1 //===-- NativeRegisterContextLinux_arm.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 10 11 #include "NativeRegisterContextLinux_arm.h" 12 13 #include "Plugins/Process/Linux/NativeProcessLinux.h" 14 #include "Plugins/Process/Linux/Procfs.h" 15 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 16 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h" 17 #include "lldb/Utility/DataBufferHeap.h" 18 #include "lldb/Utility/Log.h" 19 #include "lldb/Utility/RegisterValue.h" 20 #include "lldb/Utility/Status.h" 21 22 #include <elf.h> 23 #include <sys/socket.h> 24 25 #define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr)) 26 27 #ifndef PTRACE_GETVFPREGS 28 #define PTRACE_GETVFPREGS 27 29 #define PTRACE_SETVFPREGS 28 30 #endif 31 #ifndef PTRACE_GETHBPREGS 32 #define PTRACE_GETHBPREGS 29 33 #define PTRACE_SETHBPREGS 30 34 #endif 35 #if !defined(PTRACE_TYPE_ARG3) 36 #define PTRACE_TYPE_ARG3 void * 37 #endif 38 #if !defined(PTRACE_TYPE_ARG4) 39 #define PTRACE_TYPE_ARG4 void * 40 #endif 41 42 using namespace lldb; 43 using namespace lldb_private; 44 using namespace lldb_private::process_linux; 45 46 #if defined(__arm__) 47 48 std::unique_ptr<NativeRegisterContextLinux> 49 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 50 const ArchSpec &target_arch, NativeThreadLinux &native_thread) { 51 return std::make_unique<NativeRegisterContextLinux_arm>(target_arch, 52 native_thread); 53 } 54 55 #endif // defined(__arm__) 56 57 NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm( 58 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) 59 : NativeRegisterContextRegisterInfo(native_thread, 60 new RegisterInfoPOSIX_arm(target_arch)), 61 NativeRegisterContextLinux(native_thread) { 62 assert(target_arch.GetMachine() == llvm::Triple::arm); 63 64 ::memset(&m_fpr, 0, sizeof(m_fpr)); 65 ::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm)); 66 ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); 67 ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); 68 69 // 16 is just a maximum value, query hardware for actual watchpoint count 70 m_max_hwp_supported = 16; 71 m_max_hbp_supported = 16; 72 m_refresh_hwdebug_info = true; 73 } 74 75 RegisterInfoPOSIX_arm &NativeRegisterContextLinux_arm::GetRegisterInfo() const { 76 return static_cast<RegisterInfoPOSIX_arm &>(*m_register_info_interface_up); 77 } 78 79 uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const { 80 return GetRegisterInfo().GetRegisterSetCount(); 81 } 82 83 uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const { 84 uint32_t count = 0; 85 for (uint32_t set_index = 0; set_index < GetRegisterSetCount(); ++set_index) 86 count += GetRegisterSet(set_index)->num_registers; 87 return count; 88 } 89 90 const RegisterSet * 91 NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const { 92 return GetRegisterInfo().GetRegisterSet(set_index); 93 } 94 95 Status 96 NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info, 97 RegisterValue ®_value) { 98 Status error; 99 100 if (!reg_info) { 101 error.SetErrorString("reg_info NULL"); 102 return error; 103 } 104 105 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 106 107 if (IsFPR(reg)) { 108 error = ReadFPR(); 109 if (error.Fail()) 110 return error; 111 } else { 112 uint32_t full_reg = reg; 113 bool is_subreg = reg_info->invalidate_regs && 114 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 115 116 if (is_subreg) { 117 // Read the full aligned 64-bit register. 118 full_reg = reg_info->invalidate_regs[0]; 119 } 120 121 error = ReadRegisterRaw(full_reg, reg_value); 122 123 if (error.Success()) { 124 // If our read was not aligned (for ah,bh,ch,dh), shift our returned 125 // value one byte to the right. 126 if (is_subreg && (reg_info->byte_offset & 0x1)) 127 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 128 129 // If our return byte size was greater than the return value reg size, 130 // then use the type specified by reg_info rather than the uint64_t 131 // default 132 if (reg_value.GetByteSize() > reg_info->byte_size) 133 reg_value.SetType(reg_info); 134 } 135 return error; 136 } 137 138 // Get pointer to m_fpr variable and set the data from it. 139 uint32_t fpr_offset = CalculateFprOffset(reg_info); 140 assert(fpr_offset < sizeof m_fpr); 141 uint8_t *src = (uint8_t *)&m_fpr + fpr_offset; 142 switch (reg_info->byte_size) { 143 case 2: 144 reg_value.SetUInt16(*(uint16_t *)src); 145 break; 146 case 4: 147 reg_value.SetUInt32(*(uint32_t *)src); 148 break; 149 case 8: 150 reg_value.SetUInt64(*(uint64_t *)src); 151 break; 152 case 16: 153 reg_value.SetBytes(src, 16, GetByteOrder()); 154 break; 155 default: 156 assert(false && "Unhandled data size."); 157 error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32, 158 reg_info->byte_size); 159 break; 160 } 161 162 return error; 163 } 164 165 Status 166 NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info, 167 const RegisterValue ®_value) { 168 if (!reg_info) 169 return Status("reg_info NULL"); 170 171 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 172 if (reg_index == LLDB_INVALID_REGNUM) 173 return Status("no lldb regnum for %s", reg_info && reg_info->name 174 ? reg_info->name 175 : "<unknown register>"); 176 177 if (IsGPR(reg_index)) 178 return WriteRegisterRaw(reg_index, reg_value); 179 180 if (IsFPR(reg_index)) { 181 // Get pointer to m_fpr variable and set the data to it. 182 uint32_t fpr_offset = CalculateFprOffset(reg_info); 183 assert(fpr_offset < sizeof m_fpr); 184 uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset; 185 switch (reg_info->byte_size) { 186 case 2: 187 *(uint16_t *)dst = reg_value.GetAsUInt16(); 188 break; 189 case 4: 190 *(uint32_t *)dst = reg_value.GetAsUInt32(); 191 break; 192 case 8: 193 *(uint64_t *)dst = reg_value.GetAsUInt64(); 194 break; 195 default: 196 assert(false && "Unhandled data size."); 197 return Status("unhandled register data size %" PRIu32, 198 reg_info->byte_size); 199 } 200 201 Status error = WriteFPR(); 202 if (error.Fail()) 203 return error; 204 205 return Status(); 206 } 207 208 return Status("failed - register wasn't recognized to be a GPR or an FPR, " 209 "write strategy unknown"); 210 } 211 212 Status NativeRegisterContextLinux_arm::ReadAllRegisterValues( 213 lldb::DataBufferSP &data_sp) { 214 Status error; 215 216 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 217 error = ReadGPR(); 218 if (error.Fail()) 219 return error; 220 221 error = ReadFPR(); 222 if (error.Fail()) 223 return error; 224 225 uint8_t *dst = data_sp->GetBytes(); 226 ::memcpy(dst, &m_gpr_arm, GetGPRSize()); 227 dst += GetGPRSize(); 228 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 229 230 return error; 231 } 232 233 Status NativeRegisterContextLinux_arm::WriteAllRegisterValues( 234 const lldb::DataBufferSP &data_sp) { 235 Status error; 236 237 if (!data_sp) { 238 error.SetErrorStringWithFormat( 239 "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", 240 __FUNCTION__); 241 return error; 242 } 243 244 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 245 error.SetErrorStringWithFormat( 246 "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched " 247 "data size, expected %" PRIu64 ", actual %" PRIu64, 248 __FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize()); 249 return error; 250 } 251 252 uint8_t *src = data_sp->GetBytes(); 253 if (src == nullptr) { 254 error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " 255 "DataBuffer::GetBytes() returned a null " 256 "pointer", 257 __FUNCTION__); 258 return error; 259 } 260 ::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize()); 261 262 error = WriteGPR(); 263 if (error.Fail()) 264 return error; 265 266 src += GetRegisterInfoInterface().GetGPRSize(); 267 ::memcpy(&m_fpr, src, sizeof(m_fpr)); 268 269 error = WriteFPR(); 270 if (error.Fail()) 271 return error; 272 273 return error; 274 } 275 276 bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const { 277 if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == 278 RegisterInfoPOSIX_arm::GPRegSet) 279 return true; 280 return false; 281 } 282 283 bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const { 284 if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == 285 RegisterInfoPOSIX_arm::FPRegSet) 286 return true; 287 return false; 288 } 289 290 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() { 291 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 292 293 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 294 295 Status error; 296 297 // Read hardware breakpoint and watchpoint information. 298 error = ReadHardwareDebugInfo(); 299 300 if (error.Fail()) 301 return 0; 302 303 LLDB_LOG(log, "{0}", m_max_hbp_supported); 304 return m_max_hbp_supported; 305 } 306 307 uint32_t 308 NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr, 309 size_t size) { 310 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 311 LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); 312 313 // Read hardware breakpoint and watchpoint information. 314 Status error = ReadHardwareDebugInfo(); 315 316 if (error.Fail()) 317 return LLDB_INVALID_INDEX32; 318 319 uint32_t control_value = 0, bp_index = 0; 320 321 // Setup address and control values. 322 // Use size to get a hint of arm vs thumb modes. 323 switch (size) { 324 case 2: 325 control_value = (0x3 << 5) | 7; 326 addr &= ~1; 327 break; 328 case 4: 329 control_value = (0xfu << 5) | 7; 330 addr &= ~3; 331 break; 332 default: 333 return LLDB_INVALID_INDEX32; 334 } 335 336 // Iterate over stored breakpoints and find a free bp_index 337 bp_index = LLDB_INVALID_INDEX32; 338 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 339 if ((m_hbr_regs[i].control & 1) == 0) { 340 bp_index = i; // Mark last free slot 341 } else if (m_hbr_regs[i].address == addr) { 342 return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. 343 } 344 } 345 346 if (bp_index == LLDB_INVALID_INDEX32) 347 return LLDB_INVALID_INDEX32; 348 349 // Update breakpoint in local cache 350 m_hbr_regs[bp_index].real_addr = addr; 351 m_hbr_regs[bp_index].address = addr; 352 m_hbr_regs[bp_index].control = control_value; 353 354 // PTRACE call to set corresponding hardware breakpoint register. 355 error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index); 356 357 if (error.Fail()) { 358 m_hbr_regs[bp_index].address = 0; 359 m_hbr_regs[bp_index].control &= ~1; 360 361 return LLDB_INVALID_INDEX32; 362 } 363 364 return bp_index; 365 } 366 367 bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) { 368 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 369 LLDB_LOG(log, "hw_idx: {0}", hw_idx); 370 371 // Read hardware breakpoint and watchpoint information. 372 Status error = ReadHardwareDebugInfo(); 373 374 if (error.Fail()) 375 return false; 376 377 if (hw_idx >= m_max_hbp_supported) 378 return false; 379 380 // Create a backup we can revert to in case of failure. 381 lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; 382 uint32_t tempControl = m_hbr_regs[hw_idx].control; 383 384 m_hbr_regs[hw_idx].control &= ~1; 385 m_hbr_regs[hw_idx].address = 0; 386 387 // PTRACE call to clear corresponding hardware breakpoint register. 388 error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx); 389 390 if (error.Fail()) { 391 m_hbr_regs[hw_idx].control = tempControl; 392 m_hbr_regs[hw_idx].address = tempAddr; 393 394 return false; 395 } 396 397 return true; 398 } 399 400 Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex( 401 uint32_t &bp_index, lldb::addr_t trap_addr) { 402 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 403 404 LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); 405 406 lldb::addr_t break_addr; 407 408 for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { 409 break_addr = m_hbr_regs[bp_index].address; 410 411 if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { 412 m_hbr_regs[bp_index].hit_addr = trap_addr; 413 return Status(); 414 } 415 } 416 417 bp_index = LLDB_INVALID_INDEX32; 418 return Status(); 419 } 420 421 Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() { 422 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 423 424 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 425 426 Status error; 427 428 // Read hardware breakpoint and watchpoint information. 429 error = ReadHardwareDebugInfo(); 430 431 if (error.Fail()) 432 return error; 433 434 lldb::addr_t tempAddr = 0; 435 uint32_t tempControl = 0; 436 437 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 438 if (m_hbr_regs[i].control & 0x01) { 439 // Create a backup we can revert to in case of failure. 440 tempAddr = m_hbr_regs[i].address; 441 tempControl = m_hbr_regs[i].control; 442 443 // Clear breakpoints in local cache 444 m_hbr_regs[i].control &= ~1; 445 m_hbr_regs[i].address = 0; 446 447 // Ptrace call to update hardware debug registers 448 error = WriteHardwareDebugRegs(eDREGTypeBREAK, i); 449 450 if (error.Fail()) { 451 m_hbr_regs[i].control = tempControl; 452 m_hbr_regs[i].address = tempAddr; 453 454 return error; 455 } 456 } 457 } 458 459 return Status(); 460 } 461 462 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() { 463 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 464 465 // Read hardware breakpoint and watchpoint information. 466 Status error = ReadHardwareDebugInfo(); 467 468 if (error.Fail()) 469 return 0; 470 471 LLDB_LOG(log, "{0}", m_max_hwp_supported); 472 return m_max_hwp_supported; 473 } 474 475 uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint( 476 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 477 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 478 LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, 479 watch_flags); 480 481 // Read hardware breakpoint and watchpoint information. 482 Status error = ReadHardwareDebugInfo(); 483 484 if (error.Fail()) 485 return LLDB_INVALID_INDEX32; 486 487 uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0; 488 lldb::addr_t real_addr = addr; 489 490 // Check if we are setting watchpoint other than read/write/access Also 491 // update watchpoint flag to match Arm write-read bit configuration. 492 switch (watch_flags) { 493 case 1: 494 watch_flags = 2; 495 break; 496 case 2: 497 watch_flags = 1; 498 break; 499 case 3: 500 break; 501 default: 502 return LLDB_INVALID_INDEX32; 503 } 504 505 // Can't watch zero bytes 506 // Can't watch more than 4 bytes per WVR/WCR pair 507 508 if (size == 0 || size > 4) 509 return LLDB_INVALID_INDEX32; 510 511 // Check 4-byte alignment for hardware watchpoint target address. Below is a 512 // hack to recalculate address and size in order to make sure we can watch 513 // non 4-byte aligned addresses as well. 514 if (addr & 0x03) { 515 uint8_t watch_mask = (addr & 0x03) + size; 516 517 if (watch_mask > 0x04) 518 return LLDB_INVALID_INDEX32; 519 else if (watch_mask <= 0x02) 520 size = 2; 521 else if (watch_mask <= 0x04) 522 size = 4; 523 524 addr = addr & (~0x03); 525 } 526 527 // We can only watch up to four bytes that follow a 4 byte aligned address 528 // per watchpoint register pair, so make sure we can properly encode this. 529 addr_word_offset = addr % 4; 530 byte_mask = ((1u << size) - 1u) << addr_word_offset; 531 532 // Check if we need multiple watchpoint register 533 if (byte_mask > 0xfu) 534 return LLDB_INVALID_INDEX32; 535 536 // Setup control value 537 // Make the byte_mask into a valid Byte Address Select mask 538 control_value = byte_mask << 5; 539 540 // Turn on appropriate watchpoint flags read or write 541 control_value |= (watch_flags << 3); 542 543 // Enable this watchpoint and make it stop in privileged or user mode; 544 control_value |= 7; 545 546 // Make sure bits 1:0 are clear in our address 547 addr &= ~((lldb::addr_t)3); 548 549 // Iterate over stored watchpoints and find a free wp_index 550 wp_index = LLDB_INVALID_INDEX32; 551 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 552 if ((m_hwp_regs[i].control & 1) == 0) { 553 wp_index = i; // Mark last free slot 554 } else if (m_hwp_regs[i].address == addr) { 555 return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. 556 } 557 } 558 559 if (wp_index == LLDB_INVALID_INDEX32) 560 return LLDB_INVALID_INDEX32; 561 562 // Update watchpoint in local cache 563 m_hwp_regs[wp_index].real_addr = real_addr; 564 m_hwp_regs[wp_index].address = addr; 565 m_hwp_regs[wp_index].control = control_value; 566 567 // PTRACE call to set corresponding watchpoint register. 568 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 569 570 if (error.Fail()) { 571 m_hwp_regs[wp_index].address = 0; 572 m_hwp_regs[wp_index].control &= ~1; 573 574 return LLDB_INVALID_INDEX32; 575 } 576 577 return wp_index; 578 } 579 580 bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint( 581 uint32_t wp_index) { 582 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 583 LLDB_LOG(log, "wp_index: {0}", wp_index); 584 585 // Read hardware breakpoint and watchpoint information. 586 Status error = ReadHardwareDebugInfo(); 587 588 if (error.Fail()) 589 return false; 590 591 if (wp_index >= m_max_hwp_supported) 592 return false; 593 594 // Create a backup we can revert to in case of failure. 595 lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; 596 uint32_t tempControl = m_hwp_regs[wp_index].control; 597 598 // Update watchpoint in local cache 599 m_hwp_regs[wp_index].control &= ~1; 600 m_hwp_regs[wp_index].address = 0; 601 602 // Ptrace call to update hardware debug registers 603 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 604 605 if (error.Fail()) { 606 m_hwp_regs[wp_index].control = tempControl; 607 m_hwp_regs[wp_index].address = tempAddr; 608 609 return false; 610 } 611 612 return true; 613 } 614 615 Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() { 616 // Read hardware breakpoint and watchpoint information. 617 Status error = ReadHardwareDebugInfo(); 618 619 if (error.Fail()) 620 return error; 621 622 lldb::addr_t tempAddr = 0; 623 uint32_t tempControl = 0; 624 625 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 626 if (m_hwp_regs[i].control & 0x01) { 627 // Create a backup we can revert to in case of failure. 628 tempAddr = m_hwp_regs[i].address; 629 tempControl = m_hwp_regs[i].control; 630 631 // Clear watchpoints in local cache 632 m_hwp_regs[i].control &= ~1; 633 m_hwp_regs[i].address = 0; 634 635 // Ptrace call to update hardware debug registers 636 error = WriteHardwareDebugRegs(eDREGTypeWATCH, i); 637 638 if (error.Fail()) { 639 m_hwp_regs[i].control = tempControl; 640 m_hwp_regs[i].address = tempAddr; 641 642 return error; 643 } 644 } 645 } 646 647 return Status(); 648 } 649 650 uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) { 651 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 652 LLDB_LOG(log, "wp_index: {0}", wp_index); 653 654 switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) { 655 case 0x01: 656 return 1; 657 case 0x03: 658 return 2; 659 case 0x07: 660 return 3; 661 case 0x0f: 662 return 4; 663 default: 664 return 0; 665 } 666 } 667 bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) { 668 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 669 LLDB_LOG(log, "wp_index: {0}", wp_index); 670 671 if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) 672 return true; 673 else 674 return false; 675 } 676 677 Status 678 NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index, 679 lldb::addr_t trap_addr) { 680 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 681 LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); 682 683 uint32_t watch_size; 684 lldb::addr_t watch_addr; 685 686 for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { 687 watch_size = GetWatchpointSize(wp_index); 688 watch_addr = m_hwp_regs[wp_index].address; 689 690 if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && 691 trap_addr < watch_addr + watch_size) { 692 m_hwp_regs[wp_index].hit_addr = trap_addr; 693 return Status(); 694 } 695 } 696 697 wp_index = LLDB_INVALID_INDEX32; 698 return Status(); 699 } 700 701 lldb::addr_t 702 NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) { 703 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 704 LLDB_LOG(log, "wp_index: {0}", wp_index); 705 706 if (wp_index >= m_max_hwp_supported) 707 return LLDB_INVALID_ADDRESS; 708 709 if (WatchpointIsEnabled(wp_index)) 710 return m_hwp_regs[wp_index].real_addr; 711 else 712 return LLDB_INVALID_ADDRESS; 713 } 714 715 lldb::addr_t 716 NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) { 717 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 718 LLDB_LOG(log, "wp_index: {0}", wp_index); 719 720 if (wp_index >= m_max_hwp_supported) 721 return LLDB_INVALID_ADDRESS; 722 723 if (WatchpointIsEnabled(wp_index)) 724 return m_hwp_regs[wp_index].hit_addr; 725 else 726 return LLDB_INVALID_ADDRESS; 727 } 728 729 Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() { 730 Status error; 731 732 if (!m_refresh_hwdebug_info) { 733 return Status(); 734 } 735 736 unsigned int cap_val; 737 738 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(), 739 nullptr, &cap_val, 740 sizeof(unsigned int)); 741 742 if (error.Fail()) 743 return error; 744 745 m_max_hwp_supported = (cap_val >> 8) & 0xff; 746 m_max_hbp_supported = cap_val & 0xff; 747 m_refresh_hwdebug_info = false; 748 749 return error; 750 } 751 752 Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType, 753 int hwb_index) { 754 Status error; 755 756 lldb::addr_t *addr_buf; 757 uint32_t *ctrl_buf; 758 759 if (hwbType == eDREGTypeWATCH) { 760 addr_buf = &m_hwp_regs[hwb_index].address; 761 ctrl_buf = &m_hwp_regs[hwb_index].control; 762 763 error = NativeProcessLinux::PtraceWrapper( 764 PTRACE_SETHBPREGS, m_thread.GetID(), 765 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf, 766 sizeof(unsigned int)); 767 768 if (error.Fail()) 769 return error; 770 771 error = NativeProcessLinux::PtraceWrapper( 772 PTRACE_SETHBPREGS, m_thread.GetID(), 773 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf, 774 sizeof(unsigned int)); 775 } else { 776 addr_buf = &m_hbr_regs[hwb_index].address; 777 ctrl_buf = &m_hbr_regs[hwb_index].control; 778 779 error = NativeProcessLinux::PtraceWrapper( 780 PTRACE_SETHBPREGS, m_thread.GetID(), 781 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf, 782 sizeof(unsigned int)); 783 784 if (error.Fail()) 785 return error; 786 787 error = NativeProcessLinux::PtraceWrapper( 788 PTRACE_SETHBPREGS, m_thread.GetID(), 789 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf, 790 sizeof(unsigned int)); 791 } 792 793 return error; 794 } 795 796 uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset( 797 const RegisterInfo *reg_info) const { 798 return reg_info->byte_offset - GetGPRSize(); 799 } 800 801 Status NativeRegisterContextLinux_arm::DoReadRegisterValue( 802 uint32_t offset, const char *reg_name, uint32_t size, 803 RegisterValue &value) { 804 // PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android 805 // devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we 806 // read out the full GPR register set instead. This approach is about 4 times 807 // slower but the performance overhead is negligible in comparison to 808 // processing time in lldb-server. 809 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 810 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 811 return Status("Register isn't fit into the size of the GPR area"); 812 813 Status error = ReadGPR(); 814 if (error.Fail()) 815 return error; 816 817 value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]); 818 return Status(); 819 } 820 821 Status NativeRegisterContextLinux_arm::DoWriteRegisterValue( 822 uint32_t offset, const char *reg_name, const RegisterValue &value) { 823 // PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android 824 // devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we 825 // read out the full GPR register set, modify the requested register and 826 // write it back. This approach is about 4 times slower but the performance 827 // overhead is negligible in comparison to processing time in lldb-server. 828 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 829 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 830 return Status("Register isn't fit into the size of the GPR area"); 831 832 Status error = ReadGPR(); 833 if (error.Fail()) 834 return error; 835 836 uint32_t reg_value = value.GetAsUInt32(); 837 // As precaution for an undefined behavior encountered while setting PC we 838 // will clear thumb bit of new PC if we are already in thumb mode; that is 839 // CPSR thumb mode bit is set. 840 if (offset / sizeof(uint32_t) == gpr_pc_arm) { 841 // Check if we are already in thumb mode and thumb bit of current PC is 842 // read out to be zero and thumb bit of next PC is read out to be one. 843 if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) && 844 (value.GetAsUInt32() & 0x01)) { 845 reg_value &= (~1ull); 846 } 847 } 848 849 m_gpr_arm[offset / sizeof(uint32_t)] = reg_value; 850 return WriteGPR(); 851 } 852 853 Status NativeRegisterContextLinux_arm::ReadGPR() { 854 #ifdef __arm__ 855 return NativeRegisterContextLinux::ReadGPR(); 856 #else // __aarch64__ 857 struct iovec ioVec; 858 ioVec.iov_base = GetGPRBuffer(); 859 ioVec.iov_len = GetGPRSize(); 860 861 return ReadRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 862 #endif // __arm__ 863 } 864 865 Status NativeRegisterContextLinux_arm::WriteGPR() { 866 #ifdef __arm__ 867 return NativeRegisterContextLinux::WriteGPR(); 868 #else // __aarch64__ 869 struct iovec ioVec; 870 ioVec.iov_base = GetGPRBuffer(); 871 ioVec.iov_len = GetGPRSize(); 872 873 return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 874 #endif // __arm__ 875 } 876 877 Status NativeRegisterContextLinux_arm::ReadFPR() { 878 #ifdef __arm__ 879 return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(), 880 nullptr, GetFPRBuffer(), 881 GetFPRSize()); 882 #else // __aarch64__ 883 struct iovec ioVec; 884 ioVec.iov_base = GetFPRBuffer(); 885 ioVec.iov_len = GetFPRSize(); 886 887 return ReadRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 888 #endif // __arm__ 889 } 890 891 Status NativeRegisterContextLinux_arm::WriteFPR() { 892 #ifdef __arm__ 893 return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(), 894 nullptr, GetFPRBuffer(), 895 GetFPRSize()); 896 #else // __aarch64__ 897 struct iovec ioVec; 898 ioVec.iov_base = GetFPRBuffer(); 899 ioVec.iov_len = GetFPRSize(); 900 901 return WriteRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 902 #endif // __arm__ 903 } 904 905 #endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 906