xref: /openbsd-src/gnu/llvm/llvm/lib/CodeGen/Analysis.cpp (revision 09467b48e8bc8b4905716062da846024139afbf2)
1*09467b48Spatrick //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2*09467b48Spatrick //
3*09467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*09467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
5*09467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*09467b48Spatrick //
7*09467b48Spatrick //===----------------------------------------------------------------------===//
8*09467b48Spatrick //
9*09467b48Spatrick // This file defines several CodeGen-specific LLVM IR analysis utilities.
10*09467b48Spatrick //
11*09467b48Spatrick //===----------------------------------------------------------------------===//
12*09467b48Spatrick 
13*09467b48Spatrick #include "llvm/CodeGen/Analysis.h"
14*09467b48Spatrick #include "llvm/Analysis/ValueTracking.h"
15*09467b48Spatrick #include "llvm/CodeGen/MachineFunction.h"
16*09467b48Spatrick #include "llvm/CodeGen/TargetInstrInfo.h"
17*09467b48Spatrick #include "llvm/CodeGen/TargetLowering.h"
18*09467b48Spatrick #include "llvm/CodeGen/TargetSubtargetInfo.h"
19*09467b48Spatrick #include "llvm/IR/DataLayout.h"
20*09467b48Spatrick #include "llvm/IR/DerivedTypes.h"
21*09467b48Spatrick #include "llvm/IR/Function.h"
22*09467b48Spatrick #include "llvm/IR/Instructions.h"
23*09467b48Spatrick #include "llvm/IR/IntrinsicInst.h"
24*09467b48Spatrick #include "llvm/IR/LLVMContext.h"
25*09467b48Spatrick #include "llvm/IR/Module.h"
26*09467b48Spatrick #include "llvm/Support/ErrorHandling.h"
27*09467b48Spatrick #include "llvm/Support/MathExtras.h"
28*09467b48Spatrick #include "llvm/Transforms/Utils/GlobalStatus.h"
29*09467b48Spatrick 
30*09467b48Spatrick using namespace llvm;
31*09467b48Spatrick 
32*09467b48Spatrick /// Compute the linearized index of a member in a nested aggregate/struct/array
33*09467b48Spatrick /// by recursing and accumulating CurIndex as long as there are indices in the
34*09467b48Spatrick /// index list.
35*09467b48Spatrick unsigned llvm::ComputeLinearIndex(Type *Ty,
36*09467b48Spatrick                                   const unsigned *Indices,
37*09467b48Spatrick                                   const unsigned *IndicesEnd,
38*09467b48Spatrick                                   unsigned CurIndex) {
39*09467b48Spatrick   // Base case: We're done.
40*09467b48Spatrick   if (Indices && Indices == IndicesEnd)
41*09467b48Spatrick     return CurIndex;
42*09467b48Spatrick 
43*09467b48Spatrick   // Given a struct type, recursively traverse the elements.
44*09467b48Spatrick   if (StructType *STy = dyn_cast<StructType>(Ty)) {
45*09467b48Spatrick     for (StructType::element_iterator EB = STy->element_begin(),
46*09467b48Spatrick                                       EI = EB,
47*09467b48Spatrick                                       EE = STy->element_end();
48*09467b48Spatrick         EI != EE; ++EI) {
49*09467b48Spatrick       if (Indices && *Indices == unsigned(EI - EB))
50*09467b48Spatrick         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
51*09467b48Spatrick       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
52*09467b48Spatrick     }
53*09467b48Spatrick     assert(!Indices && "Unexpected out of bound");
54*09467b48Spatrick     return CurIndex;
55*09467b48Spatrick   }
56*09467b48Spatrick   // Given an array type, recursively traverse the elements.
57*09467b48Spatrick   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
58*09467b48Spatrick     Type *EltTy = ATy->getElementType();
59*09467b48Spatrick     unsigned NumElts = ATy->getNumElements();
60*09467b48Spatrick     // Compute the Linear offset when jumping one element of the array
61*09467b48Spatrick     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
62*09467b48Spatrick     if (Indices) {
63*09467b48Spatrick       assert(*Indices < NumElts && "Unexpected out of bound");
64*09467b48Spatrick       // If the indice is inside the array, compute the index to the requested
65*09467b48Spatrick       // elt and recurse inside the element with the end of the indices list
66*09467b48Spatrick       CurIndex += EltLinearOffset* *Indices;
67*09467b48Spatrick       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
68*09467b48Spatrick     }
69*09467b48Spatrick     CurIndex += EltLinearOffset*NumElts;
70*09467b48Spatrick     return CurIndex;
71*09467b48Spatrick   }
72*09467b48Spatrick   // We haven't found the type we're looking for, so keep searching.
73*09467b48Spatrick   return CurIndex + 1;
74*09467b48Spatrick }
75*09467b48Spatrick 
76*09467b48Spatrick /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77*09467b48Spatrick /// EVTs that represent all the individual underlying
78*09467b48Spatrick /// non-aggregate types that comprise it.
79*09467b48Spatrick ///
80*09467b48Spatrick /// If Offsets is non-null, it points to a vector to be filled in
81*09467b48Spatrick /// with the in-memory offsets of each of the individual values.
82*09467b48Spatrick ///
83*09467b48Spatrick void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84*09467b48Spatrick                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85*09467b48Spatrick                            SmallVectorImpl<EVT> *MemVTs,
86*09467b48Spatrick                            SmallVectorImpl<uint64_t> *Offsets,
87*09467b48Spatrick                            uint64_t StartingOffset) {
88*09467b48Spatrick   // Given a struct type, recursively traverse the elements.
89*09467b48Spatrick   if (StructType *STy = dyn_cast<StructType>(Ty)) {
90*09467b48Spatrick     const StructLayout *SL = DL.getStructLayout(STy);
91*09467b48Spatrick     for (StructType::element_iterator EB = STy->element_begin(),
92*09467b48Spatrick                                       EI = EB,
93*09467b48Spatrick                                       EE = STy->element_end();
94*09467b48Spatrick          EI != EE; ++EI)
95*09467b48Spatrick       ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
96*09467b48Spatrick                       StartingOffset + SL->getElementOffset(EI - EB));
97*09467b48Spatrick     return;
98*09467b48Spatrick   }
99*09467b48Spatrick   // Given an array type, recursively traverse the elements.
100*09467b48Spatrick   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
101*09467b48Spatrick     Type *EltTy = ATy->getElementType();
102*09467b48Spatrick     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
103*09467b48Spatrick     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
104*09467b48Spatrick       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
105*09467b48Spatrick                       StartingOffset + i * EltSize);
106*09467b48Spatrick     return;
107*09467b48Spatrick   }
108*09467b48Spatrick   // Interpret void as zero return values.
109*09467b48Spatrick   if (Ty->isVoidTy())
110*09467b48Spatrick     return;
111*09467b48Spatrick   // Base case: we can get an EVT for this LLVM IR type.
112*09467b48Spatrick   ValueVTs.push_back(TLI.getValueType(DL, Ty));
113*09467b48Spatrick   if (MemVTs)
114*09467b48Spatrick     MemVTs->push_back(TLI.getMemValueType(DL, Ty));
115*09467b48Spatrick   if (Offsets)
116*09467b48Spatrick     Offsets->push_back(StartingOffset);
117*09467b48Spatrick }
118*09467b48Spatrick 
119*09467b48Spatrick void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
120*09467b48Spatrick                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
121*09467b48Spatrick                            SmallVectorImpl<uint64_t> *Offsets,
122*09467b48Spatrick                            uint64_t StartingOffset) {
123*09467b48Spatrick   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets,
124*09467b48Spatrick                          StartingOffset);
125*09467b48Spatrick }
126*09467b48Spatrick 
127*09467b48Spatrick void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
128*09467b48Spatrick                             SmallVectorImpl<LLT> &ValueTys,
129*09467b48Spatrick                             SmallVectorImpl<uint64_t> *Offsets,
130*09467b48Spatrick                             uint64_t StartingOffset) {
131*09467b48Spatrick   // Given a struct type, recursively traverse the elements.
132*09467b48Spatrick   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
133*09467b48Spatrick     const StructLayout *SL = DL.getStructLayout(STy);
134*09467b48Spatrick     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
135*09467b48Spatrick       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
136*09467b48Spatrick                        StartingOffset + SL->getElementOffset(I));
137*09467b48Spatrick     return;
138*09467b48Spatrick   }
139*09467b48Spatrick   // Given an array type, recursively traverse the elements.
140*09467b48Spatrick   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
141*09467b48Spatrick     Type *EltTy = ATy->getElementType();
142*09467b48Spatrick     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
143*09467b48Spatrick     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
144*09467b48Spatrick       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
145*09467b48Spatrick                        StartingOffset + i * EltSize);
146*09467b48Spatrick     return;
147*09467b48Spatrick   }
148*09467b48Spatrick   // Interpret void as zero return values.
149*09467b48Spatrick   if (Ty.isVoidTy())
150*09467b48Spatrick     return;
151*09467b48Spatrick   // Base case: we can get an LLT for this LLVM IR type.
152*09467b48Spatrick   ValueTys.push_back(getLLTForType(Ty, DL));
153*09467b48Spatrick   if (Offsets != nullptr)
154*09467b48Spatrick     Offsets->push_back(StartingOffset * 8);
155*09467b48Spatrick }
156*09467b48Spatrick 
157*09467b48Spatrick /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
158*09467b48Spatrick GlobalValue *llvm::ExtractTypeInfo(Value *V) {
159*09467b48Spatrick   V = V->stripPointerCasts();
160*09467b48Spatrick   GlobalValue *GV = dyn_cast<GlobalValue>(V);
161*09467b48Spatrick   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
162*09467b48Spatrick 
163*09467b48Spatrick   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
164*09467b48Spatrick     assert(Var->hasInitializer() &&
165*09467b48Spatrick            "The EH catch-all value must have an initializer");
166*09467b48Spatrick     Value *Init = Var->getInitializer();
167*09467b48Spatrick     GV = dyn_cast<GlobalValue>(Init);
168*09467b48Spatrick     if (!GV) V = cast<ConstantPointerNull>(Init);
169*09467b48Spatrick   }
170*09467b48Spatrick 
171*09467b48Spatrick   assert((GV || isa<ConstantPointerNull>(V)) &&
172*09467b48Spatrick          "TypeInfo must be a global variable or NULL");
173*09467b48Spatrick   return GV;
174*09467b48Spatrick }
175*09467b48Spatrick 
176*09467b48Spatrick /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
177*09467b48Spatrick /// processed uses a memory 'm' constraint.
178*09467b48Spatrick bool
179*09467b48Spatrick llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
180*09467b48Spatrick                                 const TargetLowering &TLI) {
181*09467b48Spatrick   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
182*09467b48Spatrick     InlineAsm::ConstraintInfo &CI = CInfos[i];
183*09467b48Spatrick     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
184*09467b48Spatrick       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
185*09467b48Spatrick       if (CType == TargetLowering::C_Memory)
186*09467b48Spatrick         return true;
187*09467b48Spatrick     }
188*09467b48Spatrick 
189*09467b48Spatrick     // Indirect operand accesses access memory.
190*09467b48Spatrick     if (CI.isIndirect)
191*09467b48Spatrick       return true;
192*09467b48Spatrick   }
193*09467b48Spatrick 
194*09467b48Spatrick   return false;
195*09467b48Spatrick }
196*09467b48Spatrick 
197*09467b48Spatrick /// getFCmpCondCode - Return the ISD condition code corresponding to
198*09467b48Spatrick /// the given LLVM IR floating-point condition code.  This includes
199*09467b48Spatrick /// consideration of global floating-point math flags.
200*09467b48Spatrick ///
201*09467b48Spatrick ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
202*09467b48Spatrick   switch (Pred) {
203*09467b48Spatrick   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
204*09467b48Spatrick   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
205*09467b48Spatrick   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
206*09467b48Spatrick   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
207*09467b48Spatrick   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
208*09467b48Spatrick   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
209*09467b48Spatrick   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
210*09467b48Spatrick   case FCmpInst::FCMP_ORD:   return ISD::SETO;
211*09467b48Spatrick   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
212*09467b48Spatrick   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
213*09467b48Spatrick   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
214*09467b48Spatrick   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
215*09467b48Spatrick   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
216*09467b48Spatrick   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
217*09467b48Spatrick   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
218*09467b48Spatrick   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
219*09467b48Spatrick   default: llvm_unreachable("Invalid FCmp predicate opcode!");
220*09467b48Spatrick   }
221*09467b48Spatrick }
222*09467b48Spatrick 
223*09467b48Spatrick ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
224*09467b48Spatrick   switch (CC) {
225*09467b48Spatrick     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
226*09467b48Spatrick     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
227*09467b48Spatrick     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
228*09467b48Spatrick     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
229*09467b48Spatrick     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
230*09467b48Spatrick     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
231*09467b48Spatrick     default: return CC;
232*09467b48Spatrick   }
233*09467b48Spatrick }
234*09467b48Spatrick 
235*09467b48Spatrick /// getICmpCondCode - Return the ISD condition code corresponding to
236*09467b48Spatrick /// the given LLVM IR integer condition code.
237*09467b48Spatrick ///
238*09467b48Spatrick ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
239*09467b48Spatrick   switch (Pred) {
240*09467b48Spatrick   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
241*09467b48Spatrick   case ICmpInst::ICMP_NE:  return ISD::SETNE;
242*09467b48Spatrick   case ICmpInst::ICMP_SLE: return ISD::SETLE;
243*09467b48Spatrick   case ICmpInst::ICMP_ULE: return ISD::SETULE;
244*09467b48Spatrick   case ICmpInst::ICMP_SGE: return ISD::SETGE;
245*09467b48Spatrick   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
246*09467b48Spatrick   case ICmpInst::ICMP_SLT: return ISD::SETLT;
247*09467b48Spatrick   case ICmpInst::ICMP_ULT: return ISD::SETULT;
248*09467b48Spatrick   case ICmpInst::ICMP_SGT: return ISD::SETGT;
249*09467b48Spatrick   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
250*09467b48Spatrick   default:
251*09467b48Spatrick     llvm_unreachable("Invalid ICmp predicate opcode!");
252*09467b48Spatrick   }
253*09467b48Spatrick }
254*09467b48Spatrick 
255*09467b48Spatrick static bool isNoopBitcast(Type *T1, Type *T2,
256*09467b48Spatrick                           const TargetLoweringBase& TLI) {
257*09467b48Spatrick   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
258*09467b48Spatrick          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
259*09467b48Spatrick           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
260*09467b48Spatrick }
261*09467b48Spatrick 
262*09467b48Spatrick /// Look through operations that will be free to find the earliest source of
263*09467b48Spatrick /// this value.
264*09467b48Spatrick ///
265*09467b48Spatrick /// @param ValLoc If V has aggregate type, we will be interested in a particular
266*09467b48Spatrick /// scalar component. This records its address; the reverse of this list gives a
267*09467b48Spatrick /// sequence of indices appropriate for an extractvalue to locate the important
268*09467b48Spatrick /// value. This value is updated during the function and on exit will indicate
269*09467b48Spatrick /// similar information for the Value returned.
270*09467b48Spatrick ///
271*09467b48Spatrick /// @param DataBits If this function looks through truncate instructions, this
272*09467b48Spatrick /// will record the smallest size attained.
273*09467b48Spatrick static const Value *getNoopInput(const Value *V,
274*09467b48Spatrick                                  SmallVectorImpl<unsigned> &ValLoc,
275*09467b48Spatrick                                  unsigned &DataBits,
276*09467b48Spatrick                                  const TargetLoweringBase &TLI,
277*09467b48Spatrick                                  const DataLayout &DL) {
278*09467b48Spatrick   while (true) {
279*09467b48Spatrick     // Try to look through V1; if V1 is not an instruction, it can't be looked
280*09467b48Spatrick     // through.
281*09467b48Spatrick     const Instruction *I = dyn_cast<Instruction>(V);
282*09467b48Spatrick     if (!I || I->getNumOperands() == 0) return V;
283*09467b48Spatrick     const Value *NoopInput = nullptr;
284*09467b48Spatrick 
285*09467b48Spatrick     Value *Op = I->getOperand(0);
286*09467b48Spatrick     if (isa<BitCastInst>(I)) {
287*09467b48Spatrick       // Look through truly no-op bitcasts.
288*09467b48Spatrick       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
289*09467b48Spatrick         NoopInput = Op;
290*09467b48Spatrick     } else if (isa<GetElementPtrInst>(I)) {
291*09467b48Spatrick       // Look through getelementptr
292*09467b48Spatrick       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
293*09467b48Spatrick         NoopInput = Op;
294*09467b48Spatrick     } else if (isa<IntToPtrInst>(I)) {
295*09467b48Spatrick       // Look through inttoptr.
296*09467b48Spatrick       // Make sure this isn't a truncating or extending cast.  We could
297*09467b48Spatrick       // support this eventually, but don't bother for now.
298*09467b48Spatrick       if (!isa<VectorType>(I->getType()) &&
299*09467b48Spatrick           DL.getPointerSizeInBits() ==
300*09467b48Spatrick               cast<IntegerType>(Op->getType())->getBitWidth())
301*09467b48Spatrick         NoopInput = Op;
302*09467b48Spatrick     } else if (isa<PtrToIntInst>(I)) {
303*09467b48Spatrick       // Look through ptrtoint.
304*09467b48Spatrick       // Make sure this isn't a truncating or extending cast.  We could
305*09467b48Spatrick       // support this eventually, but don't bother for now.
306*09467b48Spatrick       if (!isa<VectorType>(I->getType()) &&
307*09467b48Spatrick           DL.getPointerSizeInBits() ==
308*09467b48Spatrick               cast<IntegerType>(I->getType())->getBitWidth())
309*09467b48Spatrick         NoopInput = Op;
310*09467b48Spatrick     } else if (isa<TruncInst>(I) &&
311*09467b48Spatrick                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
312*09467b48Spatrick       DataBits = std::min((uint64_t)DataBits,
313*09467b48Spatrick                          I->getType()->getPrimitiveSizeInBits().getFixedSize());
314*09467b48Spatrick       NoopInput = Op;
315*09467b48Spatrick     } else if (auto CS = ImmutableCallSite(I)) {
316*09467b48Spatrick       const Value *ReturnedOp = CS.getReturnedArgOperand();
317*09467b48Spatrick       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
318*09467b48Spatrick         NoopInput = ReturnedOp;
319*09467b48Spatrick     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
320*09467b48Spatrick       // Value may come from either the aggregate or the scalar
321*09467b48Spatrick       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
322*09467b48Spatrick       if (ValLoc.size() >= InsertLoc.size() &&
323*09467b48Spatrick           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
324*09467b48Spatrick         // The type being inserted is a nested sub-type of the aggregate; we
325*09467b48Spatrick         // have to remove those initial indices to get the location we're
326*09467b48Spatrick         // interested in for the operand.
327*09467b48Spatrick         ValLoc.resize(ValLoc.size() - InsertLoc.size());
328*09467b48Spatrick         NoopInput = IVI->getInsertedValueOperand();
329*09467b48Spatrick       } else {
330*09467b48Spatrick         // The struct we're inserting into has the value we're interested in, no
331*09467b48Spatrick         // change of address.
332*09467b48Spatrick         NoopInput = Op;
333*09467b48Spatrick       }
334*09467b48Spatrick     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
335*09467b48Spatrick       // The part we're interested in will inevitably be some sub-section of the
336*09467b48Spatrick       // previous aggregate. Combine the two paths to obtain the true address of
337*09467b48Spatrick       // our element.
338*09467b48Spatrick       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
339*09467b48Spatrick       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
340*09467b48Spatrick       NoopInput = Op;
341*09467b48Spatrick     }
342*09467b48Spatrick     // Terminate if we couldn't find anything to look through.
343*09467b48Spatrick     if (!NoopInput)
344*09467b48Spatrick       return V;
345*09467b48Spatrick 
346*09467b48Spatrick     V = NoopInput;
347*09467b48Spatrick   }
348*09467b48Spatrick }
349*09467b48Spatrick 
350*09467b48Spatrick /// Return true if this scalar return value only has bits discarded on its path
351*09467b48Spatrick /// from the "tail call" to the "ret". This includes the obvious noop
352*09467b48Spatrick /// instructions handled by getNoopInput above as well as free truncations (or
353*09467b48Spatrick /// extensions prior to the call).
354*09467b48Spatrick static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
355*09467b48Spatrick                                  SmallVectorImpl<unsigned> &RetIndices,
356*09467b48Spatrick                                  SmallVectorImpl<unsigned> &CallIndices,
357*09467b48Spatrick                                  bool AllowDifferingSizes,
358*09467b48Spatrick                                  const TargetLoweringBase &TLI,
359*09467b48Spatrick                                  const DataLayout &DL) {
360*09467b48Spatrick 
361*09467b48Spatrick   // Trace the sub-value needed by the return value as far back up the graph as
362*09467b48Spatrick   // possible, in the hope that it will intersect with the value produced by the
363*09467b48Spatrick   // call. In the simple case with no "returned" attribute, the hope is actually
364*09467b48Spatrick   // that we end up back at the tail call instruction itself.
365*09467b48Spatrick   unsigned BitsRequired = UINT_MAX;
366*09467b48Spatrick   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
367*09467b48Spatrick 
368*09467b48Spatrick   // If this slot in the value returned is undef, it doesn't matter what the
369*09467b48Spatrick   // call puts there, it'll be fine.
370*09467b48Spatrick   if (isa<UndefValue>(RetVal))
371*09467b48Spatrick     return true;
372*09467b48Spatrick 
373*09467b48Spatrick   // Now do a similar search up through the graph to find where the value
374*09467b48Spatrick   // actually returned by the "tail call" comes from. In the simple case without
375*09467b48Spatrick   // a "returned" attribute, the search will be blocked immediately and the loop
376*09467b48Spatrick   // a Noop.
377*09467b48Spatrick   unsigned BitsProvided = UINT_MAX;
378*09467b48Spatrick   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
379*09467b48Spatrick 
380*09467b48Spatrick   // There's no hope if we can't actually trace them to (the same part of!) the
381*09467b48Spatrick   // same value.
382*09467b48Spatrick   if (CallVal != RetVal || CallIndices != RetIndices)
383*09467b48Spatrick     return false;
384*09467b48Spatrick 
385*09467b48Spatrick   // However, intervening truncates may have made the call non-tail. Make sure
386*09467b48Spatrick   // all the bits that are needed by the "ret" have been provided by the "tail
387*09467b48Spatrick   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
388*09467b48Spatrick   // extensions too.
389*09467b48Spatrick   if (BitsProvided < BitsRequired ||
390*09467b48Spatrick       (!AllowDifferingSizes && BitsProvided != BitsRequired))
391*09467b48Spatrick     return false;
392*09467b48Spatrick 
393*09467b48Spatrick   return true;
394*09467b48Spatrick }
395*09467b48Spatrick 
396*09467b48Spatrick /// For an aggregate type, determine whether a given index is within bounds or
397*09467b48Spatrick /// not.
398*09467b48Spatrick static bool indexReallyValid(CompositeType *T, unsigned Idx) {
399*09467b48Spatrick   if (ArrayType *AT = dyn_cast<ArrayType>(T))
400*09467b48Spatrick     return Idx < AT->getNumElements();
401*09467b48Spatrick 
402*09467b48Spatrick   return Idx < cast<StructType>(T)->getNumElements();
403*09467b48Spatrick }
404*09467b48Spatrick 
405*09467b48Spatrick /// Move the given iterators to the next leaf type in depth first traversal.
406*09467b48Spatrick ///
407*09467b48Spatrick /// Performs a depth-first traversal of the type as specified by its arguments,
408*09467b48Spatrick /// stopping at the next leaf node (which may be a legitimate scalar type or an
409*09467b48Spatrick /// empty struct or array).
410*09467b48Spatrick ///
411*09467b48Spatrick /// @param SubTypes List of the partial components making up the type from
412*09467b48Spatrick /// outermost to innermost non-empty aggregate. The element currently
413*09467b48Spatrick /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
414*09467b48Spatrick ///
415*09467b48Spatrick /// @param Path Set of extractvalue indices leading from the outermost type
416*09467b48Spatrick /// (SubTypes[0]) to the leaf node currently represented.
417*09467b48Spatrick ///
418*09467b48Spatrick /// @returns true if a new type was found, false otherwise. Calling this
419*09467b48Spatrick /// function again on a finished iterator will repeatedly return
420*09467b48Spatrick /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
421*09467b48Spatrick /// aggregate or a non-aggregate
422*09467b48Spatrick static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
423*09467b48Spatrick                                   SmallVectorImpl<unsigned> &Path) {
424*09467b48Spatrick   // First march back up the tree until we can successfully increment one of the
425*09467b48Spatrick   // coordinates in Path.
426*09467b48Spatrick   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
427*09467b48Spatrick     Path.pop_back();
428*09467b48Spatrick     SubTypes.pop_back();
429*09467b48Spatrick   }
430*09467b48Spatrick 
431*09467b48Spatrick   // If we reached the top, then the iterator is done.
432*09467b48Spatrick   if (Path.empty())
433*09467b48Spatrick     return false;
434*09467b48Spatrick 
435*09467b48Spatrick   // We know there's *some* valid leaf now, so march back down the tree picking
436*09467b48Spatrick   // out the left-most element at each node.
437*09467b48Spatrick   ++Path.back();
438*09467b48Spatrick   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
439*09467b48Spatrick   while (DeeperType->isAggregateType()) {
440*09467b48Spatrick     CompositeType *CT = cast<CompositeType>(DeeperType);
441*09467b48Spatrick     if (!indexReallyValid(CT, 0))
442*09467b48Spatrick       return true;
443*09467b48Spatrick 
444*09467b48Spatrick     SubTypes.push_back(CT);
445*09467b48Spatrick     Path.push_back(0);
446*09467b48Spatrick 
447*09467b48Spatrick     DeeperType = CT->getTypeAtIndex(0U);
448*09467b48Spatrick   }
449*09467b48Spatrick 
450*09467b48Spatrick   return true;
451*09467b48Spatrick }
452*09467b48Spatrick 
453*09467b48Spatrick /// Find the first non-empty, scalar-like type in Next and setup the iterator
454*09467b48Spatrick /// components.
455*09467b48Spatrick ///
456*09467b48Spatrick /// Assuming Next is an aggregate of some kind, this function will traverse the
457*09467b48Spatrick /// tree from left to right (i.e. depth-first) looking for the first
458*09467b48Spatrick /// non-aggregate type which will play a role in function return.
459*09467b48Spatrick ///
460*09467b48Spatrick /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
461*09467b48Spatrick /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
462*09467b48Spatrick /// i32 in that type.
463*09467b48Spatrick static bool firstRealType(Type *Next,
464*09467b48Spatrick                           SmallVectorImpl<CompositeType *> &SubTypes,
465*09467b48Spatrick                           SmallVectorImpl<unsigned> &Path) {
466*09467b48Spatrick   // First initialise the iterator components to the first "leaf" node
467*09467b48Spatrick   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
468*09467b48Spatrick   // despite nominally being an aggregate).
469*09467b48Spatrick   while (Next->isAggregateType() &&
470*09467b48Spatrick          indexReallyValid(cast<CompositeType>(Next), 0)) {
471*09467b48Spatrick     SubTypes.push_back(cast<CompositeType>(Next));
472*09467b48Spatrick     Path.push_back(0);
473*09467b48Spatrick     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
474*09467b48Spatrick   }
475*09467b48Spatrick 
476*09467b48Spatrick   // If there's no Path now, Next was originally scalar already (or empty
477*09467b48Spatrick   // leaf). We're done.
478*09467b48Spatrick   if (Path.empty())
479*09467b48Spatrick     return true;
480*09467b48Spatrick 
481*09467b48Spatrick   // Otherwise, use normal iteration to keep looking through the tree until we
482*09467b48Spatrick   // find a non-aggregate type.
483*09467b48Spatrick   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
484*09467b48Spatrick     if (!advanceToNextLeafType(SubTypes, Path))
485*09467b48Spatrick       return false;
486*09467b48Spatrick   }
487*09467b48Spatrick 
488*09467b48Spatrick   return true;
489*09467b48Spatrick }
490*09467b48Spatrick 
491*09467b48Spatrick /// Set the iterator data-structures to the next non-empty, non-aggregate
492*09467b48Spatrick /// subtype.
493*09467b48Spatrick static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
494*09467b48Spatrick                          SmallVectorImpl<unsigned> &Path) {
495*09467b48Spatrick   do {
496*09467b48Spatrick     if (!advanceToNextLeafType(SubTypes, Path))
497*09467b48Spatrick       return false;
498*09467b48Spatrick 
499*09467b48Spatrick     assert(!Path.empty() && "found a leaf but didn't set the path?");
500*09467b48Spatrick   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
501*09467b48Spatrick 
502*09467b48Spatrick   return true;
503*09467b48Spatrick }
504*09467b48Spatrick 
505*09467b48Spatrick 
506*09467b48Spatrick /// Test if the given instruction is in a position to be optimized
507*09467b48Spatrick /// with a tail-call. This roughly means that it's in a block with
508*09467b48Spatrick /// a return and there's nothing that needs to be scheduled
509*09467b48Spatrick /// between it and the return.
510*09467b48Spatrick ///
511*09467b48Spatrick /// This function only tests target-independent requirements.
512*09467b48Spatrick bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
513*09467b48Spatrick   const Instruction *I = CS.getInstruction();
514*09467b48Spatrick   const BasicBlock *ExitBB = I->getParent();
515*09467b48Spatrick   const Instruction *Term = ExitBB->getTerminator();
516*09467b48Spatrick   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
517*09467b48Spatrick 
518*09467b48Spatrick   // The block must end in a return statement or unreachable.
519*09467b48Spatrick   //
520*09467b48Spatrick   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
521*09467b48Spatrick   // an unreachable, for now. The way tailcall optimization is currently
522*09467b48Spatrick   // implemented means it will add an epilogue followed by a jump. That is
523*09467b48Spatrick   // not profitable. Also, if the callee is a special function (e.g.
524*09467b48Spatrick   // longjmp on x86), it can end up causing miscompilation that has not
525*09467b48Spatrick   // been fully understood.
526*09467b48Spatrick   if (!Ret &&
527*09467b48Spatrick       ((!TM.Options.GuaranteedTailCallOpt &&
528*09467b48Spatrick         CS.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term)))
529*09467b48Spatrick     return false;
530*09467b48Spatrick 
531*09467b48Spatrick   // If I will have a chain, make sure no other instruction that will have a
532*09467b48Spatrick   // chain interposes between I and the return.
533*09467b48Spatrick   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
534*09467b48Spatrick       !isSafeToSpeculativelyExecute(I))
535*09467b48Spatrick     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
536*09467b48Spatrick       if (&*BBI == I)
537*09467b48Spatrick         break;
538*09467b48Spatrick       // Debug info intrinsics do not get in the way of tail call optimization.
539*09467b48Spatrick       if (isa<DbgInfoIntrinsic>(BBI))
540*09467b48Spatrick         continue;
541*09467b48Spatrick       // A lifetime end or assume intrinsic should not stop tail call
542*09467b48Spatrick       // optimization.
543*09467b48Spatrick       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
544*09467b48Spatrick         if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
545*09467b48Spatrick             II->getIntrinsicID() == Intrinsic::assume)
546*09467b48Spatrick           continue;
547*09467b48Spatrick       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
548*09467b48Spatrick           !isSafeToSpeculativelyExecute(&*BBI))
549*09467b48Spatrick         return false;
550*09467b48Spatrick     }
551*09467b48Spatrick 
552*09467b48Spatrick   const Function *F = ExitBB->getParent();
553*09467b48Spatrick   return returnTypeIsEligibleForTailCall(
554*09467b48Spatrick       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
555*09467b48Spatrick }
556*09467b48Spatrick 
557*09467b48Spatrick bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
558*09467b48Spatrick                                     const ReturnInst *Ret,
559*09467b48Spatrick                                     const TargetLoweringBase &TLI,
560*09467b48Spatrick                                     bool *AllowDifferingSizes) {
561*09467b48Spatrick   // ADS may be null, so don't write to it directly.
562*09467b48Spatrick   bool DummyADS;
563*09467b48Spatrick   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
564*09467b48Spatrick   ADS = true;
565*09467b48Spatrick 
566*09467b48Spatrick   AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
567*09467b48Spatrick   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
568*09467b48Spatrick                           AttributeList::ReturnIndex);
569*09467b48Spatrick 
570*09467b48Spatrick   // Following attributes are completely benign as far as calling convention
571*09467b48Spatrick   // goes, they shouldn't affect whether the call is a tail call.
572*09467b48Spatrick   CallerAttrs.removeAttribute(Attribute::NoAlias);
573*09467b48Spatrick   CalleeAttrs.removeAttribute(Attribute::NoAlias);
574*09467b48Spatrick   CallerAttrs.removeAttribute(Attribute::NonNull);
575*09467b48Spatrick   CalleeAttrs.removeAttribute(Attribute::NonNull);
576*09467b48Spatrick   CallerAttrs.removeAttribute(Attribute::Dereferenceable);
577*09467b48Spatrick   CalleeAttrs.removeAttribute(Attribute::Dereferenceable);
578*09467b48Spatrick   CallerAttrs.removeAttribute(Attribute::DereferenceableOrNull);
579*09467b48Spatrick   CalleeAttrs.removeAttribute(Attribute::DereferenceableOrNull);
580*09467b48Spatrick 
581*09467b48Spatrick   if (CallerAttrs.contains(Attribute::ZExt)) {
582*09467b48Spatrick     if (!CalleeAttrs.contains(Attribute::ZExt))
583*09467b48Spatrick       return false;
584*09467b48Spatrick 
585*09467b48Spatrick     ADS = false;
586*09467b48Spatrick     CallerAttrs.removeAttribute(Attribute::ZExt);
587*09467b48Spatrick     CalleeAttrs.removeAttribute(Attribute::ZExt);
588*09467b48Spatrick   } else if (CallerAttrs.contains(Attribute::SExt)) {
589*09467b48Spatrick     if (!CalleeAttrs.contains(Attribute::SExt))
590*09467b48Spatrick       return false;
591*09467b48Spatrick 
592*09467b48Spatrick     ADS = false;
593*09467b48Spatrick     CallerAttrs.removeAttribute(Attribute::SExt);
594*09467b48Spatrick     CalleeAttrs.removeAttribute(Attribute::SExt);
595*09467b48Spatrick   }
596*09467b48Spatrick 
597*09467b48Spatrick   // Drop sext and zext return attributes if the result is not used.
598*09467b48Spatrick   // This enables tail calls for code like:
599*09467b48Spatrick   //
600*09467b48Spatrick   // define void @caller() {
601*09467b48Spatrick   // entry:
602*09467b48Spatrick   //   %unused_result = tail call zeroext i1 @callee()
603*09467b48Spatrick   //   br label %retlabel
604*09467b48Spatrick   // retlabel:
605*09467b48Spatrick   //   ret void
606*09467b48Spatrick   // }
607*09467b48Spatrick   if (I->use_empty()) {
608*09467b48Spatrick     CalleeAttrs.removeAttribute(Attribute::SExt);
609*09467b48Spatrick     CalleeAttrs.removeAttribute(Attribute::ZExt);
610*09467b48Spatrick   }
611*09467b48Spatrick 
612*09467b48Spatrick   // If they're still different, there's some facet we don't understand
613*09467b48Spatrick   // (currently only "inreg", but in future who knows). It may be OK but the
614*09467b48Spatrick   // only safe option is to reject the tail call.
615*09467b48Spatrick   return CallerAttrs == CalleeAttrs;
616*09467b48Spatrick }
617*09467b48Spatrick 
618*09467b48Spatrick /// Check whether B is a bitcast of a pointer type to another pointer type,
619*09467b48Spatrick /// which is equal to A.
620*09467b48Spatrick static bool isPointerBitcastEqualTo(const Value *A, const Value *B) {
621*09467b48Spatrick   assert(A && B && "Expected non-null inputs!");
622*09467b48Spatrick 
623*09467b48Spatrick   auto *BitCastIn = dyn_cast<BitCastInst>(B);
624*09467b48Spatrick 
625*09467b48Spatrick   if (!BitCastIn)
626*09467b48Spatrick     return false;
627*09467b48Spatrick 
628*09467b48Spatrick   if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
629*09467b48Spatrick     return false;
630*09467b48Spatrick 
631*09467b48Spatrick   return A == BitCastIn->getOperand(0);
632*09467b48Spatrick }
633*09467b48Spatrick 
634*09467b48Spatrick bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
635*09467b48Spatrick                                            const Instruction *I,
636*09467b48Spatrick                                            const ReturnInst *Ret,
637*09467b48Spatrick                                            const TargetLoweringBase &TLI) {
638*09467b48Spatrick   // If the block ends with a void return or unreachable, it doesn't matter
639*09467b48Spatrick   // what the call's return type is.
640*09467b48Spatrick   if (!Ret || Ret->getNumOperands() == 0) return true;
641*09467b48Spatrick 
642*09467b48Spatrick   // If the return value is undef, it doesn't matter what the call's
643*09467b48Spatrick   // return type is.
644*09467b48Spatrick   if (isa<UndefValue>(Ret->getOperand(0))) return true;
645*09467b48Spatrick 
646*09467b48Spatrick   // Make sure the attributes attached to each return are compatible.
647*09467b48Spatrick   bool AllowDifferingSizes;
648*09467b48Spatrick   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
649*09467b48Spatrick     return false;
650*09467b48Spatrick 
651*09467b48Spatrick   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
652*09467b48Spatrick   // Intrinsic like llvm.memcpy has no return value, but the expanded
653*09467b48Spatrick   // libcall may or may not have return value. On most platforms, it
654*09467b48Spatrick   // will be expanded as memcpy in libc, which returns the first
655*09467b48Spatrick   // argument. On other platforms like arm-none-eabi, memcpy may be
656*09467b48Spatrick   // expanded as library call without return value, like __aeabi_memcpy.
657*09467b48Spatrick   const CallInst *Call = cast<CallInst>(I);
658*09467b48Spatrick   if (Function *F = Call->getCalledFunction()) {
659*09467b48Spatrick     Intrinsic::ID IID = F->getIntrinsicID();
660*09467b48Spatrick     if (((IID == Intrinsic::memcpy &&
661*09467b48Spatrick           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
662*09467b48Spatrick          (IID == Intrinsic::memmove &&
663*09467b48Spatrick           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
664*09467b48Spatrick          (IID == Intrinsic::memset &&
665*09467b48Spatrick           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
666*09467b48Spatrick         (RetVal == Call->getArgOperand(0) ||
667*09467b48Spatrick          isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0))))
668*09467b48Spatrick       return true;
669*09467b48Spatrick   }
670*09467b48Spatrick 
671*09467b48Spatrick   SmallVector<unsigned, 4> RetPath, CallPath;
672*09467b48Spatrick   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
673*09467b48Spatrick 
674*09467b48Spatrick   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
675*09467b48Spatrick   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
676*09467b48Spatrick 
677*09467b48Spatrick   // Nothing's actually returned, it doesn't matter what the callee put there
678*09467b48Spatrick   // it's a valid tail call.
679*09467b48Spatrick   if (RetEmpty)
680*09467b48Spatrick     return true;
681*09467b48Spatrick 
682*09467b48Spatrick   // Iterate pairwise through each of the value types making up the tail call
683*09467b48Spatrick   // and the corresponding return. For each one we want to know whether it's
684*09467b48Spatrick   // essentially going directly from the tail call to the ret, via operations
685*09467b48Spatrick   // that end up not generating any code.
686*09467b48Spatrick   //
687*09467b48Spatrick   // We allow a certain amount of covariance here. For example it's permitted
688*09467b48Spatrick   // for the tail call to define more bits than the ret actually cares about
689*09467b48Spatrick   // (e.g. via a truncate).
690*09467b48Spatrick   do {
691*09467b48Spatrick     if (CallEmpty) {
692*09467b48Spatrick       // We've exhausted the values produced by the tail call instruction, the
693*09467b48Spatrick       // rest are essentially undef. The type doesn't really matter, but we need
694*09467b48Spatrick       // *something*.
695*09467b48Spatrick       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
696*09467b48Spatrick       CallVal = UndefValue::get(SlotType);
697*09467b48Spatrick     }
698*09467b48Spatrick 
699*09467b48Spatrick     // The manipulations performed when we're looking through an insertvalue or
700*09467b48Spatrick     // an extractvalue would happen at the front of the RetPath list, so since
701*09467b48Spatrick     // we have to copy it anyway it's more efficient to create a reversed copy.
702*09467b48Spatrick     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
703*09467b48Spatrick     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
704*09467b48Spatrick 
705*09467b48Spatrick     // Finally, we can check whether the value produced by the tail call at this
706*09467b48Spatrick     // index is compatible with the value we return.
707*09467b48Spatrick     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
708*09467b48Spatrick                               AllowDifferingSizes, TLI,
709*09467b48Spatrick                               F->getParent()->getDataLayout()))
710*09467b48Spatrick       return false;
711*09467b48Spatrick 
712*09467b48Spatrick     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
713*09467b48Spatrick   } while(nextRealType(RetSubTypes, RetPath));
714*09467b48Spatrick 
715*09467b48Spatrick   return true;
716*09467b48Spatrick }
717*09467b48Spatrick 
718*09467b48Spatrick static void collectEHScopeMembers(
719*09467b48Spatrick     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
720*09467b48Spatrick     const MachineBasicBlock *MBB) {
721*09467b48Spatrick   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
722*09467b48Spatrick   while (!Worklist.empty()) {
723*09467b48Spatrick     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
724*09467b48Spatrick     // Don't follow blocks which start new scopes.
725*09467b48Spatrick     if (Visiting->isEHPad() && Visiting != MBB)
726*09467b48Spatrick       continue;
727*09467b48Spatrick 
728*09467b48Spatrick     // Add this MBB to our scope.
729*09467b48Spatrick     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
730*09467b48Spatrick 
731*09467b48Spatrick     // Don't revisit blocks.
732*09467b48Spatrick     if (!P.second) {
733*09467b48Spatrick       assert(P.first->second == EHScope && "MBB is part of two scopes!");
734*09467b48Spatrick       continue;
735*09467b48Spatrick     }
736*09467b48Spatrick 
737*09467b48Spatrick     // Returns are boundaries where scope transfer can occur, don't follow
738*09467b48Spatrick     // successors.
739*09467b48Spatrick     if (Visiting->isEHScopeReturnBlock())
740*09467b48Spatrick       continue;
741*09467b48Spatrick 
742*09467b48Spatrick     for (const MachineBasicBlock *Succ : Visiting->successors())
743*09467b48Spatrick       Worklist.push_back(Succ);
744*09467b48Spatrick   }
745*09467b48Spatrick }
746*09467b48Spatrick 
747*09467b48Spatrick DenseMap<const MachineBasicBlock *, int>
748*09467b48Spatrick llvm::getEHScopeMembership(const MachineFunction &MF) {
749*09467b48Spatrick   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
750*09467b48Spatrick 
751*09467b48Spatrick   // We don't have anything to do if there aren't any EH pads.
752*09467b48Spatrick   if (!MF.hasEHScopes())
753*09467b48Spatrick     return EHScopeMembership;
754*09467b48Spatrick 
755*09467b48Spatrick   int EntryBBNumber = MF.front().getNumber();
756*09467b48Spatrick   bool IsSEH = isAsynchronousEHPersonality(
757*09467b48Spatrick       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
758*09467b48Spatrick 
759*09467b48Spatrick   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
760*09467b48Spatrick   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
761*09467b48Spatrick   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
762*09467b48Spatrick   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
763*09467b48Spatrick   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
764*09467b48Spatrick   for (const MachineBasicBlock &MBB : MF) {
765*09467b48Spatrick     if (MBB.isEHScopeEntry()) {
766*09467b48Spatrick       EHScopeBlocks.push_back(&MBB);
767*09467b48Spatrick     } else if (IsSEH && MBB.isEHPad()) {
768*09467b48Spatrick       SEHCatchPads.push_back(&MBB);
769*09467b48Spatrick     } else if (MBB.pred_empty()) {
770*09467b48Spatrick       UnreachableBlocks.push_back(&MBB);
771*09467b48Spatrick     }
772*09467b48Spatrick 
773*09467b48Spatrick     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
774*09467b48Spatrick 
775*09467b48Spatrick     // CatchPads are not scopes for SEH so do not consider CatchRet to
776*09467b48Spatrick     // transfer control to another scope.
777*09467b48Spatrick     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
778*09467b48Spatrick       continue;
779*09467b48Spatrick 
780*09467b48Spatrick     // FIXME: SEH CatchPads are not necessarily in the parent function:
781*09467b48Spatrick     // they could be inside a finally block.
782*09467b48Spatrick     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
783*09467b48Spatrick     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
784*09467b48Spatrick     CatchRetSuccessors.push_back(
785*09467b48Spatrick         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
786*09467b48Spatrick   }
787*09467b48Spatrick 
788*09467b48Spatrick   // We don't have anything to do if there aren't any EH pads.
789*09467b48Spatrick   if (EHScopeBlocks.empty())
790*09467b48Spatrick     return EHScopeMembership;
791*09467b48Spatrick 
792*09467b48Spatrick   // Identify all the basic blocks reachable from the function entry.
793*09467b48Spatrick   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
794*09467b48Spatrick   // All blocks not part of a scope are in the parent function.
795*09467b48Spatrick   for (const MachineBasicBlock *MBB : UnreachableBlocks)
796*09467b48Spatrick     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
797*09467b48Spatrick   // Next, identify all the blocks inside the scopes.
798*09467b48Spatrick   for (const MachineBasicBlock *MBB : EHScopeBlocks)
799*09467b48Spatrick     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
800*09467b48Spatrick   // SEH CatchPads aren't really scopes, handle them separately.
801*09467b48Spatrick   for (const MachineBasicBlock *MBB : SEHCatchPads)
802*09467b48Spatrick     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
803*09467b48Spatrick   // Finally, identify all the targets of a catchret.
804*09467b48Spatrick   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
805*09467b48Spatrick        CatchRetSuccessors)
806*09467b48Spatrick     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
807*09467b48Spatrick                           CatchRetPair.first);
808*09467b48Spatrick   return EHScopeMembership;
809*09467b48Spatrick }
810