xref: /openbsd-src/gnu/llvm/lldb/tools/debugserver/source/MacOSX/i386/DNBArchImplI386.cpp (revision 1a8dbaac879b9f3335ad7fb25429ce63ac1d6bac)
1 //===-- DNBArchImplI386.cpp -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  Created by Greg Clayton on 6/25/07.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #if defined(__i386__) || defined(__x86_64__)
14 
15 #include <sys/cdefs.h>
16 
17 #include "DNBLog.h"
18 #include "MacOSX/i386/DNBArchImplI386.h"
19 #include "MachProcess.h"
20 #include "MachThread.h"
21 
22 extern "C" bool CPUHasAVX(); // Defined over in DNBArchImplX86_64.cpp
23 extern "C" bool CPUHasAVX512f(); // Defined over in DNBArchImplX86_64.cpp
24 #if defined(LLDB_DEBUGSERVER_RELEASE) || defined(LLDB_DEBUGSERVER_DEBUG)
25 enum debugState { debugStateUnknown, debugStateOff, debugStateOn };
26 
27 static debugState sFPUDebugState = debugStateUnknown;
28 static debugState sAVXForceState = debugStateUnknown;
29 
30 static bool DebugFPURegs() {
31   if (sFPUDebugState == debugStateUnknown) {
32     if (getenv("DNB_DEBUG_FPU_REGS"))
33       sFPUDebugState = debugStateOn;
34     else
35       sFPUDebugState = debugStateOff;
36   }
37 
38   return (sFPUDebugState == debugStateOn);
39 }
40 
41 static bool ForceAVXRegs() {
42   if (sFPUDebugState == debugStateUnknown) {
43     if (getenv("DNB_DEBUG_X86_FORCE_AVX_REGS"))
44       sAVXForceState = debugStateOn;
45     else
46       sAVXForceState = debugStateOff;
47   }
48 
49   return (sAVXForceState == debugStateOn);
50 }
51 
52 #define DEBUG_FPU_REGS (DebugFPURegs())
53 #define FORCE_AVX_REGS (ForceAVXRegs())
54 #else
55 #define DEBUG_FPU_REGS (0)
56 #define FORCE_AVX_REGS (0)
57 #endif
58 
59 enum {
60   gpr_eax = 0,
61   gpr_ebx = 1,
62   gpr_ecx = 2,
63   gpr_edx = 3,
64   gpr_edi = 4,
65   gpr_esi = 5,
66   gpr_ebp = 6,
67   gpr_esp = 7,
68   gpr_ss = 8,
69   gpr_eflags = 9,
70   gpr_eip = 10,
71   gpr_cs = 11,
72   gpr_ds = 12,
73   gpr_es = 13,
74   gpr_fs = 14,
75   gpr_gs = 15,
76   gpr_ax,
77   gpr_bx,
78   gpr_cx,
79   gpr_dx,
80   gpr_di,
81   gpr_si,
82   gpr_bp,
83   gpr_sp,
84   gpr_ah,
85   gpr_bh,
86   gpr_ch,
87   gpr_dh,
88   gpr_al,
89   gpr_bl,
90   gpr_cl,
91   gpr_dl,
92   gpr_dil,
93   gpr_sil,
94   gpr_bpl,
95   gpr_spl,
96   k_num_gpr_regs
97 };
98 
99 enum {
100   fpu_fcw,
101   fpu_fsw,
102   fpu_ftw,
103   fpu_fop,
104   fpu_ip,
105   fpu_cs,
106   fpu_dp,
107   fpu_ds,
108   fpu_mxcsr,
109   fpu_mxcsrmask,
110   fpu_stmm0,
111   fpu_stmm1,
112   fpu_stmm2,
113   fpu_stmm3,
114   fpu_stmm4,
115   fpu_stmm5,
116   fpu_stmm6,
117   fpu_stmm7,
118   fpu_xmm0,
119   fpu_xmm1,
120   fpu_xmm2,
121   fpu_xmm3,
122   fpu_xmm4,
123   fpu_xmm5,
124   fpu_xmm6,
125   fpu_xmm7,
126   fpu_ymm0,
127   fpu_ymm1,
128   fpu_ymm2,
129   fpu_ymm3,
130   fpu_ymm4,
131   fpu_ymm5,
132   fpu_ymm6,
133   fpu_ymm7,
134   fpu_k0,
135   fpu_k1,
136   fpu_k2,
137   fpu_k3,
138   fpu_k4,
139   fpu_k5,
140   fpu_k6,
141   fpu_k7,
142   fpu_zmm0,
143   fpu_zmm1,
144   fpu_zmm2,
145   fpu_zmm3,
146   fpu_zmm4,
147   fpu_zmm5,
148   fpu_zmm6,
149   fpu_zmm7,
150   k_num_fpu_regs,
151 
152   // Aliases
153   fpu_fctrl = fpu_fcw,
154   fpu_fstat = fpu_fsw,
155   fpu_ftag = fpu_ftw,
156   fpu_fiseg = fpu_cs,
157   fpu_fioff = fpu_ip,
158   fpu_foseg = fpu_ds,
159   fpu_fooff = fpu_dp
160 };
161 
162 enum {
163   exc_trapno,
164   exc_err,
165   exc_faultvaddr,
166   k_num_exc_regs,
167 };
168 
169 enum {
170   ehframe_eax = 0,
171   ehframe_ecx,
172   ehframe_edx,
173   ehframe_ebx,
174 
175   // On i386 Darwin the eh_frame register numbers for ebp and esp are reversed
176   // from DWARF.
177   // It's due to an ancient compiler bug in the output of the eh_frame.
178   // Specifically, on i386 darwin eh_frame, 4 is ebp, 5 is esp.
179   // On i386 darwin debug_frame (and debug_info), 4 is esp, 5 is ebp.
180   ehframe_ebp,
181   ehframe_esp,
182   ehframe_esi,
183   ehframe_edi,
184   ehframe_eip,
185   ehframe_eflags
186 };
187 
188 enum {
189   dwarf_eax = 0,
190   dwarf_ecx,
191   dwarf_edx,
192   dwarf_ebx,
193   dwarf_esp,
194   dwarf_ebp,
195   dwarf_esi,
196   dwarf_edi,
197   dwarf_eip,
198   dwarf_eflags,
199   dwarf_stmm0 = 11,
200   dwarf_stmm1,
201   dwarf_stmm2,
202   dwarf_stmm3,
203   dwarf_stmm4,
204   dwarf_stmm5,
205   dwarf_stmm6,
206   dwarf_stmm7,
207   dwarf_xmm0 = 21,
208   dwarf_xmm1,
209   dwarf_xmm2,
210   dwarf_xmm3,
211   dwarf_xmm4,
212   dwarf_xmm5,
213   dwarf_xmm6,
214   dwarf_xmm7,
215   dwarf_ymm0 = dwarf_xmm0,
216   dwarf_ymm1 = dwarf_xmm1,
217   dwarf_ymm2 = dwarf_xmm2,
218   dwarf_ymm3 = dwarf_xmm3,
219   dwarf_ymm4 = dwarf_xmm4,
220   dwarf_ymm5 = dwarf_xmm5,
221   dwarf_ymm6 = dwarf_xmm6,
222   dwarf_ymm7 = dwarf_xmm7,
223   dwarf_zmm0 = dwarf_xmm0,
224   dwarf_zmm1 = dwarf_xmm1,
225   dwarf_zmm2 = dwarf_xmm2,
226   dwarf_zmm3 = dwarf_xmm3,
227   dwarf_zmm4 = dwarf_xmm4,
228   dwarf_zmm5 = dwarf_xmm5,
229   dwarf_zmm6 = dwarf_xmm6,
230   dwarf_zmm7 = dwarf_xmm7,
231   dwarf_k0 = 118,
232   dwarf_k1,
233   dwarf_k2,
234   dwarf_k3,
235   dwarf_k4,
236   dwarf_k5,
237   dwarf_k6,
238   dwarf_k7,
239 };
240 
241 enum {
242   debugserver_eax = 0,
243   debugserver_ecx = 1,
244   debugserver_edx = 2,
245   debugserver_ebx = 3,
246   debugserver_esp = 4,
247   debugserver_ebp = 5,
248   debugserver_esi = 6,
249   debugserver_edi = 7,
250   debugserver_eip = 8,
251   debugserver_eflags = 9,
252   debugserver_cs = 10,
253   debugserver_ss = 11,
254   debugserver_ds = 12,
255   debugserver_es = 13,
256   debugserver_fs = 14,
257   debugserver_gs = 15,
258   debugserver_stmm0 = 16,
259   debugserver_stmm1 = 17,
260   debugserver_stmm2 = 18,
261   debugserver_stmm3 = 19,
262   debugserver_stmm4 = 20,
263   debugserver_stmm5 = 21,
264   debugserver_stmm6 = 22,
265   debugserver_stmm7 = 23,
266   debugserver_fctrl = 24,
267   debugserver_fcw = debugserver_fctrl,
268   debugserver_fstat = 25,
269   debugserver_fsw = debugserver_fstat,
270   debugserver_ftag = 26,
271   debugserver_ftw = debugserver_ftag,
272   debugserver_fiseg = 27,
273   debugserver_fpu_cs = debugserver_fiseg,
274   debugserver_fioff = 28,
275   debugserver_ip = debugserver_fioff,
276   debugserver_foseg = 29,
277   debugserver_fpu_ds = debugserver_foseg,
278   debugserver_fooff = 30,
279   debugserver_dp = debugserver_fooff,
280   debugserver_fop = 31,
281   debugserver_xmm0 = 32,
282   debugserver_xmm1 = 33,
283   debugserver_xmm2 = 34,
284   debugserver_xmm3 = 35,
285   debugserver_xmm4 = 36,
286   debugserver_xmm5 = 37,
287   debugserver_xmm6 = 38,
288   debugserver_xmm7 = 39,
289   debugserver_mxcsr = 40,
290   debugserver_mm0 = 41,
291   debugserver_mm1 = 42,
292   debugserver_mm2 = 43,
293   debugserver_mm3 = 44,
294   debugserver_mm4 = 45,
295   debugserver_mm5 = 46,
296   debugserver_mm6 = 47,
297   debugserver_mm7 = 48,
298   debugserver_ymm0 = debugserver_xmm0,
299   debugserver_ymm1 = debugserver_xmm1,
300   debugserver_ymm2 = debugserver_xmm2,
301   debugserver_ymm3 = debugserver_xmm3,
302   debugserver_ymm4 = debugserver_xmm4,
303   debugserver_ymm5 = debugserver_xmm5,
304   debugserver_ymm6 = debugserver_xmm6,
305   debugserver_ymm7 = debugserver_xmm7,
306   debugserver_zmm0 = debugserver_xmm0,
307   debugserver_zmm1 = debugserver_xmm1,
308   debugserver_zmm2 = debugserver_xmm2,
309   debugserver_zmm3 = debugserver_xmm3,
310   debugserver_zmm4 = debugserver_xmm4,
311   debugserver_zmm5 = debugserver_xmm5,
312   debugserver_zmm6 = debugserver_xmm6,
313   debugserver_zmm7 = debugserver_xmm7,
314   debugserver_k0 = 118,
315   debugserver_k1 = 119,
316   debugserver_k2 = 120,
317   debugserver_k3 = 121,
318   debugserver_k4 = 122,
319   debugserver_k5 = 123,
320   debugserver_k6 = 124,
321   debugserver_k7 = 125,
322 };
323 
324 uint64_t DNBArchImplI386::GetPC(uint64_t failValue) {
325   // Get program counter
326   if (GetGPRState(false) == KERN_SUCCESS)
327     return m_state.context.gpr.__eip;
328   return failValue;
329 }
330 
331 kern_return_t DNBArchImplI386::SetPC(uint64_t value) {
332   // Get program counter
333   kern_return_t err = GetGPRState(false);
334   if (err == KERN_SUCCESS) {
335     m_state.context.gpr.__eip = static_cast<uint32_t>(value);
336     err = SetGPRState();
337   }
338   return err == KERN_SUCCESS;
339 }
340 
341 uint64_t DNBArchImplI386::GetSP(uint64_t failValue) {
342   // Get stack pointer
343   if (GetGPRState(false) == KERN_SUCCESS)
344     return m_state.context.gpr.__esp;
345   return failValue;
346 }
347 
348 // Uncomment the value below to verify the values in the debugger.
349 //#define DEBUG_GPR_VALUES 1    // DO NOT CHECK IN WITH THIS DEFINE ENABLED
350 //#define SET_GPR(reg) m_state.context.gpr.__##reg = gpr_##reg
351 
352 kern_return_t DNBArchImplI386::GetGPRState(bool force) {
353   if (force || m_state.GetError(e_regSetGPR, Read)) {
354 #if DEBUG_GPR_VALUES
355     SET_GPR(eax);
356     SET_GPR(ebx);
357     SET_GPR(ecx);
358     SET_GPR(edx);
359     SET_GPR(edi);
360     SET_GPR(esi);
361     SET_GPR(ebp);
362     SET_GPR(esp);
363     SET_GPR(ss);
364     SET_GPR(eflags);
365     SET_GPR(eip);
366     SET_GPR(cs);
367     SET_GPR(ds);
368     SET_GPR(es);
369     SET_GPR(fs);
370     SET_GPR(gs);
371     m_state.SetError(e_regSetGPR, Read, 0);
372 #else
373     mach_msg_type_number_t count = e_regSetWordSizeGPR;
374     m_state.SetError(
375         e_regSetGPR, Read,
376         ::thread_get_state(m_thread->MachPortNumber(), __i386_THREAD_STATE,
377                            (thread_state_t)&m_state.context.gpr, &count));
378 #endif
379   }
380   return m_state.GetError(e_regSetGPR, Read);
381 }
382 
383 // Uncomment the value below to verify the values in the debugger.
384 //#define DEBUG_FPU_VALUES 1    // DO NOT CHECK IN WITH THIS DEFINE ENABLED
385 
386 kern_return_t DNBArchImplI386::GetFPUState(bool force) {
387   if (force || m_state.GetError(e_regSetFPU, Read)) {
388     if (DEBUG_FPU_REGS) {
389 
390       m_state.context.fpu.no_avx.__fpu_reserved[0] = -1;
391       m_state.context.fpu.no_avx.__fpu_reserved[1] = -1;
392       *(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fcw) = 0x1234;
393       *(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fsw) = 0x5678;
394       m_state.context.fpu.no_avx.__fpu_ftw = 1;
395       m_state.context.fpu.no_avx.__fpu_rsrv1 = UINT8_MAX;
396       m_state.context.fpu.no_avx.__fpu_fop = 2;
397       m_state.context.fpu.no_avx.__fpu_ip = 3;
398       m_state.context.fpu.no_avx.__fpu_cs = 4;
399       m_state.context.fpu.no_avx.__fpu_rsrv2 = 5;
400       m_state.context.fpu.no_avx.__fpu_dp = 6;
401       m_state.context.fpu.no_avx.__fpu_ds = 7;
402       m_state.context.fpu.no_avx.__fpu_rsrv3 = UINT16_MAX;
403       m_state.context.fpu.no_avx.__fpu_mxcsr = 8;
404       m_state.context.fpu.no_avx.__fpu_mxcsrmask = 9;
405       for (int i = 0; i < 16; ++i) {
406         if (i < 10) {
407           m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = 'a';
408           m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = 'b';
409           m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = 'c';
410           m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = 'd';
411           m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = 'e';
412           m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = 'f';
413           m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = 'g';
414           m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = 'h';
415         } else {
416           m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
417           m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
418           m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
419           m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
420           m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
421           m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
422           m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
423           m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
424         }
425 
426         m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg[i] = '0';
427         m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg[i] = '1';
428         m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg[i] = '2';
429         m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg[i] = '3';
430         m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg[i] = '4';
431         m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg[i] = '5';
432         m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg[i] = '6';
433         m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg[i] = '7';
434       }
435       for (int i = 0; i < sizeof(m_state.context.fpu.no_avx.__fpu_rsrv4); ++i)
436         m_state.context.fpu.no_avx.__fpu_rsrv4[i] = INT8_MIN;
437       m_state.context.fpu.no_avx.__fpu_reserved1 = -1;
438 
439       if (CPUHasAVX() || FORCE_AVX_REGS) {
440         for (int i = 0; i < sizeof(m_state.context.fpu.avx.__avx_reserved1);
441              ++i)
442           m_state.context.fpu.avx.__avx_reserved1[i] = INT8_MIN;
443 
444         for (int i = 0; i < 16; ++i) {
445           m_state.context.fpu.avx.__fpu_ymmh0.__xmm_reg[i] = '0';
446           m_state.context.fpu.avx.__fpu_ymmh1.__xmm_reg[i] = '1';
447           m_state.context.fpu.avx.__fpu_ymmh2.__xmm_reg[i] = '2';
448           m_state.context.fpu.avx.__fpu_ymmh3.__xmm_reg[i] = '3';
449           m_state.context.fpu.avx.__fpu_ymmh4.__xmm_reg[i] = '4';
450           m_state.context.fpu.avx.__fpu_ymmh5.__xmm_reg[i] = '5';
451           m_state.context.fpu.avx.__fpu_ymmh6.__xmm_reg[i] = '6';
452           m_state.context.fpu.avx.__fpu_ymmh7.__xmm_reg[i] = '7';
453         }
454       }
455       if (CPUHasAVX512f() || FORCE_AVX_REGS) {
456         for (int i = 0; i < 8; ++i) {
457           m_state.context.fpu.avx512f.__fpu_k0.__opmask_reg[i] = '0';
458           m_state.context.fpu.avx512f.__fpu_k1.__opmask_reg[i] = '1';
459           m_state.context.fpu.avx512f.__fpu_k2.__opmask_reg[i] = '2';
460           m_state.context.fpu.avx512f.__fpu_k3.__opmask_reg[i] = '3';
461           m_state.context.fpu.avx512f.__fpu_k4.__opmask_reg[i] = '4';
462           m_state.context.fpu.avx512f.__fpu_k5.__opmask_reg[i] = '5';
463           m_state.context.fpu.avx512f.__fpu_k6.__opmask_reg[i] = '6';
464           m_state.context.fpu.avx512f.__fpu_k7.__opmask_reg[i] = '7';
465         }
466 
467         for (int i = 0; i < 32; ++i) {
468           m_state.context.fpu.avx512f.__fpu_zmmh0.__ymm_reg[i] = '0';
469           m_state.context.fpu.avx512f.__fpu_zmmh1.__ymm_reg[i] = '1';
470           m_state.context.fpu.avx512f.__fpu_zmmh2.__ymm_reg[i] = '2';
471           m_state.context.fpu.avx512f.__fpu_zmmh3.__ymm_reg[i] = '3';
472           m_state.context.fpu.avx512f.__fpu_zmmh4.__ymm_reg[i] = '4';
473           m_state.context.fpu.avx512f.__fpu_zmmh5.__ymm_reg[i] = '5';
474           m_state.context.fpu.avx512f.__fpu_zmmh6.__ymm_reg[i] = '6';
475           m_state.context.fpu.avx512f.__fpu_zmmh7.__ymm_reg[i] = '7';
476         }
477       }
478       m_state.SetError(e_regSetFPU, Read, 0);
479     } else {
480       mach_msg_type_number_t count = e_regSetWordSizeFPU;
481       int flavor = __i386_FLOAT_STATE;
482 
483       // On a machine with the AVX512 register set, a process only gets a
484       // full AVX512 register context after it uses the AVX512 registers;
485       // if the process has not yet triggered this change, trying to fetch
486       // the AVX512 registers will fail.  Fall through to fetching the AVX
487       // registers.
488       if (CPUHasAVX512f() || FORCE_AVX_REGS) {
489         count = e_regSetWordSizeAVX512f;
490         flavor = __i386_AVX512F_STATE;
491         m_state.SetError(e_regSetFPU, Read,
492                          ::thread_get_state(m_thread->MachPortNumber(), flavor,
493                                             (thread_state_t)&m_state.context.fpu,
494                                             &count));
495         DNBLogThreadedIf(LOG_THREAD,
496                          "::thread_get_state (0x%4.4x, %u, &fpu, %u => 0x%8.8x",
497                          m_thread->MachPortNumber(), flavor, (uint32_t)count,
498                          m_state.GetError(e_regSetFPU, Read));
499         if (m_state.GetError(e_regSetFPU, Read) == KERN_SUCCESS)
500           return m_state.GetError(e_regSetFPU, Read);
501       }
502       if (CPUHasAVX()) {
503         count = e_regSetWordSizeAVX;
504         flavor = __i386_AVX_STATE;
505       }
506       m_state.SetError(e_regSetFPU, Read,
507                        ::thread_get_state(m_thread->MachPortNumber(), flavor,
508                                           (thread_state_t)&m_state.context.fpu,
509                                           &count));
510       DNBLogThreadedIf(LOG_THREAD,
511                        "::thread_get_state (0x%4.4x, %u, &fpu, %u => 0x%8.8x",
512                        m_thread->MachPortNumber(), flavor, (uint32_t)count,
513                        m_state.GetError(e_regSetFPU, Read));
514     }
515   }
516   return m_state.GetError(e_regSetFPU, Read);
517 }
518 
519 kern_return_t DNBArchImplI386::GetEXCState(bool force) {
520   if (force || m_state.GetError(e_regSetEXC, Read)) {
521     mach_msg_type_number_t count = e_regSetWordSizeEXC;
522     m_state.SetError(
523         e_regSetEXC, Read,
524         ::thread_get_state(m_thread->MachPortNumber(), __i386_EXCEPTION_STATE,
525                            (thread_state_t)&m_state.context.exc, &count));
526   }
527   return m_state.GetError(e_regSetEXC, Read);
528 }
529 
530 kern_return_t DNBArchImplI386::SetGPRState() {
531   kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
532   DNBLogThreadedIf(
533       LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
534                   "(SetGPRState() for stop_count = %u)",
535       m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
536 
537   m_state.SetError(e_regSetGPR, Write,
538                    ::thread_set_state(m_thread->MachPortNumber(),
539                                       __i386_THREAD_STATE,
540                                       (thread_state_t)&m_state.context.gpr,
541                                       e_regSetWordSizeGPR));
542   return m_state.GetError(e_regSetGPR, Write);
543 }
544 
545 kern_return_t DNBArchImplI386::SetFPUState() {
546   if (DEBUG_FPU_REGS) {
547     m_state.SetError(e_regSetFPU, Write, 0);
548     return m_state.GetError(e_regSetFPU, Write);
549   } else {
550     int flavor = __i386_FLOAT_STATE;
551     mach_msg_type_number_t count = e_regSetWordSizeFPU;
552     if (CPUHasAVX512f() || FORCE_AVX_REGS) {
553       flavor = __i386_AVX512F_STATE;
554       count = e_regSetWordSizeAVX512f;
555     } else
556     if (CPUHasAVX()) {
557       flavor = __i386_AVX_STATE;
558       count = e_regSetWordSizeAVX;
559     }
560 
561     m_state.SetError(e_regSetFPU, Write,
562                      ::thread_set_state(m_thread->MachPortNumber(), flavor,
563                                         (thread_state_t)&m_state.context.fpu,
564                                         count));
565     return m_state.GetError(e_regSetFPU, Write);
566   }
567 }
568 
569 kern_return_t DNBArchImplI386::SetEXCState() {
570   m_state.SetError(e_regSetEXC, Write,
571                    ::thread_set_state(m_thread->MachPortNumber(),
572                                       __i386_EXCEPTION_STATE,
573                                       (thread_state_t)&m_state.context.exc,
574                                       e_regSetWordSizeEXC));
575   return m_state.GetError(e_regSetEXC, Write);
576 }
577 
578 kern_return_t DNBArchImplI386::GetDBGState(bool force) {
579   if (force || m_state.GetError(e_regSetDBG, Read)) {
580     mach_msg_type_number_t count = e_regSetWordSizeDBG;
581     m_state.SetError(
582         e_regSetDBG, Read,
583         ::thread_get_state(m_thread->MachPortNumber(), __i386_DEBUG_STATE,
584                            (thread_state_t)&m_state.context.dbg, &count));
585   }
586   return m_state.GetError(e_regSetDBG, Read);
587 }
588 
589 kern_return_t DNBArchImplI386::SetDBGState(bool also_set_on_task) {
590   m_state.SetError(e_regSetDBG, Write,
591                    ::thread_set_state(m_thread->MachPortNumber(),
592                                       __i386_DEBUG_STATE,
593                                       (thread_state_t)&m_state.context.dbg,
594                                       e_regSetWordSizeDBG));
595   if (also_set_on_task) {
596     kern_return_t kret = ::task_set_state(
597         m_thread->Process()->Task().TaskPort(), __i386_DEBUG_STATE,
598         (thread_state_t)&m_state.context.dbg, e_regSetWordSizeDBG);
599     if (kret != KERN_SUCCESS)
600       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::SetDBGState failed "
601                                         "to set debug control register state: "
602                                         "0x%8.8x.",
603                        kret);
604   }
605   return m_state.GetError(e_regSetDBG, Write);
606 }
607 
608 void DNBArchImplI386::ThreadWillResume() {
609   // Do we need to step this thread? If so, let the mach thread tell us so.
610   if (m_thread->IsStepping()) {
611     // This is the primary thread, let the arch do anything it needs
612     EnableHardwareSingleStep(true);
613   }
614 
615   // Reset the debug status register, if necessary, before we resume.
616   kern_return_t kret = GetDBGState(false);
617   DNBLogThreadedIf(
618       LOG_WATCHPOINTS,
619       "DNBArchImplI386::ThreadWillResume() GetDBGState() => 0x%8.8x.", kret);
620   if (kret != KERN_SUCCESS)
621     return;
622 
623   DBG &debug_state = m_state.context.dbg;
624   bool need_reset = false;
625   uint32_t i, num = NumSupportedHardwareWatchpoints();
626   for (i = 0; i < num; ++i)
627     if (IsWatchpointHit(debug_state, i))
628       need_reset = true;
629 
630   if (need_reset) {
631     ClearWatchpointHits(debug_state);
632     kret = SetDBGState(false);
633     DNBLogThreadedIf(
634         LOG_WATCHPOINTS,
635         "DNBArchImplI386::ThreadWillResume() SetDBGState() => 0x%8.8x.", kret);
636   }
637 }
638 
639 bool DNBArchImplI386::ThreadDidStop() {
640   bool success = true;
641 
642   m_state.InvalidateAllRegisterStates();
643 
644   // Are we stepping a single instruction?
645   if (GetGPRState(true) == KERN_SUCCESS) {
646     // We are single stepping, was this the primary thread?
647     if (m_thread->IsStepping()) {
648       // This was the primary thread, we need to clear the trace
649       // bit if so.
650       success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
651     } else {
652       // The MachThread will automatically restore the suspend count
653       // in ThreadDidStop(), so we don't need to do anything here if
654       // we weren't the primary thread the last time
655     }
656   }
657   return success;
658 }
659 
660 bool DNBArchImplI386::NotifyException(MachException::Data &exc) {
661   switch (exc.exc_type) {
662   case EXC_BAD_ACCESS:
663     break;
664   case EXC_BAD_INSTRUCTION:
665     break;
666   case EXC_ARITHMETIC:
667     break;
668   case EXC_EMULATION:
669     break;
670   case EXC_SOFTWARE:
671     break;
672   case EXC_BREAKPOINT:
673     if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 2) {
674       // exc_code = EXC_I386_BPT
675       //
676       nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS);
677       if (pc != INVALID_NUB_ADDRESS && pc > 0) {
678         pc -= 1;
679         // Check for a breakpoint at one byte prior to the current PC value
680         // since the PC will be just past the trap.
681 
682         DNBBreakpoint *bp =
683             m_thread->Process()->Breakpoints().FindByAddress(pc);
684         if (bp) {
685           // Backup the PC for i386 since the trap was taken and the PC
686           // is at the address following the single byte trap instruction.
687           if (m_state.context.gpr.__eip > 0) {
688             m_state.context.gpr.__eip = static_cast<uint32_t>(pc);
689             // Write the new PC back out
690             SetGPRState();
691           }
692         }
693         return true;
694       }
695     } else if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 1) {
696       // exc_code = EXC_I386_SGL
697       //
698       // Check whether this corresponds to a watchpoint hit event.
699       // If yes, set the exc_sub_code to the data break address.
700       nub_addr_t addr = 0;
701       uint32_t hw_index = GetHardwareWatchpointHit(addr);
702       if (hw_index != INVALID_NUB_HW_INDEX) {
703         exc.exc_data[1] = addr;
704         // Piggyback the hw_index in the exc.data.
705         exc.exc_data.push_back(hw_index);
706       }
707 
708       return true;
709     }
710     break;
711   case EXC_SYSCALL:
712     break;
713   case EXC_MACH_SYSCALL:
714     break;
715   case EXC_RPC_ALERT:
716     break;
717   }
718   return false;
719 }
720 
721 uint32_t DNBArchImplI386::NumSupportedHardwareWatchpoints() {
722   // Available debug address registers: dr0, dr1, dr2, dr3.
723   return 4;
724 }
725 
726 static uint32_t size_and_rw_bits(nub_size_t size, bool read, bool write) {
727   uint32_t rw;
728   if (read) {
729     rw = 0x3; // READ or READ/WRITE
730   } else if (write) {
731     rw = 0x1; // WRITE
732   } else {
733     assert(0 && "read and write cannot both be false");
734   }
735 
736   switch (size) {
737   case 1:
738     return rw;
739   case 2:
740     return (0x1 << 2) | rw;
741   case 4:
742     return (0x3 << 2) | rw;
743   case 8:
744     return (0x2 << 2) | rw;
745   }
746   assert(0 && "invalid size, must be one of 1, 2, 4, or 8");
747   return 0;
748 }
749 
750 void DNBArchImplI386::SetWatchpoint(DBG &debug_state, uint32_t hw_index,
751                                     nub_addr_t addr, nub_size_t size, bool read,
752                                     bool write) {
753   // Set both dr7 (debug control register) and dri (debug address register).
754 
755   // dr7{7-0} encodes the local/gloabl enable bits:
756   //  global enable --. .-- local enable
757   //                  | |
758   //                  v v
759   //      dr0 -> bits{1-0}
760   //      dr1 -> bits{3-2}
761   //      dr2 -> bits{5-4}
762   //      dr3 -> bits{7-6}
763   //
764   // dr7{31-16} encodes the rw/len bits:
765   //  b_x+3, b_x+2, b_x+1, b_x
766   //      where bits{x+1, x} => rw
767   //            0b00: execute, 0b01: write, 0b11: read-or-write, 0b10: io
768   //            read-or-write (unused)
769   //      and bits{x+3, x+2} => len
770   //            0b00: 1-byte, 0b01: 2-byte, 0b11: 4-byte, 0b10: 8-byte
771   //
772   //      dr0 -> bits{19-16}
773   //      dr1 -> bits{23-20}
774   //      dr2 -> bits{27-24}
775   //      dr3 -> bits{31-28}
776   debug_state.__dr7 |=
777       (1 << (2 * hw_index) |
778        size_and_rw_bits(size, read, write) << (16 + 4 * hw_index));
779   uint32_t addr_32 = addr & 0xffffffff;
780   switch (hw_index) {
781   case 0:
782     debug_state.__dr0 = addr_32;
783     break;
784   case 1:
785     debug_state.__dr1 = addr_32;
786     break;
787   case 2:
788     debug_state.__dr2 = addr_32;
789     break;
790   case 3:
791     debug_state.__dr3 = addr_32;
792     break;
793   default:
794     assert(0 &&
795            "invalid hardware register index, must be one of 0, 1, 2, or 3");
796   }
797   return;
798 }
799 
800 void DNBArchImplI386::ClearWatchpoint(DBG &debug_state, uint32_t hw_index) {
801   debug_state.__dr7 &= ~(3 << (2 * hw_index));
802   switch (hw_index) {
803   case 0:
804     debug_state.__dr0 = 0;
805     break;
806   case 1:
807     debug_state.__dr1 = 0;
808     break;
809   case 2:
810     debug_state.__dr2 = 0;
811     break;
812   case 3:
813     debug_state.__dr3 = 0;
814     break;
815   default:
816     assert(0 &&
817            "invalid hardware register index, must be one of 0, 1, 2, or 3");
818   }
819   return;
820 }
821 
822 bool DNBArchImplI386::IsWatchpointVacant(const DBG &debug_state,
823                                          uint32_t hw_index) {
824   // Check dr7 (debug control register) for local/global enable bits:
825   //  global enable --. .-- local enable
826   //                  | |
827   //                  v v
828   //      dr0 -> bits{1-0}
829   //      dr1 -> bits{3-2}
830   //      dr2 -> bits{5-4}
831   //      dr3 -> bits{7-6}
832   return (debug_state.__dr7 & (3 << (2 * hw_index))) == 0;
833 }
834 
835 // Resets local copy of debug status register to wait for the next debug
836 // exception.
837 void DNBArchImplI386::ClearWatchpointHits(DBG &debug_state) {
838   // See also IsWatchpointHit().
839   debug_state.__dr6 = 0;
840   return;
841 }
842 
843 bool DNBArchImplI386::IsWatchpointHit(const DBG &debug_state,
844                                       uint32_t hw_index) {
845   // Check dr6 (debug status register) whether a watchpoint hits:
846   //          is watchpoint hit?
847   //                  |
848   //                  v
849   //      dr0 -> bits{0}
850   //      dr1 -> bits{1}
851   //      dr2 -> bits{2}
852   //      dr3 -> bits{3}
853   return (debug_state.__dr6 & (1 << hw_index));
854 }
855 
856 nub_addr_t DNBArchImplI386::GetWatchAddress(const DBG &debug_state,
857                                             uint32_t hw_index) {
858   switch (hw_index) {
859   case 0:
860     return debug_state.__dr0;
861   case 1:
862     return debug_state.__dr1;
863   case 2:
864     return debug_state.__dr2;
865   case 3:
866     return debug_state.__dr3;
867   }
868   assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
869   return 0;
870 }
871 
872 bool DNBArchImplI386::StartTransForHWP() {
873   if (m_2pc_trans_state != Trans_Done && m_2pc_trans_state != Trans_Rolled_Back)
874     DNBLogError("%s inconsistent state detected, expected %d or %d, got: %d",
875                 __FUNCTION__, Trans_Done, Trans_Rolled_Back, m_2pc_trans_state);
876   m_2pc_dbg_checkpoint = m_state.context.dbg;
877   m_2pc_trans_state = Trans_Pending;
878   return true;
879 }
880 bool DNBArchImplI386::RollbackTransForHWP() {
881   m_state.context.dbg = m_2pc_dbg_checkpoint;
882   if (m_2pc_trans_state != Trans_Pending)
883     DNBLogError("%s inconsistent state detected, expected %d, got: %d",
884                 __FUNCTION__, Trans_Pending, m_2pc_trans_state);
885   m_2pc_trans_state = Trans_Rolled_Back;
886   kern_return_t kret = SetDBGState(false);
887   DNBLogThreadedIf(
888       LOG_WATCHPOINTS,
889       "DNBArchImplI386::RollbackTransForHWP() SetDBGState() => 0x%8.8x.", kret);
890 
891   return kret == KERN_SUCCESS;
892 }
893 bool DNBArchImplI386::FinishTransForHWP() {
894   m_2pc_trans_state = Trans_Done;
895   return true;
896 }
897 DNBArchImplI386::DBG DNBArchImplI386::GetDBGCheckpoint() {
898   return m_2pc_dbg_checkpoint;
899 }
900 
901 uint32_t DNBArchImplI386::EnableHardwareWatchpoint(nub_addr_t addr,
902                                                    nub_size_t size, bool read,
903                                                    bool write,
904                                                    bool also_set_on_task) {
905   DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::EnableHardwareWatchpoint("
906                                     "addr = 0x%llx, size = %llu, read = %u, "
907                                     "write = %u)",
908                    (uint64_t)addr, (uint64_t)size, read, write);
909 
910   const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
911 
912   // Can only watch 1, 2, 4, or 8 bytes.
913   if (!(size == 1 || size == 2 || size == 4 || size == 8))
914     return INVALID_NUB_HW_INDEX;
915 
916   // We must watch for either read or write
917   if (!read && !write)
918     return INVALID_NUB_HW_INDEX;
919 
920   // Read the debug state
921   kern_return_t kret = GetDBGState(false);
922 
923   if (kret == KERN_SUCCESS) {
924     // Check to make sure we have the needed hardware support
925     uint32_t i = 0;
926 
927     DBG &debug_state = m_state.context.dbg;
928     for (i = 0; i < num_hw_watchpoints; ++i) {
929       if (IsWatchpointVacant(debug_state, i))
930         break;
931     }
932 
933     // See if we found an available hw breakpoint slot above
934     if (i < num_hw_watchpoints) {
935       StartTransForHWP();
936 
937       // Modify our local copy of the debug state, first.
938       SetWatchpoint(debug_state, i, addr, size, read, write);
939       // Now set the watch point in the inferior.
940       kret = SetDBGState(also_set_on_task);
941       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::"
942                                         "EnableHardwareWatchpoint() "
943                                         "SetDBGState() => 0x%8.8x.",
944                        kret);
945 
946       if (kret == KERN_SUCCESS)
947         return i;
948       else // Revert to the previous debug state voluntarily.  The transaction
949            // coordinator knows that we have failed.
950         m_state.context.dbg = GetDBGCheckpoint();
951     } else {
952       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::"
953                                         "EnableHardwareWatchpoint(): All "
954                                         "hardware resources (%u) are in use.",
955                        num_hw_watchpoints);
956     }
957   }
958   return INVALID_NUB_HW_INDEX;
959 }
960 
961 bool DNBArchImplI386::DisableHardwareWatchpoint(uint32_t hw_index,
962                                                 bool also_set_on_task) {
963   kern_return_t kret = GetDBGState(false);
964 
965   const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
966   if (kret == KERN_SUCCESS) {
967     DBG &debug_state = m_state.context.dbg;
968     if (hw_index < num_hw_points &&
969         !IsWatchpointVacant(debug_state, hw_index)) {
970       StartTransForHWP();
971 
972       // Modify our local copy of the debug state, first.
973       ClearWatchpoint(debug_state, hw_index);
974       // Now disable the watch point in the inferior.
975       kret = SetDBGState(also_set_on_task);
976       DNBLogThreadedIf(LOG_WATCHPOINTS,
977                        "DNBArchImplI386::DisableHardwareWatchpoint( %u )",
978                        hw_index);
979 
980       if (kret == KERN_SUCCESS)
981         return true;
982       else // Revert to the previous debug state voluntarily.  The transaction
983            // coordinator knows that we have failed.
984         m_state.context.dbg = GetDBGCheckpoint();
985     }
986   }
987   return false;
988 }
989 
990 // Iterate through the debug status register; return the index of the first hit.
991 uint32_t DNBArchImplI386::GetHardwareWatchpointHit(nub_addr_t &addr) {
992   // Read the debug state
993   kern_return_t kret = GetDBGState(true);
994   DNBLogThreadedIf(
995       LOG_WATCHPOINTS,
996       "DNBArchImplI386::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.",
997       kret);
998   if (kret == KERN_SUCCESS) {
999     DBG &debug_state = m_state.context.dbg;
1000     uint32_t i, num = NumSupportedHardwareWatchpoints();
1001     for (i = 0; i < num; ++i) {
1002       if (IsWatchpointHit(debug_state, i)) {
1003         addr = GetWatchAddress(debug_state, i);
1004         DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::"
1005                                           "GetHardwareWatchpointHit() found => "
1006                                           "%u (addr = 0x%llx).",
1007                          i, (uint64_t)addr);
1008         return i;
1009       }
1010     }
1011   }
1012   return INVALID_NUB_HW_INDEX;
1013 }
1014 
1015 // Set the single step bit in the processor status register.
1016 kern_return_t DNBArchImplI386::EnableHardwareSingleStep(bool enable) {
1017   if (GetGPRState(false) == KERN_SUCCESS) {
1018     const uint32_t trace_bit = 0x100u;
1019     if (enable)
1020       m_state.context.gpr.__eflags |= trace_bit;
1021     else
1022       m_state.context.gpr.__eflags &= ~trace_bit;
1023     return SetGPRState();
1024   }
1025   return m_state.GetError(e_regSetGPR, Read);
1026 }
1027 
1028 // Register information definitions
1029 
1030 #define DEFINE_GPR_PSEUDO_16(reg16, reg32)                                     \
1031   {                                                                            \
1032     e_regSetGPR, gpr_##reg16, #reg16, NULL, Uint, Hex, 2, 0,                   \
1033         INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,            \
1034         INVALID_NUB_REGNUM, g_contained_##reg32, g_invalidate_##reg32          \
1035   }
1036 #define DEFINE_GPR_PSEUDO_8H(reg8, reg32)                                      \
1037   {                                                                            \
1038     e_regSetGPR, gpr_##reg8, #reg8, NULL, Uint, Hex, 1, 1, INVALID_NUB_REGNUM, \
1039         INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,            \
1040         g_contained_##reg32, g_invalidate_##reg32                              \
1041   }
1042 #define DEFINE_GPR_PSEUDO_8L(reg8, reg32)                                      \
1043   {                                                                            \
1044     e_regSetGPR, gpr_##reg8, #reg8, NULL, Uint, Hex, 1, 0, INVALID_NUB_REGNUM, \
1045         INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,            \
1046         g_contained_##reg32, g_invalidate_##reg32                              \
1047   }
1048 
1049 #define GPR_OFFSET(reg) (offsetof(DNBArchImplI386::GPR, __##reg))
1050 #define FPU_OFFSET(reg)                                                        \
1051   (offsetof(DNBArchImplI386::FPU, __fpu_##reg) +                               \
1052    offsetof(DNBArchImplI386::Context, fpu.no_avx))
1053 #define AVX_OFFSET(reg)                                                        \
1054   (offsetof(DNBArchImplI386::AVX, __fpu_##reg) +                               \
1055    offsetof(DNBArchImplI386::Context, fpu.avx))
1056 #define AVX512F_OFFSET(reg)                                                    \
1057   (offsetof(DNBArchImplI386::AVX512F, __fpu_##reg) +                           \
1058    offsetof(DNBArchImplI386::Context, fpu.avx512f))
1059 #define EXC_OFFSET(reg)                                                        \
1060   (offsetof(DNBArchImplI386::EXC, __##reg) +                                   \
1061    offsetof(DNBArchImplI386::Context, exc))
1062 
1063 #define GPR_SIZE(reg) (sizeof(((DNBArchImplI386::GPR *)NULL)->__##reg))
1064 #define FPU_SIZE_UINT(reg) (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg))
1065 #define FPU_SIZE_MMST(reg)                                                     \
1066   (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__mmst_reg))
1067 #define FPU_SIZE_XMM(reg)                                                      \
1068   (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__xmm_reg))
1069 #define FPU_SIZE_YMM(reg) (32)
1070 #define FPU_SIZE_ZMM(reg) (64)
1071 #define EXC_SIZE(reg) (sizeof(((DNBArchImplI386::EXC *)NULL)->__##reg))
1072 
1073 // This does not accurately identify the location of ymm0...7 in
1074 // Context.fpu.avx.  That is because there is a bunch of padding
1075 // in Context.fpu.avx that we don't need.  Offset macros lay out
1076 // the register state that Debugserver transmits to the debugger
1077 // -- not to interpret the thread_get_state info.
1078 #define AVX_OFFSET_YMM(n) (AVX_OFFSET(xmm7) + FPU_SIZE_XMM(xmm7) + (32 * n))
1079 
1080 // TODO: Test this and come back.
1081 #define AVX512F_OFFSET_ZMM(n) (AVX_OFFSET_YMM(7) + FPU_SIZE_XMM(xmm7) + (64 * n))
1082 
1083 // These macros will auto define the register name, alt name, register size,
1084 // register offset, encoding, format and native register. This ensures that
1085 // the register state structures are defined correctly and have the correct
1086 // sizes and offsets.
1087 
1088 const char *g_contained_eax[] = {"eax", NULL};
1089 const char *g_contained_ebx[] = {"ebx", NULL};
1090 const char *g_contained_ecx[] = {"ecx", NULL};
1091 const char *g_contained_edx[] = {"edx", NULL};
1092 const char *g_contained_edi[] = {"edi", NULL};
1093 const char *g_contained_esi[] = {"esi", NULL};
1094 const char *g_contained_ebp[] = {"ebp", NULL};
1095 const char *g_contained_esp[] = {"esp", NULL};
1096 
1097 const char *g_invalidate_eax[] = {"eax", "ax", "ah", "al", NULL};
1098 const char *g_invalidate_ebx[] = {"ebx", "bx", "bh", "bl", NULL};
1099 const char *g_invalidate_ecx[] = {"ecx", "cx", "ch", "cl", NULL};
1100 const char *g_invalidate_edx[] = {"edx", "dx", "dh", "dl", NULL};
1101 const char *g_invalidate_edi[] = {"edi", "di", "dil", NULL};
1102 const char *g_invalidate_esi[] = {"esi", "si", "sil", NULL};
1103 const char *g_invalidate_ebp[] = {"ebp", "bp", "bpl", NULL};
1104 const char *g_invalidate_esp[] = {"esp", "sp", "spl", NULL};
1105 
1106 // General purpose registers for 64 bit
1107 const DNBRegisterInfo DNBArchImplI386::g_gpr_registers[] = {
1108     {e_regSetGPR, gpr_eax, "eax", NULL, Uint, Hex, GPR_SIZE(eax),
1109      GPR_OFFSET(eax), ehframe_eax, dwarf_eax, INVALID_NUB_REGNUM,
1110      debugserver_eax, NULL, g_invalidate_eax},
1111     {e_regSetGPR, gpr_ebx, "ebx", NULL, Uint, Hex, GPR_SIZE(ebx),
1112      GPR_OFFSET(ebx), ehframe_ebx, dwarf_ebx, INVALID_NUB_REGNUM,
1113      debugserver_ebx, NULL, g_invalidate_ebx},
1114     {e_regSetGPR, gpr_ecx, "ecx", NULL, Uint, Hex, GPR_SIZE(ecx),
1115      GPR_OFFSET(ecx), ehframe_ecx, dwarf_ecx, INVALID_NUB_REGNUM,
1116      debugserver_ecx, NULL, g_invalidate_ecx},
1117     {e_regSetGPR, gpr_edx, "edx", NULL, Uint, Hex, GPR_SIZE(edx),
1118      GPR_OFFSET(edx), ehframe_edx, dwarf_edx, INVALID_NUB_REGNUM,
1119      debugserver_edx, NULL, g_invalidate_edx},
1120     {e_regSetGPR, gpr_edi, "edi", NULL, Uint, Hex, GPR_SIZE(edi),
1121      GPR_OFFSET(edi), ehframe_edi, dwarf_edi, INVALID_NUB_REGNUM,
1122      debugserver_edi, NULL, g_invalidate_edi},
1123     {e_regSetGPR, gpr_esi, "esi", NULL, Uint, Hex, GPR_SIZE(esi),
1124      GPR_OFFSET(esi), ehframe_esi, dwarf_esi, INVALID_NUB_REGNUM,
1125      debugserver_esi, NULL, g_invalidate_esi},
1126     {e_regSetGPR, gpr_ebp, "ebp", "fp", Uint, Hex, GPR_SIZE(ebp),
1127      GPR_OFFSET(ebp), ehframe_ebp, dwarf_ebp, GENERIC_REGNUM_FP,
1128      debugserver_ebp, NULL, g_invalidate_ebp},
1129     {e_regSetGPR, gpr_esp, "esp", "sp", Uint, Hex, GPR_SIZE(esp),
1130      GPR_OFFSET(esp), ehframe_esp, dwarf_esp, GENERIC_REGNUM_SP,
1131      debugserver_esp, NULL, g_invalidate_esp},
1132     {e_regSetGPR, gpr_ss, "ss", NULL, Uint, Hex, GPR_SIZE(ss), GPR_OFFSET(ss),
1133      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_ss,
1134      NULL, NULL},
1135     {e_regSetGPR, gpr_eflags, "eflags", "flags", Uint, Hex, GPR_SIZE(eflags),
1136      GPR_OFFSET(eflags), ehframe_eflags, dwarf_eflags, GENERIC_REGNUM_FLAGS,
1137      debugserver_eflags, NULL, NULL},
1138     {e_regSetGPR, gpr_eip, "eip", "pc", Uint, Hex, GPR_SIZE(eip),
1139      GPR_OFFSET(eip), ehframe_eip, dwarf_eip, GENERIC_REGNUM_PC,
1140      debugserver_eip, NULL, NULL},
1141     {e_regSetGPR, gpr_cs, "cs", NULL, Uint, Hex, GPR_SIZE(cs), GPR_OFFSET(cs),
1142      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_cs,
1143      NULL, NULL},
1144     {e_regSetGPR, gpr_ds, "ds", NULL, Uint, Hex, GPR_SIZE(ds), GPR_OFFSET(ds),
1145      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_ds,
1146      NULL, NULL},
1147     {e_regSetGPR, gpr_es, "es", NULL, Uint, Hex, GPR_SIZE(es), GPR_OFFSET(es),
1148      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_es,
1149      NULL, NULL},
1150     {e_regSetGPR, gpr_fs, "fs", NULL, Uint, Hex, GPR_SIZE(fs), GPR_OFFSET(fs),
1151      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_fs,
1152      NULL, NULL},
1153     {e_regSetGPR, gpr_gs, "gs", NULL, Uint, Hex, GPR_SIZE(gs), GPR_OFFSET(gs),
1154      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_gs,
1155      NULL, NULL},
1156     DEFINE_GPR_PSEUDO_16(ax, eax),
1157     DEFINE_GPR_PSEUDO_16(bx, ebx),
1158     DEFINE_GPR_PSEUDO_16(cx, ecx),
1159     DEFINE_GPR_PSEUDO_16(dx, edx),
1160     DEFINE_GPR_PSEUDO_16(di, edi),
1161     DEFINE_GPR_PSEUDO_16(si, esi),
1162     DEFINE_GPR_PSEUDO_16(bp, ebp),
1163     DEFINE_GPR_PSEUDO_16(sp, esp),
1164     DEFINE_GPR_PSEUDO_8H(ah, eax),
1165     DEFINE_GPR_PSEUDO_8H(bh, ebx),
1166     DEFINE_GPR_PSEUDO_8H(ch, ecx),
1167     DEFINE_GPR_PSEUDO_8H(dh, edx),
1168     DEFINE_GPR_PSEUDO_8L(al, eax),
1169     DEFINE_GPR_PSEUDO_8L(bl, ebx),
1170     DEFINE_GPR_PSEUDO_8L(cl, ecx),
1171     DEFINE_GPR_PSEUDO_8L(dl, edx),
1172     DEFINE_GPR_PSEUDO_8L(dil, edi),
1173     DEFINE_GPR_PSEUDO_8L(sil, esi),
1174     DEFINE_GPR_PSEUDO_8L(bpl, ebp),
1175     DEFINE_GPR_PSEUDO_8L(spl, esp)};
1176 
1177 const DNBRegisterInfo DNBArchImplI386::g_fpu_registers_no_avx[] = {
1178     {e_regSetFPU, fpu_fcw, "fctrl", NULL, Uint, Hex, FPU_SIZE_UINT(fcw),
1179      FPU_OFFSET(fcw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1180      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1181     {e_regSetFPU, fpu_fsw, "fstat", NULL, Uint, Hex, FPU_SIZE_UINT(fsw),
1182      FPU_OFFSET(fsw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1183      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1184     {e_regSetFPU, fpu_ftw, "ftag", NULL, Uint, Hex, 2 /* sizeof __fpu_ftw + sizeof __fpu_rsrv1 */,
1185      FPU_OFFSET(ftw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1186      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1187     {e_regSetFPU, fpu_fop, "fop", NULL, Uint, Hex, FPU_SIZE_UINT(fop),
1188      FPU_OFFSET(fop), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1189      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1190     {e_regSetFPU, fpu_ip, "fioff", NULL, Uint, Hex, FPU_SIZE_UINT(ip),
1191      FPU_OFFSET(ip), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1192      INVALID_NUB_REGNUM, NULL, NULL},
1193     {e_regSetFPU, fpu_cs, "fiseg", NULL, Uint, Hex, FPU_SIZE_UINT(cs),
1194      FPU_OFFSET(cs), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1195      INVALID_NUB_REGNUM, NULL, NULL},
1196     {e_regSetFPU, fpu_dp, "fooff", NULL, Uint, Hex, FPU_SIZE_UINT(dp),
1197      FPU_OFFSET(dp), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1198      INVALID_NUB_REGNUM, NULL, NULL},
1199     {e_regSetFPU, fpu_ds, "foseg", NULL, Uint, Hex, FPU_SIZE_UINT(ds),
1200      FPU_OFFSET(ds), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1201      INVALID_NUB_REGNUM, NULL, NULL},
1202     {e_regSetFPU, fpu_mxcsr, "mxcsr", NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr),
1203      FPU_OFFSET(mxcsr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1204      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1205     {e_regSetFPU, fpu_mxcsrmask, "mxcsrmask", NULL, Uint, Hex,
1206      FPU_SIZE_UINT(mxcsrmask), FPU_OFFSET(mxcsrmask), INVALID_NUB_REGNUM,
1207      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1208 
1209     {e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8,
1210      FPU_SIZE_MMST(stmm0), FPU_OFFSET(stmm0), INVALID_NUB_REGNUM, dwarf_stmm0,
1211      INVALID_NUB_REGNUM, debugserver_stmm0, NULL, NULL},
1212     {e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8,
1213      FPU_SIZE_MMST(stmm1), FPU_OFFSET(stmm1), INVALID_NUB_REGNUM, dwarf_stmm1,
1214      INVALID_NUB_REGNUM, debugserver_stmm1, NULL, NULL},
1215     {e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8,
1216      FPU_SIZE_MMST(stmm2), FPU_OFFSET(stmm2), INVALID_NUB_REGNUM, dwarf_stmm2,
1217      INVALID_NUB_REGNUM, debugserver_stmm2, NULL, NULL},
1218     {e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8,
1219      FPU_SIZE_MMST(stmm3), FPU_OFFSET(stmm3), INVALID_NUB_REGNUM, dwarf_stmm3,
1220      INVALID_NUB_REGNUM, debugserver_stmm3, NULL, NULL},
1221     {e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8,
1222      FPU_SIZE_MMST(stmm4), FPU_OFFSET(stmm4), INVALID_NUB_REGNUM, dwarf_stmm4,
1223      INVALID_NUB_REGNUM, debugserver_stmm4, NULL, NULL},
1224     {e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8,
1225      FPU_SIZE_MMST(stmm5), FPU_OFFSET(stmm5), INVALID_NUB_REGNUM, dwarf_stmm5,
1226      INVALID_NUB_REGNUM, debugserver_stmm5, NULL, NULL},
1227     {e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8,
1228      FPU_SIZE_MMST(stmm6), FPU_OFFSET(stmm6), INVALID_NUB_REGNUM, dwarf_stmm6,
1229      INVALID_NUB_REGNUM, debugserver_stmm6, NULL, NULL},
1230     {e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8,
1231      FPU_SIZE_MMST(stmm7), FPU_OFFSET(stmm7), INVALID_NUB_REGNUM, dwarf_stmm7,
1232      INVALID_NUB_REGNUM, debugserver_stmm7, NULL, NULL},
1233 
1234     {e_regSetFPU, fpu_xmm0, "xmm0", NULL, Vector, VectorOfUInt8,
1235      FPU_SIZE_XMM(xmm0), FPU_OFFSET(xmm0), INVALID_NUB_REGNUM, dwarf_xmm0,
1236      INVALID_NUB_REGNUM, debugserver_xmm0, NULL, NULL},
1237     {e_regSetFPU, fpu_xmm1, "xmm1", NULL, Vector, VectorOfUInt8,
1238      FPU_SIZE_XMM(xmm1), FPU_OFFSET(xmm1), INVALID_NUB_REGNUM, dwarf_xmm1,
1239      INVALID_NUB_REGNUM, debugserver_xmm1, NULL, NULL},
1240     {e_regSetFPU, fpu_xmm2, "xmm2", NULL, Vector, VectorOfUInt8,
1241      FPU_SIZE_XMM(xmm2), FPU_OFFSET(xmm2), INVALID_NUB_REGNUM, dwarf_xmm2,
1242      INVALID_NUB_REGNUM, debugserver_xmm2, NULL, NULL},
1243     {e_regSetFPU, fpu_xmm3, "xmm3", NULL, Vector, VectorOfUInt8,
1244      FPU_SIZE_XMM(xmm3), FPU_OFFSET(xmm3), INVALID_NUB_REGNUM, dwarf_xmm3,
1245      INVALID_NUB_REGNUM, debugserver_xmm3, NULL, NULL},
1246     {e_regSetFPU, fpu_xmm4, "xmm4", NULL, Vector, VectorOfUInt8,
1247      FPU_SIZE_XMM(xmm4), FPU_OFFSET(xmm4), INVALID_NUB_REGNUM, dwarf_xmm4,
1248      INVALID_NUB_REGNUM, debugserver_xmm4, NULL, NULL},
1249     {e_regSetFPU, fpu_xmm5, "xmm5", NULL, Vector, VectorOfUInt8,
1250      FPU_SIZE_XMM(xmm5), FPU_OFFSET(xmm5), INVALID_NUB_REGNUM, dwarf_xmm5,
1251      INVALID_NUB_REGNUM, debugserver_xmm5, NULL, NULL},
1252     {e_regSetFPU, fpu_xmm6, "xmm6", NULL, Vector, VectorOfUInt8,
1253      FPU_SIZE_XMM(xmm6), FPU_OFFSET(xmm6), INVALID_NUB_REGNUM, dwarf_xmm6,
1254      INVALID_NUB_REGNUM, debugserver_xmm6, NULL, NULL},
1255     {e_regSetFPU, fpu_xmm7, "xmm7", NULL, Vector, VectorOfUInt8,
1256      FPU_SIZE_XMM(xmm7), FPU_OFFSET(xmm7), INVALID_NUB_REGNUM, dwarf_xmm7,
1257      INVALID_NUB_REGNUM, debugserver_xmm7, NULL, NULL}};
1258 
1259 static const char *g_contained_ymm0[] = {"ymm0", NULL};
1260 static const char *g_contained_ymm1[] = {"ymm1", NULL};
1261 static const char *g_contained_ymm2[] = {"ymm2", NULL};
1262 static const char *g_contained_ymm3[] = {"ymm3", NULL};
1263 static const char *g_contained_ymm4[] = {"ymm4", NULL};
1264 static const char *g_contained_ymm5[] = {"ymm5", NULL};
1265 static const char *g_contained_ymm6[] = {"ymm6", NULL};
1266 static const char *g_contained_ymm7[] = {"ymm7", NULL};
1267 
1268 const DNBRegisterInfo DNBArchImplI386::g_fpu_registers_avx[] = {
1269     {e_regSetFPU, fpu_fcw, "fctrl", NULL, Uint, Hex, FPU_SIZE_UINT(fcw),
1270      AVX_OFFSET(fcw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1271      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1272     {e_regSetFPU, fpu_fsw, "fstat", NULL, Uint, Hex, FPU_SIZE_UINT(fsw),
1273      AVX_OFFSET(fsw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1274      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1275     {e_regSetFPU, fpu_ftw, "ftag", NULL, Uint, Hex, 2 /* sizeof __fpu_ftw + sizeof __fpu_rsrv1 */,
1276      AVX_OFFSET(ftw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1277      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1278     {e_regSetFPU, fpu_fop, "fop", NULL, Uint, Hex, FPU_SIZE_UINT(fop),
1279      AVX_OFFSET(fop), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1280      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1281     {e_regSetFPU, fpu_ip, "fioff", NULL, Uint, Hex, FPU_SIZE_UINT(ip),
1282      AVX_OFFSET(ip), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1283      INVALID_NUB_REGNUM, NULL, NULL},
1284     {e_regSetFPU, fpu_cs, "fiseg", NULL, Uint, Hex, FPU_SIZE_UINT(cs),
1285      AVX_OFFSET(cs), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1286      INVALID_NUB_REGNUM, NULL, NULL},
1287     {e_regSetFPU, fpu_dp, "fooff", NULL, Uint, Hex, FPU_SIZE_UINT(dp),
1288      AVX_OFFSET(dp), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1289      INVALID_NUB_REGNUM, NULL, NULL},
1290     {e_regSetFPU, fpu_ds, "foseg", NULL, Uint, Hex, FPU_SIZE_UINT(ds),
1291      AVX_OFFSET(ds), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1292      INVALID_NUB_REGNUM, NULL, NULL},
1293     {e_regSetFPU, fpu_mxcsr, "mxcsr", NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr),
1294      AVX_OFFSET(mxcsr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1295      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1296     {e_regSetFPU, fpu_mxcsrmask, "mxcsrmask", NULL, Uint, Hex,
1297      FPU_SIZE_UINT(mxcsrmask), AVX_OFFSET(mxcsrmask), INVALID_NUB_REGNUM,
1298      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1299 
1300     {e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8,
1301      FPU_SIZE_MMST(stmm0), AVX_OFFSET(stmm0), INVALID_NUB_REGNUM, dwarf_stmm0,
1302      INVALID_NUB_REGNUM, debugserver_stmm0, NULL, NULL},
1303     {e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8,
1304      FPU_SIZE_MMST(stmm1), AVX_OFFSET(stmm1), INVALID_NUB_REGNUM, dwarf_stmm1,
1305      INVALID_NUB_REGNUM, debugserver_stmm1, NULL, NULL},
1306     {e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8,
1307      FPU_SIZE_MMST(stmm2), AVX_OFFSET(stmm2), INVALID_NUB_REGNUM, dwarf_stmm2,
1308      INVALID_NUB_REGNUM, debugserver_stmm2, NULL, NULL},
1309     {e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8,
1310      FPU_SIZE_MMST(stmm3), AVX_OFFSET(stmm3), INVALID_NUB_REGNUM, dwarf_stmm3,
1311      INVALID_NUB_REGNUM, debugserver_stmm3, NULL, NULL},
1312     {e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8,
1313      FPU_SIZE_MMST(stmm4), AVX_OFFSET(stmm4), INVALID_NUB_REGNUM, dwarf_stmm4,
1314      INVALID_NUB_REGNUM, debugserver_stmm4, NULL, NULL},
1315     {e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8,
1316      FPU_SIZE_MMST(stmm5), AVX_OFFSET(stmm5), INVALID_NUB_REGNUM, dwarf_stmm5,
1317      INVALID_NUB_REGNUM, debugserver_stmm5, NULL, NULL},
1318     {e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8,
1319      FPU_SIZE_MMST(stmm6), AVX_OFFSET(stmm6), INVALID_NUB_REGNUM, dwarf_stmm6,
1320      INVALID_NUB_REGNUM, debugserver_stmm6, NULL, NULL},
1321     {e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8,
1322      FPU_SIZE_MMST(stmm7), AVX_OFFSET(stmm7), INVALID_NUB_REGNUM, dwarf_stmm7,
1323      INVALID_NUB_REGNUM, debugserver_stmm7, NULL, NULL},
1324 
1325     {e_regSetFPU, fpu_ymm0, "ymm0", NULL, Vector, VectorOfUInt8,
1326      FPU_SIZE_YMM(ymm0), AVX_OFFSET_YMM(0), INVALID_NUB_REGNUM, dwarf_ymm0,
1327      INVALID_NUB_REGNUM, debugserver_ymm0, NULL, NULL},
1328     {e_regSetFPU, fpu_ymm1, "ymm1", NULL, Vector, VectorOfUInt8,
1329      FPU_SIZE_YMM(ymm1), AVX_OFFSET_YMM(1), INVALID_NUB_REGNUM, dwarf_ymm1,
1330      INVALID_NUB_REGNUM, debugserver_ymm1, NULL, NULL},
1331     {e_regSetFPU, fpu_ymm2, "ymm2", NULL, Vector, VectorOfUInt8,
1332      FPU_SIZE_YMM(ymm2), AVX_OFFSET_YMM(2), INVALID_NUB_REGNUM, dwarf_ymm2,
1333      INVALID_NUB_REGNUM, debugserver_ymm2, NULL, NULL},
1334     {e_regSetFPU, fpu_ymm3, "ymm3", NULL, Vector, VectorOfUInt8,
1335      FPU_SIZE_YMM(ymm3), AVX_OFFSET_YMM(3), INVALID_NUB_REGNUM, dwarf_ymm3,
1336      INVALID_NUB_REGNUM, debugserver_ymm3, NULL, NULL},
1337     {e_regSetFPU, fpu_ymm4, "ymm4", NULL, Vector, VectorOfUInt8,
1338      FPU_SIZE_YMM(ymm4), AVX_OFFSET_YMM(4), INVALID_NUB_REGNUM, dwarf_ymm4,
1339      INVALID_NUB_REGNUM, debugserver_ymm4, NULL, NULL},
1340     {e_regSetFPU, fpu_ymm5, "ymm5", NULL, Vector, VectorOfUInt8,
1341      FPU_SIZE_YMM(ymm5), AVX_OFFSET_YMM(5), INVALID_NUB_REGNUM, dwarf_ymm5,
1342      INVALID_NUB_REGNUM, debugserver_ymm5, NULL, NULL},
1343     {e_regSetFPU, fpu_ymm6, "ymm6", NULL, Vector, VectorOfUInt8,
1344      FPU_SIZE_YMM(ymm6), AVX_OFFSET_YMM(6), INVALID_NUB_REGNUM, dwarf_ymm6,
1345      INVALID_NUB_REGNUM, debugserver_ymm6, NULL, NULL},
1346     {e_regSetFPU, fpu_ymm7, "ymm7", NULL, Vector, VectorOfUInt8,
1347      FPU_SIZE_YMM(ymm7), AVX_OFFSET_YMM(7), INVALID_NUB_REGNUM, dwarf_ymm7,
1348      INVALID_NUB_REGNUM, debugserver_ymm7, NULL, NULL},
1349 
1350     {e_regSetFPU, fpu_xmm0, "xmm0", NULL, Vector, VectorOfUInt8,
1351      FPU_SIZE_XMM(xmm0), 0, INVALID_NUB_REGNUM, dwarf_xmm0, INVALID_NUB_REGNUM,
1352      debugserver_xmm0, g_contained_ymm0, NULL},
1353     {e_regSetFPU, fpu_xmm1, "xmm1", NULL, Vector, VectorOfUInt8,
1354      FPU_SIZE_XMM(xmm1), 0, INVALID_NUB_REGNUM, dwarf_xmm1, INVALID_NUB_REGNUM,
1355      debugserver_xmm1, g_contained_ymm1, NULL},
1356     {e_regSetFPU, fpu_xmm2, "xmm2", NULL, Vector, VectorOfUInt8,
1357      FPU_SIZE_XMM(xmm2), 0, INVALID_NUB_REGNUM, dwarf_xmm2, INVALID_NUB_REGNUM,
1358      debugserver_xmm2, g_contained_ymm2, NULL},
1359     {e_regSetFPU, fpu_xmm3, "xmm3", NULL, Vector, VectorOfUInt8,
1360      FPU_SIZE_XMM(xmm3), 0, INVALID_NUB_REGNUM, dwarf_xmm3, INVALID_NUB_REGNUM,
1361      debugserver_xmm3, g_contained_ymm3, NULL},
1362     {e_regSetFPU, fpu_xmm4, "xmm4", NULL, Vector, VectorOfUInt8,
1363      FPU_SIZE_XMM(xmm4), 0, INVALID_NUB_REGNUM, dwarf_xmm4, INVALID_NUB_REGNUM,
1364      debugserver_xmm4, g_contained_ymm4, NULL},
1365     {e_regSetFPU, fpu_xmm5, "xmm5", NULL, Vector, VectorOfUInt8,
1366      FPU_SIZE_XMM(xmm5), 0, INVALID_NUB_REGNUM, dwarf_xmm5, INVALID_NUB_REGNUM,
1367      debugserver_xmm5, g_contained_ymm5, NULL},
1368     {e_regSetFPU, fpu_xmm6, "xmm6", NULL, Vector, VectorOfUInt8,
1369      FPU_SIZE_XMM(xmm6), 0, INVALID_NUB_REGNUM, dwarf_xmm6, INVALID_NUB_REGNUM,
1370      debugserver_xmm6, g_contained_ymm6, NULL},
1371     {e_regSetFPU, fpu_xmm7, "xmm7", NULL, Vector, VectorOfUInt8,
1372      FPU_SIZE_XMM(xmm7), 0, INVALID_NUB_REGNUM, dwarf_xmm7, INVALID_NUB_REGNUM,
1373      debugserver_xmm7, g_contained_ymm7, NULL},
1374 
1375 };
1376 
1377 
1378 #define STR(s) #s
1379 
1380 #define ZMM_REG_DEF(reg)                                                       \
1381   {                                                                            \
1382     e_regSetFPU, fpu_zmm##reg, STR(zmm##reg), NULL, Vector, VectorOfUInt8,        \
1383         FPU_SIZE_ZMM(zmm##reg), AVX512F_OFFSET_ZMM(reg), INVALID_NUB_REGNUM,   \
1384         dwarf_zmm##reg, INVALID_NUB_REGNUM, debugserver_zmm##reg, NULL, NULL   \
1385   }
1386 
1387 #define YMM_REG_ALIAS(reg)                                                     \
1388   {                                                                            \
1389     e_regSetFPU, fpu_ymm##reg, STR(ymm##reg), NULL, Vector, VectorOfUInt8,        \
1390         FPU_SIZE_YMM(ymm##reg), 0, INVALID_NUB_REGNUM, dwarf_ymm##reg,         \
1391         INVALID_NUB_REGNUM, debugserver_ymm##reg, g_contained_zmm##reg, NULL   \
1392   }
1393 
1394 #define XMM_REG_ALIAS(reg)                                                     \
1395   {                                                                            \
1396     e_regSetFPU, fpu_xmm##reg, STR(xmm##reg), NULL, Vector, VectorOfUInt8,        \
1397         FPU_SIZE_XMM(xmm##reg), 0, INVALID_NUB_REGNUM, dwarf_xmm##reg,         \
1398         INVALID_NUB_REGNUM, debugserver_xmm##reg, g_contained_zmm##reg, NULL   \
1399   }
1400 
1401 #define AVX512_K_REG_DEF(reg)                                                  \
1402   {                                                                            \
1403     e_regSetFPU, fpu_k##reg, STR(k##reg), NULL, Vector, VectorOfUInt8, 8,      \
1404         AVX512F_OFFSET(k##reg), dwarf_k##reg, dwarf_k##reg, -1U,               \
1405         debugserver_k##reg, NULL, NULL                                         \
1406   }
1407 
1408 static const char *g_contained_zmm0[] = {"zmm0", NULL};
1409 static const char *g_contained_zmm1[] = {"zmm1", NULL};
1410 static const char *g_contained_zmm2[] = {"zmm2", NULL};
1411 static const char *g_contained_zmm3[] = {"zmm3", NULL};
1412 static const char *g_contained_zmm4[] = {"zmm4", NULL};
1413 static const char *g_contained_zmm5[] = {"zmm5", NULL};
1414 static const char *g_contained_zmm6[] = {"zmm6", NULL};
1415 static const char *g_contained_zmm7[] = {"zmm7", NULL};
1416 
1417 const DNBRegisterInfo DNBArchImplI386::g_fpu_registers_avx512f[] = {
1418     {e_regSetFPU, fpu_fcw, "fctrl", NULL, Uint, Hex, FPU_SIZE_UINT(fcw),
1419      AVX_OFFSET(fcw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1420      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1421     {e_regSetFPU, fpu_fsw, "fstat", NULL, Uint, Hex, FPU_SIZE_UINT(fsw),
1422      AVX_OFFSET(fsw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1423      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1424     {e_regSetFPU, fpu_ftw, "ftag", NULL, Uint, Hex, 2 /* sizeof __fpu_ftw + sizeof __fpu_rsrv1 */,
1425      FPU_OFFSET(ftw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1426      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1427     {e_regSetFPU, fpu_fop, "fop", NULL, Uint, Hex, FPU_SIZE_UINT(fop),
1428      AVX_OFFSET(fop), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1429      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1430     {e_regSetFPU, fpu_ip, "fioff", NULL, Uint, Hex, FPU_SIZE_UINT(ip),
1431      AVX_OFFSET(ip), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1432      INVALID_NUB_REGNUM, NULL, NULL},
1433     {e_regSetFPU, fpu_cs, "fiseg", NULL, Uint, Hex, FPU_SIZE_UINT(cs),
1434      AVX_OFFSET(cs), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1435      INVALID_NUB_REGNUM, NULL, NULL},
1436     {e_regSetFPU, fpu_dp, "fooff", NULL, Uint, Hex, FPU_SIZE_UINT(dp),
1437      AVX_OFFSET(dp), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1438      INVALID_NUB_REGNUM, NULL, NULL},
1439     {e_regSetFPU, fpu_ds, "foseg", NULL, Uint, Hex, FPU_SIZE_UINT(ds),
1440      AVX_OFFSET(ds), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1441      INVALID_NUB_REGNUM, NULL, NULL},
1442     {e_regSetFPU, fpu_mxcsr, "mxcsr", NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr),
1443      AVX_OFFSET(mxcsr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1444      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1445     {e_regSetFPU, fpu_mxcsrmask, "mxcsrmask", NULL, Uint, Hex,
1446      FPU_SIZE_UINT(mxcsrmask), AVX_OFFSET(mxcsrmask), INVALID_NUB_REGNUM,
1447      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1448 
1449     {e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8,
1450      FPU_SIZE_MMST(stmm0), AVX_OFFSET(stmm0), INVALID_NUB_REGNUM, dwarf_stmm0,
1451      INVALID_NUB_REGNUM, debugserver_stmm0, NULL, NULL},
1452     {e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8,
1453      FPU_SIZE_MMST(stmm1), AVX_OFFSET(stmm1), INVALID_NUB_REGNUM, dwarf_stmm1,
1454      INVALID_NUB_REGNUM, debugserver_stmm1, NULL, NULL},
1455     {e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8,
1456      FPU_SIZE_MMST(stmm2), AVX_OFFSET(stmm2), INVALID_NUB_REGNUM, dwarf_stmm2,
1457      INVALID_NUB_REGNUM, debugserver_stmm2, NULL, NULL},
1458     {e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8,
1459      FPU_SIZE_MMST(stmm3), AVX_OFFSET(stmm3), INVALID_NUB_REGNUM, dwarf_stmm3,
1460      INVALID_NUB_REGNUM, debugserver_stmm3, NULL, NULL},
1461     {e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8,
1462      FPU_SIZE_MMST(stmm4), AVX_OFFSET(stmm4), INVALID_NUB_REGNUM, dwarf_stmm4,
1463      INVALID_NUB_REGNUM, debugserver_stmm4, NULL, NULL},
1464     {e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8,
1465      FPU_SIZE_MMST(stmm5), AVX_OFFSET(stmm5), INVALID_NUB_REGNUM, dwarf_stmm5,
1466      INVALID_NUB_REGNUM, debugserver_stmm5, NULL, NULL},
1467     {e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8,
1468      FPU_SIZE_MMST(stmm6), AVX_OFFSET(stmm6), INVALID_NUB_REGNUM, dwarf_stmm6,
1469      INVALID_NUB_REGNUM, debugserver_stmm6, NULL, NULL},
1470     {e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8,
1471      FPU_SIZE_MMST(stmm7), AVX_OFFSET(stmm7), INVALID_NUB_REGNUM, dwarf_stmm7,
1472      INVALID_NUB_REGNUM, debugserver_stmm7, NULL, NULL},
1473 
1474     AVX512_K_REG_DEF(0),
1475     AVX512_K_REG_DEF(1),
1476     AVX512_K_REG_DEF(2),
1477     AVX512_K_REG_DEF(3),
1478     AVX512_K_REG_DEF(4),
1479     AVX512_K_REG_DEF(5),
1480     AVX512_K_REG_DEF(6),
1481     AVX512_K_REG_DEF(7),
1482 
1483     ZMM_REG_DEF(0),
1484     ZMM_REG_DEF(1),
1485     ZMM_REG_DEF(2),
1486     ZMM_REG_DEF(3),
1487     ZMM_REG_DEF(4),
1488     ZMM_REG_DEF(5),
1489     ZMM_REG_DEF(6),
1490     ZMM_REG_DEF(7),
1491 
1492     YMM_REG_ALIAS(0),
1493     YMM_REG_ALIAS(1),
1494     YMM_REG_ALIAS(2),
1495     YMM_REG_ALIAS(3),
1496     YMM_REG_ALIAS(4),
1497     YMM_REG_ALIAS(5),
1498     YMM_REG_ALIAS(6),
1499     YMM_REG_ALIAS(7),
1500 
1501     XMM_REG_ALIAS(0),
1502     XMM_REG_ALIAS(1),
1503     XMM_REG_ALIAS(2),
1504     XMM_REG_ALIAS(3),
1505     XMM_REG_ALIAS(4),
1506     XMM_REG_ALIAS(5),
1507     XMM_REG_ALIAS(6),
1508     XMM_REG_ALIAS(7)
1509 
1510 };
1511 
1512 const DNBRegisterInfo DNBArchImplI386::g_exc_registers[] = {
1513     {e_regSetEXC, exc_trapno, "trapno", NULL, Uint, Hex, EXC_SIZE(trapno),
1514      EXC_OFFSET(trapno), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1515      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1516     {e_regSetEXC, exc_err, "err", NULL, Uint, Hex, EXC_SIZE(err),
1517      EXC_OFFSET(err), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1518      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1519     {e_regSetEXC, exc_faultvaddr, "faultvaddr", NULL, Uint, Hex,
1520      EXC_SIZE(faultvaddr), EXC_OFFSET(faultvaddr), INVALID_NUB_REGNUM,
1521      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}};
1522 
1523 // Number of registers in each register set
1524 const size_t DNBArchImplI386::k_num_gpr_registers =
1525     sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
1526 const size_t DNBArchImplI386::k_num_fpu_registers_no_avx =
1527     sizeof(g_fpu_registers_no_avx) / sizeof(DNBRegisterInfo);
1528 const size_t DNBArchImplI386::k_num_fpu_registers_avx =
1529     sizeof(g_fpu_registers_avx) / sizeof(DNBRegisterInfo);
1530 const size_t DNBArchImplI386::k_num_fpu_registers_avx512f =
1531     sizeof(g_fpu_registers_avx512f) / sizeof(DNBRegisterInfo);
1532 const size_t DNBArchImplI386::k_num_exc_registers =
1533     sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
1534 const size_t DNBArchImplI386::k_num_all_registers_no_avx =
1535     k_num_gpr_registers + k_num_fpu_registers_no_avx + k_num_exc_registers;
1536 const size_t DNBArchImplI386::k_num_all_registers_avx =
1537     k_num_gpr_registers + k_num_fpu_registers_avx + k_num_exc_registers;
1538 const size_t DNBArchImplI386::k_num_all_registers_avx512f =
1539     k_num_gpr_registers + k_num_fpu_registers_avx512f + k_num_exc_registers;
1540 
1541 // Register set definitions. The first definitions at register set index
1542 // of zero is for all registers, followed by other registers sets. The
1543 // register information for the all register set need not be filled in.
1544 const DNBRegisterSetInfo DNBArchImplI386::g_reg_sets_no_avx[] = {
1545     {"i386 Registers", NULL, k_num_all_registers_no_avx},
1546     {"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
1547     {"Floating Point Registers", g_fpu_registers_no_avx,
1548      k_num_fpu_registers_no_avx},
1549     {"Exception State Registers", g_exc_registers, k_num_exc_registers}};
1550 
1551 const DNBRegisterSetInfo DNBArchImplI386::g_reg_sets_avx[] = {
1552     {"i386 Registers", NULL, k_num_all_registers_avx},
1553     {"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
1554     {"Floating Point Registers", g_fpu_registers_avx, k_num_fpu_registers_avx},
1555     {"Exception State Registers", g_exc_registers, k_num_exc_registers}};
1556 
1557 const DNBRegisterSetInfo DNBArchImplI386::g_reg_sets_avx512f[] = {
1558     {"i386 Registers", NULL, k_num_all_registers_avx512f},
1559     {"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
1560     {"Floating Point Registers", g_fpu_registers_avx512f,
1561     k_num_fpu_registers_avx512f},
1562     {"Exception State Registers", g_exc_registers, k_num_exc_registers}};
1563 
1564 // Total number of register sets for this architecture
1565 const size_t DNBArchImplI386::k_num_register_sets =
1566     sizeof(g_reg_sets_avx) / sizeof(DNBRegisterSetInfo);
1567 
1568 DNBArchProtocol *DNBArchImplI386::Create(MachThread *thread) {
1569   DNBArchImplI386 *obj = new DNBArchImplI386(thread);
1570   return obj;
1571 }
1572 
1573 const uint8_t *DNBArchImplI386::SoftwareBreakpointOpcode(nub_size_t byte_size) {
1574   static const uint8_t g_breakpoint_opcode[] = {0xCC};
1575   if (byte_size == 1)
1576     return g_breakpoint_opcode;
1577   return NULL;
1578 }
1579 
1580 const DNBRegisterSetInfo *
1581 DNBArchImplI386::GetRegisterSetInfo(nub_size_t *num_reg_sets) {
1582   *num_reg_sets = k_num_register_sets;
1583   if (CPUHasAVX512f() || FORCE_AVX_REGS)
1584     return g_reg_sets_avx512f;
1585   if (CPUHasAVX())
1586     return g_reg_sets_avx;
1587   else
1588     return g_reg_sets_no_avx;
1589 }
1590 
1591 void DNBArchImplI386::Initialize() {
1592   DNBArchPluginInfo arch_plugin_info = {
1593       CPU_TYPE_I386, DNBArchImplI386::Create,
1594       DNBArchImplI386::GetRegisterSetInfo,
1595       DNBArchImplI386::SoftwareBreakpointOpcode};
1596 
1597   // Register this arch plug-in with the main protocol class
1598   DNBArchProtocol::RegisterArchPlugin(arch_plugin_info);
1599 }
1600 
1601 bool DNBArchImplI386::GetRegisterValue(uint32_t set, uint32_t reg,
1602                                        DNBRegisterValue *value) {
1603   if (set == REGISTER_SET_GENERIC) {
1604     switch (reg) {
1605     case GENERIC_REGNUM_PC: // Program Counter
1606       set = e_regSetGPR;
1607       reg = gpr_eip;
1608       break;
1609 
1610     case GENERIC_REGNUM_SP: // Stack Pointer
1611       set = e_regSetGPR;
1612       reg = gpr_esp;
1613       break;
1614 
1615     case GENERIC_REGNUM_FP: // Frame Pointer
1616       set = e_regSetGPR;
1617       reg = gpr_ebp;
1618       break;
1619 
1620     case GENERIC_REGNUM_FLAGS: // Processor flags register
1621       set = e_regSetGPR;
1622       reg = gpr_eflags;
1623       break;
1624 
1625     case GENERIC_REGNUM_RA: // Return Address
1626     default:
1627       return false;
1628     }
1629   }
1630 
1631   if (GetRegisterState(set, false) != KERN_SUCCESS)
1632     return false;
1633 
1634   const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1635   if (regInfo) {
1636     value->info = *regInfo;
1637     switch (set) {
1638     case e_regSetGPR:
1639       if (reg < k_num_gpr_registers) {
1640         value->value.uint32 = ((uint32_t *)(&m_state.context.gpr))[reg];
1641         return true;
1642       }
1643       break;
1644 
1645     case e_regSetFPU:
1646       if (reg > fpu_xmm7 && !(CPUHasAVX() || FORCE_AVX_REGS))
1647         return false;
1648       if (reg > fpu_ymm7 && !(CPUHasAVX512f() || FORCE_AVX_REGS))
1649         return false;
1650       switch (reg) {
1651       case fpu_fcw:
1652         value->value.uint16 =
1653             *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw));
1654         return true;
1655       case fpu_fsw:
1656         value->value.uint16 =
1657             *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw));
1658         return true;
1659       case fpu_ftw:
1660         memcpy (&value->value.uint16, &m_state.context.fpu.no_avx.__fpu_ftw, 2);
1661         return true;
1662       case fpu_fop:
1663         value->value.uint16 = m_state.context.fpu.no_avx.__fpu_fop;
1664         return true;
1665       case fpu_ip:
1666         value->value.uint32 = m_state.context.fpu.no_avx.__fpu_ip;
1667         return true;
1668       case fpu_cs:
1669         value->value.uint16 = m_state.context.fpu.no_avx.__fpu_cs;
1670         return true;
1671       case fpu_dp:
1672         value->value.uint32 = m_state.context.fpu.no_avx.__fpu_dp;
1673         return true;
1674       case fpu_ds:
1675         value->value.uint16 = m_state.context.fpu.no_avx.__fpu_ds;
1676         return true;
1677       case fpu_mxcsr:
1678         value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsr;
1679         return true;
1680       case fpu_mxcsrmask:
1681         value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsrmask;
1682         return true;
1683 
1684       case fpu_stmm0:
1685         memcpy(&value->value.uint8,
1686                m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg, 10);
1687         return true;
1688       case fpu_stmm1:
1689         memcpy(&value->value.uint8,
1690                m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg, 10);
1691         return true;
1692       case fpu_stmm2:
1693         memcpy(&value->value.uint8,
1694                m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg, 10);
1695         return true;
1696       case fpu_stmm3:
1697         memcpy(&value->value.uint8,
1698                m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg, 10);
1699         return true;
1700       case fpu_stmm4:
1701         memcpy(&value->value.uint8,
1702                m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg, 10);
1703         return true;
1704       case fpu_stmm5:
1705         memcpy(&value->value.uint8,
1706                m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg, 10);
1707         return true;
1708       case fpu_stmm6:
1709         memcpy(&value->value.uint8,
1710                m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg, 10);
1711         return true;
1712       case fpu_stmm7:
1713         memcpy(&value->value.uint8,
1714                m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg, 10);
1715         return true;
1716 
1717       case fpu_xmm0:
1718         memcpy(&value->value.uint8,
1719                m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg, 16);
1720         return true;
1721       case fpu_xmm1:
1722         memcpy(&value->value.uint8,
1723                m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg, 16);
1724         return true;
1725       case fpu_xmm2:
1726         memcpy(&value->value.uint8,
1727                m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg, 16);
1728         return true;
1729       case fpu_xmm3:
1730         memcpy(&value->value.uint8,
1731                m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg, 16);
1732         return true;
1733       case fpu_xmm4:
1734         memcpy(&value->value.uint8,
1735                m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg, 16);
1736         return true;
1737       case fpu_xmm5:
1738         memcpy(&value->value.uint8,
1739                m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg, 16);
1740         return true;
1741       case fpu_xmm6:
1742         memcpy(&value->value.uint8,
1743                m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg, 16);
1744         return true;
1745       case fpu_xmm7:
1746         memcpy(&value->value.uint8,
1747                m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg, 16);
1748         return true;
1749 
1750 #define MEMCPY_YMM(n)                                                          \
1751   memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm##n.__xmm_reg,  \
1752          16);                                                                  \
1753   memcpy((&value->value.uint8) + 16,                                           \
1754          m_state.context.fpu.avx.__fpu_ymmh##n.__xmm_reg, 16);
1755       case fpu_ymm0:
1756         MEMCPY_YMM(0);
1757         return true;
1758       case fpu_ymm1:
1759         MEMCPY_YMM(1);
1760         return true;
1761       case fpu_ymm2:
1762         MEMCPY_YMM(2);
1763         return true;
1764       case fpu_ymm3:
1765         MEMCPY_YMM(3);
1766         return true;
1767       case fpu_ymm4:
1768         MEMCPY_YMM(4);
1769         return true;
1770       case fpu_ymm5:
1771         MEMCPY_YMM(5);
1772         return true;
1773       case fpu_ymm6:
1774         MEMCPY_YMM(6);
1775         return true;
1776       case fpu_ymm7:
1777         MEMCPY_YMM(7);
1778         return true;
1779 #undef MEMCPY_YMM
1780 
1781       case fpu_k0:
1782       case fpu_k1:
1783       case fpu_k2:
1784       case fpu_k3:
1785       case fpu_k4:
1786       case fpu_k5:
1787       case fpu_k6:
1788       case fpu_k7:
1789         memcpy((&value->value.uint8),
1790                &m_state.context.fpu.avx512f.__fpu_k0 + (reg - fpu_k0), 8);
1791         return true;
1792       case fpu_zmm0:
1793       case fpu_zmm1:
1794       case fpu_zmm2:
1795       case fpu_zmm3:
1796       case fpu_zmm4:
1797       case fpu_zmm5:
1798       case fpu_zmm6:
1799       case fpu_zmm7:
1800         memcpy(&value->value.uint8,
1801                &m_state.context.fpu.avx512f.__fpu_xmm0 + (reg - fpu_zmm0), 16);
1802         memcpy(&value->value.uint8 + 16,
1803                &m_state.context.fpu.avx512f.__fpu_ymmh0 + (reg - fpu_zmm0), 16);
1804         memcpy(&value->value.uint8 + 32,
1805                &m_state.context.fpu.avx512f.__fpu_zmmh0 + (reg - fpu_zmm0), 32);
1806         return true;
1807       }
1808       break;
1809 
1810     case e_regSetEXC:
1811       if (reg < k_num_exc_registers) {
1812         value->value.uint32 = (&m_state.context.exc.__trapno)[reg];
1813         return true;
1814       }
1815       break;
1816     }
1817   }
1818   return false;
1819 }
1820 
1821 bool DNBArchImplI386::SetRegisterValue(uint32_t set, uint32_t reg,
1822                                        const DNBRegisterValue *value) {
1823   if (set == REGISTER_SET_GENERIC) {
1824     switch (reg) {
1825     case GENERIC_REGNUM_PC: // Program Counter
1826       set = e_regSetGPR;
1827       reg = gpr_eip;
1828       break;
1829 
1830     case GENERIC_REGNUM_SP: // Stack Pointer
1831       set = e_regSetGPR;
1832       reg = gpr_esp;
1833       break;
1834 
1835     case GENERIC_REGNUM_FP: // Frame Pointer
1836       set = e_regSetGPR;
1837       reg = gpr_ebp;
1838       break;
1839 
1840     case GENERIC_REGNUM_FLAGS: // Processor flags register
1841       set = e_regSetGPR;
1842       reg = gpr_eflags;
1843       break;
1844 
1845     case GENERIC_REGNUM_RA: // Return Address
1846     default:
1847       return false;
1848     }
1849   }
1850 
1851   if (GetRegisterState(set, false) != KERN_SUCCESS)
1852     return false;
1853 
1854   bool success = false;
1855   const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1856   if (regInfo) {
1857     switch (set) {
1858     case e_regSetGPR:
1859       if (reg < k_num_gpr_registers) {
1860         ((uint32_t *)(&m_state.context.gpr))[reg] = value->value.uint32;
1861         success = true;
1862       }
1863       break;
1864 
1865     case e_regSetFPU:
1866       if (reg > fpu_xmm7 && !(CPUHasAVX() || FORCE_AVX_REGS))
1867         return false;
1868       if (reg > fpu_ymm7 && !(CPUHasAVX512f() || FORCE_AVX_REGS))
1869         return false;
1870       switch (reg) {
1871       case fpu_fcw:
1872         *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw)) =
1873             value->value.uint16;
1874         success = true;
1875         break;
1876       case fpu_fsw:
1877         *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw)) =
1878             value->value.uint16;
1879         success = true;
1880         break;
1881       case fpu_ftw:
1882         memcpy (&m_state.context.fpu.no_avx.__fpu_ftw, &value->value.uint16, 2);
1883         success = true;
1884         break;
1885       case fpu_fop:
1886         m_state.context.fpu.no_avx.__fpu_fop = value->value.uint16;
1887         success = true;
1888         break;
1889       case fpu_ip:
1890         m_state.context.fpu.no_avx.__fpu_ip = value->value.uint32;
1891         success = true;
1892         break;
1893       case fpu_cs:
1894         m_state.context.fpu.no_avx.__fpu_cs = value->value.uint16;
1895         success = true;
1896         break;
1897       case fpu_dp:
1898         m_state.context.fpu.no_avx.__fpu_dp = value->value.uint32;
1899         success = true;
1900         break;
1901       case fpu_ds:
1902         m_state.context.fpu.no_avx.__fpu_ds = value->value.uint16;
1903         success = true;
1904         break;
1905       case fpu_mxcsr:
1906         m_state.context.fpu.no_avx.__fpu_mxcsr = value->value.uint32;
1907         success = true;
1908         break;
1909       case fpu_mxcsrmask:
1910         m_state.context.fpu.no_avx.__fpu_mxcsrmask = value->value.uint32;
1911         success = true;
1912         break;
1913 
1914       case fpu_stmm0:
1915         memcpy(m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg,
1916                &value->value.uint8, 10);
1917         success = true;
1918         break;
1919       case fpu_stmm1:
1920         memcpy(m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg,
1921                &value->value.uint8, 10);
1922         success = true;
1923         break;
1924       case fpu_stmm2:
1925         memcpy(m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg,
1926                &value->value.uint8, 10);
1927         success = true;
1928         break;
1929       case fpu_stmm3:
1930         memcpy(m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg,
1931                &value->value.uint8, 10);
1932         success = true;
1933         break;
1934       case fpu_stmm4:
1935         memcpy(m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg,
1936                &value->value.uint8, 10);
1937         success = true;
1938         break;
1939       case fpu_stmm5:
1940         memcpy(m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg,
1941                &value->value.uint8, 10);
1942         success = true;
1943         break;
1944       case fpu_stmm6:
1945         memcpy(m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg,
1946                &value->value.uint8, 10);
1947         success = true;
1948         break;
1949       case fpu_stmm7:
1950         memcpy(m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg,
1951                &value->value.uint8, 10);
1952         success = true;
1953         break;
1954 
1955       case fpu_xmm0:
1956         memcpy(m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg,
1957                &value->value.uint8, 16);
1958         success = true;
1959         break;
1960       case fpu_xmm1:
1961         memcpy(m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg,
1962                &value->value.uint8, 16);
1963         success = true;
1964         break;
1965       case fpu_xmm2:
1966         memcpy(m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg,
1967                &value->value.uint8, 16);
1968         success = true;
1969         break;
1970       case fpu_xmm3:
1971         memcpy(m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg,
1972                &value->value.uint8, 16);
1973         success = true;
1974         break;
1975       case fpu_xmm4:
1976         memcpy(m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg,
1977                &value->value.uint8, 16);
1978         success = true;
1979         break;
1980       case fpu_xmm5:
1981         memcpy(m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg,
1982                &value->value.uint8, 16);
1983         success = true;
1984         break;
1985       case fpu_xmm6:
1986         memcpy(m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg,
1987                &value->value.uint8, 16);
1988         success = true;
1989         break;
1990       case fpu_xmm7:
1991         memcpy(m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg,
1992                &value->value.uint8, 16);
1993         success = true;
1994         break;
1995 
1996 #define MEMCPY_YMM(n)                                                          \
1997   memcpy(m_state.context.fpu.avx.__fpu_xmm##n.__xmm_reg, &value->value.uint8,  \
1998          16);                                                                  \
1999   memcpy(m_state.context.fpu.avx.__fpu_ymmh##n.__xmm_reg,                      \
2000          (&value->value.uint8) + 16, 16);
2001       case fpu_ymm0:
2002         MEMCPY_YMM(0);
2003         return true;
2004       case fpu_ymm1:
2005         MEMCPY_YMM(1);
2006         return true;
2007       case fpu_ymm2:
2008         MEMCPY_YMM(2);
2009         return true;
2010       case fpu_ymm3:
2011         MEMCPY_YMM(3);
2012         return true;
2013       case fpu_ymm4:
2014         MEMCPY_YMM(4);
2015         return true;
2016       case fpu_ymm5:
2017         MEMCPY_YMM(5);
2018         return true;
2019       case fpu_ymm6:
2020         MEMCPY_YMM(6);
2021         return true;
2022       case fpu_ymm7:
2023         MEMCPY_YMM(7);
2024         return true;
2025 #undef MEMCPY_YMM
2026 
2027       case fpu_k0:
2028       case fpu_k1:
2029       case fpu_k2:
2030       case fpu_k3:
2031       case fpu_k4:
2032       case fpu_k5:
2033       case fpu_k6:
2034       case fpu_k7:
2035         memcpy(&m_state.context.fpu.avx512f.__fpu_k0 + (reg - fpu_k0),
2036                &value->value.uint8, 8);
2037         return true;
2038       case fpu_zmm0:
2039       case fpu_zmm1:
2040       case fpu_zmm2:
2041       case fpu_zmm3:
2042       case fpu_zmm4:
2043       case fpu_zmm5:
2044       case fpu_zmm6:
2045       case fpu_zmm7:
2046         memcpy(&m_state.context.fpu.avx512f.__fpu_xmm0 + (reg - fpu_zmm0),
2047                &value->value.uint8, 16);
2048         memcpy(&m_state.context.fpu.avx512f.__fpu_ymmh0 + (reg - fpu_zmm0),
2049                &value->value.uint8 + 16, 16);
2050         memcpy(&m_state.context.fpu.avx512f.__fpu_zmmh0 + (reg - fpu_zmm0),
2051                &value->value.uint8 + 32, 32);
2052         return true;
2053       }
2054       break;
2055 
2056     case e_regSetEXC:
2057       if (reg < k_num_exc_registers) {
2058         (&m_state.context.exc.__trapno)[reg] = value->value.uint32;
2059         success = true;
2060       }
2061       break;
2062     }
2063   }
2064 
2065   if (success)
2066     return SetRegisterState(set) == KERN_SUCCESS;
2067   return false;
2068 }
2069 
2070 uint32_t DNBArchImplI386::GetRegisterContextSize() {
2071   static uint32_t g_cached_size = 0;
2072   if (g_cached_size == 0) {
2073     if(CPUHasAVX512f() || FORCE_AVX_REGS) {
2074       for (size_t i = 0; i < k_num_fpu_registers_avx512f; ++i) {
2075         if (g_fpu_registers_avx512f[i].value_regs == NULL)
2076           g_cached_size += g_fpu_registers_avx512f[i].size;
2077       }
2078     } else
2079     if (CPUHasAVX()) {
2080       for (size_t i = 0; i < k_num_fpu_registers_avx; ++i) {
2081         if (g_fpu_registers_avx[i].value_regs == NULL)
2082           g_cached_size += g_fpu_registers_avx[i].size;
2083       }
2084     } else {
2085       for (size_t i = 0; i < k_num_fpu_registers_no_avx; ++i) {
2086         if (g_fpu_registers_no_avx[i].value_regs == NULL)
2087           g_cached_size += g_fpu_registers_no_avx[i].size;
2088       }
2089     }
2090     DNBLogThreaded("DNBArchImplX86_64::GetRegisterContextSize() - GPR = %zu, "
2091                    "FPU = %u, EXC = %zu",
2092                    sizeof(GPR), g_cached_size, sizeof(EXC));
2093     g_cached_size += sizeof(GPR);
2094     g_cached_size += sizeof(EXC);
2095     DNBLogThreaded(
2096         "DNBArchImplX86_64::GetRegisterContextSize() - GPR + FPU + EXC = %u",
2097         g_cached_size);
2098   }
2099   return g_cached_size;
2100 }
2101 
2102 nub_size_t DNBArchImplI386::GetRegisterContext(void *buf, nub_size_t buf_len) {
2103   uint32_t size = GetRegisterContextSize();
2104 
2105   if (buf && buf_len) {
2106     if (size > buf_len)
2107       size = static_cast<uint32_t>(buf_len);
2108 
2109     bool force = false;
2110     kern_return_t kret;
2111     if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
2112       DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = "
2113                                    "%p, len = %llu) error: GPR regs failed to "
2114                                    "read: %u ",
2115                        buf, (uint64_t)buf_len, kret);
2116       size = 0;
2117     } else if ((kret = GetFPUState(force)) != KERN_SUCCESS) {
2118       DNBLogThreadedIf(
2119           LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = "
2120                       "%llu) error: %s regs failed to read: %u",
2121           buf, (uint64_t)buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
2122       size = 0;
2123     } else if ((kret = GetEXCState(force)) != KERN_SUCCESS) {
2124       DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = "
2125                                    "%p, len = %llu) error: EXC regs failed to "
2126                                    "read: %u",
2127                        buf, (uint64_t)buf_len, kret);
2128       size = 0;
2129     } else {
2130       uint8_t *p = (uint8_t *)buf;
2131       // Copy the GPR registers
2132       memcpy(p, &m_state.context.gpr, sizeof(GPR));
2133       p += sizeof(GPR);
2134 
2135       // Walk around the gaps in the FPU regs
2136       memcpy(p, &m_state.context.fpu.no_avx.__fpu_fcw, 5);
2137       p += 5;
2138       memcpy(p, &m_state.context.fpu.no_avx.__fpu_fop, 8);
2139       p += 8;
2140       memcpy(p, &m_state.context.fpu.no_avx.__fpu_dp, 6);
2141       p += 6;
2142       memcpy(p, &m_state.context.fpu.no_avx.__fpu_mxcsr, 8);
2143       p += 8;
2144 
2145       // Work around the padding between the stmm registers as they are 16
2146       // byte structs with 10 bytes of the value in each
2147       for (size_t i = 0; i < 8; ++i) {
2148         memcpy(p, &m_state.context.fpu.no_avx.__fpu_stmm0 + i, 10);
2149         p += 10;
2150       }
2151 
2152       if (CPUHasAVX512f() || FORCE_AVX_REGS) {
2153         for (size_t i = 0; i < 8; ++i) {
2154           memcpy(p, &m_state.context.fpu.avx512f.__fpu_k0 + i, 8);
2155           p += 8;
2156         }
2157       }
2158 
2159       if (CPUHasAVX() || FORCE_AVX_REGS) {
2160         // Interleave the XMM and YMMH registers to make the YMM registers
2161         for (size_t i = 0; i < 8; ++i) {
2162           memcpy(p, &m_state.context.fpu.avx.__fpu_xmm0 + i, 16);
2163           p += 16;
2164           memcpy(p, &m_state.context.fpu.avx.__fpu_ymmh0 + i, 16);
2165           p += 16;
2166         }
2167         if(CPUHasAVX512f() || FORCE_AVX_REGS) {
2168           for (size_t i = 0; i < 8; ++i) {
2169             memcpy(p, &m_state.context.fpu.avx512f.__fpu_zmmh0 + i, 32);
2170             p += 32;
2171           }
2172         }
2173       } else {
2174         // Copy the XMM registers in a single block
2175         memcpy(p, &m_state.context.fpu.no_avx.__fpu_xmm0, 8 * 16);
2176         p += 8 * 16;
2177       }
2178 
2179       // Copy the exception registers
2180       memcpy(p, &m_state.context.exc, sizeof(EXC));
2181       p += sizeof(EXC);
2182 
2183       // make sure we end up with exactly what we think we should have
2184       size_t bytes_written = p - (uint8_t *)buf;
2185       UNUSED_IF_ASSERT_DISABLED(bytes_written);
2186       assert(bytes_written == size);
2187     }
2188   }
2189   DNBLogThreadedIf(
2190       LOG_THREAD,
2191       "DNBArchImplI386::GetRegisterContext (buf = %p, len = %llu) => %llu", buf,
2192       (uint64_t)buf_len, (uint64_t)size);
2193   // Return the size of the register context even if NULL was passed in
2194   return size;
2195 }
2196 
2197 nub_size_t DNBArchImplI386::SetRegisterContext(const void *buf,
2198                                                nub_size_t buf_len) {
2199   nub_size_t size = sizeof(m_state.context);
2200   if (buf == NULL || buf_len == 0)
2201     size = 0;
2202 
2203   if (size) {
2204     if (size > buf_len)
2205       size = buf_len;
2206 
2207     const uint8_t *p = (const uint8_t *)buf;
2208     // Copy the GPR registers
2209     memcpy(&m_state.context.gpr, p, sizeof(GPR));
2210     p += sizeof(GPR);
2211 
2212     // Copy fcw through mxcsrmask as there is no padding
2213     memcpy(&m_state.context.fpu.no_avx.__fpu_fcw, p, 5);
2214     p += 5;
2215     memcpy(&m_state.context.fpu.no_avx.__fpu_fop, p, 8);
2216     p += 8;
2217     memcpy(&m_state.context.fpu.no_avx.__fpu_dp, p, 6);
2218     p += 6;
2219     memcpy(&m_state.context.fpu.no_avx.__fpu_mxcsr, p, 8);
2220     p += 8;
2221 
2222     // Work around the padding between the stmm registers as they are 16
2223     // byte structs with 10 bytes of the value in each
2224     for (size_t i = 0; i < 8; ++i) {
2225       memcpy(&m_state.context.fpu.no_avx.__fpu_stmm0 + i, p, 10);
2226       p += 10;
2227     }
2228 
2229     if(CPUHasAVX512f() || FORCE_AVX_REGS) {
2230       for (size_t i = 0; i < 8; ++i) {
2231         memcpy(&m_state.context.fpu.avx512f.__fpu_k0 + i, p, 8);
2232         p += 8;
2233       }
2234     }
2235 
2236     if (CPUHasAVX() || FORCE_AVX_REGS) {
2237       // Interleave the XMM and YMMH registers to make the YMM registers
2238       for (size_t i = 0; i < 8; ++i) {
2239         memcpy(&m_state.context.fpu.avx.__fpu_xmm0 + i, p, 16);
2240         p += 16;
2241         memcpy(&m_state.context.fpu.avx.__fpu_ymmh0 + i, p, 16);
2242         p += 16;
2243       }
2244 
2245       if(CPUHasAVX512f() || FORCE_AVX_REGS) {
2246         for (size_t i = 0; i < 8; ++i) {
2247           memcpy(&m_state.context.fpu.avx512f.__fpu_zmmh0 + i, p, 32);
2248           p += 32;
2249         }
2250       }
2251     } else {
2252       // Copy the XMM registers in a single block
2253       memcpy(&m_state.context.fpu.no_avx.__fpu_xmm0, p, 8 * 16);
2254       p += 8 * 16;
2255     }
2256 
2257     // Copy the exception registers
2258     memcpy(&m_state.context.exc, p, sizeof(EXC));
2259     p += sizeof(EXC);
2260 
2261     // make sure we end up with exactly what we think we should have
2262     size_t bytes_written = p - (const uint8_t *)buf;
2263     UNUSED_IF_ASSERT_DISABLED(bytes_written);
2264     assert(bytes_written == size);
2265     kern_return_t kret;
2266     if ((kret = SetGPRState()) != KERN_SUCCESS)
2267       DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = "
2268                                    "%p, len = %llu) error: GPR regs failed to "
2269                                    "write: %u",
2270                        buf, (uint64_t)buf_len, kret);
2271     if ((kret = SetFPUState()) != KERN_SUCCESS)
2272       DNBLogThreadedIf(
2273           LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = "
2274                       "%llu) error: %s regs failed to write: %u",
2275           buf, (uint64_t)buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
2276     if ((kret = SetEXCState()) != KERN_SUCCESS)
2277       DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = "
2278                                    "%p, len = %llu) error: EXP regs failed to "
2279                                    "write: %u",
2280                        buf, (uint64_t)buf_len, kret);
2281   }
2282   DNBLogThreadedIf(
2283       LOG_THREAD,
2284       "DNBArchImplI386::SetRegisterContext (buf = %p, len = %llu) => %llu", buf,
2285       (uint64_t)buf_len, (uint64_t)size);
2286   return size;
2287 }
2288 
2289 uint32_t DNBArchImplI386::SaveRegisterState() {
2290   kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
2291   DNBLogThreadedIf(
2292       LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
2293                   "(SetGPRState() for stop_count = %u)",
2294       m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
2295 
2296   bool force = true;
2297 
2298   if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
2299     DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::SaveRegisterState () error: "
2300                                  "GPR regs failed to read: %u ",
2301                      kret);
2302   } else if ((kret = GetFPUState(force)) != KERN_SUCCESS) {
2303     DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::SaveRegisterState () error: "
2304                                  "%s regs failed to read: %u",
2305                      CPUHasAVX() ? "AVX" : "FPU", kret);
2306   } else {
2307     const uint32_t save_id = GetNextRegisterStateSaveID();
2308     m_saved_register_states[save_id] = m_state.context;
2309     return save_id;
2310   }
2311   return 0;
2312 }
2313 bool DNBArchImplI386::RestoreRegisterState(uint32_t save_id) {
2314   SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
2315   if (pos != m_saved_register_states.end()) {
2316     m_state.context.gpr = pos->second.gpr;
2317     m_state.context.fpu = pos->second.fpu;
2318     m_state.context.exc = pos->second.exc;
2319     m_state.SetError(e_regSetGPR, Read, 0);
2320     m_state.SetError(e_regSetFPU, Read, 0);
2321     m_state.SetError(e_regSetEXC, Read, 0);
2322     kern_return_t kret;
2323     bool success = true;
2324     if ((kret = SetGPRState()) != KERN_SUCCESS) {
2325       DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::RestoreRegisterState "
2326                                    "(save_id = %u) error: GPR regs failed to "
2327                                    "write: %u",
2328                        save_id, kret);
2329       success = false;
2330     } else if ((kret = SetFPUState()) != KERN_SUCCESS) {
2331       DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::RestoreRegisterState "
2332                                    "(save_id = %u) error: %s regs failed to "
2333                                    "write: %u",
2334                        save_id, CPUHasAVX() ? "AVX" : "FPU", kret);
2335       success = false;
2336     }
2337     m_saved_register_states.erase(pos);
2338     return success;
2339   }
2340   return false;
2341 }
2342 
2343 kern_return_t DNBArchImplI386::GetRegisterState(int set, bool force) {
2344   switch (set) {
2345   case e_regSetALL:
2346     return GetGPRState(force) | GetFPUState(force) | GetEXCState(force);
2347   case e_regSetGPR:
2348     return GetGPRState(force);
2349   case e_regSetFPU:
2350     return GetFPUState(force);
2351   case e_regSetEXC:
2352     return GetEXCState(force);
2353   default:
2354     break;
2355   }
2356   return KERN_INVALID_ARGUMENT;
2357 }
2358 
2359 kern_return_t DNBArchImplI386::SetRegisterState(int set) {
2360   // Make sure we have a valid context to set.
2361   if (RegisterSetStateIsValid(set)) {
2362     switch (set) {
2363     case e_regSetALL:
2364       return SetGPRState() | SetFPUState() | SetEXCState();
2365     case e_regSetGPR:
2366       return SetGPRState();
2367     case e_regSetFPU:
2368       return SetFPUState();
2369     case e_regSetEXC:
2370       return SetEXCState();
2371     default:
2372       break;
2373     }
2374   }
2375   return KERN_INVALID_ARGUMENT;
2376 }
2377 
2378 bool DNBArchImplI386::RegisterSetStateIsValid(int set) const {
2379   return m_state.RegsAreValid(set);
2380 }
2381 
2382 #endif // #if defined (__i386__)
2383