xref: /openbsd-src/gnu/llvm/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp (revision d415bd752c734aee168c4ee86ff32e8cc249eb16)
109467b48Spatrick //===- HexagonCommonGEP.cpp -----------------------------------------------===//
209467b48Spatrick //
309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
609467b48Spatrick //
709467b48Spatrick //===----------------------------------------------------------------------===//
809467b48Spatrick 
909467b48Spatrick #include "llvm/ADT/ArrayRef.h"
1009467b48Spatrick #include "llvm/ADT/FoldingSet.h"
1109467b48Spatrick #include "llvm/ADT/GraphTraits.h"
1209467b48Spatrick #include "llvm/ADT/STLExtras.h"
1309467b48Spatrick #include "llvm/ADT/SetVector.h"
1473471bf0Spatrick #include "llvm/ADT/SmallVector.h"
1509467b48Spatrick #include "llvm/ADT/StringRef.h"
1609467b48Spatrick #include "llvm/Analysis/LoopInfo.h"
1709467b48Spatrick #include "llvm/Analysis/PostDominators.h"
1809467b48Spatrick #include "llvm/IR/BasicBlock.h"
1909467b48Spatrick #include "llvm/IR/Constant.h"
2009467b48Spatrick #include "llvm/IR/Constants.h"
2109467b48Spatrick #include "llvm/IR/DerivedTypes.h"
2209467b48Spatrick #include "llvm/IR/Dominators.h"
2309467b48Spatrick #include "llvm/IR/Function.h"
2409467b48Spatrick #include "llvm/IR/Instruction.h"
2509467b48Spatrick #include "llvm/IR/Instructions.h"
2609467b48Spatrick #include "llvm/IR/Type.h"
2709467b48Spatrick #include "llvm/IR/Use.h"
2809467b48Spatrick #include "llvm/IR/User.h"
2909467b48Spatrick #include "llvm/IR/Value.h"
3009467b48Spatrick #include "llvm/IR/Verifier.h"
3109467b48Spatrick #include "llvm/InitializePasses.h"
3209467b48Spatrick #include "llvm/Pass.h"
3309467b48Spatrick #include "llvm/Support/Allocator.h"
3409467b48Spatrick #include "llvm/Support/Casting.h"
3509467b48Spatrick #include "llvm/Support/CommandLine.h"
3609467b48Spatrick #include "llvm/Support/Compiler.h"
3709467b48Spatrick #include "llvm/Support/Debug.h"
3809467b48Spatrick #include "llvm/Support/raw_ostream.h"
3909467b48Spatrick #include "llvm/Transforms/Utils/Local.h"
4009467b48Spatrick #include <algorithm>
4109467b48Spatrick #include <cassert>
4209467b48Spatrick #include <cstddef>
4309467b48Spatrick #include <cstdint>
4409467b48Spatrick #include <iterator>
4509467b48Spatrick #include <map>
4609467b48Spatrick #include <set>
4709467b48Spatrick #include <utility>
4809467b48Spatrick #include <vector>
4909467b48Spatrick 
5009467b48Spatrick #define DEBUG_TYPE "commgep"
5109467b48Spatrick 
5209467b48Spatrick using namespace llvm;
5309467b48Spatrick 
5409467b48Spatrick static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
55*d415bd75Srobert                                   cl::Hidden);
5609467b48Spatrick 
57*d415bd75Srobert static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden);
5809467b48Spatrick 
5909467b48Spatrick static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
60*d415bd75Srobert                                     cl::Hidden);
6109467b48Spatrick 
6209467b48Spatrick namespace llvm {
6309467b48Spatrick 
6409467b48Spatrick   void initializeHexagonCommonGEPPass(PassRegistry&);
6509467b48Spatrick 
6609467b48Spatrick } // end namespace llvm
6709467b48Spatrick 
6809467b48Spatrick namespace {
6909467b48Spatrick 
7009467b48Spatrick   struct GepNode;
7109467b48Spatrick   using NodeSet = std::set<GepNode *>;
7209467b48Spatrick   using NodeToValueMap = std::map<GepNode *, Value *>;
7309467b48Spatrick   using NodeVect = std::vector<GepNode *>;
7409467b48Spatrick   using NodeChildrenMap = std::map<GepNode *, NodeVect>;
7509467b48Spatrick   using UseSet = SetVector<Use *>;
7609467b48Spatrick   using NodeToUsesMap = std::map<GepNode *, UseSet>;
7709467b48Spatrick 
7809467b48Spatrick   // Numbering map for gep nodes. Used to keep track of ordering for
7909467b48Spatrick   // gep nodes.
8009467b48Spatrick   struct NodeOrdering {
8109467b48Spatrick     NodeOrdering() = default;
8209467b48Spatrick 
insert__anon16873bc50111::NodeOrdering8309467b48Spatrick     void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
clear__anon16873bc50111::NodeOrdering8409467b48Spatrick     void clear() { Map.clear(); }
8509467b48Spatrick 
operator ()__anon16873bc50111::NodeOrdering8609467b48Spatrick     bool operator()(const GepNode *N1, const GepNode *N2) const {
8709467b48Spatrick       auto F1 = Map.find(N1), F2 = Map.find(N2);
8809467b48Spatrick       assert(F1 != Map.end() && F2 != Map.end());
8909467b48Spatrick       return F1->second < F2->second;
9009467b48Spatrick     }
9109467b48Spatrick 
9209467b48Spatrick   private:
9309467b48Spatrick     std::map<const GepNode *, unsigned> Map;
9409467b48Spatrick     unsigned LastNum = 0;
9509467b48Spatrick   };
9609467b48Spatrick 
9709467b48Spatrick   class HexagonCommonGEP : public FunctionPass {
9809467b48Spatrick   public:
9909467b48Spatrick     static char ID;
10009467b48Spatrick 
HexagonCommonGEP()10109467b48Spatrick     HexagonCommonGEP() : FunctionPass(ID) {
10209467b48Spatrick       initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
10309467b48Spatrick     }
10409467b48Spatrick 
10509467b48Spatrick     bool runOnFunction(Function &F) override;
getPassName() const10609467b48Spatrick     StringRef getPassName() const override { return "Hexagon Common GEP"; }
10709467b48Spatrick 
getAnalysisUsage(AnalysisUsage & AU) const10809467b48Spatrick     void getAnalysisUsage(AnalysisUsage &AU) const override {
10909467b48Spatrick       AU.addRequired<DominatorTreeWrapperPass>();
11009467b48Spatrick       AU.addPreserved<DominatorTreeWrapperPass>();
11109467b48Spatrick       AU.addRequired<PostDominatorTreeWrapperPass>();
11209467b48Spatrick       AU.addPreserved<PostDominatorTreeWrapperPass>();
11309467b48Spatrick       AU.addRequired<LoopInfoWrapperPass>();
11409467b48Spatrick       AU.addPreserved<LoopInfoWrapperPass>();
11509467b48Spatrick       FunctionPass::getAnalysisUsage(AU);
11609467b48Spatrick     }
11709467b48Spatrick 
11809467b48Spatrick   private:
11909467b48Spatrick     using ValueToNodeMap = std::map<Value *, GepNode *>;
12009467b48Spatrick     using ValueVect = std::vector<Value *>;
12109467b48Spatrick     using NodeToValuesMap = std::map<GepNode *, ValueVect>;
12209467b48Spatrick 
12309467b48Spatrick     void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
12409467b48Spatrick     bool isHandledGepForm(GetElementPtrInst *GepI);
12509467b48Spatrick     void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
12609467b48Spatrick     void collect();
12709467b48Spatrick     void common();
12809467b48Spatrick 
12909467b48Spatrick     BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
13009467b48Spatrick                                      NodeToValueMap &Loc);
13109467b48Spatrick     BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
13209467b48Spatrick                                         NodeToValueMap &Loc);
13309467b48Spatrick     bool isInvariantIn(Value *Val, Loop *L);
13409467b48Spatrick     bool isInvariantIn(GepNode *Node, Loop *L);
13509467b48Spatrick     bool isInMainPath(BasicBlock *B, Loop *L);
13609467b48Spatrick     BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
13709467b48Spatrick                                     NodeToValueMap &Loc);
13809467b48Spatrick     void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
13909467b48Spatrick     void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
14009467b48Spatrick                                 NodeToValueMap &Loc);
14109467b48Spatrick     void computeNodePlacement(NodeToValueMap &Loc);
14209467b48Spatrick 
14309467b48Spatrick     Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
14409467b48Spatrick                         BasicBlock *LocB);
14509467b48Spatrick     void getAllUsersForNode(GepNode *Node, ValueVect &Values,
14609467b48Spatrick                             NodeChildrenMap &NCM);
14709467b48Spatrick     void materialize(NodeToValueMap &Loc);
14809467b48Spatrick 
14909467b48Spatrick     void removeDeadCode();
15009467b48Spatrick 
15109467b48Spatrick     NodeVect Nodes;
15209467b48Spatrick     NodeToUsesMap Uses;
15309467b48Spatrick     NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
15409467b48Spatrick     SpecificBumpPtrAllocator<GepNode> *Mem;
15509467b48Spatrick     LLVMContext *Ctx;
15609467b48Spatrick     LoopInfo *LI;
15709467b48Spatrick     DominatorTree *DT;
15809467b48Spatrick     PostDominatorTree *PDT;
15909467b48Spatrick     Function *Fn;
16009467b48Spatrick   };
16109467b48Spatrick 
16209467b48Spatrick } // end anonymous namespace
16309467b48Spatrick 
16409467b48Spatrick char HexagonCommonGEP::ID = 0;
16509467b48Spatrick 
16609467b48Spatrick INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
16709467b48Spatrick       false, false)
16809467b48Spatrick INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
16909467b48Spatrick INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
17009467b48Spatrick INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
17109467b48Spatrick INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
17209467b48Spatrick       false, false)
17309467b48Spatrick 
17409467b48Spatrick namespace {
17509467b48Spatrick 
17609467b48Spatrick   struct GepNode {
17709467b48Spatrick     enum {
17809467b48Spatrick       None      = 0,
17909467b48Spatrick       Root      = 0x01,
18009467b48Spatrick       Internal  = 0x02,
18109467b48Spatrick       Used      = 0x04,
18273471bf0Spatrick       InBounds  = 0x08,
18373471bf0Spatrick       Pointer   = 0x10,   // See note below.
18409467b48Spatrick     };
18573471bf0Spatrick     // Note: GEP indices generally traverse nested types, and so a GepNode
18673471bf0Spatrick     // (representing a single index) can be associated with some composite
18773471bf0Spatrick     // type. The exception is the GEP input, which is a pointer, and not
18873471bf0Spatrick     // a composite type (at least not in the sense of having sub-types).
18973471bf0Spatrick     // Also, the corresponding index plays a different role as well: it is
19073471bf0Spatrick     // simply added to the input pointer. Since pointer types are becoming
19173471bf0Spatrick     // opaque (i.e. are no longer going to include the pointee type), the
19273471bf0Spatrick     // two pieces of information (1) the fact that it's a pointer, and
19373471bf0Spatrick     // (2) the pointee type, need to be stored separately. The pointee type
19473471bf0Spatrick     // will be stored in the PTy member, while the fact that the node
19573471bf0Spatrick     // operates on a pointer will be reflected by the flag "Pointer".
19609467b48Spatrick 
19709467b48Spatrick     uint32_t Flags = 0;
19809467b48Spatrick     union {
19909467b48Spatrick       GepNode *Parent;
20009467b48Spatrick       Value *BaseVal;
20109467b48Spatrick     };
20209467b48Spatrick     Value *Idx = nullptr;
20373471bf0Spatrick     Type *PTy = nullptr;    // Type indexed by this node. For pointer nodes
20473471bf0Spatrick                             // this is the "pointee" type, and indexing a
20573471bf0Spatrick                             // pointer does not change the type.
20609467b48Spatrick 
GepNode__anon16873bc50211::GepNode20709467b48Spatrick     GepNode() : Parent(nullptr) {}
GepNode__anon16873bc50211::GepNode20809467b48Spatrick     GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
20909467b48Spatrick       if (Flags & Root)
21009467b48Spatrick         BaseVal = N->BaseVal;
21109467b48Spatrick       else
21209467b48Spatrick         Parent = N->Parent;
21309467b48Spatrick     }
21409467b48Spatrick 
21509467b48Spatrick     friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
21609467b48Spatrick   };
21709467b48Spatrick 
operator <<(raw_ostream & OS,const GepNode & GN)21809467b48Spatrick   raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
21909467b48Spatrick     OS << "{ {";
22009467b48Spatrick     bool Comma = false;
22109467b48Spatrick     if (GN.Flags & GepNode::Root) {
22209467b48Spatrick       OS << "root";
22309467b48Spatrick       Comma = true;
22409467b48Spatrick     }
22509467b48Spatrick     if (GN.Flags & GepNode::Internal) {
22609467b48Spatrick       if (Comma)
22709467b48Spatrick         OS << ',';
22809467b48Spatrick       OS << "internal";
22909467b48Spatrick       Comma = true;
23009467b48Spatrick     }
23109467b48Spatrick     if (GN.Flags & GepNode::Used) {
23209467b48Spatrick       if (Comma)
23309467b48Spatrick         OS << ',';
23409467b48Spatrick       OS << "used";
23509467b48Spatrick     }
23609467b48Spatrick     if (GN.Flags & GepNode::InBounds) {
23709467b48Spatrick       if (Comma)
23809467b48Spatrick         OS << ',';
23909467b48Spatrick       OS << "inbounds";
24009467b48Spatrick     }
24173471bf0Spatrick     if (GN.Flags & GepNode::Pointer) {
24273471bf0Spatrick       if (Comma)
24373471bf0Spatrick         OS << ',';
24473471bf0Spatrick       OS << "pointer";
24573471bf0Spatrick     }
24609467b48Spatrick     OS << "} ";
24709467b48Spatrick     if (GN.Flags & GepNode::Root)
24809467b48Spatrick       OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
24909467b48Spatrick     else
25009467b48Spatrick       OS << "Parent:" << GN.Parent;
25109467b48Spatrick 
25209467b48Spatrick     OS << " Idx:";
25309467b48Spatrick     if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
25409467b48Spatrick       OS << CI->getValue().getSExtValue();
25509467b48Spatrick     else if (GN.Idx->hasName())
25609467b48Spatrick       OS << GN.Idx->getName();
25709467b48Spatrick     else
25809467b48Spatrick       OS << "<anon> =" << *GN.Idx;
25909467b48Spatrick 
26009467b48Spatrick     OS << " PTy:";
26109467b48Spatrick     if (GN.PTy->isStructTy()) {
26209467b48Spatrick       StructType *STy = cast<StructType>(GN.PTy);
26309467b48Spatrick       if (!STy->isLiteral())
26409467b48Spatrick         OS << GN.PTy->getStructName();
26509467b48Spatrick       else
26609467b48Spatrick         OS << "<anon-struct>:" << *STy;
26709467b48Spatrick     }
26809467b48Spatrick     else
26909467b48Spatrick       OS << *GN.PTy;
27009467b48Spatrick     OS << " }";
27109467b48Spatrick     return OS;
27209467b48Spatrick   }
27309467b48Spatrick 
27409467b48Spatrick   template <typename NodeContainer>
dump_node_container(raw_ostream & OS,const NodeContainer & S)27509467b48Spatrick   void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
27609467b48Spatrick     using const_iterator = typename NodeContainer::const_iterator;
27709467b48Spatrick 
27809467b48Spatrick     for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
27909467b48Spatrick       OS << *I << ' ' << **I << '\n';
28009467b48Spatrick   }
28109467b48Spatrick 
28209467b48Spatrick   raw_ostream &operator<< (raw_ostream &OS,
28309467b48Spatrick                            const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const NodeVect & S)28409467b48Spatrick   raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
28509467b48Spatrick     dump_node_container(OS, S);
28609467b48Spatrick     return OS;
28709467b48Spatrick   }
28809467b48Spatrick 
28909467b48Spatrick   raw_ostream &operator<< (raw_ostream &OS,
29009467b48Spatrick                            const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const NodeToUsesMap & M)29109467b48Spatrick   raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
292*d415bd75Srobert     for (const auto &I : M) {
293*d415bd75Srobert       const UseSet &Us = I.second;
294*d415bd75Srobert       OS << I.first << " -> #" << Us.size() << '{';
295*d415bd75Srobert       for (const Use *U : Us) {
296*d415bd75Srobert         User *R = U->getUser();
29709467b48Spatrick         if (R->hasName())
29809467b48Spatrick           OS << ' ' << R->getName();
29909467b48Spatrick         else
30009467b48Spatrick           OS << " <?>(" << *R << ')';
30109467b48Spatrick       }
30209467b48Spatrick       OS << " }\n";
30309467b48Spatrick     }
30409467b48Spatrick     return OS;
30509467b48Spatrick   }
30609467b48Spatrick 
30709467b48Spatrick   struct in_set {
in_set__anon16873bc50211::in_set30809467b48Spatrick     in_set(const NodeSet &S) : NS(S) {}
30909467b48Spatrick 
operator ()__anon16873bc50211::in_set31009467b48Spatrick     bool operator() (GepNode *N) const {
31109467b48Spatrick       return NS.find(N) != NS.end();
31209467b48Spatrick     }
31309467b48Spatrick 
31409467b48Spatrick   private:
31509467b48Spatrick     const NodeSet &NS;
31609467b48Spatrick   };
31709467b48Spatrick 
31809467b48Spatrick } // end anonymous namespace
31909467b48Spatrick 
operator new(size_t,SpecificBumpPtrAllocator<GepNode> & A)32009467b48Spatrick inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
32109467b48Spatrick   return A.Allocate();
32209467b48Spatrick }
32309467b48Spatrick 
getBlockTraversalOrder(BasicBlock * Root,ValueVect & Order)32409467b48Spatrick void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
32509467b48Spatrick       ValueVect &Order) {
32609467b48Spatrick   // Compute block ordering for a typical DT-based traversal of the flow
32709467b48Spatrick   // graph: "before visiting a block, all of its dominators must have been
32809467b48Spatrick   // visited".
32909467b48Spatrick 
33009467b48Spatrick   Order.push_back(Root);
33109467b48Spatrick   for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
33209467b48Spatrick     getBlockTraversalOrder(DTN->getBlock(), Order);
33309467b48Spatrick }
33409467b48Spatrick 
isHandledGepForm(GetElementPtrInst * GepI)33509467b48Spatrick bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
33609467b48Spatrick   // No vector GEPs.
33709467b48Spatrick   if (!GepI->getType()->isPointerTy())
33809467b48Spatrick     return false;
33909467b48Spatrick   // No GEPs without any indices.  (Is this possible?)
34009467b48Spatrick   if (GepI->idx_begin() == GepI->idx_end())
34109467b48Spatrick     return false;
34209467b48Spatrick   return true;
34309467b48Spatrick }
34409467b48Spatrick 
processGepInst(GetElementPtrInst * GepI,ValueToNodeMap & NM)34509467b48Spatrick void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
34609467b48Spatrick       ValueToNodeMap &NM) {
34709467b48Spatrick   LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
34809467b48Spatrick   GepNode *N = new (*Mem) GepNode;
34909467b48Spatrick   Value *PtrOp = GepI->getPointerOperand();
35009467b48Spatrick   uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
35109467b48Spatrick   ValueToNodeMap::iterator F = NM.find(PtrOp);
35209467b48Spatrick   if (F == NM.end()) {
35309467b48Spatrick     N->BaseVal = PtrOp;
35409467b48Spatrick     N->Flags |= GepNode::Root | InBounds;
35509467b48Spatrick   } else {
35609467b48Spatrick     // If PtrOp was a GEP instruction, it must have already been processed.
35709467b48Spatrick     // The ValueToNodeMap entry for it is the last gep node in the generated
35809467b48Spatrick     // chain. Link to it here.
35909467b48Spatrick     N->Parent = F->second;
36009467b48Spatrick   }
36173471bf0Spatrick   N->PTy = GepI->getSourceElementType();
36273471bf0Spatrick   N->Flags |= GepNode::Pointer;
36309467b48Spatrick   N->Idx = *GepI->idx_begin();
36409467b48Spatrick 
36509467b48Spatrick   // Collect the list of users of this GEP instruction. Will add it to the
36609467b48Spatrick   // last node created for it.
36709467b48Spatrick   UseSet Us;
36809467b48Spatrick   for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
36909467b48Spatrick        UI != UE; ++UI) {
37009467b48Spatrick     // Check if this gep is used by anything other than other geps that
37109467b48Spatrick     // we will process.
37209467b48Spatrick     if (isa<GetElementPtrInst>(*UI)) {
37309467b48Spatrick       GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
37409467b48Spatrick       if (isHandledGepForm(UserG))
37509467b48Spatrick         continue;
37609467b48Spatrick     }
37709467b48Spatrick     Us.insert(&UI.getUse());
37809467b48Spatrick   }
37909467b48Spatrick   Nodes.push_back(N);
38009467b48Spatrick   NodeOrder.insert(N);
38109467b48Spatrick 
38273471bf0Spatrick   // Skip the first index operand, since it was already handled above. This
38373471bf0Spatrick   // dereferences the pointer operand.
38409467b48Spatrick   GepNode *PN = N;
38573471bf0Spatrick   Type *PtrTy = GepI->getSourceElementType();
386*d415bd75Srobert   for (Use &U : llvm::drop_begin(GepI->indices())) {
387*d415bd75Srobert     Value *Op = U;
38809467b48Spatrick     GepNode *Nx = new (*Mem) GepNode;
38909467b48Spatrick     Nx->Parent = PN;  // Link Nx to the previous node.
39009467b48Spatrick     Nx->Flags |= GepNode::Internal | InBounds;
39109467b48Spatrick     Nx->PTy = PtrTy;
39209467b48Spatrick     Nx->Idx = Op;
39309467b48Spatrick     Nodes.push_back(Nx);
39409467b48Spatrick     NodeOrder.insert(Nx);
39509467b48Spatrick     PN = Nx;
39609467b48Spatrick 
39773471bf0Spatrick     PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op);
39809467b48Spatrick   }
39909467b48Spatrick 
40009467b48Spatrick   // After last node has been created, update the use information.
40109467b48Spatrick   if (!Us.empty()) {
40209467b48Spatrick     PN->Flags |= GepNode::Used;
40309467b48Spatrick     Uses[PN].insert(Us.begin(), Us.end());
40409467b48Spatrick   }
40509467b48Spatrick 
40609467b48Spatrick   // Link the last node with the originating GEP instruction. This is to
40709467b48Spatrick   // help with linking chained GEP instructions.
40809467b48Spatrick   NM.insert(std::make_pair(GepI, PN));
40909467b48Spatrick }
41009467b48Spatrick 
collect()41109467b48Spatrick void HexagonCommonGEP::collect() {
41209467b48Spatrick   // Establish depth-first traversal order of the dominator tree.
41309467b48Spatrick   ValueVect BO;
41409467b48Spatrick   getBlockTraversalOrder(&Fn->front(), BO);
41509467b48Spatrick 
41609467b48Spatrick   // The creation of gep nodes requires DT-traversal. When processing a GEP
41709467b48Spatrick   // instruction that uses another GEP instruction as the base pointer, the
41809467b48Spatrick   // gep node for the base pointer should already exist.
41909467b48Spatrick   ValueToNodeMap NM;
420*d415bd75Srobert   for (Value *I : BO) {
421*d415bd75Srobert     BasicBlock *B = cast<BasicBlock>(I);
422*d415bd75Srobert     for (Instruction &J : *B)
423*d415bd75Srobert       if (auto *GepI = dyn_cast<GetElementPtrInst>(&J))
42409467b48Spatrick         if (isHandledGepForm(GepI))
42509467b48Spatrick           processGepInst(GepI, NM);
42609467b48Spatrick   }
42709467b48Spatrick 
42809467b48Spatrick   LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
42909467b48Spatrick }
43009467b48Spatrick 
invert_find_roots(const NodeVect & Nodes,NodeChildrenMap & NCM,NodeVect & Roots)43109467b48Spatrick static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
43209467b48Spatrick                               NodeVect &Roots) {
433*d415bd75Srobert   for (GepNode *N : Nodes) {
43409467b48Spatrick     if (N->Flags & GepNode::Root) {
43509467b48Spatrick       Roots.push_back(N);
43609467b48Spatrick       continue;
43709467b48Spatrick     }
43809467b48Spatrick     GepNode *PN = N->Parent;
43909467b48Spatrick     NCM[PN].push_back(N);
44009467b48Spatrick   }
44109467b48Spatrick }
44209467b48Spatrick 
nodes_for_root(GepNode * Root,NodeChildrenMap & NCM,NodeSet & Nodes)44309467b48Spatrick static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
44409467b48Spatrick                            NodeSet &Nodes) {
44509467b48Spatrick     NodeVect Work;
44609467b48Spatrick     Work.push_back(Root);
44709467b48Spatrick     Nodes.insert(Root);
44809467b48Spatrick 
44909467b48Spatrick     while (!Work.empty()) {
45009467b48Spatrick       NodeVect::iterator First = Work.begin();
45109467b48Spatrick       GepNode *N = *First;
45209467b48Spatrick       Work.erase(First);
45309467b48Spatrick       NodeChildrenMap::iterator CF = NCM.find(N);
45409467b48Spatrick       if (CF != NCM.end()) {
45573471bf0Spatrick         llvm::append_range(Work, CF->second);
45609467b48Spatrick         Nodes.insert(CF->second.begin(), CF->second.end());
45709467b48Spatrick       }
45809467b48Spatrick     }
45909467b48Spatrick }
46009467b48Spatrick 
46109467b48Spatrick namespace {
46209467b48Spatrick 
46309467b48Spatrick   using NodeSymRel = std::set<NodeSet>;
46409467b48Spatrick   using NodePair = std::pair<GepNode *, GepNode *>;
46509467b48Spatrick   using NodePairSet = std::set<NodePair>;
46609467b48Spatrick 
46709467b48Spatrick } // end anonymous namespace
46809467b48Spatrick 
node_class(GepNode * N,NodeSymRel & Rel)46909467b48Spatrick static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
470*d415bd75Srobert   for (const NodeSet &S : Rel)
471*d415bd75Srobert     if (S.count(N))
472*d415bd75Srobert       return &S;
47309467b48Spatrick   return nullptr;
47409467b48Spatrick }
47509467b48Spatrick 
47609467b48Spatrick   // Create an ordered pair of GepNode pointers. The pair will be used in
47709467b48Spatrick   // determining equality. The only purpose of the ordering is to eliminate
47809467b48Spatrick   // duplication due to the commutativity of equality/non-equality.
node_pair(GepNode * N1,GepNode * N2)47909467b48Spatrick static NodePair node_pair(GepNode *N1, GepNode *N2) {
48073471bf0Spatrick   uintptr_t P1 = reinterpret_cast<uintptr_t>(N1);
48173471bf0Spatrick   uintptr_t P2 = reinterpret_cast<uintptr_t>(N2);
48209467b48Spatrick   if (P1 <= P2)
48309467b48Spatrick     return std::make_pair(N1, N2);
48409467b48Spatrick   return std::make_pair(N2, N1);
48509467b48Spatrick }
48609467b48Spatrick 
node_hash(GepNode * N)48709467b48Spatrick static unsigned node_hash(GepNode *N) {
48809467b48Spatrick     // Include everything except flags and parent.
48909467b48Spatrick     FoldingSetNodeID ID;
49009467b48Spatrick     ID.AddPointer(N->Idx);
49109467b48Spatrick     ID.AddPointer(N->PTy);
49209467b48Spatrick     return ID.ComputeHash();
49309467b48Spatrick }
49409467b48Spatrick 
node_eq(GepNode * N1,GepNode * N2,NodePairSet & Eq,NodePairSet & Ne)49509467b48Spatrick static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
49609467b48Spatrick                     NodePairSet &Ne) {
49709467b48Spatrick     // Don't cache the result for nodes with different hashes. The hash
49809467b48Spatrick     // comparison is fast enough.
49909467b48Spatrick     if (node_hash(N1) != node_hash(N2))
50009467b48Spatrick       return false;
50109467b48Spatrick 
50209467b48Spatrick     NodePair NP = node_pair(N1, N2);
50309467b48Spatrick     NodePairSet::iterator FEq = Eq.find(NP);
50409467b48Spatrick     if (FEq != Eq.end())
50509467b48Spatrick       return true;
50609467b48Spatrick     NodePairSet::iterator FNe = Ne.find(NP);
50709467b48Spatrick     if (FNe != Ne.end())
50809467b48Spatrick       return false;
50909467b48Spatrick     // Not previously compared.
51009467b48Spatrick     bool Root1 = N1->Flags & GepNode::Root;
51173471bf0Spatrick     uint32_t CmpFlags = GepNode::Root | GepNode::Pointer;
51273471bf0Spatrick     bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags);
51309467b48Spatrick     NodePair P = node_pair(N1, N2);
51473471bf0Spatrick     // If the root/pointer flags have different values, the nodes are
51573471bf0Spatrick     // different.
51609467b48Spatrick     // If both nodes are root nodes, but their base pointers differ,
51709467b48Spatrick     // they are different.
51873471bf0Spatrick     if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) {
51909467b48Spatrick       Ne.insert(P);
52009467b48Spatrick       return false;
52109467b48Spatrick     }
52273471bf0Spatrick     // Here the root/pointer flags are identical, and for root nodes the
52309467b48Spatrick     // base pointers are equal, so the root nodes are equal.
52409467b48Spatrick     // For non-root nodes, compare their parent nodes.
52509467b48Spatrick     if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
52609467b48Spatrick       Eq.insert(P);
52709467b48Spatrick       return true;
52809467b48Spatrick     }
52909467b48Spatrick     return false;
53009467b48Spatrick }
53109467b48Spatrick 
common()53209467b48Spatrick void HexagonCommonGEP::common() {
53309467b48Spatrick   // The essence of this commoning is finding gep nodes that are equal.
53409467b48Spatrick   // To do this we need to compare all pairs of nodes. To save time,
53509467b48Spatrick   // first, partition the set of all nodes into sets of potentially equal
53609467b48Spatrick   // nodes, and then compare pairs from within each partition.
53709467b48Spatrick   using NodeSetMap = std::map<unsigned, NodeSet>;
53809467b48Spatrick   NodeSetMap MaybeEq;
53909467b48Spatrick 
540*d415bd75Srobert   for (GepNode *N : Nodes) {
54109467b48Spatrick     unsigned H = node_hash(N);
54209467b48Spatrick     MaybeEq[H].insert(N);
54309467b48Spatrick   }
54409467b48Spatrick 
54509467b48Spatrick   // Compute the equivalence relation for the gep nodes.  Use two caches,
54609467b48Spatrick   // one for equality and the other for non-equality.
54709467b48Spatrick   NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
54809467b48Spatrick   NodePairSet Eq, Ne;  // Caches.
549*d415bd75Srobert   for (auto &I : MaybeEq) {
550*d415bd75Srobert     NodeSet &S = I.second;
55109467b48Spatrick     for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
55209467b48Spatrick       GepNode *N = *NI;
55309467b48Spatrick       // If node already has a class, then the class must have been created
55409467b48Spatrick       // in a prior iteration of this loop. Since equality is transitive,
55509467b48Spatrick       // nothing more will be added to that class, so skip it.
55609467b48Spatrick       if (node_class(N, EqRel))
55709467b48Spatrick         continue;
55809467b48Spatrick 
55909467b48Spatrick       // Create a new class candidate now.
56009467b48Spatrick       NodeSet C;
56109467b48Spatrick       for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
56209467b48Spatrick         if (node_eq(N, *NJ, Eq, Ne))
56309467b48Spatrick           C.insert(*NJ);
56409467b48Spatrick       // If Tmp is empty, N would be the only element in it. Don't bother
56509467b48Spatrick       // creating a class for it then.
56609467b48Spatrick       if (!C.empty()) {
56709467b48Spatrick         C.insert(N);  // Finalize the set before adding it to the relation.
56809467b48Spatrick         std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
56909467b48Spatrick         (void)Ins;
57009467b48Spatrick         assert(Ins.second && "Cannot add a class");
57109467b48Spatrick       }
57209467b48Spatrick     }
57309467b48Spatrick   }
57409467b48Spatrick 
57509467b48Spatrick   LLVM_DEBUG({
57609467b48Spatrick     dbgs() << "Gep node equality:\n";
57709467b48Spatrick     for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
57809467b48Spatrick       dbgs() << "{ " << I->first << ", " << I->second << " }\n";
57909467b48Spatrick 
58009467b48Spatrick     dbgs() << "Gep equivalence classes:\n";
581*d415bd75Srobert     for (const NodeSet &S : EqRel) {
58209467b48Spatrick       dbgs() << '{';
58309467b48Spatrick       for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
58409467b48Spatrick         if (J != S.begin())
58509467b48Spatrick           dbgs() << ',';
58609467b48Spatrick         dbgs() << ' ' << *J;
58709467b48Spatrick       }
58809467b48Spatrick       dbgs() << " }\n";
58909467b48Spatrick     }
59009467b48Spatrick   });
59109467b48Spatrick 
59209467b48Spatrick   // Create a projection from a NodeSet to the minimal element in it.
59309467b48Spatrick   using ProjMap = std::map<const NodeSet *, GepNode *>;
59409467b48Spatrick   ProjMap PM;
595*d415bd75Srobert   for (const NodeSet &S : EqRel) {
59609467b48Spatrick     GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
59709467b48Spatrick     std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
59809467b48Spatrick     (void)Ins;
59909467b48Spatrick     assert(Ins.second && "Cannot add minimal element");
60009467b48Spatrick 
60109467b48Spatrick     // Update the min element's flags, and user list.
60209467b48Spatrick     uint32_t Flags = 0;
60309467b48Spatrick     UseSet &MinUs = Uses[Min];
604*d415bd75Srobert     for (GepNode *N : S) {
60509467b48Spatrick       uint32_t NF = N->Flags;
60609467b48Spatrick       // If N is used, append all original values of N to the list of
60709467b48Spatrick       // original values of Min.
60809467b48Spatrick       if (NF & GepNode::Used)
60909467b48Spatrick         MinUs.insert(Uses[N].begin(), Uses[N].end());
61009467b48Spatrick       Flags |= NF;
61109467b48Spatrick     }
61209467b48Spatrick     if (MinUs.empty())
61309467b48Spatrick       Uses.erase(Min);
61409467b48Spatrick 
61509467b48Spatrick     // The collected flags should include all the flags from the min element.
61609467b48Spatrick     assert((Min->Flags & Flags) == Min->Flags);
61709467b48Spatrick     Min->Flags = Flags;
61809467b48Spatrick   }
61909467b48Spatrick 
62009467b48Spatrick   // Commoning: for each non-root gep node, replace "Parent" with the
62109467b48Spatrick   // selected (minimum) node from the corresponding equivalence class.
62209467b48Spatrick   // If a given parent does not have an equivalence class, leave it
62309467b48Spatrick   // unchanged (it means that it's the only element in its class).
624*d415bd75Srobert   for (GepNode *N : Nodes) {
62509467b48Spatrick     if (N->Flags & GepNode::Root)
62609467b48Spatrick       continue;
62709467b48Spatrick     const NodeSet *PC = node_class(N->Parent, EqRel);
62809467b48Spatrick     if (!PC)
62909467b48Spatrick       continue;
63009467b48Spatrick     ProjMap::iterator F = PM.find(PC);
63109467b48Spatrick     if (F == PM.end())
63209467b48Spatrick       continue;
63309467b48Spatrick     // Found a replacement, use it.
63409467b48Spatrick     GepNode *Rep = F->second;
63509467b48Spatrick     N->Parent = Rep;
63609467b48Spatrick   }
63709467b48Spatrick 
63809467b48Spatrick   LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
63909467b48Spatrick 
64009467b48Spatrick   // Finally, erase the nodes that are no longer used.
64109467b48Spatrick   NodeSet Erase;
642*d415bd75Srobert   for (GepNode *N : Nodes) {
64309467b48Spatrick     const NodeSet *PC = node_class(N, EqRel);
64409467b48Spatrick     if (!PC)
64509467b48Spatrick       continue;
64609467b48Spatrick     ProjMap::iterator F = PM.find(PC);
64709467b48Spatrick     if (F == PM.end())
64809467b48Spatrick       continue;
64909467b48Spatrick     if (N == F->second)
65009467b48Spatrick       continue;
65109467b48Spatrick     // Node for removal.
652*d415bd75Srobert     Erase.insert(N);
65309467b48Spatrick   }
65473471bf0Spatrick   erase_if(Nodes, in_set(Erase));
65509467b48Spatrick 
65609467b48Spatrick   LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
65709467b48Spatrick }
65809467b48Spatrick 
65909467b48Spatrick template <typename T>
nearest_common_dominator(DominatorTree * DT,T & Blocks)66009467b48Spatrick static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
66109467b48Spatrick   LLVM_DEBUG({
66209467b48Spatrick     dbgs() << "NCD of {";
66309467b48Spatrick     for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
66409467b48Spatrick          ++I) {
66509467b48Spatrick       if (!*I)
66609467b48Spatrick         continue;
66709467b48Spatrick       BasicBlock *B = cast<BasicBlock>(*I);
66809467b48Spatrick       dbgs() << ' ' << B->getName();
66909467b48Spatrick     }
67009467b48Spatrick     dbgs() << " }\n";
67109467b48Spatrick   });
67209467b48Spatrick 
67309467b48Spatrick   // Allow null basic blocks in Blocks.  In such cases, return nullptr.
67409467b48Spatrick   typename T::iterator I = Blocks.begin(), E = Blocks.end();
67509467b48Spatrick   if (I == E || !*I)
67609467b48Spatrick     return nullptr;
67709467b48Spatrick   BasicBlock *Dom = cast<BasicBlock>(*I);
67809467b48Spatrick   while (++I != E) {
67909467b48Spatrick     BasicBlock *B = cast_or_null<BasicBlock>(*I);
68009467b48Spatrick     Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
68109467b48Spatrick     if (!Dom)
68209467b48Spatrick       return nullptr;
68309467b48Spatrick     }
68409467b48Spatrick     LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
68509467b48Spatrick     return Dom;
68609467b48Spatrick }
68709467b48Spatrick 
68809467b48Spatrick template <typename T>
nearest_common_dominatee(DominatorTree * DT,T & Blocks)68909467b48Spatrick static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
69009467b48Spatrick     // If two blocks, A and B, dominate a block C, then A dominates B,
69109467b48Spatrick     // or B dominates A.
69209467b48Spatrick     typename T::iterator I = Blocks.begin(), E = Blocks.end();
69309467b48Spatrick     // Find the first non-null block.
69409467b48Spatrick     while (I != E && !*I)
69509467b48Spatrick       ++I;
69609467b48Spatrick     if (I == E)
69709467b48Spatrick       return DT->getRoot();
69809467b48Spatrick     BasicBlock *DomB = cast<BasicBlock>(*I);
69909467b48Spatrick     while (++I != E) {
70009467b48Spatrick       if (!*I)
70109467b48Spatrick         continue;
70209467b48Spatrick       BasicBlock *B = cast<BasicBlock>(*I);
70309467b48Spatrick       if (DT->dominates(B, DomB))
70409467b48Spatrick         continue;
70509467b48Spatrick       if (!DT->dominates(DomB, B))
70609467b48Spatrick         return nullptr;
70709467b48Spatrick       DomB = B;
70809467b48Spatrick     }
70909467b48Spatrick     return DomB;
71009467b48Spatrick }
71109467b48Spatrick 
71209467b48Spatrick // Find the first use in B of any value from Values. If no such use,
71309467b48Spatrick // return B->end().
71409467b48Spatrick template <typename T>
first_use_of_in_block(T & Values,BasicBlock * B)71509467b48Spatrick static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
71609467b48Spatrick     BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
71709467b48Spatrick 
71809467b48Spatrick     using iterator = typename T::iterator;
71909467b48Spatrick 
72009467b48Spatrick     for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
72109467b48Spatrick       Value *V = *I;
72209467b48Spatrick       // If V is used in a PHI node, the use belongs to the incoming block,
72309467b48Spatrick       // not the block with the PHI node. In the incoming block, the use
72409467b48Spatrick       // would be considered as being at the end of it, so it cannot
72509467b48Spatrick       // influence the position of the first use (which is assumed to be
72609467b48Spatrick       // at the end to start with).
72709467b48Spatrick       if (isa<PHINode>(V))
72809467b48Spatrick         continue;
72909467b48Spatrick       if (!isa<Instruction>(V))
73009467b48Spatrick         continue;
73109467b48Spatrick       Instruction *In = cast<Instruction>(V);
73209467b48Spatrick       if (In->getParent() != B)
73309467b48Spatrick         continue;
73409467b48Spatrick       BasicBlock::iterator It = In->getIterator();
73509467b48Spatrick       if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
73609467b48Spatrick         FirstUse = It;
73709467b48Spatrick     }
73809467b48Spatrick     return FirstUse;
73909467b48Spatrick }
74009467b48Spatrick 
is_empty(const BasicBlock * B)74109467b48Spatrick static bool is_empty(const BasicBlock *B) {
74209467b48Spatrick     return B->empty() || (&*B->begin() == B->getTerminator());
74309467b48Spatrick }
74409467b48Spatrick 
recalculatePlacement(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)74509467b48Spatrick BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
74609467b48Spatrick       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
74709467b48Spatrick   LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
74809467b48Spatrick   // Recalculate the placement for Node, assuming that the locations of
74909467b48Spatrick   // its children in Loc are valid.
75009467b48Spatrick   // Return nullptr if there is no valid placement for Node (for example, it
75109467b48Spatrick   // uses an index value that is not available at the location required
75209467b48Spatrick   // to dominate all children, etc.).
75309467b48Spatrick 
75409467b48Spatrick   // Find the nearest common dominator for:
75509467b48Spatrick   // - all users, if the node is used, and
75609467b48Spatrick   // - all children.
75709467b48Spatrick   ValueVect Bs;
75809467b48Spatrick   if (Node->Flags & GepNode::Used) {
75909467b48Spatrick     // Append all blocks with uses of the original values to the
76009467b48Spatrick     // block vector Bs.
76109467b48Spatrick     NodeToUsesMap::iterator UF = Uses.find(Node);
76209467b48Spatrick     assert(UF != Uses.end() && "Used node with no use information");
76309467b48Spatrick     UseSet &Us = UF->second;
764*d415bd75Srobert     for (Use *U : Us) {
76509467b48Spatrick       User *R = U->getUser();
76609467b48Spatrick       if (!isa<Instruction>(R))
76709467b48Spatrick         continue;
76809467b48Spatrick       BasicBlock *PB = isa<PHINode>(R)
76909467b48Spatrick           ? cast<PHINode>(R)->getIncomingBlock(*U)
77009467b48Spatrick           : cast<Instruction>(R)->getParent();
77109467b48Spatrick       Bs.push_back(PB);
77209467b48Spatrick     }
77309467b48Spatrick   }
77409467b48Spatrick   // Append the location of each child.
77509467b48Spatrick   NodeChildrenMap::iterator CF = NCM.find(Node);
77609467b48Spatrick   if (CF != NCM.end()) {
77709467b48Spatrick     NodeVect &Cs = CF->second;
778*d415bd75Srobert     for (GepNode *CN : Cs) {
77909467b48Spatrick       NodeToValueMap::iterator LF = Loc.find(CN);
78009467b48Spatrick       // If the child is only used in GEP instructions (i.e. is not used in
78109467b48Spatrick       // non-GEP instructions), the nearest dominator computed for it may
78209467b48Spatrick       // have been null. In such case it won't have a location available.
78309467b48Spatrick       if (LF == Loc.end())
78409467b48Spatrick         continue;
78509467b48Spatrick       Bs.push_back(LF->second);
78609467b48Spatrick     }
78709467b48Spatrick   }
78809467b48Spatrick 
78909467b48Spatrick   BasicBlock *DomB = nearest_common_dominator(DT, Bs);
79009467b48Spatrick   if (!DomB)
79109467b48Spatrick     return nullptr;
79209467b48Spatrick   // Check if the index used by Node dominates the computed dominator.
79309467b48Spatrick   Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
79409467b48Spatrick   if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
79509467b48Spatrick     return nullptr;
79609467b48Spatrick 
79709467b48Spatrick   // Avoid putting nodes into empty blocks.
79809467b48Spatrick   while (is_empty(DomB)) {
79909467b48Spatrick     DomTreeNode *N = (*DT)[DomB]->getIDom();
80009467b48Spatrick     if (!N)
80109467b48Spatrick       break;
80209467b48Spatrick     DomB = N->getBlock();
80309467b48Spatrick   }
80409467b48Spatrick 
80509467b48Spatrick   // Otherwise, DomB is fine. Update the location map.
80609467b48Spatrick   Loc[Node] = DomB;
80709467b48Spatrick   return DomB;
80809467b48Spatrick }
80909467b48Spatrick 
recalculatePlacementRec(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)81009467b48Spatrick BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
81109467b48Spatrick       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
81209467b48Spatrick   LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
81309467b48Spatrick   // Recalculate the placement of Node, after recursively recalculating the
81409467b48Spatrick   // placements of all its children.
81509467b48Spatrick   NodeChildrenMap::iterator CF = NCM.find(Node);
81609467b48Spatrick   if (CF != NCM.end()) {
81709467b48Spatrick     NodeVect &Cs = CF->second;
818*d415bd75Srobert     for (GepNode *C : Cs)
819*d415bd75Srobert       recalculatePlacementRec(C, NCM, Loc);
82009467b48Spatrick   }
82109467b48Spatrick   BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
82209467b48Spatrick   LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
82309467b48Spatrick   return LB;
82409467b48Spatrick }
82509467b48Spatrick 
isInvariantIn(Value * Val,Loop * L)82609467b48Spatrick bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
82709467b48Spatrick   if (isa<Constant>(Val) || isa<Argument>(Val))
82809467b48Spatrick     return true;
82909467b48Spatrick   Instruction *In = dyn_cast<Instruction>(Val);
83009467b48Spatrick   if (!In)
83109467b48Spatrick     return false;
83209467b48Spatrick   BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
83309467b48Spatrick   return DT->properlyDominates(DefB, HdrB);
83409467b48Spatrick }
83509467b48Spatrick 
isInvariantIn(GepNode * Node,Loop * L)83609467b48Spatrick bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
83709467b48Spatrick   if (Node->Flags & GepNode::Root)
83809467b48Spatrick     if (!isInvariantIn(Node->BaseVal, L))
83909467b48Spatrick       return false;
84009467b48Spatrick   return isInvariantIn(Node->Idx, L);
84109467b48Spatrick }
84209467b48Spatrick 
isInMainPath(BasicBlock * B,Loop * L)84309467b48Spatrick bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
84409467b48Spatrick   BasicBlock *HB = L->getHeader();
84509467b48Spatrick   BasicBlock *LB = L->getLoopLatch();
84609467b48Spatrick   // B must post-dominate the loop header or dominate the loop latch.
84709467b48Spatrick   if (PDT->dominates(B, HB))
84809467b48Spatrick     return true;
84909467b48Spatrick   if (LB && DT->dominates(B, LB))
85009467b48Spatrick     return true;
85109467b48Spatrick   return false;
85209467b48Spatrick }
85309467b48Spatrick 
preheader(DominatorTree * DT,Loop * L)85409467b48Spatrick static BasicBlock *preheader(DominatorTree *DT, Loop *L) {
85509467b48Spatrick   if (BasicBlock *PH = L->getLoopPreheader())
85609467b48Spatrick     return PH;
85709467b48Spatrick   if (!OptSpeculate)
85809467b48Spatrick     return nullptr;
85909467b48Spatrick   DomTreeNode *DN = DT->getNode(L->getHeader());
86009467b48Spatrick   if (!DN)
86109467b48Spatrick     return nullptr;
86209467b48Spatrick   return DN->getIDom()->getBlock();
86309467b48Spatrick }
86409467b48Spatrick 
adjustForInvariance(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)86509467b48Spatrick BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
86609467b48Spatrick       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
86709467b48Spatrick   // Find the "topmost" location for Node: it must be dominated by both,
86809467b48Spatrick   // its parent (or the BaseVal, if it's a root node), and by the index
86909467b48Spatrick   // value.
87009467b48Spatrick   ValueVect Bs;
87109467b48Spatrick   if (Node->Flags & GepNode::Root) {
87209467b48Spatrick     if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
87309467b48Spatrick       Bs.push_back(PIn->getParent());
87409467b48Spatrick   } else {
87509467b48Spatrick     Bs.push_back(Loc[Node->Parent]);
87609467b48Spatrick   }
87709467b48Spatrick   if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
87809467b48Spatrick     Bs.push_back(IIn->getParent());
87909467b48Spatrick   BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
88009467b48Spatrick 
88109467b48Spatrick   // Traverse the loop nest upwards until we find a loop in which Node
88209467b48Spatrick   // is no longer invariant, or until we get to the upper limit of Node's
88309467b48Spatrick   // placement. The traversal will also stop when a suitable "preheader"
88409467b48Spatrick   // cannot be found for a given loop. The "preheader" may actually be
88509467b48Spatrick   // a regular block outside of the loop (i.e. not guarded), in which case
88609467b48Spatrick   // the Node will be speculated.
88709467b48Spatrick   // For nodes that are not in the main path of the containing loop (i.e.
88809467b48Spatrick   // are not executed in each iteration), do not move them out of the loop.
88909467b48Spatrick   BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
89009467b48Spatrick   if (LocB) {
89109467b48Spatrick     Loop *Lp = LI->getLoopFor(LocB);
89209467b48Spatrick     while (Lp) {
89309467b48Spatrick       if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
89409467b48Spatrick         break;
89509467b48Spatrick       BasicBlock *NewLoc = preheader(DT, Lp);
89609467b48Spatrick       if (!NewLoc || !DT->dominates(TopB, NewLoc))
89709467b48Spatrick         break;
89809467b48Spatrick       Lp = Lp->getParentLoop();
89909467b48Spatrick       LocB = NewLoc;
90009467b48Spatrick     }
90109467b48Spatrick   }
90209467b48Spatrick   Loc[Node] = LocB;
90309467b48Spatrick 
90409467b48Spatrick   // Recursively compute the locations of all children nodes.
90509467b48Spatrick   NodeChildrenMap::iterator CF = NCM.find(Node);
90609467b48Spatrick   if (CF != NCM.end()) {
90709467b48Spatrick     NodeVect &Cs = CF->second;
908*d415bd75Srobert     for (GepNode *C : Cs)
909*d415bd75Srobert       adjustForInvariance(C, NCM, Loc);
91009467b48Spatrick   }
91109467b48Spatrick   return LocB;
91209467b48Spatrick }
91309467b48Spatrick 
91409467b48Spatrick namespace {
91509467b48Spatrick 
91609467b48Spatrick   struct LocationAsBlock {
LocationAsBlock__anon16873bc50611::LocationAsBlock91709467b48Spatrick     LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
91809467b48Spatrick 
91909467b48Spatrick     const NodeToValueMap &Map;
92009467b48Spatrick   };
92109467b48Spatrick 
92209467b48Spatrick   raw_ostream &operator<< (raw_ostream &OS,
92309467b48Spatrick                            const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
operator <<(raw_ostream & OS,const LocationAsBlock & Loc)92409467b48Spatrick   raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
925*d415bd75Srobert     for (const auto &I : Loc.Map) {
926*d415bd75Srobert       OS << I.first << " -> ";
927*d415bd75Srobert       if (BasicBlock *B = cast_or_null<BasicBlock>(I.second))
92809467b48Spatrick         OS << B->getName() << '(' << B << ')';
92973471bf0Spatrick       else
93073471bf0Spatrick         OS << "<null-block>";
93109467b48Spatrick       OS << '\n';
93209467b48Spatrick     }
93309467b48Spatrick     return OS;
93409467b48Spatrick   }
93509467b48Spatrick 
is_constant(GepNode * N)93609467b48Spatrick   inline bool is_constant(GepNode *N) {
93709467b48Spatrick     return isa<ConstantInt>(N->Idx);
93809467b48Spatrick   }
93909467b48Spatrick 
94009467b48Spatrick } // end anonymous namespace
94109467b48Spatrick 
separateChainForNode(GepNode * Node,Use * U,NodeToValueMap & Loc)94209467b48Spatrick void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
94309467b48Spatrick       NodeToValueMap &Loc) {
94409467b48Spatrick   User *R = U->getUser();
94509467b48Spatrick   LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
94609467b48Spatrick                     << '\n');
94709467b48Spatrick   BasicBlock *PB = cast<Instruction>(R)->getParent();
94809467b48Spatrick 
94909467b48Spatrick   GepNode *N = Node;
95009467b48Spatrick   GepNode *C = nullptr, *NewNode = nullptr;
95109467b48Spatrick   while (is_constant(N) && !(N->Flags & GepNode::Root)) {
95209467b48Spatrick     // XXX if (single-use) dont-replicate;
95309467b48Spatrick     GepNode *NewN = new (*Mem) GepNode(N);
95409467b48Spatrick     Nodes.push_back(NewN);
95509467b48Spatrick     Loc[NewN] = PB;
95609467b48Spatrick 
95709467b48Spatrick     if (N == Node)
95809467b48Spatrick       NewNode = NewN;
95909467b48Spatrick     NewN->Flags &= ~GepNode::Used;
96009467b48Spatrick     if (C)
96109467b48Spatrick       C->Parent = NewN;
96209467b48Spatrick     C = NewN;
96309467b48Spatrick     N = N->Parent;
96409467b48Spatrick   }
96509467b48Spatrick   if (!NewNode)
96609467b48Spatrick     return;
96709467b48Spatrick 
96809467b48Spatrick   // Move over all uses that share the same user as U from Node to NewNode.
96909467b48Spatrick   NodeToUsesMap::iterator UF = Uses.find(Node);
97009467b48Spatrick   assert(UF != Uses.end());
97109467b48Spatrick   UseSet &Us = UF->second;
97209467b48Spatrick   UseSet NewUs;
97309467b48Spatrick   for (Use *U : Us) {
97409467b48Spatrick     if (U->getUser() == R)
97509467b48Spatrick       NewUs.insert(U);
97609467b48Spatrick   }
97709467b48Spatrick   for (Use *U : NewUs)
97809467b48Spatrick     Us.remove(U); // erase takes an iterator.
97909467b48Spatrick 
98009467b48Spatrick   if (Us.empty()) {
98109467b48Spatrick     Node->Flags &= ~GepNode::Used;
98209467b48Spatrick     Uses.erase(UF);
98309467b48Spatrick   }
98409467b48Spatrick 
98509467b48Spatrick   // Should at least have U in NewUs.
98609467b48Spatrick   NewNode->Flags |= GepNode::Used;
98709467b48Spatrick   LLVM_DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
98809467b48Spatrick   assert(!NewUs.empty());
98909467b48Spatrick   Uses[NewNode] = NewUs;
99009467b48Spatrick }
99109467b48Spatrick 
separateConstantChains(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)99209467b48Spatrick void HexagonCommonGEP::separateConstantChains(GepNode *Node,
99309467b48Spatrick       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
99409467b48Spatrick   // First approximation: extract all chains.
99509467b48Spatrick   NodeSet Ns;
99609467b48Spatrick   nodes_for_root(Node, NCM, Ns);
99709467b48Spatrick 
99809467b48Spatrick   LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
99909467b48Spatrick   // Collect all used nodes together with the uses from loads and stores,
100009467b48Spatrick   // where the GEP node could be folded into the load/store instruction.
100109467b48Spatrick   NodeToUsesMap FNs; // Foldable nodes.
1002*d415bd75Srobert   for (GepNode *N : Ns) {
100309467b48Spatrick     if (!(N->Flags & GepNode::Used))
100409467b48Spatrick       continue;
100509467b48Spatrick     NodeToUsesMap::iterator UF = Uses.find(N);
100609467b48Spatrick     assert(UF != Uses.end());
100709467b48Spatrick     UseSet &Us = UF->second;
100809467b48Spatrick     // Loads/stores that use the node N.
100909467b48Spatrick     UseSet LSs;
1010*d415bd75Srobert     for (Use *U : Us) {
101109467b48Spatrick       User *R = U->getUser();
101209467b48Spatrick       // We're interested in uses that provide the address. It can happen
101309467b48Spatrick       // that the value may also be provided via GEP, but we won't handle
101409467b48Spatrick       // those cases here for now.
101509467b48Spatrick       if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
101609467b48Spatrick         unsigned PtrX = LoadInst::getPointerOperandIndex();
101709467b48Spatrick         if (&Ld->getOperandUse(PtrX) == U)
101809467b48Spatrick           LSs.insert(U);
101909467b48Spatrick       } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
102009467b48Spatrick         unsigned PtrX = StoreInst::getPointerOperandIndex();
102109467b48Spatrick         if (&St->getOperandUse(PtrX) == U)
102209467b48Spatrick           LSs.insert(U);
102309467b48Spatrick       }
102409467b48Spatrick     }
102509467b48Spatrick     // Even if the total use count is 1, separating the chain may still be
102609467b48Spatrick     // beneficial, since the constant chain may be longer than the GEP alone
102709467b48Spatrick     // would be (e.g. if the parent node has a constant index and also has
102809467b48Spatrick     // other children).
102909467b48Spatrick     if (!LSs.empty())
103009467b48Spatrick       FNs.insert(std::make_pair(N, LSs));
103109467b48Spatrick   }
103209467b48Spatrick 
103309467b48Spatrick   LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
103409467b48Spatrick 
1035*d415bd75Srobert   for (auto &FN : FNs) {
1036*d415bd75Srobert     GepNode *N = FN.first;
1037*d415bd75Srobert     UseSet &Us = FN.second;
1038*d415bd75Srobert     for (Use *U : Us)
1039*d415bd75Srobert       separateChainForNode(N, U, Loc);
104009467b48Spatrick   }
104109467b48Spatrick }
104209467b48Spatrick 
computeNodePlacement(NodeToValueMap & Loc)104309467b48Spatrick void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
104409467b48Spatrick   // Compute the inverse of the Node.Parent links. Also, collect the set
104509467b48Spatrick   // of root nodes.
104609467b48Spatrick   NodeChildrenMap NCM;
104709467b48Spatrick   NodeVect Roots;
104809467b48Spatrick   invert_find_roots(Nodes, NCM, Roots);
104909467b48Spatrick 
105009467b48Spatrick   // Compute the initial placement determined by the users' locations, and
105109467b48Spatrick   // the locations of the child nodes.
1052*d415bd75Srobert   for (GepNode *Root : Roots)
1053*d415bd75Srobert     recalculatePlacementRec(Root, NCM, Loc);
105409467b48Spatrick 
105509467b48Spatrick   LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
105609467b48Spatrick 
105709467b48Spatrick   if (OptEnableInv) {
1058*d415bd75Srobert     for (GepNode *Root : Roots)
1059*d415bd75Srobert       adjustForInvariance(Root, NCM, Loc);
106009467b48Spatrick 
106109467b48Spatrick     LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
106209467b48Spatrick                       << LocationAsBlock(Loc));
106309467b48Spatrick   }
106409467b48Spatrick   if (OptEnableConst) {
1065*d415bd75Srobert     for (GepNode *Root : Roots)
1066*d415bd75Srobert       separateConstantChains(Root, NCM, Loc);
106709467b48Spatrick   }
106809467b48Spatrick   LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
106909467b48Spatrick 
107009467b48Spatrick   // At the moment, there is no further refinement of the initial placement.
107109467b48Spatrick   // Such a refinement could include splitting the nodes if they are placed
107209467b48Spatrick   // too far from some of its users.
107309467b48Spatrick 
107409467b48Spatrick   LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
107509467b48Spatrick }
107609467b48Spatrick 
fabricateGEP(NodeVect & NA,BasicBlock::iterator At,BasicBlock * LocB)107709467b48Spatrick Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
107809467b48Spatrick       BasicBlock *LocB) {
107909467b48Spatrick   LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
108009467b48Spatrick                     << " for nodes:\n"
108109467b48Spatrick                     << NA);
108209467b48Spatrick   unsigned Num = NA.size();
108309467b48Spatrick   GepNode *RN = NA[0];
108409467b48Spatrick   assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
108509467b48Spatrick 
108609467b48Spatrick   GetElementPtrInst *NewInst = nullptr;
108709467b48Spatrick   Value *Input = RN->BaseVal;
108873471bf0Spatrick   Type *InpTy = RN->PTy;
108973471bf0Spatrick 
109073471bf0Spatrick   unsigned Idx = 0;
109109467b48Spatrick   do {
109273471bf0Spatrick     SmallVector<Value*, 4> IdxList;
109309467b48Spatrick     // If the type of the input of the first node is not a pointer,
109409467b48Spatrick     // we need to add an artificial i32 0 to the indices (because the
109509467b48Spatrick     // actual input in the IR will be a pointer).
109673471bf0Spatrick     if (!(NA[Idx]->Flags & GepNode::Pointer)) {
109709467b48Spatrick       Type *Int32Ty = Type::getInt32Ty(*Ctx);
109873471bf0Spatrick       IdxList.push_back(ConstantInt::get(Int32Ty, 0));
109909467b48Spatrick     }
110009467b48Spatrick 
110109467b48Spatrick     // Keep adding indices from NA until we have to stop and generate
110209467b48Spatrick     // an "intermediate" GEP.
110373471bf0Spatrick     while (++Idx <= Num) {
110473471bf0Spatrick       GepNode *N = NA[Idx-1];
110573471bf0Spatrick       IdxList.push_back(N->Idx);
110673471bf0Spatrick       if (Idx < Num) {
110773471bf0Spatrick         // We have to stop if we reach a pointer.
110873471bf0Spatrick         if (NA[Idx]->Flags & GepNode::Pointer)
110909467b48Spatrick           break;
111009467b48Spatrick       }
111109467b48Spatrick     }
111273471bf0Spatrick     NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", &*At);
111309467b48Spatrick     NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
111409467b48Spatrick     LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
111573471bf0Spatrick     if (Idx < Num) {
111609467b48Spatrick       Input = NewInst;
111773471bf0Spatrick       InpTy = NA[Idx]->PTy;
111873471bf0Spatrick     }
111973471bf0Spatrick   } while (Idx <= Num);
112009467b48Spatrick 
112109467b48Spatrick   return NewInst;
112209467b48Spatrick }
112309467b48Spatrick 
getAllUsersForNode(GepNode * Node,ValueVect & Values,NodeChildrenMap & NCM)112409467b48Spatrick void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
112509467b48Spatrick       NodeChildrenMap &NCM) {
112609467b48Spatrick   NodeVect Work;
112709467b48Spatrick   Work.push_back(Node);
112809467b48Spatrick 
112909467b48Spatrick   while (!Work.empty()) {
113009467b48Spatrick     NodeVect::iterator First = Work.begin();
113109467b48Spatrick     GepNode *N = *First;
113209467b48Spatrick     Work.erase(First);
113309467b48Spatrick     if (N->Flags & GepNode::Used) {
113409467b48Spatrick       NodeToUsesMap::iterator UF = Uses.find(N);
113509467b48Spatrick       assert(UF != Uses.end() && "No use information for used node");
113609467b48Spatrick       UseSet &Us = UF->second;
1137*d415bd75Srobert       for (const auto &U : Us)
1138*d415bd75Srobert         Values.push_back(U->getUser());
113909467b48Spatrick     }
114009467b48Spatrick     NodeChildrenMap::iterator CF = NCM.find(N);
114109467b48Spatrick     if (CF != NCM.end()) {
114209467b48Spatrick       NodeVect &Cs = CF->second;
114373471bf0Spatrick       llvm::append_range(Work, Cs);
114409467b48Spatrick     }
114509467b48Spatrick   }
114609467b48Spatrick }
114709467b48Spatrick 
materialize(NodeToValueMap & Loc)114809467b48Spatrick void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
114909467b48Spatrick   LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
115009467b48Spatrick   NodeChildrenMap NCM;
115109467b48Spatrick   NodeVect Roots;
115209467b48Spatrick   // Compute the inversion again, since computing placement could alter
115309467b48Spatrick   // "parent" relation between nodes.
115409467b48Spatrick   invert_find_roots(Nodes, NCM, Roots);
115509467b48Spatrick 
115609467b48Spatrick   while (!Roots.empty()) {
115709467b48Spatrick     NodeVect::iterator First = Roots.begin();
115809467b48Spatrick     GepNode *Root = *First, *Last = *First;
115909467b48Spatrick     Roots.erase(First);
116009467b48Spatrick 
116109467b48Spatrick     NodeVect NA;  // Nodes to assemble.
116209467b48Spatrick     // Append to NA all child nodes up to (and including) the first child
116309467b48Spatrick     // that:
116409467b48Spatrick     // (1) has more than 1 child, or
116509467b48Spatrick     // (2) is used, or
116609467b48Spatrick     // (3) has a child located in a different block.
116709467b48Spatrick     bool LastUsed = false;
116809467b48Spatrick     unsigned LastCN = 0;
116909467b48Spatrick     // The location may be null if the computation failed (it can legitimately
117009467b48Spatrick     // happen for nodes created from dead GEPs).
117109467b48Spatrick     Value *LocV = Loc[Last];
117209467b48Spatrick     if (!LocV)
117309467b48Spatrick       continue;
117409467b48Spatrick     BasicBlock *LastB = cast<BasicBlock>(LocV);
117509467b48Spatrick     do {
117609467b48Spatrick       NA.push_back(Last);
117709467b48Spatrick       LastUsed = (Last->Flags & GepNode::Used);
117809467b48Spatrick       if (LastUsed)
117909467b48Spatrick         break;
118009467b48Spatrick       NodeChildrenMap::iterator CF = NCM.find(Last);
118109467b48Spatrick       LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
118209467b48Spatrick       if (LastCN != 1)
118309467b48Spatrick         break;
118409467b48Spatrick       GepNode *Child = CF->second.front();
118509467b48Spatrick       BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
118609467b48Spatrick       if (ChildB != nullptr && LastB != ChildB)
118709467b48Spatrick         break;
118809467b48Spatrick       Last = Child;
118909467b48Spatrick     } while (true);
119009467b48Spatrick 
119109467b48Spatrick     BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
119209467b48Spatrick     if (LastUsed || LastCN > 0) {
119309467b48Spatrick       ValueVect Urs;
119409467b48Spatrick       getAllUsersForNode(Root, Urs, NCM);
119509467b48Spatrick       BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
119609467b48Spatrick       if (FirstUse != LastB->end())
119709467b48Spatrick         InsertAt = FirstUse;
119809467b48Spatrick     }
119909467b48Spatrick 
120009467b48Spatrick     // Generate a new instruction for NA.
120109467b48Spatrick     Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
120209467b48Spatrick 
120309467b48Spatrick     // Convert all the children of Last node into roots, and append them
120409467b48Spatrick     // to the Roots list.
120509467b48Spatrick     if (LastCN > 0) {
120609467b48Spatrick       NodeVect &Cs = NCM[Last];
1207*d415bd75Srobert       for (GepNode *CN : Cs) {
120809467b48Spatrick         CN->Flags &= ~GepNode::Internal;
120909467b48Spatrick         CN->Flags |= GepNode::Root;
121009467b48Spatrick         CN->BaseVal = NewInst;
121109467b48Spatrick         Roots.push_back(CN);
121209467b48Spatrick       }
121309467b48Spatrick     }
121409467b48Spatrick 
121509467b48Spatrick     // Lastly, if the Last node was used, replace all uses with the new GEP.
121609467b48Spatrick     // The uses reference the original GEP values.
121709467b48Spatrick     if (LastUsed) {
121809467b48Spatrick       NodeToUsesMap::iterator UF = Uses.find(Last);
121909467b48Spatrick       assert(UF != Uses.end() && "No use information found");
122009467b48Spatrick       UseSet &Us = UF->second;
1221*d415bd75Srobert       for (Use *U : Us)
122209467b48Spatrick         U->set(NewInst);
122309467b48Spatrick     }
122409467b48Spatrick   }
122509467b48Spatrick }
122609467b48Spatrick 
removeDeadCode()122709467b48Spatrick void HexagonCommonGEP::removeDeadCode() {
122809467b48Spatrick   ValueVect BO;
122909467b48Spatrick   BO.push_back(&Fn->front());
123009467b48Spatrick 
123109467b48Spatrick   for (unsigned i = 0; i < BO.size(); ++i) {
123209467b48Spatrick     BasicBlock *B = cast<BasicBlock>(BO[i]);
1233*d415bd75Srobert     for (auto *DTN : children<DomTreeNode *>(DT->getNode(B)))
123409467b48Spatrick       BO.push_back(DTN->getBlock());
123509467b48Spatrick   }
123609467b48Spatrick 
1237*d415bd75Srobert   for (Value *V : llvm::reverse(BO)) {
1238*d415bd75Srobert     BasicBlock *B = cast<BasicBlock>(V);
123909467b48Spatrick     ValueVect Ins;
1240*d415bd75Srobert     for (Instruction &I : llvm::reverse(*B))
1241*d415bd75Srobert       Ins.push_back(&I);
1242*d415bd75Srobert     for (Value *I : Ins) {
1243*d415bd75Srobert       Instruction *In = cast<Instruction>(I);
124409467b48Spatrick       if (isInstructionTriviallyDead(In))
124509467b48Spatrick         In->eraseFromParent();
124609467b48Spatrick     }
124709467b48Spatrick   }
124809467b48Spatrick }
124909467b48Spatrick 
runOnFunction(Function & F)125009467b48Spatrick bool HexagonCommonGEP::runOnFunction(Function &F) {
125109467b48Spatrick   if (skipFunction(F))
125209467b48Spatrick     return false;
125309467b48Spatrick 
125409467b48Spatrick   // For now bail out on C++ exception handling.
1255*d415bd75Srobert   for (const BasicBlock &BB : F)
1256*d415bd75Srobert     for (const Instruction &I : BB)
125709467b48Spatrick       if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
125809467b48Spatrick         return false;
125909467b48Spatrick 
126009467b48Spatrick   Fn = &F;
126109467b48Spatrick   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
126209467b48Spatrick   PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
126309467b48Spatrick   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
126409467b48Spatrick   Ctx = &F.getContext();
126509467b48Spatrick 
126609467b48Spatrick   Nodes.clear();
126709467b48Spatrick   Uses.clear();
126809467b48Spatrick   NodeOrder.clear();
126909467b48Spatrick 
127009467b48Spatrick   SpecificBumpPtrAllocator<GepNode> Allocator;
127109467b48Spatrick   Mem = &Allocator;
127209467b48Spatrick 
127309467b48Spatrick   collect();
127409467b48Spatrick   common();
127509467b48Spatrick 
127609467b48Spatrick   NodeToValueMap Loc;
127709467b48Spatrick   computeNodePlacement(Loc);
127809467b48Spatrick   materialize(Loc);
127909467b48Spatrick   removeDeadCode();
128009467b48Spatrick 
128109467b48Spatrick #ifdef EXPENSIVE_CHECKS
128209467b48Spatrick   // Run this only when expensive checks are enabled.
1283097a140dSpatrick   if (verifyFunction(F, &dbgs()))
1284097a140dSpatrick     report_fatal_error("Broken function");
128509467b48Spatrick #endif
128609467b48Spatrick   return true;
128709467b48Spatrick }
128809467b48Spatrick 
128909467b48Spatrick namespace llvm {
129009467b48Spatrick 
createHexagonCommonGEP()129109467b48Spatrick   FunctionPass *createHexagonCommonGEP() {
129209467b48Spatrick     return new HexagonCommonGEP();
129309467b48Spatrick   }
129409467b48Spatrick 
129509467b48Spatrick } // end namespace llvm
1296