109467b48Spatrick //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 209467b48Spatrick // 309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information. 509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 609467b48Spatrick // 709467b48Spatrick //===----------------------------------------------------------------------===// 809467b48Spatrick // 909467b48Spatrick // This file implements basic block placement transformations using the CFG 1009467b48Spatrick // structure and branch probability estimates. 1109467b48Spatrick // 1209467b48Spatrick // The pass strives to preserve the structure of the CFG (that is, retain 1309467b48Spatrick // a topological ordering of basic blocks) in the absence of a *strong* signal 1409467b48Spatrick // to the contrary from probabilities. However, within the CFG structure, it 1509467b48Spatrick // attempts to choose an ordering which favors placing more likely sequences of 1609467b48Spatrick // blocks adjacent to each other. 1709467b48Spatrick // 1809467b48Spatrick // The algorithm works from the inner-most loop within a function outward, and 1909467b48Spatrick // at each stage walks through the basic blocks, trying to coalesce them into 2009467b48Spatrick // sequential chains where allowed by the CFG (or demanded by heavy 2109467b48Spatrick // probabilities). Finally, it walks the blocks in topological order, and the 2209467b48Spatrick // first time it reaches a chain of basic blocks, it schedules them in the 2309467b48Spatrick // function in-order. 2409467b48Spatrick // 2509467b48Spatrick //===----------------------------------------------------------------------===// 2609467b48Spatrick 2709467b48Spatrick #include "BranchFolding.h" 2809467b48Spatrick #include "llvm/ADT/ArrayRef.h" 2909467b48Spatrick #include "llvm/ADT/DenseMap.h" 3009467b48Spatrick #include "llvm/ADT/STLExtras.h" 3109467b48Spatrick #include "llvm/ADT/SetVector.h" 3209467b48Spatrick #include "llvm/ADT/SmallPtrSet.h" 3309467b48Spatrick #include "llvm/ADT/SmallVector.h" 3409467b48Spatrick #include "llvm/ADT/Statistic.h" 3509467b48Spatrick #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 3609467b48Spatrick #include "llvm/Analysis/ProfileSummaryInfo.h" 3709467b48Spatrick #include "llvm/CodeGen/MachineBasicBlock.h" 3809467b48Spatrick #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 3909467b48Spatrick #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 4009467b48Spatrick #include "llvm/CodeGen/MachineFunction.h" 4109467b48Spatrick #include "llvm/CodeGen/MachineFunctionPass.h" 4209467b48Spatrick #include "llvm/CodeGen/MachineLoopInfo.h" 4309467b48Spatrick #include "llvm/CodeGen/MachineModuleInfo.h" 4409467b48Spatrick #include "llvm/CodeGen/MachinePostDominators.h" 4509467b48Spatrick #include "llvm/CodeGen/MachineSizeOpts.h" 4609467b48Spatrick #include "llvm/CodeGen/TailDuplicator.h" 4709467b48Spatrick #include "llvm/CodeGen/TargetInstrInfo.h" 4809467b48Spatrick #include "llvm/CodeGen/TargetLowering.h" 4909467b48Spatrick #include "llvm/CodeGen/TargetPassConfig.h" 5009467b48Spatrick #include "llvm/CodeGen/TargetSubtargetInfo.h" 5109467b48Spatrick #include "llvm/IR/DebugLoc.h" 5209467b48Spatrick #include "llvm/IR/Function.h" 5309467b48Spatrick #include "llvm/InitializePasses.h" 5409467b48Spatrick #include "llvm/Pass.h" 5509467b48Spatrick #include "llvm/Support/Allocator.h" 5609467b48Spatrick #include "llvm/Support/BlockFrequency.h" 5709467b48Spatrick #include "llvm/Support/BranchProbability.h" 5809467b48Spatrick #include "llvm/Support/CodeGen.h" 5909467b48Spatrick #include "llvm/Support/CommandLine.h" 6009467b48Spatrick #include "llvm/Support/Compiler.h" 6109467b48Spatrick #include "llvm/Support/Debug.h" 6209467b48Spatrick #include "llvm/Support/raw_ostream.h" 6309467b48Spatrick #include "llvm/Target/TargetMachine.h" 6409467b48Spatrick #include <algorithm> 6509467b48Spatrick #include <cassert> 6609467b48Spatrick #include <cstdint> 6709467b48Spatrick #include <iterator> 6809467b48Spatrick #include <memory> 6909467b48Spatrick #include <string> 7009467b48Spatrick #include <tuple> 7109467b48Spatrick #include <utility> 7209467b48Spatrick #include <vector> 7309467b48Spatrick 7409467b48Spatrick using namespace llvm; 7509467b48Spatrick 7609467b48Spatrick #define DEBUG_TYPE "block-placement" 7709467b48Spatrick 7809467b48Spatrick STATISTIC(NumCondBranches, "Number of conditional branches"); 7909467b48Spatrick STATISTIC(NumUncondBranches, "Number of unconditional branches"); 8009467b48Spatrick STATISTIC(CondBranchTakenFreq, 8109467b48Spatrick "Potential frequency of taking conditional branches"); 8209467b48Spatrick STATISTIC(UncondBranchTakenFreq, 8309467b48Spatrick "Potential frequency of taking unconditional branches"); 8409467b48Spatrick 8509467b48Spatrick static cl::opt<unsigned> AlignAllBlock( 8609467b48Spatrick "align-all-blocks", 8709467b48Spatrick cl::desc("Force the alignment of all blocks in the function in log2 format " 8809467b48Spatrick "(e.g 4 means align on 16B boundaries)."), 8909467b48Spatrick cl::init(0), cl::Hidden); 9009467b48Spatrick 9109467b48Spatrick static cl::opt<unsigned> AlignAllNonFallThruBlocks( 9209467b48Spatrick "align-all-nofallthru-blocks", 9309467b48Spatrick cl::desc("Force the alignment of all blocks that have no fall-through " 9409467b48Spatrick "predecessors (i.e. don't add nops that are executed). In log2 " 9509467b48Spatrick "format (e.g 4 means align on 16B boundaries)."), 9609467b48Spatrick cl::init(0), cl::Hidden); 9709467b48Spatrick 9809467b48Spatrick // FIXME: Find a good default for this flag and remove the flag. 9909467b48Spatrick static cl::opt<unsigned> ExitBlockBias( 10009467b48Spatrick "block-placement-exit-block-bias", 10109467b48Spatrick cl::desc("Block frequency percentage a loop exit block needs " 10209467b48Spatrick "over the original exit to be considered the new exit."), 10309467b48Spatrick cl::init(0), cl::Hidden); 10409467b48Spatrick 10509467b48Spatrick // Definition: 10609467b48Spatrick // - Outlining: placement of a basic block outside the chain or hot path. 10709467b48Spatrick 10809467b48Spatrick static cl::opt<unsigned> LoopToColdBlockRatio( 10909467b48Spatrick "loop-to-cold-block-ratio", 11009467b48Spatrick cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 11109467b48Spatrick "(frequency of block) is greater than this ratio"), 11209467b48Spatrick cl::init(5), cl::Hidden); 11309467b48Spatrick 11409467b48Spatrick static cl::opt<bool> ForceLoopColdBlock( 11509467b48Spatrick "force-loop-cold-block", 11609467b48Spatrick cl::desc("Force outlining cold blocks from loops."), 11709467b48Spatrick cl::init(false), cl::Hidden); 11809467b48Spatrick 11909467b48Spatrick static cl::opt<bool> 12009467b48Spatrick PreciseRotationCost("precise-rotation-cost", 12109467b48Spatrick cl::desc("Model the cost of loop rotation more " 12209467b48Spatrick "precisely by using profile data."), 12309467b48Spatrick cl::init(false), cl::Hidden); 12409467b48Spatrick 12509467b48Spatrick static cl::opt<bool> 12609467b48Spatrick ForcePreciseRotationCost("force-precise-rotation-cost", 12709467b48Spatrick cl::desc("Force the use of precise cost " 12809467b48Spatrick "loop rotation strategy."), 12909467b48Spatrick cl::init(false), cl::Hidden); 13009467b48Spatrick 13109467b48Spatrick static cl::opt<unsigned> MisfetchCost( 13209467b48Spatrick "misfetch-cost", 13309467b48Spatrick cl::desc("Cost that models the probabilistic risk of an instruction " 13409467b48Spatrick "misfetch due to a jump comparing to falling through, whose cost " 13509467b48Spatrick "is zero."), 13609467b48Spatrick cl::init(1), cl::Hidden); 13709467b48Spatrick 13809467b48Spatrick static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 13909467b48Spatrick cl::desc("Cost of jump instructions."), 14009467b48Spatrick cl::init(1), cl::Hidden); 14109467b48Spatrick static cl::opt<bool> 14209467b48Spatrick TailDupPlacement("tail-dup-placement", 14309467b48Spatrick cl::desc("Perform tail duplication during placement. " 14409467b48Spatrick "Creates more fallthrough opportunites in " 14509467b48Spatrick "outline branches."), 14609467b48Spatrick cl::init(true), cl::Hidden); 14709467b48Spatrick 14809467b48Spatrick static cl::opt<bool> 14909467b48Spatrick BranchFoldPlacement("branch-fold-placement", 15009467b48Spatrick cl::desc("Perform branch folding during placement. " 15109467b48Spatrick "Reduces code size."), 15209467b48Spatrick cl::init(true), cl::Hidden); 15309467b48Spatrick 15409467b48Spatrick // Heuristic for tail duplication. 15509467b48Spatrick static cl::opt<unsigned> TailDupPlacementThreshold( 15609467b48Spatrick "tail-dup-placement-threshold", 15709467b48Spatrick cl::desc("Instruction cutoff for tail duplication during layout. " 15809467b48Spatrick "Tail merging during layout is forced to have a threshold " 15909467b48Spatrick "that won't conflict."), cl::init(2), 16009467b48Spatrick cl::Hidden); 16109467b48Spatrick 16209467b48Spatrick // Heuristic for aggressive tail duplication. 16309467b48Spatrick static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 16409467b48Spatrick "tail-dup-placement-aggressive-threshold", 16509467b48Spatrick cl::desc("Instruction cutoff for aggressive tail duplication during " 16609467b48Spatrick "layout. Used at -O3. Tail merging during layout is forced to " 16709467b48Spatrick "have a threshold that won't conflict."), cl::init(4), 16809467b48Spatrick cl::Hidden); 16909467b48Spatrick 17009467b48Spatrick // Heuristic for tail duplication. 17109467b48Spatrick static cl::opt<unsigned> TailDupPlacementPenalty( 17209467b48Spatrick "tail-dup-placement-penalty", 17309467b48Spatrick cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 17409467b48Spatrick "Copying can increase fallthrough, but it also increases icache " 17509467b48Spatrick "pressure. This parameter controls the penalty to account for that. " 17609467b48Spatrick "Percent as integer."), 17709467b48Spatrick cl::init(2), 17809467b48Spatrick cl::Hidden); 17909467b48Spatrick 18009467b48Spatrick // Heuristic for triangle chains. 18109467b48Spatrick static cl::opt<unsigned> TriangleChainCount( 18209467b48Spatrick "triangle-chain-count", 18309467b48Spatrick cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 18409467b48Spatrick "triangle tail duplication heuristic to kick in. 0 to disable."), 18509467b48Spatrick cl::init(2), 18609467b48Spatrick cl::Hidden); 18709467b48Spatrick 18809467b48Spatrick extern cl::opt<unsigned> StaticLikelyProb; 18909467b48Spatrick extern cl::opt<unsigned> ProfileLikelyProb; 19009467b48Spatrick 19109467b48Spatrick // Internal option used to control BFI display only after MBP pass. 19209467b48Spatrick // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 19309467b48Spatrick // -view-block-layout-with-bfi= 19409467b48Spatrick extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 19509467b48Spatrick 19609467b48Spatrick // Command line option to specify the name of the function for CFG dump 19709467b48Spatrick // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 19809467b48Spatrick extern cl::opt<std::string> ViewBlockFreqFuncName; 19909467b48Spatrick 20009467b48Spatrick namespace { 20109467b48Spatrick 20209467b48Spatrick class BlockChain; 20309467b48Spatrick 20409467b48Spatrick /// Type for our function-wide basic block -> block chain mapping. 20509467b48Spatrick using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 20609467b48Spatrick 20709467b48Spatrick /// A chain of blocks which will be laid out contiguously. 20809467b48Spatrick /// 20909467b48Spatrick /// This is the datastructure representing a chain of consecutive blocks that 21009467b48Spatrick /// are profitable to layout together in order to maximize fallthrough 21109467b48Spatrick /// probabilities and code locality. We also can use a block chain to represent 21209467b48Spatrick /// a sequence of basic blocks which have some external (correctness) 21309467b48Spatrick /// requirement for sequential layout. 21409467b48Spatrick /// 21509467b48Spatrick /// Chains can be built around a single basic block and can be merged to grow 21609467b48Spatrick /// them. They participate in a block-to-chain mapping, which is updated 21709467b48Spatrick /// automatically as chains are merged together. 21809467b48Spatrick class BlockChain { 21909467b48Spatrick /// The sequence of blocks belonging to this chain. 22009467b48Spatrick /// 22109467b48Spatrick /// This is the sequence of blocks for a particular chain. These will be laid 22209467b48Spatrick /// out in-order within the function. 22309467b48Spatrick SmallVector<MachineBasicBlock *, 4> Blocks; 22409467b48Spatrick 22509467b48Spatrick /// A handle to the function-wide basic block to block chain mapping. 22609467b48Spatrick /// 22709467b48Spatrick /// This is retained in each block chain to simplify the computation of child 22809467b48Spatrick /// block chains for SCC-formation and iteration. We store the edges to child 22909467b48Spatrick /// basic blocks, and map them back to their associated chains using this 23009467b48Spatrick /// structure. 23109467b48Spatrick BlockToChainMapType &BlockToChain; 23209467b48Spatrick 23309467b48Spatrick public: 23409467b48Spatrick /// Construct a new BlockChain. 23509467b48Spatrick /// 23609467b48Spatrick /// This builds a new block chain representing a single basic block in the 23709467b48Spatrick /// function. It also registers itself as the chain that block participates 23809467b48Spatrick /// in with the BlockToChain mapping. 23909467b48Spatrick BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 24009467b48Spatrick : Blocks(1, BB), BlockToChain(BlockToChain) { 24109467b48Spatrick assert(BB && "Cannot create a chain with a null basic block"); 24209467b48Spatrick BlockToChain[BB] = this; 24309467b48Spatrick } 24409467b48Spatrick 24509467b48Spatrick /// Iterator over blocks within the chain. 24609467b48Spatrick using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 24709467b48Spatrick using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 24809467b48Spatrick 24909467b48Spatrick /// Beginning of blocks within the chain. 25009467b48Spatrick iterator begin() { return Blocks.begin(); } 25109467b48Spatrick const_iterator begin() const { return Blocks.begin(); } 25209467b48Spatrick 25309467b48Spatrick /// End of blocks within the chain. 25409467b48Spatrick iterator end() { return Blocks.end(); } 25509467b48Spatrick const_iterator end() const { return Blocks.end(); } 25609467b48Spatrick 25709467b48Spatrick bool remove(MachineBasicBlock* BB) { 25809467b48Spatrick for(iterator i = begin(); i != end(); ++i) { 25909467b48Spatrick if (*i == BB) { 26009467b48Spatrick Blocks.erase(i); 26109467b48Spatrick return true; 26209467b48Spatrick } 26309467b48Spatrick } 26409467b48Spatrick return false; 26509467b48Spatrick } 26609467b48Spatrick 26709467b48Spatrick /// Merge a block chain into this one. 26809467b48Spatrick /// 26909467b48Spatrick /// This routine merges a block chain into this one. It takes care of forming 27009467b48Spatrick /// a contiguous sequence of basic blocks, updating the edge list, and 27109467b48Spatrick /// updating the block -> chain mapping. It does not free or tear down the 27209467b48Spatrick /// old chain, but the old chain's block list is no longer valid. 27309467b48Spatrick void merge(MachineBasicBlock *BB, BlockChain *Chain) { 27409467b48Spatrick assert(BB && "Can't merge a null block."); 27509467b48Spatrick assert(!Blocks.empty() && "Can't merge into an empty chain."); 27609467b48Spatrick 27709467b48Spatrick // Fast path in case we don't have a chain already. 27809467b48Spatrick if (!Chain) { 27909467b48Spatrick assert(!BlockToChain[BB] && 28009467b48Spatrick "Passed chain is null, but BB has entry in BlockToChain."); 28109467b48Spatrick Blocks.push_back(BB); 28209467b48Spatrick BlockToChain[BB] = this; 28309467b48Spatrick return; 28409467b48Spatrick } 28509467b48Spatrick 28609467b48Spatrick assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 28709467b48Spatrick assert(Chain->begin() != Chain->end()); 28809467b48Spatrick 28909467b48Spatrick // Update the incoming blocks to point to this chain, and add them to the 29009467b48Spatrick // chain structure. 29109467b48Spatrick for (MachineBasicBlock *ChainBB : *Chain) { 29209467b48Spatrick Blocks.push_back(ChainBB); 29309467b48Spatrick assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 29409467b48Spatrick BlockToChain[ChainBB] = this; 29509467b48Spatrick } 29609467b48Spatrick } 29709467b48Spatrick 29809467b48Spatrick #ifndef NDEBUG 29909467b48Spatrick /// Dump the blocks in this chain. 30009467b48Spatrick LLVM_DUMP_METHOD void dump() { 30109467b48Spatrick for (MachineBasicBlock *MBB : *this) 30209467b48Spatrick MBB->dump(); 30309467b48Spatrick } 30409467b48Spatrick #endif // NDEBUG 30509467b48Spatrick 30609467b48Spatrick /// Count of predecessors of any block within the chain which have not 30709467b48Spatrick /// yet been scheduled. In general, we will delay scheduling this chain 30809467b48Spatrick /// until those predecessors are scheduled (or we find a sufficiently good 30909467b48Spatrick /// reason to override this heuristic.) Note that when forming loop chains, 31009467b48Spatrick /// blocks outside the loop are ignored and treated as if they were already 31109467b48Spatrick /// scheduled. 31209467b48Spatrick /// 31309467b48Spatrick /// Note: This field is reinitialized multiple times - once for each loop, 31409467b48Spatrick /// and then once for the function as a whole. 31509467b48Spatrick unsigned UnscheduledPredecessors = 0; 31609467b48Spatrick }; 31709467b48Spatrick 31809467b48Spatrick class MachineBlockPlacement : public MachineFunctionPass { 31909467b48Spatrick /// A type for a block filter set. 32009467b48Spatrick using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 32109467b48Spatrick 32209467b48Spatrick /// Pair struct containing basic block and taildup profitability 32309467b48Spatrick struct BlockAndTailDupResult { 32409467b48Spatrick MachineBasicBlock *BB; 32509467b48Spatrick bool ShouldTailDup; 32609467b48Spatrick }; 32709467b48Spatrick 32809467b48Spatrick /// Triple struct containing edge weight and the edge. 32909467b48Spatrick struct WeightedEdge { 33009467b48Spatrick BlockFrequency Weight; 33109467b48Spatrick MachineBasicBlock *Src; 33209467b48Spatrick MachineBasicBlock *Dest; 33309467b48Spatrick }; 33409467b48Spatrick 33509467b48Spatrick /// work lists of blocks that are ready to be laid out 33609467b48Spatrick SmallVector<MachineBasicBlock *, 16> BlockWorkList; 33709467b48Spatrick SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 33809467b48Spatrick 33909467b48Spatrick /// Edges that have already been computed as optimal. 34009467b48Spatrick DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 34109467b48Spatrick 34209467b48Spatrick /// Machine Function 34309467b48Spatrick MachineFunction *F; 34409467b48Spatrick 34509467b48Spatrick /// A handle to the branch probability pass. 34609467b48Spatrick const MachineBranchProbabilityInfo *MBPI; 34709467b48Spatrick 34809467b48Spatrick /// A handle to the function-wide block frequency pass. 349*097a140dSpatrick std::unique_ptr<MBFIWrapper> MBFI; 35009467b48Spatrick 35109467b48Spatrick /// A handle to the loop info. 35209467b48Spatrick MachineLoopInfo *MLI; 35309467b48Spatrick 35409467b48Spatrick /// Preferred loop exit. 35509467b48Spatrick /// Member variable for convenience. It may be removed by duplication deep 35609467b48Spatrick /// in the call stack. 35709467b48Spatrick MachineBasicBlock *PreferredLoopExit; 35809467b48Spatrick 35909467b48Spatrick /// A handle to the target's instruction info. 36009467b48Spatrick const TargetInstrInfo *TII; 36109467b48Spatrick 36209467b48Spatrick /// A handle to the target's lowering info. 36309467b48Spatrick const TargetLoweringBase *TLI; 36409467b48Spatrick 36509467b48Spatrick /// A handle to the post dominator tree. 36609467b48Spatrick MachinePostDominatorTree *MPDT; 36709467b48Spatrick 36809467b48Spatrick ProfileSummaryInfo *PSI; 36909467b48Spatrick 37009467b48Spatrick /// Duplicator used to duplicate tails during placement. 37109467b48Spatrick /// 37209467b48Spatrick /// Placement decisions can open up new tail duplication opportunities, but 37309467b48Spatrick /// since tail duplication affects placement decisions of later blocks, it 37409467b48Spatrick /// must be done inline. 37509467b48Spatrick TailDuplicator TailDup; 37609467b48Spatrick 377*097a140dSpatrick /// Partial tail duplication threshold. 378*097a140dSpatrick BlockFrequency DupThreshold; 379*097a140dSpatrick 38009467b48Spatrick /// Allocator and owner of BlockChain structures. 38109467b48Spatrick /// 38209467b48Spatrick /// We build BlockChains lazily while processing the loop structure of 38309467b48Spatrick /// a function. To reduce malloc traffic, we allocate them using this 38409467b48Spatrick /// slab-like allocator, and destroy them after the pass completes. An 38509467b48Spatrick /// important guarantee is that this allocator produces stable pointers to 38609467b48Spatrick /// the chains. 38709467b48Spatrick SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 38809467b48Spatrick 38909467b48Spatrick /// Function wide BasicBlock to BlockChain mapping. 39009467b48Spatrick /// 39109467b48Spatrick /// This mapping allows efficiently moving from any given basic block to the 39209467b48Spatrick /// BlockChain it participates in, if any. We use it to, among other things, 39309467b48Spatrick /// allow implicitly defining edges between chains as the existing edges 39409467b48Spatrick /// between basic blocks. 39509467b48Spatrick DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 39609467b48Spatrick 39709467b48Spatrick #ifndef NDEBUG 39809467b48Spatrick /// The set of basic blocks that have terminators that cannot be fully 39909467b48Spatrick /// analyzed. These basic blocks cannot be re-ordered safely by 40009467b48Spatrick /// MachineBlockPlacement, and we must preserve physical layout of these 40109467b48Spatrick /// blocks and their successors through the pass. 40209467b48Spatrick SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 40309467b48Spatrick #endif 40409467b48Spatrick 405*097a140dSpatrick /// Scale the DupThreshold according to basic block size. 406*097a140dSpatrick BlockFrequency scaleThreshold(MachineBasicBlock *BB); 407*097a140dSpatrick void initDupThreshold(); 408*097a140dSpatrick 40909467b48Spatrick /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 41009467b48Spatrick /// if the count goes to 0, add them to the appropriate work list. 41109467b48Spatrick void markChainSuccessors( 41209467b48Spatrick const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 41309467b48Spatrick const BlockFilterSet *BlockFilter = nullptr); 41409467b48Spatrick 41509467b48Spatrick /// Decrease the UnscheduledPredecessors count for a single block, and 41609467b48Spatrick /// if the count goes to 0, add them to the appropriate work list. 41709467b48Spatrick void markBlockSuccessors( 41809467b48Spatrick const BlockChain &Chain, const MachineBasicBlock *BB, 41909467b48Spatrick const MachineBasicBlock *LoopHeaderBB, 42009467b48Spatrick const BlockFilterSet *BlockFilter = nullptr); 42109467b48Spatrick 42209467b48Spatrick BranchProbability 42309467b48Spatrick collectViableSuccessors( 42409467b48Spatrick const MachineBasicBlock *BB, const BlockChain &Chain, 42509467b48Spatrick const BlockFilterSet *BlockFilter, 42609467b48Spatrick SmallVector<MachineBasicBlock *, 4> &Successors); 42709467b48Spatrick bool shouldPredBlockBeOutlined( 42809467b48Spatrick const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 42909467b48Spatrick const BlockChain &Chain, const BlockFilterSet *BlockFilter, 43009467b48Spatrick BranchProbability SuccProb, BranchProbability HotProb); 431*097a140dSpatrick bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, 432*097a140dSpatrick BlockFilterSet *BlockFilter); 433*097a140dSpatrick void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, 434*097a140dSpatrick MachineBasicBlock *BB, 435*097a140dSpatrick BlockFilterSet *BlockFilter); 43609467b48Spatrick bool repeatedlyTailDuplicateBlock( 43709467b48Spatrick MachineBasicBlock *BB, MachineBasicBlock *&LPred, 43809467b48Spatrick const MachineBasicBlock *LoopHeaderBB, 43909467b48Spatrick BlockChain &Chain, BlockFilterSet *BlockFilter, 44009467b48Spatrick MachineFunction::iterator &PrevUnplacedBlockIt); 44109467b48Spatrick bool maybeTailDuplicateBlock( 44209467b48Spatrick MachineBasicBlock *BB, MachineBasicBlock *LPred, 44309467b48Spatrick BlockChain &Chain, BlockFilterSet *BlockFilter, 44409467b48Spatrick MachineFunction::iterator &PrevUnplacedBlockIt, 44509467b48Spatrick bool &DuplicatedToLPred); 44609467b48Spatrick bool hasBetterLayoutPredecessor( 44709467b48Spatrick const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 44809467b48Spatrick const BlockChain &SuccChain, BranchProbability SuccProb, 44909467b48Spatrick BranchProbability RealSuccProb, const BlockChain &Chain, 45009467b48Spatrick const BlockFilterSet *BlockFilter); 45109467b48Spatrick BlockAndTailDupResult selectBestSuccessor( 45209467b48Spatrick const MachineBasicBlock *BB, const BlockChain &Chain, 45309467b48Spatrick const BlockFilterSet *BlockFilter); 45409467b48Spatrick MachineBasicBlock *selectBestCandidateBlock( 45509467b48Spatrick const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 45609467b48Spatrick MachineBasicBlock *getFirstUnplacedBlock( 45709467b48Spatrick const BlockChain &PlacedChain, 45809467b48Spatrick MachineFunction::iterator &PrevUnplacedBlockIt, 45909467b48Spatrick const BlockFilterSet *BlockFilter); 46009467b48Spatrick 46109467b48Spatrick /// Add a basic block to the work list if it is appropriate. 46209467b48Spatrick /// 46309467b48Spatrick /// If the optional parameter BlockFilter is provided, only MBB 46409467b48Spatrick /// present in the set will be added to the worklist. If nullptr 46509467b48Spatrick /// is provided, no filtering occurs. 46609467b48Spatrick void fillWorkLists(const MachineBasicBlock *MBB, 46709467b48Spatrick SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 46809467b48Spatrick const BlockFilterSet *BlockFilter); 46909467b48Spatrick 47009467b48Spatrick void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 47109467b48Spatrick BlockFilterSet *BlockFilter = nullptr); 47209467b48Spatrick bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 47309467b48Spatrick const MachineBasicBlock *OldTop); 47409467b48Spatrick bool hasViableTopFallthrough(const MachineBasicBlock *Top, 47509467b48Spatrick const BlockFilterSet &LoopBlockSet); 47609467b48Spatrick BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 47709467b48Spatrick const BlockFilterSet &LoopBlockSet); 47809467b48Spatrick BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 47909467b48Spatrick const MachineBasicBlock *OldTop, 48009467b48Spatrick const MachineBasicBlock *ExitBB, 48109467b48Spatrick const BlockFilterSet &LoopBlockSet); 48209467b48Spatrick MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 48309467b48Spatrick const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 48409467b48Spatrick MachineBasicBlock *findBestLoopTop( 48509467b48Spatrick const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 48609467b48Spatrick MachineBasicBlock *findBestLoopExit( 48709467b48Spatrick const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 48809467b48Spatrick BlockFrequency &ExitFreq); 48909467b48Spatrick BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 49009467b48Spatrick void buildLoopChains(const MachineLoop &L); 49109467b48Spatrick void rotateLoop( 49209467b48Spatrick BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 49309467b48Spatrick BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 49409467b48Spatrick void rotateLoopWithProfile( 49509467b48Spatrick BlockChain &LoopChain, const MachineLoop &L, 49609467b48Spatrick const BlockFilterSet &LoopBlockSet); 49709467b48Spatrick void buildCFGChains(); 49809467b48Spatrick void optimizeBranches(); 49909467b48Spatrick void alignBlocks(); 50009467b48Spatrick /// Returns true if a block should be tail-duplicated to increase fallthrough 50109467b48Spatrick /// opportunities. 50209467b48Spatrick bool shouldTailDuplicate(MachineBasicBlock *BB); 50309467b48Spatrick /// Check the edge frequencies to see if tail duplication will increase 50409467b48Spatrick /// fallthroughs. 50509467b48Spatrick bool isProfitableToTailDup( 50609467b48Spatrick const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 50709467b48Spatrick BranchProbability QProb, 50809467b48Spatrick const BlockChain &Chain, const BlockFilterSet *BlockFilter); 50909467b48Spatrick 51009467b48Spatrick /// Check for a trellis layout. 51109467b48Spatrick bool isTrellis(const MachineBasicBlock *BB, 51209467b48Spatrick const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 51309467b48Spatrick const BlockChain &Chain, const BlockFilterSet *BlockFilter); 51409467b48Spatrick 51509467b48Spatrick /// Get the best successor given a trellis layout. 51609467b48Spatrick BlockAndTailDupResult getBestTrellisSuccessor( 51709467b48Spatrick const MachineBasicBlock *BB, 51809467b48Spatrick const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 51909467b48Spatrick BranchProbability AdjustedSumProb, const BlockChain &Chain, 52009467b48Spatrick const BlockFilterSet *BlockFilter); 52109467b48Spatrick 52209467b48Spatrick /// Get the best pair of non-conflicting edges. 52309467b48Spatrick static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 52409467b48Spatrick const MachineBasicBlock *BB, 52509467b48Spatrick MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 52609467b48Spatrick 52709467b48Spatrick /// Returns true if a block can tail duplicate into all unplaced 52809467b48Spatrick /// predecessors. Filters based on loop. 52909467b48Spatrick bool canTailDuplicateUnplacedPreds( 53009467b48Spatrick const MachineBasicBlock *BB, MachineBasicBlock *Succ, 53109467b48Spatrick const BlockChain &Chain, const BlockFilterSet *BlockFilter); 53209467b48Spatrick 53309467b48Spatrick /// Find chains of triangles to tail-duplicate where a global analysis works, 53409467b48Spatrick /// but a local analysis would not find them. 53509467b48Spatrick void precomputeTriangleChains(); 53609467b48Spatrick 53709467b48Spatrick public: 53809467b48Spatrick static char ID; // Pass identification, replacement for typeid 53909467b48Spatrick 54009467b48Spatrick MachineBlockPlacement() : MachineFunctionPass(ID) { 54109467b48Spatrick initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 54209467b48Spatrick } 54309467b48Spatrick 54409467b48Spatrick bool runOnMachineFunction(MachineFunction &F) override; 54509467b48Spatrick 54609467b48Spatrick bool allowTailDupPlacement() const { 54709467b48Spatrick assert(F); 54809467b48Spatrick return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 54909467b48Spatrick } 55009467b48Spatrick 55109467b48Spatrick void getAnalysisUsage(AnalysisUsage &AU) const override { 55209467b48Spatrick AU.addRequired<MachineBranchProbabilityInfo>(); 55309467b48Spatrick AU.addRequired<MachineBlockFrequencyInfo>(); 55409467b48Spatrick if (TailDupPlacement) 55509467b48Spatrick AU.addRequired<MachinePostDominatorTree>(); 55609467b48Spatrick AU.addRequired<MachineLoopInfo>(); 55709467b48Spatrick AU.addRequired<ProfileSummaryInfoWrapperPass>(); 55809467b48Spatrick AU.addRequired<TargetPassConfig>(); 55909467b48Spatrick MachineFunctionPass::getAnalysisUsage(AU); 56009467b48Spatrick } 56109467b48Spatrick }; 56209467b48Spatrick 56309467b48Spatrick } // end anonymous namespace 56409467b48Spatrick 56509467b48Spatrick char MachineBlockPlacement::ID = 0; 56609467b48Spatrick 56709467b48Spatrick char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 56809467b48Spatrick 56909467b48Spatrick INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 57009467b48Spatrick "Branch Probability Basic Block Placement", false, false) 57109467b48Spatrick INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 57209467b48Spatrick INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 57309467b48Spatrick INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 57409467b48Spatrick INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 57509467b48Spatrick INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 57609467b48Spatrick INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 57709467b48Spatrick "Branch Probability Basic Block Placement", false, false) 57809467b48Spatrick 57909467b48Spatrick #ifndef NDEBUG 58009467b48Spatrick /// Helper to print the name of a MBB. 58109467b48Spatrick /// 58209467b48Spatrick /// Only used by debug logging. 58309467b48Spatrick static std::string getBlockName(const MachineBasicBlock *BB) { 58409467b48Spatrick std::string Result; 58509467b48Spatrick raw_string_ostream OS(Result); 58609467b48Spatrick OS << printMBBReference(*BB); 58709467b48Spatrick OS << " ('" << BB->getName() << "')"; 58809467b48Spatrick OS.flush(); 58909467b48Spatrick return Result; 59009467b48Spatrick } 59109467b48Spatrick #endif 59209467b48Spatrick 59309467b48Spatrick /// Mark a chain's successors as having one fewer preds. 59409467b48Spatrick /// 59509467b48Spatrick /// When a chain is being merged into the "placed" chain, this routine will 59609467b48Spatrick /// quickly walk the successors of each block in the chain and mark them as 59709467b48Spatrick /// having one fewer active predecessor. It also adds any successors of this 59809467b48Spatrick /// chain which reach the zero-predecessor state to the appropriate worklist. 59909467b48Spatrick void MachineBlockPlacement::markChainSuccessors( 60009467b48Spatrick const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 60109467b48Spatrick const BlockFilterSet *BlockFilter) { 60209467b48Spatrick // Walk all the blocks in this chain, marking their successors as having 60309467b48Spatrick // a predecessor placed. 60409467b48Spatrick for (MachineBasicBlock *MBB : Chain) { 60509467b48Spatrick markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 60609467b48Spatrick } 60709467b48Spatrick } 60809467b48Spatrick 60909467b48Spatrick /// Mark a single block's successors as having one fewer preds. 61009467b48Spatrick /// 61109467b48Spatrick /// Under normal circumstances, this is only called by markChainSuccessors, 61209467b48Spatrick /// but if a block that was to be placed is completely tail-duplicated away, 61309467b48Spatrick /// and was duplicated into the chain end, we need to redo markBlockSuccessors 61409467b48Spatrick /// for just that block. 61509467b48Spatrick void MachineBlockPlacement::markBlockSuccessors( 61609467b48Spatrick const BlockChain &Chain, const MachineBasicBlock *MBB, 61709467b48Spatrick const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 61809467b48Spatrick // Add any successors for which this is the only un-placed in-loop 61909467b48Spatrick // predecessor to the worklist as a viable candidate for CFG-neutral 62009467b48Spatrick // placement. No subsequent placement of this block will violate the CFG 62109467b48Spatrick // shape, so we get to use heuristics to choose a favorable placement. 62209467b48Spatrick for (MachineBasicBlock *Succ : MBB->successors()) { 62309467b48Spatrick if (BlockFilter && !BlockFilter->count(Succ)) 62409467b48Spatrick continue; 62509467b48Spatrick BlockChain &SuccChain = *BlockToChain[Succ]; 62609467b48Spatrick // Disregard edges within a fixed chain, or edges to the loop header. 62709467b48Spatrick if (&Chain == &SuccChain || Succ == LoopHeaderBB) 62809467b48Spatrick continue; 62909467b48Spatrick 63009467b48Spatrick // This is a cross-chain edge that is within the loop, so decrement the 63109467b48Spatrick // loop predecessor count of the destination chain. 63209467b48Spatrick if (SuccChain.UnscheduledPredecessors == 0 || 63309467b48Spatrick --SuccChain.UnscheduledPredecessors > 0) 63409467b48Spatrick continue; 63509467b48Spatrick 63609467b48Spatrick auto *NewBB = *SuccChain.begin(); 63709467b48Spatrick if (NewBB->isEHPad()) 63809467b48Spatrick EHPadWorkList.push_back(NewBB); 63909467b48Spatrick else 64009467b48Spatrick BlockWorkList.push_back(NewBB); 64109467b48Spatrick } 64209467b48Spatrick } 64309467b48Spatrick 64409467b48Spatrick /// This helper function collects the set of successors of block 64509467b48Spatrick /// \p BB that are allowed to be its layout successors, and return 64609467b48Spatrick /// the total branch probability of edges from \p BB to those 64709467b48Spatrick /// blocks. 64809467b48Spatrick BranchProbability MachineBlockPlacement::collectViableSuccessors( 64909467b48Spatrick const MachineBasicBlock *BB, const BlockChain &Chain, 65009467b48Spatrick const BlockFilterSet *BlockFilter, 65109467b48Spatrick SmallVector<MachineBasicBlock *, 4> &Successors) { 65209467b48Spatrick // Adjust edge probabilities by excluding edges pointing to blocks that is 65309467b48Spatrick // either not in BlockFilter or is already in the current chain. Consider the 65409467b48Spatrick // following CFG: 65509467b48Spatrick // 65609467b48Spatrick // --->A 65709467b48Spatrick // | / \ 65809467b48Spatrick // | B C 65909467b48Spatrick // | \ / \ 66009467b48Spatrick // ----D E 66109467b48Spatrick // 66209467b48Spatrick // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 66309467b48Spatrick // A->C is chosen as a fall-through, D won't be selected as a successor of C 66409467b48Spatrick // due to CFG constraint (the probability of C->D is not greater than 66509467b48Spatrick // HotProb to break topo-order). If we exclude E that is not in BlockFilter 66609467b48Spatrick // when calculating the probability of C->D, D will be selected and we 66709467b48Spatrick // will get A C D B as the layout of this loop. 66809467b48Spatrick auto AdjustedSumProb = BranchProbability::getOne(); 66909467b48Spatrick for (MachineBasicBlock *Succ : BB->successors()) { 67009467b48Spatrick bool SkipSucc = false; 67109467b48Spatrick if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 67209467b48Spatrick SkipSucc = true; 67309467b48Spatrick } else { 67409467b48Spatrick BlockChain *SuccChain = BlockToChain[Succ]; 67509467b48Spatrick if (SuccChain == &Chain) { 67609467b48Spatrick SkipSucc = true; 67709467b48Spatrick } else if (Succ != *SuccChain->begin()) { 67809467b48Spatrick LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 67909467b48Spatrick << " -> Mid chain!\n"); 68009467b48Spatrick continue; 68109467b48Spatrick } 68209467b48Spatrick } 68309467b48Spatrick if (SkipSucc) 68409467b48Spatrick AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 68509467b48Spatrick else 68609467b48Spatrick Successors.push_back(Succ); 68709467b48Spatrick } 68809467b48Spatrick 68909467b48Spatrick return AdjustedSumProb; 69009467b48Spatrick } 69109467b48Spatrick 69209467b48Spatrick /// The helper function returns the branch probability that is adjusted 69309467b48Spatrick /// or normalized over the new total \p AdjustedSumProb. 69409467b48Spatrick static BranchProbability 69509467b48Spatrick getAdjustedProbability(BranchProbability OrigProb, 69609467b48Spatrick BranchProbability AdjustedSumProb) { 69709467b48Spatrick BranchProbability SuccProb; 69809467b48Spatrick uint32_t SuccProbN = OrigProb.getNumerator(); 69909467b48Spatrick uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 70009467b48Spatrick if (SuccProbN >= SuccProbD) 70109467b48Spatrick SuccProb = BranchProbability::getOne(); 70209467b48Spatrick else 70309467b48Spatrick SuccProb = BranchProbability(SuccProbN, SuccProbD); 70409467b48Spatrick 70509467b48Spatrick return SuccProb; 70609467b48Spatrick } 70709467b48Spatrick 70809467b48Spatrick /// Check if \p BB has exactly the successors in \p Successors. 70909467b48Spatrick static bool 71009467b48Spatrick hasSameSuccessors(MachineBasicBlock &BB, 71109467b48Spatrick SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 71209467b48Spatrick if (BB.succ_size() != Successors.size()) 71309467b48Spatrick return false; 71409467b48Spatrick // We don't want to count self-loops 71509467b48Spatrick if (Successors.count(&BB)) 71609467b48Spatrick return false; 71709467b48Spatrick for (MachineBasicBlock *Succ : BB.successors()) 71809467b48Spatrick if (!Successors.count(Succ)) 71909467b48Spatrick return false; 72009467b48Spatrick return true; 72109467b48Spatrick } 72209467b48Spatrick 72309467b48Spatrick /// Check if a block should be tail duplicated to increase fallthrough 72409467b48Spatrick /// opportunities. 72509467b48Spatrick /// \p BB Block to check. 72609467b48Spatrick bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 72709467b48Spatrick // Blocks with single successors don't create additional fallthrough 72809467b48Spatrick // opportunities. Don't duplicate them. TODO: When conditional exits are 72909467b48Spatrick // analyzable, allow them to be duplicated. 73009467b48Spatrick bool IsSimple = TailDup.isSimpleBB(BB); 73109467b48Spatrick 73209467b48Spatrick if (BB->succ_size() == 1) 73309467b48Spatrick return false; 73409467b48Spatrick return TailDup.shouldTailDuplicate(IsSimple, *BB); 73509467b48Spatrick } 73609467b48Spatrick 73709467b48Spatrick /// Compare 2 BlockFrequency's with a small penalty for \p A. 73809467b48Spatrick /// In order to be conservative, we apply a X% penalty to account for 73909467b48Spatrick /// increased icache pressure and static heuristics. For small frequencies 74009467b48Spatrick /// we use only the numerators to improve accuracy. For simplicity, we assume the 74109467b48Spatrick /// penalty is less than 100% 74209467b48Spatrick /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 74309467b48Spatrick static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 74409467b48Spatrick uint64_t EntryFreq) { 74509467b48Spatrick BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 74609467b48Spatrick BlockFrequency Gain = A - B; 74709467b48Spatrick return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 74809467b48Spatrick } 74909467b48Spatrick 75009467b48Spatrick /// Check the edge frequencies to see if tail duplication will increase 75109467b48Spatrick /// fallthroughs. It only makes sense to call this function when 75209467b48Spatrick /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 75309467b48Spatrick /// always locally profitable if we would have picked \p Succ without 75409467b48Spatrick /// considering duplication. 75509467b48Spatrick bool MachineBlockPlacement::isProfitableToTailDup( 75609467b48Spatrick const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 75709467b48Spatrick BranchProbability QProb, 75809467b48Spatrick const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 75909467b48Spatrick // We need to do a probability calculation to make sure this is profitable. 76009467b48Spatrick // First: does succ have a successor that post-dominates? This affects the 76109467b48Spatrick // calculation. The 2 relevant cases are: 76209467b48Spatrick // BB BB 76309467b48Spatrick // | \Qout | \Qout 76409467b48Spatrick // P| C |P C 76509467b48Spatrick // = C' = C' 76609467b48Spatrick // | /Qin | /Qin 76709467b48Spatrick // | / | / 76809467b48Spatrick // Succ Succ 76909467b48Spatrick // / \ | \ V 77009467b48Spatrick // U/ =V |U \ 77109467b48Spatrick // / \ = D 77209467b48Spatrick // D E | / 77309467b48Spatrick // | / 77409467b48Spatrick // |/ 77509467b48Spatrick // PDom 77609467b48Spatrick // '=' : Branch taken for that CFG edge 77709467b48Spatrick // In the second case, Placing Succ while duplicating it into C prevents the 77809467b48Spatrick // fallthrough of Succ into either D or PDom, because they now have C as an 77909467b48Spatrick // unplaced predecessor 78009467b48Spatrick 78109467b48Spatrick // Start by figuring out which case we fall into 78209467b48Spatrick MachineBasicBlock *PDom = nullptr; 78309467b48Spatrick SmallVector<MachineBasicBlock *, 4> SuccSuccs; 78409467b48Spatrick // Only scan the relevant successors 78509467b48Spatrick auto AdjustedSuccSumProb = 78609467b48Spatrick collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 78709467b48Spatrick BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 78809467b48Spatrick auto BBFreq = MBFI->getBlockFreq(BB); 78909467b48Spatrick auto SuccFreq = MBFI->getBlockFreq(Succ); 79009467b48Spatrick BlockFrequency P = BBFreq * PProb; 79109467b48Spatrick BlockFrequency Qout = BBFreq * QProb; 79209467b48Spatrick uint64_t EntryFreq = MBFI->getEntryFreq(); 79309467b48Spatrick // If there are no more successors, it is profitable to copy, as it strictly 79409467b48Spatrick // increases fallthrough. 79509467b48Spatrick if (SuccSuccs.size() == 0) 79609467b48Spatrick return greaterWithBias(P, Qout, EntryFreq); 79709467b48Spatrick 79809467b48Spatrick auto BestSuccSucc = BranchProbability::getZero(); 79909467b48Spatrick // Find the PDom or the best Succ if no PDom exists. 80009467b48Spatrick for (MachineBasicBlock *SuccSucc : SuccSuccs) { 80109467b48Spatrick auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 80209467b48Spatrick if (Prob > BestSuccSucc) 80309467b48Spatrick BestSuccSucc = Prob; 80409467b48Spatrick if (PDom == nullptr) 80509467b48Spatrick if (MPDT->dominates(SuccSucc, Succ)) { 80609467b48Spatrick PDom = SuccSucc; 80709467b48Spatrick break; 80809467b48Spatrick } 80909467b48Spatrick } 81009467b48Spatrick // For the comparisons, we need to know Succ's best incoming edge that isn't 81109467b48Spatrick // from BB. 81209467b48Spatrick auto SuccBestPred = BlockFrequency(0); 81309467b48Spatrick for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 81409467b48Spatrick if (SuccPred == Succ || SuccPred == BB 81509467b48Spatrick || BlockToChain[SuccPred] == &Chain 81609467b48Spatrick || (BlockFilter && !BlockFilter->count(SuccPred))) 81709467b48Spatrick continue; 81809467b48Spatrick auto Freq = MBFI->getBlockFreq(SuccPred) 81909467b48Spatrick * MBPI->getEdgeProbability(SuccPred, Succ); 82009467b48Spatrick if (Freq > SuccBestPred) 82109467b48Spatrick SuccBestPred = Freq; 82209467b48Spatrick } 82309467b48Spatrick // Qin is Succ's best unplaced incoming edge that isn't BB 82409467b48Spatrick BlockFrequency Qin = SuccBestPred; 82509467b48Spatrick // If it doesn't have a post-dominating successor, here is the calculation: 82609467b48Spatrick // BB BB 82709467b48Spatrick // | \Qout | \ 82809467b48Spatrick // P| C | = 82909467b48Spatrick // = C' | C 83009467b48Spatrick // | /Qin | | 83109467b48Spatrick // | / | C' (+Succ) 83209467b48Spatrick // Succ Succ /| 83309467b48Spatrick // / \ | \/ | 83409467b48Spatrick // U/ =V | == | 83509467b48Spatrick // / \ | / \| 83609467b48Spatrick // D E D E 83709467b48Spatrick // '=' : Branch taken for that CFG edge 83809467b48Spatrick // Cost in the first case is: P + V 83909467b48Spatrick // For this calculation, we always assume P > Qout. If Qout > P 84009467b48Spatrick // The result of this function will be ignored at the caller. 84109467b48Spatrick // Let F = SuccFreq - Qin 84209467b48Spatrick // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 84309467b48Spatrick 84409467b48Spatrick if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 84509467b48Spatrick BranchProbability UProb = BestSuccSucc; 84609467b48Spatrick BranchProbability VProb = AdjustedSuccSumProb - UProb; 84709467b48Spatrick BlockFrequency F = SuccFreq - Qin; 84809467b48Spatrick BlockFrequency V = SuccFreq * VProb; 84909467b48Spatrick BlockFrequency QinU = std::min(Qin, F) * UProb; 85009467b48Spatrick BlockFrequency BaseCost = P + V; 85109467b48Spatrick BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 85209467b48Spatrick return greaterWithBias(BaseCost, DupCost, EntryFreq); 85309467b48Spatrick } 85409467b48Spatrick BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 85509467b48Spatrick BranchProbability VProb = AdjustedSuccSumProb - UProb; 85609467b48Spatrick BlockFrequency U = SuccFreq * UProb; 85709467b48Spatrick BlockFrequency V = SuccFreq * VProb; 85809467b48Spatrick BlockFrequency F = SuccFreq - Qin; 85909467b48Spatrick // If there is a post-dominating successor, here is the calculation: 86009467b48Spatrick // BB BB BB BB 86109467b48Spatrick // | \Qout | \ | \Qout | \ 86209467b48Spatrick // |P C | = |P C | = 86309467b48Spatrick // = C' |P C = C' |P C 86409467b48Spatrick // | /Qin | | | /Qin | | 86509467b48Spatrick // | / | C' (+Succ) | / | C' (+Succ) 86609467b48Spatrick // Succ Succ /| Succ Succ /| 86709467b48Spatrick // | \ V | \/ | | \ V | \/ | 86809467b48Spatrick // |U \ |U /\ =? |U = |U /\ | 86909467b48Spatrick // = D = = =?| | D | = =| 87009467b48Spatrick // | / |/ D | / |/ D 87109467b48Spatrick // | / | / | = | / 87209467b48Spatrick // |/ | / |/ | = 87309467b48Spatrick // Dom Dom Dom Dom 87409467b48Spatrick // '=' : Branch taken for that CFG edge 87509467b48Spatrick // The cost for taken branches in the first case is P + U 87609467b48Spatrick // Let F = SuccFreq - Qin 87709467b48Spatrick // The cost in the second case (assuming independence), given the layout: 87809467b48Spatrick // BB, Succ, (C+Succ), D, Dom or the layout: 87909467b48Spatrick // BB, Succ, D, Dom, (C+Succ) 88009467b48Spatrick // is Qout + max(F, Qin) * U + min(F, Qin) 88109467b48Spatrick // compare P + U vs Qout + P * U + Qin. 88209467b48Spatrick // 88309467b48Spatrick // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 88409467b48Spatrick // 88509467b48Spatrick // For the 3rd case, the cost is P + 2 * V 88609467b48Spatrick // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 88709467b48Spatrick // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 88809467b48Spatrick if (UProb > AdjustedSuccSumProb / 2 && 88909467b48Spatrick !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 89009467b48Spatrick Chain, BlockFilter)) 89109467b48Spatrick // Cases 3 & 4 89209467b48Spatrick return greaterWithBias( 89309467b48Spatrick (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 89409467b48Spatrick EntryFreq); 89509467b48Spatrick // Cases 1 & 2 89609467b48Spatrick return greaterWithBias((P + U), 89709467b48Spatrick (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 89809467b48Spatrick std::max(Qin, F) * UProb), 89909467b48Spatrick EntryFreq); 90009467b48Spatrick } 90109467b48Spatrick 90209467b48Spatrick /// Check for a trellis layout. \p BB is the upper part of a trellis if its 90309467b48Spatrick /// successors form the lower part of a trellis. A successor set S forms the 90409467b48Spatrick /// lower part of a trellis if all of the predecessors of S are either in S or 90509467b48Spatrick /// have all of S as successors. We ignore trellises where BB doesn't have 2 90609467b48Spatrick /// successors because for fewer than 2, it's trivial, and for 3 or greater they 90709467b48Spatrick /// are very uncommon and complex to compute optimally. Allowing edges within S 90809467b48Spatrick /// is not strictly a trellis, but the same algorithm works, so we allow it. 90909467b48Spatrick bool MachineBlockPlacement::isTrellis( 91009467b48Spatrick const MachineBasicBlock *BB, 91109467b48Spatrick const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 91209467b48Spatrick const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 91309467b48Spatrick // Technically BB could form a trellis with branching factor higher than 2. 91409467b48Spatrick // But that's extremely uncommon. 91509467b48Spatrick if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 91609467b48Spatrick return false; 91709467b48Spatrick 91809467b48Spatrick SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 91909467b48Spatrick BB->succ_end()); 92009467b48Spatrick // To avoid reviewing the same predecessors twice. 92109467b48Spatrick SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 92209467b48Spatrick 92309467b48Spatrick for (MachineBasicBlock *Succ : ViableSuccs) { 92409467b48Spatrick int PredCount = 0; 92509467b48Spatrick for (auto SuccPred : Succ->predecessors()) { 92609467b48Spatrick // Allow triangle successors, but don't count them. 92709467b48Spatrick if (Successors.count(SuccPred)) { 92809467b48Spatrick // Make sure that it is actually a triangle. 92909467b48Spatrick for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 93009467b48Spatrick if (!Successors.count(CheckSucc)) 93109467b48Spatrick return false; 93209467b48Spatrick continue; 93309467b48Spatrick } 93409467b48Spatrick const BlockChain *PredChain = BlockToChain[SuccPred]; 93509467b48Spatrick if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 93609467b48Spatrick PredChain == &Chain || PredChain == BlockToChain[Succ]) 93709467b48Spatrick continue; 93809467b48Spatrick ++PredCount; 93909467b48Spatrick // Perform the successor check only once. 94009467b48Spatrick if (!SeenPreds.insert(SuccPred).second) 94109467b48Spatrick continue; 94209467b48Spatrick if (!hasSameSuccessors(*SuccPred, Successors)) 94309467b48Spatrick return false; 94409467b48Spatrick } 94509467b48Spatrick // If one of the successors has only BB as a predecessor, it is not a 94609467b48Spatrick // trellis. 94709467b48Spatrick if (PredCount < 1) 94809467b48Spatrick return false; 94909467b48Spatrick } 95009467b48Spatrick return true; 95109467b48Spatrick } 95209467b48Spatrick 95309467b48Spatrick /// Pick the highest total weight pair of edges that can both be laid out. 95409467b48Spatrick /// The edges in \p Edges[0] are assumed to have a different destination than 95509467b48Spatrick /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 95609467b48Spatrick /// the individual highest weight edges to the 2 different destinations, or in 95709467b48Spatrick /// case of a conflict, one of them should be replaced with a 2nd best edge. 95809467b48Spatrick std::pair<MachineBlockPlacement::WeightedEdge, 95909467b48Spatrick MachineBlockPlacement::WeightedEdge> 96009467b48Spatrick MachineBlockPlacement::getBestNonConflictingEdges( 96109467b48Spatrick const MachineBasicBlock *BB, 96209467b48Spatrick MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 96309467b48Spatrick Edges) { 96409467b48Spatrick // Sort the edges, and then for each successor, find the best incoming 96509467b48Spatrick // predecessor. If the best incoming predecessors aren't the same, 96609467b48Spatrick // then that is clearly the best layout. If there is a conflict, one of the 96709467b48Spatrick // successors will have to fallthrough from the second best predecessor. We 96809467b48Spatrick // compare which combination is better overall. 96909467b48Spatrick 97009467b48Spatrick // Sort for highest frequency. 97109467b48Spatrick auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 97209467b48Spatrick 97309467b48Spatrick llvm::stable_sort(Edges[0], Cmp); 97409467b48Spatrick llvm::stable_sort(Edges[1], Cmp); 97509467b48Spatrick auto BestA = Edges[0].begin(); 97609467b48Spatrick auto BestB = Edges[1].begin(); 97709467b48Spatrick // Arrange for the correct answer to be in BestA and BestB 97809467b48Spatrick // If the 2 best edges don't conflict, the answer is already there. 97909467b48Spatrick if (BestA->Src == BestB->Src) { 98009467b48Spatrick // Compare the total fallthrough of (Best + Second Best) for both pairs 98109467b48Spatrick auto SecondBestA = std::next(BestA); 98209467b48Spatrick auto SecondBestB = std::next(BestB); 98309467b48Spatrick BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 98409467b48Spatrick BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 98509467b48Spatrick if (BestAScore < BestBScore) 98609467b48Spatrick BestA = SecondBestA; 98709467b48Spatrick else 98809467b48Spatrick BestB = SecondBestB; 98909467b48Spatrick } 99009467b48Spatrick // Arrange for the BB edge to be in BestA if it exists. 99109467b48Spatrick if (BestB->Src == BB) 99209467b48Spatrick std::swap(BestA, BestB); 99309467b48Spatrick return std::make_pair(*BestA, *BestB); 99409467b48Spatrick } 99509467b48Spatrick 99609467b48Spatrick /// Get the best successor from \p BB based on \p BB being part of a trellis. 99709467b48Spatrick /// We only handle trellises with 2 successors, so the algorithm is 99809467b48Spatrick /// straightforward: Find the best pair of edges that don't conflict. We find 99909467b48Spatrick /// the best incoming edge for each successor in the trellis. If those conflict, 100009467b48Spatrick /// we consider which of them should be replaced with the second best. 100109467b48Spatrick /// Upon return the two best edges will be in \p BestEdges. If one of the edges 100209467b48Spatrick /// comes from \p BB, it will be in \p BestEdges[0] 100309467b48Spatrick MachineBlockPlacement::BlockAndTailDupResult 100409467b48Spatrick MachineBlockPlacement::getBestTrellisSuccessor( 100509467b48Spatrick const MachineBasicBlock *BB, 100609467b48Spatrick const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 100709467b48Spatrick BranchProbability AdjustedSumProb, const BlockChain &Chain, 100809467b48Spatrick const BlockFilterSet *BlockFilter) { 100909467b48Spatrick 101009467b48Spatrick BlockAndTailDupResult Result = {nullptr, false}; 101109467b48Spatrick SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 101209467b48Spatrick BB->succ_end()); 101309467b48Spatrick 101409467b48Spatrick // We assume size 2 because it's common. For general n, we would have to do 101509467b48Spatrick // the Hungarian algorithm, but it's not worth the complexity because more 101609467b48Spatrick // than 2 successors is fairly uncommon, and a trellis even more so. 101709467b48Spatrick if (Successors.size() != 2 || ViableSuccs.size() != 2) 101809467b48Spatrick return Result; 101909467b48Spatrick 102009467b48Spatrick // Collect the edge frequencies of all edges that form the trellis. 102109467b48Spatrick SmallVector<WeightedEdge, 8> Edges[2]; 102209467b48Spatrick int SuccIndex = 0; 102309467b48Spatrick for (auto Succ : ViableSuccs) { 102409467b48Spatrick for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 102509467b48Spatrick // Skip any placed predecessors that are not BB 102609467b48Spatrick if (SuccPred != BB) 102709467b48Spatrick if ((BlockFilter && !BlockFilter->count(SuccPred)) || 102809467b48Spatrick BlockToChain[SuccPred] == &Chain || 102909467b48Spatrick BlockToChain[SuccPred] == BlockToChain[Succ]) 103009467b48Spatrick continue; 103109467b48Spatrick BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 103209467b48Spatrick MBPI->getEdgeProbability(SuccPred, Succ); 103309467b48Spatrick Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 103409467b48Spatrick } 103509467b48Spatrick ++SuccIndex; 103609467b48Spatrick } 103709467b48Spatrick 103809467b48Spatrick // Pick the best combination of 2 edges from all the edges in the trellis. 103909467b48Spatrick WeightedEdge BestA, BestB; 104009467b48Spatrick std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 104109467b48Spatrick 104209467b48Spatrick if (BestA.Src != BB) { 104309467b48Spatrick // If we have a trellis, and BB doesn't have the best fallthrough edges, 104409467b48Spatrick // we shouldn't choose any successor. We've already looked and there's a 104509467b48Spatrick // better fallthrough edge for all the successors. 104609467b48Spatrick LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 104709467b48Spatrick return Result; 104809467b48Spatrick } 104909467b48Spatrick 105009467b48Spatrick // Did we pick the triangle edge? If tail-duplication is profitable, do 105109467b48Spatrick // that instead. Otherwise merge the triangle edge now while we know it is 105209467b48Spatrick // optimal. 105309467b48Spatrick if (BestA.Dest == BestB.Src) { 105409467b48Spatrick // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 105509467b48Spatrick // would be better. 105609467b48Spatrick MachineBasicBlock *Succ1 = BestA.Dest; 105709467b48Spatrick MachineBasicBlock *Succ2 = BestB.Dest; 105809467b48Spatrick // Check to see if tail-duplication would be profitable. 105909467b48Spatrick if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 106009467b48Spatrick canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 106109467b48Spatrick isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 106209467b48Spatrick Chain, BlockFilter)) { 106309467b48Spatrick LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 106409467b48Spatrick MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 106509467b48Spatrick dbgs() << " Selected: " << getBlockName(Succ2) 106609467b48Spatrick << ", probability: " << Succ2Prob 106709467b48Spatrick << " (Tail Duplicate)\n"); 106809467b48Spatrick Result.BB = Succ2; 106909467b48Spatrick Result.ShouldTailDup = true; 107009467b48Spatrick return Result; 107109467b48Spatrick } 107209467b48Spatrick } 107309467b48Spatrick // We have already computed the optimal edge for the other side of the 107409467b48Spatrick // trellis. 107509467b48Spatrick ComputedEdges[BestB.Src] = { BestB.Dest, false }; 107609467b48Spatrick 107709467b48Spatrick auto TrellisSucc = BestA.Dest; 107809467b48Spatrick LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 107909467b48Spatrick MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 108009467b48Spatrick dbgs() << " Selected: " << getBlockName(TrellisSucc) 108109467b48Spatrick << ", probability: " << SuccProb << " (Trellis)\n"); 108209467b48Spatrick Result.BB = TrellisSucc; 108309467b48Spatrick return Result; 108409467b48Spatrick } 108509467b48Spatrick 108609467b48Spatrick /// When the option allowTailDupPlacement() is on, this method checks if the 108709467b48Spatrick /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 108809467b48Spatrick /// into all of its unplaced, unfiltered predecessors, that are not BB. 108909467b48Spatrick bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 109009467b48Spatrick const MachineBasicBlock *BB, MachineBasicBlock *Succ, 109109467b48Spatrick const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 109209467b48Spatrick if (!shouldTailDuplicate(Succ)) 109309467b48Spatrick return false; 109409467b48Spatrick 109509467b48Spatrick // The result of canTailDuplicate. 109609467b48Spatrick bool Duplicate = true; 109709467b48Spatrick // Number of possible duplication. 109809467b48Spatrick unsigned int NumDup = 0; 109909467b48Spatrick 110009467b48Spatrick // For CFG checking. 110109467b48Spatrick SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 110209467b48Spatrick BB->succ_end()); 110309467b48Spatrick for (MachineBasicBlock *Pred : Succ->predecessors()) { 110409467b48Spatrick // Make sure all unplaced and unfiltered predecessors can be 110509467b48Spatrick // tail-duplicated into. 110609467b48Spatrick // Skip any blocks that are already placed or not in this loop. 110709467b48Spatrick if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 110809467b48Spatrick || BlockToChain[Pred] == &Chain) 110909467b48Spatrick continue; 111009467b48Spatrick if (!TailDup.canTailDuplicate(Succ, Pred)) { 111109467b48Spatrick if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 111209467b48Spatrick // This will result in a trellis after tail duplication, so we don't 111309467b48Spatrick // need to copy Succ into this predecessor. In the presence 111409467b48Spatrick // of a trellis tail duplication can continue to be profitable. 111509467b48Spatrick // For example: 111609467b48Spatrick // A A 111709467b48Spatrick // |\ |\ 111809467b48Spatrick // | \ | \ 111909467b48Spatrick // | C | C+BB 112009467b48Spatrick // | / | | 112109467b48Spatrick // |/ | | 112209467b48Spatrick // BB => BB | 112309467b48Spatrick // |\ |\/| 112409467b48Spatrick // | \ |/\| 112509467b48Spatrick // | D | D 112609467b48Spatrick // | / | / 112709467b48Spatrick // |/ |/ 112809467b48Spatrick // Succ Succ 112909467b48Spatrick // 113009467b48Spatrick // After BB was duplicated into C, the layout looks like the one on the 113109467b48Spatrick // right. BB and C now have the same successors. When considering 113209467b48Spatrick // whether Succ can be duplicated into all its unplaced predecessors, we 113309467b48Spatrick // ignore C. 113409467b48Spatrick // We can do this because C already has a profitable fallthrough, namely 113509467b48Spatrick // D. TODO(iteratee): ignore sufficiently cold predecessors for 113609467b48Spatrick // duplication and for this test. 113709467b48Spatrick // 113809467b48Spatrick // This allows trellises to be laid out in 2 separate chains 113909467b48Spatrick // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 114009467b48Spatrick // because it allows the creation of 2 fallthrough paths with links 114109467b48Spatrick // between them, and we correctly identify the best layout for these 114209467b48Spatrick // CFGs. We want to extend trellises that the user created in addition 114309467b48Spatrick // to trellises created by tail-duplication, so we just look for the 114409467b48Spatrick // CFG. 114509467b48Spatrick continue; 114609467b48Spatrick Duplicate = false; 114709467b48Spatrick continue; 114809467b48Spatrick } 114909467b48Spatrick NumDup++; 115009467b48Spatrick } 115109467b48Spatrick 115209467b48Spatrick // No possible duplication in current filter set. 115309467b48Spatrick if (NumDup == 0) 115409467b48Spatrick return false; 115509467b48Spatrick 1156*097a140dSpatrick // If profile information is available, findDuplicateCandidates can do more 1157*097a140dSpatrick // precise benefit analysis. 1158*097a140dSpatrick if (F->getFunction().hasProfileData()) 1159*097a140dSpatrick return true; 1160*097a140dSpatrick 116109467b48Spatrick // This is mainly for function exit BB. 116209467b48Spatrick // The integrated tail duplication is really designed for increasing 116309467b48Spatrick // fallthrough from predecessors from Succ to its successors. We may need 116409467b48Spatrick // other machanism to handle different cases. 116509467b48Spatrick if (Succ->succ_size() == 0) 116609467b48Spatrick return true; 116709467b48Spatrick 116809467b48Spatrick // Plus the already placed predecessor. 116909467b48Spatrick NumDup++; 117009467b48Spatrick 117109467b48Spatrick // If the duplication candidate has more unplaced predecessors than 117209467b48Spatrick // successors, the extra duplication can't bring more fallthrough. 117309467b48Spatrick // 117409467b48Spatrick // Pred1 Pred2 Pred3 117509467b48Spatrick // \ | / 117609467b48Spatrick // \ | / 117709467b48Spatrick // \ | / 117809467b48Spatrick // Dup 117909467b48Spatrick // / \ 118009467b48Spatrick // / \ 118109467b48Spatrick // Succ1 Succ2 118209467b48Spatrick // 118309467b48Spatrick // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 118409467b48Spatrick // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 118509467b48Spatrick // but the duplication into Pred3 can't increase fallthrough. 118609467b48Spatrick // 118709467b48Spatrick // A small number of extra duplication may not hurt too much. We need a better 118809467b48Spatrick // heuristic to handle it. 118909467b48Spatrick if ((NumDup > Succ->succ_size()) || !Duplicate) 119009467b48Spatrick return false; 119109467b48Spatrick 119209467b48Spatrick return true; 119309467b48Spatrick } 119409467b48Spatrick 119509467b48Spatrick /// Find chains of triangles where we believe it would be profitable to 119609467b48Spatrick /// tail-duplicate them all, but a local analysis would not find them. 119709467b48Spatrick /// There are 3 ways this can be profitable: 119809467b48Spatrick /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 119909467b48Spatrick /// longer chains) 120009467b48Spatrick /// 2) The chains are statically correlated. Branch probabilities have a very 120109467b48Spatrick /// U-shaped distribution. 120209467b48Spatrick /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 120309467b48Spatrick /// If the branches in a chain are likely to be from the same side of the 120409467b48Spatrick /// distribution as their predecessor, but are independent at runtime, this 120509467b48Spatrick /// transformation is profitable. (Because the cost of being wrong is a small 120609467b48Spatrick /// fixed cost, unlike the standard triangle layout where the cost of being 120709467b48Spatrick /// wrong scales with the # of triangles.) 120809467b48Spatrick /// 3) The chains are dynamically correlated. If the probability that a previous 120909467b48Spatrick /// branch was taken positively influences whether the next branch will be 121009467b48Spatrick /// taken 121109467b48Spatrick /// We believe that 2 and 3 are common enough to justify the small margin in 1. 121209467b48Spatrick void MachineBlockPlacement::precomputeTriangleChains() { 121309467b48Spatrick struct TriangleChain { 121409467b48Spatrick std::vector<MachineBasicBlock *> Edges; 121509467b48Spatrick 121609467b48Spatrick TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 121709467b48Spatrick : Edges({src, dst}) {} 121809467b48Spatrick 121909467b48Spatrick void append(MachineBasicBlock *dst) { 122009467b48Spatrick assert(getKey()->isSuccessor(dst) && 122109467b48Spatrick "Attempting to append a block that is not a successor."); 122209467b48Spatrick Edges.push_back(dst); 122309467b48Spatrick } 122409467b48Spatrick 122509467b48Spatrick unsigned count() const { return Edges.size() - 1; } 122609467b48Spatrick 122709467b48Spatrick MachineBasicBlock *getKey() const { 122809467b48Spatrick return Edges.back(); 122909467b48Spatrick } 123009467b48Spatrick }; 123109467b48Spatrick 123209467b48Spatrick if (TriangleChainCount == 0) 123309467b48Spatrick return; 123409467b48Spatrick 123509467b48Spatrick LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 123609467b48Spatrick // Map from last block to the chain that contains it. This allows us to extend 123709467b48Spatrick // chains as we find new triangles. 123809467b48Spatrick DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 123909467b48Spatrick for (MachineBasicBlock &BB : *F) { 124009467b48Spatrick // If BB doesn't have 2 successors, it doesn't start a triangle. 124109467b48Spatrick if (BB.succ_size() != 2) 124209467b48Spatrick continue; 124309467b48Spatrick MachineBasicBlock *PDom = nullptr; 124409467b48Spatrick for (MachineBasicBlock *Succ : BB.successors()) { 124509467b48Spatrick if (!MPDT->dominates(Succ, &BB)) 124609467b48Spatrick continue; 124709467b48Spatrick PDom = Succ; 124809467b48Spatrick break; 124909467b48Spatrick } 125009467b48Spatrick // If BB doesn't have a post-dominating successor, it doesn't form a 125109467b48Spatrick // triangle. 125209467b48Spatrick if (PDom == nullptr) 125309467b48Spatrick continue; 125409467b48Spatrick // If PDom has a hint that it is low probability, skip this triangle. 125509467b48Spatrick if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 125609467b48Spatrick continue; 125709467b48Spatrick // If PDom isn't eligible for duplication, this isn't the kind of triangle 125809467b48Spatrick // we're looking for. 125909467b48Spatrick if (!shouldTailDuplicate(PDom)) 126009467b48Spatrick continue; 126109467b48Spatrick bool CanTailDuplicate = true; 126209467b48Spatrick // If PDom can't tail-duplicate into it's non-BB predecessors, then this 126309467b48Spatrick // isn't the kind of triangle we're looking for. 126409467b48Spatrick for (MachineBasicBlock* Pred : PDom->predecessors()) { 126509467b48Spatrick if (Pred == &BB) 126609467b48Spatrick continue; 126709467b48Spatrick if (!TailDup.canTailDuplicate(PDom, Pred)) { 126809467b48Spatrick CanTailDuplicate = false; 126909467b48Spatrick break; 127009467b48Spatrick } 127109467b48Spatrick } 127209467b48Spatrick // If we can't tail-duplicate PDom to its predecessors, then skip this 127309467b48Spatrick // triangle. 127409467b48Spatrick if (!CanTailDuplicate) 127509467b48Spatrick continue; 127609467b48Spatrick 127709467b48Spatrick // Now we have an interesting triangle. Insert it if it's not part of an 127809467b48Spatrick // existing chain. 127909467b48Spatrick // Note: This cannot be replaced with a call insert() or emplace() because 128009467b48Spatrick // the find key is BB, but the insert/emplace key is PDom. 128109467b48Spatrick auto Found = TriangleChainMap.find(&BB); 128209467b48Spatrick // If it is, remove the chain from the map, grow it, and put it back in the 128309467b48Spatrick // map with the end as the new key. 128409467b48Spatrick if (Found != TriangleChainMap.end()) { 128509467b48Spatrick TriangleChain Chain = std::move(Found->second); 128609467b48Spatrick TriangleChainMap.erase(Found); 128709467b48Spatrick Chain.append(PDom); 128809467b48Spatrick TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 128909467b48Spatrick } else { 129009467b48Spatrick auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 129109467b48Spatrick assert(InsertResult.second && "Block seen twice."); 129209467b48Spatrick (void)InsertResult; 129309467b48Spatrick } 129409467b48Spatrick } 129509467b48Spatrick 129609467b48Spatrick // Iterating over a DenseMap is safe here, because the only thing in the body 129709467b48Spatrick // of the loop is inserting into another DenseMap (ComputedEdges). 129809467b48Spatrick // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 129909467b48Spatrick for (auto &ChainPair : TriangleChainMap) { 130009467b48Spatrick TriangleChain &Chain = ChainPair.second; 130109467b48Spatrick // Benchmarking has shown that due to branch correlation duplicating 2 or 130209467b48Spatrick // more triangles is profitable, despite the calculations assuming 130309467b48Spatrick // independence. 130409467b48Spatrick if (Chain.count() < TriangleChainCount) 130509467b48Spatrick continue; 130609467b48Spatrick MachineBasicBlock *dst = Chain.Edges.back(); 130709467b48Spatrick Chain.Edges.pop_back(); 130809467b48Spatrick for (MachineBasicBlock *src : reverse(Chain.Edges)) { 130909467b48Spatrick LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 131009467b48Spatrick << getBlockName(dst) 131109467b48Spatrick << " as pre-computed based on triangles.\n"); 131209467b48Spatrick 131309467b48Spatrick auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 131409467b48Spatrick assert(InsertResult.second && "Block seen twice."); 131509467b48Spatrick (void)InsertResult; 131609467b48Spatrick 131709467b48Spatrick dst = src; 131809467b48Spatrick } 131909467b48Spatrick } 132009467b48Spatrick } 132109467b48Spatrick 132209467b48Spatrick // When profile is not present, return the StaticLikelyProb. 132309467b48Spatrick // When profile is available, we need to handle the triangle-shape CFG. 132409467b48Spatrick static BranchProbability getLayoutSuccessorProbThreshold( 132509467b48Spatrick const MachineBasicBlock *BB) { 132609467b48Spatrick if (!BB->getParent()->getFunction().hasProfileData()) 132709467b48Spatrick return BranchProbability(StaticLikelyProb, 100); 132809467b48Spatrick if (BB->succ_size() == 2) { 132909467b48Spatrick const MachineBasicBlock *Succ1 = *BB->succ_begin(); 133009467b48Spatrick const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 133109467b48Spatrick if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 133209467b48Spatrick /* See case 1 below for the cost analysis. For BB->Succ to 133309467b48Spatrick * be taken with smaller cost, the following needs to hold: 133409467b48Spatrick * Prob(BB->Succ) > 2 * Prob(BB->Pred) 133509467b48Spatrick * So the threshold T in the calculation below 133609467b48Spatrick * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 133709467b48Spatrick * So T / (1 - T) = 2, Yielding T = 2/3 133809467b48Spatrick * Also adding user specified branch bias, we have 133909467b48Spatrick * T = (2/3)*(ProfileLikelyProb/50) 134009467b48Spatrick * = (2*ProfileLikelyProb)/150) 134109467b48Spatrick */ 134209467b48Spatrick return BranchProbability(2 * ProfileLikelyProb, 150); 134309467b48Spatrick } 134409467b48Spatrick } 134509467b48Spatrick return BranchProbability(ProfileLikelyProb, 100); 134609467b48Spatrick } 134709467b48Spatrick 134809467b48Spatrick /// Checks to see if the layout candidate block \p Succ has a better layout 134909467b48Spatrick /// predecessor than \c BB. If yes, returns true. 135009467b48Spatrick /// \p SuccProb: The probability adjusted for only remaining blocks. 135109467b48Spatrick /// Only used for logging 135209467b48Spatrick /// \p RealSuccProb: The un-adjusted probability. 135309467b48Spatrick /// \p Chain: The chain that BB belongs to and Succ is being considered for. 135409467b48Spatrick /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 135509467b48Spatrick /// considered 135609467b48Spatrick bool MachineBlockPlacement::hasBetterLayoutPredecessor( 135709467b48Spatrick const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 135809467b48Spatrick const BlockChain &SuccChain, BranchProbability SuccProb, 135909467b48Spatrick BranchProbability RealSuccProb, const BlockChain &Chain, 136009467b48Spatrick const BlockFilterSet *BlockFilter) { 136109467b48Spatrick 136209467b48Spatrick // There isn't a better layout when there are no unscheduled predecessors. 136309467b48Spatrick if (SuccChain.UnscheduledPredecessors == 0) 136409467b48Spatrick return false; 136509467b48Spatrick 136609467b48Spatrick // There are two basic scenarios here: 136709467b48Spatrick // ------------------------------------- 136809467b48Spatrick // Case 1: triangular shape CFG (if-then): 136909467b48Spatrick // BB 137009467b48Spatrick // | \ 137109467b48Spatrick // | \ 137209467b48Spatrick // | Pred 137309467b48Spatrick // | / 137409467b48Spatrick // Succ 137509467b48Spatrick // In this case, we are evaluating whether to select edge -> Succ, e.g. 137609467b48Spatrick // set Succ as the layout successor of BB. Picking Succ as BB's 137709467b48Spatrick // successor breaks the CFG constraints (FIXME: define these constraints). 137809467b48Spatrick // With this layout, Pred BB 137909467b48Spatrick // is forced to be outlined, so the overall cost will be cost of the 138009467b48Spatrick // branch taken from BB to Pred, plus the cost of back taken branch 138109467b48Spatrick // from Pred to Succ, as well as the additional cost associated 138209467b48Spatrick // with the needed unconditional jump instruction from Pred To Succ. 138309467b48Spatrick 138409467b48Spatrick // The cost of the topological order layout is the taken branch cost 138509467b48Spatrick // from BB to Succ, so to make BB->Succ a viable candidate, the following 138609467b48Spatrick // must hold: 138709467b48Spatrick // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 138809467b48Spatrick // < freq(BB->Succ) * taken_branch_cost. 138909467b48Spatrick // Ignoring unconditional jump cost, we get 139009467b48Spatrick // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 139109467b48Spatrick // prob(BB->Succ) > 2 * prob(BB->Pred) 139209467b48Spatrick // 139309467b48Spatrick // When real profile data is available, we can precisely compute the 139409467b48Spatrick // probability threshold that is needed for edge BB->Succ to be considered. 139509467b48Spatrick // Without profile data, the heuristic requires the branch bias to be 139609467b48Spatrick // a lot larger to make sure the signal is very strong (e.g. 80% default). 139709467b48Spatrick // ----------------------------------------------------------------- 139809467b48Spatrick // Case 2: diamond like CFG (if-then-else): 139909467b48Spatrick // S 140009467b48Spatrick // / \ 140109467b48Spatrick // | \ 140209467b48Spatrick // BB Pred 140309467b48Spatrick // \ / 140409467b48Spatrick // Succ 140509467b48Spatrick // .. 140609467b48Spatrick // 140709467b48Spatrick // The current block is BB and edge BB->Succ is now being evaluated. 140809467b48Spatrick // Note that edge S->BB was previously already selected because 140909467b48Spatrick // prob(S->BB) > prob(S->Pred). 141009467b48Spatrick // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 141109467b48Spatrick // choose Pred, we will have a topological ordering as shown on the left 141209467b48Spatrick // in the picture below. If we choose Succ, we have the solution as shown 141309467b48Spatrick // on the right: 141409467b48Spatrick // 141509467b48Spatrick // topo-order: 141609467b48Spatrick // 141709467b48Spatrick // S----- ---S 141809467b48Spatrick // | | | | 141909467b48Spatrick // ---BB | | BB 142009467b48Spatrick // | | | | 142109467b48Spatrick // | Pred-- | Succ-- 142209467b48Spatrick // | | | | 142309467b48Spatrick // ---Succ ---Pred-- 142409467b48Spatrick // 142509467b48Spatrick // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 142609467b48Spatrick // = freq(S->Pred) + freq(S->BB) 142709467b48Spatrick // 142809467b48Spatrick // If we have profile data (i.e, branch probabilities can be trusted), the 142909467b48Spatrick // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 143009467b48Spatrick // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 143109467b48Spatrick // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 143209467b48Spatrick // means the cost of topological order is greater. 143309467b48Spatrick // When profile data is not available, however, we need to be more 143409467b48Spatrick // conservative. If the branch prediction is wrong, breaking the topo-order 143509467b48Spatrick // will actually yield a layout with large cost. For this reason, we need 143609467b48Spatrick // strong biased branch at block S with Prob(S->BB) in order to select 143709467b48Spatrick // BB->Succ. This is equivalent to looking the CFG backward with backward 143809467b48Spatrick // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 143909467b48Spatrick // profile data). 144009467b48Spatrick // -------------------------------------------------------------------------- 144109467b48Spatrick // Case 3: forked diamond 144209467b48Spatrick // S 144309467b48Spatrick // / \ 144409467b48Spatrick // / \ 144509467b48Spatrick // BB Pred 144609467b48Spatrick // | \ / | 144709467b48Spatrick // | \ / | 144809467b48Spatrick // | X | 144909467b48Spatrick // | / \ | 145009467b48Spatrick // | / \ | 145109467b48Spatrick // S1 S2 145209467b48Spatrick // 145309467b48Spatrick // The current block is BB and edge BB->S1 is now being evaluated. 145409467b48Spatrick // As above S->BB was already selected because 145509467b48Spatrick // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 145609467b48Spatrick // 145709467b48Spatrick // topo-order: 145809467b48Spatrick // 145909467b48Spatrick // S-------| ---S 146009467b48Spatrick // | | | | 146109467b48Spatrick // ---BB | | BB 146209467b48Spatrick // | | | | 146309467b48Spatrick // | Pred----| | S1---- 146409467b48Spatrick // | | | | 146509467b48Spatrick // --(S1 or S2) ---Pred-- 146609467b48Spatrick // | 146709467b48Spatrick // S2 146809467b48Spatrick // 146909467b48Spatrick // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 147009467b48Spatrick // + min(freq(Pred->S1), freq(Pred->S2)) 147109467b48Spatrick // Non-topo-order cost: 147209467b48Spatrick // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 147309467b48Spatrick // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 147409467b48Spatrick // is 0. Then the non topo layout is better when 147509467b48Spatrick // freq(S->Pred) < freq(BB->S1). 147609467b48Spatrick // This is exactly what is checked below. 147709467b48Spatrick // Note there are other shapes that apply (Pred may not be a single block, 147809467b48Spatrick // but they all fit this general pattern.) 147909467b48Spatrick BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 148009467b48Spatrick 148109467b48Spatrick // Make sure that a hot successor doesn't have a globally more 148209467b48Spatrick // important predecessor. 148309467b48Spatrick BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 148409467b48Spatrick bool BadCFGConflict = false; 148509467b48Spatrick 148609467b48Spatrick for (MachineBasicBlock *Pred : Succ->predecessors()) { 148709467b48Spatrick BlockChain *PredChain = BlockToChain[Pred]; 148809467b48Spatrick if (Pred == Succ || PredChain == &SuccChain || 148909467b48Spatrick (BlockFilter && !BlockFilter->count(Pred)) || 149009467b48Spatrick PredChain == &Chain || Pred != *std::prev(PredChain->end()) || 149109467b48Spatrick // This check is redundant except for look ahead. This function is 149209467b48Spatrick // called for lookahead by isProfitableToTailDup when BB hasn't been 149309467b48Spatrick // placed yet. 149409467b48Spatrick (Pred == BB)) 149509467b48Spatrick continue; 149609467b48Spatrick // Do backward checking. 149709467b48Spatrick // For all cases above, we need a backward checking to filter out edges that 149809467b48Spatrick // are not 'strongly' biased. 149909467b48Spatrick // BB Pred 150009467b48Spatrick // \ / 150109467b48Spatrick // Succ 150209467b48Spatrick // We select edge BB->Succ if 150309467b48Spatrick // freq(BB->Succ) > freq(Succ) * HotProb 150409467b48Spatrick // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 150509467b48Spatrick // HotProb 150609467b48Spatrick // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 150709467b48Spatrick // Case 1 is covered too, because the first equation reduces to: 150809467b48Spatrick // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 150909467b48Spatrick BlockFrequency PredEdgeFreq = 151009467b48Spatrick MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 151109467b48Spatrick if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 151209467b48Spatrick BadCFGConflict = true; 151309467b48Spatrick break; 151409467b48Spatrick } 151509467b48Spatrick } 151609467b48Spatrick 151709467b48Spatrick if (BadCFGConflict) { 151809467b48Spatrick LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 151909467b48Spatrick << SuccProb << " (prob) (non-cold CFG conflict)\n"); 152009467b48Spatrick return true; 152109467b48Spatrick } 152209467b48Spatrick 152309467b48Spatrick return false; 152409467b48Spatrick } 152509467b48Spatrick 152609467b48Spatrick /// Select the best successor for a block. 152709467b48Spatrick /// 152809467b48Spatrick /// This looks across all successors of a particular block and attempts to 152909467b48Spatrick /// select the "best" one to be the layout successor. It only considers direct 153009467b48Spatrick /// successors which also pass the block filter. It will attempt to avoid 153109467b48Spatrick /// breaking CFG structure, but cave and break such structures in the case of 153209467b48Spatrick /// very hot successor edges. 153309467b48Spatrick /// 153409467b48Spatrick /// \returns The best successor block found, or null if none are viable, along 153509467b48Spatrick /// with a boolean indicating if tail duplication is necessary. 153609467b48Spatrick MachineBlockPlacement::BlockAndTailDupResult 153709467b48Spatrick MachineBlockPlacement::selectBestSuccessor( 153809467b48Spatrick const MachineBasicBlock *BB, const BlockChain &Chain, 153909467b48Spatrick const BlockFilterSet *BlockFilter) { 154009467b48Spatrick const BranchProbability HotProb(StaticLikelyProb, 100); 154109467b48Spatrick 154209467b48Spatrick BlockAndTailDupResult BestSucc = { nullptr, false }; 154309467b48Spatrick auto BestProb = BranchProbability::getZero(); 154409467b48Spatrick 154509467b48Spatrick SmallVector<MachineBasicBlock *, 4> Successors; 154609467b48Spatrick auto AdjustedSumProb = 154709467b48Spatrick collectViableSuccessors(BB, Chain, BlockFilter, Successors); 154809467b48Spatrick 154909467b48Spatrick LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 155009467b48Spatrick << "\n"); 155109467b48Spatrick 155209467b48Spatrick // if we already precomputed the best successor for BB, return that if still 155309467b48Spatrick // applicable. 155409467b48Spatrick auto FoundEdge = ComputedEdges.find(BB); 155509467b48Spatrick if (FoundEdge != ComputedEdges.end()) { 155609467b48Spatrick MachineBasicBlock *Succ = FoundEdge->second.BB; 155709467b48Spatrick ComputedEdges.erase(FoundEdge); 155809467b48Spatrick BlockChain *SuccChain = BlockToChain[Succ]; 155909467b48Spatrick if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 156009467b48Spatrick SuccChain != &Chain && Succ == *SuccChain->begin()) 156109467b48Spatrick return FoundEdge->second; 156209467b48Spatrick } 156309467b48Spatrick 156409467b48Spatrick // if BB is part of a trellis, Use the trellis to determine the optimal 156509467b48Spatrick // fallthrough edges 156609467b48Spatrick if (isTrellis(BB, Successors, Chain, BlockFilter)) 156709467b48Spatrick return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 156809467b48Spatrick BlockFilter); 156909467b48Spatrick 157009467b48Spatrick // For blocks with CFG violations, we may be able to lay them out anyway with 157109467b48Spatrick // tail-duplication. We keep this vector so we can perform the probability 157209467b48Spatrick // calculations the minimum number of times. 1573*097a140dSpatrick SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> 157409467b48Spatrick DupCandidates; 157509467b48Spatrick for (MachineBasicBlock *Succ : Successors) { 157609467b48Spatrick auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 157709467b48Spatrick BranchProbability SuccProb = 157809467b48Spatrick getAdjustedProbability(RealSuccProb, AdjustedSumProb); 157909467b48Spatrick 158009467b48Spatrick BlockChain &SuccChain = *BlockToChain[Succ]; 158109467b48Spatrick // Skip the edge \c BB->Succ if block \c Succ has a better layout 158209467b48Spatrick // predecessor that yields lower global cost. 158309467b48Spatrick if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 158409467b48Spatrick Chain, BlockFilter)) { 158509467b48Spatrick // If tail duplication would make Succ profitable, place it. 158609467b48Spatrick if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1587*097a140dSpatrick DupCandidates.emplace_back(SuccProb, Succ); 158809467b48Spatrick continue; 158909467b48Spatrick } 159009467b48Spatrick 159109467b48Spatrick LLVM_DEBUG( 159209467b48Spatrick dbgs() << " Candidate: " << getBlockName(Succ) 159309467b48Spatrick << ", probability: " << SuccProb 159409467b48Spatrick << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 159509467b48Spatrick << "\n"); 159609467b48Spatrick 159709467b48Spatrick if (BestSucc.BB && BestProb >= SuccProb) { 159809467b48Spatrick LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 159909467b48Spatrick continue; 160009467b48Spatrick } 160109467b48Spatrick 160209467b48Spatrick LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 160309467b48Spatrick BestSucc.BB = Succ; 160409467b48Spatrick BestProb = SuccProb; 160509467b48Spatrick } 160609467b48Spatrick // Handle the tail duplication candidates in order of decreasing probability. 160709467b48Spatrick // Stop at the first one that is profitable. Also stop if they are less 160809467b48Spatrick // profitable than BestSucc. Position is important because we preserve it and 160909467b48Spatrick // prefer first best match. Here we aren't comparing in order, so we capture 161009467b48Spatrick // the position instead. 161109467b48Spatrick llvm::stable_sort(DupCandidates, 161209467b48Spatrick [](std::tuple<BranchProbability, MachineBasicBlock *> L, 161309467b48Spatrick std::tuple<BranchProbability, MachineBasicBlock *> R) { 161409467b48Spatrick return std::get<0>(L) > std::get<0>(R); 161509467b48Spatrick }); 161609467b48Spatrick for (auto &Tup : DupCandidates) { 161709467b48Spatrick BranchProbability DupProb; 161809467b48Spatrick MachineBasicBlock *Succ; 161909467b48Spatrick std::tie(DupProb, Succ) = Tup; 162009467b48Spatrick if (DupProb < BestProb) 162109467b48Spatrick break; 162209467b48Spatrick if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 162309467b48Spatrick && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 162409467b48Spatrick LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 162509467b48Spatrick << ", probability: " << DupProb 162609467b48Spatrick << " (Tail Duplicate)\n"); 162709467b48Spatrick BestSucc.BB = Succ; 162809467b48Spatrick BestSucc.ShouldTailDup = true; 162909467b48Spatrick break; 163009467b48Spatrick } 163109467b48Spatrick } 163209467b48Spatrick 163309467b48Spatrick if (BestSucc.BB) 163409467b48Spatrick LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 163509467b48Spatrick 163609467b48Spatrick return BestSucc; 163709467b48Spatrick } 163809467b48Spatrick 163909467b48Spatrick /// Select the best block from a worklist. 164009467b48Spatrick /// 164109467b48Spatrick /// This looks through the provided worklist as a list of candidate basic 164209467b48Spatrick /// blocks and select the most profitable one to place. The definition of 164309467b48Spatrick /// profitable only really makes sense in the context of a loop. This returns 164409467b48Spatrick /// the most frequently visited block in the worklist, which in the case of 164509467b48Spatrick /// a loop, is the one most desirable to be physically close to the rest of the 164609467b48Spatrick /// loop body in order to improve i-cache behavior. 164709467b48Spatrick /// 164809467b48Spatrick /// \returns The best block found, or null if none are viable. 164909467b48Spatrick MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 165009467b48Spatrick const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 165109467b48Spatrick // Once we need to walk the worklist looking for a candidate, cleanup the 165209467b48Spatrick // worklist of already placed entries. 165309467b48Spatrick // FIXME: If this shows up on profiles, it could be folded (at the cost of 165409467b48Spatrick // some code complexity) into the loop below. 165509467b48Spatrick WorkList.erase(llvm::remove_if(WorkList, 165609467b48Spatrick [&](MachineBasicBlock *BB) { 165709467b48Spatrick return BlockToChain.lookup(BB) == &Chain; 165809467b48Spatrick }), 165909467b48Spatrick WorkList.end()); 166009467b48Spatrick 166109467b48Spatrick if (WorkList.empty()) 166209467b48Spatrick return nullptr; 166309467b48Spatrick 166409467b48Spatrick bool IsEHPad = WorkList[0]->isEHPad(); 166509467b48Spatrick 166609467b48Spatrick MachineBasicBlock *BestBlock = nullptr; 166709467b48Spatrick BlockFrequency BestFreq; 166809467b48Spatrick for (MachineBasicBlock *MBB : WorkList) { 166909467b48Spatrick assert(MBB->isEHPad() == IsEHPad && 167009467b48Spatrick "EHPad mismatch between block and work list."); 167109467b48Spatrick 167209467b48Spatrick BlockChain &SuccChain = *BlockToChain[MBB]; 167309467b48Spatrick if (&SuccChain == &Chain) 167409467b48Spatrick continue; 167509467b48Spatrick 167609467b48Spatrick assert(SuccChain.UnscheduledPredecessors == 0 && 167709467b48Spatrick "Found CFG-violating block"); 167809467b48Spatrick 167909467b48Spatrick BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 168009467b48Spatrick LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 168109467b48Spatrick MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 168209467b48Spatrick 168309467b48Spatrick // For ehpad, we layout the least probable first as to avoid jumping back 168409467b48Spatrick // from least probable landingpads to more probable ones. 168509467b48Spatrick // 168609467b48Spatrick // FIXME: Using probability is probably (!) not the best way to achieve 168709467b48Spatrick // this. We should probably have a more principled approach to layout 168809467b48Spatrick // cleanup code. 168909467b48Spatrick // 169009467b48Spatrick // The goal is to get: 169109467b48Spatrick // 169209467b48Spatrick // +--------------------------+ 169309467b48Spatrick // | V 169409467b48Spatrick // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 169509467b48Spatrick // 169609467b48Spatrick // Rather than: 169709467b48Spatrick // 169809467b48Spatrick // +-------------------------------------+ 169909467b48Spatrick // V | 170009467b48Spatrick // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 170109467b48Spatrick if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 170209467b48Spatrick continue; 170309467b48Spatrick 170409467b48Spatrick BestBlock = MBB; 170509467b48Spatrick BestFreq = CandidateFreq; 170609467b48Spatrick } 170709467b48Spatrick 170809467b48Spatrick return BestBlock; 170909467b48Spatrick } 171009467b48Spatrick 171109467b48Spatrick /// Retrieve the first unplaced basic block. 171209467b48Spatrick /// 171309467b48Spatrick /// This routine is called when we are unable to use the CFG to walk through 171409467b48Spatrick /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 171509467b48Spatrick /// We walk through the function's blocks in order, starting from the 171609467b48Spatrick /// LastUnplacedBlockIt. We update this iterator on each call to avoid 171709467b48Spatrick /// re-scanning the entire sequence on repeated calls to this routine. 171809467b48Spatrick MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 171909467b48Spatrick const BlockChain &PlacedChain, 172009467b48Spatrick MachineFunction::iterator &PrevUnplacedBlockIt, 172109467b48Spatrick const BlockFilterSet *BlockFilter) { 172209467b48Spatrick for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 172309467b48Spatrick ++I) { 172409467b48Spatrick if (BlockFilter && !BlockFilter->count(&*I)) 172509467b48Spatrick continue; 172609467b48Spatrick if (BlockToChain[&*I] != &PlacedChain) { 172709467b48Spatrick PrevUnplacedBlockIt = I; 172809467b48Spatrick // Now select the head of the chain to which the unplaced block belongs 172909467b48Spatrick // as the block to place. This will force the entire chain to be placed, 173009467b48Spatrick // and satisfies the requirements of merging chains. 173109467b48Spatrick return *BlockToChain[&*I]->begin(); 173209467b48Spatrick } 173309467b48Spatrick } 173409467b48Spatrick return nullptr; 173509467b48Spatrick } 173609467b48Spatrick 173709467b48Spatrick void MachineBlockPlacement::fillWorkLists( 173809467b48Spatrick const MachineBasicBlock *MBB, 173909467b48Spatrick SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 174009467b48Spatrick const BlockFilterSet *BlockFilter = nullptr) { 174109467b48Spatrick BlockChain &Chain = *BlockToChain[MBB]; 174209467b48Spatrick if (!UpdatedPreds.insert(&Chain).second) 174309467b48Spatrick return; 174409467b48Spatrick 174509467b48Spatrick assert( 174609467b48Spatrick Chain.UnscheduledPredecessors == 0 && 174709467b48Spatrick "Attempting to place block with unscheduled predecessors in worklist."); 174809467b48Spatrick for (MachineBasicBlock *ChainBB : Chain) { 174909467b48Spatrick assert(BlockToChain[ChainBB] == &Chain && 175009467b48Spatrick "Block in chain doesn't match BlockToChain map."); 175109467b48Spatrick for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 175209467b48Spatrick if (BlockFilter && !BlockFilter->count(Pred)) 175309467b48Spatrick continue; 175409467b48Spatrick if (BlockToChain[Pred] == &Chain) 175509467b48Spatrick continue; 175609467b48Spatrick ++Chain.UnscheduledPredecessors; 175709467b48Spatrick } 175809467b48Spatrick } 175909467b48Spatrick 176009467b48Spatrick if (Chain.UnscheduledPredecessors != 0) 176109467b48Spatrick return; 176209467b48Spatrick 176309467b48Spatrick MachineBasicBlock *BB = *Chain.begin(); 176409467b48Spatrick if (BB->isEHPad()) 176509467b48Spatrick EHPadWorkList.push_back(BB); 176609467b48Spatrick else 176709467b48Spatrick BlockWorkList.push_back(BB); 176809467b48Spatrick } 176909467b48Spatrick 177009467b48Spatrick void MachineBlockPlacement::buildChain( 177109467b48Spatrick const MachineBasicBlock *HeadBB, BlockChain &Chain, 177209467b48Spatrick BlockFilterSet *BlockFilter) { 177309467b48Spatrick assert(HeadBB && "BB must not be null.\n"); 177409467b48Spatrick assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 177509467b48Spatrick MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 177609467b48Spatrick 177709467b48Spatrick const MachineBasicBlock *LoopHeaderBB = HeadBB; 177809467b48Spatrick markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 177909467b48Spatrick MachineBasicBlock *BB = *std::prev(Chain.end()); 178009467b48Spatrick while (true) { 178109467b48Spatrick assert(BB && "null block found at end of chain in loop."); 178209467b48Spatrick assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 178309467b48Spatrick assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 178409467b48Spatrick 178509467b48Spatrick 178609467b48Spatrick // Look for the best viable successor if there is one to place immediately 178709467b48Spatrick // after this block. 178809467b48Spatrick auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 178909467b48Spatrick MachineBasicBlock* BestSucc = Result.BB; 179009467b48Spatrick bool ShouldTailDup = Result.ShouldTailDup; 179109467b48Spatrick if (allowTailDupPlacement()) 179209467b48Spatrick ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc, 179309467b48Spatrick Chain, 179409467b48Spatrick BlockFilter)); 179509467b48Spatrick 179609467b48Spatrick // If an immediate successor isn't available, look for the best viable 179709467b48Spatrick // block among those we've identified as not violating the loop's CFG at 179809467b48Spatrick // this point. This won't be a fallthrough, but it will increase locality. 179909467b48Spatrick if (!BestSucc) 180009467b48Spatrick BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 180109467b48Spatrick if (!BestSucc) 180209467b48Spatrick BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 180309467b48Spatrick 180409467b48Spatrick if (!BestSucc) { 180509467b48Spatrick BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 180609467b48Spatrick if (!BestSucc) 180709467b48Spatrick break; 180809467b48Spatrick 180909467b48Spatrick LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 181009467b48Spatrick "layout successor until the CFG reduces\n"); 181109467b48Spatrick } 181209467b48Spatrick 181309467b48Spatrick // Placement may have changed tail duplication opportunities. 181409467b48Spatrick // Check for that now. 181509467b48Spatrick if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1816*097a140dSpatrick repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1817*097a140dSpatrick BlockFilter, PrevUnplacedBlockIt); 1818*097a140dSpatrick // If the chosen successor was duplicated into BB, don't bother laying 1819*097a140dSpatrick // it out, just go round the loop again with BB as the chain end. 1820*097a140dSpatrick if (!BB->isSuccessor(BestSucc)) 182109467b48Spatrick continue; 182209467b48Spatrick } 182309467b48Spatrick 182409467b48Spatrick // Place this block, updating the datastructures to reflect its placement. 182509467b48Spatrick BlockChain &SuccChain = *BlockToChain[BestSucc]; 182609467b48Spatrick // Zero out UnscheduledPredecessors for the successor we're about to merge in case 182709467b48Spatrick // we selected a successor that didn't fit naturally into the CFG. 182809467b48Spatrick SuccChain.UnscheduledPredecessors = 0; 182909467b48Spatrick LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 183009467b48Spatrick << getBlockName(BestSucc) << "\n"); 183109467b48Spatrick markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 183209467b48Spatrick Chain.merge(BestSucc, &SuccChain); 183309467b48Spatrick BB = *std::prev(Chain.end()); 183409467b48Spatrick } 183509467b48Spatrick 183609467b48Spatrick LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 183709467b48Spatrick << getBlockName(*Chain.begin()) << "\n"); 183809467b48Spatrick } 183909467b48Spatrick 184009467b48Spatrick // If bottom of block BB has only one successor OldTop, in most cases it is 184109467b48Spatrick // profitable to move it before OldTop, except the following case: 184209467b48Spatrick // 184309467b48Spatrick // -->OldTop<- 184409467b48Spatrick // | . | 184509467b48Spatrick // | . | 184609467b48Spatrick // | . | 184709467b48Spatrick // ---Pred | 184809467b48Spatrick // | | 184909467b48Spatrick // BB----- 185009467b48Spatrick // 185109467b48Spatrick // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 185209467b48Spatrick // layout the other successor below it, so it can't reduce taken branch. 185309467b48Spatrick // In this case we keep its original layout. 185409467b48Spatrick bool 185509467b48Spatrick MachineBlockPlacement::canMoveBottomBlockToTop( 185609467b48Spatrick const MachineBasicBlock *BottomBlock, 185709467b48Spatrick const MachineBasicBlock *OldTop) { 185809467b48Spatrick if (BottomBlock->pred_size() != 1) 185909467b48Spatrick return true; 186009467b48Spatrick MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 186109467b48Spatrick if (Pred->succ_size() != 2) 186209467b48Spatrick return true; 186309467b48Spatrick 186409467b48Spatrick MachineBasicBlock *OtherBB = *Pred->succ_begin(); 186509467b48Spatrick if (OtherBB == BottomBlock) 186609467b48Spatrick OtherBB = *Pred->succ_rbegin(); 186709467b48Spatrick if (OtherBB == OldTop) 186809467b48Spatrick return false; 186909467b48Spatrick 187009467b48Spatrick return true; 187109467b48Spatrick } 187209467b48Spatrick 187309467b48Spatrick // Find out the possible fall through frequence to the top of a loop. 187409467b48Spatrick BlockFrequency 187509467b48Spatrick MachineBlockPlacement::TopFallThroughFreq( 187609467b48Spatrick const MachineBasicBlock *Top, 187709467b48Spatrick const BlockFilterSet &LoopBlockSet) { 187809467b48Spatrick BlockFrequency MaxFreq = 0; 187909467b48Spatrick for (MachineBasicBlock *Pred : Top->predecessors()) { 188009467b48Spatrick BlockChain *PredChain = BlockToChain[Pred]; 188109467b48Spatrick if (!LoopBlockSet.count(Pred) && 188209467b48Spatrick (!PredChain || Pred == *std::prev(PredChain->end()))) { 188309467b48Spatrick // Found a Pred block can be placed before Top. 188409467b48Spatrick // Check if Top is the best successor of Pred. 188509467b48Spatrick auto TopProb = MBPI->getEdgeProbability(Pred, Top); 188609467b48Spatrick bool TopOK = true; 188709467b48Spatrick for (MachineBasicBlock *Succ : Pred->successors()) { 188809467b48Spatrick auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 188909467b48Spatrick BlockChain *SuccChain = BlockToChain[Succ]; 189009467b48Spatrick // Check if Succ can be placed after Pred. 189109467b48Spatrick // Succ should not be in any chain, or it is the head of some chain. 189209467b48Spatrick if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 189309467b48Spatrick (!SuccChain || Succ == *SuccChain->begin())) { 189409467b48Spatrick TopOK = false; 189509467b48Spatrick break; 189609467b48Spatrick } 189709467b48Spatrick } 189809467b48Spatrick if (TopOK) { 189909467b48Spatrick BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 190009467b48Spatrick MBPI->getEdgeProbability(Pred, Top); 190109467b48Spatrick if (EdgeFreq > MaxFreq) 190209467b48Spatrick MaxFreq = EdgeFreq; 190309467b48Spatrick } 190409467b48Spatrick } 190509467b48Spatrick } 190609467b48Spatrick return MaxFreq; 190709467b48Spatrick } 190809467b48Spatrick 190909467b48Spatrick // Compute the fall through gains when move NewTop before OldTop. 191009467b48Spatrick // 191109467b48Spatrick // In following diagram, edges marked as "-" are reduced fallthrough, edges 191209467b48Spatrick // marked as "+" are increased fallthrough, this function computes 191309467b48Spatrick // 191409467b48Spatrick // SUM(increased fallthrough) - SUM(decreased fallthrough) 191509467b48Spatrick // 191609467b48Spatrick // | 191709467b48Spatrick // | - 191809467b48Spatrick // V 191909467b48Spatrick // --->OldTop 192009467b48Spatrick // | . 192109467b48Spatrick // | . 192209467b48Spatrick // +| . + 192309467b48Spatrick // | Pred ---> 192409467b48Spatrick // | |- 192509467b48Spatrick // | V 192609467b48Spatrick // --- NewTop <--- 192709467b48Spatrick // |- 192809467b48Spatrick // V 192909467b48Spatrick // 193009467b48Spatrick BlockFrequency 193109467b48Spatrick MachineBlockPlacement::FallThroughGains( 193209467b48Spatrick const MachineBasicBlock *NewTop, 193309467b48Spatrick const MachineBasicBlock *OldTop, 193409467b48Spatrick const MachineBasicBlock *ExitBB, 193509467b48Spatrick const BlockFilterSet &LoopBlockSet) { 193609467b48Spatrick BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 193709467b48Spatrick BlockFrequency FallThrough2Exit = 0; 193809467b48Spatrick if (ExitBB) 193909467b48Spatrick FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 194009467b48Spatrick MBPI->getEdgeProbability(NewTop, ExitBB); 194109467b48Spatrick BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 194209467b48Spatrick MBPI->getEdgeProbability(NewTop, OldTop); 194309467b48Spatrick 194409467b48Spatrick // Find the best Pred of NewTop. 194509467b48Spatrick MachineBasicBlock *BestPred = nullptr; 194609467b48Spatrick BlockFrequency FallThroughFromPred = 0; 194709467b48Spatrick for (MachineBasicBlock *Pred : NewTop->predecessors()) { 194809467b48Spatrick if (!LoopBlockSet.count(Pred)) 194909467b48Spatrick continue; 195009467b48Spatrick BlockChain *PredChain = BlockToChain[Pred]; 195109467b48Spatrick if (!PredChain || Pred == *std::prev(PredChain->end())) { 195209467b48Spatrick BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 195309467b48Spatrick MBPI->getEdgeProbability(Pred, NewTop); 195409467b48Spatrick if (EdgeFreq > FallThroughFromPred) { 195509467b48Spatrick FallThroughFromPred = EdgeFreq; 195609467b48Spatrick BestPred = Pred; 195709467b48Spatrick } 195809467b48Spatrick } 195909467b48Spatrick } 196009467b48Spatrick 196109467b48Spatrick // If NewTop is not placed after Pred, another successor can be placed 196209467b48Spatrick // after Pred. 196309467b48Spatrick BlockFrequency NewFreq = 0; 196409467b48Spatrick if (BestPred) { 196509467b48Spatrick for (MachineBasicBlock *Succ : BestPred->successors()) { 196609467b48Spatrick if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 196709467b48Spatrick continue; 196809467b48Spatrick if (ComputedEdges.find(Succ) != ComputedEdges.end()) 196909467b48Spatrick continue; 197009467b48Spatrick BlockChain *SuccChain = BlockToChain[Succ]; 197109467b48Spatrick if ((SuccChain && (Succ != *SuccChain->begin())) || 197209467b48Spatrick (SuccChain == BlockToChain[BestPred])) 197309467b48Spatrick continue; 197409467b48Spatrick BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 197509467b48Spatrick MBPI->getEdgeProbability(BestPred, Succ); 197609467b48Spatrick if (EdgeFreq > NewFreq) 197709467b48Spatrick NewFreq = EdgeFreq; 197809467b48Spatrick } 197909467b48Spatrick BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 198009467b48Spatrick MBPI->getEdgeProbability(BestPred, NewTop); 198109467b48Spatrick if (NewFreq > OrigEdgeFreq) { 198209467b48Spatrick // If NewTop is not the best successor of Pred, then Pred doesn't 198309467b48Spatrick // fallthrough to NewTop. So there is no FallThroughFromPred and 198409467b48Spatrick // NewFreq. 198509467b48Spatrick NewFreq = 0; 198609467b48Spatrick FallThroughFromPred = 0; 198709467b48Spatrick } 198809467b48Spatrick } 198909467b48Spatrick 199009467b48Spatrick BlockFrequency Result = 0; 199109467b48Spatrick BlockFrequency Gains = BackEdgeFreq + NewFreq; 199209467b48Spatrick BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 199309467b48Spatrick FallThroughFromPred; 199409467b48Spatrick if (Gains > Lost) 199509467b48Spatrick Result = Gains - Lost; 199609467b48Spatrick return Result; 199709467b48Spatrick } 199809467b48Spatrick 199909467b48Spatrick /// Helper function of findBestLoopTop. Find the best loop top block 200009467b48Spatrick /// from predecessors of old top. 200109467b48Spatrick /// 200209467b48Spatrick /// Look for a block which is strictly better than the old top for laying 200309467b48Spatrick /// out before the old top of the loop. This looks for only two patterns: 200409467b48Spatrick /// 200509467b48Spatrick /// 1. a block has only one successor, the old loop top 200609467b48Spatrick /// 200709467b48Spatrick /// Because such a block will always result in an unconditional jump, 200809467b48Spatrick /// rotating it in front of the old top is always profitable. 200909467b48Spatrick /// 201009467b48Spatrick /// 2. a block has two successors, one is old top, another is exit 201109467b48Spatrick /// and it has more than one predecessors 201209467b48Spatrick /// 201309467b48Spatrick /// If it is below one of its predecessors P, only P can fall through to 201409467b48Spatrick /// it, all other predecessors need a jump to it, and another conditional 201509467b48Spatrick /// jump to loop header. If it is moved before loop header, all its 201609467b48Spatrick /// predecessors jump to it, then fall through to loop header. So all its 201709467b48Spatrick /// predecessors except P can reduce one taken branch. 201809467b48Spatrick /// At the same time, move it before old top increases the taken branch 201909467b48Spatrick /// to loop exit block, so the reduced taken branch will be compared with 202009467b48Spatrick /// the increased taken branch to the loop exit block. 202109467b48Spatrick MachineBasicBlock * 202209467b48Spatrick MachineBlockPlacement::findBestLoopTopHelper( 202309467b48Spatrick MachineBasicBlock *OldTop, 202409467b48Spatrick const MachineLoop &L, 202509467b48Spatrick const BlockFilterSet &LoopBlockSet) { 202609467b48Spatrick // Check that the header hasn't been fused with a preheader block due to 202709467b48Spatrick // crazy branches. If it has, we need to start with the header at the top to 202809467b48Spatrick // prevent pulling the preheader into the loop body. 202909467b48Spatrick BlockChain &HeaderChain = *BlockToChain[OldTop]; 203009467b48Spatrick if (!LoopBlockSet.count(*HeaderChain.begin())) 203109467b48Spatrick return OldTop; 203209467b48Spatrick 203309467b48Spatrick LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 203409467b48Spatrick << "\n"); 203509467b48Spatrick 203609467b48Spatrick BlockFrequency BestGains = 0; 203709467b48Spatrick MachineBasicBlock *BestPred = nullptr; 203809467b48Spatrick for (MachineBasicBlock *Pred : OldTop->predecessors()) { 203909467b48Spatrick if (!LoopBlockSet.count(Pred)) 204009467b48Spatrick continue; 204109467b48Spatrick if (Pred == L.getHeader()) 204209467b48Spatrick continue; 204309467b48Spatrick LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 204409467b48Spatrick << Pred->succ_size() << " successors, "; 204509467b48Spatrick MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 204609467b48Spatrick if (Pred->succ_size() > 2) 204709467b48Spatrick continue; 204809467b48Spatrick 204909467b48Spatrick MachineBasicBlock *OtherBB = nullptr; 205009467b48Spatrick if (Pred->succ_size() == 2) { 205109467b48Spatrick OtherBB = *Pred->succ_begin(); 205209467b48Spatrick if (OtherBB == OldTop) 205309467b48Spatrick OtherBB = *Pred->succ_rbegin(); 205409467b48Spatrick } 205509467b48Spatrick 205609467b48Spatrick if (!canMoveBottomBlockToTop(Pred, OldTop)) 205709467b48Spatrick continue; 205809467b48Spatrick 205909467b48Spatrick BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 206009467b48Spatrick LoopBlockSet); 206109467b48Spatrick if ((Gains > 0) && (Gains > BestGains || 206209467b48Spatrick ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 206309467b48Spatrick BestPred = Pred; 206409467b48Spatrick BestGains = Gains; 206509467b48Spatrick } 206609467b48Spatrick } 206709467b48Spatrick 206809467b48Spatrick // If no direct predecessor is fine, just use the loop header. 206909467b48Spatrick if (!BestPred) { 207009467b48Spatrick LLVM_DEBUG(dbgs() << " final top unchanged\n"); 207109467b48Spatrick return OldTop; 207209467b48Spatrick } 207309467b48Spatrick 207409467b48Spatrick // Walk backwards through any straight line of predecessors. 207509467b48Spatrick while (BestPred->pred_size() == 1 && 207609467b48Spatrick (*BestPred->pred_begin())->succ_size() == 1 && 207709467b48Spatrick *BestPred->pred_begin() != L.getHeader()) 207809467b48Spatrick BestPred = *BestPred->pred_begin(); 207909467b48Spatrick 208009467b48Spatrick LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 208109467b48Spatrick return BestPred; 208209467b48Spatrick } 208309467b48Spatrick 208409467b48Spatrick /// Find the best loop top block for layout. 208509467b48Spatrick /// 208609467b48Spatrick /// This function iteratively calls findBestLoopTopHelper, until no new better 208709467b48Spatrick /// BB can be found. 208809467b48Spatrick MachineBasicBlock * 208909467b48Spatrick MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 209009467b48Spatrick const BlockFilterSet &LoopBlockSet) { 209109467b48Spatrick // Placing the latch block before the header may introduce an extra branch 209209467b48Spatrick // that skips this block the first time the loop is executed, which we want 209309467b48Spatrick // to avoid when optimising for size. 209409467b48Spatrick // FIXME: in theory there is a case that does not introduce a new branch, 209509467b48Spatrick // i.e. when the layout predecessor does not fallthrough to the loop header. 209609467b48Spatrick // In practice this never happens though: there always seems to be a preheader 209709467b48Spatrick // that can fallthrough and that is also placed before the header. 209809467b48Spatrick bool OptForSize = F->getFunction().hasOptSize() || 2099*097a140dSpatrick llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get()); 210009467b48Spatrick if (OptForSize) 210109467b48Spatrick return L.getHeader(); 210209467b48Spatrick 210309467b48Spatrick MachineBasicBlock *OldTop = nullptr; 210409467b48Spatrick MachineBasicBlock *NewTop = L.getHeader(); 210509467b48Spatrick while (NewTop != OldTop) { 210609467b48Spatrick OldTop = NewTop; 210709467b48Spatrick NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 210809467b48Spatrick if (NewTop != OldTop) 210909467b48Spatrick ComputedEdges[NewTop] = { OldTop, false }; 211009467b48Spatrick } 211109467b48Spatrick return NewTop; 211209467b48Spatrick } 211309467b48Spatrick 211409467b48Spatrick /// Find the best loop exiting block for layout. 211509467b48Spatrick /// 211609467b48Spatrick /// This routine implements the logic to analyze the loop looking for the best 211709467b48Spatrick /// block to layout at the top of the loop. Typically this is done to maximize 211809467b48Spatrick /// fallthrough opportunities. 211909467b48Spatrick MachineBasicBlock * 212009467b48Spatrick MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 212109467b48Spatrick const BlockFilterSet &LoopBlockSet, 212209467b48Spatrick BlockFrequency &ExitFreq) { 212309467b48Spatrick // We don't want to layout the loop linearly in all cases. If the loop header 212409467b48Spatrick // is just a normal basic block in the loop, we want to look for what block 212509467b48Spatrick // within the loop is the best one to layout at the top. However, if the loop 212609467b48Spatrick // header has be pre-merged into a chain due to predecessors not having 212709467b48Spatrick // analyzable branches, *and* the predecessor it is merged with is *not* part 212809467b48Spatrick // of the loop, rotating the header into the middle of the loop will create 212909467b48Spatrick // a non-contiguous range of blocks which is Very Bad. So start with the 213009467b48Spatrick // header and only rotate if safe. 213109467b48Spatrick BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 213209467b48Spatrick if (!LoopBlockSet.count(*HeaderChain.begin())) 213309467b48Spatrick return nullptr; 213409467b48Spatrick 213509467b48Spatrick BlockFrequency BestExitEdgeFreq; 213609467b48Spatrick unsigned BestExitLoopDepth = 0; 213709467b48Spatrick MachineBasicBlock *ExitingBB = nullptr; 213809467b48Spatrick // If there are exits to outer loops, loop rotation can severely limit 213909467b48Spatrick // fallthrough opportunities unless it selects such an exit. Keep a set of 214009467b48Spatrick // blocks where rotating to exit with that block will reach an outer loop. 214109467b48Spatrick SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 214209467b48Spatrick 214309467b48Spatrick LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 214409467b48Spatrick << getBlockName(L.getHeader()) << "\n"); 214509467b48Spatrick for (MachineBasicBlock *MBB : L.getBlocks()) { 214609467b48Spatrick BlockChain &Chain = *BlockToChain[MBB]; 214709467b48Spatrick // Ensure that this block is at the end of a chain; otherwise it could be 214809467b48Spatrick // mid-way through an inner loop or a successor of an unanalyzable branch. 214909467b48Spatrick if (MBB != *std::prev(Chain.end())) 215009467b48Spatrick continue; 215109467b48Spatrick 215209467b48Spatrick // Now walk the successors. We need to establish whether this has a viable 215309467b48Spatrick // exiting successor and whether it has a viable non-exiting successor. 215409467b48Spatrick // We store the old exiting state and restore it if a viable looping 215509467b48Spatrick // successor isn't found. 215609467b48Spatrick MachineBasicBlock *OldExitingBB = ExitingBB; 215709467b48Spatrick BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 215809467b48Spatrick bool HasLoopingSucc = false; 215909467b48Spatrick for (MachineBasicBlock *Succ : MBB->successors()) { 216009467b48Spatrick if (Succ->isEHPad()) 216109467b48Spatrick continue; 216209467b48Spatrick if (Succ == MBB) 216309467b48Spatrick continue; 216409467b48Spatrick BlockChain &SuccChain = *BlockToChain[Succ]; 216509467b48Spatrick // Don't split chains, either this chain or the successor's chain. 216609467b48Spatrick if (&Chain == &SuccChain) { 216709467b48Spatrick LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 216809467b48Spatrick << getBlockName(Succ) << " (chain conflict)\n"); 216909467b48Spatrick continue; 217009467b48Spatrick } 217109467b48Spatrick 217209467b48Spatrick auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 217309467b48Spatrick if (LoopBlockSet.count(Succ)) { 217409467b48Spatrick LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 217509467b48Spatrick << getBlockName(Succ) << " (" << SuccProb << ")\n"); 217609467b48Spatrick HasLoopingSucc = true; 217709467b48Spatrick continue; 217809467b48Spatrick } 217909467b48Spatrick 218009467b48Spatrick unsigned SuccLoopDepth = 0; 218109467b48Spatrick if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 218209467b48Spatrick SuccLoopDepth = ExitLoop->getLoopDepth(); 218309467b48Spatrick if (ExitLoop->contains(&L)) 218409467b48Spatrick BlocksExitingToOuterLoop.insert(MBB); 218509467b48Spatrick } 218609467b48Spatrick 218709467b48Spatrick BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 218809467b48Spatrick LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 218909467b48Spatrick << getBlockName(Succ) << " [L:" << SuccLoopDepth 219009467b48Spatrick << "] ("; 219109467b48Spatrick MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 219209467b48Spatrick // Note that we bias this toward an existing layout successor to retain 219309467b48Spatrick // incoming order in the absence of better information. The exit must have 219409467b48Spatrick // a frequency higher than the current exit before we consider breaking 219509467b48Spatrick // the layout. 219609467b48Spatrick BranchProbability Bias(100 - ExitBlockBias, 100); 219709467b48Spatrick if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 219809467b48Spatrick ExitEdgeFreq > BestExitEdgeFreq || 219909467b48Spatrick (MBB->isLayoutSuccessor(Succ) && 220009467b48Spatrick !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 220109467b48Spatrick BestExitEdgeFreq = ExitEdgeFreq; 220209467b48Spatrick ExitingBB = MBB; 220309467b48Spatrick } 220409467b48Spatrick } 220509467b48Spatrick 220609467b48Spatrick if (!HasLoopingSucc) { 220709467b48Spatrick // Restore the old exiting state, no viable looping successor was found. 220809467b48Spatrick ExitingBB = OldExitingBB; 220909467b48Spatrick BestExitEdgeFreq = OldBestExitEdgeFreq; 221009467b48Spatrick } 221109467b48Spatrick } 221209467b48Spatrick // Without a candidate exiting block or with only a single block in the 221309467b48Spatrick // loop, just use the loop header to layout the loop. 221409467b48Spatrick if (!ExitingBB) { 221509467b48Spatrick LLVM_DEBUG( 221609467b48Spatrick dbgs() << " No other candidate exit blocks, using loop header\n"); 221709467b48Spatrick return nullptr; 221809467b48Spatrick } 221909467b48Spatrick if (L.getNumBlocks() == 1) { 222009467b48Spatrick LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 222109467b48Spatrick return nullptr; 222209467b48Spatrick } 222309467b48Spatrick 222409467b48Spatrick // Also, if we have exit blocks which lead to outer loops but didn't select 222509467b48Spatrick // one of them as the exiting block we are rotating toward, disable loop 222609467b48Spatrick // rotation altogether. 222709467b48Spatrick if (!BlocksExitingToOuterLoop.empty() && 222809467b48Spatrick !BlocksExitingToOuterLoop.count(ExitingBB)) 222909467b48Spatrick return nullptr; 223009467b48Spatrick 223109467b48Spatrick LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 223209467b48Spatrick << "\n"); 223309467b48Spatrick ExitFreq = BestExitEdgeFreq; 223409467b48Spatrick return ExitingBB; 223509467b48Spatrick } 223609467b48Spatrick 223709467b48Spatrick /// Check if there is a fallthrough to loop header Top. 223809467b48Spatrick /// 223909467b48Spatrick /// 1. Look for a Pred that can be layout before Top. 224009467b48Spatrick /// 2. Check if Top is the most possible successor of Pred. 224109467b48Spatrick bool 224209467b48Spatrick MachineBlockPlacement::hasViableTopFallthrough( 224309467b48Spatrick const MachineBasicBlock *Top, 224409467b48Spatrick const BlockFilterSet &LoopBlockSet) { 224509467b48Spatrick for (MachineBasicBlock *Pred : Top->predecessors()) { 224609467b48Spatrick BlockChain *PredChain = BlockToChain[Pred]; 224709467b48Spatrick if (!LoopBlockSet.count(Pred) && 224809467b48Spatrick (!PredChain || Pred == *std::prev(PredChain->end()))) { 224909467b48Spatrick // Found a Pred block can be placed before Top. 225009467b48Spatrick // Check if Top is the best successor of Pred. 225109467b48Spatrick auto TopProb = MBPI->getEdgeProbability(Pred, Top); 225209467b48Spatrick bool TopOK = true; 225309467b48Spatrick for (MachineBasicBlock *Succ : Pred->successors()) { 225409467b48Spatrick auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 225509467b48Spatrick BlockChain *SuccChain = BlockToChain[Succ]; 225609467b48Spatrick // Check if Succ can be placed after Pred. 225709467b48Spatrick // Succ should not be in any chain, or it is the head of some chain. 225809467b48Spatrick if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 225909467b48Spatrick TopOK = false; 226009467b48Spatrick break; 226109467b48Spatrick } 226209467b48Spatrick } 226309467b48Spatrick if (TopOK) 226409467b48Spatrick return true; 226509467b48Spatrick } 226609467b48Spatrick } 226709467b48Spatrick return false; 226809467b48Spatrick } 226909467b48Spatrick 227009467b48Spatrick /// Attempt to rotate an exiting block to the bottom of the loop. 227109467b48Spatrick /// 227209467b48Spatrick /// Once we have built a chain, try to rotate it to line up the hot exit block 227309467b48Spatrick /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 227409467b48Spatrick /// branches. For example, if the loop has fallthrough into its header and out 227509467b48Spatrick /// of its bottom already, don't rotate it. 227609467b48Spatrick void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 227709467b48Spatrick const MachineBasicBlock *ExitingBB, 227809467b48Spatrick BlockFrequency ExitFreq, 227909467b48Spatrick const BlockFilterSet &LoopBlockSet) { 228009467b48Spatrick if (!ExitingBB) 228109467b48Spatrick return; 228209467b48Spatrick 228309467b48Spatrick MachineBasicBlock *Top = *LoopChain.begin(); 228409467b48Spatrick MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 228509467b48Spatrick 228609467b48Spatrick // If ExitingBB is already the last one in a chain then nothing to do. 228709467b48Spatrick if (Bottom == ExitingBB) 228809467b48Spatrick return; 228909467b48Spatrick 229009467b48Spatrick bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 229109467b48Spatrick 229209467b48Spatrick // If the header has viable fallthrough, check whether the current loop 229309467b48Spatrick // bottom is a viable exiting block. If so, bail out as rotating will 229409467b48Spatrick // introduce an unnecessary branch. 229509467b48Spatrick if (ViableTopFallthrough) { 229609467b48Spatrick for (MachineBasicBlock *Succ : Bottom->successors()) { 229709467b48Spatrick BlockChain *SuccChain = BlockToChain[Succ]; 229809467b48Spatrick if (!LoopBlockSet.count(Succ) && 229909467b48Spatrick (!SuccChain || Succ == *SuccChain->begin())) 230009467b48Spatrick return; 230109467b48Spatrick } 230209467b48Spatrick 230309467b48Spatrick // Rotate will destroy the top fallthrough, we need to ensure the new exit 230409467b48Spatrick // frequency is larger than top fallthrough. 230509467b48Spatrick BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 230609467b48Spatrick if (FallThrough2Top >= ExitFreq) 230709467b48Spatrick return; 230809467b48Spatrick } 230909467b48Spatrick 231009467b48Spatrick BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 231109467b48Spatrick if (ExitIt == LoopChain.end()) 231209467b48Spatrick return; 231309467b48Spatrick 231409467b48Spatrick // Rotating a loop exit to the bottom when there is a fallthrough to top 231509467b48Spatrick // trades the entry fallthrough for an exit fallthrough. 231609467b48Spatrick // If there is no bottom->top edge, but the chosen exit block does have 231709467b48Spatrick // a fallthrough, we break that fallthrough for nothing in return. 231809467b48Spatrick 231909467b48Spatrick // Let's consider an example. We have a built chain of basic blocks 232009467b48Spatrick // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 232109467b48Spatrick // By doing a rotation we get 232209467b48Spatrick // Bk+1, ..., Bn, B1, ..., Bk 232309467b48Spatrick // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 232409467b48Spatrick // If we had a fallthrough Bk -> Bk+1 it is broken now. 232509467b48Spatrick // It might be compensated by fallthrough Bn -> B1. 232609467b48Spatrick // So we have a condition to avoid creation of extra branch by loop rotation. 232709467b48Spatrick // All below must be true to avoid loop rotation: 232809467b48Spatrick // If there is a fallthrough to top (B1) 232909467b48Spatrick // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 233009467b48Spatrick // There is no fallthrough from bottom (Bn) to top (B1). 233109467b48Spatrick // Please note that there is no exit fallthrough from Bn because we checked it 233209467b48Spatrick // above. 233309467b48Spatrick if (ViableTopFallthrough) { 233409467b48Spatrick assert(std::next(ExitIt) != LoopChain.end() && 233509467b48Spatrick "Exit should not be last BB"); 233609467b48Spatrick MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 233709467b48Spatrick if (ExitingBB->isSuccessor(NextBlockInChain)) 233809467b48Spatrick if (!Bottom->isSuccessor(Top)) 233909467b48Spatrick return; 234009467b48Spatrick } 234109467b48Spatrick 234209467b48Spatrick LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 234309467b48Spatrick << " at bottom\n"); 234409467b48Spatrick std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 234509467b48Spatrick } 234609467b48Spatrick 234709467b48Spatrick /// Attempt to rotate a loop based on profile data to reduce branch cost. 234809467b48Spatrick /// 234909467b48Spatrick /// With profile data, we can determine the cost in terms of missed fall through 235009467b48Spatrick /// opportunities when rotating a loop chain and select the best rotation. 235109467b48Spatrick /// Basically, there are three kinds of cost to consider for each rotation: 235209467b48Spatrick /// 1. The possibly missed fall through edge (if it exists) from BB out of 235309467b48Spatrick /// the loop to the loop header. 235409467b48Spatrick /// 2. The possibly missed fall through edges (if they exist) from the loop 235509467b48Spatrick /// exits to BB out of the loop. 235609467b48Spatrick /// 3. The missed fall through edge (if it exists) from the last BB to the 235709467b48Spatrick /// first BB in the loop chain. 235809467b48Spatrick /// Therefore, the cost for a given rotation is the sum of costs listed above. 235909467b48Spatrick /// We select the best rotation with the smallest cost. 236009467b48Spatrick void MachineBlockPlacement::rotateLoopWithProfile( 236109467b48Spatrick BlockChain &LoopChain, const MachineLoop &L, 236209467b48Spatrick const BlockFilterSet &LoopBlockSet) { 236309467b48Spatrick auto RotationPos = LoopChain.end(); 236409467b48Spatrick 236509467b48Spatrick BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 236609467b48Spatrick 236709467b48Spatrick // A utility lambda that scales up a block frequency by dividing it by a 236809467b48Spatrick // branch probability which is the reciprocal of the scale. 236909467b48Spatrick auto ScaleBlockFrequency = [](BlockFrequency Freq, 237009467b48Spatrick unsigned Scale) -> BlockFrequency { 237109467b48Spatrick if (Scale == 0) 237209467b48Spatrick return 0; 237309467b48Spatrick // Use operator / between BlockFrequency and BranchProbability to implement 237409467b48Spatrick // saturating multiplication. 237509467b48Spatrick return Freq / BranchProbability(1, Scale); 237609467b48Spatrick }; 237709467b48Spatrick 237809467b48Spatrick // Compute the cost of the missed fall-through edge to the loop header if the 237909467b48Spatrick // chain head is not the loop header. As we only consider natural loops with 238009467b48Spatrick // single header, this computation can be done only once. 238109467b48Spatrick BlockFrequency HeaderFallThroughCost(0); 238209467b48Spatrick MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 238309467b48Spatrick for (auto *Pred : ChainHeaderBB->predecessors()) { 238409467b48Spatrick BlockChain *PredChain = BlockToChain[Pred]; 238509467b48Spatrick if (!LoopBlockSet.count(Pred) && 238609467b48Spatrick (!PredChain || Pred == *std::prev(PredChain->end()))) { 238709467b48Spatrick auto EdgeFreq = MBFI->getBlockFreq(Pred) * 238809467b48Spatrick MBPI->getEdgeProbability(Pred, ChainHeaderBB); 238909467b48Spatrick auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 239009467b48Spatrick // If the predecessor has only an unconditional jump to the header, we 239109467b48Spatrick // need to consider the cost of this jump. 239209467b48Spatrick if (Pred->succ_size() == 1) 239309467b48Spatrick FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 239409467b48Spatrick HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 239509467b48Spatrick } 239609467b48Spatrick } 239709467b48Spatrick 239809467b48Spatrick // Here we collect all exit blocks in the loop, and for each exit we find out 239909467b48Spatrick // its hottest exit edge. For each loop rotation, we define the loop exit cost 240009467b48Spatrick // as the sum of frequencies of exit edges we collect here, excluding the exit 240109467b48Spatrick // edge from the tail of the loop chain. 240209467b48Spatrick SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 240309467b48Spatrick for (auto BB : LoopChain) { 240409467b48Spatrick auto LargestExitEdgeProb = BranchProbability::getZero(); 240509467b48Spatrick for (auto *Succ : BB->successors()) { 240609467b48Spatrick BlockChain *SuccChain = BlockToChain[Succ]; 240709467b48Spatrick if (!LoopBlockSet.count(Succ) && 240809467b48Spatrick (!SuccChain || Succ == *SuccChain->begin())) { 240909467b48Spatrick auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 241009467b48Spatrick LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 241109467b48Spatrick } 241209467b48Spatrick } 241309467b48Spatrick if (LargestExitEdgeProb > BranchProbability::getZero()) { 241409467b48Spatrick auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 241509467b48Spatrick ExitsWithFreq.emplace_back(BB, ExitFreq); 241609467b48Spatrick } 241709467b48Spatrick } 241809467b48Spatrick 241909467b48Spatrick // In this loop we iterate every block in the loop chain and calculate the 242009467b48Spatrick // cost assuming the block is the head of the loop chain. When the loop ends, 242109467b48Spatrick // we should have found the best candidate as the loop chain's head. 242209467b48Spatrick for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 242309467b48Spatrick EndIter = LoopChain.end(); 242409467b48Spatrick Iter != EndIter; Iter++, TailIter++) { 242509467b48Spatrick // TailIter is used to track the tail of the loop chain if the block we are 242609467b48Spatrick // checking (pointed by Iter) is the head of the chain. 242709467b48Spatrick if (TailIter == LoopChain.end()) 242809467b48Spatrick TailIter = LoopChain.begin(); 242909467b48Spatrick 243009467b48Spatrick auto TailBB = *TailIter; 243109467b48Spatrick 243209467b48Spatrick // Calculate the cost by putting this BB to the top. 243309467b48Spatrick BlockFrequency Cost = 0; 243409467b48Spatrick 243509467b48Spatrick // If the current BB is the loop header, we need to take into account the 243609467b48Spatrick // cost of the missed fall through edge from outside of the loop to the 243709467b48Spatrick // header. 243809467b48Spatrick if (Iter != LoopChain.begin()) 243909467b48Spatrick Cost += HeaderFallThroughCost; 244009467b48Spatrick 244109467b48Spatrick // Collect the loop exit cost by summing up frequencies of all exit edges 244209467b48Spatrick // except the one from the chain tail. 244309467b48Spatrick for (auto &ExitWithFreq : ExitsWithFreq) 244409467b48Spatrick if (TailBB != ExitWithFreq.first) 244509467b48Spatrick Cost += ExitWithFreq.second; 244609467b48Spatrick 244709467b48Spatrick // The cost of breaking the once fall-through edge from the tail to the top 244809467b48Spatrick // of the loop chain. Here we need to consider three cases: 244909467b48Spatrick // 1. If the tail node has only one successor, then we will get an 245009467b48Spatrick // additional jmp instruction. So the cost here is (MisfetchCost + 245109467b48Spatrick // JumpInstCost) * tail node frequency. 245209467b48Spatrick // 2. If the tail node has two successors, then we may still get an 245309467b48Spatrick // additional jmp instruction if the layout successor after the loop 245409467b48Spatrick // chain is not its CFG successor. Note that the more frequently executed 245509467b48Spatrick // jmp instruction will be put ahead of the other one. Assume the 245609467b48Spatrick // frequency of those two branches are x and y, where x is the frequency 245709467b48Spatrick // of the edge to the chain head, then the cost will be 245809467b48Spatrick // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 245909467b48Spatrick // 3. If the tail node has more than two successors (this rarely happens), 246009467b48Spatrick // we won't consider any additional cost. 246109467b48Spatrick if (TailBB->isSuccessor(*Iter)) { 246209467b48Spatrick auto TailBBFreq = MBFI->getBlockFreq(TailBB); 246309467b48Spatrick if (TailBB->succ_size() == 1) 246409467b48Spatrick Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 246509467b48Spatrick MisfetchCost + JumpInstCost); 246609467b48Spatrick else if (TailBB->succ_size() == 2) { 246709467b48Spatrick auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 246809467b48Spatrick auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 246909467b48Spatrick auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 247009467b48Spatrick ? TailBBFreq * TailToHeadProb.getCompl() 247109467b48Spatrick : TailToHeadFreq; 247209467b48Spatrick Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 247309467b48Spatrick ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 247409467b48Spatrick } 247509467b48Spatrick } 247609467b48Spatrick 247709467b48Spatrick LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 247809467b48Spatrick << getBlockName(*Iter) 247909467b48Spatrick << " to the top: " << Cost.getFrequency() << "\n"); 248009467b48Spatrick 248109467b48Spatrick if (Cost < SmallestRotationCost) { 248209467b48Spatrick SmallestRotationCost = Cost; 248309467b48Spatrick RotationPos = Iter; 248409467b48Spatrick } 248509467b48Spatrick } 248609467b48Spatrick 248709467b48Spatrick if (RotationPos != LoopChain.end()) { 248809467b48Spatrick LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 248909467b48Spatrick << " to the top\n"); 249009467b48Spatrick std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 249109467b48Spatrick } 249209467b48Spatrick } 249309467b48Spatrick 249409467b48Spatrick /// Collect blocks in the given loop that are to be placed. 249509467b48Spatrick /// 249609467b48Spatrick /// When profile data is available, exclude cold blocks from the returned set; 249709467b48Spatrick /// otherwise, collect all blocks in the loop. 249809467b48Spatrick MachineBlockPlacement::BlockFilterSet 249909467b48Spatrick MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 250009467b48Spatrick BlockFilterSet LoopBlockSet; 250109467b48Spatrick 250209467b48Spatrick // Filter cold blocks off from LoopBlockSet when profile data is available. 250309467b48Spatrick // Collect the sum of frequencies of incoming edges to the loop header from 250409467b48Spatrick // outside. If we treat the loop as a super block, this is the frequency of 250509467b48Spatrick // the loop. Then for each block in the loop, we calculate the ratio between 250609467b48Spatrick // its frequency and the frequency of the loop block. When it is too small, 250709467b48Spatrick // don't add it to the loop chain. If there are outer loops, then this block 250809467b48Spatrick // will be merged into the first outer loop chain for which this block is not 250909467b48Spatrick // cold anymore. This needs precise profile data and we only do this when 251009467b48Spatrick // profile data is available. 251109467b48Spatrick if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 251209467b48Spatrick BlockFrequency LoopFreq(0); 251309467b48Spatrick for (auto LoopPred : L.getHeader()->predecessors()) 251409467b48Spatrick if (!L.contains(LoopPred)) 251509467b48Spatrick LoopFreq += MBFI->getBlockFreq(LoopPred) * 251609467b48Spatrick MBPI->getEdgeProbability(LoopPred, L.getHeader()); 251709467b48Spatrick 251809467b48Spatrick for (MachineBasicBlock *LoopBB : L.getBlocks()) { 251909467b48Spatrick auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 252009467b48Spatrick if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 252109467b48Spatrick continue; 252209467b48Spatrick LoopBlockSet.insert(LoopBB); 252309467b48Spatrick } 252409467b48Spatrick } else 252509467b48Spatrick LoopBlockSet.insert(L.block_begin(), L.block_end()); 252609467b48Spatrick 252709467b48Spatrick return LoopBlockSet; 252809467b48Spatrick } 252909467b48Spatrick 253009467b48Spatrick /// Forms basic block chains from the natural loop structures. 253109467b48Spatrick /// 253209467b48Spatrick /// These chains are designed to preserve the existing *structure* of the code 253309467b48Spatrick /// as much as possible. We can then stitch the chains together in a way which 253409467b48Spatrick /// both preserves the topological structure and minimizes taken conditional 253509467b48Spatrick /// branches. 253609467b48Spatrick void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 253709467b48Spatrick // First recurse through any nested loops, building chains for those inner 253809467b48Spatrick // loops. 253909467b48Spatrick for (const MachineLoop *InnerLoop : L) 254009467b48Spatrick buildLoopChains(*InnerLoop); 254109467b48Spatrick 254209467b48Spatrick assert(BlockWorkList.empty() && 254309467b48Spatrick "BlockWorkList not empty when starting to build loop chains."); 254409467b48Spatrick assert(EHPadWorkList.empty() && 254509467b48Spatrick "EHPadWorkList not empty when starting to build loop chains."); 254609467b48Spatrick BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 254709467b48Spatrick 254809467b48Spatrick // Check if we have profile data for this function. If yes, we will rotate 254909467b48Spatrick // this loop by modeling costs more precisely which requires the profile data 255009467b48Spatrick // for better layout. 255109467b48Spatrick bool RotateLoopWithProfile = 255209467b48Spatrick ForcePreciseRotationCost || 255309467b48Spatrick (PreciseRotationCost && F->getFunction().hasProfileData()); 255409467b48Spatrick 255509467b48Spatrick // First check to see if there is an obviously preferable top block for the 255609467b48Spatrick // loop. This will default to the header, but may end up as one of the 255709467b48Spatrick // predecessors to the header if there is one which will result in strictly 255809467b48Spatrick // fewer branches in the loop body. 255909467b48Spatrick MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 256009467b48Spatrick 256109467b48Spatrick // If we selected just the header for the loop top, look for a potentially 256209467b48Spatrick // profitable exit block in the event that rotating the loop can eliminate 256309467b48Spatrick // branches by placing an exit edge at the bottom. 256409467b48Spatrick // 256509467b48Spatrick // Loops are processed innermost to uttermost, make sure we clear 256609467b48Spatrick // PreferredLoopExit before processing a new loop. 256709467b48Spatrick PreferredLoopExit = nullptr; 256809467b48Spatrick BlockFrequency ExitFreq; 256909467b48Spatrick if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 257009467b48Spatrick PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 257109467b48Spatrick 257209467b48Spatrick BlockChain &LoopChain = *BlockToChain[LoopTop]; 257309467b48Spatrick 257409467b48Spatrick // FIXME: This is a really lame way of walking the chains in the loop: we 257509467b48Spatrick // walk the blocks, and use a set to prevent visiting a particular chain 257609467b48Spatrick // twice. 257709467b48Spatrick SmallPtrSet<BlockChain *, 4> UpdatedPreds; 257809467b48Spatrick assert(LoopChain.UnscheduledPredecessors == 0 && 257909467b48Spatrick "LoopChain should not have unscheduled predecessors."); 258009467b48Spatrick UpdatedPreds.insert(&LoopChain); 258109467b48Spatrick 258209467b48Spatrick for (const MachineBasicBlock *LoopBB : LoopBlockSet) 258309467b48Spatrick fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 258409467b48Spatrick 258509467b48Spatrick buildChain(LoopTop, LoopChain, &LoopBlockSet); 258609467b48Spatrick 258709467b48Spatrick if (RotateLoopWithProfile) 258809467b48Spatrick rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 258909467b48Spatrick else 259009467b48Spatrick rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 259109467b48Spatrick 259209467b48Spatrick LLVM_DEBUG({ 259309467b48Spatrick // Crash at the end so we get all of the debugging output first. 259409467b48Spatrick bool BadLoop = false; 259509467b48Spatrick if (LoopChain.UnscheduledPredecessors) { 259609467b48Spatrick BadLoop = true; 259709467b48Spatrick dbgs() << "Loop chain contains a block without its preds placed!\n" 259809467b48Spatrick << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 259909467b48Spatrick << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 260009467b48Spatrick } 260109467b48Spatrick for (MachineBasicBlock *ChainBB : LoopChain) { 260209467b48Spatrick dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 260309467b48Spatrick if (!LoopBlockSet.remove(ChainBB)) { 260409467b48Spatrick // We don't mark the loop as bad here because there are real situations 260509467b48Spatrick // where this can occur. For example, with an unanalyzable fallthrough 260609467b48Spatrick // from a loop block to a non-loop block or vice versa. 260709467b48Spatrick dbgs() << "Loop chain contains a block not contained by the loop!\n" 260809467b48Spatrick << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 260909467b48Spatrick << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 261009467b48Spatrick << " Bad block: " << getBlockName(ChainBB) << "\n"; 261109467b48Spatrick } 261209467b48Spatrick } 261309467b48Spatrick 261409467b48Spatrick if (!LoopBlockSet.empty()) { 261509467b48Spatrick BadLoop = true; 261609467b48Spatrick for (const MachineBasicBlock *LoopBB : LoopBlockSet) 261709467b48Spatrick dbgs() << "Loop contains blocks never placed into a chain!\n" 261809467b48Spatrick << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 261909467b48Spatrick << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 262009467b48Spatrick << " Bad block: " << getBlockName(LoopBB) << "\n"; 262109467b48Spatrick } 262209467b48Spatrick assert(!BadLoop && "Detected problems with the placement of this loop."); 262309467b48Spatrick }); 262409467b48Spatrick 262509467b48Spatrick BlockWorkList.clear(); 262609467b48Spatrick EHPadWorkList.clear(); 262709467b48Spatrick } 262809467b48Spatrick 262909467b48Spatrick void MachineBlockPlacement::buildCFGChains() { 263009467b48Spatrick // Ensure that every BB in the function has an associated chain to simplify 263109467b48Spatrick // the assumptions of the remaining algorithm. 2632*097a140dSpatrick SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 263309467b48Spatrick for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 263409467b48Spatrick ++FI) { 263509467b48Spatrick MachineBasicBlock *BB = &*FI; 263609467b48Spatrick BlockChain *Chain = 263709467b48Spatrick new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 263809467b48Spatrick // Also, merge any blocks which we cannot reason about and must preserve 263909467b48Spatrick // the exact fallthrough behavior for. 264009467b48Spatrick while (true) { 264109467b48Spatrick Cond.clear(); 2642*097a140dSpatrick MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 264309467b48Spatrick if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 264409467b48Spatrick break; 264509467b48Spatrick 264609467b48Spatrick MachineFunction::iterator NextFI = std::next(FI); 264709467b48Spatrick MachineBasicBlock *NextBB = &*NextFI; 264809467b48Spatrick // Ensure that the layout successor is a viable block, as we know that 264909467b48Spatrick // fallthrough is a possibility. 265009467b48Spatrick assert(NextFI != FE && "Can't fallthrough past the last block."); 265109467b48Spatrick LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 265209467b48Spatrick << getBlockName(BB) << " -> " << getBlockName(NextBB) 265309467b48Spatrick << "\n"); 265409467b48Spatrick Chain->merge(NextBB, nullptr); 265509467b48Spatrick #ifndef NDEBUG 265609467b48Spatrick BlocksWithUnanalyzableExits.insert(&*BB); 265709467b48Spatrick #endif 265809467b48Spatrick FI = NextFI; 265909467b48Spatrick BB = NextBB; 266009467b48Spatrick } 266109467b48Spatrick } 266209467b48Spatrick 266309467b48Spatrick // Build any loop-based chains. 266409467b48Spatrick PreferredLoopExit = nullptr; 266509467b48Spatrick for (MachineLoop *L : *MLI) 266609467b48Spatrick buildLoopChains(*L); 266709467b48Spatrick 266809467b48Spatrick assert(BlockWorkList.empty() && 266909467b48Spatrick "BlockWorkList should be empty before building final chain."); 267009467b48Spatrick assert(EHPadWorkList.empty() && 267109467b48Spatrick "EHPadWorkList should be empty before building final chain."); 267209467b48Spatrick 267309467b48Spatrick SmallPtrSet<BlockChain *, 4> UpdatedPreds; 267409467b48Spatrick for (MachineBasicBlock &MBB : *F) 267509467b48Spatrick fillWorkLists(&MBB, UpdatedPreds); 267609467b48Spatrick 267709467b48Spatrick BlockChain &FunctionChain = *BlockToChain[&F->front()]; 267809467b48Spatrick buildChain(&F->front(), FunctionChain); 267909467b48Spatrick 268009467b48Spatrick #ifndef NDEBUG 268109467b48Spatrick using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 268209467b48Spatrick #endif 268309467b48Spatrick LLVM_DEBUG({ 268409467b48Spatrick // Crash at the end so we get all of the debugging output first. 268509467b48Spatrick bool BadFunc = false; 268609467b48Spatrick FunctionBlockSetType FunctionBlockSet; 268709467b48Spatrick for (MachineBasicBlock &MBB : *F) 268809467b48Spatrick FunctionBlockSet.insert(&MBB); 268909467b48Spatrick 269009467b48Spatrick for (MachineBasicBlock *ChainBB : FunctionChain) 269109467b48Spatrick if (!FunctionBlockSet.erase(ChainBB)) { 269209467b48Spatrick BadFunc = true; 269309467b48Spatrick dbgs() << "Function chain contains a block not in the function!\n" 269409467b48Spatrick << " Bad block: " << getBlockName(ChainBB) << "\n"; 269509467b48Spatrick } 269609467b48Spatrick 269709467b48Spatrick if (!FunctionBlockSet.empty()) { 269809467b48Spatrick BadFunc = true; 269909467b48Spatrick for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 270009467b48Spatrick dbgs() << "Function contains blocks never placed into a chain!\n" 270109467b48Spatrick << " Bad block: " << getBlockName(RemainingBB) << "\n"; 270209467b48Spatrick } 270309467b48Spatrick assert(!BadFunc && "Detected problems with the block placement."); 270409467b48Spatrick }); 270509467b48Spatrick 2706*097a140dSpatrick // Remember original layout ordering, so we can update terminators after 2707*097a140dSpatrick // reordering to point to the original layout successor. 2708*097a140dSpatrick SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( 2709*097a140dSpatrick F->getNumBlockIDs()); 2710*097a140dSpatrick { 2711*097a140dSpatrick MachineBasicBlock *LastMBB = nullptr; 2712*097a140dSpatrick for (auto &MBB : *F) { 2713*097a140dSpatrick if (LastMBB != nullptr) 2714*097a140dSpatrick OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; 2715*097a140dSpatrick LastMBB = &MBB; 2716*097a140dSpatrick } 2717*097a140dSpatrick OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; 2718*097a140dSpatrick } 2719*097a140dSpatrick 272009467b48Spatrick // Splice the blocks into place. 272109467b48Spatrick MachineFunction::iterator InsertPos = F->begin(); 272209467b48Spatrick LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 272309467b48Spatrick for (MachineBasicBlock *ChainBB : FunctionChain) { 272409467b48Spatrick LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 272509467b48Spatrick : " ... ") 272609467b48Spatrick << getBlockName(ChainBB) << "\n"); 272709467b48Spatrick if (InsertPos != MachineFunction::iterator(ChainBB)) 272809467b48Spatrick F->splice(InsertPos, ChainBB); 272909467b48Spatrick else 273009467b48Spatrick ++InsertPos; 273109467b48Spatrick 273209467b48Spatrick // Update the terminator of the previous block. 273309467b48Spatrick if (ChainBB == *FunctionChain.begin()) 273409467b48Spatrick continue; 273509467b48Spatrick MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 273609467b48Spatrick 273709467b48Spatrick // FIXME: It would be awesome of updateTerminator would just return rather 273809467b48Spatrick // than assert when the branch cannot be analyzed in order to remove this 273909467b48Spatrick // boiler plate. 274009467b48Spatrick Cond.clear(); 2741*097a140dSpatrick MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 274209467b48Spatrick 274309467b48Spatrick #ifndef NDEBUG 274409467b48Spatrick if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 274509467b48Spatrick // Given the exact block placement we chose, we may actually not _need_ to 274609467b48Spatrick // be able to edit PrevBB's terminator sequence, but not being _able_ to 274709467b48Spatrick // do that at this point is a bug. 274809467b48Spatrick assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 274909467b48Spatrick !PrevBB->canFallThrough()) && 275009467b48Spatrick "Unexpected block with un-analyzable fallthrough!"); 275109467b48Spatrick Cond.clear(); 275209467b48Spatrick TBB = FBB = nullptr; 275309467b48Spatrick } 275409467b48Spatrick #endif 275509467b48Spatrick 275609467b48Spatrick // The "PrevBB" is not yet updated to reflect current code layout, so, 275709467b48Spatrick // o. it may fall-through to a block without explicit "goto" instruction 275809467b48Spatrick // before layout, and no longer fall-through it after layout; or 275909467b48Spatrick // o. just opposite. 276009467b48Spatrick // 276109467b48Spatrick // analyzeBranch() may return erroneous value for FBB when these two 276209467b48Spatrick // situations take place. For the first scenario FBB is mistakenly set NULL; 276309467b48Spatrick // for the 2nd scenario, the FBB, which is expected to be NULL, is 276409467b48Spatrick // mistakenly pointing to "*BI". 276509467b48Spatrick // Thus, if the future change needs to use FBB before the layout is set, it 276609467b48Spatrick // has to correct FBB first by using the code similar to the following: 276709467b48Spatrick // 276809467b48Spatrick // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 276909467b48Spatrick // PrevBB->updateTerminator(); 277009467b48Spatrick // Cond.clear(); 277109467b48Spatrick // TBB = FBB = nullptr; 277209467b48Spatrick // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 277309467b48Spatrick // // FIXME: This should never take place. 277409467b48Spatrick // TBB = FBB = nullptr; 277509467b48Spatrick // } 277609467b48Spatrick // } 2777*097a140dSpatrick if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2778*097a140dSpatrick PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2779*097a140dSpatrick } 278009467b48Spatrick } 278109467b48Spatrick 278209467b48Spatrick // Fixup the last block. 278309467b48Spatrick Cond.clear(); 2784*097a140dSpatrick MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2785*097a140dSpatrick if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) { 2786*097a140dSpatrick MachineBasicBlock *PrevBB = &F->back(); 2787*097a140dSpatrick PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2788*097a140dSpatrick } 278909467b48Spatrick 279009467b48Spatrick BlockWorkList.clear(); 279109467b48Spatrick EHPadWorkList.clear(); 279209467b48Spatrick } 279309467b48Spatrick 279409467b48Spatrick void MachineBlockPlacement::optimizeBranches() { 279509467b48Spatrick BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2796*097a140dSpatrick SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 279709467b48Spatrick 279809467b48Spatrick // Now that all the basic blocks in the chain have the proper layout, 2799*097a140dSpatrick // make a final call to analyzeBranch with AllowModify set. 280009467b48Spatrick // Indeed, the target may be able to optimize the branches in a way we 280109467b48Spatrick // cannot because all branches may not be analyzable. 280209467b48Spatrick // E.g., the target may be able to remove an unconditional branch to 280309467b48Spatrick // a fallthrough when it occurs after predicated terminators. 280409467b48Spatrick for (MachineBasicBlock *ChainBB : FunctionChain) { 280509467b48Spatrick Cond.clear(); 2806*097a140dSpatrick MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 280709467b48Spatrick if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 280809467b48Spatrick // If PrevBB has a two-way branch, try to re-order the branches 280909467b48Spatrick // such that we branch to the successor with higher probability first. 281009467b48Spatrick if (TBB && !Cond.empty() && FBB && 281109467b48Spatrick MBPI->getEdgeProbability(ChainBB, FBB) > 281209467b48Spatrick MBPI->getEdgeProbability(ChainBB, TBB) && 281309467b48Spatrick !TII->reverseBranchCondition(Cond)) { 281409467b48Spatrick LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 281509467b48Spatrick << getBlockName(ChainBB) << "\n"); 281609467b48Spatrick LLVM_DEBUG(dbgs() << " Edge probability: " 281709467b48Spatrick << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 281809467b48Spatrick << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 281909467b48Spatrick DebugLoc dl; // FIXME: this is nowhere 282009467b48Spatrick TII->removeBranch(*ChainBB); 282109467b48Spatrick TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 282209467b48Spatrick } 282309467b48Spatrick } 282409467b48Spatrick } 282509467b48Spatrick } 282609467b48Spatrick 282709467b48Spatrick void MachineBlockPlacement::alignBlocks() { 282809467b48Spatrick // Walk through the backedges of the function now that we have fully laid out 282909467b48Spatrick // the basic blocks and align the destination of each backedge. We don't rely 283009467b48Spatrick // exclusively on the loop info here so that we can align backedges in 283109467b48Spatrick // unnatural CFGs and backedges that were introduced purely because of the 283209467b48Spatrick // loop rotations done during this layout pass. 283309467b48Spatrick if (F->getFunction().hasMinSize() || 283409467b48Spatrick (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 283509467b48Spatrick return; 283609467b48Spatrick BlockChain &FunctionChain = *BlockToChain[&F->front()]; 283709467b48Spatrick if (FunctionChain.begin() == FunctionChain.end()) 283809467b48Spatrick return; // Empty chain. 283909467b48Spatrick 284009467b48Spatrick const BranchProbability ColdProb(1, 5); // 20% 284109467b48Spatrick BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 284209467b48Spatrick BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 284309467b48Spatrick for (MachineBasicBlock *ChainBB : FunctionChain) { 284409467b48Spatrick if (ChainBB == *FunctionChain.begin()) 284509467b48Spatrick continue; 284609467b48Spatrick 284709467b48Spatrick // Don't align non-looping basic blocks. These are unlikely to execute 284809467b48Spatrick // enough times to matter in practice. Note that we'll still handle 284909467b48Spatrick // unnatural CFGs inside of a natural outer loop (the common case) and 285009467b48Spatrick // rotated loops. 285109467b48Spatrick MachineLoop *L = MLI->getLoopFor(ChainBB); 285209467b48Spatrick if (!L) 285309467b48Spatrick continue; 285409467b48Spatrick 285509467b48Spatrick const Align Align = TLI->getPrefLoopAlignment(L); 285609467b48Spatrick if (Align == 1) 285709467b48Spatrick continue; // Don't care about loop alignment. 285809467b48Spatrick 285909467b48Spatrick // If the block is cold relative to the function entry don't waste space 286009467b48Spatrick // aligning it. 286109467b48Spatrick BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 286209467b48Spatrick if (Freq < WeightedEntryFreq) 286309467b48Spatrick continue; 286409467b48Spatrick 286509467b48Spatrick // If the block is cold relative to its loop header, don't align it 286609467b48Spatrick // regardless of what edges into the block exist. 286709467b48Spatrick MachineBasicBlock *LoopHeader = L->getHeader(); 286809467b48Spatrick BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 286909467b48Spatrick if (Freq < (LoopHeaderFreq * ColdProb)) 287009467b48Spatrick continue; 287109467b48Spatrick 287209467b48Spatrick // If the global profiles indicates so, don't align it. 2873*097a140dSpatrick if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) && 287409467b48Spatrick !TLI->alignLoopsWithOptSize()) 287509467b48Spatrick continue; 287609467b48Spatrick 287709467b48Spatrick // Check for the existence of a non-layout predecessor which would benefit 287809467b48Spatrick // from aligning this block. 287909467b48Spatrick MachineBasicBlock *LayoutPred = 288009467b48Spatrick &*std::prev(MachineFunction::iterator(ChainBB)); 288109467b48Spatrick 288209467b48Spatrick // Force alignment if all the predecessors are jumps. We already checked 288309467b48Spatrick // that the block isn't cold above. 288409467b48Spatrick if (!LayoutPred->isSuccessor(ChainBB)) { 288509467b48Spatrick ChainBB->setAlignment(Align); 288609467b48Spatrick continue; 288709467b48Spatrick } 288809467b48Spatrick 288909467b48Spatrick // Align this block if the layout predecessor's edge into this block is 289009467b48Spatrick // cold relative to the block. When this is true, other predecessors make up 289109467b48Spatrick // all of the hot entries into the block and thus alignment is likely to be 289209467b48Spatrick // important. 289309467b48Spatrick BranchProbability LayoutProb = 289409467b48Spatrick MBPI->getEdgeProbability(LayoutPred, ChainBB); 289509467b48Spatrick BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 289609467b48Spatrick if (LayoutEdgeFreq <= (Freq * ColdProb)) 289709467b48Spatrick ChainBB->setAlignment(Align); 289809467b48Spatrick } 289909467b48Spatrick } 290009467b48Spatrick 290109467b48Spatrick /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 290209467b48Spatrick /// it was duplicated into its chain predecessor and removed. 290309467b48Spatrick /// \p BB - Basic block that may be duplicated. 290409467b48Spatrick /// 290509467b48Spatrick /// \p LPred - Chosen layout predecessor of \p BB. 290609467b48Spatrick /// Updated to be the chain end if LPred is removed. 290709467b48Spatrick /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 290809467b48Spatrick /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 290909467b48Spatrick /// Used to identify which blocks to update predecessor 291009467b48Spatrick /// counts. 291109467b48Spatrick /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 291209467b48Spatrick /// chosen in the given order due to unnatural CFG 291309467b48Spatrick /// only needed if \p BB is removed and 291409467b48Spatrick /// \p PrevUnplacedBlockIt pointed to \p BB. 291509467b48Spatrick /// @return true if \p BB was removed. 291609467b48Spatrick bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 291709467b48Spatrick MachineBasicBlock *BB, MachineBasicBlock *&LPred, 291809467b48Spatrick const MachineBasicBlock *LoopHeaderBB, 291909467b48Spatrick BlockChain &Chain, BlockFilterSet *BlockFilter, 292009467b48Spatrick MachineFunction::iterator &PrevUnplacedBlockIt) { 292109467b48Spatrick bool Removed, DuplicatedToLPred; 292209467b48Spatrick bool DuplicatedToOriginalLPred; 292309467b48Spatrick Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 292409467b48Spatrick PrevUnplacedBlockIt, 292509467b48Spatrick DuplicatedToLPred); 292609467b48Spatrick if (!Removed) 292709467b48Spatrick return false; 292809467b48Spatrick DuplicatedToOriginalLPred = DuplicatedToLPred; 292909467b48Spatrick // Iteratively try to duplicate again. It can happen that a block that is 293009467b48Spatrick // duplicated into is still small enough to be duplicated again. 293109467b48Spatrick // No need to call markBlockSuccessors in this case, as the blocks being 293209467b48Spatrick // duplicated from here on are already scheduled. 2933*097a140dSpatrick while (DuplicatedToLPred && Removed) { 293409467b48Spatrick MachineBasicBlock *DupBB, *DupPred; 293509467b48Spatrick // The removal callback causes Chain.end() to be updated when a block is 293609467b48Spatrick // removed. On the first pass through the loop, the chain end should be the 293709467b48Spatrick // same as it was on function entry. On subsequent passes, because we are 293809467b48Spatrick // duplicating the block at the end of the chain, if it is removed the 293909467b48Spatrick // chain will have shrunk by one block. 294009467b48Spatrick BlockChain::iterator ChainEnd = Chain.end(); 294109467b48Spatrick DupBB = *(--ChainEnd); 294209467b48Spatrick // Now try to duplicate again. 294309467b48Spatrick if (ChainEnd == Chain.begin()) 294409467b48Spatrick break; 294509467b48Spatrick DupPred = *std::prev(ChainEnd); 294609467b48Spatrick Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 294709467b48Spatrick PrevUnplacedBlockIt, 294809467b48Spatrick DuplicatedToLPred); 294909467b48Spatrick } 295009467b48Spatrick // If BB was duplicated into LPred, it is now scheduled. But because it was 295109467b48Spatrick // removed, markChainSuccessors won't be called for its chain. Instead we 295209467b48Spatrick // call markBlockSuccessors for LPred to achieve the same effect. This must go 295309467b48Spatrick // at the end because repeating the tail duplication can increase the number 295409467b48Spatrick // of unscheduled predecessors. 295509467b48Spatrick LPred = *std::prev(Chain.end()); 295609467b48Spatrick if (DuplicatedToOriginalLPred) 295709467b48Spatrick markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 295809467b48Spatrick return true; 295909467b48Spatrick } 296009467b48Spatrick 296109467b48Spatrick /// Tail duplicate \p BB into (some) predecessors if profitable. 296209467b48Spatrick /// \p BB - Basic block that may be duplicated 296309467b48Spatrick /// \p LPred - Chosen layout predecessor of \p BB 296409467b48Spatrick /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 296509467b48Spatrick /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 296609467b48Spatrick /// Used to identify which blocks to update predecessor 296709467b48Spatrick /// counts. 296809467b48Spatrick /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 296909467b48Spatrick /// chosen in the given order due to unnatural CFG 297009467b48Spatrick /// only needed if \p BB is removed and 297109467b48Spatrick /// \p PrevUnplacedBlockIt pointed to \p BB. 2972*097a140dSpatrick /// \p DuplicatedToLPred - True if the block was duplicated into LPred. 297309467b48Spatrick /// \return - True if the block was duplicated into all preds and removed. 297409467b48Spatrick bool MachineBlockPlacement::maybeTailDuplicateBlock( 297509467b48Spatrick MachineBasicBlock *BB, MachineBasicBlock *LPred, 297609467b48Spatrick BlockChain &Chain, BlockFilterSet *BlockFilter, 297709467b48Spatrick MachineFunction::iterator &PrevUnplacedBlockIt, 297809467b48Spatrick bool &DuplicatedToLPred) { 297909467b48Spatrick DuplicatedToLPred = false; 298009467b48Spatrick if (!shouldTailDuplicate(BB)) 298109467b48Spatrick return false; 298209467b48Spatrick 298309467b48Spatrick LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 298409467b48Spatrick << "\n"); 298509467b48Spatrick 298609467b48Spatrick // This has to be a callback because none of it can be done after 298709467b48Spatrick // BB is deleted. 298809467b48Spatrick bool Removed = false; 298909467b48Spatrick auto RemovalCallback = 299009467b48Spatrick [&](MachineBasicBlock *RemBB) { 299109467b48Spatrick // Signal to outer function 299209467b48Spatrick Removed = true; 299309467b48Spatrick 299409467b48Spatrick // Conservative default. 299509467b48Spatrick bool InWorkList = true; 299609467b48Spatrick // Remove from the Chain and Chain Map 299709467b48Spatrick if (BlockToChain.count(RemBB)) { 299809467b48Spatrick BlockChain *Chain = BlockToChain[RemBB]; 299909467b48Spatrick InWorkList = Chain->UnscheduledPredecessors == 0; 300009467b48Spatrick Chain->remove(RemBB); 300109467b48Spatrick BlockToChain.erase(RemBB); 300209467b48Spatrick } 300309467b48Spatrick 300409467b48Spatrick // Handle the unplaced block iterator 300509467b48Spatrick if (&(*PrevUnplacedBlockIt) == RemBB) { 300609467b48Spatrick PrevUnplacedBlockIt++; 300709467b48Spatrick } 300809467b48Spatrick 300909467b48Spatrick // Handle the Work Lists 301009467b48Spatrick if (InWorkList) { 301109467b48Spatrick SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 301209467b48Spatrick if (RemBB->isEHPad()) 301309467b48Spatrick RemoveList = EHPadWorkList; 301409467b48Spatrick RemoveList.erase( 301509467b48Spatrick llvm::remove_if(RemoveList, 301609467b48Spatrick [RemBB](MachineBasicBlock *BB) { 301709467b48Spatrick return BB == RemBB; 301809467b48Spatrick }), 301909467b48Spatrick RemoveList.end()); 302009467b48Spatrick } 302109467b48Spatrick 302209467b48Spatrick // Handle the filter set 302309467b48Spatrick if (BlockFilter) { 302409467b48Spatrick BlockFilter->remove(RemBB); 302509467b48Spatrick } 302609467b48Spatrick 302709467b48Spatrick // Remove the block from loop info. 302809467b48Spatrick MLI->removeBlock(RemBB); 302909467b48Spatrick if (RemBB == PreferredLoopExit) 303009467b48Spatrick PreferredLoopExit = nullptr; 303109467b48Spatrick 303209467b48Spatrick LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 303309467b48Spatrick << getBlockName(RemBB) << "\n"); 303409467b48Spatrick }; 303509467b48Spatrick auto RemovalCallbackRef = 303609467b48Spatrick function_ref<void(MachineBasicBlock*)>(RemovalCallback); 303709467b48Spatrick 303809467b48Spatrick SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 303909467b48Spatrick bool IsSimple = TailDup.isSimpleBB(BB); 3040*097a140dSpatrick SmallVector<MachineBasicBlock *, 8> CandidatePreds; 3041*097a140dSpatrick SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; 3042*097a140dSpatrick if (F->getFunction().hasProfileData()) { 3043*097a140dSpatrick // We can do partial duplication with precise profile information. 3044*097a140dSpatrick findDuplicateCandidates(CandidatePreds, BB, BlockFilter); 3045*097a140dSpatrick if (CandidatePreds.size() == 0) 3046*097a140dSpatrick return false; 3047*097a140dSpatrick if (CandidatePreds.size() < BB->pred_size()) 3048*097a140dSpatrick CandidatePtr = &CandidatePreds; 3049*097a140dSpatrick } 3050*097a140dSpatrick TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds, 3051*097a140dSpatrick &RemovalCallbackRef, CandidatePtr); 305209467b48Spatrick 305309467b48Spatrick // Update UnscheduledPredecessors to reflect tail-duplication. 305409467b48Spatrick DuplicatedToLPred = false; 305509467b48Spatrick for (MachineBasicBlock *Pred : DuplicatedPreds) { 305609467b48Spatrick // We're only looking for unscheduled predecessors that match the filter. 305709467b48Spatrick BlockChain* PredChain = BlockToChain[Pred]; 305809467b48Spatrick if (Pred == LPred) 305909467b48Spatrick DuplicatedToLPred = true; 306009467b48Spatrick if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 306109467b48Spatrick || PredChain == &Chain) 306209467b48Spatrick continue; 306309467b48Spatrick for (MachineBasicBlock *NewSucc : Pred->successors()) { 306409467b48Spatrick if (BlockFilter && !BlockFilter->count(NewSucc)) 306509467b48Spatrick continue; 306609467b48Spatrick BlockChain *NewChain = BlockToChain[NewSucc]; 306709467b48Spatrick if (NewChain != &Chain && NewChain != PredChain) 306809467b48Spatrick NewChain->UnscheduledPredecessors++; 306909467b48Spatrick } 307009467b48Spatrick } 307109467b48Spatrick return Removed; 307209467b48Spatrick } 307309467b48Spatrick 3074*097a140dSpatrick // Count the number of actual machine instructions. 3075*097a140dSpatrick static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { 3076*097a140dSpatrick uint64_t InstrCount = 0; 3077*097a140dSpatrick for (MachineInstr &MI : *MBB) { 3078*097a140dSpatrick if (!MI.isPHI() && !MI.isMetaInstruction()) 3079*097a140dSpatrick InstrCount += 1; 3080*097a140dSpatrick } 3081*097a140dSpatrick return InstrCount; 3082*097a140dSpatrick } 3083*097a140dSpatrick 3084*097a140dSpatrick // The size cost of duplication is the instruction size of the duplicated block. 3085*097a140dSpatrick // So we should scale the threshold accordingly. But the instruction size is not 3086*097a140dSpatrick // available on all targets, so we use the number of instructions instead. 3087*097a140dSpatrick BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { 3088*097a140dSpatrick return DupThreshold.getFrequency() * countMBBInstruction(BB); 3089*097a140dSpatrick } 3090*097a140dSpatrick 3091*097a140dSpatrick // Returns true if BB is Pred's best successor. 3092*097a140dSpatrick bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, 3093*097a140dSpatrick MachineBasicBlock *Pred, 3094*097a140dSpatrick BlockFilterSet *BlockFilter) { 3095*097a140dSpatrick if (BB == Pred) 3096*097a140dSpatrick return false; 3097*097a140dSpatrick if (BlockFilter && !BlockFilter->count(Pred)) 3098*097a140dSpatrick return false; 3099*097a140dSpatrick BlockChain *PredChain = BlockToChain[Pred]; 3100*097a140dSpatrick if (PredChain && (Pred != *std::prev(PredChain->end()))) 3101*097a140dSpatrick return false; 3102*097a140dSpatrick 3103*097a140dSpatrick // Find the successor with largest probability excluding BB. 3104*097a140dSpatrick BranchProbability BestProb = BranchProbability::getZero(); 3105*097a140dSpatrick for (MachineBasicBlock *Succ : Pred->successors()) 3106*097a140dSpatrick if (Succ != BB) { 3107*097a140dSpatrick if (BlockFilter && !BlockFilter->count(Succ)) 3108*097a140dSpatrick continue; 3109*097a140dSpatrick BlockChain *SuccChain = BlockToChain[Succ]; 3110*097a140dSpatrick if (SuccChain && (Succ != *SuccChain->begin())) 3111*097a140dSpatrick continue; 3112*097a140dSpatrick BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ); 3113*097a140dSpatrick if (SuccProb > BestProb) 3114*097a140dSpatrick BestProb = SuccProb; 3115*097a140dSpatrick } 3116*097a140dSpatrick 3117*097a140dSpatrick BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB); 3118*097a140dSpatrick if (BBProb <= BestProb) 3119*097a140dSpatrick return false; 3120*097a140dSpatrick 3121*097a140dSpatrick // Compute the number of reduced taken branches if Pred falls through to BB 3122*097a140dSpatrick // instead of another successor. Then compare it with threshold. 3123*097a140dSpatrick BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 3124*097a140dSpatrick BlockFrequency Gain = PredFreq * (BBProb - BestProb); 3125*097a140dSpatrick return Gain > scaleThreshold(BB); 3126*097a140dSpatrick } 3127*097a140dSpatrick 3128*097a140dSpatrick // Find out the predecessors of BB and BB can be beneficially duplicated into 3129*097a140dSpatrick // them. 3130*097a140dSpatrick void MachineBlockPlacement::findDuplicateCandidates( 3131*097a140dSpatrick SmallVectorImpl<MachineBasicBlock *> &Candidates, 3132*097a140dSpatrick MachineBasicBlock *BB, 3133*097a140dSpatrick BlockFilterSet *BlockFilter) { 3134*097a140dSpatrick MachineBasicBlock *Fallthrough = nullptr; 3135*097a140dSpatrick BranchProbability DefaultBranchProb = BranchProbability::getZero(); 3136*097a140dSpatrick BlockFrequency BBDupThreshold(scaleThreshold(BB)); 3137*097a140dSpatrick SmallVector<MachineBasicBlock *, 8> Preds(BB->pred_begin(), BB->pred_end()); 3138*097a140dSpatrick SmallVector<MachineBasicBlock *, 8> Succs(BB->succ_begin(), BB->succ_end()); 3139*097a140dSpatrick 3140*097a140dSpatrick // Sort for highest frequency. 3141*097a140dSpatrick auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3142*097a140dSpatrick return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B); 3143*097a140dSpatrick }; 3144*097a140dSpatrick auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3145*097a140dSpatrick return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B); 3146*097a140dSpatrick }; 3147*097a140dSpatrick llvm::stable_sort(Succs, CmpSucc); 3148*097a140dSpatrick llvm::stable_sort(Preds, CmpPred); 3149*097a140dSpatrick 3150*097a140dSpatrick auto SuccIt = Succs.begin(); 3151*097a140dSpatrick if (SuccIt != Succs.end()) { 3152*097a140dSpatrick DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl(); 3153*097a140dSpatrick } 3154*097a140dSpatrick 3155*097a140dSpatrick // For each predecessors of BB, compute the benefit of duplicating BB, 3156*097a140dSpatrick // if it is larger than the threshold, add it into Candidates. 3157*097a140dSpatrick // 3158*097a140dSpatrick // If we have following control flow. 3159*097a140dSpatrick // 3160*097a140dSpatrick // PB1 PB2 PB3 PB4 3161*097a140dSpatrick // \ | / /\ 3162*097a140dSpatrick // \ | / / \ 3163*097a140dSpatrick // \ |/ / \ 3164*097a140dSpatrick // BB----/ OB 3165*097a140dSpatrick // /\ 3166*097a140dSpatrick // / \ 3167*097a140dSpatrick // SB1 SB2 3168*097a140dSpatrick // 3169*097a140dSpatrick // And it can be partially duplicated as 3170*097a140dSpatrick // 3171*097a140dSpatrick // PB2+BB 3172*097a140dSpatrick // | PB1 PB3 PB4 3173*097a140dSpatrick // | | / /\ 3174*097a140dSpatrick // | | / / \ 3175*097a140dSpatrick // | |/ / \ 3176*097a140dSpatrick // | BB----/ OB 3177*097a140dSpatrick // |\ /| 3178*097a140dSpatrick // | X | 3179*097a140dSpatrick // |/ \| 3180*097a140dSpatrick // SB2 SB1 3181*097a140dSpatrick // 3182*097a140dSpatrick // The benefit of duplicating into a predecessor is defined as 3183*097a140dSpatrick // Orig_taken_branch - Duplicated_taken_branch 3184*097a140dSpatrick // 3185*097a140dSpatrick // The Orig_taken_branch is computed with the assumption that predecessor 3186*097a140dSpatrick // jumps to BB and the most possible successor is laid out after BB. 3187*097a140dSpatrick // 3188*097a140dSpatrick // The Duplicated_taken_branch is computed with the assumption that BB is 3189*097a140dSpatrick // duplicated into PB, and one successor is layout after it (SB1 for PB1 and 3190*097a140dSpatrick // SB2 for PB2 in our case). If there is no available successor, the combined 3191*097a140dSpatrick // block jumps to all BB's successor, like PB3 in this example. 3192*097a140dSpatrick // 3193*097a140dSpatrick // If a predecessor has multiple successors, so BB can't be duplicated into 3194*097a140dSpatrick // it. But it can beneficially fall through to BB, and duplicate BB into other 3195*097a140dSpatrick // predecessors. 3196*097a140dSpatrick for (MachineBasicBlock *Pred : Preds) { 3197*097a140dSpatrick BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 3198*097a140dSpatrick 3199*097a140dSpatrick if (!TailDup.canTailDuplicate(BB, Pred)) { 3200*097a140dSpatrick // BB can't be duplicated into Pred, but it is possible to be layout 3201*097a140dSpatrick // below Pred. 3202*097a140dSpatrick if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { 3203*097a140dSpatrick Fallthrough = Pred; 3204*097a140dSpatrick if (SuccIt != Succs.end()) 3205*097a140dSpatrick SuccIt++; 3206*097a140dSpatrick } 3207*097a140dSpatrick continue; 3208*097a140dSpatrick } 3209*097a140dSpatrick 3210*097a140dSpatrick BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; 3211*097a140dSpatrick BlockFrequency DupCost; 3212*097a140dSpatrick if (SuccIt == Succs.end()) { 3213*097a140dSpatrick // Jump to all successors; 3214*097a140dSpatrick if (Succs.size() > 0) 3215*097a140dSpatrick DupCost += PredFreq; 3216*097a140dSpatrick } else { 3217*097a140dSpatrick // Fallthrough to *SuccIt, jump to all other successors; 3218*097a140dSpatrick DupCost += PredFreq; 3219*097a140dSpatrick DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt); 3220*097a140dSpatrick } 3221*097a140dSpatrick 3222*097a140dSpatrick assert(OrigCost >= DupCost); 3223*097a140dSpatrick OrigCost -= DupCost; 3224*097a140dSpatrick if (OrigCost > BBDupThreshold) { 3225*097a140dSpatrick Candidates.push_back(Pred); 3226*097a140dSpatrick if (SuccIt != Succs.end()) 3227*097a140dSpatrick SuccIt++; 3228*097a140dSpatrick } 3229*097a140dSpatrick } 3230*097a140dSpatrick 3231*097a140dSpatrick // No predecessors can optimally fallthrough to BB. 3232*097a140dSpatrick // So we can change one duplication into fallthrough. 3233*097a140dSpatrick if (!Fallthrough) { 3234*097a140dSpatrick if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { 3235*097a140dSpatrick Candidates[0] = Candidates.back(); 3236*097a140dSpatrick Candidates.pop_back(); 3237*097a140dSpatrick } 3238*097a140dSpatrick } 3239*097a140dSpatrick } 3240*097a140dSpatrick 3241*097a140dSpatrick void MachineBlockPlacement::initDupThreshold() { 3242*097a140dSpatrick DupThreshold = 0; 3243*097a140dSpatrick if (!F->getFunction().hasProfileData()) 3244*097a140dSpatrick return; 3245*097a140dSpatrick 3246*097a140dSpatrick BlockFrequency MaxFreq = 0; 3247*097a140dSpatrick for (MachineBasicBlock &MBB : *F) { 3248*097a140dSpatrick BlockFrequency Freq = MBFI->getBlockFreq(&MBB); 3249*097a140dSpatrick if (Freq > MaxFreq) 3250*097a140dSpatrick MaxFreq = Freq; 3251*097a140dSpatrick } 3252*097a140dSpatrick 3253*097a140dSpatrick // FIXME: we may use profile count instead of frequency, 3254*097a140dSpatrick // and need more fine tuning. 3255*097a140dSpatrick BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 3256*097a140dSpatrick DupThreshold = MaxFreq * ThresholdProb; 3257*097a140dSpatrick } 3258*097a140dSpatrick 325909467b48Spatrick bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 326009467b48Spatrick if (skipFunction(MF.getFunction())) 326109467b48Spatrick return false; 326209467b48Spatrick 326309467b48Spatrick // Check for single-block functions and skip them. 326409467b48Spatrick if (std::next(MF.begin()) == MF.end()) 326509467b48Spatrick return false; 326609467b48Spatrick 326709467b48Spatrick F = &MF; 326809467b48Spatrick MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3269*097a140dSpatrick MBFI = std::make_unique<MBFIWrapper>( 327009467b48Spatrick getAnalysis<MachineBlockFrequencyInfo>()); 327109467b48Spatrick MLI = &getAnalysis<MachineLoopInfo>(); 327209467b48Spatrick TII = MF.getSubtarget().getInstrInfo(); 327309467b48Spatrick TLI = MF.getSubtarget().getTargetLowering(); 327409467b48Spatrick MPDT = nullptr; 327509467b48Spatrick PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 327609467b48Spatrick 3277*097a140dSpatrick initDupThreshold(); 3278*097a140dSpatrick 327909467b48Spatrick // Initialize PreferredLoopExit to nullptr here since it may never be set if 328009467b48Spatrick // there are no MachineLoops. 328109467b48Spatrick PreferredLoopExit = nullptr; 328209467b48Spatrick 328309467b48Spatrick assert(BlockToChain.empty() && 328409467b48Spatrick "BlockToChain map should be empty before starting placement."); 328509467b48Spatrick assert(ComputedEdges.empty() && 328609467b48Spatrick "Computed Edge map should be empty before starting placement."); 328709467b48Spatrick 328809467b48Spatrick unsigned TailDupSize = TailDupPlacementThreshold; 328909467b48Spatrick // If only the aggressive threshold is explicitly set, use it. 329009467b48Spatrick if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 329109467b48Spatrick TailDupPlacementThreshold.getNumOccurrences() == 0) 329209467b48Spatrick TailDupSize = TailDupPlacementAggressiveThreshold; 329309467b48Spatrick 329409467b48Spatrick TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 329509467b48Spatrick // For aggressive optimization, we can adjust some thresholds to be less 329609467b48Spatrick // conservative. 329709467b48Spatrick if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 329809467b48Spatrick // At O3 we should be more willing to copy blocks for tail duplication. This 329909467b48Spatrick // increases size pressure, so we only do it at O3 330009467b48Spatrick // Do this unless only the regular threshold is explicitly set. 330109467b48Spatrick if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 330209467b48Spatrick TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 330309467b48Spatrick TailDupSize = TailDupPlacementAggressiveThreshold; 330409467b48Spatrick } 330509467b48Spatrick 330609467b48Spatrick if (allowTailDupPlacement()) { 330709467b48Spatrick MPDT = &getAnalysis<MachinePostDominatorTree>(); 330809467b48Spatrick bool OptForSize = MF.getFunction().hasOptSize() || 330909467b48Spatrick llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 331009467b48Spatrick if (OptForSize) 331109467b48Spatrick TailDupSize = 1; 331209467b48Spatrick bool PreRegAlloc = false; 3313*097a140dSpatrick TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI, 331409467b48Spatrick /* LayoutMode */ true, TailDupSize); 331509467b48Spatrick precomputeTriangleChains(); 331609467b48Spatrick } 331709467b48Spatrick 331809467b48Spatrick buildCFGChains(); 331909467b48Spatrick 332009467b48Spatrick // Changing the layout can create new tail merging opportunities. 332109467b48Spatrick // TailMerge can create jump into if branches that make CFG irreducible for 332209467b48Spatrick // HW that requires structured CFG. 332309467b48Spatrick bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 332409467b48Spatrick PassConfig->getEnableTailMerge() && 332509467b48Spatrick BranchFoldPlacement; 332609467b48Spatrick // No tail merging opportunities if the block number is less than four. 332709467b48Spatrick if (MF.size() > 3 && EnableTailMerge) { 332809467b48Spatrick unsigned TailMergeSize = TailDupSize + 1; 332909467b48Spatrick BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 333009467b48Spatrick *MBPI, PSI, TailMergeSize); 333109467b48Spatrick 3332*097a140dSpatrick if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI, 333309467b48Spatrick /*AfterPlacement=*/true)) { 333409467b48Spatrick // Redo the layout if tail merging creates/removes/moves blocks. 333509467b48Spatrick BlockToChain.clear(); 333609467b48Spatrick ComputedEdges.clear(); 333709467b48Spatrick // Must redo the post-dominator tree if blocks were changed. 333809467b48Spatrick if (MPDT) 333909467b48Spatrick MPDT->runOnMachineFunction(MF); 334009467b48Spatrick ChainAllocator.DestroyAll(); 334109467b48Spatrick buildCFGChains(); 334209467b48Spatrick } 334309467b48Spatrick } 334409467b48Spatrick 334509467b48Spatrick optimizeBranches(); 334609467b48Spatrick alignBlocks(); 334709467b48Spatrick 334809467b48Spatrick BlockToChain.clear(); 334909467b48Spatrick ComputedEdges.clear(); 335009467b48Spatrick ChainAllocator.DestroyAll(); 335109467b48Spatrick 335209467b48Spatrick if (AlignAllBlock) 335309467b48Spatrick // Align all of the blocks in the function to a specific alignment. 335409467b48Spatrick for (MachineBasicBlock &MBB : MF) 335509467b48Spatrick MBB.setAlignment(Align(1ULL << AlignAllBlock)); 335609467b48Spatrick else if (AlignAllNonFallThruBlocks) { 335709467b48Spatrick // Align all of the blocks that have no fall-through predecessors to a 335809467b48Spatrick // specific alignment. 335909467b48Spatrick for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 336009467b48Spatrick auto LayoutPred = std::prev(MBI); 336109467b48Spatrick if (!LayoutPred->isSuccessor(&*MBI)) 336209467b48Spatrick MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 336309467b48Spatrick } 336409467b48Spatrick } 336509467b48Spatrick if (ViewBlockLayoutWithBFI != GVDT_None && 336609467b48Spatrick (ViewBlockFreqFuncName.empty() || 336709467b48Spatrick F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 336809467b48Spatrick MBFI->view("MBP." + MF.getName(), false); 336909467b48Spatrick } 337009467b48Spatrick 337109467b48Spatrick 337209467b48Spatrick // We always return true as we have no way to track whether the final order 337309467b48Spatrick // differs from the original order. 337409467b48Spatrick return true; 337509467b48Spatrick } 337609467b48Spatrick 337709467b48Spatrick namespace { 337809467b48Spatrick 337909467b48Spatrick /// A pass to compute block placement statistics. 338009467b48Spatrick /// 338109467b48Spatrick /// A separate pass to compute interesting statistics for evaluating block 338209467b48Spatrick /// placement. This is separate from the actual placement pass so that they can 338309467b48Spatrick /// be computed in the absence of any placement transformations or when using 338409467b48Spatrick /// alternative placement strategies. 338509467b48Spatrick class MachineBlockPlacementStats : public MachineFunctionPass { 338609467b48Spatrick /// A handle to the branch probability pass. 338709467b48Spatrick const MachineBranchProbabilityInfo *MBPI; 338809467b48Spatrick 338909467b48Spatrick /// A handle to the function-wide block frequency pass. 339009467b48Spatrick const MachineBlockFrequencyInfo *MBFI; 339109467b48Spatrick 339209467b48Spatrick public: 339309467b48Spatrick static char ID; // Pass identification, replacement for typeid 339409467b48Spatrick 339509467b48Spatrick MachineBlockPlacementStats() : MachineFunctionPass(ID) { 339609467b48Spatrick initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 339709467b48Spatrick } 339809467b48Spatrick 339909467b48Spatrick bool runOnMachineFunction(MachineFunction &F) override; 340009467b48Spatrick 340109467b48Spatrick void getAnalysisUsage(AnalysisUsage &AU) const override { 340209467b48Spatrick AU.addRequired<MachineBranchProbabilityInfo>(); 340309467b48Spatrick AU.addRequired<MachineBlockFrequencyInfo>(); 340409467b48Spatrick AU.setPreservesAll(); 340509467b48Spatrick MachineFunctionPass::getAnalysisUsage(AU); 340609467b48Spatrick } 340709467b48Spatrick }; 340809467b48Spatrick 340909467b48Spatrick } // end anonymous namespace 341009467b48Spatrick 341109467b48Spatrick char MachineBlockPlacementStats::ID = 0; 341209467b48Spatrick 341309467b48Spatrick char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 341409467b48Spatrick 341509467b48Spatrick INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 341609467b48Spatrick "Basic Block Placement Stats", false, false) 341709467b48Spatrick INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 341809467b48Spatrick INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 341909467b48Spatrick INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 342009467b48Spatrick "Basic Block Placement Stats", false, false) 342109467b48Spatrick 342209467b48Spatrick bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 342309467b48Spatrick // Check for single-block functions and skip them. 342409467b48Spatrick if (std::next(F.begin()) == F.end()) 342509467b48Spatrick return false; 342609467b48Spatrick 342709467b48Spatrick MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 342809467b48Spatrick MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 342909467b48Spatrick 343009467b48Spatrick for (MachineBasicBlock &MBB : F) { 343109467b48Spatrick BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 343209467b48Spatrick Statistic &NumBranches = 343309467b48Spatrick (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 343409467b48Spatrick Statistic &BranchTakenFreq = 343509467b48Spatrick (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 343609467b48Spatrick for (MachineBasicBlock *Succ : MBB.successors()) { 343709467b48Spatrick // Skip if this successor is a fallthrough. 343809467b48Spatrick if (MBB.isLayoutSuccessor(Succ)) 343909467b48Spatrick continue; 344009467b48Spatrick 344109467b48Spatrick BlockFrequency EdgeFreq = 344209467b48Spatrick BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 344309467b48Spatrick ++NumBranches; 344409467b48Spatrick BranchTakenFreq += EdgeFreq.getFrequency(); 344509467b48Spatrick } 344609467b48Spatrick } 344709467b48Spatrick 344809467b48Spatrick return false; 344909467b48Spatrick } 3450