1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 #include <optional> 13 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Support/ScopedPrinter.h" 16 #include "llvm/Support/Threading.h" 17 18 #include "lldb/Breakpoint/BreakpointLocation.h" 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Module.h" 22 #include "lldb/Core/ModuleSpec.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/StreamFile.h" 25 #include "lldb/Expression/DiagnosticManager.h" 26 #include "lldb/Expression/DynamicCheckerFunctions.h" 27 #include "lldb/Expression/UserExpression.h" 28 #include "lldb/Expression/UtilityFunction.h" 29 #include "lldb/Host/ConnectionFileDescriptor.h" 30 #include "lldb/Host/FileSystem.h" 31 #include "lldb/Host/Host.h" 32 #include "lldb/Host/HostInfo.h" 33 #include "lldb/Host/OptionParser.h" 34 #include "lldb/Host/Pipe.h" 35 #include "lldb/Host/Terminal.h" 36 #include "lldb/Host/ThreadLauncher.h" 37 #include "lldb/Interpreter/CommandInterpreter.h" 38 #include "lldb/Interpreter/OptionArgParser.h" 39 #include "lldb/Interpreter/OptionValueProperties.h" 40 #include "lldb/Symbol/Function.h" 41 #include "lldb/Symbol/Symbol.h" 42 #include "lldb/Target/ABI.h" 43 #include "lldb/Target/AssertFrameRecognizer.h" 44 #include "lldb/Target/DynamicLoader.h" 45 #include "lldb/Target/InstrumentationRuntime.h" 46 #include "lldb/Target/JITLoader.h" 47 #include "lldb/Target/JITLoaderList.h" 48 #include "lldb/Target/Language.h" 49 #include "lldb/Target/LanguageRuntime.h" 50 #include "lldb/Target/MemoryHistory.h" 51 #include "lldb/Target/MemoryRegionInfo.h" 52 #include "lldb/Target/OperatingSystem.h" 53 #include "lldb/Target/Platform.h" 54 #include "lldb/Target/Process.h" 55 #include "lldb/Target/RegisterContext.h" 56 #include "lldb/Target/StopInfo.h" 57 #include "lldb/Target/StructuredDataPlugin.h" 58 #include "lldb/Target/SystemRuntime.h" 59 #include "lldb/Target/Target.h" 60 #include "lldb/Target/TargetList.h" 61 #include "lldb/Target/Thread.h" 62 #include "lldb/Target/ThreadPlan.h" 63 #include "lldb/Target/ThreadPlanBase.h" 64 #include "lldb/Target/ThreadPlanCallFunction.h" 65 #include "lldb/Target/ThreadPlanStack.h" 66 #include "lldb/Target/UnixSignals.h" 67 #include "lldb/Utility/Event.h" 68 #include "lldb/Utility/LLDBLog.h" 69 #include "lldb/Utility/Log.h" 70 #include "lldb/Utility/NameMatches.h" 71 #include "lldb/Utility/ProcessInfo.h" 72 #include "lldb/Utility/SelectHelper.h" 73 #include "lldb/Utility/State.h" 74 #include "lldb/Utility/Timer.h" 75 76 using namespace lldb; 77 using namespace lldb_private; 78 using namespace std::chrono; 79 80 // Comment out line below to disable memory caching, overriding the process 81 // setting target.process.disable-memory-cache 82 #define ENABLE_MEMORY_CACHING 83 84 #ifdef ENABLE_MEMORY_CACHING 85 #define DISABLE_MEM_CACHE_DEFAULT false 86 #else 87 #define DISABLE_MEM_CACHE_DEFAULT true 88 #endif 89 90 class ProcessOptionValueProperties 91 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 92 public: 93 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 94 95 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 96 bool will_modify, 97 uint32_t idx) const override { 98 // When getting the value for a key from the process options, we will 99 // always try and grab the setting from the current process if there is 100 // one. Else we just use the one from this instance. 101 if (exe_ctx) { 102 Process *process = exe_ctx->GetProcessPtr(); 103 if (process) { 104 ProcessOptionValueProperties *instance_properties = 105 static_cast<ProcessOptionValueProperties *>( 106 process->GetValueProperties().get()); 107 if (this != instance_properties) 108 return instance_properties->ProtectedGetPropertyAtIndex(idx); 109 } 110 } 111 return ProtectedGetPropertyAtIndex(idx); 112 } 113 }; 114 115 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 116 { 117 eFollowParent, 118 "parent", 119 "Continue tracing the parent process and detach the child.", 120 }, 121 { 122 eFollowChild, 123 "child", 124 "Trace the child process and detach the parent.", 125 }, 126 }; 127 128 #define LLDB_PROPERTIES_process 129 #include "TargetProperties.inc" 130 131 enum { 132 #define LLDB_PROPERTIES_process 133 #include "TargetPropertiesEnum.inc" 134 ePropertyExperimental, 135 }; 136 137 #define LLDB_PROPERTIES_process_experimental 138 #include "TargetProperties.inc" 139 140 enum { 141 #define LLDB_PROPERTIES_process_experimental 142 #include "TargetPropertiesEnum.inc" 143 }; 144 145 class ProcessExperimentalOptionValueProperties 146 : public Cloneable<ProcessExperimentalOptionValueProperties, 147 OptionValueProperties> { 148 public: 149 ProcessExperimentalOptionValueProperties() 150 : Cloneable( 151 ConstString(Properties::GetExperimentalSettingsName())) {} 152 }; 153 154 ProcessExperimentalProperties::ProcessExperimentalProperties() 155 : Properties(OptionValuePropertiesSP( 156 new ProcessExperimentalOptionValueProperties())) { 157 m_collection_sp->Initialize(g_process_experimental_properties); 158 } 159 160 ProcessProperties::ProcessProperties(lldb_private::Process *process) 161 : Properties(), 162 m_process(process) // Can be nullptr for global ProcessProperties 163 { 164 if (process == nullptr) { 165 // Global process properties, set them up one time 166 m_collection_sp = 167 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 168 m_collection_sp->Initialize(g_process_properties); 169 m_collection_sp->AppendProperty( 170 ConstString("thread"), ConstString("Settings specific to threads."), 171 true, Thread::GetGlobalProperties().GetValueProperties()); 172 } else { 173 m_collection_sp = 174 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 175 m_collection_sp->SetValueChangedCallback( 176 ePropertyPythonOSPluginPath, 177 [this] { m_process->LoadOperatingSystemPlugin(true); }); 178 } 179 180 m_experimental_properties_up = 181 std::make_unique<ProcessExperimentalProperties>(); 182 m_collection_sp->AppendProperty( 183 ConstString(Properties::GetExperimentalSettingsName()), 184 ConstString("Experimental settings - setting these won't produce " 185 "errors if the setting is not present."), 186 true, m_experimental_properties_up->GetValueProperties()); 187 } 188 189 ProcessProperties::~ProcessProperties() = default; 190 191 bool ProcessProperties::GetDisableMemoryCache() const { 192 const uint32_t idx = ePropertyDisableMemCache; 193 return m_collection_sp->GetPropertyAtIndexAsBoolean( 194 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 195 } 196 197 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 198 const uint32_t idx = ePropertyMemCacheLineSize; 199 return m_collection_sp->GetPropertyAtIndexAsUInt64( 200 nullptr, idx, g_process_properties[idx].default_uint_value); 201 } 202 203 Args ProcessProperties::GetExtraStartupCommands() const { 204 Args args; 205 const uint32_t idx = ePropertyExtraStartCommand; 206 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 207 return args; 208 } 209 210 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 211 const uint32_t idx = ePropertyExtraStartCommand; 212 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 213 } 214 215 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 216 const uint32_t idx = ePropertyPythonOSPluginPath; 217 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 218 } 219 220 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 221 const uint32_t idx = ePropertyVirtualAddressableBits; 222 return m_collection_sp->GetPropertyAtIndexAsUInt64( 223 nullptr, idx, g_process_properties[idx].default_uint_value); 224 } 225 226 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 227 const uint32_t idx = ePropertyVirtualAddressableBits; 228 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 229 } 230 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 231 const uint32_t idx = ePropertyPythonOSPluginPath; 232 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 233 } 234 235 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 236 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 237 return m_collection_sp->GetPropertyAtIndexAsBoolean( 238 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 239 } 240 241 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 242 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 243 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 244 } 245 246 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 247 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 248 return m_collection_sp->GetPropertyAtIndexAsBoolean( 249 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 250 } 251 252 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 253 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 254 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 255 } 256 257 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 258 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 259 return m_collection_sp->GetPropertyAtIndexAsBoolean( 260 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 261 } 262 263 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 264 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 265 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 266 } 267 268 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 269 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 270 return m_collection_sp->GetPropertyAtIndexAsBoolean( 271 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 272 } 273 274 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 275 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 276 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 277 m_process->Flush(); 278 } 279 280 bool ProcessProperties::GetDetachKeepsStopped() const { 281 const uint32_t idx = ePropertyDetachKeepsStopped; 282 return m_collection_sp->GetPropertyAtIndexAsBoolean( 283 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 284 } 285 286 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 287 const uint32_t idx = ePropertyDetachKeepsStopped; 288 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 289 } 290 291 bool ProcessProperties::GetWarningsOptimization() const { 292 const uint32_t idx = ePropertyWarningOptimization; 293 return m_collection_sp->GetPropertyAtIndexAsBoolean( 294 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 295 } 296 297 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 298 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 299 return m_collection_sp->GetPropertyAtIndexAsBoolean( 300 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 301 } 302 303 bool ProcessProperties::GetStopOnExec() const { 304 const uint32_t idx = ePropertyStopOnExec; 305 return m_collection_sp->GetPropertyAtIndexAsBoolean( 306 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 307 } 308 309 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 310 const uint32_t idx = ePropertyUtilityExpressionTimeout; 311 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 312 nullptr, idx, g_process_properties[idx].default_uint_value); 313 return std::chrono::seconds(value); 314 } 315 316 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 317 const uint32_t idx = ePropertyInterruptTimeout; 318 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 319 nullptr, idx, g_process_properties[idx].default_uint_value); 320 return std::chrono::seconds(value); 321 } 322 323 bool ProcessProperties::GetSteppingRunsAllThreads() const { 324 const uint32_t idx = ePropertySteppingRunsAllThreads; 325 return m_collection_sp->GetPropertyAtIndexAsBoolean( 326 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 327 } 328 329 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 330 const bool fail_value = true; 331 const Property *exp_property = 332 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 333 OptionValueProperties *exp_values = 334 exp_property->GetValue()->GetAsProperties(); 335 if (!exp_values) 336 return fail_value; 337 338 return exp_values->GetPropertyAtIndexAsBoolean( 339 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 340 } 341 342 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 343 const Property *exp_property = 344 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 345 OptionValueProperties *exp_values = 346 exp_property->GetValue()->GetAsProperties(); 347 if (exp_values) 348 exp_values->SetPropertyAtIndexAsBoolean( 349 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 350 } 351 352 FollowForkMode ProcessProperties::GetFollowForkMode() const { 353 const uint32_t idx = ePropertyFollowForkMode; 354 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 355 nullptr, idx, g_process_properties[idx].default_uint_value); 356 } 357 358 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 359 llvm::StringRef plugin_name, 360 ListenerSP listener_sp, 361 const FileSpec *crash_file_path, 362 bool can_connect) { 363 static uint32_t g_process_unique_id = 0; 364 365 ProcessSP process_sp; 366 ProcessCreateInstance create_callback = nullptr; 367 if (!plugin_name.empty()) { 368 create_callback = 369 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 370 if (create_callback) { 371 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 372 can_connect); 373 if (process_sp) { 374 if (process_sp->CanDebug(target_sp, true)) { 375 process_sp->m_process_unique_id = ++g_process_unique_id; 376 } else 377 process_sp.reset(); 378 } 379 } 380 } else { 381 for (uint32_t idx = 0; 382 (create_callback = 383 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 384 ++idx) { 385 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 386 can_connect); 387 if (process_sp) { 388 if (process_sp->CanDebug(target_sp, false)) { 389 process_sp->m_process_unique_id = ++g_process_unique_id; 390 break; 391 } else 392 process_sp.reset(); 393 } 394 } 395 } 396 return process_sp; 397 } 398 399 ConstString &Process::GetStaticBroadcasterClass() { 400 static ConstString class_name("lldb.process"); 401 return class_name; 402 } 403 404 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 405 : Process(target_sp, listener_sp, 406 UnixSignals::Create(HostInfo::GetArchitecture())) { 407 // This constructor just delegates to the full Process constructor, 408 // defaulting to using the Host's UnixSignals. 409 } 410 411 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 412 const UnixSignalsSP &unix_signals_sp) 413 : ProcessProperties(this), 414 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 415 Process::GetStaticBroadcasterClass().AsCString()), 416 m_target_wp(target_sp), m_public_state(eStateUnloaded), 417 m_private_state(eStateUnloaded), 418 m_private_state_broadcaster(nullptr, 419 "lldb.process.internal_state_broadcaster"), 420 m_private_state_control_broadcaster( 421 nullptr, "lldb.process.internal_state_control_broadcaster"), 422 m_private_state_listener_sp( 423 Listener::MakeListener("lldb.process.internal_state_listener")), 424 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 425 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 426 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 427 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 428 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 429 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 430 m_breakpoint_site_list(), m_dynamic_checkers_up(), 431 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 432 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 433 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 434 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 435 m_memory_cache(*this), m_allocated_memory_cache(*this), 436 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 437 m_private_run_lock(), m_currently_handling_do_on_removals(false), 438 m_resume_requested(false), m_finalizing(false), 439 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 440 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 441 m_can_interpret_function_calls(false), m_run_thread_plan_lock(), 442 m_can_jit(eCanJITDontKnow) { 443 CheckInWithManager(); 444 445 Log *log = GetLog(LLDBLog::Object); 446 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 447 448 if (!m_unix_signals_sp) 449 m_unix_signals_sp = std::make_shared<UnixSignals>(); 450 451 SetEventName(eBroadcastBitStateChanged, "state-changed"); 452 SetEventName(eBroadcastBitInterrupt, "interrupt"); 453 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 454 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 455 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 456 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 457 458 m_private_state_control_broadcaster.SetEventName( 459 eBroadcastInternalStateControlStop, "control-stop"); 460 m_private_state_control_broadcaster.SetEventName( 461 eBroadcastInternalStateControlPause, "control-pause"); 462 m_private_state_control_broadcaster.SetEventName( 463 eBroadcastInternalStateControlResume, "control-resume"); 464 465 m_listener_sp->StartListeningForEvents( 466 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 467 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 468 eBroadcastBitProfileData | eBroadcastBitStructuredData); 469 470 m_private_state_listener_sp->StartListeningForEvents( 471 &m_private_state_broadcaster, 472 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 473 474 m_private_state_listener_sp->StartListeningForEvents( 475 &m_private_state_control_broadcaster, 476 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 477 eBroadcastInternalStateControlResume); 478 // We need something valid here, even if just the default UnixSignalsSP. 479 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 480 481 // Allow the platform to override the default cache line size 482 OptionValueSP value_sp = 483 m_collection_sp 484 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 485 ->GetValue(); 486 uint32_t platform_cache_line_size = 487 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 488 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 489 value_sp->SetUInt64Value(platform_cache_line_size); 490 491 RegisterAssertFrameRecognizer(this); 492 } 493 494 Process::~Process() { 495 Log *log = GetLog(LLDBLog::Object); 496 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 497 StopPrivateStateThread(); 498 499 // ThreadList::Clear() will try to acquire this process's mutex, so 500 // explicitly clear the thread list here to ensure that the mutex is not 501 // destroyed before the thread list. 502 m_thread_list.Clear(); 503 } 504 505 ProcessProperties &Process::GetGlobalProperties() { 506 // NOTE: intentional leak so we don't crash if global destructor chain gets 507 // called as other threads still use the result of this function 508 static ProcessProperties *g_settings_ptr = 509 new ProcessProperties(nullptr); 510 return *g_settings_ptr; 511 } 512 513 void Process::Finalize() { 514 if (m_finalizing.exchange(true)) 515 return; 516 517 // Destroy the process. This will call the virtual function DoDestroy under 518 // the hood, giving our derived class a chance to do the ncessary tear down. 519 DestroyImpl(false); 520 521 // Clear our broadcaster before we proceed with destroying 522 Broadcaster::Clear(); 523 524 // Do any cleanup needed prior to being destructed... Subclasses that 525 // override this method should call this superclass method as well. 526 527 // We need to destroy the loader before the derived Process class gets 528 // destroyed since it is very likely that undoing the loader will require 529 // access to the real process. 530 m_dynamic_checkers_up.reset(); 531 m_abi_sp.reset(); 532 m_os_up.reset(); 533 m_system_runtime_up.reset(); 534 m_dyld_up.reset(); 535 m_jit_loaders_up.reset(); 536 m_thread_plans.Clear(); 537 m_thread_list_real.Destroy(); 538 m_thread_list.Destroy(); 539 m_extended_thread_list.Destroy(); 540 m_queue_list.Clear(); 541 m_queue_list_stop_id = 0; 542 std::vector<Notifications> empty_notifications; 543 m_notifications.swap(empty_notifications); 544 m_image_tokens.clear(); 545 m_memory_cache.Clear(); 546 m_allocated_memory_cache.Clear(/*deallocate_memory=*/true); 547 { 548 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 549 m_language_runtimes.clear(); 550 } 551 m_instrumentation_runtimes.clear(); 552 m_next_event_action_up.reset(); 553 // Clear the last natural stop ID since it has a strong reference to this 554 // process 555 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 556 //#ifdef LLDB_CONFIGURATION_DEBUG 557 // StreamFile s(stdout, false); 558 // EventSP event_sp; 559 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 560 // { 561 // event_sp->Dump (&s); 562 // s.EOL(); 563 // } 564 //#endif 565 // We have to be very careful here as the m_private_state_listener might 566 // contain events that have ProcessSP values in them which can keep this 567 // process around forever. These events need to be cleared out. 568 m_private_state_listener_sp->Clear(); 569 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 570 m_public_run_lock.SetStopped(); 571 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 572 m_private_run_lock.SetStopped(); 573 m_structured_data_plugin_map.clear(); 574 } 575 576 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 577 m_notifications.push_back(callbacks); 578 if (callbacks.initialize != nullptr) 579 callbacks.initialize(callbacks.baton, this); 580 } 581 582 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 583 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 584 for (pos = m_notifications.begin(); pos != end; ++pos) { 585 if (pos->baton == callbacks.baton && 586 pos->initialize == callbacks.initialize && 587 pos->process_state_changed == callbacks.process_state_changed) { 588 m_notifications.erase(pos); 589 return true; 590 } 591 } 592 return false; 593 } 594 595 void Process::SynchronouslyNotifyStateChanged(StateType state) { 596 std::vector<Notifications>::iterator notification_pos, 597 notification_end = m_notifications.end(); 598 for (notification_pos = m_notifications.begin(); 599 notification_pos != notification_end; ++notification_pos) { 600 if (notification_pos->process_state_changed) 601 notification_pos->process_state_changed(notification_pos->baton, this, 602 state); 603 } 604 } 605 606 // FIXME: We need to do some work on events before the general Listener sees 607 // them. 608 // For instance if we are continuing from a breakpoint, we need to ensure that 609 // we do the little "insert real insn, step & stop" trick. But we can't do 610 // that when the event is delivered by the broadcaster - since that is done on 611 // the thread that is waiting for new events, so if we needed more than one 612 // event for our handling, we would stall. So instead we do it when we fetch 613 // the event off of the queue. 614 // 615 616 StateType Process::GetNextEvent(EventSP &event_sp) { 617 StateType state = eStateInvalid; 618 619 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 620 std::chrono::seconds(0)) && 621 event_sp) 622 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 623 624 return state; 625 } 626 627 void Process::SyncIOHandler(uint32_t iohandler_id, 628 const Timeout<std::micro> &timeout) { 629 // don't sync (potentially context switch) in case where there is no process 630 // IO 631 if (!m_process_input_reader) 632 return; 633 634 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 635 636 Log *log = GetLog(LLDBLog::Process); 637 if (Result) { 638 LLDB_LOG( 639 log, 640 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 641 iohandler_id, *Result); 642 } else { 643 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 644 iohandler_id); 645 } 646 } 647 648 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 649 EventSP *event_sp_ptr, bool wait_always, 650 ListenerSP hijack_listener_sp, 651 Stream *stream, bool use_run_lock) { 652 // We can't just wait for a "stopped" event, because the stopped event may 653 // have restarted the target. We have to actually check each event, and in 654 // the case of a stopped event check the restarted flag on the event. 655 if (event_sp_ptr) 656 event_sp_ptr->reset(); 657 StateType state = GetState(); 658 // If we are exited or detached, we won't ever get back to any other valid 659 // state... 660 if (state == eStateDetached || state == eStateExited) 661 return state; 662 663 Log *log = GetLog(LLDBLog::Process); 664 LLDB_LOG(log, "timeout = {0}", timeout); 665 666 if (!wait_always && StateIsStoppedState(state, true) && 667 StateIsStoppedState(GetPrivateState(), true)) { 668 LLDB_LOGF(log, 669 "Process::%s returning without waiting for events; process " 670 "private and public states are already 'stopped'.", 671 __FUNCTION__); 672 // We need to toggle the run lock as this won't get done in 673 // SetPublicState() if the process is hijacked. 674 if (hijack_listener_sp && use_run_lock) 675 m_public_run_lock.SetStopped(); 676 return state; 677 } 678 679 while (state != eStateInvalid) { 680 EventSP event_sp; 681 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 682 if (event_sp_ptr && event_sp) 683 *event_sp_ptr = event_sp; 684 685 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 686 Process::HandleProcessStateChangedEvent(event_sp, stream, 687 pop_process_io_handler); 688 689 switch (state) { 690 case eStateCrashed: 691 case eStateDetached: 692 case eStateExited: 693 case eStateUnloaded: 694 // We need to toggle the run lock as this won't get done in 695 // SetPublicState() if the process is hijacked. 696 if (hijack_listener_sp && use_run_lock) 697 m_public_run_lock.SetStopped(); 698 return state; 699 case eStateStopped: 700 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 701 continue; 702 else { 703 // We need to toggle the run lock as this won't get done in 704 // SetPublicState() if the process is hijacked. 705 if (hijack_listener_sp && use_run_lock) 706 m_public_run_lock.SetStopped(); 707 return state; 708 } 709 default: 710 continue; 711 } 712 } 713 return state; 714 } 715 716 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 717 Stream *stream, 718 bool &pop_process_io_handler) { 719 const bool handle_pop = pop_process_io_handler; 720 721 pop_process_io_handler = false; 722 ProcessSP process_sp = 723 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 724 725 if (!process_sp) 726 return false; 727 728 StateType event_state = 729 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 730 if (event_state == eStateInvalid) 731 return false; 732 733 switch (event_state) { 734 case eStateInvalid: 735 case eStateUnloaded: 736 case eStateAttaching: 737 case eStateLaunching: 738 case eStateStepping: 739 case eStateDetached: 740 if (stream) 741 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 742 StateAsCString(event_state)); 743 if (event_state == eStateDetached) 744 pop_process_io_handler = true; 745 break; 746 747 case eStateConnected: 748 case eStateRunning: 749 // Don't be chatty when we run... 750 break; 751 752 case eStateExited: 753 if (stream) 754 process_sp->GetStatus(*stream); 755 pop_process_io_handler = true; 756 break; 757 758 case eStateStopped: 759 case eStateCrashed: 760 case eStateSuspended: 761 // Make sure the program hasn't been auto-restarted: 762 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 763 if (stream) { 764 size_t num_reasons = 765 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 766 if (num_reasons > 0) { 767 // FIXME: Do we want to report this, or would that just be annoyingly 768 // chatty? 769 if (num_reasons == 1) { 770 const char *reason = 771 Process::ProcessEventData::GetRestartedReasonAtIndex( 772 event_sp.get(), 0); 773 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 774 process_sp->GetID(), 775 reason ? reason : "<UNKNOWN REASON>"); 776 } else { 777 stream->Printf("Process %" PRIu64 778 " stopped and restarted, reasons:\n", 779 process_sp->GetID()); 780 781 for (size_t i = 0; i < num_reasons; i++) { 782 const char *reason = 783 Process::ProcessEventData::GetRestartedReasonAtIndex( 784 event_sp.get(), i); 785 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 786 } 787 } 788 } 789 } 790 } else { 791 StopInfoSP curr_thread_stop_info_sp; 792 // Lock the thread list so it doesn't change on us, this is the scope for 793 // the locker: 794 { 795 ThreadList &thread_list = process_sp->GetThreadList(); 796 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 797 798 ThreadSP curr_thread(thread_list.GetSelectedThread()); 799 ThreadSP thread; 800 StopReason curr_thread_stop_reason = eStopReasonInvalid; 801 bool prefer_curr_thread = false; 802 if (curr_thread && curr_thread->IsValid()) { 803 curr_thread_stop_reason = curr_thread->GetStopReason(); 804 switch (curr_thread_stop_reason) { 805 case eStopReasonNone: 806 case eStopReasonInvalid: 807 // Don't prefer the current thread if it didn't stop for a reason. 808 break; 809 case eStopReasonSignal: { 810 // We need to do the same computation we do for other threads 811 // below in case the current thread happens to be the one that 812 // stopped for the no-stop signal. 813 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 814 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 815 prefer_curr_thread = true; 816 } break; 817 default: 818 prefer_curr_thread = true; 819 break; 820 } 821 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 822 } 823 824 if (!prefer_curr_thread) { 825 // Prefer a thread that has just completed its plan over another 826 // thread as current thread. 827 ThreadSP plan_thread; 828 ThreadSP other_thread; 829 830 const size_t num_threads = thread_list.GetSize(); 831 size_t i; 832 for (i = 0; i < num_threads; ++i) { 833 thread = thread_list.GetThreadAtIndex(i); 834 StopReason thread_stop_reason = thread->GetStopReason(); 835 switch (thread_stop_reason) { 836 case eStopReasonInvalid: 837 case eStopReasonNone: 838 break; 839 840 case eStopReasonSignal: { 841 // Don't select a signal thread if we weren't going to stop at 842 // that signal. We have to have had another reason for stopping 843 // here, and the user doesn't want to see this thread. 844 uint64_t signo = thread->GetStopInfo()->GetValue(); 845 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 846 if (!other_thread) 847 other_thread = thread; 848 } 849 break; 850 } 851 case eStopReasonTrace: 852 case eStopReasonBreakpoint: 853 case eStopReasonWatchpoint: 854 case eStopReasonException: 855 case eStopReasonExec: 856 case eStopReasonFork: 857 case eStopReasonVFork: 858 case eStopReasonVForkDone: 859 case eStopReasonThreadExiting: 860 case eStopReasonInstrumentation: 861 case eStopReasonProcessorTrace: 862 if (!other_thread) 863 other_thread = thread; 864 break; 865 case eStopReasonPlanComplete: 866 if (!plan_thread) 867 plan_thread = thread; 868 break; 869 } 870 } 871 if (plan_thread) 872 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 873 else if (other_thread) 874 thread_list.SetSelectedThreadByID(other_thread->GetID()); 875 else { 876 if (curr_thread && curr_thread->IsValid()) 877 thread = curr_thread; 878 else 879 thread = thread_list.GetThreadAtIndex(0); 880 881 if (thread) 882 thread_list.SetSelectedThreadByID(thread->GetID()); 883 } 884 } 885 } 886 // Drop the ThreadList mutex by here, since GetThreadStatus below might 887 // have to run code, e.g. for Data formatters, and if we hold the 888 // ThreadList mutex, then the process is going to have a hard time 889 // restarting the process. 890 if (stream) { 891 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 892 if (debugger.GetTargetList().GetSelectedTarget().get() == 893 &process_sp->GetTarget()) { 894 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 895 896 if (!thread_sp || !thread_sp->IsValid()) 897 return false; 898 899 const bool only_threads_with_stop_reason = true; 900 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 901 const uint32_t num_frames = 1; 902 const uint32_t num_frames_with_source = 1; 903 const bool stop_format = true; 904 905 process_sp->GetStatus(*stream); 906 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 907 start_frame, num_frames, 908 num_frames_with_source, 909 stop_format); 910 if (curr_thread_stop_info_sp) { 911 lldb::addr_t crashing_address; 912 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 913 curr_thread_stop_info_sp, &crashing_address); 914 if (valobj_sp) { 915 const ValueObject::GetExpressionPathFormat format = 916 ValueObject::GetExpressionPathFormat:: 917 eGetExpressionPathFormatHonorPointers; 918 stream->PutCString("Likely cause: "); 919 valobj_sp->GetExpressionPath(*stream, format); 920 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 921 } 922 } 923 } else { 924 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 925 process_sp->GetTarget().shared_from_this()); 926 if (target_idx != UINT32_MAX) 927 stream->Printf("Target %d: (", target_idx); 928 else 929 stream->Printf("Target <unknown index>: ("); 930 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 931 stream->Printf(") stopped.\n"); 932 } 933 } 934 935 // Pop the process IO handler 936 pop_process_io_handler = true; 937 } 938 break; 939 } 940 941 if (handle_pop && pop_process_io_handler) 942 process_sp->PopProcessIOHandler(); 943 944 return true; 945 } 946 947 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 948 if (listener_sp) { 949 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 950 eBroadcastBitInterrupt); 951 } else 952 return false; 953 } 954 955 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 956 957 StateType Process::GetStateChangedEvents(EventSP &event_sp, 958 const Timeout<std::micro> &timeout, 959 ListenerSP hijack_listener_sp) { 960 Log *log = GetLog(LLDBLog::Process); 961 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 962 963 ListenerSP listener_sp = hijack_listener_sp; 964 if (!listener_sp) 965 listener_sp = m_listener_sp; 966 967 StateType state = eStateInvalid; 968 if (listener_sp->GetEventForBroadcasterWithType( 969 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 970 timeout)) { 971 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 972 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 973 else 974 LLDB_LOG(log, "got no event or was interrupted."); 975 } 976 977 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 978 return state; 979 } 980 981 Event *Process::PeekAtStateChangedEvents() { 982 Log *log = GetLog(LLDBLog::Process); 983 984 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 985 986 Event *event_ptr; 987 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 988 this, eBroadcastBitStateChanged); 989 if (log) { 990 if (event_ptr) { 991 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 992 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 993 } else { 994 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 995 } 996 } 997 return event_ptr; 998 } 999 1000 StateType 1001 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1002 const Timeout<std::micro> &timeout) { 1003 Log *log = GetLog(LLDBLog::Process); 1004 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1005 1006 StateType state = eStateInvalid; 1007 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1008 &m_private_state_broadcaster, 1009 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1010 timeout)) 1011 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1012 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1013 1014 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1015 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1016 return state; 1017 } 1018 1019 bool Process::GetEventsPrivate(EventSP &event_sp, 1020 const Timeout<std::micro> &timeout, 1021 bool control_only) { 1022 Log *log = GetLog(LLDBLog::Process); 1023 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1024 1025 if (control_only) 1026 return m_private_state_listener_sp->GetEventForBroadcaster( 1027 &m_private_state_control_broadcaster, event_sp, timeout); 1028 else 1029 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1030 } 1031 1032 bool Process::IsRunning() const { 1033 return StateIsRunningState(m_public_state.GetValue()); 1034 } 1035 1036 int Process::GetExitStatus() { 1037 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1038 1039 if (m_public_state.GetValue() == eStateExited) 1040 return m_exit_status; 1041 return -1; 1042 } 1043 1044 const char *Process::GetExitDescription() { 1045 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1046 1047 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1048 return m_exit_string.c_str(); 1049 return nullptr; 1050 } 1051 1052 bool Process::SetExitStatus(int status, const char *cstr) { 1053 // Use a mutex to protect setting the exit status. 1054 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1055 1056 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1057 LLDB_LOGF( 1058 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1059 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1060 1061 // We were already in the exited state 1062 if (m_private_state.GetValue() == eStateExited) { 1063 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1064 "state was already set to eStateExited"); 1065 return false; 1066 } 1067 1068 m_exit_status = status; 1069 if (cstr) 1070 m_exit_string = cstr; 1071 else 1072 m_exit_string.clear(); 1073 1074 // Clear the last natural stop ID since it has a strong reference to this 1075 // process 1076 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1077 1078 SetPrivateState(eStateExited); 1079 1080 // Allow subclasses to do some cleanup 1081 DidExit(); 1082 1083 return true; 1084 } 1085 1086 bool Process::IsAlive() { 1087 switch (m_private_state.GetValue()) { 1088 case eStateConnected: 1089 case eStateAttaching: 1090 case eStateLaunching: 1091 case eStateStopped: 1092 case eStateRunning: 1093 case eStateStepping: 1094 case eStateCrashed: 1095 case eStateSuspended: 1096 return true; 1097 default: 1098 return false; 1099 } 1100 } 1101 1102 // This static callback can be used to watch for local child processes on the 1103 // current host. The child process exits, the process will be found in the 1104 // global target list (we want to be completely sure that the 1105 // lldb_private::Process doesn't go away before we can deliver the signal. 1106 bool Process::SetProcessExitStatus( 1107 lldb::pid_t pid, bool exited, 1108 int signo, // Zero for no signal 1109 int exit_status // Exit value of process if signal is zero 1110 ) { 1111 Log *log = GetLog(LLDBLog::Process); 1112 LLDB_LOGF(log, 1113 "Process::SetProcessExitStatus (pid=%" PRIu64 1114 ", exited=%i, signal=%i, exit_status=%i)\n", 1115 pid, exited, signo, exit_status); 1116 1117 if (exited) { 1118 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1119 if (target_sp) { 1120 ProcessSP process_sp(target_sp->GetProcessSP()); 1121 if (process_sp) { 1122 const char *signal_cstr = nullptr; 1123 if (signo) 1124 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1125 1126 process_sp->SetExitStatus(exit_status, signal_cstr); 1127 } 1128 } 1129 return true; 1130 } 1131 return false; 1132 } 1133 1134 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1135 ThreadList &new_thread_list) { 1136 m_thread_plans.ClearThreadCache(); 1137 return DoUpdateThreadList(old_thread_list, new_thread_list); 1138 } 1139 1140 void Process::UpdateThreadListIfNeeded() { 1141 const uint32_t stop_id = GetStopID(); 1142 if (m_thread_list.GetSize(false) == 0 || 1143 stop_id != m_thread_list.GetStopID()) { 1144 bool clear_unused_threads = true; 1145 const StateType state = GetPrivateState(); 1146 if (StateIsStoppedState(state, true)) { 1147 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1148 m_thread_list.SetStopID(stop_id); 1149 1150 // m_thread_list does have its own mutex, but we need to hold onto the 1151 // mutex between the call to UpdateThreadList(...) and the 1152 // os->UpdateThreadList(...) so it doesn't change on us 1153 ThreadList &old_thread_list = m_thread_list; 1154 ThreadList real_thread_list(this); 1155 ThreadList new_thread_list(this); 1156 // Always update the thread list with the protocol specific thread list, 1157 // but only update if "true" is returned 1158 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1159 // Don't call into the OperatingSystem to update the thread list if we 1160 // are shutting down, since that may call back into the SBAPI's, 1161 // requiring the API lock which is already held by whoever is shutting 1162 // us down, causing a deadlock. 1163 OperatingSystem *os = GetOperatingSystem(); 1164 if (os && !m_destroy_in_process) { 1165 // Clear any old backing threads where memory threads might have been 1166 // backed by actual threads from the lldb_private::Process subclass 1167 size_t num_old_threads = old_thread_list.GetSize(false); 1168 for (size_t i = 0; i < num_old_threads; ++i) 1169 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1170 // See if the OS plugin reports all threads. If it does, then 1171 // it is safe to clear unseen thread's plans here. Otherwise we 1172 // should preserve them in case they show up again: 1173 clear_unused_threads = GetOSPluginReportsAllThreads(); 1174 1175 // Turn off dynamic types to ensure we don't run any expressions. 1176 // Objective-C can run an expression to determine if a SBValue is a 1177 // dynamic type or not and we need to avoid this. OperatingSystem 1178 // plug-ins can't run expressions that require running code... 1179 1180 Target &target = GetTarget(); 1181 const lldb::DynamicValueType saved_prefer_dynamic = 1182 target.GetPreferDynamicValue(); 1183 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1184 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1185 1186 // Now let the OperatingSystem plug-in update the thread list 1187 1188 os->UpdateThreadList( 1189 old_thread_list, // Old list full of threads created by OS plug-in 1190 real_thread_list, // The actual thread list full of threads 1191 // created by each lldb_private::Process 1192 // subclass 1193 new_thread_list); // The new thread list that we will show to the 1194 // user that gets filled in 1195 1196 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1197 target.SetPreferDynamicValue(saved_prefer_dynamic); 1198 } else { 1199 // No OS plug-in, the new thread list is the same as the real thread 1200 // list. 1201 new_thread_list = real_thread_list; 1202 } 1203 1204 m_thread_list_real.Update(real_thread_list); 1205 m_thread_list.Update(new_thread_list); 1206 m_thread_list.SetStopID(stop_id); 1207 1208 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1209 // Clear any extended threads that we may have accumulated previously 1210 m_extended_thread_list.Clear(); 1211 m_extended_thread_stop_id = GetLastNaturalStopID(); 1212 1213 m_queue_list.Clear(); 1214 m_queue_list_stop_id = GetLastNaturalStopID(); 1215 } 1216 } 1217 // Now update the plan stack map. 1218 // If we do have an OS plugin, any absent real threads in the 1219 // m_thread_list have already been removed from the ThreadPlanStackMap. 1220 // So any remaining threads are OS Plugin threads, and those we want to 1221 // preserve in case they show up again. 1222 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1223 } 1224 } 1225 } 1226 1227 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1228 return m_thread_plans.Find(tid); 1229 } 1230 1231 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1232 return m_thread_plans.PrunePlansForTID(tid); 1233 } 1234 1235 void Process::PruneThreadPlans() { 1236 m_thread_plans.Update(GetThreadList(), true, false); 1237 } 1238 1239 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1240 lldb::DescriptionLevel desc_level, 1241 bool internal, bool condense_trivial, 1242 bool skip_unreported_plans) { 1243 return m_thread_plans.DumpPlansForTID( 1244 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1245 } 1246 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1247 bool internal, bool condense_trivial, 1248 bool skip_unreported_plans) { 1249 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1250 skip_unreported_plans); 1251 } 1252 1253 void Process::UpdateQueueListIfNeeded() { 1254 if (m_system_runtime_up) { 1255 if (m_queue_list.GetSize() == 0 || 1256 m_queue_list_stop_id != GetLastNaturalStopID()) { 1257 const StateType state = GetPrivateState(); 1258 if (StateIsStoppedState(state, true)) { 1259 m_system_runtime_up->PopulateQueueList(m_queue_list); 1260 m_queue_list_stop_id = GetLastNaturalStopID(); 1261 } 1262 } 1263 } 1264 } 1265 1266 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1267 OperatingSystem *os = GetOperatingSystem(); 1268 if (os) 1269 return os->CreateThread(tid, context); 1270 return ThreadSP(); 1271 } 1272 1273 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1274 return AssignIndexIDToThread(thread_id); 1275 } 1276 1277 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1278 return (m_thread_id_to_index_id_map.find(thread_id) != 1279 m_thread_id_to_index_id_map.end()); 1280 } 1281 1282 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1283 uint32_t result = 0; 1284 std::map<uint64_t, uint32_t>::iterator iterator = 1285 m_thread_id_to_index_id_map.find(thread_id); 1286 if (iterator == m_thread_id_to_index_id_map.end()) { 1287 result = ++m_thread_index_id; 1288 m_thread_id_to_index_id_map[thread_id] = result; 1289 } else { 1290 result = iterator->second; 1291 } 1292 1293 return result; 1294 } 1295 1296 StateType Process::GetState() { 1297 if (CurrentThreadIsPrivateStateThread()) 1298 return m_private_state.GetValue(); 1299 else 1300 return m_public_state.GetValue(); 1301 } 1302 1303 void Process::SetPublicState(StateType new_state, bool restarted) { 1304 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1305 if (new_state_is_stopped) { 1306 // This will only set the time if the public stop time has no value, so 1307 // it is ok to call this multiple times. With a public stop we can't look 1308 // at the stop ID because many private stops might have happened, so we 1309 // can't check for a stop ID of zero. This allows the "statistics" command 1310 // to dump the time it takes to reach somewhere in your code, like a 1311 // breakpoint you set. 1312 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1313 } 1314 1315 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1316 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1317 StateAsCString(new_state), restarted); 1318 const StateType old_state = m_public_state.GetValue(); 1319 m_public_state.SetValue(new_state); 1320 1321 // On the transition from Run to Stopped, we unlock the writer end of the run 1322 // lock. The lock gets locked in Resume, which is the public API to tell the 1323 // program to run. 1324 if (!StateChangedIsExternallyHijacked()) { 1325 if (new_state == eStateDetached) { 1326 LLDB_LOGF(log, 1327 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1328 StateAsCString(new_state)); 1329 m_public_run_lock.SetStopped(); 1330 } else { 1331 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1332 if ((old_state_is_stopped != new_state_is_stopped)) { 1333 if (new_state_is_stopped && !restarted) { 1334 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1335 StateAsCString(new_state)); 1336 m_public_run_lock.SetStopped(); 1337 } 1338 } 1339 } 1340 } 1341 } 1342 1343 Status Process::Resume() { 1344 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1345 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1346 if (!m_public_run_lock.TrySetRunning()) { 1347 Status error("Resume request failed - process still running."); 1348 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1349 return error; 1350 } 1351 Status error = PrivateResume(); 1352 if (!error.Success()) { 1353 // Undo running state change 1354 m_public_run_lock.SetStopped(); 1355 } 1356 return error; 1357 } 1358 1359 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1360 1361 Status Process::ResumeSynchronous(Stream *stream) { 1362 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1363 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1364 if (!m_public_run_lock.TrySetRunning()) { 1365 Status error("Resume request failed - process still running."); 1366 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1367 return error; 1368 } 1369 1370 ListenerSP listener_sp( 1371 Listener::MakeListener(g_resume_sync_name)); 1372 HijackProcessEvents(listener_sp); 1373 1374 Status error = PrivateResume(); 1375 if (error.Success()) { 1376 StateType state = 1377 WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream); 1378 const bool must_be_alive = 1379 false; // eStateExited is ok, so this must be false 1380 if (!StateIsStoppedState(state, must_be_alive)) 1381 error.SetErrorStringWithFormat( 1382 "process not in stopped state after synchronous resume: %s", 1383 StateAsCString(state)); 1384 } else { 1385 // Undo running state change 1386 m_public_run_lock.SetStopped(); 1387 } 1388 1389 // Undo the hijacking of process events... 1390 RestoreProcessEvents(); 1391 1392 return error; 1393 } 1394 1395 bool Process::StateChangedIsExternallyHijacked() { 1396 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1397 const char *hijacking_name = GetHijackingListenerName(); 1398 if (hijacking_name && 1399 strcmp(hijacking_name, g_resume_sync_name)) 1400 return true; 1401 } 1402 return false; 1403 } 1404 1405 bool Process::StateChangedIsHijackedForSynchronousResume() { 1406 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1407 const char *hijacking_name = GetHijackingListenerName(); 1408 if (hijacking_name && 1409 strcmp(hijacking_name, g_resume_sync_name) == 0) 1410 return true; 1411 } 1412 return false; 1413 } 1414 1415 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1416 1417 void Process::SetPrivateState(StateType new_state) { 1418 if (m_finalizing) 1419 return; 1420 1421 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); 1422 bool state_changed = false; 1423 1424 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1425 1426 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1427 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1428 1429 const StateType old_state = m_private_state.GetValueNoLock(); 1430 state_changed = old_state != new_state; 1431 1432 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1433 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1434 if (old_state_is_stopped != new_state_is_stopped) { 1435 if (new_state_is_stopped) 1436 m_private_run_lock.SetStopped(); 1437 else 1438 m_private_run_lock.SetRunning(); 1439 } 1440 1441 if (state_changed) { 1442 m_private_state.SetValueNoLock(new_state); 1443 EventSP event_sp( 1444 new Event(eBroadcastBitStateChanged, 1445 new ProcessEventData(shared_from_this(), new_state))); 1446 if (StateIsStoppedState(new_state, false)) { 1447 // Note, this currently assumes that all threads in the list stop when 1448 // the process stops. In the future we will want to support a debugging 1449 // model where some threads continue to run while others are stopped. 1450 // When that happens we will either need a way for the thread list to 1451 // identify which threads are stopping or create a special thread list 1452 // containing only threads which actually stopped. 1453 // 1454 // The process plugin is responsible for managing the actual behavior of 1455 // the threads and should have stopped any threads that are going to stop 1456 // before we get here. 1457 m_thread_list.DidStop(); 1458 1459 if (m_mod_id.BumpStopID() == 0) 1460 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1461 1462 if (!m_mod_id.IsLastResumeForUserExpression()) 1463 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1464 m_memory_cache.Clear(); 1465 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1466 StateAsCString(new_state), m_mod_id.GetStopID()); 1467 } 1468 1469 m_private_state_broadcaster.BroadcastEvent(event_sp); 1470 } else { 1471 LLDB_LOGF(log, 1472 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1473 StateAsCString(new_state)); 1474 } 1475 } 1476 1477 void Process::SetRunningUserExpression(bool on) { 1478 m_mod_id.SetRunningUserExpression(on); 1479 } 1480 1481 void Process::SetRunningUtilityFunction(bool on) { 1482 m_mod_id.SetRunningUtilityFunction(on); 1483 } 1484 1485 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1486 1487 const lldb::ABISP &Process::GetABI() { 1488 if (!m_abi_sp) 1489 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1490 return m_abi_sp; 1491 } 1492 1493 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1494 std::vector<LanguageRuntime *> language_runtimes; 1495 1496 if (m_finalizing) 1497 return language_runtimes; 1498 1499 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1500 // Before we pass off a copy of the language runtimes, we must make sure that 1501 // our collection is properly populated. It's possible that some of the 1502 // language runtimes were not loaded yet, either because nobody requested it 1503 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1504 // hadn't been loaded). 1505 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1506 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1507 language_runtimes.emplace_back(runtime); 1508 } 1509 1510 return language_runtimes; 1511 } 1512 1513 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1514 if (m_finalizing) 1515 return nullptr; 1516 1517 LanguageRuntime *runtime = nullptr; 1518 1519 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1520 LanguageRuntimeCollection::iterator pos; 1521 pos = m_language_runtimes.find(language); 1522 if (pos == m_language_runtimes.end() || !pos->second) { 1523 lldb::LanguageRuntimeSP runtime_sp( 1524 LanguageRuntime::FindPlugin(this, language)); 1525 1526 m_language_runtimes[language] = runtime_sp; 1527 runtime = runtime_sp.get(); 1528 } else 1529 runtime = pos->second.get(); 1530 1531 if (runtime) 1532 // It's possible that a language runtime can support multiple LanguageTypes, 1533 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1534 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1535 // primary language type and make sure that our runtime supports it. 1536 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1537 1538 return runtime; 1539 } 1540 1541 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1542 if (m_finalizing) 1543 return false; 1544 1545 if (in_value.IsDynamic()) 1546 return false; 1547 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1548 1549 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1550 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1551 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1552 } 1553 1554 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1555 if (runtime->CouldHaveDynamicValue(in_value)) 1556 return true; 1557 } 1558 1559 return false; 1560 } 1561 1562 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1563 m_dynamic_checkers_up.reset(dynamic_checkers); 1564 } 1565 1566 BreakpointSiteList &Process::GetBreakpointSiteList() { 1567 return m_breakpoint_site_list; 1568 } 1569 1570 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1571 return m_breakpoint_site_list; 1572 } 1573 1574 void Process::DisableAllBreakpointSites() { 1575 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1576 // bp_site->SetEnabled(true); 1577 DisableBreakpointSite(bp_site); 1578 }); 1579 } 1580 1581 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1582 Status error(DisableBreakpointSiteByID(break_id)); 1583 1584 if (error.Success()) 1585 m_breakpoint_site_list.Remove(break_id); 1586 1587 return error; 1588 } 1589 1590 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1591 Status error; 1592 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1593 if (bp_site_sp) { 1594 if (bp_site_sp->IsEnabled()) 1595 error = DisableBreakpointSite(bp_site_sp.get()); 1596 } else { 1597 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1598 break_id); 1599 } 1600 1601 return error; 1602 } 1603 1604 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1605 Status error; 1606 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1607 if (bp_site_sp) { 1608 if (!bp_site_sp->IsEnabled()) 1609 error = EnableBreakpointSite(bp_site_sp.get()); 1610 } else { 1611 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1612 break_id); 1613 } 1614 return error; 1615 } 1616 1617 lldb::break_id_t 1618 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1619 bool use_hardware) { 1620 addr_t load_addr = LLDB_INVALID_ADDRESS; 1621 1622 bool show_error = true; 1623 switch (GetState()) { 1624 case eStateInvalid: 1625 case eStateUnloaded: 1626 case eStateConnected: 1627 case eStateAttaching: 1628 case eStateLaunching: 1629 case eStateDetached: 1630 case eStateExited: 1631 show_error = false; 1632 break; 1633 1634 case eStateStopped: 1635 case eStateRunning: 1636 case eStateStepping: 1637 case eStateCrashed: 1638 case eStateSuspended: 1639 show_error = IsAlive(); 1640 break; 1641 } 1642 1643 // Reset the IsIndirect flag here, in case the location changes from pointing 1644 // to a indirect symbol to a regular symbol. 1645 owner->SetIsIndirect(false); 1646 1647 if (owner->ShouldResolveIndirectFunctions()) { 1648 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1649 if (symbol && symbol->IsIndirect()) { 1650 Status error; 1651 Address symbol_address = symbol->GetAddress(); 1652 load_addr = ResolveIndirectFunction(&symbol_address, error); 1653 if (!error.Success() && show_error) { 1654 GetTarget().GetDebugger().GetErrorStream().Printf( 1655 "warning: failed to resolve indirect function at 0x%" PRIx64 1656 " for breakpoint %i.%i: %s\n", 1657 symbol->GetLoadAddress(&GetTarget()), 1658 owner->GetBreakpoint().GetID(), owner->GetID(), 1659 error.AsCString() ? error.AsCString() : "unknown error"); 1660 return LLDB_INVALID_BREAK_ID; 1661 } 1662 Address resolved_address(load_addr); 1663 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1664 owner->SetIsIndirect(true); 1665 } else 1666 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1667 } else 1668 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1669 1670 if (load_addr != LLDB_INVALID_ADDRESS) { 1671 BreakpointSiteSP bp_site_sp; 1672 1673 // Look up this breakpoint site. If it exists, then add this new owner, 1674 // otherwise create a new breakpoint site and add it. 1675 1676 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1677 1678 if (bp_site_sp) { 1679 bp_site_sp->AddOwner(owner); 1680 owner->SetBreakpointSite(bp_site_sp); 1681 return bp_site_sp->GetID(); 1682 } else { 1683 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1684 load_addr, use_hardware)); 1685 if (bp_site_sp) { 1686 Status error = EnableBreakpointSite(bp_site_sp.get()); 1687 if (error.Success()) { 1688 owner->SetBreakpointSite(bp_site_sp); 1689 return m_breakpoint_site_list.Add(bp_site_sp); 1690 } else { 1691 if (show_error || use_hardware) { 1692 // Report error for setting breakpoint... 1693 GetTarget().GetDebugger().GetErrorStream().Printf( 1694 "warning: failed to set breakpoint site at 0x%" PRIx64 1695 " for breakpoint %i.%i: %s\n", 1696 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1697 error.AsCString() ? error.AsCString() : "unknown error"); 1698 } 1699 } 1700 } 1701 } 1702 } 1703 // We failed to enable the breakpoint 1704 return LLDB_INVALID_BREAK_ID; 1705 } 1706 1707 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1708 lldb::user_id_t owner_loc_id, 1709 BreakpointSiteSP &bp_site_sp) { 1710 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1711 if (num_owners == 0) { 1712 // Don't try to disable the site if we don't have a live process anymore. 1713 if (IsAlive()) 1714 DisableBreakpointSite(bp_site_sp.get()); 1715 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1716 } 1717 } 1718 1719 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1720 uint8_t *buf) const { 1721 size_t bytes_removed = 0; 1722 BreakpointSiteList bp_sites_in_range; 1723 1724 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1725 bp_sites_in_range)) { 1726 bp_sites_in_range.ForEach([bp_addr, size, 1727 buf](BreakpointSite *bp_site) -> void { 1728 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1729 addr_t intersect_addr; 1730 size_t intersect_size; 1731 size_t opcode_offset; 1732 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1733 &intersect_size, &opcode_offset)) { 1734 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1735 assert(bp_addr < intersect_addr + intersect_size && 1736 intersect_addr + intersect_size <= bp_addr + size); 1737 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1738 size_t buf_offset = intersect_addr - bp_addr; 1739 ::memcpy(buf + buf_offset, 1740 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1741 intersect_size); 1742 } 1743 } 1744 }); 1745 } 1746 return bytes_removed; 1747 } 1748 1749 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1750 PlatformSP platform_sp(GetTarget().GetPlatform()); 1751 if (platform_sp) 1752 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1753 return 0; 1754 } 1755 1756 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1757 Status error; 1758 assert(bp_site != nullptr); 1759 Log *log = GetLog(LLDBLog::Breakpoints); 1760 const addr_t bp_addr = bp_site->GetLoadAddress(); 1761 LLDB_LOGF( 1762 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1763 bp_site->GetID(), (uint64_t)bp_addr); 1764 if (bp_site->IsEnabled()) { 1765 LLDB_LOGF( 1766 log, 1767 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1768 " -- already enabled", 1769 bp_site->GetID(), (uint64_t)bp_addr); 1770 return error; 1771 } 1772 1773 if (bp_addr == LLDB_INVALID_ADDRESS) { 1774 error.SetErrorString("BreakpointSite contains an invalid load address."); 1775 return error; 1776 } 1777 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1778 // trap for the breakpoint site 1779 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1780 1781 if (bp_opcode_size == 0) { 1782 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1783 "returned zero, unable to get breakpoint " 1784 "trap for address 0x%" PRIx64, 1785 bp_addr); 1786 } else { 1787 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1788 1789 if (bp_opcode_bytes == nullptr) { 1790 error.SetErrorString( 1791 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1792 return error; 1793 } 1794 1795 // Save the original opcode by reading it 1796 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1797 error) == bp_opcode_size) { 1798 // Write a software breakpoint in place of the original opcode 1799 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1800 bp_opcode_size) { 1801 uint8_t verify_bp_opcode_bytes[64]; 1802 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1803 error) == bp_opcode_size) { 1804 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1805 bp_opcode_size) == 0) { 1806 bp_site->SetEnabled(true); 1807 bp_site->SetType(BreakpointSite::eSoftware); 1808 LLDB_LOGF(log, 1809 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1810 "addr = 0x%" PRIx64 " -- SUCCESS", 1811 bp_site->GetID(), (uint64_t)bp_addr); 1812 } else 1813 error.SetErrorString( 1814 "failed to verify the breakpoint trap in memory."); 1815 } else 1816 error.SetErrorString( 1817 "Unable to read memory to verify breakpoint trap."); 1818 } else 1819 error.SetErrorString("Unable to write breakpoint trap to memory."); 1820 } else 1821 error.SetErrorString("Unable to read memory at breakpoint address."); 1822 } 1823 if (log && error.Fail()) 1824 LLDB_LOGF( 1825 log, 1826 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1827 " -- FAILED: %s", 1828 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1829 return error; 1830 } 1831 1832 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1833 Status error; 1834 assert(bp_site != nullptr); 1835 Log *log = GetLog(LLDBLog::Breakpoints); 1836 addr_t bp_addr = bp_site->GetLoadAddress(); 1837 lldb::user_id_t breakID = bp_site->GetID(); 1838 LLDB_LOGF(log, 1839 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1840 ") addr = 0x%" PRIx64, 1841 breakID, (uint64_t)bp_addr); 1842 1843 if (bp_site->IsHardware()) { 1844 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1845 } else if (bp_site->IsEnabled()) { 1846 const size_t break_op_size = bp_site->GetByteSize(); 1847 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1848 if (break_op_size > 0) { 1849 // Clear a software breakpoint instruction 1850 uint8_t curr_break_op[8]; 1851 assert(break_op_size <= sizeof(curr_break_op)); 1852 bool break_op_found = false; 1853 1854 // Read the breakpoint opcode 1855 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1856 break_op_size) { 1857 bool verify = false; 1858 // Make sure the breakpoint opcode exists at this address 1859 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1860 break_op_found = true; 1861 // We found a valid breakpoint opcode at this address, now restore 1862 // the saved opcode. 1863 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1864 break_op_size, error) == break_op_size) { 1865 verify = true; 1866 } else 1867 error.SetErrorString( 1868 "Memory write failed when restoring original opcode."); 1869 } else { 1870 error.SetErrorString( 1871 "Original breakpoint trap is no longer in memory."); 1872 // Set verify to true and so we can check if the original opcode has 1873 // already been restored 1874 verify = true; 1875 } 1876 1877 if (verify) { 1878 uint8_t verify_opcode[8]; 1879 assert(break_op_size < sizeof(verify_opcode)); 1880 // Verify that our original opcode made it back to the inferior 1881 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1882 break_op_size) { 1883 // compare the memory we just read with the original opcode 1884 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1885 break_op_size) == 0) { 1886 // SUCCESS 1887 bp_site->SetEnabled(false); 1888 LLDB_LOGF(log, 1889 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1890 "addr = 0x%" PRIx64 " -- SUCCESS", 1891 bp_site->GetID(), (uint64_t)bp_addr); 1892 return error; 1893 } else { 1894 if (break_op_found) 1895 error.SetErrorString("Failed to restore original opcode."); 1896 } 1897 } else 1898 error.SetErrorString("Failed to read memory to verify that " 1899 "breakpoint trap was restored."); 1900 } 1901 } else 1902 error.SetErrorString( 1903 "Unable to read memory that should contain the breakpoint trap."); 1904 } 1905 } else { 1906 LLDB_LOGF( 1907 log, 1908 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1909 " -- already disabled", 1910 bp_site->GetID(), (uint64_t)bp_addr); 1911 return error; 1912 } 1913 1914 LLDB_LOGF( 1915 log, 1916 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1917 " -- FAILED: %s", 1918 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1919 return error; 1920 } 1921 1922 // Uncomment to verify memory caching works after making changes to caching 1923 // code 1924 //#define VERIFY_MEMORY_READS 1925 1926 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1927 if (ABISP abi_sp = GetABI()) 1928 addr = abi_sp->FixAnyAddress(addr); 1929 1930 error.Clear(); 1931 if (!GetDisableMemoryCache()) { 1932 #if defined(VERIFY_MEMORY_READS) 1933 // Memory caching is enabled, with debug verification 1934 1935 if (buf && size) { 1936 // Uncomment the line below to make sure memory caching is working. 1937 // I ran this through the test suite and got no assertions, so I am 1938 // pretty confident this is working well. If any changes are made to 1939 // memory caching, uncomment the line below and test your changes! 1940 1941 // Verify all memory reads by using the cache first, then redundantly 1942 // reading the same memory from the inferior and comparing to make sure 1943 // everything is exactly the same. 1944 std::string verify_buf(size, '\0'); 1945 assert(verify_buf.size() == size); 1946 const size_t cache_bytes_read = 1947 m_memory_cache.Read(this, addr, buf, size, error); 1948 Status verify_error; 1949 const size_t verify_bytes_read = 1950 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1951 verify_buf.size(), verify_error); 1952 assert(cache_bytes_read == verify_bytes_read); 1953 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1954 assert(verify_error.Success() == error.Success()); 1955 return cache_bytes_read; 1956 } 1957 return 0; 1958 #else // !defined(VERIFY_MEMORY_READS) 1959 // Memory caching is enabled, without debug verification 1960 1961 return m_memory_cache.Read(addr, buf, size, error); 1962 #endif // defined (VERIFY_MEMORY_READS) 1963 } else { 1964 // Memory caching is disabled 1965 1966 return ReadMemoryFromInferior(addr, buf, size, error); 1967 } 1968 } 1969 1970 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1971 Status &error) { 1972 char buf[256]; 1973 out_str.clear(); 1974 addr_t curr_addr = addr; 1975 while (true) { 1976 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1977 if (length == 0) 1978 break; 1979 out_str.append(buf, length); 1980 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1981 // to read some more characters 1982 if (length == sizeof(buf) - 1) 1983 curr_addr += length; 1984 else 1985 break; 1986 } 1987 return out_str.size(); 1988 } 1989 1990 // Deprecated in favor of ReadStringFromMemory which has wchar support and 1991 // correct code to find null terminators. 1992 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 1993 size_t dst_max_len, 1994 Status &result_error) { 1995 size_t total_cstr_len = 0; 1996 if (dst && dst_max_len) { 1997 result_error.Clear(); 1998 // NULL out everything just to be safe 1999 memset(dst, 0, dst_max_len); 2000 Status error; 2001 addr_t curr_addr = addr; 2002 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2003 size_t bytes_left = dst_max_len - 1; 2004 char *curr_dst = dst; 2005 2006 while (bytes_left > 0) { 2007 addr_t cache_line_bytes_left = 2008 cache_line_size - (curr_addr % cache_line_size); 2009 addr_t bytes_to_read = 2010 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2011 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2012 2013 if (bytes_read == 0) { 2014 result_error = error; 2015 dst[total_cstr_len] = '\0'; 2016 break; 2017 } 2018 const size_t len = strlen(curr_dst); 2019 2020 total_cstr_len += len; 2021 2022 if (len < bytes_to_read) 2023 break; 2024 2025 curr_dst += bytes_read; 2026 curr_addr += bytes_read; 2027 bytes_left -= bytes_read; 2028 } 2029 } else { 2030 if (dst == nullptr) 2031 result_error.SetErrorString("invalid arguments"); 2032 else 2033 result_error.Clear(); 2034 } 2035 return total_cstr_len; 2036 } 2037 2038 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2039 Status &error) { 2040 LLDB_SCOPED_TIMER(); 2041 2042 if (ABISP abi_sp = GetABI()) 2043 addr = abi_sp->FixAnyAddress(addr); 2044 2045 if (buf == nullptr || size == 0) 2046 return 0; 2047 2048 size_t bytes_read = 0; 2049 uint8_t *bytes = (uint8_t *)buf; 2050 2051 while (bytes_read < size) { 2052 const size_t curr_size = size - bytes_read; 2053 const size_t curr_bytes_read = 2054 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2055 bytes_read += curr_bytes_read; 2056 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2057 break; 2058 } 2059 2060 // Replace any software breakpoint opcodes that fall into this range back 2061 // into "buf" before we return 2062 if (bytes_read > 0) 2063 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2064 return bytes_read; 2065 } 2066 2067 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2068 size_t integer_byte_size, 2069 uint64_t fail_value, 2070 Status &error) { 2071 Scalar scalar; 2072 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2073 error)) 2074 return scalar.ULongLong(fail_value); 2075 return fail_value; 2076 } 2077 2078 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2079 size_t integer_byte_size, 2080 int64_t fail_value, 2081 Status &error) { 2082 Scalar scalar; 2083 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2084 error)) 2085 return scalar.SLongLong(fail_value); 2086 return fail_value; 2087 } 2088 2089 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2090 Scalar scalar; 2091 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2092 error)) 2093 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2094 return LLDB_INVALID_ADDRESS; 2095 } 2096 2097 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2098 Status &error) { 2099 Scalar scalar; 2100 const uint32_t addr_byte_size = GetAddressByteSize(); 2101 if (addr_byte_size <= 4) 2102 scalar = (uint32_t)ptr_value; 2103 else 2104 scalar = ptr_value; 2105 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2106 addr_byte_size; 2107 } 2108 2109 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2110 Status &error) { 2111 size_t bytes_written = 0; 2112 const uint8_t *bytes = (const uint8_t *)buf; 2113 2114 while (bytes_written < size) { 2115 const size_t curr_size = size - bytes_written; 2116 const size_t curr_bytes_written = DoWriteMemory( 2117 addr + bytes_written, bytes + bytes_written, curr_size, error); 2118 bytes_written += curr_bytes_written; 2119 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2120 break; 2121 } 2122 return bytes_written; 2123 } 2124 2125 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2126 Status &error) { 2127 if (ABISP abi_sp = GetABI()) 2128 addr = abi_sp->FixAnyAddress(addr); 2129 2130 #if defined(ENABLE_MEMORY_CACHING) 2131 m_memory_cache.Flush(addr, size); 2132 #endif 2133 2134 if (buf == nullptr || size == 0) 2135 return 0; 2136 2137 m_mod_id.BumpMemoryID(); 2138 2139 // We need to write any data that would go where any current software traps 2140 // (enabled software breakpoints) any software traps (breakpoints) that we 2141 // may have placed in our tasks memory. 2142 2143 BreakpointSiteList bp_sites_in_range; 2144 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2145 return WriteMemoryPrivate(addr, buf, size, error); 2146 2147 // No breakpoint sites overlap 2148 if (bp_sites_in_range.IsEmpty()) 2149 return WriteMemoryPrivate(addr, buf, size, error); 2150 2151 const uint8_t *ubuf = (const uint8_t *)buf; 2152 uint64_t bytes_written = 0; 2153 2154 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2155 &error](BreakpointSite *bp) -> void { 2156 if (error.Fail()) 2157 return; 2158 2159 if (bp->GetType() != BreakpointSite::eSoftware) 2160 return; 2161 2162 addr_t intersect_addr; 2163 size_t intersect_size; 2164 size_t opcode_offset; 2165 const bool intersects = bp->IntersectsRange( 2166 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2167 UNUSED_IF_ASSERT_DISABLED(intersects); 2168 assert(intersects); 2169 assert(addr <= intersect_addr && intersect_addr < addr + size); 2170 assert(addr < intersect_addr + intersect_size && 2171 intersect_addr + intersect_size <= addr + size); 2172 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2173 2174 // Check for bytes before this breakpoint 2175 const addr_t curr_addr = addr + bytes_written; 2176 if (intersect_addr > curr_addr) { 2177 // There are some bytes before this breakpoint that we need to just 2178 // write to memory 2179 size_t curr_size = intersect_addr - curr_addr; 2180 size_t curr_bytes_written = 2181 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2182 bytes_written += curr_bytes_written; 2183 if (curr_bytes_written != curr_size) { 2184 // We weren't able to write all of the requested bytes, we are 2185 // done looping and will return the number of bytes that we have 2186 // written so far. 2187 if (error.Success()) 2188 error.SetErrorToGenericError(); 2189 } 2190 } 2191 // Now write any bytes that would cover up any software breakpoints 2192 // directly into the breakpoint opcode buffer 2193 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2194 intersect_size); 2195 bytes_written += intersect_size; 2196 }); 2197 2198 // Write any remaining bytes after the last breakpoint if we have any left 2199 if (bytes_written < size) 2200 bytes_written += 2201 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2202 size - bytes_written, error); 2203 2204 return bytes_written; 2205 } 2206 2207 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2208 size_t byte_size, Status &error) { 2209 if (byte_size == UINT32_MAX) 2210 byte_size = scalar.GetByteSize(); 2211 if (byte_size > 0) { 2212 uint8_t buf[32]; 2213 const size_t mem_size = 2214 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2215 if (mem_size > 0) 2216 return WriteMemory(addr, buf, mem_size, error); 2217 else 2218 error.SetErrorString("failed to get scalar as memory data"); 2219 } else { 2220 error.SetErrorString("invalid scalar value"); 2221 } 2222 return 0; 2223 } 2224 2225 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2226 bool is_signed, Scalar &scalar, 2227 Status &error) { 2228 uint64_t uval = 0; 2229 if (byte_size == 0) { 2230 error.SetErrorString("byte size is zero"); 2231 } else if (byte_size & (byte_size - 1)) { 2232 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2233 byte_size); 2234 } else if (byte_size <= sizeof(uval)) { 2235 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2236 if (bytes_read == byte_size) { 2237 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2238 GetAddressByteSize()); 2239 lldb::offset_t offset = 0; 2240 if (byte_size <= 4) 2241 scalar = data.GetMaxU32(&offset, byte_size); 2242 else 2243 scalar = data.GetMaxU64(&offset, byte_size); 2244 if (is_signed) 2245 scalar.SignExtend(byte_size * 8); 2246 return bytes_read; 2247 } 2248 } else { 2249 error.SetErrorStringWithFormat( 2250 "byte size of %u is too large for integer scalar type", byte_size); 2251 } 2252 return 0; 2253 } 2254 2255 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2256 Status error; 2257 for (const auto &Entry : entries) { 2258 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2259 error); 2260 if (!error.Success()) 2261 break; 2262 } 2263 return error; 2264 } 2265 2266 #define USE_ALLOCATE_MEMORY_CACHE 1 2267 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2268 Status &error) { 2269 if (GetPrivateState() != eStateStopped) { 2270 error.SetErrorToGenericError(); 2271 return LLDB_INVALID_ADDRESS; 2272 } 2273 2274 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2275 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2276 #else 2277 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2278 Log *log = GetLog(LLDBLog::Process); 2279 LLDB_LOGF(log, 2280 "Process::AllocateMemory(size=%" PRIu64 2281 ", permissions=%s) => 0x%16.16" PRIx64 2282 " (m_stop_id = %u m_memory_id = %u)", 2283 (uint64_t)size, GetPermissionsAsCString(permissions), 2284 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2285 m_mod_id.GetMemoryID()); 2286 return allocated_addr; 2287 #endif 2288 } 2289 2290 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2291 Status &error) { 2292 addr_t return_addr = AllocateMemory(size, permissions, error); 2293 if (error.Success()) { 2294 std::string buffer(size, 0); 2295 WriteMemory(return_addr, buffer.c_str(), size, error); 2296 } 2297 return return_addr; 2298 } 2299 2300 bool Process::CanJIT() { 2301 if (m_can_jit == eCanJITDontKnow) { 2302 Log *log = GetLog(LLDBLog::Process); 2303 Status err; 2304 2305 uint64_t allocated_memory = AllocateMemory( 2306 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2307 err); 2308 2309 if (err.Success()) { 2310 m_can_jit = eCanJITYes; 2311 LLDB_LOGF(log, 2312 "Process::%s pid %" PRIu64 2313 " allocation test passed, CanJIT () is true", 2314 __FUNCTION__, GetID()); 2315 } else { 2316 m_can_jit = eCanJITNo; 2317 LLDB_LOGF(log, 2318 "Process::%s pid %" PRIu64 2319 " allocation test failed, CanJIT () is false: %s", 2320 __FUNCTION__, GetID(), err.AsCString()); 2321 } 2322 2323 DeallocateMemory(allocated_memory); 2324 } 2325 2326 return m_can_jit == eCanJITYes; 2327 } 2328 2329 void Process::SetCanJIT(bool can_jit) { 2330 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2331 } 2332 2333 void Process::SetCanRunCode(bool can_run_code) { 2334 SetCanJIT(can_run_code); 2335 m_can_interpret_function_calls = can_run_code; 2336 } 2337 2338 Status Process::DeallocateMemory(addr_t ptr) { 2339 Status error; 2340 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2341 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2342 error.SetErrorStringWithFormat( 2343 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2344 } 2345 #else 2346 error = DoDeallocateMemory(ptr); 2347 2348 Log *log = GetLog(LLDBLog::Process); 2349 LLDB_LOGF(log, 2350 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2351 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2352 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2353 m_mod_id.GetMemoryID()); 2354 #endif 2355 return error; 2356 } 2357 2358 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2359 lldb::addr_t header_addr, 2360 size_t size_to_read) { 2361 Log *log = GetLog(LLDBLog::Host); 2362 if (log) { 2363 LLDB_LOGF(log, 2364 "Process::ReadModuleFromMemory reading %s binary from memory", 2365 file_spec.GetPath().c_str()); 2366 } 2367 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2368 if (module_sp) { 2369 Status error; 2370 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2371 shared_from_this(), header_addr, error, size_to_read); 2372 if (objfile) 2373 return module_sp; 2374 } 2375 return ModuleSP(); 2376 } 2377 2378 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2379 uint32_t &permissions) { 2380 MemoryRegionInfo range_info; 2381 permissions = 0; 2382 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2383 if (!error.Success()) 2384 return false; 2385 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2386 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2387 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2388 return false; 2389 } 2390 2391 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2392 permissions |= lldb::ePermissionsReadable; 2393 2394 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2395 permissions |= lldb::ePermissionsWritable; 2396 2397 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2398 permissions |= lldb::ePermissionsExecutable; 2399 2400 return true; 2401 } 2402 2403 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2404 Status error; 2405 error.SetErrorString("watchpoints are not supported"); 2406 return error; 2407 } 2408 2409 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2410 Status error; 2411 error.SetErrorString("watchpoints are not supported"); 2412 return error; 2413 } 2414 2415 StateType 2416 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2417 const Timeout<std::micro> &timeout) { 2418 StateType state; 2419 2420 while (true) { 2421 event_sp.reset(); 2422 state = GetStateChangedEventsPrivate(event_sp, timeout); 2423 2424 if (StateIsStoppedState(state, false)) 2425 break; 2426 2427 // If state is invalid, then we timed out 2428 if (state == eStateInvalid) 2429 break; 2430 2431 if (event_sp) 2432 HandlePrivateEvent(event_sp); 2433 } 2434 return state; 2435 } 2436 2437 void Process::LoadOperatingSystemPlugin(bool flush) { 2438 if (flush) 2439 m_thread_list.Clear(); 2440 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2441 if (flush) 2442 Flush(); 2443 } 2444 2445 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2446 StateType state_after_launch = eStateInvalid; 2447 EventSP first_stop_event_sp; 2448 Status status = 2449 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); 2450 if (status.Fail()) 2451 return status; 2452 2453 if (state_after_launch != eStateStopped && 2454 state_after_launch != eStateCrashed) 2455 return Status(); 2456 2457 // Note, the stop event was consumed above, but not handled. This 2458 // was done to give DidLaunch a chance to run. The target is either 2459 // stopped or crashed. Directly set the state. This is done to 2460 // prevent a stop message with a bunch of spurious output on thread 2461 // status, as well as not pop a ProcessIOHandler. 2462 SetPublicState(state_after_launch, false); 2463 2464 if (PrivateStateThreadIsValid()) 2465 ResumePrivateStateThread(); 2466 else 2467 StartPrivateStateThread(); 2468 2469 // Target was stopped at entry as was intended. Need to notify the 2470 // listeners about it. 2471 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2472 HandlePrivateEvent(first_stop_event_sp); 2473 2474 return Status(); 2475 } 2476 2477 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, 2478 EventSP &event_sp) { 2479 Status error; 2480 m_abi_sp.reset(); 2481 m_dyld_up.reset(); 2482 m_jit_loaders_up.reset(); 2483 m_system_runtime_up.reset(); 2484 m_os_up.reset(); 2485 m_process_input_reader.reset(); 2486 2487 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2488 2489 // The "remote executable path" is hooked up to the local Executable 2490 // module. But we should be able to debug a remote process even if the 2491 // executable module only exists on the remote. However, there needs to 2492 // be a way to express this path, without actually having a module. 2493 // The way to do that is to set the ExecutableFile in the LaunchInfo. 2494 // Figure that out here: 2495 2496 FileSpec exe_spec_to_use; 2497 if (!exe_module) { 2498 if (!launch_info.GetExecutableFile()) { 2499 error.SetErrorString("executable module does not exist"); 2500 return error; 2501 } 2502 exe_spec_to_use = launch_info.GetExecutableFile(); 2503 } else 2504 exe_spec_to_use = exe_module->GetFileSpec(); 2505 2506 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2507 // Install anything that might need to be installed prior to launching. 2508 // For host systems, this will do nothing, but if we are connected to a 2509 // remote platform it will install any needed binaries 2510 error = GetTarget().Install(&launch_info); 2511 if (error.Fail()) 2512 return error; 2513 } 2514 2515 // Listen and queue events that are broadcasted during the process launch. 2516 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2517 HijackProcessEvents(listener_sp); 2518 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2519 2520 if (PrivateStateThreadIsValid()) 2521 PausePrivateStateThread(); 2522 2523 error = WillLaunch(exe_module); 2524 if (error.Fail()) { 2525 std::string local_exec_file_path = exe_spec_to_use.GetPath(); 2526 return Status("file doesn't exist: '%s'", local_exec_file_path.c_str()); 2527 } 2528 2529 const bool restarted = false; 2530 SetPublicState(eStateLaunching, restarted); 2531 m_should_detach = false; 2532 2533 if (m_public_run_lock.TrySetRunning()) { 2534 // Now launch using these arguments. 2535 error = DoLaunch(exe_module, launch_info); 2536 } else { 2537 // This shouldn't happen 2538 error.SetErrorString("failed to acquire process run lock"); 2539 } 2540 2541 if (error.Fail()) { 2542 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2543 SetID(LLDB_INVALID_PROCESS_ID); 2544 const char *error_string = error.AsCString(); 2545 if (error_string == nullptr) 2546 error_string = "launch failed"; 2547 SetExitStatus(-1, error_string); 2548 } 2549 return error; 2550 } 2551 2552 // Now wait for the process to launch and return control to us, and then 2553 // call DidLaunch: 2554 state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2555 2556 if (state == eStateInvalid || !event_sp) { 2557 // We were able to launch the process, but we failed to catch the 2558 // initial stop. 2559 error.SetErrorString("failed to catch stop after launch"); 2560 SetExitStatus(0, error.AsCString()); 2561 Destroy(false); 2562 return error; 2563 } 2564 2565 if (state == eStateExited) { 2566 // We exited while trying to launch somehow. Don't call DidLaunch 2567 // as that's not likely to work, and return an invalid pid. 2568 HandlePrivateEvent(event_sp); 2569 return Status(); 2570 } 2571 2572 if (state == eStateStopped || state == eStateCrashed) { 2573 DidLaunch(); 2574 2575 // Now that we know the process type, update its signal responses from the 2576 // ones stored in the Target: 2577 if (m_unix_signals_sp) { 2578 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 2579 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 2580 } 2581 2582 DynamicLoader *dyld = GetDynamicLoader(); 2583 if (dyld) 2584 dyld->DidLaunch(); 2585 2586 GetJITLoaders().DidLaunch(); 2587 2588 SystemRuntime *system_runtime = GetSystemRuntime(); 2589 if (system_runtime) 2590 system_runtime->DidLaunch(); 2591 2592 if (!m_os_up) 2593 LoadOperatingSystemPlugin(false); 2594 2595 // We successfully launched the process and stopped, now it the 2596 // right time to set up signal filters before resuming. 2597 UpdateAutomaticSignalFiltering(); 2598 return Status(); 2599 } 2600 2601 return Status("Unexpected process state after the launch: %s, expected %s, " 2602 "%s, %s or %s", 2603 StateAsCString(state), StateAsCString(eStateInvalid), 2604 StateAsCString(eStateExited), StateAsCString(eStateStopped), 2605 StateAsCString(eStateCrashed)); 2606 } 2607 2608 Status Process::LoadCore() { 2609 Status error = DoLoadCore(); 2610 if (error.Success()) { 2611 ListenerSP listener_sp( 2612 Listener::MakeListener("lldb.process.load_core_listener")); 2613 HijackProcessEvents(listener_sp); 2614 2615 if (PrivateStateThreadIsValid()) 2616 ResumePrivateStateThread(); 2617 else 2618 StartPrivateStateThread(); 2619 2620 DynamicLoader *dyld = GetDynamicLoader(); 2621 if (dyld) 2622 dyld->DidAttach(); 2623 2624 GetJITLoaders().DidAttach(); 2625 2626 SystemRuntime *system_runtime = GetSystemRuntime(); 2627 if (system_runtime) 2628 system_runtime->DidAttach(); 2629 2630 if (!m_os_up) 2631 LoadOperatingSystemPlugin(false); 2632 2633 // We successfully loaded a core file, now pretend we stopped so we can 2634 // show all of the threads in the core file and explore the crashed state. 2635 SetPrivateState(eStateStopped); 2636 2637 // Wait for a stopped event since we just posted one above... 2638 lldb::EventSP event_sp; 2639 StateType state = 2640 WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp); 2641 2642 if (!StateIsStoppedState(state, false)) { 2643 Log *log = GetLog(LLDBLog::Process); 2644 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2645 StateAsCString(state)); 2646 error.SetErrorString( 2647 "Did not get stopped event after loading the core file."); 2648 } 2649 RestoreProcessEvents(); 2650 } 2651 return error; 2652 } 2653 2654 DynamicLoader *Process::GetDynamicLoader() { 2655 if (!m_dyld_up) 2656 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2657 return m_dyld_up.get(); 2658 } 2659 2660 void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) { 2661 m_dyld_up = std::move(dyld_up); 2662 } 2663 2664 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2665 2666 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2667 return false; 2668 } 2669 2670 JITLoaderList &Process::GetJITLoaders() { 2671 if (!m_jit_loaders_up) { 2672 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2673 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2674 } 2675 return *m_jit_loaders_up; 2676 } 2677 2678 SystemRuntime *Process::GetSystemRuntime() { 2679 if (!m_system_runtime_up) 2680 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2681 return m_system_runtime_up.get(); 2682 } 2683 2684 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2685 uint32_t exec_count) 2686 : NextEventAction(process), m_exec_count(exec_count) { 2687 Log *log = GetLog(LLDBLog::Process); 2688 LLDB_LOGF( 2689 log, 2690 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2691 __FUNCTION__, static_cast<void *>(process), exec_count); 2692 } 2693 2694 Process::NextEventAction::EventActionResult 2695 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2696 Log *log = GetLog(LLDBLog::Process); 2697 2698 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2699 LLDB_LOGF(log, 2700 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2701 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2702 2703 switch (state) { 2704 case eStateAttaching: 2705 return eEventActionSuccess; 2706 2707 case eStateRunning: 2708 case eStateConnected: 2709 return eEventActionRetry; 2710 2711 case eStateStopped: 2712 case eStateCrashed: 2713 // During attach, prior to sending the eStateStopped event, 2714 // lldb_private::Process subclasses must set the new process ID. 2715 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2716 // We don't want these events to be reported, so go set the 2717 // ShouldReportStop here: 2718 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2719 2720 if (m_exec_count > 0) { 2721 --m_exec_count; 2722 2723 LLDB_LOGF(log, 2724 "Process::AttachCompletionHandler::%s state %s: reduced " 2725 "remaining exec count to %" PRIu32 ", requesting resume", 2726 __FUNCTION__, StateAsCString(state), m_exec_count); 2727 2728 RequestResume(); 2729 return eEventActionRetry; 2730 } else { 2731 LLDB_LOGF(log, 2732 "Process::AttachCompletionHandler::%s state %s: no more " 2733 "execs expected to start, continuing with attach", 2734 __FUNCTION__, StateAsCString(state)); 2735 2736 m_process->CompleteAttach(); 2737 return eEventActionSuccess; 2738 } 2739 break; 2740 2741 default: 2742 case eStateExited: 2743 case eStateInvalid: 2744 break; 2745 } 2746 2747 m_exit_string.assign("No valid Process"); 2748 return eEventActionExit; 2749 } 2750 2751 Process::NextEventAction::EventActionResult 2752 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2753 return eEventActionSuccess; 2754 } 2755 2756 const char *Process::AttachCompletionHandler::GetExitString() { 2757 return m_exit_string.c_str(); 2758 } 2759 2760 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2761 if (m_listener_sp) 2762 return m_listener_sp; 2763 else 2764 return debugger.GetListener(); 2765 } 2766 2767 Status Process::WillLaunch(Module *module) { 2768 return DoWillLaunch(module); 2769 } 2770 2771 Status Process::WillAttachToProcessWithID(lldb::pid_t pid) { 2772 return DoWillAttachToProcessWithID(pid); 2773 } 2774 2775 Status Process::WillAttachToProcessWithName(const char *process_name, 2776 bool wait_for_launch) { 2777 return DoWillAttachToProcessWithName(process_name, wait_for_launch); 2778 } 2779 2780 Status Process::Attach(ProcessAttachInfo &attach_info) { 2781 m_abi_sp.reset(); 2782 m_process_input_reader.reset(); 2783 m_dyld_up.reset(); 2784 m_jit_loaders_up.reset(); 2785 m_system_runtime_up.reset(); 2786 m_os_up.reset(); 2787 2788 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2789 Status error; 2790 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2791 char process_name[PATH_MAX]; 2792 2793 if (attach_info.GetExecutableFile().GetPath(process_name, 2794 sizeof(process_name))) { 2795 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2796 2797 if (wait_for_launch) { 2798 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2799 if (error.Success()) { 2800 if (m_public_run_lock.TrySetRunning()) { 2801 m_should_detach = true; 2802 const bool restarted = false; 2803 SetPublicState(eStateAttaching, restarted); 2804 // Now attach using these arguments. 2805 error = DoAttachToProcessWithName(process_name, attach_info); 2806 } else { 2807 // This shouldn't happen 2808 error.SetErrorString("failed to acquire process run lock"); 2809 } 2810 2811 if (error.Fail()) { 2812 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2813 SetID(LLDB_INVALID_PROCESS_ID); 2814 if (error.AsCString() == nullptr) 2815 error.SetErrorString("attach failed"); 2816 2817 SetExitStatus(-1, error.AsCString()); 2818 } 2819 } else { 2820 SetNextEventAction(new Process::AttachCompletionHandler( 2821 this, attach_info.GetResumeCount())); 2822 StartPrivateStateThread(); 2823 } 2824 return error; 2825 } 2826 } else { 2827 ProcessInstanceInfoList process_infos; 2828 PlatformSP platform_sp(GetTarget().GetPlatform()); 2829 2830 if (platform_sp) { 2831 ProcessInstanceInfoMatch match_info; 2832 match_info.GetProcessInfo() = attach_info; 2833 match_info.SetNameMatchType(NameMatch::Equals); 2834 platform_sp->FindProcesses(match_info, process_infos); 2835 const uint32_t num_matches = process_infos.size(); 2836 if (num_matches == 1) { 2837 attach_pid = process_infos[0].GetProcessID(); 2838 // Fall through and attach using the above process ID 2839 } else { 2840 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2841 process_name, sizeof(process_name)); 2842 if (num_matches > 1) { 2843 StreamString s; 2844 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2845 for (size_t i = 0; i < num_matches; i++) { 2846 process_infos[i].DumpAsTableRow( 2847 s, platform_sp->GetUserIDResolver(), true, false); 2848 } 2849 error.SetErrorStringWithFormat( 2850 "more than one process named %s:\n%s", process_name, 2851 s.GetData()); 2852 } else 2853 error.SetErrorStringWithFormat( 2854 "could not find a process named %s", process_name); 2855 } 2856 } else { 2857 error.SetErrorString( 2858 "invalid platform, can't find processes by name"); 2859 return error; 2860 } 2861 } 2862 } else { 2863 error.SetErrorString("invalid process name"); 2864 } 2865 } 2866 2867 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2868 error = WillAttachToProcessWithID(attach_pid); 2869 if (error.Success()) { 2870 2871 if (m_public_run_lock.TrySetRunning()) { 2872 // Now attach using these arguments. 2873 m_should_detach = true; 2874 const bool restarted = false; 2875 SetPublicState(eStateAttaching, restarted); 2876 error = DoAttachToProcessWithID(attach_pid, attach_info); 2877 } else { 2878 // This shouldn't happen 2879 error.SetErrorString("failed to acquire process run lock"); 2880 } 2881 2882 if (error.Success()) { 2883 SetNextEventAction(new Process::AttachCompletionHandler( 2884 this, attach_info.GetResumeCount())); 2885 StartPrivateStateThread(); 2886 } else { 2887 if (GetID() != LLDB_INVALID_PROCESS_ID) 2888 SetID(LLDB_INVALID_PROCESS_ID); 2889 2890 const char *error_string = error.AsCString(); 2891 if (error_string == nullptr) 2892 error_string = "attach failed"; 2893 2894 SetExitStatus(-1, error_string); 2895 } 2896 } 2897 } 2898 return error; 2899 } 2900 2901 void Process::CompleteAttach() { 2902 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); 2903 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2904 2905 // Let the process subclass figure out at much as it can about the process 2906 // before we go looking for a dynamic loader plug-in. 2907 ArchSpec process_arch; 2908 DidAttach(process_arch); 2909 2910 if (process_arch.IsValid()) { 2911 GetTarget().SetArchitecture(process_arch); 2912 if (log) { 2913 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2914 LLDB_LOGF(log, 2915 "Process::%s replacing process architecture with DidAttach() " 2916 "architecture: %s", 2917 __FUNCTION__, triple_str ? triple_str : "<null>"); 2918 } 2919 } 2920 2921 // We just attached. If we have a platform, ask it for the process 2922 // architecture, and if it isn't the same as the one we've already set, 2923 // switch architectures. 2924 PlatformSP platform_sp(GetTarget().GetPlatform()); 2925 assert(platform_sp); 2926 ArchSpec process_host_arch = GetSystemArchitecture(); 2927 if (platform_sp) { 2928 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2929 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture( 2930 target_arch, process_host_arch, 2931 ArchSpec::CompatibleMatch, nullptr)) { 2932 ArchSpec platform_arch; 2933 platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( 2934 target_arch, process_host_arch, &platform_arch); 2935 if (platform_sp) { 2936 GetTarget().SetPlatform(platform_sp); 2937 GetTarget().SetArchitecture(platform_arch); 2938 LLDB_LOG(log, 2939 "switching platform to {0} and architecture to {1} based on " 2940 "info from attach", 2941 platform_sp->GetName(), platform_arch.GetTriple().getTriple()); 2942 } 2943 } else if (!process_arch.IsValid()) { 2944 ProcessInstanceInfo process_info; 2945 GetProcessInfo(process_info); 2946 const ArchSpec &process_arch = process_info.GetArchitecture(); 2947 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2948 if (process_arch.IsValid() && 2949 target_arch.IsCompatibleMatch(process_arch) && 2950 !target_arch.IsExactMatch(process_arch)) { 2951 GetTarget().SetArchitecture(process_arch); 2952 LLDB_LOGF(log, 2953 "Process::%s switching architecture to %s based on info " 2954 "the platform retrieved for pid %" PRIu64, 2955 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2956 GetID()); 2957 } 2958 } 2959 } 2960 // Now that we know the process type, update its signal responses from the 2961 // ones stored in the Target: 2962 if (m_unix_signals_sp) { 2963 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 2964 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 2965 } 2966 2967 // We have completed the attach, now it is time to find the dynamic loader 2968 // plug-in 2969 DynamicLoader *dyld = GetDynamicLoader(); 2970 if (dyld) { 2971 dyld->DidAttach(); 2972 if (log) { 2973 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2974 LLDB_LOG(log, 2975 "after DynamicLoader::DidAttach(), target " 2976 "executable is {0} (using {1} plugin)", 2977 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2978 dyld->GetPluginName()); 2979 } 2980 } 2981 2982 GetJITLoaders().DidAttach(); 2983 2984 SystemRuntime *system_runtime = GetSystemRuntime(); 2985 if (system_runtime) { 2986 system_runtime->DidAttach(); 2987 if (log) { 2988 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2989 LLDB_LOG(log, 2990 "after SystemRuntime::DidAttach(), target " 2991 "executable is {0} (using {1} plugin)", 2992 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2993 system_runtime->GetPluginName()); 2994 } 2995 } 2996 2997 if (!m_os_up) { 2998 LoadOperatingSystemPlugin(false); 2999 if (m_os_up) { 3000 // Somebody might have gotten threads before now, but we need to force the 3001 // update after we've loaded the OperatingSystem plugin or it won't get a 3002 // chance to process the threads. 3003 m_thread_list.Clear(); 3004 UpdateThreadListIfNeeded(); 3005 } 3006 } 3007 // Figure out which one is the executable, and set that in our target: 3008 ModuleSP new_executable_module_sp; 3009 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 3010 if (module_sp && module_sp->IsExecutable()) { 3011 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3012 new_executable_module_sp = module_sp; 3013 break; 3014 } 3015 } 3016 if (new_executable_module_sp) { 3017 GetTarget().SetExecutableModule(new_executable_module_sp, 3018 eLoadDependentsNo); 3019 if (log) { 3020 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3021 LLDB_LOGF( 3022 log, 3023 "Process::%s after looping through modules, target executable is %s", 3024 __FUNCTION__, 3025 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3026 : "<none>"); 3027 } 3028 } 3029 } 3030 3031 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3032 m_abi_sp.reset(); 3033 m_process_input_reader.reset(); 3034 3035 // Find the process and its architecture. Make sure it matches the 3036 // architecture of the current Target, and if not adjust it. 3037 3038 Status error(DoConnectRemote(remote_url)); 3039 if (error.Success()) { 3040 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3041 EventSP event_sp; 3042 StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt); 3043 3044 if (state == eStateStopped || state == eStateCrashed) { 3045 // If we attached and actually have a process on the other end, then 3046 // this ended up being the equivalent of an attach. 3047 CompleteAttach(); 3048 3049 // This delays passing the stopped event to listeners till 3050 // CompleteAttach gets a chance to complete... 3051 HandlePrivateEvent(event_sp); 3052 } 3053 } 3054 3055 if (PrivateStateThreadIsValid()) 3056 ResumePrivateStateThread(); 3057 else 3058 StartPrivateStateThread(); 3059 } 3060 return error; 3061 } 3062 3063 Status Process::PrivateResume() { 3064 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); 3065 LLDB_LOGF(log, 3066 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3067 "private state: %s", 3068 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3069 StateAsCString(m_private_state.GetValue())); 3070 3071 // If signals handing status changed we might want to update our signal 3072 // filters before resuming. 3073 UpdateAutomaticSignalFiltering(); 3074 3075 Status error(WillResume()); 3076 // Tell the process it is about to resume before the thread list 3077 if (error.Success()) { 3078 // Now let the thread list know we are about to resume so it can let all of 3079 // our threads know that they are about to be resumed. Threads will each be 3080 // called with Thread::WillResume(StateType) where StateType contains the 3081 // state that they are supposed to have when the process is resumed 3082 // (suspended/running/stepping). Threads should also check their resume 3083 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3084 // start back up with a signal. 3085 if (m_thread_list.WillResume()) { 3086 // Last thing, do the PreResumeActions. 3087 if (!RunPreResumeActions()) { 3088 error.SetErrorString( 3089 "Process::PrivateResume PreResumeActions failed, not resuming."); 3090 } else { 3091 m_mod_id.BumpResumeID(); 3092 error = DoResume(); 3093 if (error.Success()) { 3094 DidResume(); 3095 m_thread_list.DidResume(); 3096 LLDB_LOGF(log, "Process thinks the process has resumed."); 3097 } else { 3098 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3099 return error; 3100 } 3101 } 3102 } else { 3103 // Somebody wanted to run without running (e.g. we were faking a step 3104 // from one frame of a set of inlined frames that share the same PC to 3105 // another.) So generate a continue & a stopped event, and let the world 3106 // handle them. 3107 LLDB_LOGF(log, 3108 "Process::PrivateResume() asked to simulate a start & stop."); 3109 3110 SetPrivateState(eStateRunning); 3111 SetPrivateState(eStateStopped); 3112 } 3113 } else 3114 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3115 error.AsCString("<unknown error>")); 3116 return error; 3117 } 3118 3119 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3120 if (!StateIsRunningState(m_public_state.GetValue())) 3121 return Status("Process is not running."); 3122 3123 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3124 // case it was already set and some thread plan logic calls halt on its own. 3125 m_clear_thread_plans_on_stop |= clear_thread_plans; 3126 3127 ListenerSP halt_listener_sp( 3128 Listener::MakeListener("lldb.process.halt_listener")); 3129 HijackProcessEvents(halt_listener_sp); 3130 3131 EventSP event_sp; 3132 3133 SendAsyncInterrupt(); 3134 3135 if (m_public_state.GetValue() == eStateAttaching) { 3136 // Don't hijack and eat the eStateExited as the code that was doing the 3137 // attach will be waiting for this event... 3138 RestoreProcessEvents(); 3139 SetExitStatus(SIGKILL, "Cancelled async attach."); 3140 Destroy(false); 3141 return Status(); 3142 } 3143 3144 // Wait for the process halt timeout seconds for the process to stop. 3145 StateType state = 3146 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3147 halt_listener_sp, nullptr, use_run_lock); 3148 RestoreProcessEvents(); 3149 3150 if (state == eStateInvalid || !event_sp) { 3151 // We timed out and didn't get a stop event... 3152 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3153 } 3154 3155 BroadcastEvent(event_sp); 3156 3157 return Status(); 3158 } 3159 3160 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3161 Status error; 3162 3163 // Check both the public & private states here. If we're hung evaluating an 3164 // expression, for instance, then the public state will be stopped, but we 3165 // still need to interrupt. 3166 if (m_public_state.GetValue() == eStateRunning || 3167 m_private_state.GetValue() == eStateRunning) { 3168 Log *log = GetLog(LLDBLog::Process); 3169 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3170 3171 ListenerSP listener_sp( 3172 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3173 HijackProcessEvents(listener_sp); 3174 3175 SendAsyncInterrupt(); 3176 3177 // Consume the interrupt event. 3178 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3179 &exit_event_sp, true, listener_sp); 3180 3181 RestoreProcessEvents(); 3182 3183 // If the process exited while we were waiting for it to stop, put the 3184 // exited event into the shared pointer passed in and return. Our caller 3185 // doesn't need to do anything else, since they don't have a process 3186 // anymore... 3187 3188 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3189 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3190 __FUNCTION__); 3191 return error; 3192 } else 3193 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3194 3195 if (state != eStateStopped) { 3196 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3197 StateAsCString(state)); 3198 // If we really couldn't stop the process then we should just error out 3199 // here, but if the lower levels just bobbled sending the event and we 3200 // really are stopped, then continue on. 3201 StateType private_state = m_private_state.GetValue(); 3202 if (private_state != eStateStopped) { 3203 return Status( 3204 "Attempt to stop the target in order to detach timed out. " 3205 "State = %s", 3206 StateAsCString(GetState())); 3207 } 3208 } 3209 } 3210 return error; 3211 } 3212 3213 Status Process::Detach(bool keep_stopped) { 3214 EventSP exit_event_sp; 3215 Status error; 3216 m_destroy_in_process = true; 3217 3218 error = WillDetach(); 3219 3220 if (error.Success()) { 3221 if (DetachRequiresHalt()) { 3222 error = StopForDestroyOrDetach(exit_event_sp); 3223 if (!error.Success()) { 3224 m_destroy_in_process = false; 3225 return error; 3226 } else if (exit_event_sp) { 3227 // We shouldn't need to do anything else here. There's no process left 3228 // to detach from... 3229 StopPrivateStateThread(); 3230 m_destroy_in_process = false; 3231 return error; 3232 } 3233 } 3234 3235 m_thread_list.DiscardThreadPlans(); 3236 DisableAllBreakpointSites(); 3237 3238 error = DoDetach(keep_stopped); 3239 if (error.Success()) { 3240 DidDetach(); 3241 StopPrivateStateThread(); 3242 } else { 3243 return error; 3244 } 3245 } 3246 m_destroy_in_process = false; 3247 3248 // If we exited when we were waiting for a process to stop, then forward the 3249 // event here so we don't lose the event 3250 if (exit_event_sp) { 3251 // Directly broadcast our exited event because we shut down our private 3252 // state thread above 3253 BroadcastEvent(exit_event_sp); 3254 } 3255 3256 // If we have been interrupted (to kill us) in the middle of running, we may 3257 // not end up propagating the last events through the event system, in which 3258 // case we might strand the write lock. Unlock it here so when we do to tear 3259 // down the process we don't get an error destroying the lock. 3260 3261 m_public_run_lock.SetStopped(); 3262 return error; 3263 } 3264 3265 Status Process::Destroy(bool force_kill) { 3266 // If we've already called Process::Finalize then there's nothing useful to 3267 // be done here. Finalize has actually called Destroy already. 3268 if (m_finalizing) 3269 return {}; 3270 return DestroyImpl(force_kill); 3271 } 3272 3273 Status Process::DestroyImpl(bool force_kill) { 3274 // Tell ourselves we are in the process of destroying the process, so that we 3275 // don't do any unnecessary work that might hinder the destruction. Remember 3276 // to set this back to false when we are done. That way if the attempt 3277 // failed and the process stays around for some reason it won't be in a 3278 // confused state. 3279 3280 if (force_kill) 3281 m_should_detach = false; 3282 3283 if (GetShouldDetach()) { 3284 // FIXME: This will have to be a process setting: 3285 bool keep_stopped = false; 3286 Detach(keep_stopped); 3287 } 3288 3289 m_destroy_in_process = true; 3290 3291 Status error(WillDestroy()); 3292 if (error.Success()) { 3293 EventSP exit_event_sp; 3294 if (DestroyRequiresHalt()) { 3295 error = StopForDestroyOrDetach(exit_event_sp); 3296 } 3297 3298 if (m_public_state.GetValue() == eStateStopped) { 3299 // Ditch all thread plans, and remove all our breakpoints: in case we 3300 // have to restart the target to kill it, we don't want it hitting a 3301 // breakpoint... Only do this if we've stopped, however, since if we 3302 // didn't manage to halt it above, then we're not going to have much luck 3303 // doing this now. 3304 m_thread_list.DiscardThreadPlans(); 3305 DisableAllBreakpointSites(); 3306 } 3307 3308 error = DoDestroy(); 3309 if (error.Success()) { 3310 DidDestroy(); 3311 StopPrivateStateThread(); 3312 } 3313 m_stdio_communication.StopReadThread(); 3314 m_stdio_communication.Disconnect(); 3315 m_stdin_forward = false; 3316 3317 if (m_process_input_reader) { 3318 m_process_input_reader->SetIsDone(true); 3319 m_process_input_reader->Cancel(); 3320 m_process_input_reader.reset(); 3321 } 3322 3323 // If we exited when we were waiting for a process to stop, then forward 3324 // the event here so we don't lose the event 3325 if (exit_event_sp) { 3326 // Directly broadcast our exited event because we shut down our private 3327 // state thread above 3328 BroadcastEvent(exit_event_sp); 3329 } 3330 3331 // If we have been interrupted (to kill us) in the middle of running, we 3332 // may not end up propagating the last events through the event system, in 3333 // which case we might strand the write lock. Unlock it here so when we do 3334 // to tear down the process we don't get an error destroying the lock. 3335 m_public_run_lock.SetStopped(); 3336 } 3337 3338 m_destroy_in_process = false; 3339 3340 return error; 3341 } 3342 3343 Status Process::Signal(int signal) { 3344 Status error(WillSignal()); 3345 if (error.Success()) { 3346 error = DoSignal(signal); 3347 if (error.Success()) 3348 DidSignal(); 3349 } 3350 return error; 3351 } 3352 3353 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3354 assert(signals_sp && "null signals_sp"); 3355 m_unix_signals_sp = signals_sp; 3356 } 3357 3358 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3359 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3360 return m_unix_signals_sp; 3361 } 3362 3363 lldb::ByteOrder Process::GetByteOrder() const { 3364 return GetTarget().GetArchitecture().GetByteOrder(); 3365 } 3366 3367 uint32_t Process::GetAddressByteSize() const { 3368 return GetTarget().GetArchitecture().GetAddressByteSize(); 3369 } 3370 3371 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3372 const StateType state = 3373 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3374 bool return_value = true; 3375 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); 3376 3377 switch (state) { 3378 case eStateDetached: 3379 case eStateExited: 3380 case eStateUnloaded: 3381 m_stdio_communication.SynchronizeWithReadThread(); 3382 m_stdio_communication.StopReadThread(); 3383 m_stdio_communication.Disconnect(); 3384 m_stdin_forward = false; 3385 3386 [[fallthrough]]; 3387 case eStateConnected: 3388 case eStateAttaching: 3389 case eStateLaunching: 3390 // These events indicate changes in the state of the debugging session, 3391 // always report them. 3392 return_value = true; 3393 break; 3394 case eStateInvalid: 3395 // We stopped for no apparent reason, don't report it. 3396 return_value = false; 3397 break; 3398 case eStateRunning: 3399 case eStateStepping: 3400 // If we've started the target running, we handle the cases where we are 3401 // already running and where there is a transition from stopped to running 3402 // differently. running -> running: Automatically suppress extra running 3403 // events stopped -> running: Report except when there is one or more no 3404 // votes 3405 // and no yes votes. 3406 SynchronouslyNotifyStateChanged(state); 3407 if (m_force_next_event_delivery) 3408 return_value = true; 3409 else { 3410 switch (m_last_broadcast_state) { 3411 case eStateRunning: 3412 case eStateStepping: 3413 // We always suppress multiple runnings with no PUBLIC stop in between. 3414 return_value = false; 3415 break; 3416 default: 3417 // TODO: make this work correctly. For now always report 3418 // run if we aren't running so we don't miss any running events. If I 3419 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3420 // and hit the breakpoints on multiple threads, then somehow during the 3421 // stepping over of all breakpoints no run gets reported. 3422 3423 // This is a transition from stop to run. 3424 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3425 case eVoteYes: 3426 case eVoteNoOpinion: 3427 return_value = true; 3428 break; 3429 case eVoteNo: 3430 return_value = false; 3431 break; 3432 } 3433 break; 3434 } 3435 } 3436 break; 3437 case eStateStopped: 3438 case eStateCrashed: 3439 case eStateSuspended: 3440 // We've stopped. First see if we're going to restart the target. If we 3441 // are going to stop, then we always broadcast the event. If we aren't 3442 // going to stop, let the thread plans decide if we're going to report this 3443 // event. If no thread has an opinion, we don't report it. 3444 3445 m_stdio_communication.SynchronizeWithReadThread(); 3446 RefreshStateAfterStop(); 3447 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3448 LLDB_LOGF(log, 3449 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3450 "interrupt, state: %s", 3451 static_cast<void *>(event_ptr), StateAsCString(state)); 3452 // Even though we know we are going to stop, we should let the threads 3453 // have a look at the stop, so they can properly set their state. 3454 m_thread_list.ShouldStop(event_ptr); 3455 return_value = true; 3456 } else { 3457 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3458 bool should_resume = false; 3459 3460 // It makes no sense to ask "ShouldStop" if we've already been 3461 // restarted... Asking the thread list is also not likely to go well, 3462 // since we are running again. So in that case just report the event. 3463 3464 if (!was_restarted) 3465 should_resume = !m_thread_list.ShouldStop(event_ptr); 3466 3467 if (was_restarted || should_resume || m_resume_requested) { 3468 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3469 LLDB_LOGF(log, 3470 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3471 "%s was_restarted: %i report_stop_vote: %d.", 3472 should_resume, StateAsCString(state), was_restarted, 3473 report_stop_vote); 3474 3475 switch (report_stop_vote) { 3476 case eVoteYes: 3477 return_value = true; 3478 break; 3479 case eVoteNoOpinion: 3480 case eVoteNo: 3481 return_value = false; 3482 break; 3483 } 3484 3485 if (!was_restarted) { 3486 LLDB_LOGF(log, 3487 "Process::ShouldBroadcastEvent (%p) Restarting process " 3488 "from state: %s", 3489 static_cast<void *>(event_ptr), StateAsCString(state)); 3490 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3491 PrivateResume(); 3492 } 3493 } else { 3494 return_value = true; 3495 SynchronouslyNotifyStateChanged(state); 3496 } 3497 } 3498 break; 3499 } 3500 3501 // Forcing the next event delivery is a one shot deal. So reset it here. 3502 m_force_next_event_delivery = false; 3503 3504 // We do some coalescing of events (for instance two consecutive running 3505 // events get coalesced.) But we only coalesce against events we actually 3506 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3507 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3508 // done, because the PublicState reflects the last event pulled off the 3509 // queue, and there may be several events stacked up on the queue unserviced. 3510 // So the PublicState may not reflect the last broadcasted event yet. 3511 // m_last_broadcast_state gets updated here. 3512 3513 if (return_value) 3514 m_last_broadcast_state = state; 3515 3516 LLDB_LOGF(log, 3517 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3518 "broadcast state: %s - %s", 3519 static_cast<void *>(event_ptr), StateAsCString(state), 3520 StateAsCString(m_last_broadcast_state), 3521 return_value ? "YES" : "NO"); 3522 return return_value; 3523 } 3524 3525 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3526 Log *log = GetLog(LLDBLog::Events); 3527 3528 bool already_running = PrivateStateThreadIsValid(); 3529 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3530 already_running ? " already running" 3531 : " starting private state thread"); 3532 3533 if (!is_secondary_thread && already_running) 3534 return true; 3535 3536 // Create a thread that watches our internal state and controls which events 3537 // make it to clients (into the DCProcess event queue). 3538 char thread_name[1024]; 3539 uint32_t max_len = llvm::get_max_thread_name_length(); 3540 if (max_len > 0 && max_len <= 30) { 3541 // On platforms with abbreviated thread name lengths, choose thread names 3542 // that fit within the limit. 3543 if (already_running) 3544 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3545 else 3546 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3547 } else { 3548 if (already_running) 3549 snprintf(thread_name, sizeof(thread_name), 3550 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3551 GetID()); 3552 else 3553 snprintf(thread_name, sizeof(thread_name), 3554 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3555 } 3556 3557 llvm::Expected<HostThread> private_state_thread = 3558 ThreadLauncher::LaunchThread( 3559 thread_name, 3560 [this, is_secondary_thread] { 3561 return RunPrivateStateThread(is_secondary_thread); 3562 }, 3563 8 * 1024 * 1024); 3564 if (!private_state_thread) { 3565 LLDB_LOG(GetLog(LLDBLog::Host), "failed to launch host thread: {}", 3566 llvm::toString(private_state_thread.takeError())); 3567 return false; 3568 } 3569 3570 assert(private_state_thread->IsJoinable()); 3571 m_private_state_thread = *private_state_thread; 3572 ResumePrivateStateThread(); 3573 return true; 3574 } 3575 3576 void Process::PausePrivateStateThread() { 3577 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3578 } 3579 3580 void Process::ResumePrivateStateThread() { 3581 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3582 } 3583 3584 void Process::StopPrivateStateThread() { 3585 if (m_private_state_thread.IsJoinable()) 3586 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3587 else { 3588 Log *log = GetLog(LLDBLog::Process); 3589 LLDB_LOGF( 3590 log, 3591 "Went to stop the private state thread, but it was already invalid."); 3592 } 3593 } 3594 3595 void Process::ControlPrivateStateThread(uint32_t signal) { 3596 Log *log = GetLog(LLDBLog::Process); 3597 3598 assert(signal == eBroadcastInternalStateControlStop || 3599 signal == eBroadcastInternalStateControlPause || 3600 signal == eBroadcastInternalStateControlResume); 3601 3602 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3603 3604 // Signal the private state thread 3605 if (m_private_state_thread.IsJoinable()) { 3606 // Broadcast the event. 3607 // It is important to do this outside of the if below, because it's 3608 // possible that the thread state is invalid but that the thread is waiting 3609 // on a control event instead of simply being on its way out (this should 3610 // not happen, but it apparently can). 3611 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3612 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3613 m_private_state_control_broadcaster.BroadcastEvent(signal, 3614 event_receipt_sp); 3615 3616 // Wait for the event receipt or for the private state thread to exit 3617 bool receipt_received = false; 3618 if (PrivateStateThreadIsValid()) { 3619 while (!receipt_received) { 3620 // Check for a receipt for n seconds and then check if the private 3621 // state thread is still around. 3622 receipt_received = 3623 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3624 if (!receipt_received) { 3625 // Check if the private state thread is still around. If it isn't 3626 // then we are done waiting 3627 if (!PrivateStateThreadIsValid()) 3628 break; // Private state thread exited or is exiting, we are done 3629 } 3630 } 3631 } 3632 3633 if (signal == eBroadcastInternalStateControlStop) { 3634 thread_result_t result = {}; 3635 m_private_state_thread.Join(&result); 3636 m_private_state_thread.Reset(); 3637 } 3638 } else { 3639 LLDB_LOGF( 3640 log, 3641 "Private state thread already dead, no need to signal it to stop."); 3642 } 3643 } 3644 3645 void Process::SendAsyncInterrupt() { 3646 if (PrivateStateThreadIsValid()) 3647 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3648 nullptr); 3649 else 3650 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3651 } 3652 3653 void Process::HandlePrivateEvent(EventSP &event_sp) { 3654 Log *log = GetLog(LLDBLog::Process); 3655 m_resume_requested = false; 3656 3657 const StateType new_state = 3658 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3659 3660 // First check to see if anybody wants a shot at this event: 3661 if (m_next_event_action_up) { 3662 NextEventAction::EventActionResult action_result = 3663 m_next_event_action_up->PerformAction(event_sp); 3664 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3665 3666 switch (action_result) { 3667 case NextEventAction::eEventActionSuccess: 3668 SetNextEventAction(nullptr); 3669 break; 3670 3671 case NextEventAction::eEventActionRetry: 3672 break; 3673 3674 case NextEventAction::eEventActionExit: 3675 // Handle Exiting Here. If we already got an exited event, we should 3676 // just propagate it. Otherwise, swallow this event, and set our state 3677 // to exit so the next event will kill us. 3678 if (new_state != eStateExited) { 3679 // FIXME: should cons up an exited event, and discard this one. 3680 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3681 SetNextEventAction(nullptr); 3682 return; 3683 } 3684 SetNextEventAction(nullptr); 3685 break; 3686 } 3687 } 3688 3689 // See if we should broadcast this state to external clients? 3690 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3691 3692 if (should_broadcast) { 3693 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3694 if (log) { 3695 LLDB_LOGF(log, 3696 "Process::%s (pid = %" PRIu64 3697 ") broadcasting new state %s (old state %s) to %s", 3698 __FUNCTION__, GetID(), StateAsCString(new_state), 3699 StateAsCString(GetState()), 3700 is_hijacked ? "hijacked" : "public"); 3701 } 3702 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3703 if (StateIsRunningState(new_state)) { 3704 // Only push the input handler if we aren't fowarding events, as this 3705 // means the curses GUI is in use... Or don't push it if we are launching 3706 // since it will come up stopped. 3707 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3708 new_state != eStateLaunching && new_state != eStateAttaching) { 3709 PushProcessIOHandler(); 3710 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3711 eBroadcastAlways); 3712 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3713 __FUNCTION__, m_iohandler_sync.GetValue()); 3714 } 3715 } else if (StateIsStoppedState(new_state, false)) { 3716 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3717 // If the lldb_private::Debugger is handling the events, we don't want 3718 // to pop the process IOHandler here, we want to do it when we receive 3719 // the stopped event so we can carefully control when the process 3720 // IOHandler is popped because when we stop we want to display some 3721 // text stating how and why we stopped, then maybe some 3722 // process/thread/frame info, and then we want the "(lldb) " prompt to 3723 // show up. If we pop the process IOHandler here, then we will cause 3724 // the command interpreter to become the top IOHandler after the 3725 // process pops off and it will update its prompt right away... See the 3726 // Debugger.cpp file where it calls the function as 3727 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3728 // Otherwise we end up getting overlapping "(lldb) " prompts and 3729 // garbled output. 3730 // 3731 // If we aren't handling the events in the debugger (which is indicated 3732 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3733 // we are hijacked, then we always pop the process IO handler manually. 3734 // Hijacking happens when the internal process state thread is running 3735 // thread plans, or when commands want to run in synchronous mode and 3736 // they call "process->WaitForProcessToStop()". An example of something 3737 // that will hijack the events is a simple expression: 3738 // 3739 // (lldb) expr (int)puts("hello") 3740 // 3741 // This will cause the internal process state thread to resume and halt 3742 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3743 // events) and we do need the IO handler to be pushed and popped 3744 // correctly. 3745 3746 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3747 PopProcessIOHandler(); 3748 } 3749 } 3750 3751 BroadcastEvent(event_sp); 3752 } else { 3753 if (log) { 3754 LLDB_LOGF( 3755 log, 3756 "Process::%s (pid = %" PRIu64 3757 ") suppressing state %s (old state %s): should_broadcast == false", 3758 __FUNCTION__, GetID(), StateAsCString(new_state), 3759 StateAsCString(GetState())); 3760 } 3761 } 3762 } 3763 3764 Status Process::HaltPrivate() { 3765 EventSP event_sp; 3766 Status error(WillHalt()); 3767 if (error.Fail()) 3768 return error; 3769 3770 // Ask the process subclass to actually halt our process 3771 bool caused_stop; 3772 error = DoHalt(caused_stop); 3773 3774 DidHalt(); 3775 return error; 3776 } 3777 3778 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3779 bool control_only = true; 3780 3781 Log *log = GetLog(LLDBLog::Process); 3782 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3783 __FUNCTION__, static_cast<void *>(this), GetID()); 3784 3785 bool exit_now = false; 3786 bool interrupt_requested = false; 3787 while (!exit_now) { 3788 EventSP event_sp; 3789 GetEventsPrivate(event_sp, std::nullopt, control_only); 3790 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3791 LLDB_LOGF(log, 3792 "Process::%s (arg = %p, pid = %" PRIu64 3793 ") got a control event: %d", 3794 __FUNCTION__, static_cast<void *>(this), GetID(), 3795 event_sp->GetType()); 3796 3797 switch (event_sp->GetType()) { 3798 case eBroadcastInternalStateControlStop: 3799 exit_now = true; 3800 break; // doing any internal state management below 3801 3802 case eBroadcastInternalStateControlPause: 3803 control_only = true; 3804 break; 3805 3806 case eBroadcastInternalStateControlResume: 3807 control_only = false; 3808 break; 3809 } 3810 3811 continue; 3812 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3813 if (m_public_state.GetValue() == eStateAttaching) { 3814 LLDB_LOGF(log, 3815 "Process::%s (arg = %p, pid = %" PRIu64 3816 ") woke up with an interrupt while attaching - " 3817 "forwarding interrupt.", 3818 __FUNCTION__, static_cast<void *>(this), GetID()); 3819 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3820 } else if (StateIsRunningState(m_last_broadcast_state)) { 3821 LLDB_LOGF(log, 3822 "Process::%s (arg = %p, pid = %" PRIu64 3823 ") woke up with an interrupt - Halting.", 3824 __FUNCTION__, static_cast<void *>(this), GetID()); 3825 Status error = HaltPrivate(); 3826 if (error.Fail() && log) 3827 LLDB_LOGF(log, 3828 "Process::%s (arg = %p, pid = %" PRIu64 3829 ") failed to halt the process: %s", 3830 __FUNCTION__, static_cast<void *>(this), GetID(), 3831 error.AsCString()); 3832 // Halt should generate a stopped event. Make a note of the fact that 3833 // we were doing the interrupt, so we can set the interrupted flag 3834 // after we receive the event. We deliberately set this to true even if 3835 // HaltPrivate failed, so that we can interrupt on the next natural 3836 // stop. 3837 interrupt_requested = true; 3838 } else { 3839 // This can happen when someone (e.g. Process::Halt) sees that we are 3840 // running and sends an interrupt request, but the process actually 3841 // stops before we receive it. In that case, we can just ignore the 3842 // request. We use m_last_broadcast_state, because the Stopped event 3843 // may not have been popped of the event queue yet, which is when the 3844 // public state gets updated. 3845 LLDB_LOGF(log, 3846 "Process::%s ignoring interrupt as we have already stopped.", 3847 __FUNCTION__); 3848 } 3849 continue; 3850 } 3851 3852 const StateType internal_state = 3853 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3854 3855 if (internal_state != eStateInvalid) { 3856 if (m_clear_thread_plans_on_stop && 3857 StateIsStoppedState(internal_state, true)) { 3858 m_clear_thread_plans_on_stop = false; 3859 m_thread_list.DiscardThreadPlans(); 3860 } 3861 3862 if (interrupt_requested) { 3863 if (StateIsStoppedState(internal_state, true)) { 3864 // We requested the interrupt, so mark this as such in the stop event 3865 // so clients can tell an interrupted process from a natural stop 3866 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3867 interrupt_requested = false; 3868 } else if (log) { 3869 LLDB_LOGF(log, 3870 "Process::%s interrupt_requested, but a non-stopped " 3871 "state '%s' received.", 3872 __FUNCTION__, StateAsCString(internal_state)); 3873 } 3874 } 3875 3876 HandlePrivateEvent(event_sp); 3877 } 3878 3879 if (internal_state == eStateInvalid || internal_state == eStateExited || 3880 internal_state == eStateDetached) { 3881 LLDB_LOGF(log, 3882 "Process::%s (arg = %p, pid = %" PRIu64 3883 ") about to exit with internal state %s...", 3884 __FUNCTION__, static_cast<void *>(this), GetID(), 3885 StateAsCString(internal_state)); 3886 3887 break; 3888 } 3889 } 3890 3891 // Verify log is still enabled before attempting to write to it... 3892 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3893 __FUNCTION__, static_cast<void *>(this), GetID()); 3894 3895 // If we are a secondary thread, then the primary thread we are working for 3896 // will have already acquired the public_run_lock, and isn't done with what 3897 // it was doing yet, so don't try to change it on the way out. 3898 if (!is_secondary_thread) 3899 m_public_run_lock.SetStopped(); 3900 return {}; 3901 } 3902 3903 // Process Event Data 3904 3905 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3906 3907 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3908 StateType state) 3909 : EventData(), m_process_wp(), m_state(state) { 3910 if (process_sp) 3911 m_process_wp = process_sp; 3912 } 3913 3914 Process::ProcessEventData::~ProcessEventData() = default; 3915 3916 ConstString Process::ProcessEventData::GetFlavorString() { 3917 static ConstString g_flavor("Process::ProcessEventData"); 3918 return g_flavor; 3919 } 3920 3921 ConstString Process::ProcessEventData::GetFlavor() const { 3922 return ProcessEventData::GetFlavorString(); 3923 } 3924 3925 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3926 bool &found_valid_stopinfo) { 3927 found_valid_stopinfo = false; 3928 3929 ProcessSP process_sp(m_process_wp.lock()); 3930 if (!process_sp) 3931 return false; 3932 3933 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3934 uint32_t num_threads = curr_thread_list.GetSize(); 3935 uint32_t idx; 3936 3937 // The actions might change one of the thread's stop_info's opinions about 3938 // whether we should stop the process, so we need to query that as we go. 3939 3940 // One other complication here, is that we try to catch any case where the 3941 // target has run (except for expressions) and immediately exit, but if we 3942 // get that wrong (which is possible) then the thread list might have 3943 // changed, and that would cause our iteration here to crash. We could 3944 // make a copy of the thread list, but we'd really like to also know if it 3945 // has changed at all, so we make up a vector of the thread ID's and check 3946 // what we get back against this list & bag out if anything differs. 3947 ThreadList not_suspended_thread_list(process_sp.get()); 3948 std::vector<uint32_t> thread_index_array(num_threads); 3949 uint32_t not_suspended_idx = 0; 3950 for (idx = 0; idx < num_threads; ++idx) { 3951 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3952 3953 /* 3954 Filter out all suspended threads, they could not be the reason 3955 of stop and no need to perform any actions on them. 3956 */ 3957 if (thread_sp->GetResumeState() != eStateSuspended) { 3958 not_suspended_thread_list.AddThread(thread_sp); 3959 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3960 not_suspended_idx++; 3961 } 3962 } 3963 3964 // Use this to track whether we should continue from here. We will only 3965 // continue the target running if no thread says we should stop. Of course 3966 // if some thread's PerformAction actually sets the target running, then it 3967 // doesn't matter what the other threads say... 3968 3969 bool still_should_stop = false; 3970 3971 // Sometimes - for instance if we have a bug in the stub we are talking to, 3972 // we stop but no thread has a valid stop reason. In that case we should 3973 // just stop, because we have no way of telling what the right thing to do 3974 // is, and it's better to let the user decide than continue behind their 3975 // backs. 3976 3977 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3978 curr_thread_list = process_sp->GetThreadList(); 3979 if (curr_thread_list.GetSize() != num_threads) { 3980 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3981 LLDB_LOGF( 3982 log, 3983 "Number of threads changed from %u to %u while processing event.", 3984 num_threads, curr_thread_list.GetSize()); 3985 break; 3986 } 3987 3988 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3989 3990 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3991 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3992 LLDB_LOGF(log, 3993 "The thread at position %u changed from %u to %u while " 3994 "processing event.", 3995 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3996 break; 3997 } 3998 3999 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4000 if (stop_info_sp && stop_info_sp->IsValid()) { 4001 found_valid_stopinfo = true; 4002 bool this_thread_wants_to_stop; 4003 if (stop_info_sp->GetOverrideShouldStop()) { 4004 this_thread_wants_to_stop = 4005 stop_info_sp->GetOverriddenShouldStopValue(); 4006 } else { 4007 stop_info_sp->PerformAction(event_ptr); 4008 // The stop action might restart the target. If it does, then we 4009 // want to mark that in the event so that whoever is receiving it 4010 // will know to wait for the running event and reflect that state 4011 // appropriately. We also need to stop processing actions, since they 4012 // aren't expecting the target to be running. 4013 4014 // FIXME: we might have run. 4015 if (stop_info_sp->HasTargetRunSinceMe()) { 4016 SetRestarted(true); 4017 break; 4018 } 4019 4020 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4021 } 4022 4023 if (!still_should_stop) 4024 still_should_stop = this_thread_wants_to_stop; 4025 } 4026 } 4027 4028 return still_should_stop; 4029 } 4030 4031 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4032 ProcessSP process_sp(m_process_wp.lock()); 4033 4034 if (!process_sp) 4035 return; 4036 4037 // This function gets called twice for each event, once when the event gets 4038 // pulled off of the private process event queue, and then any number of 4039 // times, first when it gets pulled off of the public event queue, then other 4040 // times when we're pretending that this is where we stopped at the end of 4041 // expression evaluation. m_update_state is used to distinguish these three 4042 // cases; it is 0 when we're just pulling it off for private handling, and > 4043 // 1 for expression evaluation, and we don't want to do the breakpoint 4044 // command handling then. 4045 if (m_update_state != 1) 4046 return; 4047 4048 process_sp->SetPublicState( 4049 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4050 4051 if (m_state == eStateStopped && !m_restarted) { 4052 // Let process subclasses know we are about to do a public stop and do 4053 // anything they might need to in order to speed up register and memory 4054 // accesses. 4055 process_sp->WillPublicStop(); 4056 } 4057 4058 // If this is a halt event, even if the halt stopped with some reason other 4059 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4060 // the halt request came through) don't do the StopInfo actions, as they may 4061 // end up restarting the process. 4062 if (m_interrupted) 4063 return; 4064 4065 // If we're not stopped or have restarted, then skip the StopInfo actions: 4066 if (m_state != eStateStopped || m_restarted) { 4067 return; 4068 } 4069 4070 bool does_anybody_have_an_opinion = false; 4071 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4072 4073 if (GetRestarted()) { 4074 return; 4075 } 4076 4077 if (!still_should_stop && does_anybody_have_an_opinion) { 4078 // We've been asked to continue, so do that here. 4079 SetRestarted(true); 4080 // Use the public resume method here, since this is just extending a 4081 // public resume. 4082 process_sp->PrivateResume(); 4083 } else { 4084 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4085 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4086 4087 if (!hijacked) { 4088 // If we didn't restart, run the Stop Hooks here. 4089 // Don't do that if state changed events aren't hooked up to the 4090 // public (or SyncResume) broadcasters. StopHooks are just for 4091 // real public stops. They might also restart the target, 4092 // so watch for that. 4093 if (process_sp->GetTarget().RunStopHooks()) 4094 SetRestarted(true); 4095 } 4096 } 4097 } 4098 4099 void Process::ProcessEventData::Dump(Stream *s) const { 4100 ProcessSP process_sp(m_process_wp.lock()); 4101 4102 if (process_sp) 4103 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4104 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4105 else 4106 s->PutCString(" process = NULL, "); 4107 4108 s->Printf("state = %s", StateAsCString(GetState())); 4109 } 4110 4111 const Process::ProcessEventData * 4112 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4113 if (event_ptr) { 4114 const EventData *event_data = event_ptr->GetData(); 4115 if (event_data && 4116 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4117 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4118 } 4119 return nullptr; 4120 } 4121 4122 ProcessSP 4123 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4124 ProcessSP process_sp; 4125 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4126 if (data) 4127 process_sp = data->GetProcessSP(); 4128 return process_sp; 4129 } 4130 4131 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4132 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4133 if (data == nullptr) 4134 return eStateInvalid; 4135 else 4136 return data->GetState(); 4137 } 4138 4139 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4140 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4141 if (data == nullptr) 4142 return false; 4143 else 4144 return data->GetRestarted(); 4145 } 4146 4147 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4148 bool new_value) { 4149 ProcessEventData *data = 4150 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4151 if (data != nullptr) 4152 data->SetRestarted(new_value); 4153 } 4154 4155 size_t 4156 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4157 ProcessEventData *data = 4158 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4159 if (data != nullptr) 4160 return data->GetNumRestartedReasons(); 4161 else 4162 return 0; 4163 } 4164 4165 const char * 4166 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4167 size_t idx) { 4168 ProcessEventData *data = 4169 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4170 if (data != nullptr) 4171 return data->GetRestartedReasonAtIndex(idx); 4172 else 4173 return nullptr; 4174 } 4175 4176 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4177 const char *reason) { 4178 ProcessEventData *data = 4179 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4180 if (data != nullptr) 4181 data->AddRestartedReason(reason); 4182 } 4183 4184 bool Process::ProcessEventData::GetInterruptedFromEvent( 4185 const Event *event_ptr) { 4186 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4187 if (data == nullptr) 4188 return false; 4189 else 4190 return data->GetInterrupted(); 4191 } 4192 4193 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4194 bool new_value) { 4195 ProcessEventData *data = 4196 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4197 if (data != nullptr) 4198 data->SetInterrupted(new_value); 4199 } 4200 4201 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4202 ProcessEventData *data = 4203 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4204 if (data) { 4205 data->SetUpdateStateOnRemoval(); 4206 return true; 4207 } 4208 return false; 4209 } 4210 4211 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4212 4213 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4214 exe_ctx.SetTargetPtr(&GetTarget()); 4215 exe_ctx.SetProcessPtr(this); 4216 exe_ctx.SetThreadPtr(nullptr); 4217 exe_ctx.SetFramePtr(nullptr); 4218 } 4219 4220 // uint32_t 4221 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4222 // std::vector<lldb::pid_t> &pids) 4223 //{ 4224 // return 0; 4225 //} 4226 // 4227 // ArchSpec 4228 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4229 //{ 4230 // return Host::GetArchSpecForExistingProcess (pid); 4231 //} 4232 // 4233 // ArchSpec 4234 // Process::GetArchSpecForExistingProcess (const char *process_name) 4235 //{ 4236 // return Host::GetArchSpecForExistingProcess (process_name); 4237 //} 4238 4239 void Process::AppendSTDOUT(const char *s, size_t len) { 4240 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4241 m_stdout_data.append(s, len); 4242 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4243 new ProcessEventData(shared_from_this(), GetState())); 4244 } 4245 4246 void Process::AppendSTDERR(const char *s, size_t len) { 4247 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4248 m_stderr_data.append(s, len); 4249 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4250 new ProcessEventData(shared_from_this(), GetState())); 4251 } 4252 4253 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4254 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4255 m_profile_data.push_back(one_profile_data); 4256 BroadcastEventIfUnique(eBroadcastBitProfileData, 4257 new ProcessEventData(shared_from_this(), GetState())); 4258 } 4259 4260 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4261 const StructuredDataPluginSP &plugin_sp) { 4262 BroadcastEvent( 4263 eBroadcastBitStructuredData, 4264 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4265 } 4266 4267 StructuredDataPluginSP 4268 Process::GetStructuredDataPlugin(ConstString type_name) const { 4269 auto find_it = m_structured_data_plugin_map.find(type_name); 4270 if (find_it != m_structured_data_plugin_map.end()) 4271 return find_it->second; 4272 else 4273 return StructuredDataPluginSP(); 4274 } 4275 4276 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4277 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4278 if (m_profile_data.empty()) 4279 return 0; 4280 4281 std::string &one_profile_data = m_profile_data.front(); 4282 size_t bytes_available = one_profile_data.size(); 4283 if (bytes_available > 0) { 4284 Log *log = GetLog(LLDBLog::Process); 4285 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4286 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4287 if (bytes_available > buf_size) { 4288 memcpy(buf, one_profile_data.c_str(), buf_size); 4289 one_profile_data.erase(0, buf_size); 4290 bytes_available = buf_size; 4291 } else { 4292 memcpy(buf, one_profile_data.c_str(), bytes_available); 4293 m_profile_data.erase(m_profile_data.begin()); 4294 } 4295 } 4296 return bytes_available; 4297 } 4298 4299 // Process STDIO 4300 4301 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4302 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4303 size_t bytes_available = m_stdout_data.size(); 4304 if (bytes_available > 0) { 4305 Log *log = GetLog(LLDBLog::Process); 4306 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4307 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4308 if (bytes_available > buf_size) { 4309 memcpy(buf, m_stdout_data.c_str(), buf_size); 4310 m_stdout_data.erase(0, buf_size); 4311 bytes_available = buf_size; 4312 } else { 4313 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4314 m_stdout_data.clear(); 4315 } 4316 } 4317 return bytes_available; 4318 } 4319 4320 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4321 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4322 size_t bytes_available = m_stderr_data.size(); 4323 if (bytes_available > 0) { 4324 Log *log = GetLog(LLDBLog::Process); 4325 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4326 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4327 if (bytes_available > buf_size) { 4328 memcpy(buf, m_stderr_data.c_str(), buf_size); 4329 m_stderr_data.erase(0, buf_size); 4330 bytes_available = buf_size; 4331 } else { 4332 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4333 m_stderr_data.clear(); 4334 } 4335 } 4336 return bytes_available; 4337 } 4338 4339 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4340 size_t src_len) { 4341 Process *process = (Process *)baton; 4342 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4343 } 4344 4345 class IOHandlerProcessSTDIO : public IOHandler { 4346 public: 4347 IOHandlerProcessSTDIO(Process *process, int write_fd) 4348 : IOHandler(process->GetTarget().GetDebugger(), 4349 IOHandler::Type::ProcessIO), 4350 m_process(process), 4351 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4352 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4353 m_pipe.CreateNew(false); 4354 } 4355 4356 ~IOHandlerProcessSTDIO() override = default; 4357 4358 void SetIsRunning(bool running) { 4359 std::lock_guard<std::mutex> guard(m_mutex); 4360 SetIsDone(!running); 4361 m_is_running = running; 4362 } 4363 4364 // Each IOHandler gets to run until it is done. It should read data from the 4365 // "in" and place output into "out" and "err and return when done. 4366 void Run() override { 4367 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4368 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4369 SetIsDone(true); 4370 return; 4371 } 4372 4373 SetIsDone(false); 4374 const int read_fd = m_read_file.GetDescriptor(); 4375 Terminal terminal(read_fd); 4376 TerminalState terminal_state(terminal, false); 4377 // FIXME: error handling? 4378 llvm::consumeError(terminal.SetCanonical(false)); 4379 llvm::consumeError(terminal.SetEcho(false)); 4380 // FD_ZERO, FD_SET are not supported on windows 4381 #ifndef _WIN32 4382 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4383 SetIsRunning(true); 4384 while (true) { 4385 { 4386 std::lock_guard<std::mutex> guard(m_mutex); 4387 if (GetIsDone()) 4388 break; 4389 } 4390 4391 SelectHelper select_helper; 4392 select_helper.FDSetRead(read_fd); 4393 select_helper.FDSetRead(pipe_read_fd); 4394 Status error = select_helper.Select(); 4395 4396 if (error.Fail()) 4397 break; 4398 4399 char ch = 0; 4400 size_t n; 4401 if (select_helper.FDIsSetRead(read_fd)) { 4402 n = 1; 4403 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4404 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4405 break; 4406 } else 4407 break; 4408 } 4409 4410 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4411 size_t bytes_read; 4412 // Consume the interrupt byte 4413 Status error = m_pipe.Read(&ch, 1, bytes_read); 4414 if (error.Success()) { 4415 if (ch == 'q') 4416 break; 4417 if (ch == 'i') 4418 if (StateIsRunningState(m_process->GetState())) 4419 m_process->SendAsyncInterrupt(); 4420 } 4421 } 4422 } 4423 SetIsRunning(false); 4424 #endif 4425 } 4426 4427 void Cancel() override { 4428 std::lock_guard<std::mutex> guard(m_mutex); 4429 SetIsDone(true); 4430 // Only write to our pipe to cancel if we are in 4431 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4432 // is being run from the command interpreter: 4433 // 4434 // (lldb) step_process_thousands_of_times 4435 // 4436 // In this case the command interpreter will be in the middle of handling 4437 // the command and if the process pushes and pops the IOHandler thousands 4438 // of times, we can end up writing to m_pipe without ever consuming the 4439 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4440 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4441 if (m_is_running) { 4442 char ch = 'q'; // Send 'q' for quit 4443 size_t bytes_written = 0; 4444 m_pipe.Write(&ch, 1, bytes_written); 4445 } 4446 } 4447 4448 bool Interrupt() override { 4449 // Do only things that are safe to do in an interrupt context (like in a 4450 // SIGINT handler), like write 1 byte to a file descriptor. This will 4451 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4452 // that was written to the pipe and then call 4453 // m_process->SendAsyncInterrupt() from a much safer location in code. 4454 if (m_active) { 4455 char ch = 'i'; // Send 'i' for interrupt 4456 size_t bytes_written = 0; 4457 Status result = m_pipe.Write(&ch, 1, bytes_written); 4458 return result.Success(); 4459 } else { 4460 // This IOHandler might be pushed on the stack, but not being run 4461 // currently so do the right thing if we aren't actively watching for 4462 // STDIN by sending the interrupt to the process. Otherwise the write to 4463 // the pipe above would do nothing. This can happen when the command 4464 // interpreter is running and gets a "expression ...". It will be on the 4465 // IOHandler thread and sending the input is complete to the delegate 4466 // which will cause the expression to run, which will push the process IO 4467 // handler, but not run it. 4468 4469 if (StateIsRunningState(m_process->GetState())) { 4470 m_process->SendAsyncInterrupt(); 4471 return true; 4472 } 4473 } 4474 return false; 4475 } 4476 4477 void GotEOF() override {} 4478 4479 protected: 4480 Process *m_process; 4481 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4482 NativeFile m_write_file; // Write to this file (usually the primary pty for 4483 // getting io to debuggee) 4484 Pipe m_pipe; 4485 std::mutex m_mutex; 4486 bool m_is_running = false; 4487 }; 4488 4489 void Process::SetSTDIOFileDescriptor(int fd) { 4490 // First set up the Read Thread for reading/handling process I/O 4491 m_stdio_communication.SetConnection( 4492 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4493 if (m_stdio_communication.IsConnected()) { 4494 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4495 STDIOReadThreadBytesReceived, this); 4496 m_stdio_communication.StartReadThread(); 4497 4498 // Now read thread is set up, set up input reader. 4499 4500 if (!m_process_input_reader) 4501 m_process_input_reader = 4502 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4503 } 4504 } 4505 4506 bool Process::ProcessIOHandlerIsActive() { 4507 IOHandlerSP io_handler_sp(m_process_input_reader); 4508 if (io_handler_sp) 4509 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4510 return false; 4511 } 4512 bool Process::PushProcessIOHandler() { 4513 IOHandlerSP io_handler_sp(m_process_input_reader); 4514 if (io_handler_sp) { 4515 Log *log = GetLog(LLDBLog::Process); 4516 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4517 4518 io_handler_sp->SetIsDone(false); 4519 // If we evaluate an utility function, then we don't cancel the current 4520 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4521 // existing IOHandler that potentially provides the user interface (e.g. 4522 // the IOHandler for Editline). 4523 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4524 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4525 cancel_top_handler); 4526 return true; 4527 } 4528 return false; 4529 } 4530 4531 bool Process::PopProcessIOHandler() { 4532 IOHandlerSP io_handler_sp(m_process_input_reader); 4533 if (io_handler_sp) 4534 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4535 return false; 4536 } 4537 4538 // The process needs to know about installed plug-ins 4539 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4540 4541 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4542 4543 namespace { 4544 // RestorePlanState is used to record the "is private", "is controlling" and 4545 // "okay 4546 // to discard" fields of the plan we are running, and reset it on Clean or on 4547 // destruction. It will only reset the state once, so you can call Clean and 4548 // then monkey with the state and it won't get reset on you again. 4549 4550 class RestorePlanState { 4551 public: 4552 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4553 : m_thread_plan_sp(thread_plan_sp) { 4554 if (m_thread_plan_sp) { 4555 m_private = m_thread_plan_sp->GetPrivate(); 4556 m_is_controlling = m_thread_plan_sp->IsControllingPlan(); 4557 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4558 } 4559 } 4560 4561 ~RestorePlanState() { Clean(); } 4562 4563 void Clean() { 4564 if (!m_already_reset && m_thread_plan_sp) { 4565 m_already_reset = true; 4566 m_thread_plan_sp->SetPrivate(m_private); 4567 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); 4568 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4569 } 4570 } 4571 4572 private: 4573 lldb::ThreadPlanSP m_thread_plan_sp; 4574 bool m_already_reset = false; 4575 bool m_private = false; 4576 bool m_is_controlling = false; 4577 bool m_okay_to_discard = false; 4578 }; 4579 } // anonymous namespace 4580 4581 static microseconds 4582 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4583 const milliseconds default_one_thread_timeout(250); 4584 4585 // If the overall wait is forever, then we don't need to worry about it. 4586 if (!options.GetTimeout()) { 4587 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4588 : default_one_thread_timeout; 4589 } 4590 4591 // If the one thread timeout is set, use it. 4592 if (options.GetOneThreadTimeout()) 4593 return *options.GetOneThreadTimeout(); 4594 4595 // Otherwise use half the total timeout, bounded by the 4596 // default_one_thread_timeout. 4597 return std::min<microseconds>(default_one_thread_timeout, 4598 *options.GetTimeout() / 2); 4599 } 4600 4601 static Timeout<std::micro> 4602 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4603 bool before_first_timeout) { 4604 // If we are going to run all threads the whole time, or if we are only going 4605 // to run one thread, we can just return the overall timeout. 4606 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4607 return options.GetTimeout(); 4608 4609 if (before_first_timeout) 4610 return GetOneThreadExpressionTimeout(options); 4611 4612 if (!options.GetTimeout()) 4613 return std::nullopt; 4614 else 4615 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4616 } 4617 4618 static std::optional<ExpressionResults> 4619 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4620 RestorePlanState &restorer, const EventSP &event_sp, 4621 EventSP &event_to_broadcast_sp, 4622 const EvaluateExpressionOptions &options, 4623 bool handle_interrupts) { 4624 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); 4625 4626 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4627 .GetProcessSP() 4628 ->GetThreadList() 4629 .FindThreadByID(thread_id); 4630 if (!thread_sp) { 4631 LLDB_LOG(log, 4632 "The thread on which we were running the " 4633 "expression: tid = {0}, exited while " 4634 "the expression was running.", 4635 thread_id); 4636 return eExpressionThreadVanished; 4637 } 4638 4639 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4640 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4641 LLDB_LOG(log, "execution completed successfully"); 4642 4643 // Restore the plan state so it will get reported as intended when we are 4644 // done. 4645 restorer.Clean(); 4646 return eExpressionCompleted; 4647 } 4648 4649 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4650 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4651 stop_info_sp->ShouldNotify(event_sp.get())) { 4652 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4653 if (!options.DoesIgnoreBreakpoints()) { 4654 // Restore the plan state and then force Private to false. We are going 4655 // to stop because of this plan so we need it to become a public plan or 4656 // it won't report correctly when we continue to its termination later 4657 // on. 4658 restorer.Clean(); 4659 thread_plan_sp->SetPrivate(false); 4660 event_to_broadcast_sp = event_sp; 4661 } 4662 return eExpressionHitBreakpoint; 4663 } 4664 4665 if (!handle_interrupts && 4666 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4667 return std::nullopt; 4668 4669 LLDB_LOG(log, "thread plan did not successfully complete"); 4670 if (!options.DoesUnwindOnError()) 4671 event_to_broadcast_sp = event_sp; 4672 return eExpressionInterrupted; 4673 } 4674 4675 ExpressionResults 4676 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4677 lldb::ThreadPlanSP &thread_plan_sp, 4678 const EvaluateExpressionOptions &options, 4679 DiagnosticManager &diagnostic_manager) { 4680 ExpressionResults return_value = eExpressionSetupError; 4681 4682 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4683 4684 if (!thread_plan_sp) { 4685 diagnostic_manager.PutString( 4686 eDiagnosticSeverityError, 4687 "RunThreadPlan called with empty thread plan."); 4688 return eExpressionSetupError; 4689 } 4690 4691 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4692 diagnostic_manager.PutString( 4693 eDiagnosticSeverityError, 4694 "RunThreadPlan called with an invalid thread plan."); 4695 return eExpressionSetupError; 4696 } 4697 4698 if (exe_ctx.GetProcessPtr() != this) { 4699 diagnostic_manager.PutString(eDiagnosticSeverityError, 4700 "RunThreadPlan called on wrong process."); 4701 return eExpressionSetupError; 4702 } 4703 4704 Thread *thread = exe_ctx.GetThreadPtr(); 4705 if (thread == nullptr) { 4706 diagnostic_manager.PutString(eDiagnosticSeverityError, 4707 "RunThreadPlan called with invalid thread."); 4708 return eExpressionSetupError; 4709 } 4710 4711 // Record the thread's id so we can tell when a thread we were using 4712 // to run the expression exits during the expression evaluation. 4713 lldb::tid_t expr_thread_id = thread->GetID(); 4714 4715 // We need to change some of the thread plan attributes for the thread plan 4716 // runner. This will restore them when we are done: 4717 4718 RestorePlanState thread_plan_restorer(thread_plan_sp); 4719 4720 // We rely on the thread plan we are running returning "PlanCompleted" if 4721 // when it successfully completes. For that to be true the plan can't be 4722 // private - since private plans suppress themselves in the GetCompletedPlan 4723 // call. 4724 4725 thread_plan_sp->SetPrivate(false); 4726 4727 // The plans run with RunThreadPlan also need to be terminal controlling plans 4728 // or when they are done we will end up asking the plan above us whether we 4729 // should stop, which may give the wrong answer. 4730 4731 thread_plan_sp->SetIsControllingPlan(true); 4732 thread_plan_sp->SetOkayToDiscard(false); 4733 4734 // If we are running some utility expression for LLDB, we now have to mark 4735 // this in the ProcesModID of this process. This RAII takes care of marking 4736 // and reverting the mark it once we are done running the expression. 4737 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4738 4739 if (m_private_state.GetValue() != eStateStopped) { 4740 diagnostic_manager.PutString( 4741 eDiagnosticSeverityError, 4742 "RunThreadPlan called while the private state was not stopped."); 4743 return eExpressionSetupError; 4744 } 4745 4746 // Save the thread & frame from the exe_ctx for restoration after we run 4747 const uint32_t thread_idx_id = thread->GetIndexID(); 4748 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4749 if (!selected_frame_sp) { 4750 thread->SetSelectedFrame(nullptr); 4751 selected_frame_sp = thread->GetSelectedFrame(); 4752 if (!selected_frame_sp) { 4753 diagnostic_manager.Printf( 4754 eDiagnosticSeverityError, 4755 "RunThreadPlan called without a selected frame on thread %d", 4756 thread_idx_id); 4757 return eExpressionSetupError; 4758 } 4759 } 4760 4761 // Make sure the timeout values make sense. The one thread timeout needs to 4762 // be smaller than the overall timeout. 4763 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4764 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4765 diagnostic_manager.PutString(eDiagnosticSeverityError, 4766 "RunThreadPlan called with one thread " 4767 "timeout greater than total timeout"); 4768 return eExpressionSetupError; 4769 } 4770 4771 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4772 4773 // N.B. Running the target may unset the currently selected thread and frame. 4774 // We don't want to do that either, so we should arrange to reset them as 4775 // well. 4776 4777 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4778 4779 uint32_t selected_tid; 4780 StackID selected_stack_id; 4781 if (selected_thread_sp) { 4782 selected_tid = selected_thread_sp->GetIndexID(); 4783 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4784 } else { 4785 selected_tid = LLDB_INVALID_THREAD_ID; 4786 } 4787 4788 HostThread backup_private_state_thread; 4789 lldb::StateType old_state = eStateInvalid; 4790 lldb::ThreadPlanSP stopper_base_plan_sp; 4791 4792 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4793 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4794 // Yikes, we are running on the private state thread! So we can't wait for 4795 // public events on this thread, since we are the thread that is generating 4796 // public events. The simplest thing to do is to spin up a temporary thread 4797 // to handle private state thread events while we are fielding public 4798 // events here. 4799 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4800 "another state thread to handle the events."); 4801 4802 backup_private_state_thread = m_private_state_thread; 4803 4804 // One other bit of business: we want to run just this thread plan and 4805 // anything it pushes, and then stop, returning control here. But in the 4806 // normal course of things, the plan above us on the stack would be given a 4807 // shot at the stop event before deciding to stop, and we don't want that. 4808 // So we insert a "stopper" base plan on the stack before the plan we want 4809 // to run. Since base plans always stop and return control to the user, 4810 // that will do just what we want. 4811 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4812 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4813 // Have to make sure our public state is stopped, since otherwise the 4814 // reporting logic below doesn't work correctly. 4815 old_state = m_public_state.GetValue(); 4816 m_public_state.SetValueNoLock(eStateStopped); 4817 4818 // Now spin up the private state thread: 4819 StartPrivateStateThread(true); 4820 } 4821 4822 thread->QueueThreadPlan( 4823 thread_plan_sp, false); // This used to pass "true" does that make sense? 4824 4825 if (options.GetDebug()) { 4826 // In this case, we aren't actually going to run, we just want to stop 4827 // right away. Flush this thread so we will refetch the stacks and show the 4828 // correct backtrace. 4829 // FIXME: To make this prettier we should invent some stop reason for this, 4830 // but that 4831 // is only cosmetic, and this functionality is only of use to lldb 4832 // developers who can live with not pretty... 4833 thread->Flush(); 4834 return eExpressionStoppedForDebug; 4835 } 4836 4837 ListenerSP listener_sp( 4838 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4839 4840 lldb::EventSP event_to_broadcast_sp; 4841 4842 { 4843 // This process event hijacker Hijacks the Public events and its destructor 4844 // makes sure that the process events get restored on exit to the function. 4845 // 4846 // If the event needs to propagate beyond the hijacker (e.g., the process 4847 // exits during execution), then the event is put into 4848 // event_to_broadcast_sp for rebroadcasting. 4849 4850 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4851 4852 if (log) { 4853 StreamString s; 4854 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4855 LLDB_LOGF(log, 4856 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4857 " to run thread plan \"%s\".", 4858 thread_idx_id, expr_thread_id, s.GetData()); 4859 } 4860 4861 bool got_event; 4862 lldb::EventSP event_sp; 4863 lldb::StateType stop_state = lldb::eStateInvalid; 4864 4865 bool before_first_timeout = true; // This is set to false the first time 4866 // that we have to halt the target. 4867 bool do_resume = true; 4868 bool handle_running_event = true; 4869 4870 // This is just for accounting: 4871 uint32_t num_resumes = 0; 4872 4873 // If we are going to run all threads the whole time, or if we are only 4874 // going to run one thread, then we don't need the first timeout. So we 4875 // pretend we are after the first timeout already. 4876 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4877 before_first_timeout = false; 4878 4879 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4880 options.GetStopOthers(), options.GetTryAllThreads(), 4881 before_first_timeout); 4882 4883 // This isn't going to work if there are unfetched events on the queue. Are 4884 // there cases where we might want to run the remaining events here, and 4885 // then try to call the function? That's probably being too tricky for our 4886 // own good. 4887 4888 Event *other_events = listener_sp->PeekAtNextEvent(); 4889 if (other_events != nullptr) { 4890 diagnostic_manager.PutString( 4891 eDiagnosticSeverityError, 4892 "RunThreadPlan called with pending events on the queue."); 4893 return eExpressionSetupError; 4894 } 4895 4896 // We also need to make sure that the next event is delivered. We might be 4897 // calling a function as part of a thread plan, in which case the last 4898 // delivered event could be the running event, and we don't want event 4899 // coalescing to cause us to lose OUR running event... 4900 ForceNextEventDelivery(); 4901 4902 // This while loop must exit out the bottom, there's cleanup that we need to do 4903 // when we are done. So don't call return anywhere within it. 4904 4905 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4906 // It's pretty much impossible to write test cases for things like: One 4907 // thread timeout expires, I go to halt, but the process already stopped on 4908 // the function call stop breakpoint. Turning on this define will make us 4909 // not fetch the first event till after the halt. So if you run a quick 4910 // function, it will have completed, and the completion event will be 4911 // waiting, when you interrupt for halt. The expression evaluation should 4912 // still succeed. 4913 bool miss_first_event = true; 4914 #endif 4915 while (true) { 4916 // We usually want to resume the process if we get to the top of the 4917 // loop. The only exception is if we get two running events with no 4918 // intervening stop, which can happen, we will just wait for then next 4919 // stop event. 4920 LLDB_LOGF(log, 4921 "Top of while loop: do_resume: %i handle_running_event: %i " 4922 "before_first_timeout: %i.", 4923 do_resume, handle_running_event, before_first_timeout); 4924 4925 if (do_resume || handle_running_event) { 4926 // Do the initial resume and wait for the running event before going 4927 // further. 4928 4929 if (do_resume) { 4930 num_resumes++; 4931 Status resume_error = PrivateResume(); 4932 if (!resume_error.Success()) { 4933 diagnostic_manager.Printf( 4934 eDiagnosticSeverityError, 4935 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4936 resume_error.AsCString()); 4937 return_value = eExpressionSetupError; 4938 break; 4939 } 4940 } 4941 4942 got_event = 4943 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4944 if (!got_event) { 4945 LLDB_LOGF(log, 4946 "Process::RunThreadPlan(): didn't get any event after " 4947 "resume %" PRIu32 ", exiting.", 4948 num_resumes); 4949 4950 diagnostic_manager.Printf(eDiagnosticSeverityError, 4951 "didn't get any event after resume %" PRIu32 4952 ", exiting.", 4953 num_resumes); 4954 return_value = eExpressionSetupError; 4955 break; 4956 } 4957 4958 stop_state = 4959 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4960 4961 if (stop_state != eStateRunning) { 4962 bool restarted = false; 4963 4964 if (stop_state == eStateStopped) { 4965 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4966 event_sp.get()); 4967 LLDB_LOGF( 4968 log, 4969 "Process::RunThreadPlan(): didn't get running event after " 4970 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4971 "handle_running_event: %i).", 4972 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4973 handle_running_event); 4974 } 4975 4976 if (restarted) { 4977 // This is probably an overabundance of caution, I don't think I 4978 // should ever get a stopped & restarted event here. But if I do, 4979 // the best thing is to Halt and then get out of here. 4980 const bool clear_thread_plans = false; 4981 const bool use_run_lock = false; 4982 Halt(clear_thread_plans, use_run_lock); 4983 } 4984 4985 diagnostic_manager.Printf( 4986 eDiagnosticSeverityError, 4987 "didn't get running event after initial resume, got %s instead.", 4988 StateAsCString(stop_state)); 4989 return_value = eExpressionSetupError; 4990 break; 4991 } 4992 4993 if (log) 4994 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4995 // We need to call the function synchronously, so spin waiting for it 4996 // to return. If we get interrupted while executing, we're going to 4997 // lose our context, and won't be able to gather the result at this 4998 // point. We set the timeout AFTER the resume, since the resume takes 4999 // some time and we don't want to charge that to the timeout. 5000 } else { 5001 if (log) 5002 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5003 } 5004 5005 do_resume = true; 5006 handle_running_event = true; 5007 5008 // Now wait for the process to stop again: 5009 event_sp.reset(); 5010 5011 Timeout<std::micro> timeout = 5012 GetExpressionTimeout(options, before_first_timeout); 5013 if (log) { 5014 if (timeout) { 5015 auto now = system_clock::now(); 5016 LLDB_LOGF(log, 5017 "Process::RunThreadPlan(): about to wait - now is %s - " 5018 "endpoint is %s", 5019 llvm::to_string(now).c_str(), 5020 llvm::to_string(now + *timeout).c_str()); 5021 } else { 5022 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5023 } 5024 } 5025 5026 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5027 // See comment above... 5028 if (miss_first_event) { 5029 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5030 miss_first_event = false; 5031 got_event = false; 5032 } else 5033 #endif 5034 got_event = listener_sp->GetEvent(event_sp, timeout); 5035 5036 if (got_event) { 5037 if (event_sp) { 5038 bool keep_going = false; 5039 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5040 const bool clear_thread_plans = false; 5041 const bool use_run_lock = false; 5042 Halt(clear_thread_plans, use_run_lock); 5043 return_value = eExpressionInterrupted; 5044 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5045 "execution halted by user interrupt."); 5046 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5047 "eBroadcastBitInterrupted, exiting."); 5048 break; 5049 } else { 5050 stop_state = 5051 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5052 LLDB_LOGF(log, 5053 "Process::RunThreadPlan(): in while loop, got event: %s.", 5054 StateAsCString(stop_state)); 5055 5056 switch (stop_state) { 5057 case lldb::eStateStopped: { 5058 if (Process::ProcessEventData::GetRestartedFromEvent( 5059 event_sp.get())) { 5060 // If we were restarted, we just need to go back up to fetch 5061 // another event. 5062 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5063 "restart, so we'll continue waiting."); 5064 keep_going = true; 5065 do_resume = false; 5066 handle_running_event = true; 5067 } else { 5068 const bool handle_interrupts = true; 5069 return_value = *HandleStoppedEvent( 5070 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5071 event_sp, event_to_broadcast_sp, options, 5072 handle_interrupts); 5073 if (return_value == eExpressionThreadVanished) 5074 keep_going = false; 5075 } 5076 } break; 5077 5078 case lldb::eStateRunning: 5079 // This shouldn't really happen, but sometimes we do get two 5080 // running events without an intervening stop, and in that case 5081 // we should just go back to waiting for the stop. 5082 do_resume = false; 5083 keep_going = true; 5084 handle_running_event = false; 5085 break; 5086 5087 default: 5088 LLDB_LOGF(log, 5089 "Process::RunThreadPlan(): execution stopped with " 5090 "unexpected state: %s.", 5091 StateAsCString(stop_state)); 5092 5093 if (stop_state == eStateExited) 5094 event_to_broadcast_sp = event_sp; 5095 5096 diagnostic_manager.PutString( 5097 eDiagnosticSeverityError, 5098 "execution stopped with unexpected state."); 5099 return_value = eExpressionInterrupted; 5100 break; 5101 } 5102 } 5103 5104 if (keep_going) 5105 continue; 5106 else 5107 break; 5108 } else { 5109 if (log) 5110 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5111 "the event pointer was null. How odd..."); 5112 return_value = eExpressionInterrupted; 5113 break; 5114 } 5115 } else { 5116 // If we didn't get an event that means we've timed out... We will 5117 // interrupt the process here. Depending on what we were asked to do 5118 // we will either exit, or try with all threads running for the same 5119 // timeout. 5120 5121 if (log) { 5122 if (options.GetTryAllThreads()) { 5123 if (before_first_timeout) { 5124 LLDB_LOG(log, 5125 "Running function with one thread timeout timed out."); 5126 } else 5127 LLDB_LOG(log, "Restarting function with all threads enabled and " 5128 "timeout: {0} timed out, abandoning execution.", 5129 timeout); 5130 } else 5131 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5132 "abandoning execution.", 5133 timeout); 5134 } 5135 5136 // It is possible that between the time we issued the Halt, and we get 5137 // around to calling Halt the target could have stopped. That's fine, 5138 // Halt will figure that out and send the appropriate Stopped event. 5139 // BUT it is also possible that we stopped & restarted (e.g. hit a 5140 // signal with "stop" set to false.) In 5141 // that case, we'll get the stopped & restarted event, and we should go 5142 // back to waiting for the Halt's stopped event. That's what this 5143 // while loop does. 5144 5145 bool back_to_top = true; 5146 uint32_t try_halt_again = 0; 5147 bool do_halt = true; 5148 const uint32_t num_retries = 5; 5149 while (try_halt_again < num_retries) { 5150 Status halt_error; 5151 if (do_halt) { 5152 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5153 const bool clear_thread_plans = false; 5154 const bool use_run_lock = false; 5155 Halt(clear_thread_plans, use_run_lock); 5156 } 5157 if (halt_error.Success()) { 5158 if (log) 5159 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5160 5161 got_event = 5162 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5163 5164 if (got_event) { 5165 stop_state = 5166 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5167 if (log) { 5168 LLDB_LOGF(log, 5169 "Process::RunThreadPlan(): Stopped with event: %s", 5170 StateAsCString(stop_state)); 5171 if (stop_state == lldb::eStateStopped && 5172 Process::ProcessEventData::GetInterruptedFromEvent( 5173 event_sp.get())) 5174 log->PutCString(" Event was the Halt interruption event."); 5175 } 5176 5177 if (stop_state == lldb::eStateStopped) { 5178 if (Process::ProcessEventData::GetRestartedFromEvent( 5179 event_sp.get())) { 5180 if (log) 5181 log->PutCString("Process::RunThreadPlan(): Went to halt " 5182 "but got a restarted event, there must be " 5183 "an un-restarted stopped event so try " 5184 "again... " 5185 "Exiting wait loop."); 5186 try_halt_again++; 5187 do_halt = false; 5188 continue; 5189 } 5190 5191 // Between the time we initiated the Halt and the time we 5192 // delivered it, the process could have already finished its 5193 // job. Check that here: 5194 const bool handle_interrupts = false; 5195 if (auto result = HandleStoppedEvent( 5196 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5197 event_sp, event_to_broadcast_sp, options, 5198 handle_interrupts)) { 5199 return_value = *result; 5200 back_to_top = false; 5201 break; 5202 } 5203 5204 if (!options.GetTryAllThreads()) { 5205 if (log) 5206 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5207 "was false, we stopped so now we're " 5208 "quitting."); 5209 return_value = eExpressionInterrupted; 5210 back_to_top = false; 5211 break; 5212 } 5213 5214 if (before_first_timeout) { 5215 // Set all the other threads to run, and return to the top of 5216 // the loop, which will continue; 5217 before_first_timeout = false; 5218 thread_plan_sp->SetStopOthers(false); 5219 if (log) 5220 log->PutCString( 5221 "Process::RunThreadPlan(): about to resume."); 5222 5223 back_to_top = true; 5224 break; 5225 } else { 5226 // Running all threads failed, so return Interrupted. 5227 if (log) 5228 log->PutCString("Process::RunThreadPlan(): running all " 5229 "threads timed out."); 5230 return_value = eExpressionInterrupted; 5231 back_to_top = false; 5232 break; 5233 } 5234 } 5235 } else { 5236 if (log) 5237 log->PutCString("Process::RunThreadPlan(): halt said it " 5238 "succeeded, but I got no event. " 5239 "I'm getting out of here passing Interrupted."); 5240 return_value = eExpressionInterrupted; 5241 back_to_top = false; 5242 break; 5243 } 5244 } else { 5245 try_halt_again++; 5246 continue; 5247 } 5248 } 5249 5250 if (!back_to_top || try_halt_again > num_retries) 5251 break; 5252 else 5253 continue; 5254 } 5255 } // END WAIT LOOP 5256 5257 // If we had to start up a temporary private state thread to run this 5258 // thread plan, shut it down now. 5259 if (backup_private_state_thread.IsJoinable()) { 5260 StopPrivateStateThread(); 5261 Status error; 5262 m_private_state_thread = backup_private_state_thread; 5263 if (stopper_base_plan_sp) { 5264 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5265 } 5266 if (old_state != eStateInvalid) 5267 m_public_state.SetValueNoLock(old_state); 5268 } 5269 5270 // If our thread went away on us, we need to get out of here without 5271 // doing any more work. We don't have to clean up the thread plan, that 5272 // will have happened when the Thread was destroyed. 5273 if (return_value == eExpressionThreadVanished) { 5274 return return_value; 5275 } 5276 5277 if (return_value != eExpressionCompleted && log) { 5278 // Print a backtrace into the log so we can figure out where we are: 5279 StreamString s; 5280 s.PutCString("Thread state after unsuccessful completion: \n"); 5281 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5282 log->PutString(s.GetString()); 5283 } 5284 // Restore the thread state if we are going to discard the plan execution. 5285 // There are three cases where this could happen: 1) The execution 5286 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5287 // was true 3) We got some other error, and discard_on_error was true 5288 bool should_unwind = (return_value == eExpressionInterrupted && 5289 options.DoesUnwindOnError()) || 5290 (return_value == eExpressionHitBreakpoint && 5291 options.DoesIgnoreBreakpoints()); 5292 5293 if (return_value == eExpressionCompleted || should_unwind) { 5294 thread_plan_sp->RestoreThreadState(); 5295 } 5296 5297 // Now do some processing on the results of the run: 5298 if (return_value == eExpressionInterrupted || 5299 return_value == eExpressionHitBreakpoint) { 5300 if (log) { 5301 StreamString s; 5302 if (event_sp) 5303 event_sp->Dump(&s); 5304 else { 5305 log->PutCString("Process::RunThreadPlan(): Stop event that " 5306 "interrupted us is NULL."); 5307 } 5308 5309 StreamString ts; 5310 5311 const char *event_explanation = nullptr; 5312 5313 do { 5314 if (!event_sp) { 5315 event_explanation = "<no event>"; 5316 break; 5317 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5318 event_explanation = "<user interrupt>"; 5319 break; 5320 } else { 5321 const Process::ProcessEventData *event_data = 5322 Process::ProcessEventData::GetEventDataFromEvent( 5323 event_sp.get()); 5324 5325 if (!event_data) { 5326 event_explanation = "<no event data>"; 5327 break; 5328 } 5329 5330 Process *process = event_data->GetProcessSP().get(); 5331 5332 if (!process) { 5333 event_explanation = "<no process>"; 5334 break; 5335 } 5336 5337 ThreadList &thread_list = process->GetThreadList(); 5338 5339 uint32_t num_threads = thread_list.GetSize(); 5340 uint32_t thread_index; 5341 5342 ts.Printf("<%u threads> ", num_threads); 5343 5344 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5345 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5346 5347 if (!thread) { 5348 ts.Printf("<?> "); 5349 continue; 5350 } 5351 5352 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5353 RegisterContext *register_context = 5354 thread->GetRegisterContext().get(); 5355 5356 if (register_context) 5357 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5358 else 5359 ts.Printf("[ip unknown] "); 5360 5361 // Show the private stop info here, the public stop info will be 5362 // from the last natural stop. 5363 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5364 if (stop_info_sp) { 5365 const char *stop_desc = stop_info_sp->GetDescription(); 5366 if (stop_desc) 5367 ts.PutCString(stop_desc); 5368 } 5369 ts.Printf(">"); 5370 } 5371 5372 event_explanation = ts.GetData(); 5373 } 5374 } while (false); 5375 5376 if (event_explanation) 5377 LLDB_LOGF(log, 5378 "Process::RunThreadPlan(): execution interrupted: %s %s", 5379 s.GetData(), event_explanation); 5380 else 5381 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5382 s.GetData()); 5383 } 5384 5385 if (should_unwind) { 5386 LLDB_LOGF(log, 5387 "Process::RunThreadPlan: ExecutionInterrupted - " 5388 "discarding thread plans up to %p.", 5389 static_cast<void *>(thread_plan_sp.get())); 5390 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5391 } else { 5392 LLDB_LOGF(log, 5393 "Process::RunThreadPlan: ExecutionInterrupted - for " 5394 "plan: %p not discarding.", 5395 static_cast<void *>(thread_plan_sp.get())); 5396 } 5397 } else if (return_value == eExpressionSetupError) { 5398 if (log) 5399 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5400 5401 if (options.DoesUnwindOnError()) { 5402 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5403 } 5404 } else { 5405 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5406 if (log) 5407 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5408 return_value = eExpressionCompleted; 5409 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5410 if (log) 5411 log->PutCString( 5412 "Process::RunThreadPlan(): thread plan was discarded"); 5413 return_value = eExpressionDiscarded; 5414 } else { 5415 if (log) 5416 log->PutCString( 5417 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5418 if (options.DoesUnwindOnError() && thread_plan_sp) { 5419 if (log) 5420 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5421 "'cause unwind_on_error is set."); 5422 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5423 } 5424 } 5425 } 5426 5427 // Thread we ran the function in may have gone away because we ran the 5428 // target Check that it's still there, and if it is put it back in the 5429 // context. Also restore the frame in the context if it is still present. 5430 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5431 if (thread) { 5432 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5433 } 5434 5435 // Also restore the current process'es selected frame & thread, since this 5436 // function calling may be done behind the user's back. 5437 5438 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5439 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5440 selected_stack_id.IsValid()) { 5441 // We were able to restore the selected thread, now restore the frame: 5442 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5443 StackFrameSP old_frame_sp = 5444 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5445 selected_stack_id); 5446 if (old_frame_sp) 5447 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5448 old_frame_sp.get()); 5449 } 5450 } 5451 } 5452 5453 // If the process exited during the run of the thread plan, notify everyone. 5454 5455 if (event_to_broadcast_sp) { 5456 if (log) 5457 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5458 BroadcastEvent(event_to_broadcast_sp); 5459 } 5460 5461 return return_value; 5462 } 5463 5464 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5465 const char *result_name = "<unknown>"; 5466 5467 switch (result) { 5468 case eExpressionCompleted: 5469 result_name = "eExpressionCompleted"; 5470 break; 5471 case eExpressionDiscarded: 5472 result_name = "eExpressionDiscarded"; 5473 break; 5474 case eExpressionInterrupted: 5475 result_name = "eExpressionInterrupted"; 5476 break; 5477 case eExpressionHitBreakpoint: 5478 result_name = "eExpressionHitBreakpoint"; 5479 break; 5480 case eExpressionSetupError: 5481 result_name = "eExpressionSetupError"; 5482 break; 5483 case eExpressionParseError: 5484 result_name = "eExpressionParseError"; 5485 break; 5486 case eExpressionResultUnavailable: 5487 result_name = "eExpressionResultUnavailable"; 5488 break; 5489 case eExpressionTimedOut: 5490 result_name = "eExpressionTimedOut"; 5491 break; 5492 case eExpressionStoppedForDebug: 5493 result_name = "eExpressionStoppedForDebug"; 5494 break; 5495 case eExpressionThreadVanished: 5496 result_name = "eExpressionThreadVanished"; 5497 } 5498 return result_name; 5499 } 5500 5501 void Process::GetStatus(Stream &strm) { 5502 const StateType state = GetState(); 5503 if (StateIsStoppedState(state, false)) { 5504 if (state == eStateExited) { 5505 int exit_status = GetExitStatus(); 5506 const char *exit_description = GetExitDescription(); 5507 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5508 GetID(), exit_status, exit_status, 5509 exit_description ? exit_description : ""); 5510 } else { 5511 if (state == eStateConnected) 5512 strm.Printf("Connected to remote target.\n"); 5513 else 5514 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5515 } 5516 } else { 5517 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5518 } 5519 } 5520 5521 size_t Process::GetThreadStatus(Stream &strm, 5522 bool only_threads_with_stop_reason, 5523 uint32_t start_frame, uint32_t num_frames, 5524 uint32_t num_frames_with_source, 5525 bool stop_format) { 5526 size_t num_thread_infos_dumped = 0; 5527 5528 // You can't hold the thread list lock while calling Thread::GetStatus. That 5529 // very well might run code (e.g. if we need it to get return values or 5530 // arguments.) For that to work the process has to be able to acquire it. 5531 // So instead copy the thread ID's, and look them up one by one: 5532 5533 uint32_t num_threads; 5534 std::vector<lldb::tid_t> thread_id_array; 5535 // Scope for thread list locker; 5536 { 5537 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5538 ThreadList &curr_thread_list = GetThreadList(); 5539 num_threads = curr_thread_list.GetSize(); 5540 uint32_t idx; 5541 thread_id_array.resize(num_threads); 5542 for (idx = 0; idx < num_threads; ++idx) 5543 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5544 } 5545 5546 for (uint32_t i = 0; i < num_threads; i++) { 5547 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5548 if (thread_sp) { 5549 if (only_threads_with_stop_reason) { 5550 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5551 if (!stop_info_sp || !stop_info_sp->IsValid()) 5552 continue; 5553 } 5554 thread_sp->GetStatus(strm, start_frame, num_frames, 5555 num_frames_with_source, 5556 stop_format); 5557 ++num_thread_infos_dumped; 5558 } else { 5559 Log *log = GetLog(LLDBLog::Process); 5560 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5561 " vanished while running Thread::GetStatus."); 5562 } 5563 } 5564 return num_thread_infos_dumped; 5565 } 5566 5567 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5568 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5569 } 5570 5571 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5572 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5573 region.GetByteSize()); 5574 } 5575 5576 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5577 void *baton) { 5578 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5579 } 5580 5581 bool Process::RunPreResumeActions() { 5582 bool result = true; 5583 while (!m_pre_resume_actions.empty()) { 5584 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5585 m_pre_resume_actions.pop_back(); 5586 bool this_result = action.callback(action.baton); 5587 if (result) 5588 result = this_result; 5589 } 5590 return result; 5591 } 5592 5593 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5594 5595 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5596 { 5597 PreResumeCallbackAndBaton element(callback, baton); 5598 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5599 if (found_iter != m_pre_resume_actions.end()) 5600 { 5601 m_pre_resume_actions.erase(found_iter); 5602 } 5603 } 5604 5605 ProcessRunLock &Process::GetRunLock() { 5606 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5607 return m_private_run_lock; 5608 else 5609 return m_public_run_lock; 5610 } 5611 5612 bool Process::CurrentThreadIsPrivateStateThread() 5613 { 5614 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5615 } 5616 5617 5618 void Process::Flush() { 5619 m_thread_list.Flush(); 5620 m_extended_thread_list.Flush(); 5621 m_extended_thread_stop_id = 0; 5622 m_queue_list.Clear(); 5623 m_queue_list_stop_id = 0; 5624 } 5625 5626 lldb::addr_t Process::GetCodeAddressMask() { 5627 if (m_code_address_mask == 0) { 5628 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5629 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5630 SetCodeAddressMask(address_mask); 5631 } 5632 } 5633 return m_code_address_mask; 5634 } 5635 5636 lldb::addr_t Process::GetDataAddressMask() { 5637 if (m_data_address_mask == 0) { 5638 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5639 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5640 SetDataAddressMask(address_mask); 5641 } 5642 } 5643 return m_data_address_mask; 5644 } 5645 5646 void Process::DidExec() { 5647 Log *log = GetLog(LLDBLog::Process); 5648 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5649 5650 Target &target = GetTarget(); 5651 target.CleanupProcess(); 5652 target.ClearModules(false); 5653 m_dynamic_checkers_up.reset(); 5654 m_abi_sp.reset(); 5655 m_system_runtime_up.reset(); 5656 m_os_up.reset(); 5657 m_dyld_up.reset(); 5658 m_jit_loaders_up.reset(); 5659 m_image_tokens.clear(); 5660 // After an exec, the inferior is a new process and these memory regions are 5661 // no longer allocated. 5662 m_allocated_memory_cache.Clear(/*deallocte_memory=*/false); 5663 { 5664 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5665 m_language_runtimes.clear(); 5666 } 5667 m_instrumentation_runtimes.clear(); 5668 m_thread_list.DiscardThreadPlans(); 5669 m_memory_cache.Clear(true); 5670 DoDidExec(); 5671 CompleteAttach(); 5672 // Flush the process (threads and all stack frames) after running 5673 // CompleteAttach() in case the dynamic loader loaded things in new 5674 // locations. 5675 Flush(); 5676 5677 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5678 // let the target know so it can do any cleanup it needs to. 5679 target.DidExec(); 5680 } 5681 5682 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5683 if (address == nullptr) { 5684 error.SetErrorString("Invalid address argument"); 5685 return LLDB_INVALID_ADDRESS; 5686 } 5687 5688 addr_t function_addr = LLDB_INVALID_ADDRESS; 5689 5690 addr_t addr = address->GetLoadAddress(&GetTarget()); 5691 std::map<addr_t, addr_t>::const_iterator iter = 5692 m_resolved_indirect_addresses.find(addr); 5693 if (iter != m_resolved_indirect_addresses.end()) { 5694 function_addr = (*iter).second; 5695 } else { 5696 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5697 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5698 error.SetErrorStringWithFormat( 5699 "Unable to call resolver for indirect function %s", 5700 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5701 function_addr = LLDB_INVALID_ADDRESS; 5702 } else { 5703 if (ABISP abi_sp = GetABI()) 5704 function_addr = abi_sp->FixCodeAddress(function_addr); 5705 m_resolved_indirect_addresses.insert( 5706 std::pair<addr_t, addr_t>(addr, function_addr)); 5707 } 5708 } 5709 return function_addr; 5710 } 5711 5712 void Process::ModulesDidLoad(ModuleList &module_list) { 5713 // Inform the system runtime of the modified modules. 5714 SystemRuntime *sys_runtime = GetSystemRuntime(); 5715 if (sys_runtime) 5716 sys_runtime->ModulesDidLoad(module_list); 5717 5718 GetJITLoaders().ModulesDidLoad(module_list); 5719 5720 // Give the instrumentation runtimes a chance to be created before informing 5721 // them of the modified modules. 5722 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5723 m_instrumentation_runtimes); 5724 for (auto &runtime : m_instrumentation_runtimes) 5725 runtime.second->ModulesDidLoad(module_list); 5726 5727 // Give the language runtimes a chance to be created before informing them of 5728 // the modified modules. 5729 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5730 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5731 runtime->ModulesDidLoad(module_list); 5732 } 5733 5734 // If we don't have an operating system plug-in, try to load one since 5735 // loading shared libraries might cause a new one to try and load 5736 if (!m_os_up) 5737 LoadOperatingSystemPlugin(false); 5738 5739 // Inform the structured-data plugins of the modified modules. 5740 for (auto pair : m_structured_data_plugin_map) { 5741 if (pair.second) 5742 pair.second->ModulesDidLoad(*this, module_list); 5743 } 5744 } 5745 5746 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5747 if (!GetWarningsOptimization()) 5748 return; 5749 if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) 5750 return; 5751 sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID()); 5752 } 5753 5754 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5755 if (!GetWarningsUnsupportedLanguage()) 5756 return; 5757 if (!sc.module_sp) 5758 return; 5759 LanguageType language = sc.GetLanguage(); 5760 if (language == eLanguageTypeUnknown) 5761 return; 5762 LanguageSet plugins = 5763 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5764 if (plugins[language]) 5765 return; 5766 sc.module_sp->ReportWarningUnsupportedLanguage( 5767 language, GetTarget().GetDebugger().GetID()); 5768 } 5769 5770 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5771 info.Clear(); 5772 5773 PlatformSP platform_sp = GetTarget().GetPlatform(); 5774 if (!platform_sp) 5775 return false; 5776 5777 return platform_sp->GetProcessInfo(GetID(), info); 5778 } 5779 5780 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5781 ThreadCollectionSP threads; 5782 5783 const MemoryHistorySP &memory_history = 5784 MemoryHistory::FindPlugin(shared_from_this()); 5785 5786 if (!memory_history) { 5787 return threads; 5788 } 5789 5790 threads = std::make_shared<ThreadCollection>( 5791 memory_history->GetHistoryThreads(addr)); 5792 5793 return threads; 5794 } 5795 5796 InstrumentationRuntimeSP 5797 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5798 InstrumentationRuntimeCollection::iterator pos; 5799 pos = m_instrumentation_runtimes.find(type); 5800 if (pos == m_instrumentation_runtimes.end()) { 5801 return InstrumentationRuntimeSP(); 5802 } else 5803 return (*pos).second; 5804 } 5805 5806 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5807 const ArchSpec &arch, ModuleSpec &module_spec) { 5808 module_spec.Clear(); 5809 return false; 5810 } 5811 5812 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5813 m_image_tokens.push_back(image_ptr); 5814 return m_image_tokens.size() - 1; 5815 } 5816 5817 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5818 if (token < m_image_tokens.size()) 5819 return m_image_tokens[token]; 5820 return LLDB_INVALID_ADDRESS; 5821 } 5822 5823 void Process::ResetImageToken(size_t token) { 5824 if (token < m_image_tokens.size()) 5825 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5826 } 5827 5828 Address 5829 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5830 AddressRange range_bounds) { 5831 Target &target = GetTarget(); 5832 DisassemblerSP disassembler_sp; 5833 InstructionList *insn_list = nullptr; 5834 5835 Address retval = default_stop_addr; 5836 5837 if (!target.GetUseFastStepping()) 5838 return retval; 5839 if (!default_stop_addr.IsValid()) 5840 return retval; 5841 5842 const char *plugin_name = nullptr; 5843 const char *flavor = nullptr; 5844 disassembler_sp = Disassembler::DisassembleRange( 5845 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5846 if (disassembler_sp) 5847 insn_list = &disassembler_sp->GetInstructionList(); 5848 5849 if (insn_list == nullptr) { 5850 return retval; 5851 } 5852 5853 size_t insn_offset = 5854 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5855 if (insn_offset == UINT32_MAX) { 5856 return retval; 5857 } 5858 5859 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5860 insn_offset, false /* ignore_calls*/, nullptr); 5861 if (branch_index == UINT32_MAX) { 5862 return retval; 5863 } 5864 5865 if (branch_index > insn_offset) { 5866 Address next_branch_insn_address = 5867 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5868 if (next_branch_insn_address.IsValid() && 5869 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5870 retval = next_branch_insn_address; 5871 } 5872 } 5873 5874 return retval; 5875 } 5876 5877 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, 5878 MemoryRegionInfo &range_info) { 5879 if (const lldb::ABISP &abi = GetABI()) 5880 load_addr = abi->FixAnyAddress(load_addr); 5881 return DoGetMemoryRegionInfo(load_addr, range_info); 5882 } 5883 5884 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5885 Status error; 5886 5887 lldb::addr_t range_end = 0; 5888 const lldb::ABISP &abi = GetABI(); 5889 5890 region_list.clear(); 5891 do { 5892 lldb_private::MemoryRegionInfo region_info; 5893 error = GetMemoryRegionInfo(range_end, region_info); 5894 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5895 if (error.Fail()) { 5896 region_list.clear(); 5897 break; 5898 } 5899 5900 // We only check the end address, not start and end, because we assume that 5901 // the start will not have non-address bits until the first unmappable 5902 // region. We will have exited the loop by that point because the previous 5903 // region, the last mappable region, will have non-address bits in its end 5904 // address. 5905 range_end = region_info.GetRange().GetRangeEnd(); 5906 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5907 region_list.push_back(std::move(region_info)); 5908 } 5909 } while ( 5910 // For a process with no non-address bits, all address bits 5911 // set means the end of memory. 5912 range_end != LLDB_INVALID_ADDRESS && 5913 // If we have non-address bits and some are set then the end 5914 // is at or beyond the end of mappable memory. 5915 !(abi && (abi->FixAnyAddress(range_end) != range_end))); 5916 5917 return error; 5918 } 5919 5920 Status 5921 Process::ConfigureStructuredData(ConstString type_name, 5922 const StructuredData::ObjectSP &config_sp) { 5923 // If you get this, the Process-derived class needs to implement a method to 5924 // enable an already-reported asynchronous structured data feature. See 5925 // ProcessGDBRemote for an example implementation over gdb-remote. 5926 return Status("unimplemented"); 5927 } 5928 5929 void Process::MapSupportedStructuredDataPlugins( 5930 const StructuredData::Array &supported_type_names) { 5931 Log *log = GetLog(LLDBLog::Process); 5932 5933 // Bail out early if there are no type names to map. 5934 if (supported_type_names.GetSize() == 0) { 5935 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5936 __FUNCTION__); 5937 return; 5938 } 5939 5940 // Convert StructuredData type names to ConstString instances. 5941 std::set<ConstString> const_type_names; 5942 5943 LLDB_LOGF(log, 5944 "Process::%s(): the process supports the following async " 5945 "structured data types:", 5946 __FUNCTION__); 5947 5948 supported_type_names.ForEach( 5949 [&const_type_names, &log](StructuredData::Object *object) { 5950 if (!object) { 5951 // Invalid - shouldn't be null objects in the array. 5952 return false; 5953 } 5954 5955 auto type_name = object->GetAsString(); 5956 if (!type_name) { 5957 // Invalid format - all type names should be strings. 5958 return false; 5959 } 5960 5961 const_type_names.insert(ConstString(type_name->GetValue())); 5962 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5963 return true; 5964 }); 5965 5966 // For each StructuredDataPlugin, if the plugin handles any of the types in 5967 // the supported_type_names, map that type name to that plugin. Stop when 5968 // we've consumed all the type names. 5969 // FIXME: should we return an error if there are type names nobody 5970 // supports? 5971 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5972 auto create_instance = 5973 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5974 plugin_index); 5975 if (!create_instance) 5976 break; 5977 5978 // Create the plugin. 5979 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5980 if (!plugin_sp) { 5981 // This plugin doesn't think it can work with the process. Move on to the 5982 // next. 5983 continue; 5984 } 5985 5986 // For any of the remaining type names, map any that this plugin supports. 5987 std::vector<ConstString> names_to_remove; 5988 for (auto &type_name : const_type_names) { 5989 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5990 m_structured_data_plugin_map.insert( 5991 std::make_pair(type_name, plugin_sp)); 5992 names_to_remove.push_back(type_name); 5993 LLDB_LOG(log, "using plugin {0} for type name {1}", 5994 plugin_sp->GetPluginName(), type_name); 5995 } 5996 } 5997 5998 // Remove the type names that were consumed by this plugin. 5999 for (auto &type_name : names_to_remove) 6000 const_type_names.erase(type_name); 6001 } 6002 } 6003 6004 bool Process::RouteAsyncStructuredData( 6005 const StructuredData::ObjectSP object_sp) { 6006 // Nothing to do if there's no data. 6007 if (!object_sp) 6008 return false; 6009 6010 // The contract is this must be a dictionary, so we can look up the routing 6011 // key via the top-level 'type' string value within the dictionary. 6012 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6013 if (!dictionary) 6014 return false; 6015 6016 // Grab the async structured type name (i.e. the feature/plugin name). 6017 ConstString type_name; 6018 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6019 return false; 6020 6021 // Check if there's a plugin registered for this type name. 6022 auto find_it = m_structured_data_plugin_map.find(type_name); 6023 if (find_it == m_structured_data_plugin_map.end()) { 6024 // We don't have a mapping for this structured data type. 6025 return false; 6026 } 6027 6028 // Route the structured data to the plugin. 6029 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6030 return true; 6031 } 6032 6033 Status Process::UpdateAutomaticSignalFiltering() { 6034 // Default implementation does nothign. 6035 // No automatic signal filtering to speak of. 6036 return Status(); 6037 } 6038 6039 UtilityFunction *Process::GetLoadImageUtilityFunction( 6040 Platform *platform, 6041 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6042 if (platform != GetTarget().GetPlatform().get()) 6043 return nullptr; 6044 llvm::call_once(m_dlopen_utility_func_flag_once, 6045 [&] { m_dlopen_utility_func_up = factory(); }); 6046 return m_dlopen_utility_func_up.get(); 6047 } 6048 6049 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6050 if (!IsLiveDebugSession()) 6051 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6052 "Can't trace a non-live process."); 6053 return llvm::make_error<UnimplementedError>(); 6054 } 6055 6056 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6057 addr_t &returned_func, 6058 bool trap_exceptions) { 6059 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6060 if (thread == nullptr || address == nullptr) 6061 return false; 6062 6063 EvaluateExpressionOptions options; 6064 options.SetStopOthers(true); 6065 options.SetUnwindOnError(true); 6066 options.SetIgnoreBreakpoints(true); 6067 options.SetTryAllThreads(true); 6068 options.SetDebug(false); 6069 options.SetTimeout(GetUtilityExpressionTimeout()); 6070 options.SetTrapExceptions(trap_exceptions); 6071 6072 auto type_system_or_err = 6073 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6074 if (!type_system_or_err) { 6075 llvm::consumeError(type_system_or_err.takeError()); 6076 return false; 6077 } 6078 auto ts = *type_system_or_err; 6079 if (!ts) 6080 return false; 6081 CompilerType void_ptr_type = 6082 ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6083 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6084 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6085 if (call_plan_sp) { 6086 DiagnosticManager diagnostics; 6087 6088 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6089 if (frame) { 6090 ExecutionContext exe_ctx; 6091 frame->CalculateExecutionContext(exe_ctx); 6092 ExpressionResults result = 6093 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6094 if (result == eExpressionCompleted) { 6095 returned_func = 6096 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6097 LLDB_INVALID_ADDRESS); 6098 6099 if (GetAddressByteSize() == 4) { 6100 if (returned_func == UINT32_MAX) 6101 return false; 6102 } else if (GetAddressByteSize() == 8) { 6103 if (returned_func == UINT64_MAX) 6104 return false; 6105 } 6106 return true; 6107 } 6108 } 6109 } 6110 6111 return false; 6112 } 6113 6114 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6115 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6116 const MemoryTagManager *tag_manager = 6117 arch ? arch->GetMemoryTagManager() : nullptr; 6118 if (!arch || !tag_manager) { 6119 return llvm::createStringError( 6120 llvm::inconvertibleErrorCode(), 6121 "This architecture does not support memory tagging"); 6122 } 6123 6124 if (!SupportsMemoryTagging()) { 6125 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6126 "Process does not support memory tagging"); 6127 } 6128 6129 return tag_manager; 6130 } 6131 6132 llvm::Expected<std::vector<lldb::addr_t>> 6133 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6134 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6135 GetMemoryTagManager(); 6136 if (!tag_manager_or_err) 6137 return tag_manager_or_err.takeError(); 6138 6139 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6140 llvm::Expected<std::vector<uint8_t>> tag_data = 6141 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6142 if (!tag_data) 6143 return tag_data.takeError(); 6144 6145 return tag_manager->UnpackTagsData(*tag_data, 6146 len / tag_manager->GetGranuleSize()); 6147 } 6148 6149 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6150 const std::vector<lldb::addr_t> &tags) { 6151 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6152 GetMemoryTagManager(); 6153 if (!tag_manager_or_err) 6154 return Status(tag_manager_or_err.takeError()); 6155 6156 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6157 llvm::Expected<std::vector<uint8_t>> packed_tags = 6158 tag_manager->PackTags(tags); 6159 if (!packed_tags) { 6160 return Status(packed_tags.takeError()); 6161 } 6162 6163 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6164 *packed_tags); 6165 } 6166