1 //===-- NativeRegisterContextLinux_arm.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 10 11 #include "NativeRegisterContextLinux_arm.h" 12 13 #include "Plugins/Process/Linux/NativeProcessLinux.h" 14 #include "Plugins/Process/Linux/Procfs.h" 15 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 16 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h" 17 #include "lldb/Host/HostInfo.h" 18 #include "lldb/Utility/DataBufferHeap.h" 19 #include "lldb/Utility/Log.h" 20 #include "lldb/Utility/RegisterValue.h" 21 #include "lldb/Utility/Status.h" 22 23 #include <elf.h> 24 #include <sys/uio.h> 25 26 #define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr)) 27 28 #ifndef PTRACE_GETVFPREGS 29 #define PTRACE_GETVFPREGS 27 30 #define PTRACE_SETVFPREGS 28 31 #endif 32 #ifndef PTRACE_GETHBPREGS 33 #define PTRACE_GETHBPREGS 29 34 #define PTRACE_SETHBPREGS 30 35 #endif 36 #if !defined(PTRACE_TYPE_ARG3) 37 #define PTRACE_TYPE_ARG3 void * 38 #endif 39 #if !defined(PTRACE_TYPE_ARG4) 40 #define PTRACE_TYPE_ARG4 void * 41 #endif 42 43 using namespace lldb; 44 using namespace lldb_private; 45 using namespace lldb_private::process_linux; 46 47 #if defined(__arm__) 48 49 std::unique_ptr<NativeRegisterContextLinux> 50 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 51 const ArchSpec &target_arch, NativeThreadLinux &native_thread) { 52 return std::make_unique<NativeRegisterContextLinux_arm>(target_arch, 53 native_thread); 54 } 55 56 llvm::Expected<ArchSpec> 57 NativeRegisterContextLinux::DetermineArchitecture(lldb::tid_t tid) { 58 return HostInfo::GetArchitecture(); 59 } 60 61 #endif // defined(__arm__) 62 63 NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm( 64 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) 65 : NativeRegisterContextRegisterInfo(native_thread, 66 new RegisterInfoPOSIX_arm(target_arch)), 67 NativeRegisterContextLinux(native_thread) { 68 assert(target_arch.GetMachine() == llvm::Triple::arm); 69 70 ::memset(&m_fpr, 0, sizeof(m_fpr)); 71 ::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm)); 72 ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); 73 ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); 74 75 // 16 is just a maximum value, query hardware for actual watchpoint count 76 m_max_hwp_supported = 16; 77 m_max_hbp_supported = 16; 78 m_refresh_hwdebug_info = true; 79 } 80 81 RegisterInfoPOSIX_arm &NativeRegisterContextLinux_arm::GetRegisterInfo() const { 82 return static_cast<RegisterInfoPOSIX_arm &>(*m_register_info_interface_up); 83 } 84 85 uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const { 86 return GetRegisterInfo().GetRegisterSetCount(); 87 } 88 89 uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const { 90 uint32_t count = 0; 91 for (uint32_t set_index = 0; set_index < GetRegisterSetCount(); ++set_index) 92 count += GetRegisterSet(set_index)->num_registers; 93 return count; 94 } 95 96 const RegisterSet * 97 NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const { 98 return GetRegisterInfo().GetRegisterSet(set_index); 99 } 100 101 Status 102 NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info, 103 RegisterValue ®_value) { 104 Status error; 105 106 if (!reg_info) { 107 error.SetErrorString("reg_info NULL"); 108 return error; 109 } 110 111 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 112 113 if (IsFPR(reg)) { 114 error = ReadFPR(); 115 if (error.Fail()) 116 return error; 117 } else { 118 uint32_t full_reg = reg; 119 bool is_subreg = reg_info->invalidate_regs && 120 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 121 122 if (is_subreg) { 123 // Read the full aligned 64-bit register. 124 full_reg = reg_info->invalidate_regs[0]; 125 } 126 127 error = ReadRegisterRaw(full_reg, reg_value); 128 129 if (error.Success()) { 130 // If our read was not aligned (for ah,bh,ch,dh), shift our returned 131 // value one byte to the right. 132 if (is_subreg && (reg_info->byte_offset & 0x1)) 133 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 134 135 // If our return byte size was greater than the return value reg size, 136 // then use the type specified by reg_info rather than the uint64_t 137 // default 138 if (reg_value.GetByteSize() > reg_info->byte_size) 139 reg_value.SetType(*reg_info); 140 } 141 return error; 142 } 143 144 // Get pointer to m_fpr variable and set the data from it. 145 uint32_t fpr_offset = CalculateFprOffset(reg_info); 146 assert(fpr_offset < sizeof m_fpr); 147 uint8_t *src = (uint8_t *)&m_fpr + fpr_offset; 148 switch (reg_info->byte_size) { 149 case 2: 150 reg_value.SetUInt16(*(uint16_t *)src); 151 break; 152 case 4: 153 reg_value.SetUInt32(*(uint32_t *)src); 154 break; 155 case 8: 156 reg_value.SetUInt64(*(uint64_t *)src); 157 break; 158 case 16: 159 reg_value.SetBytes(src, 16, GetByteOrder()); 160 break; 161 default: 162 assert(false && "Unhandled data size."); 163 error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32, 164 reg_info->byte_size); 165 break; 166 } 167 168 return error; 169 } 170 171 Status 172 NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info, 173 const RegisterValue ®_value) { 174 if (!reg_info) 175 return Status("reg_info NULL"); 176 177 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 178 if (reg_index == LLDB_INVALID_REGNUM) 179 return Status("no lldb regnum for %s", reg_info && reg_info->name 180 ? reg_info->name 181 : "<unknown register>"); 182 183 if (IsGPR(reg_index)) 184 return WriteRegisterRaw(reg_index, reg_value); 185 186 if (IsFPR(reg_index)) { 187 // Get pointer to m_fpr variable and set the data to it. 188 uint32_t fpr_offset = CalculateFprOffset(reg_info); 189 assert(fpr_offset < sizeof m_fpr); 190 uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset; 191 ::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size); 192 193 return WriteFPR(); 194 } 195 196 return Status("failed - register wasn't recognized to be a GPR or an FPR, " 197 "write strategy unknown"); 198 } 199 200 Status NativeRegisterContextLinux_arm::ReadAllRegisterValues( 201 lldb::WritableDataBufferSP &data_sp) { 202 Status error; 203 204 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 205 error = ReadGPR(); 206 if (error.Fail()) 207 return error; 208 209 error = ReadFPR(); 210 if (error.Fail()) 211 return error; 212 213 uint8_t *dst = data_sp->GetBytes(); 214 ::memcpy(dst, &m_gpr_arm, GetGPRSize()); 215 dst += GetGPRSize(); 216 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 217 218 return error; 219 } 220 221 Status NativeRegisterContextLinux_arm::WriteAllRegisterValues( 222 const lldb::DataBufferSP &data_sp) { 223 Status error; 224 225 if (!data_sp) { 226 error.SetErrorStringWithFormat( 227 "NativeRegisterContextLinux_arm::%s invalid data_sp provided", 228 __FUNCTION__); 229 return error; 230 } 231 232 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 233 error.SetErrorStringWithFormat( 234 "NativeRegisterContextLinux_arm::%s data_sp contained mismatched " 235 "data size, expected %" PRIu64 ", actual %" PRIu64, 236 __FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize()); 237 return error; 238 } 239 240 const uint8_t *src = data_sp->GetBytes(); 241 if (src == nullptr) { 242 error.SetErrorStringWithFormat("NativeRegisterContextLinux_arm::%s " 243 "DataBuffer::GetBytes() returned a null " 244 "pointer", 245 __FUNCTION__); 246 return error; 247 } 248 ::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize()); 249 250 error = WriteGPR(); 251 if (error.Fail()) 252 return error; 253 254 src += GetRegisterInfoInterface().GetGPRSize(); 255 ::memcpy(&m_fpr, src, sizeof(m_fpr)); 256 257 error = WriteFPR(); 258 if (error.Fail()) 259 return error; 260 261 return error; 262 } 263 264 bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const { 265 if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == 266 RegisterInfoPOSIX_arm::GPRegSet) 267 return true; 268 return false; 269 } 270 271 bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const { 272 if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == 273 RegisterInfoPOSIX_arm::FPRegSet) 274 return true; 275 return false; 276 } 277 278 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() { 279 Log *log = GetLog(POSIXLog::Breakpoints); 280 281 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 282 283 Status error; 284 285 // Read hardware breakpoint and watchpoint information. 286 error = ReadHardwareDebugInfo(); 287 288 if (error.Fail()) 289 return 0; 290 291 LLDB_LOG(log, "{0}", m_max_hbp_supported); 292 return m_max_hbp_supported; 293 } 294 295 uint32_t 296 NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr, 297 size_t size) { 298 Log *log = GetLog(POSIXLog::Breakpoints); 299 LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); 300 301 // Read hardware breakpoint and watchpoint information. 302 Status error = ReadHardwareDebugInfo(); 303 304 if (error.Fail()) 305 return LLDB_INVALID_INDEX32; 306 307 uint32_t control_value = 0, bp_index = 0; 308 309 // Setup address and control values. 310 // Use size to get a hint of arm vs thumb modes. 311 switch (size) { 312 case 2: 313 control_value = (0x3 << 5) | 7; 314 addr &= ~1; 315 break; 316 case 4: 317 control_value = (0xfu << 5) | 7; 318 addr &= ~3; 319 break; 320 default: 321 return LLDB_INVALID_INDEX32; 322 } 323 324 // Iterate over stored breakpoints and find a free bp_index 325 bp_index = LLDB_INVALID_INDEX32; 326 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 327 if ((m_hbr_regs[i].control & 1) == 0) { 328 bp_index = i; // Mark last free slot 329 } else if (m_hbr_regs[i].address == addr) { 330 return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. 331 } 332 } 333 334 if (bp_index == LLDB_INVALID_INDEX32) 335 return LLDB_INVALID_INDEX32; 336 337 // Update breakpoint in local cache 338 m_hbr_regs[bp_index].real_addr = addr; 339 m_hbr_regs[bp_index].address = addr; 340 m_hbr_regs[bp_index].control = control_value; 341 342 // PTRACE call to set corresponding hardware breakpoint register. 343 error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index); 344 345 if (error.Fail()) { 346 m_hbr_regs[bp_index].address = 0; 347 m_hbr_regs[bp_index].control &= ~1; 348 349 return LLDB_INVALID_INDEX32; 350 } 351 352 return bp_index; 353 } 354 355 bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) { 356 Log *log = GetLog(POSIXLog::Breakpoints); 357 LLDB_LOG(log, "hw_idx: {0}", hw_idx); 358 359 // Read hardware breakpoint and watchpoint information. 360 Status error = ReadHardwareDebugInfo(); 361 362 if (error.Fail()) 363 return false; 364 365 if (hw_idx >= m_max_hbp_supported) 366 return false; 367 368 // Create a backup we can revert to in case of failure. 369 lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; 370 uint32_t tempControl = m_hbr_regs[hw_idx].control; 371 372 m_hbr_regs[hw_idx].control &= ~1; 373 m_hbr_regs[hw_idx].address = 0; 374 375 // PTRACE call to clear corresponding hardware breakpoint register. 376 error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx); 377 378 if (error.Fail()) { 379 m_hbr_regs[hw_idx].control = tempControl; 380 m_hbr_regs[hw_idx].address = tempAddr; 381 382 return false; 383 } 384 385 return true; 386 } 387 388 Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex( 389 uint32_t &bp_index, lldb::addr_t trap_addr) { 390 Log *log = GetLog(POSIXLog::Breakpoints); 391 392 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 393 394 lldb::addr_t break_addr; 395 396 for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { 397 break_addr = m_hbr_regs[bp_index].address; 398 399 if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { 400 m_hbr_regs[bp_index].hit_addr = trap_addr; 401 return Status(); 402 } 403 } 404 405 bp_index = LLDB_INVALID_INDEX32; 406 return Status(); 407 } 408 409 Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() { 410 Log *log = GetLog(POSIXLog::Breakpoints); 411 412 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 413 414 Status error; 415 416 // Read hardware breakpoint and watchpoint information. 417 error = ReadHardwareDebugInfo(); 418 419 if (error.Fail()) 420 return error; 421 422 lldb::addr_t tempAddr = 0; 423 uint32_t tempControl = 0; 424 425 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 426 if (m_hbr_regs[i].control & 0x01) { 427 // Create a backup we can revert to in case of failure. 428 tempAddr = m_hbr_regs[i].address; 429 tempControl = m_hbr_regs[i].control; 430 431 // Clear breakpoints in local cache 432 m_hbr_regs[i].control &= ~1; 433 m_hbr_regs[i].address = 0; 434 435 // Ptrace call to update hardware debug registers 436 error = WriteHardwareDebugRegs(eDREGTypeBREAK, i); 437 438 if (error.Fail()) { 439 m_hbr_regs[i].control = tempControl; 440 m_hbr_regs[i].address = tempAddr; 441 442 return error; 443 } 444 } 445 } 446 447 return Status(); 448 } 449 450 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() { 451 Log *log = GetLog(POSIXLog::Watchpoints); 452 453 // Read hardware breakpoint and watchpoint information. 454 Status error = ReadHardwareDebugInfo(); 455 456 if (error.Fail()) 457 return 0; 458 459 LLDB_LOG(log, "{0}", m_max_hwp_supported); 460 return m_max_hwp_supported; 461 } 462 463 uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint( 464 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 465 Log *log = GetLog(POSIXLog::Watchpoints); 466 LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, 467 watch_flags); 468 469 // Read hardware breakpoint and watchpoint information. 470 Status error = ReadHardwareDebugInfo(); 471 472 if (error.Fail()) 473 return LLDB_INVALID_INDEX32; 474 475 uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0; 476 lldb::addr_t real_addr = addr; 477 478 // Check if we are setting watchpoint other than read/write/access Also 479 // update watchpoint flag to match Arm write-read bit configuration. 480 switch (watch_flags) { 481 case 1: 482 watch_flags = 2; 483 break; 484 case 2: 485 watch_flags = 1; 486 break; 487 case 3: 488 break; 489 default: 490 return LLDB_INVALID_INDEX32; 491 } 492 493 // Can't watch zero bytes 494 // Can't watch more than 4 bytes per WVR/WCR pair 495 496 if (size == 0 || size > 4) 497 return LLDB_INVALID_INDEX32; 498 499 // Check 4-byte alignment for hardware watchpoint target address. Below is a 500 // hack to recalculate address and size in order to make sure we can watch 501 // non 4-byte aligned addresses as well. 502 if (addr & 0x03) { 503 uint8_t watch_mask = (addr & 0x03) + size; 504 505 if (watch_mask > 0x04) 506 return LLDB_INVALID_INDEX32; 507 else if (watch_mask <= 0x02) 508 size = 2; 509 else if (watch_mask <= 0x04) 510 size = 4; 511 512 addr = addr & (~0x03); 513 } 514 515 // We can only watch up to four bytes that follow a 4 byte aligned address 516 // per watchpoint register pair, so make sure we can properly encode this. 517 addr_word_offset = addr % 4; 518 byte_mask = ((1u << size) - 1u) << addr_word_offset; 519 520 // Check if we need multiple watchpoint register 521 if (byte_mask > 0xfu) 522 return LLDB_INVALID_INDEX32; 523 524 // Setup control value 525 // Make the byte_mask into a valid Byte Address Select mask 526 control_value = byte_mask << 5; 527 528 // Turn on appropriate watchpoint flags read or write 529 control_value |= (watch_flags << 3); 530 531 // Enable this watchpoint and make it stop in privileged or user mode; 532 control_value |= 7; 533 534 // Make sure bits 1:0 are clear in our address 535 addr &= ~((lldb::addr_t)3); 536 537 // Iterate over stored watchpoints and find a free wp_index 538 wp_index = LLDB_INVALID_INDEX32; 539 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 540 if ((m_hwp_regs[i].control & 1) == 0) { 541 wp_index = i; // Mark last free slot 542 } else if (m_hwp_regs[i].address == addr) { 543 return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. 544 } 545 } 546 547 if (wp_index == LLDB_INVALID_INDEX32) 548 return LLDB_INVALID_INDEX32; 549 550 // Update watchpoint in local cache 551 m_hwp_regs[wp_index].real_addr = real_addr; 552 m_hwp_regs[wp_index].address = addr; 553 m_hwp_regs[wp_index].control = control_value; 554 555 // PTRACE call to set corresponding watchpoint register. 556 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 557 558 if (error.Fail()) { 559 m_hwp_regs[wp_index].address = 0; 560 m_hwp_regs[wp_index].control &= ~1; 561 562 return LLDB_INVALID_INDEX32; 563 } 564 565 return wp_index; 566 } 567 568 bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint( 569 uint32_t wp_index) { 570 Log *log = GetLog(POSIXLog::Watchpoints); 571 LLDB_LOG(log, "wp_index: {0}", wp_index); 572 573 // Read hardware breakpoint and watchpoint information. 574 Status error = ReadHardwareDebugInfo(); 575 576 if (error.Fail()) 577 return false; 578 579 if (wp_index >= m_max_hwp_supported) 580 return false; 581 582 // Create a backup we can revert to in case of failure. 583 lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; 584 uint32_t tempControl = m_hwp_regs[wp_index].control; 585 586 // Update watchpoint in local cache 587 m_hwp_regs[wp_index].control &= ~1; 588 m_hwp_regs[wp_index].address = 0; 589 590 // Ptrace call to update hardware debug registers 591 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 592 593 if (error.Fail()) { 594 m_hwp_regs[wp_index].control = tempControl; 595 m_hwp_regs[wp_index].address = tempAddr; 596 597 return false; 598 } 599 600 return true; 601 } 602 603 Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() { 604 // Read hardware breakpoint and watchpoint information. 605 Status error = ReadHardwareDebugInfo(); 606 607 if (error.Fail()) 608 return error; 609 610 lldb::addr_t tempAddr = 0; 611 uint32_t tempControl = 0; 612 613 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 614 if (m_hwp_regs[i].control & 0x01) { 615 // Create a backup we can revert to in case of failure. 616 tempAddr = m_hwp_regs[i].address; 617 tempControl = m_hwp_regs[i].control; 618 619 // Clear watchpoints in local cache 620 m_hwp_regs[i].control &= ~1; 621 m_hwp_regs[i].address = 0; 622 623 // Ptrace call to update hardware debug registers 624 error = WriteHardwareDebugRegs(eDREGTypeWATCH, i); 625 626 if (error.Fail()) { 627 m_hwp_regs[i].control = tempControl; 628 m_hwp_regs[i].address = tempAddr; 629 630 return error; 631 } 632 } 633 } 634 635 return Status(); 636 } 637 638 uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) { 639 Log *log = GetLog(POSIXLog::Watchpoints); 640 LLDB_LOG(log, "wp_index: {0}", wp_index); 641 642 switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) { 643 case 0x01: 644 return 1; 645 case 0x03: 646 return 2; 647 case 0x07: 648 return 3; 649 case 0x0f: 650 return 4; 651 default: 652 return 0; 653 } 654 } 655 bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) { 656 Log *log = GetLog(POSIXLog::Watchpoints); 657 LLDB_LOG(log, "wp_index: {0}", wp_index); 658 659 if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) 660 return true; 661 else 662 return false; 663 } 664 665 Status 666 NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index, 667 lldb::addr_t trap_addr) { 668 Log *log = GetLog(POSIXLog::Watchpoints); 669 LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); 670 671 uint32_t watch_size; 672 lldb::addr_t watch_addr; 673 674 for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { 675 watch_size = GetWatchpointSize(wp_index); 676 watch_addr = m_hwp_regs[wp_index].address; 677 678 if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && 679 trap_addr < watch_addr + watch_size) { 680 m_hwp_regs[wp_index].hit_addr = trap_addr; 681 return Status(); 682 } 683 } 684 685 wp_index = LLDB_INVALID_INDEX32; 686 return Status(); 687 } 688 689 lldb::addr_t 690 NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) { 691 Log *log = GetLog(POSIXLog::Watchpoints); 692 LLDB_LOG(log, "wp_index: {0}", wp_index); 693 694 if (wp_index >= m_max_hwp_supported) 695 return LLDB_INVALID_ADDRESS; 696 697 if (WatchpointIsEnabled(wp_index)) 698 return m_hwp_regs[wp_index].real_addr; 699 else 700 return LLDB_INVALID_ADDRESS; 701 } 702 703 lldb::addr_t 704 NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) { 705 Log *log = GetLog(POSIXLog::Watchpoints); 706 LLDB_LOG(log, "wp_index: {0}", wp_index); 707 708 if (wp_index >= m_max_hwp_supported) 709 return LLDB_INVALID_ADDRESS; 710 711 if (WatchpointIsEnabled(wp_index)) 712 return m_hwp_regs[wp_index].hit_addr; 713 else 714 return LLDB_INVALID_ADDRESS; 715 } 716 717 Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() { 718 Status error; 719 720 if (!m_refresh_hwdebug_info) { 721 return Status(); 722 } 723 724 unsigned int cap_val; 725 726 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(), 727 nullptr, &cap_val, 728 sizeof(unsigned int)); 729 730 if (error.Fail()) 731 return error; 732 733 m_max_hwp_supported = (cap_val >> 8) & 0xff; 734 m_max_hbp_supported = cap_val & 0xff; 735 m_refresh_hwdebug_info = false; 736 737 return error; 738 } 739 740 Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType, 741 int hwb_index) { 742 Status error; 743 744 lldb::addr_t *addr_buf; 745 uint32_t *ctrl_buf; 746 747 if (hwbType == eDREGTypeWATCH) { 748 addr_buf = &m_hwp_regs[hwb_index].address; 749 ctrl_buf = &m_hwp_regs[hwb_index].control; 750 751 error = NativeProcessLinux::PtraceWrapper( 752 PTRACE_SETHBPREGS, m_thread.GetID(), 753 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf, 754 sizeof(unsigned int)); 755 756 if (error.Fail()) 757 return error; 758 759 error = NativeProcessLinux::PtraceWrapper( 760 PTRACE_SETHBPREGS, m_thread.GetID(), 761 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf, 762 sizeof(unsigned int)); 763 } else { 764 addr_buf = &m_hbr_regs[hwb_index].address; 765 ctrl_buf = &m_hbr_regs[hwb_index].control; 766 767 error = NativeProcessLinux::PtraceWrapper( 768 PTRACE_SETHBPREGS, m_thread.GetID(), 769 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf, 770 sizeof(unsigned int)); 771 772 if (error.Fail()) 773 return error; 774 775 error = NativeProcessLinux::PtraceWrapper( 776 PTRACE_SETHBPREGS, m_thread.GetID(), 777 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf, 778 sizeof(unsigned int)); 779 } 780 781 return error; 782 } 783 784 uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset( 785 const RegisterInfo *reg_info) const { 786 return reg_info->byte_offset - GetGPRSize(); 787 } 788 789 Status NativeRegisterContextLinux_arm::DoReadRegisterValue( 790 uint32_t offset, const char *reg_name, uint32_t size, 791 RegisterValue &value) { 792 // PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android 793 // devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we 794 // read out the full GPR register set instead. This approach is about 4 times 795 // slower but the performance overhead is negligible in comparison to 796 // processing time in lldb-server. 797 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 798 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 799 return Status("Register isn't fit into the size of the GPR area"); 800 801 Status error = ReadGPR(); 802 if (error.Fail()) 803 return error; 804 805 value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]); 806 return Status(); 807 } 808 809 Status NativeRegisterContextLinux_arm::DoWriteRegisterValue( 810 uint32_t offset, const char *reg_name, const RegisterValue &value) { 811 // PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android 812 // devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we 813 // read out the full GPR register set, modify the requested register and 814 // write it back. This approach is about 4 times slower but the performance 815 // overhead is negligible in comparison to processing time in lldb-server. 816 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 817 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 818 return Status("Register isn't fit into the size of the GPR area"); 819 820 Status error = ReadGPR(); 821 if (error.Fail()) 822 return error; 823 824 uint32_t reg_value = value.GetAsUInt32(); 825 // As precaution for an undefined behavior encountered while setting PC we 826 // will clear thumb bit of new PC if we are already in thumb mode; that is 827 // CPSR thumb mode bit is set. 828 if (offset / sizeof(uint32_t) == gpr_pc_arm) { 829 // Check if we are already in thumb mode and thumb bit of current PC is 830 // read out to be zero and thumb bit of next PC is read out to be one. 831 if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) && 832 (value.GetAsUInt32() & 0x01)) { 833 reg_value &= (~1ull); 834 } 835 } 836 837 m_gpr_arm[offset / sizeof(uint32_t)] = reg_value; 838 return WriteGPR(); 839 } 840 841 Status NativeRegisterContextLinux_arm::ReadGPR() { 842 #ifdef __arm__ 843 return NativeRegisterContextLinux::ReadGPR(); 844 #else // __aarch64__ 845 struct iovec ioVec; 846 ioVec.iov_base = GetGPRBuffer(); 847 ioVec.iov_len = GetGPRSize(); 848 849 return ReadRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 850 #endif // __arm__ 851 } 852 853 Status NativeRegisterContextLinux_arm::WriteGPR() { 854 #ifdef __arm__ 855 return NativeRegisterContextLinux::WriteGPR(); 856 #else // __aarch64__ 857 struct iovec ioVec; 858 ioVec.iov_base = GetGPRBuffer(); 859 ioVec.iov_len = GetGPRSize(); 860 861 return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 862 #endif // __arm__ 863 } 864 865 Status NativeRegisterContextLinux_arm::ReadFPR() { 866 #ifdef __arm__ 867 return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(), 868 nullptr, GetFPRBuffer(), 869 GetFPRSize()); 870 #else // __aarch64__ 871 struct iovec ioVec; 872 ioVec.iov_base = GetFPRBuffer(); 873 ioVec.iov_len = GetFPRSize(); 874 875 return ReadRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 876 #endif // __arm__ 877 } 878 879 Status NativeRegisterContextLinux_arm::WriteFPR() { 880 #ifdef __arm__ 881 return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(), 882 nullptr, GetFPRBuffer(), 883 GetFPRSize()); 884 #else // __aarch64__ 885 struct iovec ioVec; 886 ioVec.iov_base = GetFPRBuffer(); 887 ioVec.iov_len = GetFPRSize(); 888 889 return WriteRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 890 #endif // __arm__ 891 } 892 893 #endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 894