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 579 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 580 581 // Some useful constants 582 const int64_t ThreadEnvironmentStackLimit = 0x10; 583 const int64_t PageSize = 0x1000; 584 const int64_t PageMask = ~(PageSize - 1); 585 586 // Registers we need. For the normal case we use virtual 587 // registers. For the prolog expansion we use RAX, RCX and RDX. 588 MachineRegisterInfo &MRI = MF.getRegInfo(); 589 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 590 const Register SizeReg = InProlog ? X86::RAX 591 : MRI.createVirtualRegister(RegClass), 592 ZeroReg = InProlog ? X86::RCX 593 : MRI.createVirtualRegister(RegClass), 594 CopyReg = InProlog ? X86::RDX 595 : MRI.createVirtualRegister(RegClass), 596 TestReg = InProlog ? X86::RDX 597 : MRI.createVirtualRegister(RegClass), 598 FinalReg = InProlog ? X86::RDX 599 : MRI.createVirtualRegister(RegClass), 600 RoundedReg = InProlog ? X86::RDX 601 : MRI.createVirtualRegister(RegClass), 602 LimitReg = InProlog ? X86::RCX 603 : MRI.createVirtualRegister(RegClass), 604 JoinReg = InProlog ? X86::RCX 605 : MRI.createVirtualRegister(RegClass), 606 ProbeReg = InProlog ? X86::RCX 607 : MRI.createVirtualRegister(RegClass); 608 609 // SP-relative offsets where we can save RCX and RDX. 610 int64_t RCXShadowSlot = 0; 611 int64_t RDXShadowSlot = 0; 612 613 // If inlining in the prolog, save RCX and RDX. 614 if (InProlog) { 615 // Compute the offsets. We need to account for things already 616 // pushed onto the stack at this point: return address, frame 617 // pointer (if used), and callee saves. 618 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 619 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 620 const bool HasFP = hasFP(MF); 621 622 // Check if we need to spill RCX and/or RDX. 623 // Here we assume that no earlier prologue instruction changes RCX and/or 624 // RDX, so checking the block live-ins is enough. 625 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 626 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 627 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 628 // Assign the initial slot to both registers, then change RDX's slot if both 629 // need to be spilled. 630 if (IsRCXLiveIn) 631 RCXShadowSlot = InitSlot; 632 if (IsRDXLiveIn) 633 RDXShadowSlot = InitSlot; 634 if (IsRDXLiveIn && IsRCXLiveIn) 635 RDXShadowSlot += 8; 636 // Emit the saves if needed. 637 if (IsRCXLiveIn) 638 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 639 RCXShadowSlot) 640 .addReg(X86::RCX); 641 if (IsRDXLiveIn) 642 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 643 RDXShadowSlot) 644 .addReg(X86::RDX); 645 } else { 646 // Not in the prolog. Copy RAX to a virtual reg. 647 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 648 } 649 650 // Add code to MBB to check for overflow and set the new target stack pointer 651 // to zero if so. 652 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 653 .addReg(ZeroReg, RegState::Undef) 654 .addReg(ZeroReg, RegState::Undef); 655 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 656 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 657 .addReg(CopyReg) 658 .addReg(SizeReg); 659 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 660 .addReg(TestReg) 661 .addReg(ZeroReg) 662 .addImm(X86::COND_B); 663 664 // FinalReg now holds final stack pointer value, or zero if 665 // allocation would overflow. Compare against the current stack 666 // limit from the thread environment block. Note this limit is the 667 // lowest touched page on the stack, not the point at which the OS 668 // will cause an overflow exception, so this is just an optimization 669 // to avoid unnecessarily touching pages that are below the current 670 // SP but already committed to the stack by the OS. 671 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 672 .addReg(0) 673 .addImm(1) 674 .addReg(0) 675 .addImm(ThreadEnvironmentStackLimit) 676 .addReg(X86::GS); 677 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 678 // Jump if the desired stack pointer is at or above the stack limit. 679 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 680 681 // Add code to roundMBB to round the final stack pointer to a page boundary. 682 RoundMBB->addLiveIn(FinalReg); 683 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 684 .addReg(FinalReg) 685 .addImm(PageMask); 686 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 687 688 // LimitReg now holds the current stack limit, RoundedReg page-rounded 689 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 690 // and probe until we reach RoundedReg. 691 if (!InProlog) { 692 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 693 .addReg(LimitReg) 694 .addMBB(RoundMBB) 695 .addReg(ProbeReg) 696 .addMBB(LoopMBB); 697 } 698 699 LoopMBB->addLiveIn(JoinReg); 700 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 701 false, -PageSize); 702 703 // Probe by storing a byte onto the stack. 704 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 705 .addReg(ProbeReg) 706 .addImm(1) 707 .addReg(0) 708 .addImm(0) 709 .addReg(0) 710 .addImm(0); 711 712 LoopMBB->addLiveIn(RoundedReg); 713 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 714 .addReg(RoundedReg) 715 .addReg(ProbeReg); 716 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 717 718 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 719 720 // If in prolog, restore RDX and RCX. 721 if (InProlog) { 722 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 723 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 724 TII.get(X86::MOV64rm), X86::RCX), 725 X86::RSP, false, RCXShadowSlot); 726 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 727 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 728 TII.get(X86::MOV64rm), X86::RDX), 729 X86::RSP, false, RDXShadowSlot); 730 } 731 732 // Now that the probing is done, add code to continueMBB to update 733 // the stack pointer for real. 734 ContinueMBB->addLiveIn(SizeReg); 735 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 736 .addReg(X86::RSP) 737 .addReg(SizeReg); 738 739 // Add the control flow edges we need. 740 MBB.addSuccessor(ContinueMBB); 741 MBB.addSuccessor(RoundMBB); 742 RoundMBB->addSuccessor(LoopMBB); 743 LoopMBB->addSuccessor(ContinueMBB); 744 LoopMBB->addSuccessor(LoopMBB); 745 746 // Mark all the instructions added to the prolog as frame setup. 747 if (InProlog) { 748 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 749 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 750 } 751 for (MachineInstr &MI : *RoundMBB) { 752 MI.setFlag(MachineInstr::FrameSetup); 753 } 754 for (MachineInstr &MI : *LoopMBB) { 755 MI.setFlag(MachineInstr::FrameSetup); 756 } 757 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 758 CMBBI != ContinueMBBI; ++CMBBI) { 759 CMBBI->setFlag(MachineInstr::FrameSetup); 760 } 761 } 762 } 763 764 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 765 MachineBasicBlock &MBB, 766 MachineBasicBlock::iterator MBBI, 767 const DebugLoc &DL, 768 bool InProlog) const { 769 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 770 771 // FIXME: Add indirect thunk support and remove this. 772 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 773 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 774 "code model and indirect thunks not yet implemented."); 775 776 unsigned CallOp; 777 if (Is64Bit) 778 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 779 else 780 CallOp = X86::CALLpcrel32; 781 782 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 783 784 MachineInstrBuilder CI; 785 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 786 787 // All current stack probes take AX and SP as input, clobber flags, and 788 // preserve all registers. x86_64 probes leave RSP unmodified. 789 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 790 // For the large code model, we have to call through a register. Use R11, 791 // as it is scratch in all supported calling conventions. 792 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 793 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 794 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 795 } else { 796 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 797 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 798 } 799 800 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 801 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 802 CI.addReg(AX, RegState::Implicit) 803 .addReg(SP, RegState::Implicit) 804 .addReg(AX, RegState::Define | RegState::Implicit) 805 .addReg(SP, RegState::Define | RegState::Implicit) 806 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 807 808 if (STI.isTargetWin64() || !STI.isOSWindows()) { 809 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 810 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 811 // themselves. They also does not clobber %rax so we can reuse it when 812 // adjusting %rsp. 813 // All other platforms do not specify a particular ABI for the stack probe 814 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 815 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 816 .addReg(SP) 817 .addReg(AX); 818 } 819 820 if (InProlog) { 821 // Apply the frame setup flag to all inserted instrs. 822 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 823 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 824 } 825 } 826 827 void X86FrameLowering::emitStackProbeInlineStub( 828 MachineFunction &MF, MachineBasicBlock &MBB, 829 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 830 831 assert(InProlog && "ChkStkStub called outside prolog!"); 832 833 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 834 .addExternalSymbol("__chkstk_stub"); 835 } 836 837 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 838 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 839 // and might require smaller successive adjustments. 840 const uint64_t Win64MaxSEHOffset = 128; 841 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 842 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 843 return SEHFrameOffset & -16; 844 } 845 846 // If we're forcing a stack realignment we can't rely on just the frame 847 // info, we need to know the ABI stack alignment as well in case we 848 // have a call out. Otherwise just make sure we have some alignment - we'll 849 // go with the minimum SlotSize. 850 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 851 const MachineFrameInfo &MFI = MF.getFrameInfo(); 852 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment. 853 unsigned StackAlign = getStackAlignment(); 854 if (MF.getFunction().hasFnAttribute("stackrealign")) { 855 if (MFI.hasCalls()) 856 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 857 else if (MaxAlign < SlotSize) 858 MaxAlign = SlotSize; 859 } 860 return MaxAlign; 861 } 862 863 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 864 MachineBasicBlock::iterator MBBI, 865 const DebugLoc &DL, unsigned Reg, 866 uint64_t MaxAlign) const { 867 uint64_t Val = -MaxAlign; 868 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 869 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 870 .addReg(Reg) 871 .addImm(Val) 872 .setMIFlag(MachineInstr::FrameSetup); 873 874 // The EFLAGS implicit def is dead. 875 MI->getOperand(3).setIsDead(); 876 } 877 878 // FIXME: Get this from tablegen. 879 static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, 880 const X86Subtarget &Subtarget) { 881 assert(Subtarget.is64Bit()); 882 883 if (Subtarget.isCallingConvWin64(CallConv)) { 884 static const MCPhysReg GPR64ArgRegsWin64[] = { 885 X86::RCX, X86::RDX, X86::R8, X86::R9 886 }; 887 return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); 888 } 889 890 static const MCPhysReg GPR64ArgRegs64Bit[] = { 891 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 892 }; 893 return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); 894 } 895 896 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 897 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 898 // clobbered by any interrupt handler. 899 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 900 "MF used frame lowering for wrong subtarget"); 901 const Function &Fn = MF.getFunction(); 902 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 903 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 904 } 905 906 907 /// emitPrologue - Push callee-saved registers onto the stack, which 908 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 909 /// space for local variables. Also emit labels used by the exception handler to 910 /// generate the exception handling frames. 911 912 /* 913 Here's a gist of what gets emitted: 914 915 ; Establish frame pointer, if needed 916 [if needs FP] 917 push %rbp 918 .cfi_def_cfa_offset 16 919 .cfi_offset %rbp, -16 920 .seh_pushreg %rpb 921 mov %rsp, %rbp 922 .cfi_def_cfa_register %rbp 923 924 ; Spill general-purpose registers 925 [for all callee-saved GPRs] 926 pushq %<reg> 927 [if not needs FP] 928 .cfi_def_cfa_offset (offset from RETADDR) 929 .seh_pushreg %<reg> 930 931 ; If the required stack alignment > default stack alignment 932 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 933 ; of unknown size in the stack frame. 934 [if stack needs re-alignment] 935 and $MASK, %rsp 936 937 ; Allocate space for locals 938 [if target is Windows and allocated space > 4096 bytes] 939 ; Windows needs special care for allocations larger 940 ; than one page. 941 mov $NNN, %rax 942 call ___chkstk_ms/___chkstk 943 sub %rax, %rsp 944 [else] 945 sub $NNN, %rsp 946 947 [if needs FP] 948 .seh_stackalloc (size of XMM spill slots) 949 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 950 [else] 951 .seh_stackalloc NNN 952 953 ; Spill XMMs 954 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 955 ; they may get spilled on any platform, if the current function 956 ; calls @llvm.eh.unwind.init 957 [if needs FP] 958 [for all callee-saved XMM registers] 959 movaps %<xmm reg>, -MMM(%rbp) 960 [for all callee-saved XMM registers] 961 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 962 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 963 [else] 964 [for all callee-saved XMM registers] 965 movaps %<xmm reg>, KKK(%rsp) 966 [for all callee-saved XMM registers] 967 .seh_savexmm %<xmm reg>, KKK 968 969 .seh_endprologue 970 971 [if needs base pointer] 972 mov %rsp, %rbx 973 [if needs to restore base pointer] 974 mov %rsp, -MMM(%rbp) 975 976 ; Emit CFI info 977 [if needs FP] 978 [for all callee-saved registers] 979 .cfi_offset %<reg>, (offset from %rbp) 980 [else] 981 .cfi_def_cfa_offset (offset from RETADDR) 982 [for all callee-saved registers] 983 .cfi_offset %<reg>, (offset from %rsp) 984 985 Notes: 986 - .seh directives are emitted only for Windows 64 ABI 987 - .cv_fpo directives are emitted on win32 when emitting CodeView 988 - .cfi directives are emitted for all other ABIs 989 - for 32-bit code, substitute %e?? registers for %r?? 990 */ 991 992 void X86FrameLowering::emitPrologue(MachineFunction &MF, 993 MachineBasicBlock &MBB) const { 994 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 995 "MF used frame lowering for wrong subtarget"); 996 MachineBasicBlock::iterator MBBI = MBB.begin(); 997 MachineFrameInfo &MFI = MF.getFrameInfo(); 998 const Function &Fn = MF.getFunction(); 999 MachineModuleInfo &MMI = MF.getMMI(); 1000 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1001 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1002 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1003 bool IsFunclet = MBB.isEHFuncletEntry(); 1004 EHPersonality Personality = EHPersonality::Unknown; 1005 if (Fn.hasPersonalityFn()) 1006 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1007 bool FnHasClrFunclet = 1008 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1009 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1010 bool HasFP = hasFP(MF); 1011 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1012 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1013 // FIXME: Emit FPO data for EH funclets. 1014 bool NeedsWinFPO = 1015 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1016 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1017 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 1018 Register FramePtr = TRI->getFrameRegister(MF); 1019 const Register MachineFramePtr = 1020 STI.isTarget64BitILP32() 1021 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1022 Register BasePtr = TRI->getBaseRegister(); 1023 bool HasWinCFI = false; 1024 1025 // Debug location must be unknown since the first debug location is used 1026 // to determine the end of the prologue. 1027 DebugLoc DL; 1028 1029 // Add RETADDR move area to callee saved frame size. 1030 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1031 if (TailCallReturnAddrDelta && IsWin64Prologue) 1032 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1033 1034 if (TailCallReturnAddrDelta < 0) 1035 X86FI->setCalleeSavedFrameSize( 1036 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1037 1038 bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty(); 1039 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1040 1041 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1042 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1043 // stack alignment. 1044 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1045 Fn.arg_size() == 2) { 1046 StackSize += 8; 1047 MFI.setStackSize(StackSize); 1048 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1049 } 1050 1051 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1052 // function, and use up to 128 bytes of stack space, don't have a frame 1053 // pointer, calls, or dynamic alloca then we do not need to adjust the 1054 // stack pointer (we fit in the Red Zone). We also check that we don't 1055 // push and pop from the stack. 1056 if (has128ByteRedZone(MF) && 1057 !TRI->needsStackRealignment(MF) && 1058 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1059 !MFI.adjustsStack() && // No calls. 1060 !UseStackProbe && // No stack probes. 1061 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1062 !MF.shouldSplitStack()) { // Regular stack 1063 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1064 if (HasFP) MinSize += SlotSize; 1065 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1066 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1067 MFI.setStackSize(StackSize); 1068 } 1069 1070 // Insert stack pointer adjustment for later moving of return addr. Only 1071 // applies to tail call optimized functions where the callee argument stack 1072 // size is bigger than the callers. 1073 if (TailCallReturnAddrDelta < 0) { 1074 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1075 /*InEpilogue=*/false) 1076 .setMIFlag(MachineInstr::FrameSetup); 1077 } 1078 1079 // Mapping for machine moves: 1080 // 1081 // DST: VirtualFP AND 1082 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1083 // ELSE => DW_CFA_def_cfa 1084 // 1085 // SRC: VirtualFP AND 1086 // DST: Register => DW_CFA_def_cfa_register 1087 // 1088 // ELSE 1089 // OFFSET < 0 => DW_CFA_offset_extended_sf 1090 // REG < 64 => DW_CFA_offset + Reg 1091 // ELSE => DW_CFA_offset_extended 1092 1093 uint64_t NumBytes = 0; 1094 int stackGrowth = -SlotSize; 1095 1096 // Find the funclet establisher parameter 1097 Register Establisher = X86::NoRegister; 1098 if (IsClrFunclet) 1099 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1100 else if (IsFunclet) 1101 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1102 1103 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1104 // Immediately spill establisher into the home slot. 1105 // The runtime cares about this. 1106 // MOV64mr %rdx, 16(%rsp) 1107 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1108 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1109 .addReg(Establisher) 1110 .setMIFlag(MachineInstr::FrameSetup); 1111 MBB.addLiveIn(Establisher); 1112 } 1113 1114 if (HasFP) { 1115 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1116 1117 // Calculate required stack adjustment. 1118 uint64_t FrameSize = StackSize - SlotSize; 1119 // If required, include space for extra hidden slot for stashing base pointer. 1120 if (X86FI->getRestoreBasePointer()) 1121 FrameSize += SlotSize; 1122 1123 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1124 1125 // Callee-saved registers are pushed on stack before the stack is realigned. 1126 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1127 NumBytes = alignTo(NumBytes, MaxAlign); 1128 1129 // Save EBP/RBP into the appropriate stack slot. 1130 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1131 .addReg(MachineFramePtr, RegState::Kill) 1132 .setMIFlag(MachineInstr::FrameSetup); 1133 1134 if (NeedsDwarfCFI) { 1135 // Mark the place where EBP/RBP was saved. 1136 // Define the current CFA rule to use the provided offset. 1137 assert(StackSize); 1138 BuildCFI(MBB, MBBI, DL, 1139 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); 1140 1141 // Change the rule for the FramePtr to be an "offset" rule. 1142 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1143 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1144 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1145 } 1146 1147 if (NeedsWinCFI) { 1148 HasWinCFI = true; 1149 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1150 .addImm(FramePtr) 1151 .setMIFlag(MachineInstr::FrameSetup); 1152 } 1153 1154 if (!IsWin64Prologue && !IsFunclet) { 1155 // Update EBP with the new base value. 1156 BuildMI(MBB, MBBI, DL, 1157 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1158 FramePtr) 1159 .addReg(StackPtr) 1160 .setMIFlag(MachineInstr::FrameSetup); 1161 1162 if (NeedsDwarfCFI) { 1163 // Mark effective beginning of when frame pointer becomes valid. 1164 // Define the current CFA to use the EBP/RBP register. 1165 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1166 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1167 nullptr, DwarfFramePtr)); 1168 } 1169 1170 if (SaveArgs && !Fn.arg_empty()) { 1171 ArrayRef<MCPhysReg> GPRs = 1172 get64BitArgumentGPRs(Fn.getCallingConv(), STI); 1173 unsigned arg_size = Fn.arg_size(); 1174 unsigned RI = 0; 1175 int64_t SaveSize = 0; 1176 1177 if (Fn.hasStructRetAttr()) { 1178 GPRs = GPRs.drop_front(1); 1179 arg_size--; 1180 } 1181 1182 for (MCPhysReg Reg : GPRs) { 1183 if (++RI > arg_size) 1184 break; 1185 1186 SaveSize += SlotSize; 1187 1188 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1189 .addReg(Reg) 1190 .setMIFlag(MachineInstr::FrameSetup); 1191 } 1192 1193 // Realign the stack. PUSHes are the most space efficient. 1194 while (SaveSize % getStackAlignment()) { 1195 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1196 .addReg(GPRs.front()) 1197 .setMIFlag(MachineInstr::FrameSetup); 1198 1199 SaveSize += SlotSize; 1200 } 1201 1202 //dlg StackSize -= SaveSize; 1203 //dlg MFI.setStackSize(StackSize); 1204 X86FI->setSaveArgSize(SaveSize); 1205 } 1206 1207 if (NeedsWinFPO) { 1208 // .cv_fpo_setframe $FramePtr 1209 HasWinCFI = true; 1210 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1211 .addImm(FramePtr) 1212 .addImm(0) 1213 .setMIFlag(MachineInstr::FrameSetup); 1214 } 1215 } 1216 } else { 1217 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1218 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1219 } 1220 1221 // Update the offset adjustment, which is mainly used by codeview to translate 1222 // from ESP to VFRAME relative local variable offsets. 1223 if (!IsFunclet) { 1224 if (HasFP && TRI->needsStackRealignment(MF)) 1225 MFI.setOffsetAdjustment(-NumBytes); 1226 else 1227 MFI.setOffsetAdjustment(-StackSize); 1228 } 1229 1230 // For EH funclets, only allocate enough space for outgoing calls. Save the 1231 // NumBytes value that we would've used for the parent frame. 1232 unsigned ParentFrameNumBytes = NumBytes; 1233 if (IsFunclet) 1234 NumBytes = getWinEHFuncletFrameSize(MF); 1235 1236 // Skip the callee-saved push instructions. 1237 bool PushedRegs = false; 1238 int StackOffset = 2 * stackGrowth; 1239 1240 while (MBBI != MBB.end() && 1241 MBBI->getFlag(MachineInstr::FrameSetup) && 1242 (MBBI->getOpcode() == X86::PUSH32r || 1243 MBBI->getOpcode() == X86::PUSH64r)) { 1244 PushedRegs = true; 1245 Register Reg = MBBI->getOperand(0).getReg(); 1246 ++MBBI; 1247 1248 if (!HasFP && NeedsDwarfCFI) { 1249 // Mark callee-saved push instruction. 1250 // Define the current CFA rule to use the provided offset. 1251 assert(StackSize); 1252 BuildCFI(MBB, MBBI, DL, 1253 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); 1254 StackOffset += stackGrowth; 1255 } 1256 1257 if (NeedsWinCFI) { 1258 HasWinCFI = true; 1259 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1260 .addImm(Reg) 1261 .setMIFlag(MachineInstr::FrameSetup); 1262 } 1263 } 1264 1265 // Realign stack after we pushed callee-saved registers (so that we'll be 1266 // able to calculate their offsets from the frame pointer). 1267 // Don't do this for Win64, it needs to realign the stack after the prologue. 1268 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1269 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1270 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1271 1272 if (NeedsWinCFI) { 1273 HasWinCFI = true; 1274 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1275 .addImm(MaxAlign) 1276 .setMIFlag(MachineInstr::FrameSetup); 1277 } 1278 } 1279 1280 // If there is an SUB32ri of ESP immediately before this instruction, merge 1281 // the two. This can be the case when tail call elimination is enabled and 1282 // the callee has more arguments then the caller. 1283 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1284 1285 // Adjust stack pointer: ESP -= numbytes. 1286 1287 // Windows and cygwin/mingw require a prologue helper routine when allocating 1288 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1289 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1290 // stack and adjust the stack pointer in one go. The 64-bit version of 1291 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1292 // responsible for adjusting the stack pointer. Touching the stack at 4K 1293 // increments is necessary to ensure that the guard pages used by the OS 1294 // virtual memory manager are allocated in correct sequence. 1295 uint64_t AlignedNumBytes = NumBytes; 1296 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1297 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1298 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { 1299 assert(!X86FI->getUsesRedZone() && 1300 "The Red Zone is not accounted for in stack probes"); 1301 1302 // Check whether EAX is livein for this block. 1303 bool isEAXAlive = isEAXLiveIn(MBB); 1304 1305 if (isEAXAlive) { 1306 if (Is64Bit) { 1307 // Save RAX 1308 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1309 .addReg(X86::RAX, RegState::Kill) 1310 .setMIFlag(MachineInstr::FrameSetup); 1311 } else { 1312 // Save EAX 1313 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1314 .addReg(X86::EAX, RegState::Kill) 1315 .setMIFlag(MachineInstr::FrameSetup); 1316 } 1317 } 1318 1319 if (Is64Bit) { 1320 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1321 // Function prologue is responsible for adjusting the stack pointer. 1322 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1323 if (isUInt<32>(Alloc)) { 1324 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1325 .addImm(Alloc) 1326 .setMIFlag(MachineInstr::FrameSetup); 1327 } else if (isInt<32>(Alloc)) { 1328 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1329 .addImm(Alloc) 1330 .setMIFlag(MachineInstr::FrameSetup); 1331 } else { 1332 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1333 .addImm(Alloc) 1334 .setMIFlag(MachineInstr::FrameSetup); 1335 } 1336 } else { 1337 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1338 // We'll also use 4 already allocated bytes for EAX. 1339 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1340 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1341 .setMIFlag(MachineInstr::FrameSetup); 1342 } 1343 1344 // Call __chkstk, __chkstk_ms, or __alloca. 1345 emitStackProbe(MF, MBB, MBBI, DL, true); 1346 1347 if (isEAXAlive) { 1348 // Restore RAX/EAX 1349 MachineInstr *MI; 1350 if (Is64Bit) 1351 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1352 StackPtr, false, NumBytes - 8); 1353 else 1354 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1355 StackPtr, false, NumBytes - 4); 1356 MI->setFlag(MachineInstr::FrameSetup); 1357 MBB.insert(MBBI, MI); 1358 } 1359 } else if (NumBytes) { 1360 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1361 } 1362 1363 if (NeedsWinCFI && NumBytes) { 1364 HasWinCFI = true; 1365 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1366 .addImm(NumBytes) 1367 .setMIFlag(MachineInstr::FrameSetup); 1368 } 1369 1370 int SEHFrameOffset = 0; 1371 unsigned SPOrEstablisher; 1372 if (IsFunclet) { 1373 if (IsClrFunclet) { 1374 // The establisher parameter passed to a CLR funclet is actually a pointer 1375 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1376 // to find the root function establisher frame by loading the PSPSym from 1377 // the intermediate frame. 1378 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1379 MachinePointerInfo NoInfo; 1380 MBB.addLiveIn(Establisher); 1381 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1382 Establisher, false, PSPSlotOffset) 1383 .addMemOperand(MF.getMachineMemOperand( 1384 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize)); 1385 ; 1386 // Save the root establisher back into the current funclet's (mostly 1387 // empty) frame, in case a sub-funclet or the GC needs it. 1388 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1389 false, PSPSlotOffset) 1390 .addReg(Establisher) 1391 .addMemOperand( 1392 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore | 1393 MachineMemOperand::MOVolatile, 1394 SlotSize, SlotSize)); 1395 } 1396 SPOrEstablisher = Establisher; 1397 } else { 1398 SPOrEstablisher = StackPtr; 1399 } 1400 1401 if (IsWin64Prologue && HasFP) { 1402 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1403 // this calculation on the incoming establisher, which holds the value of 1404 // RSP from the parent frame at the end of the prologue. 1405 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1406 if (SEHFrameOffset) 1407 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1408 SPOrEstablisher, false, SEHFrameOffset); 1409 else 1410 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1411 .addReg(SPOrEstablisher); 1412 1413 // If this is not a funclet, emit the CFI describing our frame pointer. 1414 if (NeedsWinCFI && !IsFunclet) { 1415 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1416 HasWinCFI = true; 1417 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1418 .addImm(FramePtr) 1419 .addImm(SEHFrameOffset) 1420 .setMIFlag(MachineInstr::FrameSetup); 1421 if (isAsynchronousEHPersonality(Personality)) 1422 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1423 } 1424 } else if (IsFunclet && STI.is32Bit()) { 1425 // Reset EBP / ESI to something good for funclets. 1426 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1427 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1428 // into the registration node so that the runtime will restore it for us. 1429 if (!MBB.isCleanupFuncletEntry()) { 1430 assert(Personality == EHPersonality::MSVC_CXX); 1431 unsigned FrameReg; 1432 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1433 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1434 // ESP is the first field, so no extra displacement is needed. 1435 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1436 false, EHRegOffset) 1437 .addReg(X86::ESP); 1438 } 1439 } 1440 1441 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1442 const MachineInstr &FrameInstr = *MBBI; 1443 ++MBBI; 1444 1445 if (NeedsWinCFI) { 1446 int FI; 1447 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1448 if (X86::FR64RegClass.contains(Reg)) { 1449 int Offset; 1450 unsigned IgnoredFrameReg; 1451 if (IsWin64Prologue && IsFunclet) 1452 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1453 else 1454 Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) + 1455 SEHFrameOffset; 1456 1457 HasWinCFI = true; 1458 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1459 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1460 .addImm(Reg) 1461 .addImm(Offset) 1462 .setMIFlag(MachineInstr::FrameSetup); 1463 } 1464 } 1465 } 1466 } 1467 1468 if (NeedsWinCFI && HasWinCFI) 1469 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1470 .setMIFlag(MachineInstr::FrameSetup); 1471 1472 if (FnHasClrFunclet && !IsFunclet) { 1473 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1474 // immediately after the prolog) into the PSPSlot so that funclets 1475 // and the GC can recover it. 1476 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1477 auto PSPInfo = MachinePointerInfo::getFixedStack( 1478 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1479 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1480 PSPSlotOffset) 1481 .addReg(StackPtr) 1482 .addMemOperand(MF.getMachineMemOperand( 1483 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1484 SlotSize, SlotSize)); 1485 } 1486 1487 // Realign stack after we spilled callee-saved registers (so that we'll be 1488 // able to calculate their offsets from the frame pointer). 1489 // Win64 requires aligning the stack after the prologue. 1490 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1491 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1492 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1493 } 1494 1495 // We already dealt with stack realignment and funclets above. 1496 if (IsFunclet && STI.is32Bit()) 1497 return; 1498 1499 // If we need a base pointer, set it up here. It's whatever the value 1500 // of the stack pointer is at this point. Any variable size objects 1501 // will be allocated after this, so we can still use the base pointer 1502 // to reference locals. 1503 if (TRI->hasBasePointer(MF)) { 1504 // Update the base pointer with the current stack pointer. 1505 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1506 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1507 .addReg(SPOrEstablisher) 1508 .setMIFlag(MachineInstr::FrameSetup); 1509 if (X86FI->getRestoreBasePointer()) { 1510 // Stash value of base pointer. Saving RSP instead of EBP shortens 1511 // dependence chain. Used by SjLj EH. 1512 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1513 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1514 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1515 .addReg(SPOrEstablisher) 1516 .setMIFlag(MachineInstr::FrameSetup); 1517 } 1518 1519 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1520 // Stash the value of the frame pointer relative to the base pointer for 1521 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1522 // it recovers the frame pointer from the base pointer rather than the 1523 // other way around. 1524 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1525 unsigned UsedReg; 1526 int Offset = 1527 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1528 assert(UsedReg == BasePtr); 1529 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1530 .addReg(FramePtr) 1531 .setMIFlag(MachineInstr::FrameSetup); 1532 } 1533 } 1534 1535 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1536 // Mark end of stack pointer adjustment. 1537 if (!HasFP && NumBytes) { 1538 // Define the current CFA rule to use the provided offset. 1539 assert(StackSize); 1540 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1541 nullptr, -StackSize + stackGrowth)); 1542 } 1543 1544 // Emit DWARF info specifying the offsets of the callee-saved registers. 1545 emitCalleeSavedFrameMoves(MBB, MBBI, DL); 1546 } 1547 1548 // X86 Interrupt handling function cannot assume anything about the direction 1549 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1550 // in each prologue of interrupt handler function. 1551 // 1552 // FIXME: Create "cld" instruction only in these cases: 1553 // 1. The interrupt handling function uses any of the "rep" instructions. 1554 // 2. Interrupt handling function calls another function. 1555 // 1556 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1557 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1558 .setMIFlag(MachineInstr::FrameSetup); 1559 1560 // At this point we know if the function has WinCFI or not. 1561 MF.setHasWinCFI(HasWinCFI); 1562 } 1563 1564 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1565 const MachineFunction &MF) const { 1566 // We can't use LEA instructions for adjusting the stack pointer if we don't 1567 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1568 // to deallocate the stack. 1569 // This means that we can use LEA for SP in two situations: 1570 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1571 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1572 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1573 } 1574 1575 static bool isFuncletReturnInstr(MachineInstr &MI) { 1576 switch (MI.getOpcode()) { 1577 case X86::CATCHRET: 1578 case X86::CLEANUPRET: 1579 return true; 1580 default: 1581 return false; 1582 } 1583 llvm_unreachable("impossible"); 1584 } 1585 1586 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1587 // stack. It holds a pointer to the bottom of the root function frame. The 1588 // establisher frame pointer passed to a nested funclet may point to the 1589 // (mostly empty) frame of its parent funclet, but it will need to find 1590 // the frame of the root function to access locals. To facilitate this, 1591 // every funclet copies the pointer to the bottom of the root function 1592 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1593 // same offset for the PSPSym in the root function frame that's used in the 1594 // funclets' frames allows each funclet to dynamically accept any ancestor 1595 // frame as its establisher argument (the runtime doesn't guarantee the 1596 // immediate parent for some reason lost to history), and also allows the GC, 1597 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1598 // frame with only a single offset reported for the entire method. 1599 unsigned 1600 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1601 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1602 unsigned SPReg; 1603 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1604 /*IgnoreSPUpdates*/ true); 1605 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1606 return static_cast<unsigned>(Offset); 1607 } 1608 1609 unsigned 1610 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1611 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1612 // This is the size of the pushed CSRs. 1613 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1614 // This is the size of callee saved XMMs. 1615 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1616 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1617 TRI->getSpillSize(X86::VR128RegClass); 1618 // This is the amount of stack a funclet needs to allocate. 1619 unsigned UsedSize; 1620 EHPersonality Personality = 1621 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1622 if (Personality == EHPersonality::CoreCLR) { 1623 // CLR funclets need to hold enough space to include the PSPSym, at the 1624 // same offset from the stack pointer (immediately after the prolog) as it 1625 // resides at in the main function. 1626 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1627 } else { 1628 // Other funclets just need enough stack for outgoing call arguments. 1629 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1630 } 1631 // RBP is not included in the callee saved register block. After pushing RBP, 1632 // everything is 16 byte aligned. Everything we allocate before an outgoing 1633 // call must also be 16 byte aligned. 1634 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment()); 1635 // Subtract out the size of the callee saved registers. This is how much stack 1636 // each funclet will allocate. 1637 return FrameSizeMinusRBP + XMMSize - CSSize; 1638 } 1639 1640 static bool isTailCallOpcode(unsigned Opc) { 1641 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1642 Opc == X86::TCRETURNmi || 1643 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1644 Opc == X86::TCRETURNmi64; 1645 } 1646 1647 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1648 MachineBasicBlock &MBB) const { 1649 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1650 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1651 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1652 MachineBasicBlock::iterator MBBI = Terminator; 1653 DebugLoc DL; 1654 if (MBBI != MBB.end()) 1655 DL = MBBI->getDebugLoc(); 1656 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1657 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1658 Register FramePtr = TRI->getFrameRegister(MF); 1659 unsigned MachineFramePtr = 1660 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1661 1662 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1663 bool NeedsWin64CFI = 1664 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1665 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1666 1667 // Get the number of bytes to allocate from the FrameInfo. 1668 uint64_t StackSize = MFI.getStackSize(); 1669 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1670 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1671 bool HasFP = hasFP(MF); 1672 uint64_t NumBytes = 0; 1673 1674 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 1675 !MF.getTarget().getTargetTriple().isOSWindows()) && 1676 MF.needsFrameMoves(); 1677 1678 if (IsFunclet) { 1679 assert(HasFP && "EH funclets without FP not yet implemented"); 1680 NumBytes = getWinEHFuncletFrameSize(MF); 1681 } else if (HasFP) { 1682 // Calculate required stack adjustment. 1683 uint64_t FrameSize = StackSize - SlotSize; 1684 NumBytes = FrameSize - CSSize; 1685 1686 // Callee-saved registers were pushed on stack before the stack was 1687 // realigned. 1688 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1689 NumBytes = alignTo(FrameSize, MaxAlign); 1690 } else { 1691 NumBytes = StackSize - CSSize; 1692 } 1693 uint64_t SEHStackAllocAmt = NumBytes; 1694 1695 MachineBasicBlock::iterator FirstCSPop = MBBI; 1696 // Skip the callee-saved pop instructions. 1697 while (MBBI != MBB.begin()) { 1698 MachineBasicBlock::iterator PI = std::prev(MBBI); 1699 unsigned Opc = PI->getOpcode(); 1700 1701 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 1702 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1703 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 1704 break; 1705 FirstCSPop = PI; 1706 } 1707 1708 --MBBI; 1709 } 1710 MBBI = FirstCSPop; 1711 1712 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 1713 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 1714 1715 if (MBBI != MBB.end()) 1716 DL = MBBI->getDebugLoc(); 1717 1718 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1719 // instruction, merge the two instructions. 1720 if (NumBytes || MFI.hasVarSizedObjects()) 1721 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1722 1723 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1724 // slot before popping them off! Same applies for the case, when stack was 1725 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1726 // will not do realignment or dynamic stack allocation. 1727 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 1728 !IsFunclet) { 1729 if (TRI->needsStackRealignment(MF)) 1730 MBBI = FirstCSPop; 1731 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1732 uint64_t LEAAmount = 1733 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1734 1735 // There are only two legal forms of epilogue: 1736 // - add SEHAllocationSize, %rsp 1737 // - lea SEHAllocationSize(%FramePtr), %rsp 1738 // 1739 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1740 // However, we may use this sequence if we have a frame pointer because the 1741 // effects of the prologue can safely be undone. 1742 if (LEAAmount != 0) { 1743 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1744 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1745 FramePtr, false, LEAAmount); 1746 --MBBI; 1747 } else { 1748 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1749 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1750 .addReg(FramePtr); 1751 --MBBI; 1752 } 1753 } else if (NumBytes) { 1754 // Adjust stack pointer back: ESP += numbytes. 1755 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 1756 if (!hasFP(MF) && NeedsDwarfCFI) { 1757 // Define the current CFA rule to use the provided offset. 1758 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1759 nullptr, -CSSize - SlotSize)); 1760 } 1761 --MBBI; 1762 } 1763 1764 if (HasFP) { 1765 MBBI = Terminator; 1766 1767 if (X86FI->getSaveArgSize()) { 1768 // LEAVE is effectively mov rbp,rsp; pop rbp 1769 BuildMI(MBB, MBBI, DL, TII.get(X86::LEAVE64)) 1770 .setMIFlag(MachineInstr::FrameDestroy); 1771 } else { 1772 // Pop EBP. 1773 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1774 MachineFramePtr) 1775 .setMIFlag(MachineInstr::FrameDestroy); 1776 } 1777 if (NeedsDwarfCFI) { 1778 unsigned DwarfStackPtr = 1779 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 1780 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa( 1781 nullptr, DwarfStackPtr, -SlotSize)); 1782 --MBBI; 1783 } 1784 } 1785 1786 // Windows unwinder will not invoke function's exception handler if IP is 1787 // either in prologue or in epilogue. This behavior causes a problem when a 1788 // call immediately precedes an epilogue, because the return address points 1789 // into the epilogue. To cope with that, we insert an epilogue marker here, 1790 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1791 // final emitted code. 1792 if (NeedsWin64CFI && MF.hasWinCFI()) 1793 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1794 1795 if (!hasFP(MF) && NeedsDwarfCFI) { 1796 MBBI = FirstCSPop; 1797 int64_t Offset = -CSSize - SlotSize; 1798 // Mark callee-saved pop instruction. 1799 // Define the current CFA rule to use the provided offset. 1800 while (MBBI != MBB.end()) { 1801 MachineBasicBlock::iterator PI = MBBI; 1802 unsigned Opc = PI->getOpcode(); 1803 ++MBBI; 1804 if (Opc == X86::POP32r || Opc == X86::POP64r) { 1805 Offset += SlotSize; 1806 BuildCFI(MBB, MBBI, DL, 1807 MCCFIInstruction::createDefCfaOffset(nullptr, Offset)); 1808 } 1809 } 1810 } 1811 1812 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 1813 // Add the return addr area delta back since we are not tail calling. 1814 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1815 assert(Offset >= 0 && "TCDelta should never be positive"); 1816 if (Offset) { 1817 // Check for possible merge with preceding ADD instruction. 1818 Offset += mergeSPUpdates(MBB, Terminator, true); 1819 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 1820 } 1821 } 1822 } 1823 1824 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1825 unsigned &FrameReg) const { 1826 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1827 1828 bool IsFixed = MFI.isFixedObjectIndex(FI); 1829 // We can't calculate offset from frame pointer if the stack is realigned, 1830 // so enforce usage of stack/base pointer. The base pointer is used when we 1831 // have dynamic allocas in addition to dynamic realignment. 1832 if (TRI->hasBasePointer(MF)) 1833 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 1834 else if (TRI->needsStackRealignment(MF)) 1835 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 1836 else 1837 FrameReg = TRI->getFrameRegister(MF); 1838 1839 // Offset will hold the offset from the stack pointer at function entry to the 1840 // object. 1841 // We need to factor in additional offsets applied during the prologue to the 1842 // frame, base, and stack pointer depending on which is used. 1843 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1844 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1845 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1846 uint64_t StackSize = MFI.getStackSize(); 1847 bool HasFP = hasFP(MF); 1848 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1849 int64_t FPDelta = 0; 1850 1851 // In an x86 interrupt, remove the offset we added to account for the return 1852 // address from any stack object allocated in the caller's frame. Interrupts 1853 // do not have a standard return address. Fixed objects in the current frame, 1854 // such as SSE register spills, should not get this treatment. 1855 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 1856 Offset >= 0) { 1857 Offset += getOffsetOfLocalArea(); 1858 } 1859 1860 if (IsWin64Prologue) { 1861 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 1862 1863 // Calculate required stack adjustment. 1864 uint64_t FrameSize = StackSize - SlotSize; 1865 // If required, include space for extra hidden slot for stashing base pointer. 1866 if (X86FI->getRestoreBasePointer()) 1867 FrameSize += SlotSize; 1868 uint64_t NumBytes = FrameSize - CSSize; 1869 1870 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 1871 if (FI && FI == X86FI->getFAIndex()) 1872 return -SEHFrameOffset; 1873 1874 // FPDelta is the offset from the "traditional" FP location of the old base 1875 // pointer followed by return address and the location required by the 1876 // restricted Win64 prologue. 1877 // Add FPDelta to all offsets below that go through the frame pointer. 1878 FPDelta = FrameSize - SEHFrameOffset; 1879 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 1880 "FPDelta isn't aligned per the Win64 ABI!"); 1881 } 1882 1883 if (FI >= 0) 1884 Offset -= X86FI->getSaveArgSize(); 1885 1886 if (TRI->hasBasePointer(MF)) { 1887 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 1888 if (FI < 0) { 1889 // Skip the saved EBP. 1890 return Offset + SlotSize + FPDelta; 1891 } else { 1892 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1893 return Offset + StackSize; 1894 } 1895 } else if (TRI->needsStackRealignment(MF)) { 1896 if (FI < 0) { 1897 // Skip the saved EBP. 1898 return Offset + SlotSize + FPDelta; 1899 } else { 1900 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1901 return Offset + StackSize; 1902 } 1903 // FIXME: Support tail calls 1904 } else { 1905 if (!HasFP) 1906 return Offset + StackSize; 1907 1908 // Skip the saved EBP. 1909 Offset += SlotSize; 1910 1911 // Skip the RETADDR move area 1912 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1913 if (TailCallReturnAddrDelta < 0) 1914 Offset -= TailCallReturnAddrDelta; 1915 } 1916 1917 return Offset + FPDelta; 1918 } 1919 1920 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, 1921 int FI, unsigned &FrameReg) const { 1922 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1923 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1924 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1925 const auto it = WinEHXMMSlotInfo.find(FI); 1926 1927 if (it == WinEHXMMSlotInfo.end()) 1928 return getFrameIndexReference(MF, FI, FrameReg); 1929 1930 FrameReg = TRI->getStackRegister(); 1931 return alignDown(MFI.getMaxCallFrameSize(), getStackAlignment()) + it->second; 1932 } 1933 1934 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 1935 int FI, unsigned &FrameReg, 1936 int Adjustment) const { 1937 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1938 FrameReg = TRI->getStackRegister(); 1939 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 1940 } 1941 1942 int 1943 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 1944 int FI, unsigned &FrameReg, 1945 bool IgnoreSPUpdates) const { 1946 1947 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1948 // Does not include any dynamic realign. 1949 const uint64_t StackSize = MFI.getStackSize(); 1950 // LLVM arranges the stack as follows: 1951 // ... 1952 // ARG2 1953 // ARG1 1954 // RETADDR 1955 // PUSH RBP <-- RBP points here 1956 // PUSH CSRs 1957 // ~~~~~~~ <-- possible stack realignment (non-win64) 1958 // ... 1959 // STACK OBJECTS 1960 // ... <-- RSP after prologue points here 1961 // ~~~~~~~ <-- possible stack realignment (win64) 1962 // 1963 // if (hasVarSizedObjects()): 1964 // ... <-- "base pointer" (ESI/RBX) points here 1965 // DYNAMIC ALLOCAS 1966 // ... <-- RSP points here 1967 // 1968 // Case 1: In the simple case of no stack realignment and no dynamic 1969 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 1970 // with fixed offsets from RSP. 1971 // 1972 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 1973 // stack objects are addressed with RBP and regular stack objects with RSP. 1974 // 1975 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 1976 // to address stack arguments for outgoing calls and nothing else. The "base 1977 // pointer" points to local variables, and RBP points to fixed objects. 1978 // 1979 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 1980 // answer we give is relative to the SP after the prologue, and not the 1981 // SP in the middle of the function. 1982 1983 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 1984 !STI.isTargetWin64()) 1985 return getFrameIndexReference(MF, FI, FrameReg); 1986 1987 // If !hasReservedCallFrame the function might have SP adjustement in the 1988 // body. So, even though the offset is statically known, it depends on where 1989 // we are in the function. 1990 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 1991 return getFrameIndexReference(MF, FI, FrameReg); 1992 1993 // We don't handle tail calls, and shouldn't be seeing them either. 1994 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 1995 "we don't handle this case!"); 1996 1997 // This is how the math works out: 1998 // 1999 // %rsp grows (i.e. gets lower) left to right. Each box below is 2000 // one word (eight bytes). Obj0 is the stack slot we're trying to 2001 // get to. 2002 // 2003 // ---------------------------------- 2004 // | BP | Obj0 | Obj1 | ... | ObjN | 2005 // ---------------------------------- 2006 // ^ ^ ^ ^ 2007 // A B C E 2008 // 2009 // A is the incoming stack pointer. 2010 // (B - A) is the local area offset (-8 for x86-64) [1] 2011 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2012 // 2013 // |(E - B)| is the StackSize (absolute value, positive). For a 2014 // stack that grown down, this works out to be (B - E). [3] 2015 // 2016 // E is also the value of %rsp after stack has been set up, and we 2017 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2018 // (C - E) == (C - A) - (B - A) + (B - E) 2019 // { Using [1], [2] and [3] above } 2020 // == getObjectOffset - LocalAreaOffset + StackSize 2021 2022 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2023 } 2024 2025 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2026 MachineFunction &MF, const TargetRegisterInfo *TRI, 2027 std::vector<CalleeSavedInfo> &CSI) const { 2028 MachineFrameInfo &MFI = MF.getFrameInfo(); 2029 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2030 2031 unsigned CalleeSavedFrameSize = 0; 2032 unsigned XMMCalleeSavedFrameSize = 0; 2033 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2034 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2035 2036 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2037 2038 if (TailCallReturnAddrDelta < 0) { 2039 // create RETURNADDR area 2040 // arg 2041 // arg 2042 // RETADDR 2043 // { ... 2044 // RETADDR area 2045 // ... 2046 // } 2047 // [EBP] 2048 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2049 TailCallReturnAddrDelta - SlotSize, true); 2050 } 2051 2052 // Spill the BasePtr if it's used. 2053 if (this->TRI->hasBasePointer(MF)) { 2054 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2055 if (MF.hasEHFunclets()) { 2056 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize); 2057 X86FI->setHasSEHFramePtrSave(true); 2058 X86FI->setSEHFramePtrSaveIndex(FI); 2059 } 2060 } 2061 2062 if (hasFP(MF)) { 2063 // emitPrologue always spills frame register the first thing. 2064 SpillSlotOffset -= SlotSize; 2065 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2066 2067 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2068 // the frame register, we can delete it from CSI list and not have to worry 2069 // about avoiding it later. 2070 Register FPReg = TRI->getFrameRegister(MF); 2071 for (unsigned i = 0; i < CSI.size(); ++i) { 2072 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2073 CSI.erase(CSI.begin() + i); 2074 break; 2075 } 2076 } 2077 } 2078 2079 // Assign slots for GPRs. It increases frame size. 2080 for (unsigned i = CSI.size(); i != 0; --i) { 2081 unsigned Reg = CSI[i - 1].getReg(); 2082 2083 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2084 continue; 2085 2086 SpillSlotOffset -= SlotSize; 2087 CalleeSavedFrameSize += SlotSize; 2088 2089 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2090 CSI[i - 1].setFrameIdx(SlotIndex); 2091 } 2092 2093 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2094 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2095 2096 // Assign slots for XMMs. 2097 for (unsigned i = CSI.size(); i != 0; --i) { 2098 unsigned Reg = CSI[i - 1].getReg(); 2099 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2100 continue; 2101 2102 // If this is k-register make sure we lookup via the largest legal type. 2103 MVT VT = MVT::Other; 2104 if (X86::VK16RegClass.contains(Reg)) 2105 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2106 2107 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2108 unsigned Size = TRI->getSpillSize(*RC); 2109 unsigned Align = TRI->getSpillAlignment(*RC); 2110 // ensure alignment 2111 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2112 SpillSlotOffset = -alignTo(-SpillSlotOffset, Align); 2113 2114 // spill into slot 2115 SpillSlotOffset -= Size; 2116 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2117 CSI[i - 1].setFrameIdx(SlotIndex); 2118 MFI.ensureMaxAlignment(Align); 2119 2120 // Save the start offset and size of XMM in stack frame for funclets. 2121 if (X86::VR128RegClass.contains(Reg)) { 2122 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2123 XMMCalleeSavedFrameSize += Size; 2124 } 2125 } 2126 2127 return true; 2128 } 2129 2130 bool X86FrameLowering::spillCalleeSavedRegisters( 2131 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2132 const std::vector<CalleeSavedInfo> &CSI, 2133 const TargetRegisterInfo *TRI) const { 2134 DebugLoc DL = MBB.findDebugLoc(MI); 2135 2136 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2137 // for us, and there are no XMM CSRs on Win32. 2138 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2139 return true; 2140 2141 // Push GPRs. It increases frame size. 2142 const MachineFunction &MF = *MBB.getParent(); 2143 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2144 for (unsigned i = CSI.size(); i != 0; --i) { 2145 unsigned Reg = CSI[i - 1].getReg(); 2146 2147 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2148 continue; 2149 2150 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2151 bool isLiveIn = MRI.isLiveIn(Reg); 2152 if (!isLiveIn) 2153 MBB.addLiveIn(Reg); 2154 2155 // Decide whether we can add a kill flag to the use. 2156 bool CanKill = !isLiveIn; 2157 // Check if any subregister is live-in 2158 if (CanKill) { 2159 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2160 if (MRI.isLiveIn(*AReg)) { 2161 CanKill = false; 2162 break; 2163 } 2164 } 2165 } 2166 2167 // Do not set a kill flag on values that are also marked as live-in. This 2168 // happens with the @llvm-returnaddress intrinsic and with arguments 2169 // passed in callee saved registers. 2170 // Omitting the kill flags is conservatively correct even if the live-in 2171 // is not used after all. 2172 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2173 .setMIFlag(MachineInstr::FrameSetup); 2174 } 2175 2176 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2177 // It can be done by spilling XMMs to stack frame. 2178 for (unsigned i = CSI.size(); i != 0; --i) { 2179 unsigned Reg = CSI[i-1].getReg(); 2180 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2181 continue; 2182 2183 // If this is k-register make sure we lookup via the largest legal type. 2184 MVT VT = MVT::Other; 2185 if (X86::VK16RegClass.contains(Reg)) 2186 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2187 2188 // Add the callee-saved register as live-in. It's killed at the spill. 2189 MBB.addLiveIn(Reg); 2190 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2191 2192 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2193 TRI); 2194 --MI; 2195 MI->setFlag(MachineInstr::FrameSetup); 2196 ++MI; 2197 } 2198 2199 return true; 2200 } 2201 2202 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2203 MachineBasicBlock::iterator MBBI, 2204 MachineInstr *CatchRet) const { 2205 // SEH shouldn't use catchret. 2206 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2207 MBB.getParent()->getFunction().getPersonalityFn())) && 2208 "SEH should not use CATCHRET"); 2209 DebugLoc DL = CatchRet->getDebugLoc(); 2210 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2211 2212 // Fill EAX/RAX with the address of the target block. 2213 if (STI.is64Bit()) { 2214 // LEA64r CatchRetTarget(%rip), %rax 2215 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2216 .addReg(X86::RIP) 2217 .addImm(0) 2218 .addReg(0) 2219 .addMBB(CatchRetTarget) 2220 .addReg(0); 2221 } else { 2222 // MOV32ri $CatchRetTarget, %eax 2223 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2224 .addMBB(CatchRetTarget); 2225 } 2226 2227 // Record that we've taken the address of CatchRetTarget and no longer just 2228 // reference it in a terminator. 2229 CatchRetTarget->setHasAddressTaken(); 2230 } 2231 2232 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 2233 MachineBasicBlock::iterator MI, 2234 std::vector<CalleeSavedInfo> &CSI, 2235 const TargetRegisterInfo *TRI) const { 2236 if (CSI.empty()) 2237 return false; 2238 2239 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2240 // Don't restore CSRs in 32-bit EH funclets. Matches 2241 // spillCalleeSavedRegisters. 2242 if (STI.is32Bit()) 2243 return true; 2244 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2245 // funclets. emitEpilogue transforms these to normal jumps. 2246 if (MI->getOpcode() == X86::CATCHRET) { 2247 const Function &F = MBB.getParent()->getFunction(); 2248 bool IsSEH = isAsynchronousEHPersonality( 2249 classifyEHPersonality(F.getPersonalityFn())); 2250 if (IsSEH) 2251 return true; 2252 } 2253 } 2254 2255 DebugLoc DL = MBB.findDebugLoc(MI); 2256 2257 // Reload XMMs from stack frame. 2258 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2259 unsigned Reg = CSI[i].getReg(); 2260 if (X86::GR64RegClass.contains(Reg) || 2261 X86::GR32RegClass.contains(Reg)) 2262 continue; 2263 2264 // If this is k-register make sure we lookup via the largest legal type. 2265 MVT VT = MVT::Other; 2266 if (X86::VK16RegClass.contains(Reg)) 2267 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2268 2269 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2270 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2271 } 2272 2273 // POP GPRs. 2274 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2275 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2276 unsigned Reg = CSI[i].getReg(); 2277 if (!X86::GR64RegClass.contains(Reg) && 2278 !X86::GR32RegClass.contains(Reg)) 2279 continue; 2280 2281 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2282 .setMIFlag(MachineInstr::FrameDestroy); 2283 } 2284 return true; 2285 } 2286 2287 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2288 BitVector &SavedRegs, 2289 RegScavenger *RS) const { 2290 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2291 2292 // Spill the BasePtr if it's used. 2293 if (TRI->hasBasePointer(MF)){ 2294 Register BasePtr = TRI->getBaseRegister(); 2295 if (STI.isTarget64BitILP32()) 2296 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2297 SavedRegs.set(BasePtr); 2298 } 2299 } 2300 2301 static bool 2302 HasNestArgument(const MachineFunction *MF) { 2303 const Function &F = MF->getFunction(); 2304 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2305 I != E; I++) { 2306 if (I->hasNestAttr() && !I->use_empty()) 2307 return true; 2308 } 2309 return false; 2310 } 2311 2312 /// GetScratchRegister - Get a temp register for performing work in the 2313 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2314 /// and the properties of the function either one or two registers will be 2315 /// needed. Set primary to true for the first register, false for the second. 2316 static unsigned 2317 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2318 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2319 2320 // Erlang stuff. 2321 if (CallingConvention == CallingConv::HiPE) { 2322 if (Is64Bit) 2323 return Primary ? X86::R14 : X86::R13; 2324 else 2325 return Primary ? X86::EBX : X86::EDI; 2326 } 2327 2328 if (Is64Bit) { 2329 if (IsLP64) 2330 return Primary ? X86::R11 : X86::R12; 2331 else 2332 return Primary ? X86::R11D : X86::R12D; 2333 } 2334 2335 bool IsNested = HasNestArgument(&MF); 2336 2337 if (CallingConvention == CallingConv::X86_FastCall || 2338 CallingConvention == CallingConv::Fast || 2339 CallingConvention == CallingConv::Tail) { 2340 if (IsNested) 2341 report_fatal_error("Segmented stacks does not support fastcall with " 2342 "nested function."); 2343 return Primary ? X86::EAX : X86::ECX; 2344 } 2345 if (IsNested) 2346 return Primary ? X86::EDX : X86::EAX; 2347 return Primary ? X86::ECX : X86::EAX; 2348 } 2349 2350 // The stack limit in the TCB is set to this many bytes above the actual stack 2351 // limit. 2352 static const uint64_t kSplitStackAvailable = 256; 2353 2354 void X86FrameLowering::adjustForSegmentedStacks( 2355 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2356 MachineFrameInfo &MFI = MF.getFrameInfo(); 2357 uint64_t StackSize; 2358 unsigned TlsReg, TlsOffset; 2359 DebugLoc DL; 2360 2361 // To support shrink-wrapping we would need to insert the new blocks 2362 // at the right place and update the branches to PrologueMBB. 2363 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2364 2365 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2366 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2367 "Scratch register is live-in"); 2368 2369 if (MF.getFunction().isVarArg()) 2370 report_fatal_error("Segmented stacks do not support vararg functions."); 2371 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2372 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2373 !STI.isTargetDragonFly()) 2374 report_fatal_error("Segmented stacks not supported on this platform."); 2375 2376 // Eventually StackSize will be calculated by a link-time pass; which will 2377 // also decide whether checking code needs to be injected into this particular 2378 // prologue. 2379 StackSize = MFI.getStackSize(); 2380 2381 // Do not generate a prologue for leaf functions with a stack of size zero. 2382 // For non-leaf functions we have to allow for the possibility that the 2383 // callis to a non-split function, as in PR37807. This function could also 2384 // take the address of a non-split function. When the linker tries to adjust 2385 // its non-existent prologue, it would fail with an error. Mark the object 2386 // file so that such failures are not errors. See this Go language bug-report 2387 // https://go-review.googlesource.com/c/go/+/148819/ 2388 if (StackSize == 0 && !MFI.hasTailCall()) { 2389 MF.getMMI().setHasNosplitStack(true); 2390 return; 2391 } 2392 2393 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2394 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2395 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2396 bool IsNested = false; 2397 2398 // We need to know if the function has a nest argument only in 64 bit mode. 2399 if (Is64Bit) 2400 IsNested = HasNestArgument(&MF); 2401 2402 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2403 // allocMBB needs to be last (terminating) instruction. 2404 2405 for (const auto &LI : PrologueMBB.liveins()) { 2406 allocMBB->addLiveIn(LI); 2407 checkMBB->addLiveIn(LI); 2408 } 2409 2410 if (IsNested) 2411 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2412 2413 MF.push_front(allocMBB); 2414 MF.push_front(checkMBB); 2415 2416 // When the frame size is less than 256 we just compare the stack 2417 // boundary directly to the value of the stack pointer, per gcc. 2418 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2419 2420 // Read the limit off the current stacklet off the stack_guard location. 2421 if (Is64Bit) { 2422 if (STI.isTargetLinux()) { 2423 TlsReg = X86::FS; 2424 TlsOffset = IsLP64 ? 0x70 : 0x40; 2425 } else if (STI.isTargetDarwin()) { 2426 TlsReg = X86::GS; 2427 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2428 } else if (STI.isTargetWin64()) { 2429 TlsReg = X86::GS; 2430 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2431 } else if (STI.isTargetFreeBSD()) { 2432 TlsReg = X86::FS; 2433 TlsOffset = 0x18; 2434 } else if (STI.isTargetDragonFly()) { 2435 TlsReg = X86::FS; 2436 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2437 } else { 2438 report_fatal_error("Segmented stacks not supported on this platform."); 2439 } 2440 2441 if (CompareStackPointer) 2442 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2443 else 2444 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2445 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2446 2447 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2448 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2449 } else { 2450 if (STI.isTargetLinux()) { 2451 TlsReg = X86::GS; 2452 TlsOffset = 0x30; 2453 } else if (STI.isTargetDarwin()) { 2454 TlsReg = X86::GS; 2455 TlsOffset = 0x48 + 90*4; 2456 } else if (STI.isTargetWin32()) { 2457 TlsReg = X86::FS; 2458 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2459 } else if (STI.isTargetDragonFly()) { 2460 TlsReg = X86::FS; 2461 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2462 } else if (STI.isTargetFreeBSD()) { 2463 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2464 } else { 2465 report_fatal_error("Segmented stacks not supported on this platform."); 2466 } 2467 2468 if (CompareStackPointer) 2469 ScratchReg = X86::ESP; 2470 else 2471 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2472 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2473 2474 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2475 STI.isTargetDragonFly()) { 2476 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2477 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2478 } else if (STI.isTargetDarwin()) { 2479 2480 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2481 unsigned ScratchReg2; 2482 bool SaveScratch2; 2483 if (CompareStackPointer) { 2484 // The primary scratch register is available for holding the TLS offset. 2485 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2486 SaveScratch2 = false; 2487 } else { 2488 // Need to use a second register to hold the TLS offset 2489 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2490 2491 // Unfortunately, with fastcc the second scratch register may hold an 2492 // argument. 2493 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2494 } 2495 2496 // If Scratch2 is live-in then it needs to be saved. 2497 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2498 "Scratch register is live-in and not saved"); 2499 2500 if (SaveScratch2) 2501 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2502 .addReg(ScratchReg2, RegState::Kill); 2503 2504 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2505 .addImm(TlsOffset); 2506 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2507 .addReg(ScratchReg) 2508 .addReg(ScratchReg2).addImm(1).addReg(0) 2509 .addImm(0) 2510 .addReg(TlsReg); 2511 2512 if (SaveScratch2) 2513 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2514 } 2515 } 2516 2517 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2518 // It jumps to normal execution of the function body. 2519 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2520 2521 // On 32 bit we first push the arguments size and then the frame size. On 64 2522 // bit, we pass the stack frame size in r10 and the argument size in r11. 2523 if (Is64Bit) { 2524 // Functions with nested arguments use R10, so it needs to be saved across 2525 // the call to _morestack 2526 2527 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2528 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2529 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2530 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2531 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2532 2533 if (IsNested) 2534 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2535 2536 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2537 .addImm(StackSize); 2538 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2539 .addImm(X86FI->getArgumentStackSize()); 2540 } else { 2541 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2542 .addImm(X86FI->getArgumentStackSize()); 2543 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2544 .addImm(StackSize); 2545 } 2546 2547 // __morestack is in libgcc 2548 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2549 // Under the large code model, we cannot assume that __morestack lives 2550 // within 2^31 bytes of the call site, so we cannot use pc-relative 2551 // addressing. We cannot perform the call via a temporary register, 2552 // as the rax register may be used to store the static chain, and all 2553 // other suitable registers may be either callee-save or used for 2554 // parameter passing. We cannot use the stack at this point either 2555 // because __morestack manipulates the stack directly. 2556 // 2557 // To avoid these issues, perform an indirect call via a read-only memory 2558 // location containing the address. 2559 // 2560 // This solution is not perfect, as it assumes that the .rodata section 2561 // is laid out within 2^31 bytes of each function body, but this seems 2562 // to be sufficient for JIT. 2563 // FIXME: Add retpoline support and remove the error here.. 2564 if (STI.useIndirectThunkCalls()) 2565 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2566 "code model and thunks not yet implemented."); 2567 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2568 .addReg(X86::RIP) 2569 .addImm(0) 2570 .addReg(0) 2571 .addExternalSymbol("__morestack_addr") 2572 .addReg(0); 2573 MF.getMMI().setUsesMorestackAddr(true); 2574 } else { 2575 if (Is64Bit) 2576 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2577 .addExternalSymbol("__morestack"); 2578 else 2579 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2580 .addExternalSymbol("__morestack"); 2581 } 2582 2583 if (IsNested) 2584 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2585 else 2586 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2587 2588 allocMBB->addSuccessor(&PrologueMBB); 2589 2590 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2591 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2592 2593 #ifdef EXPENSIVE_CHECKS 2594 MF.verify(); 2595 #endif 2596 } 2597 2598 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2599 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2600 /// to fields it needs, through a named metadata node "hipe.literals" containing 2601 /// name-value pairs. 2602 static unsigned getHiPELiteral( 2603 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2604 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2605 MDNode *Node = HiPELiteralsMD->getOperand(i); 2606 if (Node->getNumOperands() != 2) continue; 2607 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2608 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2609 if (!NodeName || !NodeVal) continue; 2610 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2611 if (ValConst && NodeName->getString() == LiteralName) { 2612 return ValConst->getZExtValue(); 2613 } 2614 } 2615 2616 report_fatal_error("HiPE literal " + LiteralName 2617 + " required but not provided"); 2618 } 2619 2620 // Return true if there are no non-ehpad successors to MBB and there are no 2621 // non-meta instructions between MBBI and MBB.end(). 2622 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 2623 MachineBasicBlock::const_iterator MBBI) { 2624 return std::all_of( 2625 MBB.succ_begin(), MBB.succ_end(), 2626 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 2627 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 2628 return MI.isMetaInstruction(); 2629 }); 2630 } 2631 2632 /// Erlang programs may need a special prologue to handle the stack size they 2633 /// might need at runtime. That is because Erlang/OTP does not implement a C 2634 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2635 /// (for more information see Eric Stenman's Ph.D. thesis: 2636 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2637 /// 2638 /// CheckStack: 2639 /// temp0 = sp - MaxStack 2640 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2641 /// OldStart: 2642 /// ... 2643 /// IncStack: 2644 /// call inc_stack # doubles the stack space 2645 /// temp0 = sp - MaxStack 2646 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2647 void X86FrameLowering::adjustForHiPEPrologue( 2648 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2649 MachineFrameInfo &MFI = MF.getFrameInfo(); 2650 DebugLoc DL; 2651 2652 // To support shrink-wrapping we would need to insert the new blocks 2653 // at the right place and update the branches to PrologueMBB. 2654 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2655 2656 // HiPE-specific values 2657 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2658 ->getNamedMetadata("hipe.literals"); 2659 if (!HiPELiteralsMD) 2660 report_fatal_error( 2661 "Can't generate HiPE prologue without runtime parameters"); 2662 const unsigned HipeLeafWords 2663 = getHiPELiteral(HiPELiteralsMD, 2664 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2665 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2666 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2667 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2668 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2669 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2670 2671 assert(STI.isTargetLinux() && 2672 "HiPE prologue is only supported on Linux operating systems."); 2673 2674 // Compute the largest caller's frame that is needed to fit the callees' 2675 // frames. This 'MaxStack' is computed from: 2676 // 2677 // a) the fixed frame size, which is the space needed for all spilled temps, 2678 // b) outgoing on-stack parameter areas, and 2679 // c) the minimum stack space this function needs to make available for the 2680 // functions it calls (a tunable ABI property). 2681 if (MFI.hasCalls()) { 2682 unsigned MoreStackForCalls = 0; 2683 2684 for (auto &MBB : MF) { 2685 for (auto &MI : MBB) { 2686 if (!MI.isCall()) 2687 continue; 2688 2689 // Get callee operand. 2690 const MachineOperand &MO = MI.getOperand(0); 2691 2692 // Only take account of global function calls (no closures etc.). 2693 if (!MO.isGlobal()) 2694 continue; 2695 2696 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2697 if (!F) 2698 continue; 2699 2700 // Do not update 'MaxStack' for primitive and built-in functions 2701 // (encoded with names either starting with "erlang."/"bif_" or not 2702 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2703 // "_", such as the BIF "suspend_0") as they are executed on another 2704 // stack. 2705 if (F->getName().find("erlang.") != StringRef::npos || 2706 F->getName().find("bif_") != StringRef::npos || 2707 F->getName().find_first_of("._") == StringRef::npos) 2708 continue; 2709 2710 unsigned CalleeStkArity = 2711 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2712 if (HipeLeafWords - 1 > CalleeStkArity) 2713 MoreStackForCalls = std::max(MoreStackForCalls, 2714 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2715 } 2716 } 2717 MaxStack += MoreStackForCalls; 2718 } 2719 2720 // If the stack frame needed is larger than the guaranteed then runtime checks 2721 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2722 if (MaxStack > Guaranteed) { 2723 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2724 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2725 2726 for (const auto &LI : PrologueMBB.liveins()) { 2727 stackCheckMBB->addLiveIn(LI); 2728 incStackMBB->addLiveIn(LI); 2729 } 2730 2731 MF.push_front(incStackMBB); 2732 MF.push_front(stackCheckMBB); 2733 2734 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2735 unsigned LEAop, CMPop, CALLop; 2736 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 2737 if (Is64Bit) { 2738 SPReg = X86::RSP; 2739 PReg = X86::RBP; 2740 LEAop = X86::LEA64r; 2741 CMPop = X86::CMP64rm; 2742 CALLop = X86::CALL64pcrel32; 2743 } else { 2744 SPReg = X86::ESP; 2745 PReg = X86::EBP; 2746 LEAop = X86::LEA32r; 2747 CMPop = X86::CMP32rm; 2748 CALLop = X86::CALLpcrel32; 2749 } 2750 2751 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2752 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2753 "HiPE prologue scratch register is live-in"); 2754 2755 // Create new MBB for StackCheck: 2756 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2757 SPReg, false, -MaxStack); 2758 // SPLimitOffset is in a fixed heap location (pointed by BP). 2759 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2760 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2761 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 2762 2763 // Create new MBB for IncStack: 2764 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2765 addExternalSymbol("inc_stack_0"); 2766 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2767 SPReg, false, -MaxStack); 2768 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2769 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2770 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 2771 2772 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2773 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2774 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2775 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2776 } 2777 #ifdef EXPENSIVE_CHECKS 2778 MF.verify(); 2779 #endif 2780 } 2781 2782 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2783 MachineBasicBlock::iterator MBBI, 2784 const DebugLoc &DL, 2785 int Offset) const { 2786 2787 if (Offset <= 0) 2788 return false; 2789 2790 if (Offset % SlotSize) 2791 return false; 2792 2793 int NumPops = Offset / SlotSize; 2794 // This is only worth it if we have at most 2 pops. 2795 if (NumPops != 1 && NumPops != 2) 2796 return false; 2797 2798 // Handle only the trivial case where the adjustment directly follows 2799 // a call. This is the most common one, anyway. 2800 if (MBBI == MBB.begin()) 2801 return false; 2802 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2803 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2804 return false; 2805 2806 unsigned Regs[2]; 2807 unsigned FoundRegs = 0; 2808 2809 auto &MRI = MBB.getParent()->getRegInfo(); 2810 auto RegMask = Prev->getOperand(1); 2811 2812 auto &RegClass = 2813 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2814 // Try to find up to NumPops free registers. 2815 for (auto Candidate : RegClass) { 2816 2817 // Poor man's liveness: 2818 // Since we're immediately after a call, any register that is clobbered 2819 // by the call and not defined by it can be considered dead. 2820 if (!RegMask.clobbersPhysReg(Candidate)) 2821 continue; 2822 2823 // Don't clobber reserved registers 2824 if (MRI.isReserved(Candidate)) 2825 continue; 2826 2827 bool IsDef = false; 2828 for (const MachineOperand &MO : Prev->implicit_operands()) { 2829 if (MO.isReg() && MO.isDef() && 2830 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 2831 IsDef = true; 2832 break; 2833 } 2834 } 2835 2836 if (IsDef) 2837 continue; 2838 2839 Regs[FoundRegs++] = Candidate; 2840 if (FoundRegs == (unsigned)NumPops) 2841 break; 2842 } 2843 2844 if (FoundRegs == 0) 2845 return false; 2846 2847 // If we found only one free register, but need two, reuse the same one twice. 2848 while (FoundRegs < (unsigned)NumPops) 2849 Regs[FoundRegs++] = Regs[0]; 2850 2851 for (int i = 0; i < NumPops; ++i) 2852 BuildMI(MBB, MBBI, DL, 2853 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2854 2855 return true; 2856 } 2857 2858 MachineBasicBlock::iterator X86FrameLowering:: 2859 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2860 MachineBasicBlock::iterator I) const { 2861 bool reserveCallFrame = hasReservedCallFrame(MF); 2862 unsigned Opcode = I->getOpcode(); 2863 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 2864 DebugLoc DL = I->getDebugLoc(); 2865 uint64_t Amount = TII.getFrameSize(*I); 2866 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 2867 I = MBB.erase(I); 2868 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 2869 2870 if (!reserveCallFrame) { 2871 // If the stack pointer can be changed after prologue, turn the 2872 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 2873 // adjcallstackdown instruction into 'add ESP, <amt>' 2874 2875 // We need to keep the stack aligned properly. To do this, we round the 2876 // amount of space needed for the outgoing arguments up to the next 2877 // alignment boundary. 2878 unsigned StackAlign = getStackAlignment(); 2879 Amount = alignTo(Amount, StackAlign); 2880 2881 const Function &F = MF.getFunction(); 2882 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2883 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 2884 2885 // If we have any exception handlers in this function, and we adjust 2886 // the SP before calls, we may need to indicate this to the unwinder 2887 // using GNU_ARGS_SIZE. Note that this may be necessary even when 2888 // Amount == 0, because the preceding function may have set a non-0 2889 // GNU_ARGS_SIZE. 2890 // TODO: We don't need to reset this between subsequent functions, 2891 // if it didn't change. 2892 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 2893 2894 if (HasDwarfEHHandlers && !isDestroy && 2895 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 2896 BuildCFI(MBB, InsertPos, DL, 2897 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 2898 2899 if (Amount == 0) 2900 return I; 2901 2902 // Factor out the amount that gets handled inside the sequence 2903 // (Pushes of argument for frame setup, callee pops for frame destroy) 2904 Amount -= InternalAmt; 2905 2906 // TODO: This is needed only if we require precise CFA. 2907 // If this is a callee-pop calling convention, emit a CFA adjust for 2908 // the amount the callee popped. 2909 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 2910 BuildCFI(MBB, InsertPos, DL, 2911 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 2912 2913 // Add Amount to SP to destroy a frame, or subtract to setup. 2914 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 2915 2916 if (StackAdjustment) { 2917 // Merge with any previous or following adjustment instruction. Note: the 2918 // instructions merged with here do not have CFI, so their stack 2919 // adjustments do not feed into CfaAdjustment. 2920 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 2921 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 2922 2923 if (StackAdjustment) { 2924 if (!(F.hasMinSize() && 2925 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 2926 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 2927 /*InEpilogue=*/false); 2928 } 2929 } 2930 2931 if (DwarfCFI && !hasFP(MF)) { 2932 // If we don't have FP, but need to generate unwind information, 2933 // we need to set the correct CFA offset after the stack adjustment. 2934 // How much we adjust the CFA offset depends on whether we're emitting 2935 // CFI only for EH purposes or for debugging. EH only requires the CFA 2936 // offset to be correct at each call site, while for debugging we want 2937 // it to be more precise. 2938 2939 int64_t CfaAdjustment = -StackAdjustment; 2940 // TODO: When not using precise CFA, we also need to adjust for the 2941 // InternalAmt here. 2942 if (CfaAdjustment) { 2943 BuildCFI(MBB, InsertPos, DL, 2944 MCCFIInstruction::createAdjustCfaOffset(nullptr, 2945 CfaAdjustment)); 2946 } 2947 } 2948 2949 return I; 2950 } 2951 2952 if (isDestroy && InternalAmt && !blockEndIsUnreachable(MBB, I)) { 2953 // If we are performing frame pointer elimination and if the callee pops 2954 // something off the stack pointer, add it back. We do this until we have 2955 // more advanced stack pointer tracking ability. 2956 // We are not tracking the stack pointer adjustment by the callee, so make 2957 // sure we restore the stack pointer immediately after the call, there may 2958 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. 2959 MachineBasicBlock::iterator CI = I; 2960 MachineBasicBlock::iterator B = MBB.begin(); 2961 while (CI != B && !std::prev(CI)->isCall()) 2962 --CI; 2963 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 2964 } 2965 2966 return I; 2967 } 2968 2969 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 2970 assert(MBB.getParent() && "Block is not attached to a function!"); 2971 const MachineFunction &MF = *MBB.getParent(); 2972 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 2973 } 2974 2975 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 2976 assert(MBB.getParent() && "Block is not attached to a function!"); 2977 2978 // Win64 has strict requirements in terms of epilogue and we are 2979 // not taking a chance at messing with them. 2980 // I.e., unless this block is already an exit block, we can't use 2981 // it as an epilogue. 2982 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 2983 return false; 2984 2985 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 2986 return true; 2987 2988 // If we cannot use LEA to adjust SP, we may need to use ADD, which 2989 // clobbers the EFLAGS. Check that we do not need to preserve it, 2990 // otherwise, conservatively assume this is not 2991 // safe to insert the epilogue here. 2992 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 2993 } 2994 2995 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2996 // If we may need to emit frameless compact unwind information, give 2997 // up as this is currently broken: PR25614. 2998 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 2999 // The lowering of segmented stack and HiPE only support entry blocks 3000 // as prologue blocks: PR26107. 3001 // This limitation may be lifted if we fix: 3002 // - adjustForSegmentedStacks 3003 // - adjustForHiPEPrologue 3004 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3005 !MF.shouldSplitStack(); 3006 } 3007 3008 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3009 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3010 const DebugLoc &DL, bool RestoreSP) const { 3011 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3012 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3013 assert(STI.is32Bit() && !Uses64BitFramePtr && 3014 "restoring EBP/ESI on non-32-bit target"); 3015 3016 MachineFunction &MF = *MBB.getParent(); 3017 Register FramePtr = TRI->getFrameRegister(MF); 3018 Register BasePtr = TRI->getBaseRegister(); 3019 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3020 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3021 MachineFrameInfo &MFI = MF.getFrameInfo(); 3022 3023 // FIXME: Don't set FrameSetup flag in catchret case. 3024 3025 int FI = FuncInfo.EHRegNodeFrameIndex; 3026 int EHRegSize = MFI.getObjectSize(FI); 3027 3028 if (RestoreSP) { 3029 // MOV32rm -EHRegSize(%ebp), %esp 3030 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3031 X86::EBP, true, -EHRegSize) 3032 .setMIFlag(MachineInstr::FrameSetup); 3033 } 3034 3035 unsigned UsedReg; 3036 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 3037 int EndOffset = -EHRegOffset - EHRegSize; 3038 FuncInfo.EHRegNodeEndOffset = EndOffset; 3039 3040 if (UsedReg == FramePtr) { 3041 // ADD $offset, %ebp 3042 unsigned ADDri = getADDriOpcode(false, EndOffset); 3043 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3044 .addReg(FramePtr) 3045 .addImm(EndOffset) 3046 .setMIFlag(MachineInstr::FrameSetup) 3047 ->getOperand(3) 3048 .setIsDead(); 3049 assert(EndOffset >= 0 && 3050 "end of registration object above normal EBP position!"); 3051 } else if (UsedReg == BasePtr) { 3052 // LEA offset(%ebp), %esi 3053 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3054 FramePtr, false, EndOffset) 3055 .setMIFlag(MachineInstr::FrameSetup); 3056 // MOV32rm SavedEBPOffset(%esi), %ebp 3057 assert(X86FI->getHasSEHFramePtrSave()); 3058 int Offset = 3059 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 3060 assert(UsedReg == BasePtr); 3061 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3062 UsedReg, true, Offset) 3063 .setMIFlag(MachineInstr::FrameSetup); 3064 } else { 3065 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3066 } 3067 return MBBI; 3068 } 3069 3070 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3071 return TRI->getSlotSize(); 3072 } 3073 3074 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) 3075 const { 3076 return TRI->getDwarfRegNum(StackPtr, true); 3077 } 3078 3079 namespace { 3080 // Struct used by orderFrameObjects to help sort the stack objects. 3081 struct X86FrameSortingObject { 3082 bool IsValid = false; // true if we care about this Object. 3083 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3084 unsigned ObjectSize = 0; // Size of Object in bytes. 3085 unsigned ObjectAlignment = 1; // Alignment of Object in bytes. 3086 unsigned ObjectNumUses = 0; // Object static number of uses. 3087 }; 3088 3089 // The comparison function we use for std::sort to order our local 3090 // stack symbols. The current algorithm is to use an estimated 3091 // "density". This takes into consideration the size and number of 3092 // uses each object has in order to roughly minimize code size. 3093 // So, for example, an object of size 16B that is referenced 5 times 3094 // will get higher priority than 4 4B objects referenced 1 time each. 3095 // It's not perfect and we may be able to squeeze a few more bytes out of 3096 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3097 // fringe end can have special consideration, given their size is less 3098 // important, etc.), but the algorithmic complexity grows too much to be 3099 // worth the extra gains we get. This gets us pretty close. 3100 // The final order leaves us with objects with highest priority going 3101 // at the end of our list. 3102 struct X86FrameSortingComparator { 3103 inline bool operator()(const X86FrameSortingObject &A, 3104 const X86FrameSortingObject &B) { 3105 uint64_t DensityAScaled, DensityBScaled; 3106 3107 // For consistency in our comparison, all invalid objects are placed 3108 // at the end. This also allows us to stop walking when we hit the 3109 // first invalid item after it's all sorted. 3110 if (!A.IsValid) 3111 return false; 3112 if (!B.IsValid) 3113 return true; 3114 3115 // The density is calculated by doing : 3116 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3117 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3118 // Since this approach may cause inconsistencies in 3119 // the floating point <, >, == comparisons, depending on the floating 3120 // point model with which the compiler was built, we're going 3121 // to scale both sides by multiplying with 3122 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3123 // the division and, with it, the need for any floating point 3124 // arithmetic. 3125 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3126 static_cast<uint64_t>(B.ObjectSize); 3127 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3128 static_cast<uint64_t>(A.ObjectSize); 3129 3130 // If the two densities are equal, prioritize highest alignment 3131 // objects. This allows for similar alignment objects 3132 // to be packed together (given the same density). 3133 // There's room for improvement here, also, since we can pack 3134 // similar alignment (different density) objects next to each 3135 // other to save padding. This will also require further 3136 // complexity/iterations, and the overall gain isn't worth it, 3137 // in general. Something to keep in mind, though. 3138 if (DensityAScaled == DensityBScaled) 3139 return A.ObjectAlignment < B.ObjectAlignment; 3140 3141 return DensityAScaled < DensityBScaled; 3142 } 3143 }; 3144 } // namespace 3145 3146 // Order the symbols in the local stack. 3147 // We want to place the local stack objects in some sort of sensible order. 3148 // The heuristic we use is to try and pack them according to static number 3149 // of uses and size of object in order to minimize code size. 3150 void X86FrameLowering::orderFrameObjects( 3151 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3152 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3153 3154 // Don't waste time if there's nothing to do. 3155 if (ObjectsToAllocate.empty()) 3156 return; 3157 3158 // Create an array of all MFI objects. We won't need all of these 3159 // objects, but we're going to create a full array of them to make 3160 // it easier to index into when we're counting "uses" down below. 3161 // We want to be able to easily/cheaply access an object by simply 3162 // indexing into it, instead of having to search for it every time. 3163 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3164 3165 // Walk the objects we care about and mark them as such in our working 3166 // struct. 3167 for (auto &Obj : ObjectsToAllocate) { 3168 SortingObjects[Obj].IsValid = true; 3169 SortingObjects[Obj].ObjectIndex = Obj; 3170 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj); 3171 // Set the size. 3172 int ObjectSize = MFI.getObjectSize(Obj); 3173 if (ObjectSize == 0) 3174 // Variable size. Just use 4. 3175 SortingObjects[Obj].ObjectSize = 4; 3176 else 3177 SortingObjects[Obj].ObjectSize = ObjectSize; 3178 } 3179 3180 // Count the number of uses for each object. 3181 for (auto &MBB : MF) { 3182 for (auto &MI : MBB) { 3183 if (MI.isDebugInstr()) 3184 continue; 3185 for (const MachineOperand &MO : MI.operands()) { 3186 // Check to see if it's a local stack symbol. 3187 if (!MO.isFI()) 3188 continue; 3189 int Index = MO.getIndex(); 3190 // Check to see if it falls within our range, and is tagged 3191 // to require ordering. 3192 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3193 SortingObjects[Index].IsValid) 3194 SortingObjects[Index].ObjectNumUses++; 3195 } 3196 } 3197 } 3198 3199 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3200 // info). 3201 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3202 3203 // Now modify the original list to represent the final order that 3204 // we want. The order will depend on whether we're going to access them 3205 // from the stack pointer or the frame pointer. For SP, the list should 3206 // end up with the END containing objects that we want with smaller offsets. 3207 // For FP, it should be flipped. 3208 int i = 0; 3209 for (auto &Obj : SortingObjects) { 3210 // All invalid items are sorted at the end, so it's safe to stop. 3211 if (!Obj.IsValid) 3212 break; 3213 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3214 } 3215 3216 // Flip it if we're accessing off of the FP. 3217 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3218 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3219 } 3220 3221 3222 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3223 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3224 unsigned Offset = 16; 3225 // RBP is immediately pushed. 3226 Offset += SlotSize; 3227 // All callee-saved registers are then pushed. 3228 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3229 // Every funclet allocates enough stack space for the largest outgoing call. 3230 Offset += getWinEHFuncletFrameSize(MF); 3231 return Offset; 3232 } 3233 3234 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3235 MachineFunction &MF, RegScavenger *RS) const { 3236 // Mark the function as not having WinCFI. We will set it back to true in 3237 // emitPrologue if it gets called and emits CFI. 3238 MF.setHasWinCFI(false); 3239 3240 // If this function isn't doing Win64-style C++ EH, we don't need to do 3241 // anything. 3242 const Function &F = MF.getFunction(); 3243 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3244 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3245 return; 3246 3247 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3248 // relative to RSP after the prologue. Find the offset of the last fixed 3249 // object, so that we can allocate a slot immediately following it. If there 3250 // were no fixed objects, use offset -SlotSize, which is immediately after the 3251 // return address. Fixed objects have negative frame indices. 3252 MachineFrameInfo &MFI = MF.getFrameInfo(); 3253 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3254 int64_t MinFixedObjOffset = -SlotSize; 3255 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3256 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3257 3258 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3259 for (WinEHHandlerType &H : TBME.HandlerArray) { 3260 int FrameIndex = H.CatchObj.FrameIndex; 3261 if (FrameIndex != INT_MAX) { 3262 // Ensure alignment. 3263 unsigned Align = MFI.getObjectAlignment(FrameIndex); 3264 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3265 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3266 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3267 } 3268 } 3269 } 3270 3271 // Ensure alignment. 3272 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3273 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3274 int UnwindHelpFI = 3275 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3276 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3277 3278 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3279 // other frame setup instructions. 3280 MachineBasicBlock &MBB = MF.front(); 3281 auto MBBI = MBB.begin(); 3282 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3283 ++MBBI; 3284 3285 DebugLoc DL = MBB.findDebugLoc(MBBI); 3286 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3287 UnwindHelpFI) 3288 .addImm(-2); 3289 } 3290 3291 const ReturnProtectorLowering *X86FrameLowering::getReturnProtector() const { 3292 return &RPL; 3293 } 3294