1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/AsmPrinter.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/MC/MCContext.h" 50 #include "llvm/MC/MCDirectives.h" 51 #include "llvm/MC/MCExpr.h" 52 #include "llvm/MC/MCInst.h" 53 #include "llvm/MC/MCInstBuilder.h" 54 #include "llvm/MC/MCSectionELF.h" 55 #include "llvm/MC/MCSectionXCOFF.h" 56 #include "llvm/MC/MCStreamer.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/MCSymbolELF.h" 59 #include "llvm/MC/MCSymbolXCOFF.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/Error.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/Process.h" 67 #include "llvm/Support/TargetRegistry.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Transforms/Utils/ModuleUtils.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <memory> 75 #include <new> 76 77 using namespace llvm; 78 using namespace llvm::XCOFF; 79 80 #define DEBUG_TYPE "asmprinter" 81 82 static cl::opt<bool> EnableSSPCanaryBitInTB( 83 "aix-ssp-tb-bit", cl::init(false), 84 cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden); 85 86 // Specialize DenseMapInfo to allow 87 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap. 88 // This specialization is needed here because that type is used as keys in the 89 // map representing TOC entries. 90 namespace llvm { 91 template <> 92 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> { 93 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>; 94 95 static inline TOCKey getEmptyKey() { 96 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None}; 97 } 98 static inline TOCKey getTombstoneKey() { 99 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid}; 100 } 101 static unsigned getHashValue(const TOCKey &PairVal) { 102 return detail::combineHashValue( 103 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first), 104 DenseMapInfo<int>::getHashValue(PairVal.second)); 105 } 106 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; } 107 }; 108 } // end namespace llvm 109 110 namespace { 111 112 class PPCAsmPrinter : public AsmPrinter { 113 protected: 114 // For TLS on AIX, we need to be able to identify TOC entries of specific 115 // VariantKind so we can add the right relocations when we generate the 116 // entries. So each entry is represented by a pair of MCSymbol and 117 // VariantKind. For example, we need to be able to identify the following 118 // entry as a TLSGD entry so we can add the @m relocation: 119 // .tc .i[TC],i[TL]@m 120 // By default, VK_None is used for the VariantKind. 121 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>, 122 MCSymbol *> 123 TOC; 124 const PPCSubtarget *Subtarget = nullptr; 125 StackMaps SM; 126 127 public: 128 explicit PPCAsmPrinter(TargetMachine &TM, 129 std::unique_ptr<MCStreamer> Streamer) 130 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 131 132 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 133 134 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, 135 MCSymbolRefExpr::VariantKind Kind = 136 MCSymbolRefExpr::VariantKind::VK_None); 137 138 bool doInitialization(Module &M) override { 139 if (!TOC.empty()) 140 TOC.clear(); 141 return AsmPrinter::doInitialization(M); 142 } 143 144 void emitInstruction(const MachineInstr *MI) override; 145 146 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 147 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 148 /// The \p MI would be INLINEASM ONLY. 149 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 150 151 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 152 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 153 const char *ExtraCode, raw_ostream &O) override; 154 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 155 const char *ExtraCode, raw_ostream &O) override; 156 157 void emitEndOfAsmFile(Module &M) override; 158 159 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 160 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 161 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 162 bool runOnMachineFunction(MachineFunction &MF) override { 163 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 164 bool Changed = AsmPrinter::runOnMachineFunction(MF); 165 emitXRayTable(); 166 return Changed; 167 } 168 }; 169 170 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 171 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 172 public: 173 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 174 std::unique_ptr<MCStreamer> Streamer) 175 : PPCAsmPrinter(TM, std::move(Streamer)) {} 176 177 StringRef getPassName() const override { 178 return "Linux PPC Assembly Printer"; 179 } 180 181 void emitStartOfAsmFile(Module &M) override; 182 void emitEndOfAsmFile(Module &) override; 183 184 void emitFunctionEntryLabel() override; 185 186 void emitFunctionBodyStart() override; 187 void emitFunctionBodyEnd() override; 188 void emitInstruction(const MachineInstr *MI) override; 189 }; 190 191 class PPCAIXAsmPrinter : public PPCAsmPrinter { 192 private: 193 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 194 /// linkage for them in AIX. 195 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 196 197 /// A format indicator and unique trailing identifier to form part of the 198 /// sinit/sterm function names. 199 std::string FormatIndicatorAndUniqueModId; 200 201 // Record a list of GlobalAlias associated with a GlobalObject. 202 // This is used for AIX's extra-label-at-definition aliasing strategy. 203 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 204 GOAliasMap; 205 206 uint16_t getNumberOfVRSaved(); 207 void emitTracebackTable(); 208 209 SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars; 210 211 void emitGlobalVariableHelper(const GlobalVariable *); 212 213 public: 214 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 215 : PPCAsmPrinter(TM, std::move(Streamer)) { 216 if (MAI->isLittleEndian()) 217 report_fatal_error( 218 "cannot create AIX PPC Assembly Printer for a little-endian target"); 219 } 220 221 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 222 223 bool doInitialization(Module &M) override; 224 225 void emitXXStructorList(const DataLayout &DL, const Constant *List, 226 bool IsCtor) override; 227 228 void SetupMachineFunction(MachineFunction &MF) override; 229 230 void emitGlobalVariable(const GlobalVariable *GV) override; 231 232 void emitFunctionDescriptor() override; 233 234 void emitFunctionEntryLabel() override; 235 236 void emitFunctionBodyEnd() override; 237 238 void emitEndOfAsmFile(Module &) override; 239 240 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 241 242 void emitInstruction(const MachineInstr *MI) override; 243 244 bool doFinalization(Module &M) override; 245 246 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override; 247 }; 248 249 } // end anonymous namespace 250 251 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 252 raw_ostream &O) { 253 // Computing the address of a global symbol, not calling it. 254 const GlobalValue *GV = MO.getGlobal(); 255 getSymbol(GV)->print(O, MAI); 256 printOffset(MO.getOffset(), O); 257 } 258 259 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 260 raw_ostream &O) { 261 const DataLayout &DL = getDataLayout(); 262 const MachineOperand &MO = MI->getOperand(OpNo); 263 264 switch (MO.getType()) { 265 case MachineOperand::MO_Register: { 266 // The MI is INLINEASM ONLY and UseVSXReg is always false. 267 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 268 269 // Linux assembler (Others?) does not take register mnemonics. 270 // FIXME - What about special registers used in mfspr/mtspr? 271 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 272 return; 273 } 274 case MachineOperand::MO_Immediate: 275 O << MO.getImm(); 276 return; 277 278 case MachineOperand::MO_MachineBasicBlock: 279 MO.getMBB()->getSymbol()->print(O, MAI); 280 return; 281 case MachineOperand::MO_ConstantPoolIndex: 282 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 283 << MO.getIndex(); 284 return; 285 case MachineOperand::MO_BlockAddress: 286 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 287 return; 288 case MachineOperand::MO_GlobalAddress: { 289 PrintSymbolOperand(MO, O); 290 return; 291 } 292 293 default: 294 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 295 return; 296 } 297 } 298 299 /// PrintAsmOperand - Print out an operand for an inline asm expression. 300 /// 301 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 302 const char *ExtraCode, raw_ostream &O) { 303 // Does this asm operand have a single letter operand modifier? 304 if (ExtraCode && ExtraCode[0]) { 305 if (ExtraCode[1] != 0) return true; // Unknown modifier. 306 307 switch (ExtraCode[0]) { 308 default: 309 // See if this is a generic print operand 310 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 311 case 'L': // Write second word of DImode reference. 312 // Verify that this operand has two consecutive registers. 313 if (!MI->getOperand(OpNo).isReg() || 314 OpNo+1 == MI->getNumOperands() || 315 !MI->getOperand(OpNo+1).isReg()) 316 return true; 317 ++OpNo; // Return the high-part. 318 break; 319 case 'I': 320 // Write 'i' if an integer constant, otherwise nothing. Used to print 321 // addi vs add, etc. 322 if (MI->getOperand(OpNo).isImm()) 323 O << "i"; 324 return false; 325 case 'x': 326 if(!MI->getOperand(OpNo).isReg()) 327 return true; 328 // This operand uses VSX numbering. 329 // If the operand is a VMX register, convert it to a VSX register. 330 Register Reg = MI->getOperand(OpNo).getReg(); 331 if (PPCInstrInfo::isVRRegister(Reg)) 332 Reg = PPC::VSX32 + (Reg - PPC::V0); 333 else if (PPCInstrInfo::isVFRegister(Reg)) 334 Reg = PPC::VSX32 + (Reg - PPC::VF0); 335 const char *RegName; 336 RegName = PPCInstPrinter::getRegisterName(Reg); 337 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 338 O << RegName; 339 return false; 340 } 341 } 342 343 printOperand(MI, OpNo, O); 344 return false; 345 } 346 347 // At the moment, all inline asm memory operands are a single register. 348 // In any case, the output of this routine should always be just one 349 // assembler operand. 350 351 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 352 const char *ExtraCode, 353 raw_ostream &O) { 354 if (ExtraCode && ExtraCode[0]) { 355 if (ExtraCode[1] != 0) return true; // Unknown modifier. 356 357 switch (ExtraCode[0]) { 358 default: return true; // Unknown modifier. 359 case 'L': // A memory reference to the upper word of a double word op. 360 O << getDataLayout().getPointerSize() << "("; 361 printOperand(MI, OpNo, O); 362 O << ")"; 363 return false; 364 case 'y': // A memory reference for an X-form instruction 365 O << "0, "; 366 printOperand(MI, OpNo, O); 367 return false; 368 case 'I': 369 // Write 'i' if an integer constant, otherwise nothing. Used to print 370 // addi vs add, etc. 371 if (MI->getOperand(OpNo).isImm()) 372 O << "i"; 373 return false; 374 case 'U': // Print 'u' for update form. 375 case 'X': // Print 'x' for indexed form. 376 // FIXME: Currently for PowerPC memory operands are always loaded 377 // into a register, so we never get an update or indexed form. 378 // This is bad even for offset forms, since even if we know we 379 // have a value in -16(r1), we will generate a load into r<n> 380 // and then load from 0(r<n>). Until that issue is fixed, 381 // tolerate 'U' and 'X' but don't output anything. 382 assert(MI->getOperand(OpNo).isReg()); 383 return false; 384 } 385 } 386 387 assert(MI->getOperand(OpNo).isReg()); 388 O << "0("; 389 printOperand(MI, OpNo, O); 390 O << ")"; 391 return false; 392 } 393 394 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 395 /// exists for it. If not, create one. Then return a symbol that references 396 /// the TOC entry. 397 MCSymbol * 398 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, 399 MCSymbolRefExpr::VariantKind Kind) { 400 MCSymbol *&TOCEntry = TOC[{Sym, Kind}]; 401 if (!TOCEntry) 402 TOCEntry = createTempSymbol("C"); 403 return TOCEntry; 404 } 405 406 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 407 emitStackMaps(SM); 408 } 409 410 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 411 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 412 413 auto &Ctx = OutStreamer->getContext(); 414 MCSymbol *MILabel = Ctx.createTempSymbol(); 415 OutStreamer->emitLabel(MILabel); 416 417 SM.recordStackMap(*MILabel, MI); 418 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 419 420 // Scan ahead to trim the shadow. 421 const MachineBasicBlock &MBB = *MI.getParent(); 422 MachineBasicBlock::const_iterator MII(MI); 423 ++MII; 424 while (NumNOPBytes > 0) { 425 if (MII == MBB.end() || MII->isCall() || 426 MII->getOpcode() == PPC::DBG_VALUE || 427 MII->getOpcode() == TargetOpcode::PATCHPOINT || 428 MII->getOpcode() == TargetOpcode::STACKMAP) 429 break; 430 ++MII; 431 NumNOPBytes -= 4; 432 } 433 434 // Emit nops. 435 for (unsigned i = 0; i < NumNOPBytes; i += 4) 436 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 437 } 438 439 // Lower a patchpoint of the form: 440 // [<def>], <id>, <numBytes>, <target>, <numArgs> 441 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 442 auto &Ctx = OutStreamer->getContext(); 443 MCSymbol *MILabel = Ctx.createTempSymbol(); 444 OutStreamer->emitLabel(MILabel); 445 446 SM.recordPatchPoint(*MILabel, MI); 447 PatchPointOpers Opers(&MI); 448 449 unsigned EncodedBytes = 0; 450 const MachineOperand &CalleeMO = Opers.getCallTarget(); 451 452 if (CalleeMO.isImm()) { 453 int64_t CallTarget = CalleeMO.getImm(); 454 if (CallTarget) { 455 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 456 "High 16 bits of call target should be zero."); 457 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 458 EncodedBytes = 0; 459 // Materialize the jump address: 460 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 461 .addReg(ScratchReg) 462 .addImm((CallTarget >> 32) & 0xFFFF)); 463 ++EncodedBytes; 464 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 465 .addReg(ScratchReg) 466 .addReg(ScratchReg) 467 .addImm(32).addImm(16)); 468 ++EncodedBytes; 469 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 470 .addReg(ScratchReg) 471 .addReg(ScratchReg) 472 .addImm((CallTarget >> 16) & 0xFFFF)); 473 ++EncodedBytes; 474 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 475 .addReg(ScratchReg) 476 .addReg(ScratchReg) 477 .addImm(CallTarget & 0xFFFF)); 478 479 // Save the current TOC pointer before the remote call. 480 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 481 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 482 .addReg(PPC::X2) 483 .addImm(TOCSaveOffset) 484 .addReg(PPC::X1)); 485 ++EncodedBytes; 486 487 // If we're on ELFv1, then we need to load the actual function pointer 488 // from the function descriptor. 489 if (!Subtarget->isELFv2ABI()) { 490 // Load the new TOC pointer and the function address, but not r11 491 // (needing this is rare, and loading it here would prevent passing it 492 // via a 'nest' parameter. 493 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 494 .addReg(PPC::X2) 495 .addImm(8) 496 .addReg(ScratchReg)); 497 ++EncodedBytes; 498 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 499 .addReg(ScratchReg) 500 .addImm(0) 501 .addReg(ScratchReg)); 502 ++EncodedBytes; 503 } 504 505 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 506 .addReg(ScratchReg)); 507 ++EncodedBytes; 508 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 509 ++EncodedBytes; 510 511 // Restore the TOC pointer after the call. 512 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 513 .addReg(PPC::X2) 514 .addImm(TOCSaveOffset) 515 .addReg(PPC::X1)); 516 ++EncodedBytes; 517 } 518 } else if (CalleeMO.isGlobal()) { 519 const GlobalValue *GValue = CalleeMO.getGlobal(); 520 MCSymbol *MOSymbol = getSymbol(GValue); 521 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 522 523 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 524 .addExpr(SymVar)); 525 EncodedBytes += 2; 526 } 527 528 // Each instruction is 4 bytes. 529 EncodedBytes *= 4; 530 531 // Emit padding. 532 unsigned NumBytes = Opers.getNumPatchBytes(); 533 assert(NumBytes >= EncodedBytes && 534 "Patchpoint can't request size less than the length of a call."); 535 assert((NumBytes - EncodedBytes) % 4 == 0 && 536 "Invalid number of NOP bytes requested!"); 537 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 538 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 539 } 540 541 /// This helper function creates the TlsGetAddr MCSymbol for AIX. We will 542 /// create the csect and use the qual-name symbol instead of creating just the 543 /// external symbol. 544 static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx) { 545 return Ctx 546 .getXCOFFSection(".__tls_get_addr", SectionKind::getText(), 547 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)) 548 ->getQualNameSymbol(); 549 } 550 551 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 552 /// call to __tls_get_addr to the current output stream. 553 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 554 MCSymbolRefExpr::VariantKind VK) { 555 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 556 unsigned Opcode = PPC::BL8_NOP_TLS; 557 558 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 559 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 560 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 561 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 562 Opcode = PPC::BL8_NOTOC_TLS; 563 } 564 const Module *M = MF->getFunction().getParent(); 565 566 assert(MI->getOperand(0).isReg() && 567 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 568 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 569 "GETtls[ld]ADDR[32] must define GPR3"); 570 assert(MI->getOperand(1).isReg() && 571 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 572 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 573 "GETtls[ld]ADDR[32] must read GPR3"); 574 575 if (Subtarget->isAIXABI()) { 576 // On AIX, the variable offset should already be in R4 and the region handle 577 // should already be in R3. 578 // For TLSGD, which currently is the only supported access model, we only 579 // need to generate an absolute branch to .__tls_get_addr. 580 Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4; 581 (void)VarOffsetReg; 582 assert(MI->getOperand(2).isReg() && 583 MI->getOperand(2).getReg() == VarOffsetReg && 584 "GETtls[ld]ADDR[32] must read GPR4"); 585 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext); 586 const MCExpr *TlsRef = MCSymbolRefExpr::create( 587 TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext); 588 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef)); 589 return; 590 } 591 592 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr"); 593 594 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 595 Kind = MCSymbolRefExpr::VK_PLT; 596 597 const MCExpr *TlsRef = 598 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 599 600 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 601 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 602 M->getPICLevel() == PICLevel::BigPIC) 603 TlsRef = MCBinaryExpr::createAdd( 604 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 605 const MachineOperand &MO = MI->getOperand(2); 606 const GlobalValue *GValue = MO.getGlobal(); 607 MCSymbol *MOSymbol = getSymbol(GValue); 608 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 609 EmitToStreamer(*OutStreamer, 610 MCInstBuilder(Subtarget->isPPC64() ? Opcode 611 : (unsigned)PPC::BL_TLS) 612 .addExpr(TlsRef) 613 .addExpr(SymVar)); 614 } 615 616 /// Map a machine operand for a TOC pseudo-machine instruction to its 617 /// corresponding MCSymbol. 618 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 619 AsmPrinter &AP) { 620 switch (MO.getType()) { 621 case MachineOperand::MO_GlobalAddress: 622 return AP.getSymbol(MO.getGlobal()); 623 case MachineOperand::MO_ConstantPoolIndex: 624 return AP.GetCPISymbol(MO.getIndex()); 625 case MachineOperand::MO_JumpTableIndex: 626 return AP.GetJTISymbol(MO.getIndex()); 627 case MachineOperand::MO_BlockAddress: 628 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 629 default: 630 llvm_unreachable("Unexpected operand type to get symbol."); 631 } 632 } 633 634 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 635 /// the current output stream. 636 /// 637 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 638 MCInst TmpInst; 639 const bool IsPPC64 = Subtarget->isPPC64(); 640 const bool IsAIX = Subtarget->isAIXABI(); 641 const Module *M = MF->getFunction().getParent(); 642 PICLevel::Level PL = M->getPICLevel(); 643 644 #ifndef NDEBUG 645 // Validate that SPE and FPU are mutually exclusive in codegen 646 if (!MI->isInlineAsm()) { 647 for (const MachineOperand &MO: MI->operands()) { 648 if (MO.isReg()) { 649 Register Reg = MO.getReg(); 650 if (Subtarget->hasSPE()) { 651 if (PPC::F4RCRegClass.contains(Reg) || 652 PPC::F8RCRegClass.contains(Reg) || 653 PPC::VFRCRegClass.contains(Reg) || 654 PPC::VRRCRegClass.contains(Reg) || 655 PPC::VSFRCRegClass.contains(Reg) || 656 PPC::VSSRCRegClass.contains(Reg) 657 ) 658 llvm_unreachable("SPE targets cannot have FPRegs!"); 659 } else { 660 if (PPC::SPERCRegClass.contains(Reg)) 661 llvm_unreachable("SPE register found in FPU-targeted code!"); 662 } 663 } 664 } 665 } 666 #endif 667 668 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 669 ptrdiff_t OriginalOffset) { 670 // Apply an offset to the TOC-based expression such that the adjusted 671 // notional offset from the TOC base (to be encoded into the instruction's D 672 // or DS field) is the signed 16-bit truncation of the original notional 673 // offset from the TOC base. 674 // This is consistent with the treatment used both by XL C/C++ and 675 // by AIX ld -r. 676 ptrdiff_t Adjustment = 677 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 678 return MCBinaryExpr::createAdd( 679 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 680 }; 681 682 auto getTOCEntryLoadingExprForXCOFF = 683 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 684 this](const MCSymbol *MOSymbol, const MCExpr *Expr, 685 MCSymbolRefExpr::VariantKind VK = 686 MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * { 687 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 688 const auto TOCEntryIter = TOC.find({MOSymbol, VK}); 689 assert(TOCEntryIter != TOC.end() && 690 "Could not find the TOC entry for this symbol."); 691 const ptrdiff_t EntryDistanceFromTOCBase = 692 (TOCEntryIter - TOC.begin()) * EntryByteSize; 693 constexpr int16_t PositiveTOCRange = INT16_MAX; 694 695 if (EntryDistanceFromTOCBase > PositiveTOCRange) 696 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 697 698 return Expr; 699 }; 700 auto GetVKForMO = [&](const MachineOperand &MO) { 701 // For GD TLS access on AIX, we have two TOC entries for the symbol (one for 702 // the variable offset and the other for the region handle). They are 703 // differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG. 704 if (MO.getTargetFlags() & PPCII::MO_TLSGDM_FLAG) 705 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM; 706 if (MO.getTargetFlags() & PPCII::MO_TLSGD_FLAG) 707 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD; 708 return MCSymbolRefExpr::VariantKind::VK_None; 709 }; 710 711 // Lower multi-instruction pseudo operations. 712 switch (MI->getOpcode()) { 713 default: break; 714 case TargetOpcode::DBG_VALUE: 715 llvm_unreachable("Should be handled target independently"); 716 case TargetOpcode::STACKMAP: 717 return LowerSTACKMAP(SM, *MI); 718 case TargetOpcode::PATCHPOINT: 719 return LowerPATCHPOINT(SM, *MI); 720 721 case PPC::MoveGOTtoLR: { 722 // Transform %lr = MoveGOTtoLR 723 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 724 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 725 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 726 // blrl 727 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 728 MCSymbol *GOTSymbol = 729 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 730 const MCExpr *OffsExpr = 731 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 732 MCSymbolRefExpr::VK_PPC_LOCAL, 733 OutContext), 734 MCConstantExpr::create(4, OutContext), 735 OutContext); 736 737 // Emit the 'bl'. 738 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 739 return; 740 } 741 case PPC::MovePCtoLR: 742 case PPC::MovePCtoLR8: { 743 // Transform %lr = MovePCtoLR 744 // Into this, where the label is the PIC base: 745 // bl L1$pb 746 // L1$pb: 747 MCSymbol *PICBase = MF->getPICBaseSymbol(); 748 749 // Emit the 'bl'. 750 EmitToStreamer(*OutStreamer, 751 MCInstBuilder(PPC::BL) 752 // FIXME: We would like an efficient form for this, so we 753 // don't have to do a lot of extra uniquing. 754 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 755 756 // Emit the label. 757 OutStreamer->emitLabel(PICBase); 758 return; 759 } 760 case PPC::UpdateGBR: { 761 // Transform %rd = UpdateGBR(%rt, %ri) 762 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 763 // add %rd, %rt, %ri 764 // or into (if secure plt mode is on): 765 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 766 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 767 // Get the offset from the GOT Base Register to the GOT 768 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 769 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 770 unsigned PICR = TmpInst.getOperand(0).getReg(); 771 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 772 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 773 : ".LTOC"); 774 const MCExpr *PB = 775 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 776 777 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 778 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 779 780 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 781 EmitToStreamer( 782 *OutStreamer, 783 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 784 785 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 786 EmitToStreamer( 787 *OutStreamer, 788 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 789 return; 790 } else { 791 MCSymbol *PICOffset = 792 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 793 TmpInst.setOpcode(PPC::LWZ); 794 const MCExpr *Exp = 795 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 796 const MCExpr *PB = 797 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 798 MCSymbolRefExpr::VK_None, 799 OutContext); 800 const MCOperand TR = TmpInst.getOperand(1); 801 const MCOperand PICR = TmpInst.getOperand(0); 802 803 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 804 TmpInst.getOperand(1) = 805 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 806 TmpInst.getOperand(0) = TR; 807 TmpInst.getOperand(2) = PICR; 808 EmitToStreamer(*OutStreamer, TmpInst); 809 810 TmpInst.setOpcode(PPC::ADD4); 811 TmpInst.getOperand(0) = PICR; 812 TmpInst.getOperand(1) = TR; 813 TmpInst.getOperand(2) = PICR; 814 EmitToStreamer(*OutStreamer, TmpInst); 815 return; 816 } 817 } 818 case PPC::RETGUARD_LOAD_PC: { 819 unsigned DEST = MI->getOperand(0).getReg(); 820 unsigned LR = MI->getOperand(1).getReg(); 821 MCSymbol *HereSym = MI->getOperand(2).getMCSymbol(); 822 823 unsigned MTLR = PPC::MTLR; 824 unsigned MFLR = PPC::MFLR; 825 unsigned BL = PPC::BL; 826 if (Subtarget->isPPC64()) { 827 MTLR = PPC::MTLR8; 828 MFLR = PPC::MFLR8; 829 BL = PPC::BL8; 830 } 831 832 // Cache the current LR 833 EmitToStreamer(*OutStreamer, MCInstBuilder(MFLR) 834 .addReg(LR)); 835 836 // Create the BL forward 837 const MCExpr *HereExpr = MCSymbolRefExpr::create(HereSym, OutContext); 838 EmitToStreamer(*OutStreamer, MCInstBuilder(BL) 839 .addExpr(HereExpr)); 840 OutStreamer->emitLabel(HereSym); 841 842 // Grab the result 843 EmitToStreamer(*OutStreamer, MCInstBuilder(MFLR) 844 .addReg(DEST)); 845 // Restore LR 846 EmitToStreamer(*OutStreamer, MCInstBuilder(MTLR) 847 .addReg(LR)); 848 return; 849 } 850 case PPC::RETGUARD_LOAD_GOT: { 851 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 852 StringRef GOTName = (PL == PICLevel::SmallPIC ? 853 "_GLOBAL_OFFSET_TABLE_" : ".LTOC"); 854 unsigned DEST = MI->getOperand(0).getReg(); 855 unsigned HERE = MI->getOperand(1).getReg(); 856 MCSymbol *HereSym = MI->getOperand(2).getMCSymbol(); 857 MCSymbol *GOTSym = OutContext.getOrCreateSymbol(GOTName); 858 const MCExpr *HereExpr = MCSymbolRefExpr::create(HereSym, OutContext); 859 const MCExpr *GOTExpr = MCSymbolRefExpr::create(GOTSym, OutContext); 860 861 // Get offset from Here to GOT 862 const MCExpr *GOTDeltaExpr = 863 MCBinaryExpr::createSub(GOTExpr, HereExpr, OutContext); 864 const MCExpr *GOTDeltaHi = 865 PPCMCExpr::createHa(GOTDeltaExpr, OutContext); 866 const MCExpr *GOTDeltaLo = 867 PPCMCExpr::createLo(GOTDeltaExpr, OutContext); 868 869 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 870 .addReg(DEST) 871 .addReg(HERE) 872 .addExpr(GOTDeltaHi)); 873 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 874 .addReg(DEST) 875 .addReg(DEST) 876 .addExpr(GOTDeltaLo)); 877 } 878 return; 879 } 880 case PPC::RETGUARD_LOAD_COOKIE: { 881 unsigned DEST = MI->getOperand(0).getReg(); 882 MCSymbol *CookieSym = getSymbol(MI->getOperand(1).getGlobal()); 883 const MCExpr *CookieExprHa = MCSymbolRefExpr::create( 884 CookieSym, MCSymbolRefExpr::VK_PPC_HA, OutContext); 885 const MCExpr *CookieExprLo = MCSymbolRefExpr::create( 886 CookieSym, MCSymbolRefExpr::VK_PPC_LO, OutContext); 887 888 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LIS) 889 .addReg(DEST) 890 .addExpr(CookieExprHa)); 891 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 892 .addReg(DEST) 893 .addExpr(CookieExprLo) 894 .addReg(DEST)); 895 return; 896 } 897 case PPC::LWZtoc: { 898 // Transform %rN = LWZtoc @op1, %r2 899 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 900 901 // Change the opcode to LWZ. 902 TmpInst.setOpcode(PPC::LWZ); 903 904 const MachineOperand &MO = MI->getOperand(1); 905 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 906 "Invalid operand for LWZtoc."); 907 908 // Map the operand to its corresponding MCSymbol. 909 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 910 911 // Create a reference to the GOT entry for the symbol. The GOT entry will be 912 // synthesized later. 913 if (PL == PICLevel::SmallPIC && !IsAIX) { 914 const MCExpr *Exp = 915 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 916 OutContext); 917 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 918 EmitToStreamer(*OutStreamer, TmpInst); 919 return; 920 } 921 922 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 923 924 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 925 // storage allocated in the TOC which contains the address of 926 // 'MOSymbol'. Said TOC entry will be synthesized later. 927 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 928 const MCExpr *Exp = 929 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 930 931 // AIX uses the label directly as the lwz displacement operand for 932 // references into the toc section. The displacement value will be generated 933 // relative to the toc-base. 934 if (IsAIX) { 935 assert( 936 TM.getCodeModel() == CodeModel::Small && 937 "This pseudo should only be selected for 32-bit small code model."); 938 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK); 939 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 940 941 // Print MO for better readability 942 if (isVerbose()) 943 OutStreamer->GetCommentOS() << MO << '\n'; 944 EmitToStreamer(*OutStreamer, TmpInst); 945 return; 946 } 947 948 // Create an explicit subtract expression between the local symbol and 949 // '.LTOC' to manifest the toc-relative offset. 950 const MCExpr *PB = MCSymbolRefExpr::create( 951 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 952 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 953 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 954 EmitToStreamer(*OutStreamer, TmpInst); 955 return; 956 } 957 case PPC::ADDItoc: { 958 assert(IsAIX && TM.getCodeModel() == CodeModel::Small && 959 "Operand only valid in AIX 32 bit mode"); 960 961 // Transform %rN = ADDItoc @op1, %r2. 962 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 963 964 // Change the opcode to load address. 965 TmpInst.setOpcode(PPC::LA); 966 967 const MachineOperand &MO = MI->getOperand(1); 968 assert(MO.isGlobal() && "Invalid operand for ADDItoc."); 969 970 // Map the operand to its corresponding MCSymbol. 971 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 972 973 const MCExpr *Exp = 974 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext); 975 976 TmpInst.getOperand(1) = TmpInst.getOperand(2); 977 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 978 EmitToStreamer(*OutStreamer, TmpInst); 979 return; 980 } 981 case PPC::LDtocJTI: 982 case PPC::LDtocCPT: 983 case PPC::LDtocBA: 984 case PPC::LDtoc: { 985 // Transform %x3 = LDtoc @min1, %x2 986 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 987 988 // Change the opcode to LD. 989 TmpInst.setOpcode(PPC::LD); 990 991 const MachineOperand &MO = MI->getOperand(1); 992 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 993 "Invalid operand!"); 994 995 // Map the operand to its corresponding MCSymbol. 996 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 997 998 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 999 1000 // Map the machine operand to its corresponding MCSymbol, then map the 1001 // global address operand to be a reference to the TOC entry we will 1002 // synthesize later. 1003 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 1004 1005 MCSymbolRefExpr::VariantKind VKExpr = 1006 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 1007 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext); 1008 TmpInst.getOperand(1) = MCOperand::createExpr( 1009 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp); 1010 1011 // Print MO for better readability 1012 if (isVerbose() && IsAIX) 1013 OutStreamer->GetCommentOS() << MO << '\n'; 1014 EmitToStreamer(*OutStreamer, TmpInst); 1015 return; 1016 } 1017 case PPC::ADDIStocHA: { 1018 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 1019 "This pseudo should only be selected for 32-bit large code model on" 1020 " AIX."); 1021 1022 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 1023 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1024 1025 // Change the opcode to ADDIS. 1026 TmpInst.setOpcode(PPC::ADDIS); 1027 1028 const MachineOperand &MO = MI->getOperand(2); 1029 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1030 "Invalid operand for ADDIStocHA."); 1031 1032 // Map the machine operand to its corresponding MCSymbol. 1033 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1034 1035 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1036 1037 // Always use TOC on AIX. Map the global address operand to be a reference 1038 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 1039 // reference the storage allocated in the TOC which contains the address of 1040 // 'MOSymbol'. 1041 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 1042 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 1043 MCSymbolRefExpr::VK_PPC_U, 1044 OutContext); 1045 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1046 EmitToStreamer(*OutStreamer, TmpInst); 1047 return; 1048 } 1049 case PPC::LWZtocL: { 1050 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 1051 "This pseudo should only be selected for 32-bit large code model on" 1052 " AIX."); 1053 1054 // Transform %rd = LWZtocL @sym, %rs. 1055 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1056 1057 // Change the opcode to lwz. 1058 TmpInst.setOpcode(PPC::LWZ); 1059 1060 const MachineOperand &MO = MI->getOperand(1); 1061 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1062 "Invalid operand for LWZtocL."); 1063 1064 // Map the machine operand to its corresponding MCSymbol. 1065 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1066 1067 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1068 1069 // Always use TOC on AIX. Map the global address operand to be a reference 1070 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 1071 // reference the storage allocated in the TOC which contains the address of 1072 // 'MOSymbol'. 1073 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 1074 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 1075 MCSymbolRefExpr::VK_PPC_L, 1076 OutContext); 1077 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1078 EmitToStreamer(*OutStreamer, TmpInst); 1079 return; 1080 } 1081 case PPC::ADDIStocHA8: { 1082 // Transform %xd = ADDIStocHA8 %x2, @sym 1083 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1084 1085 // Change the opcode to ADDIS8. If the global address is the address of 1086 // an external symbol, is a jump table address, is a block address, or is a 1087 // constant pool index with large code model enabled, then generate a TOC 1088 // entry and reference that. Otherwise, reference the symbol directly. 1089 TmpInst.setOpcode(PPC::ADDIS8); 1090 1091 const MachineOperand &MO = MI->getOperand(2); 1092 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1093 "Invalid operand for ADDIStocHA8!"); 1094 1095 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1096 1097 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1098 1099 const bool GlobalToc = 1100 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 1101 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 1102 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 1103 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK); 1104 1105 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 1106 1107 const MCExpr *Exp = 1108 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 1109 1110 if (!MO.isJTI() && MO.getOffset()) 1111 Exp = MCBinaryExpr::createAdd(Exp, 1112 MCConstantExpr::create(MO.getOffset(), 1113 OutContext), 1114 OutContext); 1115 1116 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1117 EmitToStreamer(*OutStreamer, TmpInst); 1118 return; 1119 } 1120 case PPC::LDtocL: { 1121 // Transform %xd = LDtocL @sym, %xs 1122 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1123 1124 // Change the opcode to LD. If the global address is the address of 1125 // an external symbol, is a jump table address, is a block address, or is 1126 // a constant pool index with large code model enabled, then generate a 1127 // TOC entry and reference that. Otherwise, reference the symbol directly. 1128 TmpInst.setOpcode(PPC::LD); 1129 1130 const MachineOperand &MO = MI->getOperand(1); 1131 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 1132 MO.isBlockAddress()) && 1133 "Invalid operand for LDtocL!"); 1134 1135 LLVM_DEBUG(assert( 1136 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 1137 "LDtocL used on symbol that could be accessed directly is " 1138 "invalid. Must match ADDIStocHA8.")); 1139 1140 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1141 1142 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1143 1144 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 1145 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK); 1146 1147 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 1148 const MCExpr *Exp = 1149 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 1150 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1151 EmitToStreamer(*OutStreamer, TmpInst); 1152 return; 1153 } 1154 case PPC::ADDItocL: { 1155 // Transform %xd = ADDItocL %xs, @sym 1156 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1157 1158 // Change the opcode to ADDI8. If the global address is external, then 1159 // generate a TOC entry and reference that. Otherwise, reference the 1160 // symbol directly. 1161 TmpInst.setOpcode(PPC::ADDI8); 1162 1163 const MachineOperand &MO = MI->getOperand(2); 1164 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 1165 1166 LLVM_DEBUG(assert( 1167 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 1168 "Interposable definitions must use indirect access.")); 1169 1170 const MCExpr *Exp = 1171 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 1172 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 1173 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1174 EmitToStreamer(*OutStreamer, TmpInst); 1175 return; 1176 } 1177 case PPC::ADDISgotTprelHA: { 1178 // Transform: %xd = ADDISgotTprelHA %x2, @sym 1179 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1180 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1181 const MachineOperand &MO = MI->getOperand(2); 1182 const GlobalValue *GValue = MO.getGlobal(); 1183 MCSymbol *MOSymbol = getSymbol(GValue); 1184 const MCExpr *SymGotTprel = 1185 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 1186 OutContext); 1187 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1188 .addReg(MI->getOperand(0).getReg()) 1189 .addReg(MI->getOperand(1).getReg()) 1190 .addExpr(SymGotTprel)); 1191 return; 1192 } 1193 case PPC::LDgotTprelL: 1194 case PPC::LDgotTprelL32: { 1195 // Transform %xd = LDgotTprelL @sym, %xs 1196 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1197 1198 // Change the opcode to LD. 1199 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 1200 const MachineOperand &MO = MI->getOperand(1); 1201 const GlobalValue *GValue = MO.getGlobal(); 1202 MCSymbol *MOSymbol = getSymbol(GValue); 1203 const MCExpr *Exp = MCSymbolRefExpr::create( 1204 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 1205 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 1206 OutContext); 1207 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1208 EmitToStreamer(*OutStreamer, TmpInst); 1209 return; 1210 } 1211 1212 case PPC::PPC32PICGOT: { 1213 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1214 MCSymbol *GOTRef = OutContext.createTempSymbol(); 1215 MCSymbol *NextInstr = OutContext.createTempSymbol(); 1216 1217 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1218 // FIXME: We would like an efficient form for this, so we don't have to do 1219 // a lot of extra uniquing. 1220 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1221 const MCExpr *OffsExpr = 1222 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1223 MCSymbolRefExpr::create(GOTRef, OutContext), 1224 OutContext); 1225 OutStreamer->emitLabel(GOTRef); 1226 OutStreamer->emitValue(OffsExpr, 4); 1227 OutStreamer->emitLabel(NextInstr); 1228 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1229 .addReg(MI->getOperand(0).getReg())); 1230 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1231 .addReg(MI->getOperand(1).getReg()) 1232 .addImm(0) 1233 .addReg(MI->getOperand(0).getReg())); 1234 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1235 .addReg(MI->getOperand(0).getReg()) 1236 .addReg(MI->getOperand(1).getReg()) 1237 .addReg(MI->getOperand(0).getReg())); 1238 return; 1239 } 1240 case PPC::PPC32GOT: { 1241 MCSymbol *GOTSymbol = 1242 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1243 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1244 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1245 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1246 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1247 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1248 .addReg(MI->getOperand(0).getReg()) 1249 .addExpr(SymGotTlsL)); 1250 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1251 .addReg(MI->getOperand(0).getReg()) 1252 .addReg(MI->getOperand(0).getReg()) 1253 .addExpr(SymGotTlsHA)); 1254 return; 1255 } 1256 case PPC::ADDIStlsgdHA: { 1257 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1258 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1259 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1260 const MachineOperand &MO = MI->getOperand(2); 1261 const GlobalValue *GValue = MO.getGlobal(); 1262 MCSymbol *MOSymbol = getSymbol(GValue); 1263 const MCExpr *SymGotTlsGD = 1264 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1265 OutContext); 1266 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1267 .addReg(MI->getOperand(0).getReg()) 1268 .addReg(MI->getOperand(1).getReg()) 1269 .addExpr(SymGotTlsGD)); 1270 return; 1271 } 1272 case PPC::ADDItlsgdL: 1273 // Transform: %xd = ADDItlsgdL %xs, @sym 1274 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1275 case PPC::ADDItlsgdL32: { 1276 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1277 // Into: %rd = ADDI %rs, sym@got@tlsgd 1278 const MachineOperand &MO = MI->getOperand(2); 1279 const GlobalValue *GValue = MO.getGlobal(); 1280 MCSymbol *MOSymbol = getSymbol(GValue); 1281 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1282 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1283 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1284 OutContext); 1285 EmitToStreamer(*OutStreamer, 1286 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1287 .addReg(MI->getOperand(0).getReg()) 1288 .addReg(MI->getOperand(1).getReg()) 1289 .addExpr(SymGotTlsGD)); 1290 return; 1291 } 1292 case PPC::GETtlsADDR: 1293 // Transform: %x3 = GETtlsADDR %x3, @sym 1294 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1295 case PPC::GETtlsADDRPCREL: 1296 case PPC::GETtlsADDR32AIX: 1297 case PPC::GETtlsADDR64AIX: 1298 // Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64). 1299 // Into: BLA .__tls_get_addr() 1300 // Unlike on Linux, there is no symbol or relocation needed for this call. 1301 case PPC::GETtlsADDR32: { 1302 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1303 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1304 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1305 return; 1306 } 1307 case PPC::ADDIStlsldHA: { 1308 // Transform: %xd = ADDIStlsldHA %x2, @sym 1309 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1310 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1311 const MachineOperand &MO = MI->getOperand(2); 1312 const GlobalValue *GValue = MO.getGlobal(); 1313 MCSymbol *MOSymbol = getSymbol(GValue); 1314 const MCExpr *SymGotTlsLD = 1315 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1316 OutContext); 1317 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1318 .addReg(MI->getOperand(0).getReg()) 1319 .addReg(MI->getOperand(1).getReg()) 1320 .addExpr(SymGotTlsLD)); 1321 return; 1322 } 1323 case PPC::ADDItlsldL: 1324 // Transform: %xd = ADDItlsldL %xs, @sym 1325 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1326 case PPC::ADDItlsldL32: { 1327 // Transform: %rd = ADDItlsldL32 %rs, @sym 1328 // Into: %rd = ADDI %rs, sym@got@tlsld 1329 const MachineOperand &MO = MI->getOperand(2); 1330 const GlobalValue *GValue = MO.getGlobal(); 1331 MCSymbol *MOSymbol = getSymbol(GValue); 1332 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1333 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1334 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1335 OutContext); 1336 EmitToStreamer(*OutStreamer, 1337 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1338 .addReg(MI->getOperand(0).getReg()) 1339 .addReg(MI->getOperand(1).getReg()) 1340 .addExpr(SymGotTlsLD)); 1341 return; 1342 } 1343 case PPC::GETtlsldADDR: 1344 // Transform: %x3 = GETtlsldADDR %x3, @sym 1345 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1346 case PPC::GETtlsldADDRPCREL: 1347 case PPC::GETtlsldADDR32: { 1348 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1349 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1350 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1351 return; 1352 } 1353 case PPC::ADDISdtprelHA: 1354 // Transform: %xd = ADDISdtprelHA %xs, @sym 1355 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1356 case PPC::ADDISdtprelHA32: { 1357 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1358 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1359 const MachineOperand &MO = MI->getOperand(2); 1360 const GlobalValue *GValue = MO.getGlobal(); 1361 MCSymbol *MOSymbol = getSymbol(GValue); 1362 const MCExpr *SymDtprel = 1363 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1364 OutContext); 1365 EmitToStreamer( 1366 *OutStreamer, 1367 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1368 .addReg(MI->getOperand(0).getReg()) 1369 .addReg(MI->getOperand(1).getReg()) 1370 .addExpr(SymDtprel)); 1371 return; 1372 } 1373 case PPC::PADDIdtprel: { 1374 // Transform: %rd = PADDIdtprel %rs, @sym 1375 // Into: %rd = PADDI8 %rs, sym@dtprel 1376 const MachineOperand &MO = MI->getOperand(2); 1377 const GlobalValue *GValue = MO.getGlobal(); 1378 MCSymbol *MOSymbol = getSymbol(GValue); 1379 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1380 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1381 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1382 .addReg(MI->getOperand(0).getReg()) 1383 .addReg(MI->getOperand(1).getReg()) 1384 .addExpr(SymDtprel)); 1385 return; 1386 } 1387 1388 case PPC::ADDIdtprelL: 1389 // Transform: %xd = ADDIdtprelL %xs, @sym 1390 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1391 case PPC::ADDIdtprelL32: { 1392 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1393 // Into: %rd = ADDI %rs, sym@dtprel@l 1394 const MachineOperand &MO = MI->getOperand(2); 1395 const GlobalValue *GValue = MO.getGlobal(); 1396 MCSymbol *MOSymbol = getSymbol(GValue); 1397 const MCExpr *SymDtprel = 1398 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1399 OutContext); 1400 EmitToStreamer(*OutStreamer, 1401 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1402 .addReg(MI->getOperand(0).getReg()) 1403 .addReg(MI->getOperand(1).getReg()) 1404 .addExpr(SymDtprel)); 1405 return; 1406 } 1407 case PPC::MFOCRF: 1408 case PPC::MFOCRF8: 1409 if (!Subtarget->hasMFOCRF()) { 1410 // Transform: %r3 = MFOCRF %cr7 1411 // Into: %r3 = MFCR ;; cr7 1412 unsigned NewOpcode = 1413 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1414 OutStreamer->AddComment(PPCInstPrinter:: 1415 getRegisterName(MI->getOperand(1).getReg())); 1416 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1417 .addReg(MI->getOperand(0).getReg())); 1418 return; 1419 } 1420 break; 1421 case PPC::MTOCRF: 1422 case PPC::MTOCRF8: 1423 if (!Subtarget->hasMFOCRF()) { 1424 // Transform: %cr7 = MTOCRF %r3 1425 // Into: MTCRF mask, %r3 ;; cr7 1426 unsigned NewOpcode = 1427 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1428 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1429 ->getEncodingValue(MI->getOperand(0).getReg()); 1430 OutStreamer->AddComment(PPCInstPrinter:: 1431 getRegisterName(MI->getOperand(0).getReg())); 1432 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1433 .addImm(Mask) 1434 .addReg(MI->getOperand(1).getReg())); 1435 return; 1436 } 1437 break; 1438 case PPC::LD: 1439 case PPC::STD: 1440 case PPC::LWA_32: 1441 case PPC::LWA: { 1442 // Verify alignment is legal, so we don't create relocations 1443 // that can't be supported. 1444 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1445 const MachineOperand &MO = MI->getOperand(OpNum); 1446 if (MO.isGlobal()) { 1447 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1448 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1449 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1450 } 1451 // Now process the instruction normally. 1452 break; 1453 } 1454 case PPC::PseudoEIEIO: { 1455 EmitToStreamer( 1456 *OutStreamer, 1457 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0)); 1458 EmitToStreamer( 1459 *OutStreamer, 1460 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0)); 1461 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO)); 1462 return; 1463 } 1464 } 1465 1466 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1467 EmitToStreamer(*OutStreamer, TmpInst); 1468 } 1469 1470 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1471 if (!Subtarget->isPPC64()) 1472 return PPCAsmPrinter::emitInstruction(MI); 1473 1474 switch (MI->getOpcode()) { 1475 default: 1476 return PPCAsmPrinter::emitInstruction(MI); 1477 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1478 // .begin: 1479 // b .end # lis 0, FuncId[16..32] 1480 // nop # li 0, FuncId[0..15] 1481 // std 0, -8(1) 1482 // mflr 0 1483 // bl __xray_FunctionEntry 1484 // mtlr 0 1485 // .end: 1486 // 1487 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1488 // of instructions change. 1489 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1490 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1491 OutStreamer->emitLabel(BeginOfSled); 1492 EmitToStreamer(*OutStreamer, 1493 MCInstBuilder(PPC::B).addExpr( 1494 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1495 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1496 EmitToStreamer( 1497 *OutStreamer, 1498 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1499 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1500 EmitToStreamer(*OutStreamer, 1501 MCInstBuilder(PPC::BL8_NOP) 1502 .addExpr(MCSymbolRefExpr::create( 1503 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1504 OutContext))); 1505 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1506 OutStreamer->emitLabel(EndOfSled); 1507 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1508 break; 1509 } 1510 case TargetOpcode::PATCHABLE_RET: { 1511 unsigned RetOpcode = MI->getOperand(0).getImm(); 1512 MCInst RetInst; 1513 RetInst.setOpcode(RetOpcode); 1514 for (const auto &MO : llvm::drop_begin(MI->operands())) { 1515 MCOperand MCOp; 1516 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1517 RetInst.addOperand(MCOp); 1518 } 1519 1520 bool IsConditional; 1521 if (RetOpcode == PPC::BCCLR) { 1522 IsConditional = true; 1523 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1524 RetOpcode == PPC::TCRETURNai8) { 1525 break; 1526 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1527 IsConditional = false; 1528 } else { 1529 EmitToStreamer(*OutStreamer, RetInst); 1530 break; 1531 } 1532 1533 MCSymbol *FallthroughLabel; 1534 if (IsConditional) { 1535 // Before: 1536 // bgtlr cr0 1537 // 1538 // After: 1539 // ble cr0, .end 1540 // .p2align 3 1541 // .begin: 1542 // blr # lis 0, FuncId[16..32] 1543 // nop # li 0, FuncId[0..15] 1544 // std 0, -8(1) 1545 // mflr 0 1546 // bl __xray_FunctionExit 1547 // mtlr 0 1548 // blr 1549 // .end: 1550 // 1551 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1552 // of instructions change. 1553 FallthroughLabel = OutContext.createTempSymbol(); 1554 EmitToStreamer( 1555 *OutStreamer, 1556 MCInstBuilder(PPC::BCC) 1557 .addImm(PPC::InvertPredicate( 1558 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1559 .addReg(MI->getOperand(2).getReg()) 1560 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1561 RetInst = MCInst(); 1562 RetInst.setOpcode(PPC::BLR8); 1563 } 1564 // .p2align 3 1565 // .begin: 1566 // b(lr)? # lis 0, FuncId[16..32] 1567 // nop # li 0, FuncId[0..15] 1568 // std 0, -8(1) 1569 // mflr 0 1570 // bl __xray_FunctionExit 1571 // mtlr 0 1572 // b(lr)? 1573 // 1574 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1575 // of instructions change. 1576 OutStreamer->emitCodeAlignment(8); 1577 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1578 OutStreamer->emitLabel(BeginOfSled); 1579 EmitToStreamer(*OutStreamer, RetInst); 1580 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1581 EmitToStreamer( 1582 *OutStreamer, 1583 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1584 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1585 EmitToStreamer(*OutStreamer, 1586 MCInstBuilder(PPC::BL8_NOP) 1587 .addExpr(MCSymbolRefExpr::create( 1588 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1589 OutContext))); 1590 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1591 EmitToStreamer(*OutStreamer, RetInst); 1592 if (IsConditional) 1593 OutStreamer->emitLabel(FallthroughLabel); 1594 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1595 break; 1596 } 1597 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1598 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1599 case TargetOpcode::PATCHABLE_TAIL_CALL: 1600 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1601 // normal function exit from a tail exit. 1602 llvm_unreachable("Tail call is handled in the normal case. See comments " 1603 "around this assert."); 1604 } 1605 } 1606 1607 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1608 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1609 PPCTargetStreamer *TS = 1610 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1611 1612 if (TS) 1613 TS->emitAbiVersion(2); 1614 } 1615 1616 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1617 !isPositionIndependent()) 1618 return AsmPrinter::emitStartOfAsmFile(M); 1619 1620 if (M.getPICLevel() == PICLevel::SmallPIC) 1621 return AsmPrinter::emitStartOfAsmFile(M); 1622 1623 OutStreamer->SwitchSection(OutContext.getELFSection( 1624 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1625 1626 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1627 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1628 1629 OutStreamer->emitLabel(CurrentPos); 1630 1631 // The GOT pointer points to the middle of the GOT, in order to reference the 1632 // entire 64kB range. 0x8000 is the midpoint. 1633 const MCExpr *tocExpr = 1634 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1635 MCConstantExpr::create(0x8000, OutContext), 1636 OutContext); 1637 1638 OutStreamer->emitAssignment(TOCSym, tocExpr); 1639 1640 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 1641 } 1642 1643 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1644 // linux/ppc32 - Normal entry label. 1645 if (!Subtarget->isPPC64() && 1646 (!isPositionIndependent() || 1647 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1648 return AsmPrinter::emitFunctionEntryLabel(); 1649 1650 if (!Subtarget->isPPC64()) { 1651 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1652 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1653 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1654 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1655 OutStreamer->emitLabel(RelocSymbol); 1656 1657 const MCExpr *OffsExpr = 1658 MCBinaryExpr::createSub( 1659 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1660 OutContext), 1661 MCSymbolRefExpr::create(PICBase, OutContext), 1662 OutContext); 1663 OutStreamer->emitValue(OffsExpr, 4); 1664 OutStreamer->emitLabel(CurrentFnSym); 1665 return; 1666 } else 1667 return AsmPrinter::emitFunctionEntryLabel(); 1668 } 1669 1670 // ELFv2 ABI - Normal entry label. 1671 if (Subtarget->isELFv2ABI()) { 1672 // In the Large code model, we allow arbitrary displacements between 1673 // the text section and its associated TOC section. We place the 1674 // full 8-byte offset to the TOC in memory immediately preceding 1675 // the function global entry point. 1676 if (TM.getCodeModel() == CodeModel::Large 1677 && !MF->getRegInfo().use_empty(PPC::X2)) { 1678 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1679 1680 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1681 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1682 const MCExpr *TOCDeltaExpr = 1683 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1684 MCSymbolRefExpr::create(GlobalEPSymbol, 1685 OutContext), 1686 OutContext); 1687 1688 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1689 OutStreamer->emitValue(TOCDeltaExpr, 8); 1690 } 1691 return AsmPrinter::emitFunctionEntryLabel(); 1692 } 1693 1694 // Emit an official procedure descriptor. 1695 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1696 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1697 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1698 OutStreamer->SwitchSection(Section); 1699 OutStreamer->emitLabel(CurrentFnSym); 1700 OutStreamer->emitValueToAlignment(8); 1701 MCSymbol *Symbol1 = CurrentFnSymForSize; 1702 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1703 // entry point. 1704 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1705 8 /*size*/); 1706 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1707 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1708 OutStreamer->emitValue( 1709 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1710 8/*size*/); 1711 // Emit a null environment pointer. 1712 OutStreamer->emitIntValue(0, 8 /* size */); 1713 OutStreamer->SwitchSection(Current.first, Current.second); 1714 } 1715 1716 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1717 const DataLayout &DL = getDataLayout(); 1718 1719 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1720 1721 PPCTargetStreamer *TS = 1722 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1723 1724 if (!TOC.empty()) { 1725 const char *Name = isPPC64 ? ".toc" : ".got2"; 1726 MCSectionELF *Section = OutContext.getELFSection( 1727 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1728 OutStreamer->SwitchSection(Section); 1729 if (!isPPC64) 1730 OutStreamer->emitValueToAlignment(4); 1731 1732 for (const auto &TOCMapPair : TOC) { 1733 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first; 1734 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1735 1736 OutStreamer->emitLabel(TOCEntryLabel); 1737 if (isPPC64 && TS != nullptr) 1738 TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second); 1739 else 1740 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1741 } 1742 } 1743 1744 PPCAsmPrinter::emitEndOfAsmFile(M); 1745 } 1746 1747 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1748 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1749 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1750 // provide two entry points. The ABI guarantees that when calling the 1751 // local entry point, r2 is set up by the caller to contain the TOC base 1752 // for this function, and when calling the global entry point, r12 is set 1753 // up by the caller to hold the address of the global entry point. We 1754 // thus emit a prefix sequence along the following lines: 1755 // 1756 // func: 1757 // .Lfunc_gepNN: 1758 // # global entry point 1759 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1760 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1761 // .Lfunc_lepNN: 1762 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1763 // # local entry point, followed by function body 1764 // 1765 // For the Large code model, we create 1766 // 1767 // .Lfunc_tocNN: 1768 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1769 // func: 1770 // .Lfunc_gepNN: 1771 // # global entry point 1772 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1773 // add r2,r2,r12 1774 // .Lfunc_lepNN: 1775 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1776 // # local entry point, followed by function body 1777 // 1778 // This ensures we have r2 set up correctly while executing the function 1779 // body, no matter which entry point is called. 1780 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1781 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1782 !MF->getRegInfo().use_empty(PPC::R2); 1783 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1784 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1785 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1786 Subtarget->isELFv2ABI() && UsesX2OrR2; 1787 1788 // Only do all that if the function uses R2 as the TOC pointer 1789 // in the first place. We don't need the global entry point if the 1790 // function uses R2 as an allocatable register. 1791 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1792 // Note: The logic here must be synchronized with the code in the 1793 // branch-selection pass which sets the offset of the first block in the 1794 // function. This matters because it affects the alignment. 1795 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1796 OutStreamer->emitLabel(GlobalEntryLabel); 1797 const MCSymbolRefExpr *GlobalEntryLabelExp = 1798 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1799 1800 if (TM.getCodeModel() != CodeModel::Large) { 1801 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1802 const MCExpr *TOCDeltaExpr = 1803 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1804 GlobalEntryLabelExp, OutContext); 1805 1806 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1807 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1808 .addReg(PPC::X2) 1809 .addReg(PPC::X12) 1810 .addExpr(TOCDeltaHi)); 1811 1812 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1813 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1814 .addReg(PPC::X2) 1815 .addReg(PPC::X2) 1816 .addExpr(TOCDeltaLo)); 1817 } else { 1818 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1819 const MCExpr *TOCOffsetDeltaExpr = 1820 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1821 GlobalEntryLabelExp, OutContext); 1822 1823 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1824 .addReg(PPC::X2) 1825 .addExpr(TOCOffsetDeltaExpr) 1826 .addReg(PPC::X12)); 1827 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1828 .addReg(PPC::X2) 1829 .addReg(PPC::X2) 1830 .addReg(PPC::X12)); 1831 } 1832 1833 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1834 OutStreamer->emitLabel(LocalEntryLabel); 1835 const MCSymbolRefExpr *LocalEntryLabelExp = 1836 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1837 const MCExpr *LocalOffsetExp = 1838 MCBinaryExpr::createSub(LocalEntryLabelExp, 1839 GlobalEntryLabelExp, OutContext); 1840 1841 PPCTargetStreamer *TS = 1842 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1843 1844 if (TS) 1845 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1846 } else if (Subtarget->isUsingPCRelativeCalls()) { 1847 // When generating the entry point for a function we have a few scenarios 1848 // based on whether or not that function uses R2 and whether or not that 1849 // function makes calls (or is a leaf function). 1850 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1851 // and preserves it). In this case st_other=0 and both 1852 // the local and global entry points for the function are the same. 1853 // No special entry point code is required. 1854 // 2) A function uses the TOC pointer R2. This function may or may not have 1855 // calls. In this case st_other=[2,6] and the global and local entry 1856 // points are different. Code to correctly setup the TOC pointer in R2 1857 // is put between the global and local entry points. This case is 1858 // covered by the if statatement above. 1859 // 3) A function does not use the TOC pointer R2 but does have calls. 1860 // In this case st_other=1 since we do not know whether or not any 1861 // of the callees clobber R2. This case is dealt with in this else if 1862 // block. Tail calls are considered calls and the st_other should also 1863 // be set to 1 in that case as well. 1864 // 4) The function does not use the TOC pointer but R2 is used inside 1865 // the function. In this case st_other=1 once again. 1866 // 5) This function uses inline asm. We mark R2 as reserved if the function 1867 // has inline asm as we have to assume that it may be used. 1868 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1869 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1870 PPCTargetStreamer *TS = 1871 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1872 if (TS) 1873 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1874 MCConstantExpr::create(1, OutContext)); 1875 } 1876 } 1877 } 1878 1879 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1880 /// directive. 1881 /// 1882 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1883 // Only the 64-bit target requires a traceback table. For now, 1884 // we only emit the word of zeroes that GDB requires to find 1885 // the end of the function, and zeroes for the eight-byte 1886 // mandatory fields. 1887 // FIXME: We should fill in the eight-byte mandatory fields as described in 1888 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1889 // currently make use of these fields). 1890 if (Subtarget->isPPC64()) { 1891 OutStreamer->emitIntValue(0, 4/*size*/); 1892 OutStreamer->emitIntValue(0, 8/*size*/); 1893 } 1894 } 1895 1896 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1897 MCSymbol *GVSym) const { 1898 1899 assert(MAI->hasVisibilityOnlyWithLinkage() && 1900 "AIX's linkage directives take a visibility setting."); 1901 1902 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1903 switch (GV->getLinkage()) { 1904 case GlobalValue::ExternalLinkage: 1905 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1906 break; 1907 case GlobalValue::LinkOnceAnyLinkage: 1908 case GlobalValue::LinkOnceODRLinkage: 1909 case GlobalValue::WeakAnyLinkage: 1910 case GlobalValue::WeakODRLinkage: 1911 case GlobalValue::ExternalWeakLinkage: 1912 LinkageAttr = MCSA_Weak; 1913 break; 1914 case GlobalValue::AvailableExternallyLinkage: 1915 LinkageAttr = MCSA_Extern; 1916 break; 1917 case GlobalValue::PrivateLinkage: 1918 return; 1919 case GlobalValue::InternalLinkage: 1920 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1921 "InternalLinkage should not have other visibility setting."); 1922 LinkageAttr = MCSA_LGlobal; 1923 break; 1924 case GlobalValue::AppendingLinkage: 1925 llvm_unreachable("Should never emit this"); 1926 case GlobalValue::CommonLinkage: 1927 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1928 } 1929 1930 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1931 1932 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1933 if (!TM.getIgnoreXCOFFVisibility()) { 1934 switch (GV->getVisibility()) { 1935 1936 // TODO: "exported" and "internal" Visibility needs to go here. 1937 case GlobalValue::DefaultVisibility: 1938 break; 1939 case GlobalValue::HiddenVisibility: 1940 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1941 break; 1942 case GlobalValue::ProtectedVisibility: 1943 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1944 break; 1945 } 1946 } 1947 1948 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1949 VisibilityAttr); 1950 } 1951 1952 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1953 // Setup CurrentFnDescSym and its containing csect. 1954 MCSectionXCOFF *FnDescSec = 1955 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1956 &MF.getFunction(), TM)); 1957 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1958 1959 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1960 1961 return AsmPrinter::SetupMachineFunction(MF); 1962 } 1963 1964 uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() { 1965 // Calculate the number of VRs be saved. 1966 // Vector registers 20 through 31 are marked as reserved and cannot be used 1967 // in the default ABI. 1968 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 1969 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 1970 TM.getAIXExtendedAltivecABI()) { 1971 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1972 for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg) 1973 if (MRI.isPhysRegModified(Reg)) 1974 // Number of VRs saved. 1975 return PPC::V31 - Reg + 1; 1976 } 1977 return 0; 1978 } 1979 1980 void PPCAIXAsmPrinter::emitFunctionBodyEnd() { 1981 1982 if (!TM.getXCOFFTracebackTable()) 1983 return; 1984 1985 emitTracebackTable(); 1986 1987 // If ShouldEmitEHBlock returns true, then the eh info table 1988 // will be emitted via `AIXException::endFunction`. Otherwise, we 1989 // need to emit a dumy eh info table when VRs are saved. We could not 1990 // consolidate these two places into one because there is no easy way 1991 // to access register information in `AIXException` class. 1992 if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) && 1993 (getNumberOfVRSaved() > 0)) { 1994 // Emit dummy EH Info Table. 1995 OutStreamer->SwitchSection(getObjFileLowering().getCompactUnwindSection()); 1996 MCSymbol *EHInfoLabel = 1997 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 1998 OutStreamer->emitLabel(EHInfoLabel); 1999 2000 // Version number. 2001 OutStreamer->emitInt32(0); 2002 2003 const DataLayout &DL = MMI->getModule()->getDataLayout(); 2004 const unsigned PointerSize = DL.getPointerSize(); 2005 // Add necessary paddings in 64 bit mode. 2006 OutStreamer->emitValueToAlignment(PointerSize); 2007 2008 OutStreamer->emitIntValue(0, PointerSize); 2009 OutStreamer->emitIntValue(0, PointerSize); 2010 OutStreamer->SwitchSection(MF->getSection()); 2011 } 2012 } 2013 2014 void PPCAIXAsmPrinter::emitTracebackTable() { 2015 2016 // Create a symbol for the end of function. 2017 MCSymbol *FuncEnd = createTempSymbol(MF->getName()); 2018 OutStreamer->emitLabel(FuncEnd); 2019 2020 OutStreamer->AddComment("Traceback table begin"); 2021 // Begin with a fullword of zero. 2022 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/); 2023 2024 SmallString<128> CommentString; 2025 raw_svector_ostream CommentOS(CommentString); 2026 2027 auto EmitComment = [&]() { 2028 OutStreamer->AddComment(CommentOS.str()); 2029 CommentString.clear(); 2030 }; 2031 2032 auto EmitCommentAndValue = [&](uint64_t Value, int Size) { 2033 EmitComment(); 2034 OutStreamer->emitIntValueInHexWithPadding(Value, Size); 2035 }; 2036 2037 unsigned int Version = 0; 2038 CommentOS << "Version = " << Version; 2039 EmitCommentAndValue(Version, 1); 2040 2041 // There is a lack of information in the IR to assist with determining the 2042 // source language. AIX exception handling mechanism would only search for 2043 // personality routine and LSDA area when such language supports exception 2044 // handling. So to be conservatively correct and allow runtime to do its job, 2045 // we need to set it to C++ for now. 2046 TracebackTable::LanguageID LanguageIdentifier = 2047 TracebackTable::CPlusPlus; // C++ 2048 2049 CommentOS << "Language = " 2050 << getNameForTracebackTableLanguageId(LanguageIdentifier); 2051 EmitCommentAndValue(LanguageIdentifier, 1); 2052 2053 // This is only populated for the third and fourth bytes. 2054 uint32_t FirstHalfOfMandatoryField = 0; 2055 2056 // Emit the 3rd byte of the mandatory field. 2057 2058 // We always set traceback offset bit to true. 2059 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask; 2060 2061 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2062 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2063 2064 // Check the function uses floating-point processor instructions or not 2065 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) { 2066 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) { 2067 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask; 2068 break; 2069 } 2070 } 2071 2072 #define GENBOOLCOMMENT(Prefix, V, Field) \ 2073 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \ 2074 << #Field 2075 2076 #define GENVALUECOMMENT(PrefixAndName, V, Field) \ 2077 CommentOS << (PrefixAndName) << " = " \ 2078 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \ 2079 (TracebackTable::Field##Shift)) 2080 2081 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage); 2082 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue); 2083 EmitComment(); 2084 2085 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset); 2086 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure); 2087 EmitComment(); 2088 2089 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage); 2090 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless); 2091 EmitComment(); 2092 2093 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent); 2094 EmitComment(); 2095 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, 2096 IsFloatingPointOperationLogOrAbortEnabled); 2097 EmitComment(); 2098 2099 OutStreamer->emitIntValueInHexWithPadding( 2100 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 2101 2102 // Set the 4th byte of the mandatory field. 2103 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask; 2104 2105 static_assert(XCOFF::AllocRegNo == 31, "Unexpected register usage!"); 2106 if (MRI.isPhysRegUsed(Subtarget->isPPC64() ? PPC::X31 : PPC::R31, 2107 /* SkipRegMaskTest */ true)) 2108 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask; 2109 2110 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 2111 if (!MustSaveCRs.empty()) 2112 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask; 2113 2114 if (FI->mustSaveLR()) 2115 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask; 2116 2117 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler); 2118 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent); 2119 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed); 2120 EmitComment(); 2121 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField, 2122 OnConditionDirective); 2123 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved); 2124 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved); 2125 EmitComment(); 2126 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff), 2127 1); 2128 2129 // Set the 5th byte of mandatory field. 2130 uint32_t SecondHalfOfMandatoryField = 0; 2131 2132 // Always store back chain. 2133 SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask; 2134 2135 uint32_t FPRSaved = 0; 2136 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) { 2137 if (MRI.isPhysRegModified(Reg)) { 2138 FPRSaved = PPC::F31 - Reg + 1; 2139 break; 2140 } 2141 } 2142 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) & 2143 TracebackTable::FPRSavedMask; 2144 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored); 2145 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup); 2146 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved); 2147 EmitComment(); 2148 OutStreamer->emitIntValueInHexWithPadding( 2149 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1); 2150 2151 // Set the 6th byte of mandatory field. 2152 2153 // Check whether has Vector Instruction,We only treat instructions uses vector 2154 // register as vector instructions. 2155 bool HasVectorInst = false; 2156 for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg) 2157 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) { 2158 // Has VMX instruction. 2159 HasVectorInst = true; 2160 break; 2161 } 2162 2163 if (FI->hasVectorParms() || HasVectorInst) 2164 SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask; 2165 2166 uint16_t NumOfVRSaved = getNumberOfVRSaved(); 2167 bool ShouldEmitEHBlock = 2168 TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0; 2169 2170 if (ShouldEmitEHBlock) 2171 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask; 2172 2173 uint32_t GPRSaved = 0; 2174 2175 // X13 is reserved under 64-bit environment. 2176 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13; 2177 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31; 2178 2179 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) { 2180 if (MRI.isPhysRegModified(Reg)) { 2181 GPRSaved = GPREnd - Reg + 1; 2182 break; 2183 } 2184 } 2185 2186 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) & 2187 TracebackTable::GPRSavedMask; 2188 2189 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable); 2190 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo); 2191 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved); 2192 EmitComment(); 2193 OutStreamer->emitIntValueInHexWithPadding( 2194 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1); 2195 2196 // Set the 7th byte of mandatory field. 2197 uint32_t NumberOfFixedParms = FI->getFixedParmsNum(); 2198 SecondHalfOfMandatoryField |= 2199 (NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) & 2200 TracebackTable::NumberOfFixedParmsMask; 2201 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField, 2202 NumberOfFixedParms); 2203 EmitComment(); 2204 OutStreamer->emitIntValueInHexWithPadding( 2205 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 2206 2207 // Set the 8th byte of mandatory field. 2208 2209 // Always set parameter on stack. 2210 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask; 2211 2212 uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum(); 2213 SecondHalfOfMandatoryField |= 2214 (NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) & 2215 TracebackTable::NumberOfFloatingPointParmsMask; 2216 2217 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField, 2218 NumberOfFloatingPointParms); 2219 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack); 2220 EmitComment(); 2221 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff, 2222 1); 2223 2224 // Generate the optional fields of traceback table. 2225 2226 // Parameter type. 2227 if (NumberOfFixedParms || NumberOfFPParms) { 2228 uint32_t ParmsTypeValue = FI->getParmsType(); 2229 2230 Expected<SmallString<32>> ParmsType = 2231 FI->hasVectorParms() 2232 ? XCOFF::parseParmsTypeWithVecInfo( 2233 ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms, 2234 FI->getVectorParmsNum()) 2235 : XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms, 2236 NumberOfFPParms); 2237 2238 assert(ParmsType && toString(ParmsType.takeError()).c_str()); 2239 if (ParmsType) { 2240 CommentOS << "Parameter type = " << ParmsType.get(); 2241 EmitComment(); 2242 } 2243 OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue, 2244 sizeof(ParmsTypeValue)); 2245 } 2246 // Traceback table offset. 2247 OutStreamer->AddComment("Function size"); 2248 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) { 2249 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol( 2250 &(MF->getFunction()), TM); 2251 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4); 2252 } 2253 2254 // Since we unset the Int_Handler. 2255 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask) 2256 report_fatal_error("Hand_Mask not implement yet"); 2257 2258 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask) 2259 report_fatal_error("Ctl_Info not implement yet"); 2260 2261 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) { 2262 StringRef Name = MF->getName().substr(0, INT16_MAX); 2263 int16_t NameLength = Name.size(); 2264 CommentOS << "Function name len = " 2265 << static_cast<unsigned int>(NameLength); 2266 EmitCommentAndValue(NameLength, 2); 2267 OutStreamer->AddComment("Function Name"); 2268 OutStreamer->emitBytes(Name); 2269 } 2270 2271 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) { 2272 uint8_t AllocReg = XCOFF::AllocRegNo; 2273 OutStreamer->AddComment("AllocaUsed"); 2274 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg)); 2275 } 2276 2277 if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) { 2278 uint16_t VRData = 0; 2279 if (NumOfVRSaved) { 2280 // Number of VRs saved. 2281 VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) & 2282 TracebackTable::NumberOfVRSavedMask; 2283 // This bit is supposed to set only when the special register 2284 // VRSAVE is saved on stack. 2285 // However, IBM XL compiler sets the bit when any vector registers 2286 // are saved on the stack. We will follow XL's behavior on AIX 2287 // so that we don't get surprise behavior change for C code. 2288 VRData |= TracebackTable::IsVRSavedOnStackMask; 2289 } 2290 2291 // Set has_varargs. 2292 if (FI->getVarArgsFrameIndex()) 2293 VRData |= TracebackTable::HasVarArgsMask; 2294 2295 // Vector parameters number. 2296 unsigned VectorParmsNum = FI->getVectorParmsNum(); 2297 VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) & 2298 TracebackTable::NumberOfVectorParmsMask; 2299 2300 if (HasVectorInst) 2301 VRData |= TracebackTable::HasVMXInstructionMask; 2302 2303 GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved); 2304 GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack); 2305 GENBOOLCOMMENT(", ", VRData, HasVarArgs); 2306 EmitComment(); 2307 OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1); 2308 2309 GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms); 2310 GENBOOLCOMMENT(", ", VRData, HasVMXInstruction); 2311 EmitComment(); 2312 OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1); 2313 2314 uint32_t VecParmTypeValue = FI->getVecExtParmsType(); 2315 2316 Expected<SmallString<32>> VecParmsType = 2317 XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum); 2318 assert(VecParmsType && toString(VecParmsType.takeError()).c_str()); 2319 if (VecParmsType) { 2320 CommentOS << "Vector Parameter type = " << VecParmsType.get(); 2321 EmitComment(); 2322 } 2323 OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue, 2324 sizeof(VecParmTypeValue)); 2325 // Padding 2 bytes. 2326 CommentOS << "Padding"; 2327 EmitCommentAndValue(0, 2); 2328 } 2329 2330 uint8_t ExtensionTableFlag = 0; 2331 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) { 2332 if (ShouldEmitEHBlock) 2333 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO; 2334 if (EnableSSPCanaryBitInTB && 2335 TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF)) 2336 ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY; 2337 2338 CommentOS << "ExtensionTableFlag = " 2339 << getExtendedTBTableFlagString(ExtensionTableFlag); 2340 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag)); 2341 } 2342 2343 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) { 2344 auto &Ctx = OutStreamer->getContext(); 2345 MCSymbol *EHInfoSym = 2346 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 2347 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym); 2348 const MCSymbol *TOCBaseSym = 2349 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2350 ->getQualNameSymbol(); 2351 const MCExpr *Exp = 2352 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2353 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2354 2355 const DataLayout &DL = getDataLayout(); 2356 OutStreamer->emitValueToAlignment(4); 2357 OutStreamer->AddComment("EHInfo Table"); 2358 OutStreamer->emitValue(Exp, DL.getPointerSize()); 2359 } 2360 #undef GENBOOLCOMMENT 2361 #undef GENVALUECOMMENT 2362 } 2363 2364 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 2365 return GV->hasAppendingLinkage() && 2366 StringSwitch<bool>(GV->getName()) 2367 // TODO: Linker could still eliminate the GV if we just skip 2368 // handling llvm.used array. Skipping them for now until we or the 2369 // AIX OS team come up with a good solution. 2370 .Case("llvm.used", true) 2371 // It's correct to just skip llvm.compiler.used array here. 2372 .Case("llvm.compiler.used", true) 2373 .Default(false); 2374 } 2375 2376 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 2377 return StringSwitch<bool>(GV->getName()) 2378 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 2379 .Default(false); 2380 } 2381 2382 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 2383 // Special LLVM global arrays have been handled at the initialization. 2384 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 2385 return; 2386 2387 // If the Global Variable has the toc-data attribute, it needs to be emitted 2388 // when we emit the .toc section. 2389 if (GV->hasAttribute("toc-data")) { 2390 TOCDataGlobalVars.push_back(GV); 2391 return; 2392 } 2393 2394 emitGlobalVariableHelper(GV); 2395 } 2396 2397 void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) { 2398 assert(!GV->getName().startswith("llvm.") && 2399 "Unhandled intrinsic global variable."); 2400 2401 if (GV->hasComdat()) 2402 report_fatal_error("COMDAT not yet supported by AIX."); 2403 2404 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 2405 2406 if (GV->isDeclarationForLinker()) { 2407 emitLinkage(GV, GVSym); 2408 return; 2409 } 2410 2411 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 2412 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() && 2413 !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS. 2414 report_fatal_error("Encountered a global variable kind that is " 2415 "not supported yet."); 2416 2417 // Print GV in verbose mode 2418 if (isVerbose()) { 2419 if (GV->hasInitializer()) { 2420 GV->printAsOperand(OutStreamer->GetCommentOS(), 2421 /*PrintType=*/false, GV->getParent()); 2422 OutStreamer->GetCommentOS() << '\n'; 2423 } 2424 } 2425 2426 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2427 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 2428 2429 // Switch to the containing csect. 2430 OutStreamer->SwitchSection(Csect); 2431 2432 const DataLayout &DL = GV->getParent()->getDataLayout(); 2433 2434 // Handle common and zero-initialized local symbols. 2435 if (GV->hasCommonLinkage() || GVKind.isBSSLocal() || 2436 GVKind.isThreadBSSLocal()) { 2437 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV)); 2438 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 2439 GVSym->setStorageClass( 2440 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 2441 2442 if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal()) 2443 OutStreamer->emitXCOFFLocalCommonSymbol( 2444 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 2445 GVSym, Alignment.value()); 2446 else 2447 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 2448 return; 2449 } 2450 2451 MCSymbol *EmittedInitSym = GVSym; 2452 emitLinkage(GV, EmittedInitSym); 2453 emitAlignment(getGVAlignment(GV, DL), GV); 2454 2455 // When -fdata-sections is enabled, every GlobalVariable will 2456 // be put into its own csect; therefore, label is not necessary here. 2457 if (!TM.getDataSections() || GV->hasSection()) { 2458 OutStreamer->emitLabel(EmittedInitSym); 2459 } 2460 2461 // Emit aliasing label for global variable. 2462 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) { 2463 OutStreamer->emitLabel(getSymbol(Alias)); 2464 }); 2465 2466 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 2467 } 2468 2469 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 2470 const DataLayout &DL = getDataLayout(); 2471 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 2472 2473 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 2474 // Emit function descriptor. 2475 OutStreamer->SwitchSection( 2476 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 2477 2478 // Emit aliasing label for function descriptor csect. 2479 llvm::for_each(GOAliasMap[&MF->getFunction()], 2480 [this](const GlobalAlias *Alias) { 2481 OutStreamer->emitLabel(getSymbol(Alias)); 2482 }); 2483 2484 // Emit function entry point address. 2485 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 2486 PointerSize); 2487 // Emit TOC base address. 2488 const MCSymbol *TOCBaseSym = 2489 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2490 ->getQualNameSymbol(); 2491 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 2492 PointerSize); 2493 // Emit a null environment pointer. 2494 OutStreamer->emitIntValue(0, PointerSize); 2495 2496 OutStreamer->SwitchSection(Current.first, Current.second); 2497 } 2498 2499 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 2500 // It's not necessary to emit the label when we have individual 2501 // function in its own csect. 2502 if (!TM.getFunctionSections()) 2503 PPCAsmPrinter::emitFunctionEntryLabel(); 2504 2505 // Emit aliasing label for function entry point label. 2506 llvm::for_each( 2507 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) { 2508 OutStreamer->emitLabel( 2509 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 2510 }); 2511 } 2512 2513 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 2514 // If there are no functions and there are no toc-data definitions in this 2515 // module, we will never need to reference the TOC base. 2516 if (M.empty() && TOCDataGlobalVars.empty()) 2517 return; 2518 2519 // Switch to section to emit TOC base. 2520 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection()); 2521 2522 PPCTargetStreamer *TS = 2523 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 2524 2525 for (auto &I : TOC) { 2526 MCSectionXCOFF *TCEntry; 2527 // Setup the csect for the current TC entry. If the variant kind is 2528 // VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a 2529 // new symbol to prefix the name with a dot. 2530 if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM) { 2531 SmallString<128> Name; 2532 StringRef Prefix = "."; 2533 Name += Prefix; 2534 Name += I.first.first->getName(); 2535 MCSymbol *S = OutContext.getOrCreateSymbol(Name); 2536 TCEntry = cast<MCSectionXCOFF>( 2537 getObjFileLowering().getSectionForTOCEntry(S, TM)); 2538 } else { 2539 TCEntry = cast<MCSectionXCOFF>( 2540 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM)); 2541 } 2542 OutStreamer->SwitchSection(TCEntry); 2543 2544 OutStreamer->emitLabel(I.second); 2545 if (TS != nullptr) 2546 TS->emitTCEntry(*I.first.first, I.first.second); 2547 } 2548 2549 for (const auto *GV : TOCDataGlobalVars) 2550 emitGlobalVariableHelper(GV); 2551 } 2552 2553 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 2554 const bool Result = PPCAsmPrinter::doInitialization(M); 2555 2556 auto setCsectAlignment = [this](const GlobalObject *GO) { 2557 // Declarations have 0 alignment which is set by default. 2558 if (GO->isDeclarationForLinker()) 2559 return; 2560 2561 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 2562 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2563 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 2564 2565 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 2566 if (GOAlign > Csect->getAlignment()) 2567 Csect->setAlignment(GOAlign); 2568 }; 2569 2570 // We need to know, up front, the alignment of csects for the assembly path, 2571 // because once a .csect directive gets emitted, we could not change the 2572 // alignment value on it. 2573 for (const auto &G : M.globals()) { 2574 if (isSpecialLLVMGlobalArrayToSkip(&G)) 2575 continue; 2576 2577 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 2578 // Generate a format indicator and a unique module id to be a part of 2579 // the sinit and sterm function names. 2580 if (FormatIndicatorAndUniqueModId.empty()) { 2581 std::string UniqueModuleId = getUniqueModuleId(&M); 2582 if (UniqueModuleId != "") 2583 // TODO: Use source file full path to generate the unique module id 2584 // and add a format indicator as a part of function name in case we 2585 // will support more than one format. 2586 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 2587 else 2588 // Use the Pid and current time as the unique module id when we cannot 2589 // generate one based on a module's strong external symbols. 2590 // FIXME: Adjust the comment accordingly after we use source file full 2591 // path instead. 2592 FormatIndicatorAndUniqueModId = 2593 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 2594 "_" + llvm::itostr(time(nullptr)); 2595 } 2596 2597 emitSpecialLLVMGlobal(&G); 2598 continue; 2599 } 2600 2601 setCsectAlignment(&G); 2602 } 2603 2604 for (const auto &F : M) 2605 setCsectAlignment(&F); 2606 2607 // Construct an aliasing list for each GlobalObject. 2608 for (const auto &Alias : M.aliases()) { 2609 const GlobalObject *Base = Alias.getBaseObject(); 2610 if (!Base) 2611 report_fatal_error( 2612 "alias without a base object is not yet supported on AIX"); 2613 GOAliasMap[Base].push_back(&Alias); 2614 } 2615 2616 return Result; 2617 } 2618 2619 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 2620 switch (MI->getOpcode()) { 2621 default: 2622 break; 2623 case PPC::GETtlsADDR64AIX: 2624 case PPC::GETtlsADDR32AIX: { 2625 // The reference to .__tls_get_addr is unknown to the assembler 2626 // so we need to emit an external symbol reference. 2627 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext); 2628 ExtSymSDNodeSymbols.insert(TlsGetAddr); 2629 break; 2630 } 2631 case PPC::BL8: 2632 case PPC::BL: 2633 case PPC::BL8_NOP: 2634 case PPC::BL_NOP: { 2635 const MachineOperand &MO = MI->getOperand(0); 2636 if (MO.isSymbol()) { 2637 MCSymbolXCOFF *S = 2638 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 2639 ExtSymSDNodeSymbols.insert(S); 2640 } 2641 } break; 2642 case PPC::BL_TLS: 2643 case PPC::BL8_TLS: 2644 case PPC::BL8_TLS_: 2645 case PPC::BL8_NOP_TLS: 2646 report_fatal_error("TLS call not yet implemented"); 2647 case PPC::TAILB: 2648 case PPC::TAILB8: 2649 case PPC::TAILBA: 2650 case PPC::TAILBA8: 2651 case PPC::TAILBCTR: 2652 case PPC::TAILBCTR8: 2653 if (MI->getOperand(0).isSymbol()) 2654 report_fatal_error("Tail call for extern symbol not yet supported."); 2655 break; 2656 case PPC::DST: 2657 case PPC::DST64: 2658 case PPC::DSTT: 2659 case PPC::DSTT64: 2660 case PPC::DSTST: 2661 case PPC::DSTST64: 2662 case PPC::DSTSTT: 2663 case PPC::DSTSTT64: 2664 EmitToStreamer( 2665 *OutStreamer, 2666 MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0)); 2667 return; 2668 } 2669 return PPCAsmPrinter::emitInstruction(MI); 2670 } 2671 2672 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 2673 // Do streamer related finalization for DWARF. 2674 if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo()) 2675 OutStreamer->doFinalizationAtSectionEnd( 2676 OutStreamer->getContext().getObjectFileInfo()->getTextSection()); 2677 2678 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 2679 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 2680 return PPCAsmPrinter::doFinalization(M); 2681 } 2682 2683 static unsigned mapToSinitPriority(int P) { 2684 if (P < 0 || P > 65535) 2685 report_fatal_error("invalid init priority"); 2686 2687 if (P <= 20) 2688 return P; 2689 2690 if (P < 81) 2691 return 20 + (P - 20) * 16; 2692 2693 if (P <= 1124) 2694 return 1004 + (P - 81); 2695 2696 if (P < 64512) 2697 return 2047 + (P - 1124) * 33878; 2698 2699 return 2147482625u + (P - 64512); 2700 } 2701 2702 static std::string convertToSinitPriority(int Priority) { 2703 // This helper function converts clang init priority to values used in sinit 2704 // and sterm functions. 2705 // 2706 // The conversion strategies are: 2707 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm 2708 // reserved priority range [0, 1023] by 2709 // - directly mapping the first 21 and the last 20 elements of the ranges 2710 // - linear interpolating the intermediate values with a step size of 16. 2711 // 2712 // We map the non reserved clang/gnu priority range of [101, 65535] into the 2713 // sinit/sterm priority range [1024, 2147483648] by: 2714 // - directly mapping the first and the last 1024 elements of the ranges 2715 // - linear interpolating the intermediate values with a step size of 33878. 2716 unsigned int P = mapToSinitPriority(Priority); 2717 2718 std::string PrioritySuffix; 2719 llvm::raw_string_ostream os(PrioritySuffix); 2720 os << llvm::format_hex_no_prefix(P, 8); 2721 os.flush(); 2722 return PrioritySuffix; 2723 } 2724 2725 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2726 const Constant *List, bool IsCtor) { 2727 SmallVector<Structor, 8> Structors; 2728 preprocessXXStructorList(DL, List, Structors); 2729 if (Structors.empty()) 2730 return; 2731 2732 unsigned Index = 0; 2733 for (Structor &S : Structors) { 2734 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func)) 2735 S.Func = CE->getOperand(0); 2736 2737 llvm::GlobalAlias::create( 2738 GlobalValue::ExternalLinkage, 2739 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2740 llvm::Twine(convertToSinitPriority(S.Priority)) + 2741 llvm::Twine("_", FormatIndicatorAndUniqueModId) + 2742 llvm::Twine("_", llvm::utostr(Index++)), 2743 cast<Function>(S.Func)); 2744 } 2745 } 2746 2747 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV, 2748 unsigned Encoding) { 2749 if (GV) { 2750 MCSymbol *TypeInfoSym = TM.getSymbol(GV); 2751 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym); 2752 const MCSymbol *TOCBaseSym = 2753 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2754 ->getQualNameSymbol(); 2755 auto &Ctx = OutStreamer->getContext(); 2756 const MCExpr *Exp = 2757 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2758 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2759 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding)); 2760 } else 2761 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding)); 2762 } 2763 2764 // Return a pass that prints the PPC assembly code for a MachineFunction to the 2765 // given output stream. 2766 static AsmPrinter * 2767 createPPCAsmPrinterPass(TargetMachine &tm, 2768 std::unique_ptr<MCStreamer> &&Streamer) { 2769 if (tm.getTargetTriple().isOSAIX()) 2770 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2771 2772 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2773 } 2774 2775 // Force static initialization. 2776 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2777 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2778 createPPCAsmPrinterPass); 2779 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(), 2780 createPPCAsmPrinterPass); 2781 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2782 createPPCAsmPrinterPass); 2783 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2784 createPPCAsmPrinterPass); 2785 } 2786