xref: /openbsd-src/gnu/llvm/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp (revision d415bd752c734aee168c4ee86ff32e8cc249eb16)
109467b48Spatrick //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
209467b48Spatrick //
309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
609467b48Spatrick //
709467b48Spatrick //===----------------------------------------------------------------------===//
809467b48Spatrick //
909467b48Spatrick // This file implements the Hexagon specific subclass of TargetSubtarget.
1009467b48Spatrick //
1109467b48Spatrick //===----------------------------------------------------------------------===//
1209467b48Spatrick 
1373471bf0Spatrick #include "HexagonSubtarget.h"
1409467b48Spatrick #include "Hexagon.h"
1509467b48Spatrick #include "HexagonInstrInfo.h"
1609467b48Spatrick #include "HexagonRegisterInfo.h"
1709467b48Spatrick #include "MCTargetDesc/HexagonMCTargetDesc.h"
1809467b48Spatrick #include "llvm/ADT/STLExtras.h"
1909467b48Spatrick #include "llvm/ADT/SmallSet.h"
2009467b48Spatrick #include "llvm/ADT/SmallVector.h"
2109467b48Spatrick #include "llvm/ADT/StringRef.h"
2209467b48Spatrick #include "llvm/CodeGen/MachineInstr.h"
2309467b48Spatrick #include "llvm/CodeGen/MachineOperand.h"
2409467b48Spatrick #include "llvm/CodeGen/MachineScheduler.h"
2509467b48Spatrick #include "llvm/CodeGen/ScheduleDAG.h"
2609467b48Spatrick #include "llvm/CodeGen/ScheduleDAGInstrs.h"
27*d415bd75Srobert #include "llvm/IR/IntrinsicsHexagon.h"
2809467b48Spatrick #include "llvm/Support/CommandLine.h"
2909467b48Spatrick #include "llvm/Support/ErrorHandling.h"
3073471bf0Spatrick #include "llvm/Target/TargetMachine.h"
3109467b48Spatrick #include <algorithm>
3209467b48Spatrick #include <cassert>
3309467b48Spatrick #include <map>
34*d415bd75Srobert #include <optional>
3509467b48Spatrick 
3609467b48Spatrick using namespace llvm;
3709467b48Spatrick 
3809467b48Spatrick #define DEBUG_TYPE "hexagon-subtarget"
3909467b48Spatrick 
4009467b48Spatrick #define GET_SUBTARGETINFO_CTOR
4109467b48Spatrick #define GET_SUBTARGETINFO_TARGET_DESC
4209467b48Spatrick #include "HexagonGenSubtargetInfo.inc"
4309467b48Spatrick 
44*d415bd75Srobert static cl::opt<bool> EnableBSBSched("enable-bsb-sched", cl::Hidden,
45*d415bd75Srobert                                     cl::init(true));
4609467b48Spatrick 
47*d415bd75Srobert static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", cl::Hidden,
48*d415bd75Srobert                                           cl::init(false));
4909467b48Spatrick 
50*d415bd75Srobert static cl::opt<bool>
51*d415bd75Srobert     EnableDotCurSched("enable-cur-sched", cl::Hidden, cl::init(true),
5209467b48Spatrick                       cl::desc("Enable the scheduler to generate .cur"));
5309467b48Spatrick 
54*d415bd75Srobert static cl::opt<bool>
55*d415bd75Srobert     DisableHexagonMISched("disable-hexagon-misched", cl::Hidden,
5609467b48Spatrick                           cl::desc("Disable Hexagon MI Scheduling"));
5709467b48Spatrick 
58*d415bd75Srobert static cl::opt<bool> EnableSubregLiveness(
59*d415bd75Srobert     "hexagon-subreg-liveness", cl::Hidden, cl::init(true),
6009467b48Spatrick     cl::desc("Enable subregister liveness tracking for Hexagon"));
6109467b48Spatrick 
62*d415bd75Srobert static cl::opt<bool> OverrideLongCalls(
63*d415bd75Srobert     "hexagon-long-calls", cl::Hidden,
6409467b48Spatrick     cl::desc("If present, forces/disables the use of long calls"));
6509467b48Spatrick 
66*d415bd75Srobert static cl::opt<bool>
67*d415bd75Srobert     EnablePredicatedCalls("hexagon-pred-calls", cl::Hidden,
6809467b48Spatrick                           cl::desc("Consider calls to be predicable"));
6909467b48Spatrick 
70*d415bd75Srobert static cl::opt<bool> SchedPredsCloser("sched-preds-closer", cl::Hidden,
71*d415bd75Srobert                                       cl::init(true));
7209467b48Spatrick 
7309467b48Spatrick static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
74*d415bd75Srobert                                              cl::Hidden, cl::init(true));
7509467b48Spatrick 
76*d415bd75Srobert static cl::opt<bool> EnableCheckBankConflict(
77*d415bd75Srobert     "hexagon-check-bank-conflict", cl::Hidden, cl::init(true),
7809467b48Spatrick     cl::desc("Enable checking for cache bank conflicts"));
7909467b48Spatrick 
HexagonSubtarget(const Triple & TT,StringRef CPU,StringRef FS,const TargetMachine & TM)8009467b48Spatrick HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
8109467b48Spatrick                                    StringRef FS, const TargetMachine &TM)
8273471bf0Spatrick     : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
8373471bf0Spatrick       OptLevel(TM.getOptLevel()),
84097a140dSpatrick       CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))),
85097a140dSpatrick       TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
8609467b48Spatrick       RegInfo(getHwMode()), TLInfo(TM, *this),
8709467b48Spatrick       InstrItins(getInstrItineraryForCPU(CPUString)) {
88097a140dSpatrick   Hexagon_MC::addArchSubtarget(this, FS);
8909467b48Spatrick   // Beware of the default constructor of InstrItineraryData: it will
9009467b48Spatrick   // reset all members to 0.
9109467b48Spatrick   assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
9209467b48Spatrick }
9309467b48Spatrick 
9409467b48Spatrick HexagonSubtarget &
initializeSubtargetDependencies(StringRef CPU,StringRef FS)9509467b48Spatrick HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
96*d415bd75Srobert   std::optional<Hexagon::ArchEnum> ArchVer = Hexagon::getCpu(CPUString);
97097a140dSpatrick   if (ArchVer)
98097a140dSpatrick     HexagonArchVersion = *ArchVer;
9909467b48Spatrick   else
10009467b48Spatrick     llvm_unreachable("Unrecognized Hexagon processor version");
10109467b48Spatrick 
10209467b48Spatrick   UseHVX128BOps = false;
10309467b48Spatrick   UseHVX64BOps = false;
104097a140dSpatrick   UseAudioOps = false;
10509467b48Spatrick   UseLongCalls = false;
10609467b48Spatrick 
107*d415bd75Srobert   SubtargetFeatures Features(FS);
10809467b48Spatrick 
109*d415bd75Srobert   // Turn on QFloat if the HVX version is v68+.
110*d415bd75Srobert   // The function ParseSubtargetFeatures will set feature bits and initialize
111*d415bd75Srobert   // subtarget's variables all in one, so there isn't a good way to preprocess
112*d415bd75Srobert   // the feature string, other than by tinkering with it directly.
113*d415bd75Srobert   auto IsQFloatFS = [](StringRef F) {
114*d415bd75Srobert     return F == "+hvx-qfloat" || F == "-hvx-qfloat";
115*d415bd75Srobert   };
116*d415bd75Srobert   if (!llvm::count_if(Features.getFeatures(), IsQFloatFS)) {
117*d415bd75Srobert     auto getHvxVersion = [&Features](StringRef FS) -> StringRef {
118*d415bd75Srobert       for (StringRef F : llvm::reverse(Features.getFeatures())) {
119*d415bd75Srobert         if (F.startswith("+hvxv"))
120*d415bd75Srobert           return F;
121*d415bd75Srobert       }
122*d415bd75Srobert       for (StringRef F : llvm::reverse(Features.getFeatures())) {
123*d415bd75Srobert         if (F == "-hvx")
124*d415bd75Srobert           return StringRef();
125*d415bd75Srobert         if (F.startswith("+hvx") || F == "-hvx")
126*d415bd75Srobert           return F.take_front(4);  // Return "+hvx" or "-hvx".
127*d415bd75Srobert       }
128*d415bd75Srobert       return StringRef();
129*d415bd75Srobert     };
130*d415bd75Srobert 
131*d415bd75Srobert     bool AddQFloat = false;
132*d415bd75Srobert     StringRef HvxVer = getHvxVersion(FS);
133*d415bd75Srobert     if (HvxVer.startswith("+hvxv")) {
134*d415bd75Srobert       int Ver = 0;
135*d415bd75Srobert       if (!HvxVer.drop_front(5).consumeInteger(10, Ver) && Ver >= 68)
136*d415bd75Srobert         AddQFloat = true;
137*d415bd75Srobert     } else if (HvxVer == "+hvx") {
138*d415bd75Srobert       if (hasV68Ops())
139*d415bd75Srobert         AddQFloat = true;
140*d415bd75Srobert     }
141*d415bd75Srobert 
142*d415bd75Srobert     if (AddQFloat)
143*d415bd75Srobert       Features.AddFeature("+hvx-qfloat");
144*d415bd75Srobert   }
145*d415bd75Srobert 
146*d415bd75Srobert   std::string FeatureString = Features.getString();
147*d415bd75Srobert   ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FeatureString);
148*d415bd75Srobert 
149*d415bd75Srobert   if (useHVXV68Ops())
150*d415bd75Srobert     UseHVXFloatingPoint = UseHVXIEEEFPOps || UseHVXQFloatOps;
151*d415bd75Srobert 
152*d415bd75Srobert   if (UseHVXQFloatOps && UseHVXIEEEFPOps && UseHVXFloatingPoint)
153*d415bd75Srobert     LLVM_DEBUG(
154*d415bd75Srobert         dbgs() << "Behavior is undefined for simultaneous qfloat and ieee hvx codegen...");
15509467b48Spatrick 
15609467b48Spatrick   if (OverrideLongCalls.getPosition())
15709467b48Spatrick     UseLongCalls = OverrideLongCalls;
15809467b48Spatrick 
159*d415bd75Srobert   UseBSBScheduling = hasV60Ops() && EnableBSBSched;
160*d415bd75Srobert 
161097a140dSpatrick   if (isTinyCore()) {
162097a140dSpatrick     // Tiny core has a single thread, so back-to-back scheduling is enabled by
163097a140dSpatrick     // default.
164097a140dSpatrick     if (!EnableBSBSched.getPosition())
165097a140dSpatrick       UseBSBScheduling = false;
166097a140dSpatrick   }
167097a140dSpatrick 
168*d415bd75Srobert   FeatureBitset FeatureBits = getFeatureBits();
16909467b48Spatrick   if (HexagonDisableDuplex)
170*d415bd75Srobert     setFeatureBits(FeatureBits.reset(Hexagon::FeatureDuplex));
171*d415bd75Srobert   setFeatureBits(Hexagon_MC::completeHVXFeatures(FeatureBits));
17209467b48Spatrick 
17309467b48Spatrick   return *this;
17409467b48Spatrick }
17509467b48Spatrick 
isHVXElementType(MVT Ty,bool IncludeBool) const17673471bf0Spatrick bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const {
17773471bf0Spatrick   if (!useHVXOps())
17873471bf0Spatrick     return false;
17973471bf0Spatrick   if (Ty.isVector())
18073471bf0Spatrick     Ty = Ty.getVectorElementType();
18173471bf0Spatrick   if (IncludeBool && Ty == MVT::i1)
18273471bf0Spatrick     return true;
18373471bf0Spatrick   ArrayRef<MVT> ElemTypes = getHVXElementTypes();
18473471bf0Spatrick   return llvm::is_contained(ElemTypes, Ty);
18573471bf0Spatrick }
18673471bf0Spatrick 
isHVXVectorType(EVT VecTy,bool IncludeBool) const187*d415bd75Srobert bool HexagonSubtarget::isHVXVectorType(EVT VecTy, bool IncludeBool) const {
188*d415bd75Srobert   if (!VecTy.isSimple())
189*d415bd75Srobert     return false;
19073471bf0Spatrick   if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector())
19173471bf0Spatrick     return false;
192*d415bd75Srobert   MVT ElemTy = VecTy.getSimpleVT().getVectorElementType();
19373471bf0Spatrick   if (!IncludeBool && ElemTy == MVT::i1)
19473471bf0Spatrick     return false;
19573471bf0Spatrick 
19673471bf0Spatrick   unsigned HwLen = getVectorLength();
19773471bf0Spatrick   unsigned NumElems = VecTy.getVectorNumElements();
19873471bf0Spatrick   ArrayRef<MVT> ElemTypes = getHVXElementTypes();
19973471bf0Spatrick 
20073471bf0Spatrick   if (IncludeBool && ElemTy == MVT::i1) {
20173471bf0Spatrick     // Boolean HVX vector types are formed from regular HVX vector types
20273471bf0Spatrick     // by replacing the element type with i1.
20373471bf0Spatrick     for (MVT T : ElemTypes)
20473471bf0Spatrick       if (NumElems * T.getSizeInBits() == 8 * HwLen)
20573471bf0Spatrick         return true;
20673471bf0Spatrick     return false;
20773471bf0Spatrick   }
20873471bf0Spatrick 
20973471bf0Spatrick   unsigned VecWidth = VecTy.getSizeInBits();
21073471bf0Spatrick   if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen)
21173471bf0Spatrick     return false;
21273471bf0Spatrick   return llvm::is_contained(ElemTypes, ElemTy);
21373471bf0Spatrick }
21473471bf0Spatrick 
isTypeForHVX(Type * VecTy,bool IncludeBool) const21573471bf0Spatrick bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const {
21673471bf0Spatrick   if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy))
21773471bf0Spatrick     return false;
21873471bf0Spatrick   // Avoid types like <2 x i32*>.
219*d415bd75Srobert   Type *ScalTy = VecTy->getScalarType();
220*d415bd75Srobert   if (!ScalTy->isIntegerTy() &&
221*d415bd75Srobert       !(ScalTy->isFloatingPointTy() && useHVXFloatingPoint()))
22273471bf0Spatrick     return false;
22373471bf0Spatrick   // The given type may be something like <17 x i32>, which is not MVT,
22473471bf0Spatrick   // but can be represented as (non-simple) EVT.
22573471bf0Spatrick   EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false);
226*d415bd75Srobert   if (!Ty.getVectorElementType().isSimple())
22773471bf0Spatrick     return false;
22873471bf0Spatrick 
22973471bf0Spatrick   auto isHvxTy = [this, IncludeBool](MVT SimpleTy) {
23073471bf0Spatrick     if (isHVXVectorType(SimpleTy, IncludeBool))
23173471bf0Spatrick       return true;
23273471bf0Spatrick     auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy);
23373471bf0Spatrick     return Action == TargetLoweringBase::TypeWidenVector;
23473471bf0Spatrick   };
23573471bf0Spatrick 
23673471bf0Spatrick   // Round up EVT to have power-of-2 elements, and keep checking if it
23773471bf0Spatrick   // qualifies for HVX, dividing it in half after each step.
23873471bf0Spatrick   MVT ElemTy = Ty.getVectorElementType().getSimpleVT();
23973471bf0Spatrick   unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements());
240*d415bd75Srobert   while (VecLen > 1) {
24173471bf0Spatrick     MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen);
24273471bf0Spatrick     if (SimpleTy.isValid() && isHvxTy(SimpleTy))
24373471bf0Spatrick       return true;
24473471bf0Spatrick     VecLen /= 2;
24573471bf0Spatrick   }
24673471bf0Spatrick 
24773471bf0Spatrick   return false;
24873471bf0Spatrick }
24973471bf0Spatrick 
apply(ScheduleDAGInstrs * DAG)25009467b48Spatrick void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
25109467b48Spatrick   for (SUnit &SU : DAG->SUnits) {
25209467b48Spatrick     if (!SU.isInstr())
25309467b48Spatrick       continue;
25409467b48Spatrick     SmallVector<SDep, 4> Erase;
25509467b48Spatrick     for (auto &D : SU.Preds)
25609467b48Spatrick       if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
25709467b48Spatrick         Erase.push_back(D);
25809467b48Spatrick     for (auto &E : Erase)
25909467b48Spatrick       SU.removePred(E);
26009467b48Spatrick   }
26109467b48Spatrick }
26209467b48Spatrick 
apply(ScheduleDAGInstrs * DAG)26309467b48Spatrick void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
26409467b48Spatrick   for (SUnit &SU : DAG->SUnits) {
26509467b48Spatrick     // Update the latency of chain edges between v60 vector load or store
26609467b48Spatrick     // instructions to be 1. These instruction cannot be scheduled in the
26709467b48Spatrick     // same packet.
26809467b48Spatrick     MachineInstr &MI1 = *SU.getInstr();
26909467b48Spatrick     auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
27009467b48Spatrick     bool IsStoreMI1 = MI1.mayStore();
27109467b48Spatrick     bool IsLoadMI1 = MI1.mayLoad();
27209467b48Spatrick     if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
27309467b48Spatrick       continue;
27409467b48Spatrick     for (SDep &SI : SU.Succs) {
27509467b48Spatrick       if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
27609467b48Spatrick         continue;
27709467b48Spatrick       MachineInstr &MI2 = *SI.getSUnit()->getInstr();
27809467b48Spatrick       if (!QII->isHVXVec(MI2))
27909467b48Spatrick         continue;
28009467b48Spatrick       if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
28109467b48Spatrick         SI.setLatency(1);
28209467b48Spatrick         SU.setHeightDirty();
28309467b48Spatrick         // Change the dependence in the opposite direction too.
28409467b48Spatrick         for (SDep &PI : SI.getSUnit()->Preds) {
28509467b48Spatrick           if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
28609467b48Spatrick             continue;
28709467b48Spatrick           PI.setLatency(1);
28809467b48Spatrick           SI.getSUnit()->setDepthDirty();
28909467b48Spatrick         }
29009467b48Spatrick       }
29109467b48Spatrick     }
29209467b48Spatrick   }
29309467b48Spatrick }
29409467b48Spatrick 
29509467b48Spatrick // Check if a call and subsequent A2_tfrpi instructions should maintain
29609467b48Spatrick // scheduling affinity. We are looking for the TFRI to be consumed in
29709467b48Spatrick // the next instruction. This should help reduce the instances of
29809467b48Spatrick // double register pairs being allocated and scheduled before a call
29909467b48Spatrick // when not used until after the call. This situation is exacerbated
30009467b48Spatrick // by the fact that we allocate the pair from the callee saves list,
30109467b48Spatrick // leading to excess spills and restores.
shouldTFRICallBind(const HexagonInstrInfo & HII,const SUnit & Inst1,const SUnit & Inst2) const30209467b48Spatrick bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
30309467b48Spatrick       const HexagonInstrInfo &HII, const SUnit &Inst1,
30409467b48Spatrick       const SUnit &Inst2) const {
30509467b48Spatrick   if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
30609467b48Spatrick     return false;
30709467b48Spatrick 
30809467b48Spatrick   // TypeXTYPE are 64 bit operations.
30909467b48Spatrick   unsigned Type = HII.getType(*Inst2.getInstr());
31009467b48Spatrick   return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
31109467b48Spatrick          Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
31209467b48Spatrick }
31309467b48Spatrick 
apply(ScheduleDAGInstrs * DAGInstrs)31409467b48Spatrick void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
31509467b48Spatrick   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
31609467b48Spatrick   SUnit* LastSequentialCall = nullptr;
31709467b48Spatrick   // Map from virtual register to physical register from the copy.
31809467b48Spatrick   DenseMap<unsigned, unsigned> VRegHoldingReg;
31909467b48Spatrick   // Map from the physical register to the instruction that uses virtual
32009467b48Spatrick   // register. This is used to create the barrier edge.
32109467b48Spatrick   DenseMap<unsigned, SUnit *> LastVRegUse;
32209467b48Spatrick   auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
32309467b48Spatrick   auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
32409467b48Spatrick 
32509467b48Spatrick   // Currently we only catch the situation when compare gets scheduled
32609467b48Spatrick   // before preceding call.
32709467b48Spatrick   for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
32809467b48Spatrick     // Remember the call.
32909467b48Spatrick     if (DAG->SUnits[su].getInstr()->isCall())
33009467b48Spatrick       LastSequentialCall = &DAG->SUnits[su];
33109467b48Spatrick     // Look for a compare that defines a predicate.
33209467b48Spatrick     else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
33309467b48Spatrick       DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
33409467b48Spatrick     // Look for call and tfri* instructions.
33509467b48Spatrick     else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
33609467b48Spatrick              shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
33709467b48Spatrick       DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
33809467b48Spatrick     // Prevent redundant register copies due to reads and writes of physical
33909467b48Spatrick     // registers. The original motivation for this was the code generated
34009467b48Spatrick     // between two calls, which are caused both the return value and the
34109467b48Spatrick     // argument for the next call being in %r0.
34209467b48Spatrick     // Example:
34309467b48Spatrick     //   1: <call1>
34409467b48Spatrick     //   2: %vreg = COPY %r0
34509467b48Spatrick     //   3: <use of %vreg>
34609467b48Spatrick     //   4: %r0 = ...
34709467b48Spatrick     //   5: <call2>
34809467b48Spatrick     // The scheduler would often swap 3 and 4, so an additional register is
34909467b48Spatrick     // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
35009467b48Spatrick     // this.
35109467b48Spatrick     // The code below checks for all the physical registers, not just R0/D0/V0.
35209467b48Spatrick     else if (SchedRetvalOptimization) {
35309467b48Spatrick       const MachineInstr *MI = DAG->SUnits[su].getInstr();
354*d415bd75Srobert       if (MI->isCopy() && MI->getOperand(1).getReg().isPhysical()) {
35509467b48Spatrick         // %vregX = COPY %r0
35609467b48Spatrick         VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
35709467b48Spatrick         LastVRegUse.erase(MI->getOperand(1).getReg());
35809467b48Spatrick       } else {
359*d415bd75Srobert         for (const MachineOperand &MO : MI->operands()) {
36009467b48Spatrick           if (!MO.isReg())
36109467b48Spatrick             continue;
36209467b48Spatrick           if (MO.isUse() && !MI->isCopy() &&
36309467b48Spatrick               VRegHoldingReg.count(MO.getReg())) {
36409467b48Spatrick             // <use of %vregX>
36509467b48Spatrick             LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
366*d415bd75Srobert           } else if (MO.isDef() && MO.getReg().isPhysical()) {
36709467b48Spatrick             for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
36809467b48Spatrick                  ++AI) {
36909467b48Spatrick               if (LastVRegUse.count(*AI) &&
37009467b48Spatrick                   LastVRegUse[*AI] != &DAG->SUnits[su])
37109467b48Spatrick                 // %r0 = ...
37209467b48Spatrick                 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
37309467b48Spatrick               LastVRegUse.erase(*AI);
37409467b48Spatrick             }
37509467b48Spatrick           }
37609467b48Spatrick         }
37709467b48Spatrick       }
37809467b48Spatrick     }
37909467b48Spatrick   }
38009467b48Spatrick }
38109467b48Spatrick 
apply(ScheduleDAGInstrs * DAG)38209467b48Spatrick void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
38309467b48Spatrick   if (!EnableCheckBankConflict)
38409467b48Spatrick     return;
38509467b48Spatrick 
38609467b48Spatrick   const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
38709467b48Spatrick 
38809467b48Spatrick   // Create artificial edges between loads that could likely cause a bank
38909467b48Spatrick   // conflict. Since such loads would normally not have any dependency
39009467b48Spatrick   // between them, we cannot rely on existing edges.
39109467b48Spatrick   for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
39209467b48Spatrick     SUnit &S0 = DAG->SUnits[i];
39309467b48Spatrick     MachineInstr &L0 = *S0.getInstr();
39409467b48Spatrick     if (!L0.mayLoad() || L0.mayStore() ||
39509467b48Spatrick         HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
39609467b48Spatrick       continue;
39709467b48Spatrick     int64_t Offset0;
39809467b48Spatrick     unsigned Size0;
39909467b48Spatrick     MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
40009467b48Spatrick     // Is the access size is longer than the L1 cache line, skip the check.
40109467b48Spatrick     if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
40209467b48Spatrick       continue;
40309467b48Spatrick     // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
40409467b48Spatrick     for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
40509467b48Spatrick       SUnit &S1 = DAG->SUnits[j];
40609467b48Spatrick       MachineInstr &L1 = *S1.getInstr();
40709467b48Spatrick       if (!L1.mayLoad() || L1.mayStore() ||
40809467b48Spatrick           HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
40909467b48Spatrick         continue;
41009467b48Spatrick       int64_t Offset1;
41109467b48Spatrick       unsigned Size1;
41209467b48Spatrick       MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
41309467b48Spatrick       if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
41409467b48Spatrick           BaseOp0->getReg() != BaseOp1->getReg())
41509467b48Spatrick         continue;
41609467b48Spatrick       // Check bits 3 and 4 of the offset: if they differ, a bank conflict
41709467b48Spatrick       // is unlikely.
41809467b48Spatrick       if (((Offset0 ^ Offset1) & 0x18) != 0)
41909467b48Spatrick         continue;
42009467b48Spatrick       // Bits 3 and 4 are the same, add an artificial edge and set extra
42109467b48Spatrick       // latency.
42209467b48Spatrick       SDep A(&S0, SDep::Artificial);
42309467b48Spatrick       A.setLatency(1);
42409467b48Spatrick       S1.addPred(A, true);
42509467b48Spatrick     }
42609467b48Spatrick   }
42709467b48Spatrick }
42809467b48Spatrick 
42909467b48Spatrick /// Enable use of alias analysis during code generation (during MI
43009467b48Spatrick /// scheduling, DAGCombine, etc.).
useAA() const43109467b48Spatrick bool HexagonSubtarget::useAA() const {
43209467b48Spatrick   if (OptLevel != CodeGenOpt::None)
43309467b48Spatrick     return true;
43409467b48Spatrick   return false;
43509467b48Spatrick }
43609467b48Spatrick 
43709467b48Spatrick /// Perform target specific adjustments to the latency of a schedule
43809467b48Spatrick /// dependency.
adjustSchedDependency(SUnit * Src,int SrcOpIdx,SUnit * Dst,int DstOpIdx,SDep & Dep) const439097a140dSpatrick void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx,
440097a140dSpatrick                                              SUnit *Dst, int DstOpIdx,
44109467b48Spatrick                                              SDep &Dep) const {
44209467b48Spatrick   if (!Src->isInstr() || !Dst->isInstr())
44309467b48Spatrick     return;
44409467b48Spatrick 
445097a140dSpatrick   MachineInstr *SrcInst = Src->getInstr();
446097a140dSpatrick   MachineInstr *DstInst = Dst->getInstr();
44709467b48Spatrick   const HexagonInstrInfo *QII = getInstrInfo();
44809467b48Spatrick 
44909467b48Spatrick   // Instructions with .new operands have zero latency.
45009467b48Spatrick   SmallSet<SUnit *, 4> ExclSrc;
45109467b48Spatrick   SmallSet<SUnit *, 4> ExclDst;
45209467b48Spatrick   if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
45309467b48Spatrick       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
45409467b48Spatrick     Dep.setLatency(0);
45509467b48Spatrick     return;
45609467b48Spatrick   }
45709467b48Spatrick 
458*d415bd75Srobert   // Set the latency for a copy to zero since we hope that is will get
459*d415bd75Srobert   // removed.
46009467b48Spatrick   if (DstInst->isCopy())
46109467b48Spatrick     Dep.setLatency(0);
46209467b48Spatrick 
46309467b48Spatrick   // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
46409467b48Spatrick   // the correct latency.
465*d415bd75Srobert   // If there are multiple uses of the def of COPY/REG_SEQUENCE, set the latency
466*d415bd75Srobert   // only if the latencies on all the uses are equal, otherwise set it to
467*d415bd75Srobert   // default.
468*d415bd75Srobert   if ((DstInst->isRegSequence() || DstInst->isCopy())) {
46909467b48Spatrick     Register DReg = DstInst->getOperand(0).getReg();
470*d415bd75Srobert     int DLatency = -1;
471*d415bd75Srobert     for (const auto &DDep : Dst->Succs) {
472*d415bd75Srobert       MachineInstr *DDst = DDep.getSUnit()->getInstr();
473*d415bd75Srobert       int UseIdx = -1;
47409467b48Spatrick       for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
47509467b48Spatrick         const MachineOperand &MO = DDst->getOperand(OpNum);
47609467b48Spatrick         if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
47709467b48Spatrick           UseIdx = OpNum;
47809467b48Spatrick           break;
47909467b48Spatrick         }
48009467b48Spatrick       }
481*d415bd75Srobert 
482*d415bd75Srobert       if (UseIdx == -1)
483*d415bd75Srobert         continue;
484*d415bd75Srobert 
485*d415bd75Srobert       int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 0,
486*d415bd75Srobert                                                  *DDst, UseIdx));
487*d415bd75Srobert       // Set DLatency for the first time.
488*d415bd75Srobert       DLatency = (DLatency == -1) ? Latency : DLatency;
489*d415bd75Srobert 
490*d415bd75Srobert       // For multiple uses, if the Latency is different across uses, reset
491*d415bd75Srobert       // DLatency.
492*d415bd75Srobert       if (DLatency != Latency) {
493*d415bd75Srobert         DLatency = -1;
494*d415bd75Srobert         break;
495*d415bd75Srobert       }
496*d415bd75Srobert     }
497*d415bd75Srobert 
49809467b48Spatrick     DLatency = std::max(DLatency, 0);
49909467b48Spatrick     Dep.setLatency((unsigned)DLatency);
50009467b48Spatrick   }
50109467b48Spatrick 
50209467b48Spatrick   // Try to schedule uses near definitions to generate .cur.
50309467b48Spatrick   ExclSrc.clear();
50409467b48Spatrick   ExclDst.clear();
50509467b48Spatrick   if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
50609467b48Spatrick       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
50709467b48Spatrick     Dep.setLatency(0);
50809467b48Spatrick     return;
50909467b48Spatrick   }
510*d415bd75Srobert   int Latency = Dep.getLatency();
511*d415bd75Srobert   bool IsArtificial = Dep.isArtificial();
512*d415bd75Srobert   Latency = updateLatency(*SrcInst, *DstInst, IsArtificial, Latency);
513*d415bd75Srobert   Dep.setLatency(Latency);
51409467b48Spatrick }
51509467b48Spatrick 
getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> & Mutations) const51609467b48Spatrick void HexagonSubtarget::getPostRAMutations(
51709467b48Spatrick     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
51809467b48Spatrick   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
51909467b48Spatrick   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
52009467b48Spatrick   Mutations.push_back(std::make_unique<BankConflictMutation>());
52109467b48Spatrick }
52209467b48Spatrick 
getSMSMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> & Mutations) const52309467b48Spatrick void HexagonSubtarget::getSMSMutations(
52409467b48Spatrick     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
52509467b48Spatrick   Mutations.push_back(std::make_unique<UsrOverflowMutation>());
52609467b48Spatrick   Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
52709467b48Spatrick }
52809467b48Spatrick 
52909467b48Spatrick // Pin the vtable to this file.
anchor()53009467b48Spatrick void HexagonSubtarget::anchor() {}
53109467b48Spatrick 
enableMachineScheduler() const53209467b48Spatrick bool HexagonSubtarget::enableMachineScheduler() const {
53309467b48Spatrick   if (DisableHexagonMISched.getNumOccurrences())
53409467b48Spatrick     return !DisableHexagonMISched;
53509467b48Spatrick   return true;
53609467b48Spatrick }
53709467b48Spatrick 
usePredicatedCalls() const53809467b48Spatrick bool HexagonSubtarget::usePredicatedCalls() const {
53909467b48Spatrick   return EnablePredicatedCalls;
54009467b48Spatrick }
54109467b48Spatrick 
updateLatency(MachineInstr & SrcInst,MachineInstr & DstInst,bool IsArtificial,int Latency) const542*d415bd75Srobert int HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
543*d415bd75Srobert                                     MachineInstr &DstInst, bool IsArtificial,
544*d415bd75Srobert                                     int Latency) const {
545*d415bd75Srobert   if (IsArtificial)
546*d415bd75Srobert     return 1;
54709467b48Spatrick   if (!hasV60Ops())
548*d415bd75Srobert     return Latency;
54909467b48Spatrick 
55009467b48Spatrick   auto &QII = static_cast<const HexagonInstrInfo &>(*getInstrInfo());
55109467b48Spatrick   // BSB scheduling.
55209467b48Spatrick   if (QII.isHVXVec(SrcInst) || useBSBScheduling())
553*d415bd75Srobert     Latency = (Latency + 1) >> 1;
554*d415bd75Srobert   return Latency;
55509467b48Spatrick }
55609467b48Spatrick 
restoreLatency(SUnit * Src,SUnit * Dst) const55709467b48Spatrick void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
55809467b48Spatrick   MachineInstr *SrcI = Src->getInstr();
55909467b48Spatrick   for (auto &I : Src->Succs) {
56009467b48Spatrick     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
56109467b48Spatrick       continue;
56273471bf0Spatrick     Register DepR = I.getReg();
56309467b48Spatrick     int DefIdx = -1;
56409467b48Spatrick     for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
56509467b48Spatrick       const MachineOperand &MO = SrcI->getOperand(OpNum);
566097a140dSpatrick       bool IsSameOrSubReg = false;
567097a140dSpatrick       if (MO.isReg()) {
56873471bf0Spatrick         Register MOReg = MO.getReg();
56973471bf0Spatrick         if (DepR.isVirtual()) {
570097a140dSpatrick           IsSameOrSubReg = (MOReg == DepR);
571097a140dSpatrick         } else {
572097a140dSpatrick           IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg);
573097a140dSpatrick         }
574097a140dSpatrick         if (MO.isDef() && IsSameOrSubReg)
57509467b48Spatrick           DefIdx = OpNum;
57609467b48Spatrick       }
577097a140dSpatrick     }
57809467b48Spatrick     assert(DefIdx >= 0 && "Def Reg not found in Src MI");
57909467b48Spatrick     MachineInstr *DstI = Dst->getInstr();
58009467b48Spatrick     SDep T = I;
58109467b48Spatrick     for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
58209467b48Spatrick       const MachineOperand &MO = DstI->getOperand(OpNum);
58309467b48Spatrick       if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
58409467b48Spatrick         int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
58509467b48Spatrick                                                    DefIdx, *DstI, OpNum));
58609467b48Spatrick 
58709467b48Spatrick         // For some instructions (ex: COPY), we might end up with < 0 latency
58809467b48Spatrick         // as they don't have any Itinerary class associated with them.
58909467b48Spatrick         Latency = std::max(Latency, 0);
590*d415bd75Srobert         bool IsArtificial = I.isArtificial();
591*d415bd75Srobert         Latency = updateLatency(*SrcI, *DstI, IsArtificial, Latency);
59209467b48Spatrick         I.setLatency(Latency);
59309467b48Spatrick       }
59409467b48Spatrick     }
59509467b48Spatrick 
59609467b48Spatrick     // Update the latency of opposite edge too.
59709467b48Spatrick     T.setSUnit(Src);
59873471bf0Spatrick     auto F = find(Dst->Preds, T);
59909467b48Spatrick     assert(F != Dst->Preds.end());
60009467b48Spatrick     F->setLatency(I.getLatency());
60109467b48Spatrick   }
60209467b48Spatrick }
60309467b48Spatrick 
60409467b48Spatrick /// Change the latency between the two SUnits.
changeLatency(SUnit * Src,SUnit * Dst,unsigned Lat) const60509467b48Spatrick void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
60609467b48Spatrick       const {
60709467b48Spatrick   for (auto &I : Src->Succs) {
60809467b48Spatrick     if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
60909467b48Spatrick       continue;
61009467b48Spatrick     SDep T = I;
61109467b48Spatrick     I.setLatency(Lat);
61209467b48Spatrick 
61309467b48Spatrick     // Update the latency of opposite edge too.
61409467b48Spatrick     T.setSUnit(Src);
61573471bf0Spatrick     auto F = find(Dst->Preds, T);
61609467b48Spatrick     assert(F != Dst->Preds.end());
61709467b48Spatrick     F->setLatency(Lat);
61809467b48Spatrick   }
61909467b48Spatrick }
62009467b48Spatrick 
62109467b48Spatrick /// If the SUnit has a zero latency edge, return the other SUnit.
getZeroLatency(SUnit * N,SmallVector<SDep,4> & Deps)62209467b48Spatrick static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
62309467b48Spatrick   for (auto &I : Deps)
62409467b48Spatrick     if (I.isAssignedRegDep() && I.getLatency() == 0 &&
62509467b48Spatrick         !I.getSUnit()->getInstr()->isPseudo())
62609467b48Spatrick       return I.getSUnit();
62709467b48Spatrick   return nullptr;
62809467b48Spatrick }
62909467b48Spatrick 
63009467b48Spatrick // Return true if these are the best two instructions to schedule
63109467b48Spatrick // together with a zero latency. Only one dependence should have a zero
63209467b48Spatrick // latency. If there are multiple choices, choose the best, and change
63309467b48Spatrick // the others, if needed.
isBestZeroLatency(SUnit * Src,SUnit * Dst,const HexagonInstrInfo * TII,SmallSet<SUnit *,4> & ExclSrc,SmallSet<SUnit *,4> & ExclDst) const63409467b48Spatrick bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
63509467b48Spatrick       const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
63609467b48Spatrick       SmallSet<SUnit*, 4> &ExclDst) const {
63709467b48Spatrick   MachineInstr &SrcInst = *Src->getInstr();
63809467b48Spatrick   MachineInstr &DstInst = *Dst->getInstr();
63909467b48Spatrick 
64009467b48Spatrick   // Ignore Boundary SU nodes as these have null instructions.
64109467b48Spatrick   if (Dst->isBoundaryNode())
64209467b48Spatrick     return false;
64309467b48Spatrick 
64409467b48Spatrick   if (SrcInst.isPHI() || DstInst.isPHI())
64509467b48Spatrick     return false;
64609467b48Spatrick 
64709467b48Spatrick   if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
64809467b48Spatrick       !TII->canExecuteInBundle(SrcInst, DstInst))
64909467b48Spatrick     return false;
65009467b48Spatrick 
65109467b48Spatrick   // The architecture doesn't allow three dependent instructions in the same
65209467b48Spatrick   // packet. So, if the destination has a zero latency successor, then it's
65309467b48Spatrick   // not a candidate for a zero latency predecessor.
65409467b48Spatrick   if (getZeroLatency(Dst, Dst->Succs) != nullptr)
65509467b48Spatrick     return false;
65609467b48Spatrick 
65709467b48Spatrick   // Check if the Dst instruction is the best candidate first.
65809467b48Spatrick   SUnit *Best = nullptr;
65909467b48Spatrick   SUnit *DstBest = nullptr;
66009467b48Spatrick   SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
66109467b48Spatrick   if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
66209467b48Spatrick     // Check that Src doesn't have a better candidate.
66309467b48Spatrick     DstBest = getZeroLatency(Src, Src->Succs);
66409467b48Spatrick     if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
66509467b48Spatrick       Best = Dst;
66609467b48Spatrick   }
66709467b48Spatrick   if (Best != Dst)
66809467b48Spatrick     return false;
66909467b48Spatrick 
67009467b48Spatrick   // The caller frequently adds the same dependence twice. If so, then
67109467b48Spatrick   // return true for this case too.
67209467b48Spatrick   if ((Src == SrcBest && Dst == DstBest ) ||
67309467b48Spatrick       (SrcBest == nullptr && Dst == DstBest) ||
67409467b48Spatrick       (Src == SrcBest && Dst == nullptr))
67509467b48Spatrick     return true;
67609467b48Spatrick 
67709467b48Spatrick   // Reassign the latency for the previous bests, which requires setting
67809467b48Spatrick   // the dependence edge in both directions.
67909467b48Spatrick   if (SrcBest != nullptr) {
68009467b48Spatrick     if (!hasV60Ops())
68109467b48Spatrick       changeLatency(SrcBest, Dst, 1);
68209467b48Spatrick     else
68309467b48Spatrick       restoreLatency(SrcBest, Dst);
68409467b48Spatrick   }
68509467b48Spatrick   if (DstBest != nullptr) {
68609467b48Spatrick     if (!hasV60Ops())
68709467b48Spatrick       changeLatency(Src, DstBest, 1);
68809467b48Spatrick     else
68909467b48Spatrick       restoreLatency(Src, DstBest);
69009467b48Spatrick   }
69109467b48Spatrick 
69209467b48Spatrick   // Attempt to find another opprotunity for zero latency in a different
69309467b48Spatrick   // dependence.
69409467b48Spatrick   if (SrcBest && DstBest)
69509467b48Spatrick     // If there is an edge from SrcBest to DstBst, then try to change that
69609467b48Spatrick     // to 0 now.
69709467b48Spatrick     changeLatency(SrcBest, DstBest, 0);
69809467b48Spatrick   else if (DstBest) {
69909467b48Spatrick     // Check if the previous best destination instruction has a new zero
70009467b48Spatrick     // latency dependence opportunity.
70109467b48Spatrick     ExclSrc.insert(Src);
70209467b48Spatrick     for (auto &I : DstBest->Preds)
70309467b48Spatrick       if (ExclSrc.count(I.getSUnit()) == 0 &&
70409467b48Spatrick           isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
70509467b48Spatrick         changeLatency(I.getSUnit(), DstBest, 0);
70609467b48Spatrick   } else if (SrcBest) {
70709467b48Spatrick     // Check if previous best source instruction has a new zero latency
70809467b48Spatrick     // dependence opportunity.
70909467b48Spatrick     ExclDst.insert(Dst);
71009467b48Spatrick     for (auto &I : SrcBest->Succs)
71109467b48Spatrick       if (ExclDst.count(I.getSUnit()) == 0 &&
71209467b48Spatrick           isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
71309467b48Spatrick         changeLatency(SrcBest, I.getSUnit(), 0);
71409467b48Spatrick   }
71509467b48Spatrick 
71609467b48Spatrick   return true;
71709467b48Spatrick }
71809467b48Spatrick 
getL1CacheLineSize() const71909467b48Spatrick unsigned HexagonSubtarget::getL1CacheLineSize() const {
72009467b48Spatrick   return 32;
72109467b48Spatrick }
72209467b48Spatrick 
getL1PrefetchDistance() const72309467b48Spatrick unsigned HexagonSubtarget::getL1PrefetchDistance() const {
72409467b48Spatrick   return 32;
72509467b48Spatrick }
72609467b48Spatrick 
enableSubRegLiveness() const72709467b48Spatrick bool HexagonSubtarget::enableSubRegLiveness() const {
72809467b48Spatrick   return EnableSubregLiveness;
72909467b48Spatrick }
730*d415bd75Srobert 
getIntrinsicId(unsigned Opc) const731*d415bd75Srobert Intrinsic::ID HexagonSubtarget::getIntrinsicId(unsigned Opc) const {
732*d415bd75Srobert   struct Scalar {
733*d415bd75Srobert     unsigned Opcode;
734*d415bd75Srobert     Intrinsic::ID IntId;
735*d415bd75Srobert   };
736*d415bd75Srobert   struct Hvx {
737*d415bd75Srobert     unsigned Opcode;
738*d415bd75Srobert     Intrinsic::ID Int64Id, Int128Id;
739*d415bd75Srobert   };
740*d415bd75Srobert 
741*d415bd75Srobert   static Scalar ScalarInts[] = {
742*d415bd75Srobert #define GET_SCALAR_INTRINSICS
743*d415bd75Srobert #include "HexagonDepInstrIntrinsics.inc"
744*d415bd75Srobert #undef GET_SCALAR_INTRINSICS
745*d415bd75Srobert   };
746*d415bd75Srobert 
747*d415bd75Srobert   static Hvx HvxInts[] = {
748*d415bd75Srobert #define GET_HVX_INTRINSICS
749*d415bd75Srobert #include "HexagonDepInstrIntrinsics.inc"
750*d415bd75Srobert #undef GET_HVX_INTRINSICS
751*d415bd75Srobert   };
752*d415bd75Srobert 
753*d415bd75Srobert   const auto CmpOpcode = [](auto A, auto B) { return A.Opcode < B.Opcode; };
754*d415bd75Srobert   [[maybe_unused]] static bool SortedScalar =
755*d415bd75Srobert       (llvm::sort(ScalarInts, CmpOpcode), true);
756*d415bd75Srobert   [[maybe_unused]] static bool SortedHvx =
757*d415bd75Srobert       (llvm::sort(HvxInts, CmpOpcode), true);
758*d415bd75Srobert 
759*d415bd75Srobert   auto [BS, ES] = std::make_pair(std::begin(ScalarInts), std::end(ScalarInts));
760*d415bd75Srobert   auto [BH, EH] = std::make_pair(std::begin(HvxInts), std::end(HvxInts));
761*d415bd75Srobert 
762*d415bd75Srobert   auto FoundScalar = std::lower_bound(BS, ES, Scalar{Opc, 0}, CmpOpcode);
763*d415bd75Srobert   if (FoundScalar != ES && FoundScalar->Opcode == Opc)
764*d415bd75Srobert     return FoundScalar->IntId;
765*d415bd75Srobert 
766*d415bd75Srobert   auto FoundHvx = std::lower_bound(BH, EH, Hvx{Opc, 0, 0}, CmpOpcode);
767*d415bd75Srobert   if (FoundHvx != EH && FoundHvx->Opcode == Opc) {
768*d415bd75Srobert     unsigned HwLen = getVectorLength();
769*d415bd75Srobert     if (HwLen == 64)
770*d415bd75Srobert       return FoundHvx->Int64Id;
771*d415bd75Srobert     if (HwLen == 128)
772*d415bd75Srobert       return FoundHvx->Int128Id;
773*d415bd75Srobert   }
774*d415bd75Srobert 
775*d415bd75Srobert   std::string error = "Invalid opcode (" + std::to_string(Opc) + ")";
776*d415bd75Srobert   llvm_unreachable(error.c_str());
777*d415bd75Srobert   return 0;
778*d415bd75Srobert }
779