1 //===-- NativeRegisterContextLinux_arm.cpp --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 10 11 #include "NativeRegisterContextLinux_arm.h" 12 13 #include "Plugins/Process/Linux/NativeProcessLinux.h" 14 #include "Plugins/Process/Linux/Procfs.h" 15 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 16 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h" 17 #include "lldb/Utility/DataBufferHeap.h" 18 #include "lldb/Utility/Log.h" 19 #include "lldb/Utility/RegisterValue.h" 20 #include "lldb/Utility/Status.h" 21 22 #include <elf.h> 23 #include <sys/socket.h> 24 25 #define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr)) 26 27 #ifndef PTRACE_GETVFPREGS 28 #define PTRACE_GETVFPREGS 27 29 #define PTRACE_SETVFPREGS 28 30 #endif 31 #ifndef PTRACE_GETHBPREGS 32 #define PTRACE_GETHBPREGS 29 33 #define PTRACE_SETHBPREGS 30 34 #endif 35 #if !defined(PTRACE_TYPE_ARG3) 36 #define PTRACE_TYPE_ARG3 void * 37 #endif 38 #if !defined(PTRACE_TYPE_ARG4) 39 #define PTRACE_TYPE_ARG4 void * 40 #endif 41 42 using namespace lldb; 43 using namespace lldb_private; 44 using namespace lldb_private::process_linux; 45 46 // arm general purpose registers. 47 static const uint32_t g_gpr_regnums_arm[] = { 48 gpr_r0_arm, gpr_r1_arm, gpr_r2_arm, gpr_r3_arm, gpr_r4_arm, 49 gpr_r5_arm, gpr_r6_arm, gpr_r7_arm, gpr_r8_arm, gpr_r9_arm, 50 gpr_r10_arm, gpr_r11_arm, gpr_r12_arm, gpr_sp_arm, gpr_lr_arm, 51 gpr_pc_arm, gpr_cpsr_arm, 52 LLDB_INVALID_REGNUM // register sets need to end with this flag 53 }; 54 static_assert(((sizeof g_gpr_regnums_arm / sizeof g_gpr_regnums_arm[0]) - 1) == 55 k_num_gpr_registers_arm, 56 "g_gpr_regnums_arm has wrong number of register infos"); 57 58 // arm floating point registers. 59 static const uint32_t g_fpu_regnums_arm[] = { 60 fpu_s0_arm, fpu_s1_arm, fpu_s2_arm, fpu_s3_arm, fpu_s4_arm, 61 fpu_s5_arm, fpu_s6_arm, fpu_s7_arm, fpu_s8_arm, fpu_s9_arm, 62 fpu_s10_arm, fpu_s11_arm, fpu_s12_arm, fpu_s13_arm, fpu_s14_arm, 63 fpu_s15_arm, fpu_s16_arm, fpu_s17_arm, fpu_s18_arm, fpu_s19_arm, 64 fpu_s20_arm, fpu_s21_arm, fpu_s22_arm, fpu_s23_arm, fpu_s24_arm, 65 fpu_s25_arm, fpu_s26_arm, fpu_s27_arm, fpu_s28_arm, fpu_s29_arm, 66 fpu_s30_arm, fpu_s31_arm, fpu_fpscr_arm, fpu_d0_arm, fpu_d1_arm, 67 fpu_d2_arm, fpu_d3_arm, fpu_d4_arm, fpu_d5_arm, fpu_d6_arm, 68 fpu_d7_arm, fpu_d8_arm, fpu_d9_arm, fpu_d10_arm, fpu_d11_arm, 69 fpu_d12_arm, fpu_d13_arm, fpu_d14_arm, fpu_d15_arm, fpu_d16_arm, 70 fpu_d17_arm, fpu_d18_arm, fpu_d19_arm, fpu_d20_arm, fpu_d21_arm, 71 fpu_d22_arm, fpu_d23_arm, fpu_d24_arm, fpu_d25_arm, fpu_d26_arm, 72 fpu_d27_arm, fpu_d28_arm, fpu_d29_arm, fpu_d30_arm, fpu_d31_arm, 73 fpu_q0_arm, fpu_q1_arm, fpu_q2_arm, fpu_q3_arm, fpu_q4_arm, 74 fpu_q5_arm, fpu_q6_arm, fpu_q7_arm, fpu_q8_arm, fpu_q9_arm, 75 fpu_q10_arm, fpu_q11_arm, fpu_q12_arm, fpu_q13_arm, fpu_q14_arm, 76 fpu_q15_arm, 77 LLDB_INVALID_REGNUM // register sets need to end with this flag 78 }; 79 static_assert(((sizeof g_fpu_regnums_arm / sizeof g_fpu_regnums_arm[0]) - 1) == 80 k_num_fpr_registers_arm, 81 "g_fpu_regnums_arm has wrong number of register infos"); 82 83 namespace { 84 // Number of register sets provided by this context. 85 enum { k_num_register_sets = 2 }; 86 } 87 88 // Register sets for arm. 89 static const RegisterSet g_reg_sets_arm[k_num_register_sets] = { 90 {"General Purpose Registers", "gpr", k_num_gpr_registers_arm, 91 g_gpr_regnums_arm}, 92 {"Floating Point Registers", "fpu", k_num_fpr_registers_arm, 93 g_fpu_regnums_arm}}; 94 95 #if defined(__arm__) 96 97 std::unique_ptr<NativeRegisterContextLinux> 98 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 99 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) { 100 return std::make_unique<NativeRegisterContextLinux_arm>(target_arch, 101 native_thread); 102 } 103 104 #endif // defined(__arm__) 105 106 NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm( 107 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) 108 : NativeRegisterContextLinux(native_thread, 109 new RegisterInfoPOSIX_arm(target_arch)) { 110 switch (target_arch.GetMachine()) { 111 case llvm::Triple::arm: 112 m_reg_info.num_registers = k_num_registers_arm; 113 m_reg_info.num_gpr_registers = k_num_gpr_registers_arm; 114 m_reg_info.num_fpr_registers = k_num_fpr_registers_arm; 115 m_reg_info.last_gpr = k_last_gpr_arm; 116 m_reg_info.first_fpr = k_first_fpr_arm; 117 m_reg_info.last_fpr = k_last_fpr_arm; 118 m_reg_info.first_fpr_v = fpu_s0_arm; 119 m_reg_info.last_fpr_v = fpu_s31_arm; 120 m_reg_info.gpr_flags = gpr_cpsr_arm; 121 break; 122 default: 123 assert(false && "Unhandled target architecture."); 124 break; 125 } 126 127 ::memset(&m_fpr, 0, sizeof(m_fpr)); 128 ::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm)); 129 ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); 130 ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); 131 132 // 16 is just a maximum value, query hardware for actual watchpoint count 133 m_max_hwp_supported = 16; 134 m_max_hbp_supported = 16; 135 m_refresh_hwdebug_info = true; 136 } 137 138 uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const { 139 return k_num_register_sets; 140 } 141 142 uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const { 143 uint32_t count = 0; 144 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) 145 count += g_reg_sets_arm[set_index].num_registers; 146 return count; 147 } 148 149 const RegisterSet * 150 NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const { 151 if (set_index < k_num_register_sets) 152 return &g_reg_sets_arm[set_index]; 153 154 return nullptr; 155 } 156 157 Status 158 NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info, 159 RegisterValue ®_value) { 160 Status error; 161 162 if (!reg_info) { 163 error.SetErrorString("reg_info NULL"); 164 return error; 165 } 166 167 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 168 169 if (IsFPR(reg)) { 170 error = ReadFPR(); 171 if (error.Fail()) 172 return error; 173 } else { 174 uint32_t full_reg = reg; 175 bool is_subreg = reg_info->invalidate_regs && 176 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 177 178 if (is_subreg) { 179 // Read the full aligned 64-bit register. 180 full_reg = reg_info->invalidate_regs[0]; 181 } 182 183 error = ReadRegisterRaw(full_reg, reg_value); 184 185 if (error.Success()) { 186 // If our read was not aligned (for ah,bh,ch,dh), shift our returned 187 // value one byte to the right. 188 if (is_subreg && (reg_info->byte_offset & 0x1)) 189 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 190 191 // If our return byte size was greater than the return value reg size, 192 // then use the type specified by reg_info rather than the uint64_t 193 // default 194 if (reg_value.GetByteSize() > reg_info->byte_size) 195 reg_value.SetType(reg_info); 196 } 197 return error; 198 } 199 200 // Get pointer to m_fpr variable and set the data from it. 201 uint32_t fpr_offset = CalculateFprOffset(reg_info); 202 assert(fpr_offset < sizeof m_fpr); 203 uint8_t *src = (uint8_t *)&m_fpr + fpr_offset; 204 switch (reg_info->byte_size) { 205 case 2: 206 reg_value.SetUInt16(*(uint16_t *)src); 207 break; 208 case 4: 209 reg_value.SetUInt32(*(uint32_t *)src); 210 break; 211 case 8: 212 reg_value.SetUInt64(*(uint64_t *)src); 213 break; 214 case 16: 215 reg_value.SetBytes(src, 16, GetByteOrder()); 216 break; 217 default: 218 assert(false && "Unhandled data size."); 219 error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32, 220 reg_info->byte_size); 221 break; 222 } 223 224 return error; 225 } 226 227 Status 228 NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info, 229 const RegisterValue ®_value) { 230 if (!reg_info) 231 return Status("reg_info NULL"); 232 233 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 234 if (reg_index == LLDB_INVALID_REGNUM) 235 return Status("no lldb regnum for %s", reg_info && reg_info->name 236 ? reg_info->name 237 : "<unknown register>"); 238 239 if (IsGPR(reg_index)) 240 return WriteRegisterRaw(reg_index, reg_value); 241 242 if (IsFPR(reg_index)) { 243 // Get pointer to m_fpr variable and set the data to it. 244 uint32_t fpr_offset = CalculateFprOffset(reg_info); 245 assert(fpr_offset < sizeof m_fpr); 246 uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset; 247 switch (reg_info->byte_size) { 248 case 2: 249 *(uint16_t *)dst = reg_value.GetAsUInt16(); 250 break; 251 case 4: 252 *(uint32_t *)dst = reg_value.GetAsUInt32(); 253 break; 254 case 8: 255 *(uint64_t *)dst = reg_value.GetAsUInt64(); 256 break; 257 default: 258 assert(false && "Unhandled data size."); 259 return Status("unhandled register data size %" PRIu32, 260 reg_info->byte_size); 261 } 262 263 Status error = WriteFPR(); 264 if (error.Fail()) 265 return error; 266 267 return Status(); 268 } 269 270 return Status("failed - register wasn't recognized to be a GPR or an FPR, " 271 "write strategy unknown"); 272 } 273 274 Status NativeRegisterContextLinux_arm::ReadAllRegisterValues( 275 lldb::DataBufferSP &data_sp) { 276 Status error; 277 278 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 279 error = ReadGPR(); 280 if (error.Fail()) 281 return error; 282 283 error = ReadFPR(); 284 if (error.Fail()) 285 return error; 286 287 uint8_t *dst = data_sp->GetBytes(); 288 ::memcpy(dst, &m_gpr_arm, GetGPRSize()); 289 dst += GetGPRSize(); 290 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 291 292 return error; 293 } 294 295 Status NativeRegisterContextLinux_arm::WriteAllRegisterValues( 296 const lldb::DataBufferSP &data_sp) { 297 Status error; 298 299 if (!data_sp) { 300 error.SetErrorStringWithFormat( 301 "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", 302 __FUNCTION__); 303 return error; 304 } 305 306 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 307 error.SetErrorStringWithFormat( 308 "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched " 309 "data size, expected %" PRIu64 ", actual %" PRIu64, 310 __FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize()); 311 return error; 312 } 313 314 uint8_t *src = data_sp->GetBytes(); 315 if (src == nullptr) { 316 error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " 317 "DataBuffer::GetBytes() returned a null " 318 "pointer", 319 __FUNCTION__); 320 return error; 321 } 322 ::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize()); 323 324 error = WriteGPR(); 325 if (error.Fail()) 326 return error; 327 328 src += GetRegisterInfoInterface().GetGPRSize(); 329 ::memcpy(&m_fpr, src, sizeof(m_fpr)); 330 331 error = WriteFPR(); 332 if (error.Fail()) 333 return error; 334 335 return error; 336 } 337 338 bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const { 339 return reg <= m_reg_info.last_gpr; // GPR's come first. 340 } 341 342 bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const { 343 return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr); 344 } 345 346 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() { 347 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 348 349 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 350 351 Status error; 352 353 // Read hardware breakpoint and watchpoint information. 354 error = ReadHardwareDebugInfo(); 355 356 if (error.Fail()) 357 return 0; 358 359 LLDB_LOG(log, "{0}", m_max_hbp_supported); 360 return m_max_hbp_supported; 361 } 362 363 uint32_t 364 NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr, 365 size_t size) { 366 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 367 LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); 368 369 // Read hardware breakpoint and watchpoint information. 370 Status error = ReadHardwareDebugInfo(); 371 372 if (error.Fail()) 373 return LLDB_INVALID_INDEX32; 374 375 uint32_t control_value = 0, bp_index = 0; 376 377 // Setup address and control values. 378 // Use size to get a hint of arm vs thumb modes. 379 switch (size) { 380 case 2: 381 control_value = (0x3 << 5) | 7; 382 addr &= ~1; 383 break; 384 case 4: 385 control_value = (0xfu << 5) | 7; 386 addr &= ~3; 387 break; 388 default: 389 return LLDB_INVALID_INDEX32; 390 } 391 392 // Iterate over stored breakpoints and find a free bp_index 393 bp_index = LLDB_INVALID_INDEX32; 394 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 395 if ((m_hbr_regs[i].control & 1) == 0) { 396 bp_index = i; // Mark last free slot 397 } else if (m_hbr_regs[i].address == addr) { 398 return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. 399 } 400 } 401 402 if (bp_index == LLDB_INVALID_INDEX32) 403 return LLDB_INVALID_INDEX32; 404 405 // Update breakpoint in local cache 406 m_hbr_regs[bp_index].real_addr = addr; 407 m_hbr_regs[bp_index].address = addr; 408 m_hbr_regs[bp_index].control = control_value; 409 410 // PTRACE call to set corresponding hardware breakpoint register. 411 error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index); 412 413 if (error.Fail()) { 414 m_hbr_regs[bp_index].address = 0; 415 m_hbr_regs[bp_index].control &= ~1; 416 417 return LLDB_INVALID_INDEX32; 418 } 419 420 return bp_index; 421 } 422 423 bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) { 424 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 425 LLDB_LOG(log, "hw_idx: {0}", hw_idx); 426 427 // Read hardware breakpoint and watchpoint information. 428 Status error = ReadHardwareDebugInfo(); 429 430 if (error.Fail()) 431 return false; 432 433 if (hw_idx >= m_max_hbp_supported) 434 return false; 435 436 // Create a backup we can revert to in case of failure. 437 lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; 438 uint32_t tempControl = m_hbr_regs[hw_idx].control; 439 440 m_hbr_regs[hw_idx].control &= ~1; 441 m_hbr_regs[hw_idx].address = 0; 442 443 // PTRACE call to clear corresponding hardware breakpoint register. 444 error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx); 445 446 if (error.Fail()) { 447 m_hbr_regs[hw_idx].control = tempControl; 448 m_hbr_regs[hw_idx].address = tempAddr; 449 450 return false; 451 } 452 453 return true; 454 } 455 456 Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex( 457 uint32_t &bp_index, lldb::addr_t trap_addr) { 458 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 459 460 LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); 461 462 lldb::addr_t break_addr; 463 464 for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { 465 break_addr = m_hbr_regs[bp_index].address; 466 467 if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { 468 m_hbr_regs[bp_index].hit_addr = trap_addr; 469 return Status(); 470 } 471 } 472 473 bp_index = LLDB_INVALID_INDEX32; 474 return Status(); 475 } 476 477 Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() { 478 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 479 480 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 481 482 Status error; 483 484 // Read hardware breakpoint and watchpoint information. 485 error = ReadHardwareDebugInfo(); 486 487 if (error.Fail()) 488 return error; 489 490 lldb::addr_t tempAddr = 0; 491 uint32_t tempControl = 0; 492 493 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 494 if (m_hbr_regs[i].control & 0x01) { 495 // Create a backup we can revert to in case of failure. 496 tempAddr = m_hbr_regs[i].address; 497 tempControl = m_hbr_regs[i].control; 498 499 // Clear breakpoints in local cache 500 m_hbr_regs[i].control &= ~1; 501 m_hbr_regs[i].address = 0; 502 503 // Ptrace call to update hardware debug registers 504 error = WriteHardwareDebugRegs(eDREGTypeBREAK, i); 505 506 if (error.Fail()) { 507 m_hbr_regs[i].control = tempControl; 508 m_hbr_regs[i].address = tempAddr; 509 510 return error; 511 } 512 } 513 } 514 515 return Status(); 516 } 517 518 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() { 519 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 520 521 // Read hardware breakpoint and watchpoint information. 522 Status error = ReadHardwareDebugInfo(); 523 524 if (error.Fail()) 525 return 0; 526 527 LLDB_LOG(log, "{0}", m_max_hwp_supported); 528 return m_max_hwp_supported; 529 } 530 531 uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint( 532 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 533 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 534 LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, 535 watch_flags); 536 537 // Read hardware breakpoint and watchpoint information. 538 Status error = ReadHardwareDebugInfo(); 539 540 if (error.Fail()) 541 return LLDB_INVALID_INDEX32; 542 543 uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0; 544 lldb::addr_t real_addr = addr; 545 546 // Check if we are setting watchpoint other than read/write/access Also 547 // update watchpoint flag to match Arm write-read bit configuration. 548 switch (watch_flags) { 549 case 1: 550 watch_flags = 2; 551 break; 552 case 2: 553 watch_flags = 1; 554 break; 555 case 3: 556 break; 557 default: 558 return LLDB_INVALID_INDEX32; 559 } 560 561 // Can't watch zero bytes 562 // Can't watch more than 4 bytes per WVR/WCR pair 563 564 if (size == 0 || size > 4) 565 return LLDB_INVALID_INDEX32; 566 567 // Check 4-byte alignment for hardware watchpoint target address. Below is a 568 // hack to recalculate address and size in order to make sure we can watch 569 // non 4-byte alligned addresses as well. 570 if (addr & 0x03) { 571 uint8_t watch_mask = (addr & 0x03) + size; 572 573 if (watch_mask > 0x04) 574 return LLDB_INVALID_INDEX32; 575 else if (watch_mask <= 0x02) 576 size = 2; 577 else if (watch_mask <= 0x04) 578 size = 4; 579 580 addr = addr & (~0x03); 581 } 582 583 // We can only watch up to four bytes that follow a 4 byte aligned address 584 // per watchpoint register pair, so make sure we can properly encode this. 585 addr_word_offset = addr % 4; 586 byte_mask = ((1u << size) - 1u) << addr_word_offset; 587 588 // Check if we need multiple watchpoint register 589 if (byte_mask > 0xfu) 590 return LLDB_INVALID_INDEX32; 591 592 // Setup control value 593 // Make the byte_mask into a valid Byte Address Select mask 594 control_value = byte_mask << 5; 595 596 // Turn on appropriate watchpoint flags read or write 597 control_value |= (watch_flags << 3); 598 599 // Enable this watchpoint and make it stop in privileged or user mode; 600 control_value |= 7; 601 602 // Make sure bits 1:0 are clear in our address 603 addr &= ~((lldb::addr_t)3); 604 605 // Iterate over stored watchpoints and find a free wp_index 606 wp_index = LLDB_INVALID_INDEX32; 607 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 608 if ((m_hwp_regs[i].control & 1) == 0) { 609 wp_index = i; // Mark last free slot 610 } else if (m_hwp_regs[i].address == addr) { 611 return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. 612 } 613 } 614 615 if (wp_index == LLDB_INVALID_INDEX32) 616 return LLDB_INVALID_INDEX32; 617 618 // Update watchpoint in local cache 619 m_hwp_regs[wp_index].real_addr = real_addr; 620 m_hwp_regs[wp_index].address = addr; 621 m_hwp_regs[wp_index].control = control_value; 622 623 // PTRACE call to set corresponding watchpoint register. 624 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 625 626 if (error.Fail()) { 627 m_hwp_regs[wp_index].address = 0; 628 m_hwp_regs[wp_index].control &= ~1; 629 630 return LLDB_INVALID_INDEX32; 631 } 632 633 return wp_index; 634 } 635 636 bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint( 637 uint32_t wp_index) { 638 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 639 LLDB_LOG(log, "wp_index: {0}", wp_index); 640 641 // Read hardware breakpoint and watchpoint information. 642 Status error = ReadHardwareDebugInfo(); 643 644 if (error.Fail()) 645 return false; 646 647 if (wp_index >= m_max_hwp_supported) 648 return false; 649 650 // Create a backup we can revert to in case of failure. 651 lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; 652 uint32_t tempControl = m_hwp_regs[wp_index].control; 653 654 // Update watchpoint in local cache 655 m_hwp_regs[wp_index].control &= ~1; 656 m_hwp_regs[wp_index].address = 0; 657 658 // Ptrace call to update hardware debug registers 659 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 660 661 if (error.Fail()) { 662 m_hwp_regs[wp_index].control = tempControl; 663 m_hwp_regs[wp_index].address = tempAddr; 664 665 return false; 666 } 667 668 return true; 669 } 670 671 Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() { 672 // Read hardware breakpoint and watchpoint information. 673 Status error = ReadHardwareDebugInfo(); 674 675 if (error.Fail()) 676 return error; 677 678 lldb::addr_t tempAddr = 0; 679 uint32_t tempControl = 0; 680 681 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 682 if (m_hwp_regs[i].control & 0x01) { 683 // Create a backup we can revert to in case of failure. 684 tempAddr = m_hwp_regs[i].address; 685 tempControl = m_hwp_regs[i].control; 686 687 // Clear watchpoints in local cache 688 m_hwp_regs[i].control &= ~1; 689 m_hwp_regs[i].address = 0; 690 691 // Ptrace call to update hardware debug registers 692 error = WriteHardwareDebugRegs(eDREGTypeWATCH, i); 693 694 if (error.Fail()) { 695 m_hwp_regs[i].control = tempControl; 696 m_hwp_regs[i].address = tempAddr; 697 698 return error; 699 } 700 } 701 } 702 703 return Status(); 704 } 705 706 uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) { 707 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 708 LLDB_LOG(log, "wp_index: {0}", wp_index); 709 710 switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) { 711 case 0x01: 712 return 1; 713 case 0x03: 714 return 2; 715 case 0x07: 716 return 3; 717 case 0x0f: 718 return 4; 719 default: 720 return 0; 721 } 722 } 723 bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) { 724 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 725 LLDB_LOG(log, "wp_index: {0}", wp_index); 726 727 if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) 728 return true; 729 else 730 return false; 731 } 732 733 Status 734 NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index, 735 lldb::addr_t trap_addr) { 736 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 737 LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); 738 739 uint32_t watch_size; 740 lldb::addr_t watch_addr; 741 742 for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { 743 watch_size = GetWatchpointSize(wp_index); 744 watch_addr = m_hwp_regs[wp_index].address; 745 746 if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && 747 trap_addr < watch_addr + watch_size) { 748 m_hwp_regs[wp_index].hit_addr = trap_addr; 749 return Status(); 750 } 751 } 752 753 wp_index = LLDB_INVALID_INDEX32; 754 return Status(); 755 } 756 757 lldb::addr_t 758 NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) { 759 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 760 LLDB_LOG(log, "wp_index: {0}", wp_index); 761 762 if (wp_index >= m_max_hwp_supported) 763 return LLDB_INVALID_ADDRESS; 764 765 if (WatchpointIsEnabled(wp_index)) 766 return m_hwp_regs[wp_index].real_addr; 767 else 768 return LLDB_INVALID_ADDRESS; 769 } 770 771 lldb::addr_t 772 NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) { 773 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 774 LLDB_LOG(log, "wp_index: {0}", wp_index); 775 776 if (wp_index >= m_max_hwp_supported) 777 return LLDB_INVALID_ADDRESS; 778 779 if (WatchpointIsEnabled(wp_index)) 780 return m_hwp_regs[wp_index].hit_addr; 781 else 782 return LLDB_INVALID_ADDRESS; 783 } 784 785 Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() { 786 Status error; 787 788 if (!m_refresh_hwdebug_info) { 789 return Status(); 790 } 791 792 unsigned int cap_val; 793 794 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(), 795 nullptr, &cap_val, 796 sizeof(unsigned int)); 797 798 if (error.Fail()) 799 return error; 800 801 m_max_hwp_supported = (cap_val >> 8) & 0xff; 802 m_max_hbp_supported = cap_val & 0xff; 803 m_refresh_hwdebug_info = false; 804 805 return error; 806 } 807 808 Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType, 809 int hwb_index) { 810 Status error; 811 812 lldb::addr_t *addr_buf; 813 uint32_t *ctrl_buf; 814 815 if (hwbType == eDREGTypeWATCH) { 816 addr_buf = &m_hwp_regs[hwb_index].address; 817 ctrl_buf = &m_hwp_regs[hwb_index].control; 818 819 error = NativeProcessLinux::PtraceWrapper( 820 PTRACE_SETHBPREGS, m_thread.GetID(), 821 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf, 822 sizeof(unsigned int)); 823 824 if (error.Fail()) 825 return error; 826 827 error = NativeProcessLinux::PtraceWrapper( 828 PTRACE_SETHBPREGS, m_thread.GetID(), 829 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf, 830 sizeof(unsigned int)); 831 } else { 832 addr_buf = &m_hbr_regs[hwb_index].address; 833 ctrl_buf = &m_hbr_regs[hwb_index].control; 834 835 error = NativeProcessLinux::PtraceWrapper( 836 PTRACE_SETHBPREGS, m_thread.GetID(), 837 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf, 838 sizeof(unsigned int)); 839 840 if (error.Fail()) 841 return error; 842 843 error = NativeProcessLinux::PtraceWrapper( 844 PTRACE_SETHBPREGS, m_thread.GetID(), 845 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf, 846 sizeof(unsigned int)); 847 } 848 849 return error; 850 } 851 852 uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset( 853 const RegisterInfo *reg_info) const { 854 return reg_info->byte_offset - 855 GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset; 856 } 857 858 Status NativeRegisterContextLinux_arm::DoReadRegisterValue( 859 uint32_t offset, const char *reg_name, uint32_t size, 860 RegisterValue &value) { 861 // PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android 862 // devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we 863 // read out the full GPR register set instead. This approach is about 4 times 864 // slower but the performance overhead is negligible in comparision to 865 // processing time in lldb-server. 866 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 867 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 868 return Status("Register isn't fit into the size of the GPR area"); 869 870 Status error = ReadGPR(); 871 if (error.Fail()) 872 return error; 873 874 value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]); 875 return Status(); 876 } 877 878 Status NativeRegisterContextLinux_arm::DoWriteRegisterValue( 879 uint32_t offset, const char *reg_name, const RegisterValue &value) { 880 // PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android 881 // devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we 882 // read out the full GPR register set, modify the requested register and 883 // write it back. This approach is about 4 times slower but the performance 884 // overhead is negligible in comparision to processing time in lldb-server. 885 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 886 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 887 return Status("Register isn't fit into the size of the GPR area"); 888 889 Status error = ReadGPR(); 890 if (error.Fail()) 891 return error; 892 893 uint32_t reg_value = value.GetAsUInt32(); 894 // As precaution for an undefined behavior encountered while setting PC we 895 // will clear thumb bit of new PC if we are already in thumb mode; that is 896 // CPSR thumb mode bit is set. 897 if (offset / sizeof(uint32_t) == gpr_pc_arm) { 898 // Check if we are already in thumb mode and thumb bit of current PC is 899 // read out to be zero and thumb bit of next PC is read out to be one. 900 if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) && 901 (value.GetAsUInt32() & 0x01)) { 902 reg_value &= (~1ull); 903 } 904 } 905 906 m_gpr_arm[offset / sizeof(uint32_t)] = reg_value; 907 return WriteGPR(); 908 } 909 910 Status NativeRegisterContextLinux_arm::ReadGPR() { 911 #ifdef __arm__ 912 return NativeRegisterContextLinux::ReadGPR(); 913 #else // __aarch64__ 914 struct iovec ioVec; 915 ioVec.iov_base = GetGPRBuffer(); 916 ioVec.iov_len = GetGPRSize(); 917 918 return ReadRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 919 #endif // __arm__ 920 } 921 922 Status NativeRegisterContextLinux_arm::WriteGPR() { 923 #ifdef __arm__ 924 return NativeRegisterContextLinux::WriteGPR(); 925 #else // __aarch64__ 926 struct iovec ioVec; 927 ioVec.iov_base = GetGPRBuffer(); 928 ioVec.iov_len = GetGPRSize(); 929 930 return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 931 #endif // __arm__ 932 } 933 934 Status NativeRegisterContextLinux_arm::ReadFPR() { 935 #ifdef __arm__ 936 return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(), 937 nullptr, GetFPRBuffer(), 938 GetFPRSize()); 939 #else // __aarch64__ 940 struct iovec ioVec; 941 ioVec.iov_base = GetFPRBuffer(); 942 ioVec.iov_len = GetFPRSize(); 943 944 return ReadRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 945 #endif // __arm__ 946 } 947 948 Status NativeRegisterContextLinux_arm::WriteFPR() { 949 #ifdef __arm__ 950 return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(), 951 nullptr, GetFPRBuffer(), 952 GetFPRSize()); 953 #else // __aarch64__ 954 struct iovec ioVec; 955 ioVec.iov_base = GetFPRBuffer(); 956 ioVec.iov_len = GetFPRSize(); 957 958 return WriteRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 959 #endif // __arm__ 960 } 961 962 #endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 963