1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <optional> 19 #include <sstream> 20 #include <string> 21 #include <unordered_map> 22 23 #include "NativeThreadLinux.h" 24 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 25 #include "Plugins/Process/Utility/LinuxProcMaps.h" 26 #include "Procfs.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Host/Host.h" 29 #include "lldb/Host/HostProcess.h" 30 #include "lldb/Host/ProcessLaunchInfo.h" 31 #include "lldb/Host/PseudoTerminal.h" 32 #include "lldb/Host/ThreadLauncher.h" 33 #include "lldb/Host/common/NativeRegisterContext.h" 34 #include "lldb/Host/linux/Host.h" 35 #include "lldb/Host/linux/Ptrace.h" 36 #include "lldb/Host/linux/Uio.h" 37 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 38 #include "lldb/Symbol/ObjectFile.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Utility/LLDBAssert.h" 42 #include "lldb/Utility/LLDBLog.h" 43 #include "lldb/Utility/State.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/ADT/ScopeExit.h" 47 #include "llvm/Support/Errno.h" 48 #include "llvm/Support/FileSystem.h" 49 #include "llvm/Support/Threading.h" 50 51 #include <linux/unistd.h> 52 #include <sys/socket.h> 53 #include <sys/syscall.h> 54 #include <sys/types.h> 55 #include <sys/user.h> 56 #include <sys/wait.h> 57 58 #ifdef __aarch64__ 59 #include <asm/hwcap.h> 60 #include <sys/auxv.h> 61 #endif 62 63 // Support hardware breakpoints in case it has not been defined 64 #ifndef TRAP_HWBKPT 65 #define TRAP_HWBKPT 4 66 #endif 67 68 #ifndef HWCAP2_MTE 69 #define HWCAP2_MTE (1 << 18) 70 #endif 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace lldb_private::process_linux; 75 using namespace llvm; 76 77 // Private bits we only need internally. 78 79 static bool ProcessVmReadvSupported() { 80 static bool is_supported; 81 static llvm::once_flag flag; 82 83 llvm::call_once(flag, [] { 84 Log *log = GetLog(POSIXLog::Process); 85 86 uint32_t source = 0x47424742; 87 uint32_t dest = 0; 88 89 struct iovec local, remote; 90 remote.iov_base = &source; 91 local.iov_base = &dest; 92 remote.iov_len = local.iov_len = sizeof source; 93 94 // We shall try if cross-process-memory reads work by attempting to read a 95 // value from our own process. 96 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 97 is_supported = (res == sizeof(source) && source == dest); 98 if (is_supported) 99 LLDB_LOG(log, 100 "Detected kernel support for process_vm_readv syscall. " 101 "Fast memory reads enabled."); 102 else 103 LLDB_LOG(log, 104 "syscall process_vm_readv failed (error: {0}). Fast memory " 105 "reads disabled.", 106 llvm::sys::StrError()); 107 }); 108 109 return is_supported; 110 } 111 112 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 113 Log *log = GetLog(POSIXLog::Process); 114 if (!log) 115 return; 116 117 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 118 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDIN as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 123 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDOUT as is"); 126 127 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 128 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 129 else 130 LLDB_LOG(log, "leaving STDERR as is"); 131 132 int i = 0; 133 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 134 ++args, ++i) 135 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 136 } 137 138 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 139 uint8_t *ptr = (uint8_t *)bytes; 140 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 141 for (uint32_t i = 0; i < loop_count; i++) { 142 s.Printf("[%x]", *ptr); 143 ptr++; 144 } 145 } 146 147 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 148 Log *log = GetLog(POSIXLog::Ptrace); 149 if (!log) 150 return; 151 StreamString buf; 152 153 switch (req) { 154 case PTRACE_POKETEXT: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEDATA: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_POKEUSER: { 165 DisplayBytes(buf, &data, 8); 166 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETFPREGS: { 175 DisplayBytes(buf, data, data_size); 176 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETSIGINFO: { 180 DisplayBytes(buf, data, sizeof(siginfo_t)); 181 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 182 break; 183 } 184 case PTRACE_SETREGSET: { 185 // Extract iov_base from data, which is a pointer to the struct iovec 186 DisplayBytes(buf, *(void **)data, data_size); 187 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 188 break; 189 } 190 default: {} 191 } 192 } 193 194 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 195 static_assert(sizeof(long) >= k_ptrace_word_size, 196 "Size of long must be larger than ptrace word size"); 197 198 // Simple helper function to ensure flags are enabled on the given file 199 // descriptor. 200 static Status EnsureFDFlags(int fd, int flags) { 201 Status error; 202 203 int status = fcntl(fd, F_GETFL); 204 if (status == -1) { 205 error.SetErrorToErrno(); 206 return error; 207 } 208 209 if (fcntl(fd, F_SETFL, status | flags) == -1) { 210 error.SetErrorToErrno(); 211 return error; 212 } 213 214 return error; 215 } 216 217 // Public Static Methods 218 219 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 220 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 221 NativeDelegate &native_delegate, 222 MainLoop &mainloop) const { 223 Log *log = GetLog(POSIXLog::Process); 224 225 MaybeLogLaunchInfo(launch_info); 226 227 Status status; 228 ::pid_t pid = ProcessLauncherPosixFork() 229 .LaunchProcess(launch_info, status) 230 .GetProcessId(); 231 LLDB_LOG(log, "pid = {0:x}", pid); 232 if (status.Fail()) { 233 LLDB_LOG(log, "failed to launch process: {0}", status); 234 return status.ToError(); 235 } 236 237 // Wait for the child process to trap on its call to execve. 238 int wstatus = 0; 239 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 240 assert(wpid == pid); 241 (void)wpid; 242 if (!WIFSTOPPED(wstatus)) { 243 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 244 WaitStatus::Decode(wstatus)); 245 return llvm::make_error<StringError>("Could not sync with inferior process", 246 llvm::inconvertibleErrorCode()); 247 } 248 LLDB_LOG(log, "inferior started, now in stopped state"); 249 250 status = SetDefaultPtraceOpts(pid); 251 if (status.Fail()) { 252 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 253 return status.ToError(); 254 } 255 256 llvm::Expected<ArchSpec> arch_or = 257 NativeRegisterContextLinux::DetermineArchitecture(pid); 258 if (!arch_or) 259 return arch_or.takeError(); 260 261 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 262 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 263 *arch_or, mainloop, {pid})); 264 } 265 266 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 267 NativeProcessLinux::Factory::Attach( 268 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 269 MainLoop &mainloop) const { 270 Log *log = GetLog(POSIXLog::Process); 271 LLDB_LOG(log, "pid = {0:x}", pid); 272 273 auto tids_or = NativeProcessLinux::Attach(pid); 274 if (!tids_or) 275 return tids_or.takeError(); 276 ArrayRef<::pid_t> tids = *tids_or; 277 llvm::Expected<ArchSpec> arch_or = 278 NativeRegisterContextLinux::DetermineArchitecture(tids[0]); 279 if (!arch_or) 280 return arch_or.takeError(); 281 282 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 283 pid, -1, native_delegate, *arch_or, mainloop, tids)); 284 } 285 286 NativeProcessLinux::Extension 287 NativeProcessLinux::Factory::GetSupportedExtensions() const { 288 NativeProcessLinux::Extension supported = 289 Extension::multiprocess | Extension::fork | Extension::vfork | 290 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 | 291 Extension::siginfo_read; 292 293 #ifdef __aarch64__ 294 // At this point we do not have a process so read auxv directly. 295 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 296 supported |= Extension::memory_tagging; 297 #endif 298 299 return supported; 300 } 301 302 // Public Instance Methods 303 304 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 305 NativeDelegate &delegate, 306 const ArchSpec &arch, MainLoop &mainloop, 307 llvm::ArrayRef<::pid_t> tids) 308 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 309 m_main_loop(mainloop), m_intel_pt_collector(*this) { 310 if (m_terminal_fd != -1) { 311 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 312 assert(status.Success()); 313 } 314 315 Status status; 316 m_sigchld_handle = mainloop.RegisterSignal( 317 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 318 assert(m_sigchld_handle && status.Success()); 319 320 for (const auto &tid : tids) { 321 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 322 ThreadWasCreated(thread); 323 } 324 325 // Let our process instance know the thread has stopped. 326 SetCurrentThreadID(tids[0]); 327 SetState(StateType::eStateStopped, false); 328 329 // Proccess any signals we received before installing our handler 330 SigchldHandler(); 331 } 332 333 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 334 Log *log = GetLog(POSIXLog::Process); 335 336 Status status; 337 // Use a map to keep track of the threads which we have attached/need to 338 // attach. 339 Host::TidMap tids_to_attach; 340 while (Host::FindProcessThreads(pid, tids_to_attach)) { 341 for (Host::TidMap::iterator it = tids_to_attach.begin(); 342 it != tids_to_attach.end();) { 343 if (it->second == false) { 344 lldb::tid_t tid = it->first; 345 346 // Attach to the requested process. 347 // An attach will cause the thread to stop with a SIGSTOP. 348 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 349 // No such thread. The thread may have exited. More error handling 350 // may be needed. 351 if (status.GetError() == ESRCH) { 352 it = tids_to_attach.erase(it); 353 continue; 354 } 355 return status.ToError(); 356 } 357 358 int wpid = 359 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 360 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 361 // this point we should have a thread stopped if waitpid succeeds. 362 if (wpid < 0) { 363 // No such thread. The thread may have exited. More error handling 364 // may be needed. 365 if (errno == ESRCH) { 366 it = tids_to_attach.erase(it); 367 continue; 368 } 369 return llvm::errorCodeToError( 370 std::error_code(errno, std::generic_category())); 371 } 372 373 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 374 return status.ToError(); 375 376 LLDB_LOG(log, "adding tid = {0}", tid); 377 it->second = true; 378 } 379 380 // move the loop forward 381 ++it; 382 } 383 } 384 385 size_t tid_count = tids_to_attach.size(); 386 if (tid_count == 0) 387 return llvm::make_error<StringError>("No such process", 388 llvm::inconvertibleErrorCode()); 389 390 std::vector<::pid_t> tids; 391 tids.reserve(tid_count); 392 for (const auto &p : tids_to_attach) 393 tids.push_back(p.first); 394 return std::move(tids); 395 } 396 397 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 398 long ptrace_opts = 0; 399 400 // Have the child raise an event on exit. This is used to keep the child in 401 // limbo until it is destroyed. 402 ptrace_opts |= PTRACE_O_TRACEEXIT; 403 404 // Have the tracer trace threads which spawn in the inferior process. 405 ptrace_opts |= PTRACE_O_TRACECLONE; 406 407 // Have the tracer notify us before execve returns (needed to disable legacy 408 // SIGTRAP generation) 409 ptrace_opts |= PTRACE_O_TRACEEXEC; 410 411 // Have the tracer trace forked children. 412 ptrace_opts |= PTRACE_O_TRACEFORK; 413 414 // Have the tracer trace vforks. 415 ptrace_opts |= PTRACE_O_TRACEVFORK; 416 417 // Have the tracer trace vfork-done in order to restore breakpoints after 418 // the child finishes sharing memory. 419 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 420 421 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 422 } 423 424 // Handles all waitpid events from the inferior process. 425 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, 426 WaitStatus status) { 427 Log *log = GetLog(LLDBLog::Process); 428 429 // Certain activities differ based on whether the pid is the tid of the main 430 // thread. 431 const bool is_main_thread = (thread.GetID() == GetID()); 432 433 // Handle when the thread exits. 434 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { 435 LLDB_LOG(log, 436 "got exit status({0}) , tid = {1} ({2} main thread), process " 437 "state = {3}", 438 status, thread.GetID(), is_main_thread ? "is" : "is not", 439 GetState()); 440 441 // This is a thread that exited. Ensure we're not tracking it anymore. 442 StopTrackingThread(thread); 443 444 assert(!is_main_thread && "Main thread exits handled elsewhere"); 445 return; 446 } 447 448 siginfo_t info; 449 const auto info_err = GetSignalInfo(thread.GetID(), &info); 450 451 // Get details on the signal raised. 452 if (info_err.Success()) { 453 // We have retrieved the signal info. Dispatch appropriately. 454 if (info.si_signo == SIGTRAP) 455 MonitorSIGTRAP(info, thread); 456 else 457 MonitorSignal(info, thread); 458 } else { 459 if (info_err.GetError() == EINVAL) { 460 // This is a group stop reception for this tid. We can reach here if we 461 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 462 // triggering the group-stop mechanism. Normally receiving these would 463 // stop the process, pending a SIGCONT. Simulating this state in a 464 // debugger is hard and is generally not needed (one use case is 465 // debugging background task being managed by a shell). For general use, 466 // it is sufficient to stop the process in a signal-delivery stop which 467 // happens before the group stop. This done by MonitorSignal and works 468 // correctly for all signals. 469 LLDB_LOG(log, 470 "received a group stop for pid {0} tid {1}. Transparent " 471 "handling of group stops not supported, resuming the " 472 "thread.", 473 GetID(), thread.GetID()); 474 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 475 } else { 476 // ptrace(GETSIGINFO) failed (but not due to group-stop). 477 478 // A return value of ESRCH means the thread/process has died in the mean 479 // time. This can (e.g.) happen when another thread does an exit_group(2) 480 // or the entire process get SIGKILLed. 481 // We can't do anything with this thread anymore, but we keep it around 482 // until we get the WIFEXITED event. 483 484 LLDB_LOG(log, 485 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " 486 "{3}. Expecting WIFEXITED soon.", 487 thread.GetID(), info_err, status, is_main_thread); 488 } 489 } 490 } 491 492 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 493 Log *log = GetLog(POSIXLog::Process); 494 495 // The PID is not tracked yet, let's wait for it to appear. 496 int status = -1; 497 LLDB_LOG(log, 498 "received clone event for pid {0}. pid not tracked yet, " 499 "waiting for it to appear...", 500 pid); 501 ::pid_t wait_pid = 502 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 503 504 // It's theoretically possible to get other events if the entire process was 505 // SIGKILLed before we got a chance to check this. In that case, we'll just 506 // clean everything up when we get the process exit event. 507 508 LLDB_LOG(log, 509 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})", 510 pid, wait_pid, errno, WaitStatus::Decode(status)); 511 } 512 513 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 514 NativeThreadLinux &thread) { 515 Log *log = GetLog(POSIXLog::Process); 516 const bool is_main_thread = (thread.GetID() == GetID()); 517 518 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 519 520 switch (info.si_code) { 521 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 522 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 523 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 524 // This can either mean a new thread or a new process spawned via 525 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 526 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 527 // of these flags are passed. 528 529 unsigned long event_message = 0; 530 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 531 LLDB_LOG(log, 532 "pid {0} received clone() event but GetEventMessage failed " 533 "so we don't know the new pid/tid", 534 thread.GetID()); 535 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 536 } else { 537 MonitorClone(thread, event_message, info.si_code >> 8); 538 } 539 540 break; 541 } 542 543 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 544 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 545 546 // Exec clears any pending notifications. 547 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 548 549 // Remove all but the main thread here. Linux fork creates a new process 550 // which only copies the main thread. 551 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 552 553 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 554 return t->GetID() != GetID(); 555 }); 556 assert(m_threads.size() == 1); 557 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 558 559 SetCurrentThreadID(main_thread->GetID()); 560 main_thread->SetStoppedByExec(); 561 562 // Tell coordinator about about the "new" (since exec) stopped main thread. 563 ThreadWasCreated(*main_thread); 564 565 // Let our delegate know we have just exec'd. 566 NotifyDidExec(); 567 568 // Let the process know we're stopped. 569 StopRunningThreads(main_thread->GetID()); 570 571 break; 572 } 573 574 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 575 // The inferior process or one of its threads is about to exit. We don't 576 // want to do anything with the thread so we just resume it. In case we 577 // want to implement "break on thread exit" functionality, we would need to 578 // stop here. 579 580 unsigned long data = 0; 581 if (GetEventMessage(thread.GetID(), &data).Fail()) 582 data = -1; 583 584 LLDB_LOG(log, 585 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 586 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 587 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 588 is_main_thread); 589 590 591 StateType state = thread.GetState(); 592 if (!StateIsRunningState(state)) { 593 // Due to a kernel bug, we may sometimes get this stop after the inferior 594 // gets a SIGKILL. This confuses our state tracking logic in 595 // ResumeThread(), since normally, we should not be receiving any ptrace 596 // events while the inferior is stopped. This makes sure that the 597 // inferior is resumed and exits normally. 598 state = eStateRunning; 599 } 600 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 601 602 if (is_main_thread) { 603 // Main thread report the read (WIFEXITED) event only after all threads in 604 // the process exit, so we need to stop tracking it here instead of in 605 // MonitorCallback 606 StopTrackingThread(thread); 607 } 608 609 break; 610 } 611 612 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 613 if (bool(m_enabled_extensions & Extension::vfork)) { 614 thread.SetStoppedByVForkDone(); 615 StopRunningThreads(thread.GetID()); 616 } 617 else 618 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 619 break; 620 } 621 622 case 0: 623 case TRAP_TRACE: // We receive this on single stepping. 624 case TRAP_HWBKPT: // We receive this on watchpoint hit 625 { 626 // If a watchpoint was hit, report it 627 uint32_t wp_index; 628 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 629 wp_index, (uintptr_t)info.si_addr); 630 if (error.Fail()) 631 LLDB_LOG(log, 632 "received error while checking for watchpoint hits, pid = " 633 "{0}, error = {1}", 634 thread.GetID(), error); 635 if (wp_index != LLDB_INVALID_INDEX32) { 636 MonitorWatchpoint(thread, wp_index); 637 break; 638 } 639 640 // If a breakpoint was hit, report it 641 uint32_t bp_index; 642 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 643 bp_index, (uintptr_t)info.si_addr); 644 if (error.Fail()) 645 LLDB_LOG(log, "received error while checking for hardware " 646 "breakpoint hits, pid = {0}, error = {1}", 647 thread.GetID(), error); 648 if (bp_index != LLDB_INVALID_INDEX32) { 649 MonitorBreakpoint(thread); 650 break; 651 } 652 653 // Otherwise, report step over 654 MonitorTrace(thread); 655 break; 656 } 657 658 case SI_KERNEL: 659 #if defined __mips__ 660 // For mips there is no special signal for watchpoint So we check for 661 // watchpoint in kernel trap 662 { 663 // If a watchpoint was hit, report it 664 uint32_t wp_index; 665 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 666 wp_index, LLDB_INVALID_ADDRESS); 667 if (error.Fail()) 668 LLDB_LOG(log, 669 "received error while checking for watchpoint hits, pid = " 670 "{0}, error = {1}", 671 thread.GetID(), error); 672 if (wp_index != LLDB_INVALID_INDEX32) { 673 MonitorWatchpoint(thread, wp_index); 674 break; 675 } 676 } 677 // NO BREAK 678 #endif 679 case TRAP_BRKPT: 680 MonitorBreakpoint(thread); 681 break; 682 683 case SIGTRAP: 684 case (SIGTRAP | 0x80): 685 LLDB_LOG( 686 log, 687 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 688 info.si_code, GetID(), thread.GetID()); 689 690 // Ignore these signals until we know more about them. 691 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 692 break; 693 694 default: 695 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 696 info.si_code, GetID(), thread.GetID()); 697 MonitorSignal(info, thread); 698 break; 699 } 700 } 701 702 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 703 Log *log = GetLog(POSIXLog::Process); 704 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 705 706 // This thread is currently stopped. 707 thread.SetStoppedByTrace(); 708 709 StopRunningThreads(thread.GetID()); 710 } 711 712 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 713 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 714 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 715 716 // Mark the thread as stopped at breakpoint. 717 thread.SetStoppedByBreakpoint(); 718 FixupBreakpointPCAsNeeded(thread); 719 720 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 721 m_threads_stepping_with_breakpoint.end()) 722 thread.SetStoppedByTrace(); 723 724 StopRunningThreads(thread.GetID()); 725 } 726 727 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 728 uint32_t wp_index) { 729 Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints); 730 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 731 thread.GetID(), wp_index); 732 733 // Mark the thread as stopped at watchpoint. The address is at 734 // (lldb::addr_t)info->si_addr if we need it. 735 thread.SetStoppedByWatchpoint(wp_index); 736 737 // We need to tell all other running threads before we notify the delegate 738 // about this stop. 739 StopRunningThreads(thread.GetID()); 740 } 741 742 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 743 NativeThreadLinux &thread) { 744 const int signo = info.si_signo; 745 const bool is_from_llgs = info.si_pid == getpid(); 746 747 Log *log = GetLog(POSIXLog::Process); 748 749 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 750 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 751 // or raise(3). Similarly for tgkill(2) on Linux. 752 // 753 // IOW, user generated signals never generate what we consider to be a 754 // "crash". 755 // 756 // Similarly, ACK signals generated by this monitor. 757 758 // Handle the signal. 759 LLDB_LOG(log, 760 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 761 "waitpid pid = {4})", 762 Host::GetSignalAsCString(signo), signo, info.si_code, 763 thread.GetID()); 764 765 // Check for thread stop notification. 766 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 767 // This is a tgkill()-based stop. 768 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 769 770 // Check that we're not already marked with a stop reason. Note this thread 771 // really shouldn't already be marked as stopped - if we were, that would 772 // imply that the kernel signaled us with the thread stopping which we 773 // handled and marked as stopped, and that, without an intervening resume, 774 // we received another stop. It is more likely that we are missing the 775 // marking of a run state somewhere if we find that the thread was marked 776 // as stopped. 777 const StateType thread_state = thread.GetState(); 778 if (!StateIsStoppedState(thread_state, false)) { 779 // An inferior thread has stopped because of a SIGSTOP we have sent it. 780 // Generally, these are not important stops and we don't want to report 781 // them as they are just used to stop other threads when one thread (the 782 // one with the *real* stop reason) hits a breakpoint (watchpoint, 783 // etc...). However, in the case of an asynchronous Interrupt(), this 784 // *is* the real stop reason, so we leave the signal intact if this is 785 // the thread that was chosen as the triggering thread. 786 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 787 if (m_pending_notification_tid == thread.GetID()) 788 thread.SetStoppedBySignal(SIGSTOP, &info); 789 else 790 thread.SetStoppedWithNoReason(); 791 792 SetCurrentThreadID(thread.GetID()); 793 SignalIfAllThreadsStopped(); 794 } else { 795 // We can end up here if stop was initiated by LLGS but by this time a 796 // thread stop has occurred - maybe initiated by another event. 797 Status error = ResumeThread(thread, thread.GetState(), 0); 798 if (error.Fail()) 799 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 800 error); 801 } 802 } else { 803 LLDB_LOG(log, 804 "pid {0} tid {1}, thread was already marked as a stopped " 805 "state (state={2}), leaving stop signal as is", 806 GetID(), thread.GetID(), thread_state); 807 SignalIfAllThreadsStopped(); 808 } 809 810 // Done handling. 811 return; 812 } 813 814 // Check if debugger should stop at this signal or just ignore it and resume 815 // the inferior. 816 if (m_signals_to_ignore.contains(signo)) { 817 ResumeThread(thread, thread.GetState(), signo); 818 return; 819 } 820 821 // This thread is stopped. 822 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 823 thread.SetStoppedBySignal(signo, &info); 824 825 // Send a stop to the debugger after we get all other threads to stop. 826 StopRunningThreads(thread.GetID()); 827 } 828 829 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, 830 lldb::pid_t child_pid, int event) { 831 Log *log = GetLog(POSIXLog::Process); 832 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(), 833 child_pid, event); 834 835 WaitForCloneNotification(child_pid); 836 837 switch (event) { 838 case PTRACE_EVENT_CLONE: { 839 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 840 // Try to grab the new process' PGID to figure out which one it is. 841 // If PGID is the same as the PID, then it's a new process. Otherwise, 842 // it's a thread. 843 auto tgid_ret = getPIDForTID(child_pid); 844 if (tgid_ret != child_pid) { 845 // A new thread should have PGID matching our process' PID. 846 assert(!tgid_ret || *tgid_ret == GetID()); 847 848 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 849 ThreadWasCreated(child_thread); 850 851 // Resume the parent. 852 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 853 break; 854 } 855 } 856 [[fallthrough]]; 857 case PTRACE_EVENT_FORK: 858 case PTRACE_EVENT_VFORK: { 859 bool is_vfork = event == PTRACE_EVENT_VFORK; 860 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 861 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 862 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 863 if (!is_vfork) 864 child_process->m_software_breakpoints = m_software_breakpoints; 865 866 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 867 if (bool(m_enabled_extensions & expected_ext)) { 868 m_delegate.NewSubprocess(this, std::move(child_process)); 869 // NB: non-vfork clone() is reported as fork 870 parent.SetStoppedByFork(is_vfork, child_pid); 871 StopRunningThreads(parent.GetID()); 872 } else { 873 child_process->Detach(); 874 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 875 } 876 break; 877 } 878 default: 879 llvm_unreachable("unknown clone_info.event"); 880 } 881 882 return true; 883 } 884 885 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 886 if (m_arch.IsMIPS() || m_arch.GetMachine() == llvm::Triple::arm || 887 m_arch.GetTriple().isRISCV() || m_arch.GetTriple().isLoongArch()) 888 return false; 889 return true; 890 } 891 892 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 893 Log *log = GetLog(POSIXLog::Process); 894 LLDB_LOG(log, "pid {0}", GetID()); 895 896 NotifyTracersProcessWillResume(); 897 898 bool software_single_step = !SupportHardwareSingleStepping(); 899 900 if (software_single_step) { 901 for (const auto &thread : m_threads) { 902 assert(thread && "thread list should not contain NULL threads"); 903 904 const ResumeAction *const action = 905 resume_actions.GetActionForThread(thread->GetID(), true); 906 if (action == nullptr) 907 continue; 908 909 if (action->state == eStateStepping) { 910 Status error = SetupSoftwareSingleStepping( 911 static_cast<NativeThreadLinux &>(*thread)); 912 if (error.Fail()) 913 return error; 914 } 915 } 916 } 917 918 for (const auto &thread : m_threads) { 919 assert(thread && "thread list should not contain NULL threads"); 920 921 const ResumeAction *const action = 922 resume_actions.GetActionForThread(thread->GetID(), true); 923 924 if (action == nullptr) { 925 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 926 thread->GetID()); 927 continue; 928 } 929 930 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 931 action->state, GetID(), thread->GetID()); 932 933 switch (action->state) { 934 case eStateRunning: 935 case eStateStepping: { 936 // Run the thread, possibly feeding it the signal. 937 const int signo = action->signal; 938 Status error = ResumeThread(static_cast<NativeThreadLinux &>(*thread), 939 action->state, signo); 940 if (error.Fail()) 941 return Status("NativeProcessLinux::%s: failed to resume thread " 942 "for pid %" PRIu64 ", tid %" PRIu64 ", error = %s", 943 __FUNCTION__, GetID(), thread->GetID(), 944 error.AsCString()); 945 946 break; 947 } 948 949 case eStateSuspended: 950 case eStateStopped: 951 break; 952 953 default: 954 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 955 "for pid %" PRIu64 ", tid %" PRIu64, 956 __FUNCTION__, StateAsCString(action->state), GetID(), 957 thread->GetID()); 958 } 959 } 960 961 return Status(); 962 } 963 964 Status NativeProcessLinux::Halt() { 965 Status error; 966 967 if (kill(GetID(), SIGSTOP) != 0) 968 error.SetErrorToErrno(); 969 970 return error; 971 } 972 973 Status NativeProcessLinux::Detach() { 974 Status error; 975 976 // Stop monitoring the inferior. 977 m_sigchld_handle.reset(); 978 979 // Tell ptrace to detach from the process. 980 if (GetID() == LLDB_INVALID_PROCESS_ID) 981 return error; 982 983 for (const auto &thread : m_threads) { 984 Status e = Detach(thread->GetID()); 985 if (e.Fail()) 986 error = 987 e; // Save the error, but still attempt to detach from other threads. 988 } 989 990 m_intel_pt_collector.Clear(); 991 992 return error; 993 } 994 995 Status NativeProcessLinux::Signal(int signo) { 996 Status error; 997 998 Log *log = GetLog(POSIXLog::Process); 999 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1000 Host::GetSignalAsCString(signo), GetID()); 1001 1002 if (kill(GetID(), signo)) 1003 error.SetErrorToErrno(); 1004 1005 return error; 1006 } 1007 1008 Status NativeProcessLinux::Interrupt() { 1009 // Pick a running thread (or if none, a not-dead stopped thread) as the 1010 // chosen thread that will be the stop-reason thread. 1011 Log *log = GetLog(POSIXLog::Process); 1012 1013 NativeThreadProtocol *running_thread = nullptr; 1014 NativeThreadProtocol *stopped_thread = nullptr; 1015 1016 LLDB_LOG(log, "selecting running thread for interrupt target"); 1017 for (const auto &thread : m_threads) { 1018 // If we have a running or stepping thread, we'll call that the target of 1019 // the interrupt. 1020 const auto thread_state = thread->GetState(); 1021 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1022 running_thread = thread.get(); 1023 break; 1024 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1025 // Remember the first non-dead stopped thread. We'll use that as a 1026 // backup if there are no running threads. 1027 stopped_thread = thread.get(); 1028 } 1029 } 1030 1031 if (!running_thread && !stopped_thread) { 1032 Status error("found no running/stepping or live stopped threads as target " 1033 "for interrupt"); 1034 LLDB_LOG(log, "skipping due to error: {0}", error); 1035 1036 return error; 1037 } 1038 1039 NativeThreadProtocol *deferred_signal_thread = 1040 running_thread ? running_thread : stopped_thread; 1041 1042 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1043 running_thread ? "running" : "stopped", 1044 deferred_signal_thread->GetID()); 1045 1046 StopRunningThreads(deferred_signal_thread->GetID()); 1047 1048 return Status(); 1049 } 1050 1051 Status NativeProcessLinux::Kill() { 1052 Log *log = GetLog(POSIXLog::Process); 1053 LLDB_LOG(log, "pid {0}", GetID()); 1054 1055 Status error; 1056 1057 switch (m_state) { 1058 case StateType::eStateInvalid: 1059 case StateType::eStateExited: 1060 case StateType::eStateCrashed: 1061 case StateType::eStateDetached: 1062 case StateType::eStateUnloaded: 1063 // Nothing to do - the process is already dead. 1064 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1065 m_state); 1066 return error; 1067 1068 case StateType::eStateConnected: 1069 case StateType::eStateAttaching: 1070 case StateType::eStateLaunching: 1071 case StateType::eStateStopped: 1072 case StateType::eStateRunning: 1073 case StateType::eStateStepping: 1074 case StateType::eStateSuspended: 1075 // We can try to kill a process in these states. 1076 break; 1077 } 1078 1079 if (kill(GetID(), SIGKILL) != 0) { 1080 error.SetErrorToErrno(); 1081 return error; 1082 } 1083 1084 return error; 1085 } 1086 1087 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1088 MemoryRegionInfo &range_info) { 1089 // FIXME review that the final memory region returned extends to the end of 1090 // the virtual address space, 1091 // with no perms if it is not mapped. 1092 1093 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1094 // proc maps entries are in ascending order. 1095 // FIXME assert if we find differently. 1096 1097 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1098 // We're done. 1099 return Status("unsupported"); 1100 } 1101 1102 Status error = PopulateMemoryRegionCache(); 1103 if (error.Fail()) { 1104 return error; 1105 } 1106 1107 lldb::addr_t prev_base_address = 0; 1108 1109 // FIXME start by finding the last region that is <= target address using 1110 // binary search. Data is sorted. 1111 // There can be a ton of regions on pthreads apps with lots of threads. 1112 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1113 ++it) { 1114 MemoryRegionInfo &proc_entry_info = it->first; 1115 1116 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1117 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1118 "descending /proc/pid/maps entries detected, unexpected"); 1119 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1120 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1121 1122 // If the target address comes before this entry, indicate distance to next 1123 // region. 1124 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1125 range_info.GetRange().SetRangeBase(load_addr); 1126 range_info.GetRange().SetByteSize( 1127 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1128 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1129 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1130 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1131 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1132 1133 return error; 1134 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1135 // The target address is within the memory region we're processing here. 1136 range_info = proc_entry_info; 1137 return error; 1138 } 1139 1140 // The target memory address comes somewhere after the region we just 1141 // parsed. 1142 } 1143 1144 // If we made it here, we didn't find an entry that contained the given 1145 // address. Return the load_addr as start and the amount of bytes betwwen 1146 // load address and the end of the memory as size. 1147 range_info.GetRange().SetRangeBase(load_addr); 1148 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1149 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1150 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1151 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1152 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1153 return error; 1154 } 1155 1156 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1157 Log *log = GetLog(POSIXLog::Process); 1158 1159 // If our cache is empty, pull the latest. There should always be at least 1160 // one memory region if memory region handling is supported. 1161 if (!m_mem_region_cache.empty()) { 1162 LLDB_LOG(log, "reusing {0} cached memory region entries", 1163 m_mem_region_cache.size()); 1164 return Status(); 1165 } 1166 1167 Status Result; 1168 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1169 if (Info) { 1170 FileSpec file_spec(Info->GetName().GetCString()); 1171 FileSystem::Instance().Resolve(file_spec); 1172 m_mem_region_cache.emplace_back(*Info, file_spec); 1173 return true; 1174 } 1175 1176 Result = Info.takeError(); 1177 m_supports_mem_region = LazyBool::eLazyBoolNo; 1178 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1179 return false; 1180 }; 1181 1182 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1183 // if CONFIG_PROC_PAGE_MONITOR is enabled 1184 auto BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "smaps"); 1185 if (BufferOrError) 1186 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1187 else { 1188 BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "maps"); 1189 if (!BufferOrError) { 1190 m_supports_mem_region = LazyBool::eLazyBoolNo; 1191 return BufferOrError.getError(); 1192 } 1193 1194 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1195 } 1196 1197 if (Result.Fail()) 1198 return Result; 1199 1200 if (m_mem_region_cache.empty()) { 1201 // No entries after attempting to read them. This shouldn't happen if 1202 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1203 // procfs. 1204 m_supports_mem_region = LazyBool::eLazyBoolNo; 1205 LLDB_LOG(log, 1206 "failed to find any procfs maps entries, assuming no support " 1207 "for memory region metadata retrieval"); 1208 return Status("not supported"); 1209 } 1210 1211 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1212 m_mem_region_cache.size(), GetID()); 1213 1214 // We support memory retrieval, remember that. 1215 m_supports_mem_region = LazyBool::eLazyBoolYes; 1216 return Status(); 1217 } 1218 1219 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1220 Log *log = GetLog(POSIXLog::Process); 1221 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1222 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1223 m_mem_region_cache.size()); 1224 m_mem_region_cache.clear(); 1225 } 1226 1227 llvm::Expected<uint64_t> 1228 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1229 PopulateMemoryRegionCache(); 1230 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1231 return pair.first.GetExecutable() == MemoryRegionInfo::eYes && 1232 pair.first.GetShared() != MemoryRegionInfo::eYes; 1233 }); 1234 if (region_it == m_mem_region_cache.end()) 1235 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1236 "No executable memory region found!"); 1237 1238 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1239 1240 NativeThreadLinux &thread = *GetCurrentThread(); 1241 assert(thread.GetState() == eStateStopped); 1242 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1243 1244 NativeRegisterContextLinux::SyscallData syscall_data = 1245 *reg_ctx.GetSyscallData(); 1246 1247 WritableDataBufferSP registers_sp; 1248 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1249 return std::move(Err); 1250 auto restore_regs = llvm::make_scope_exit( 1251 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1252 1253 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1254 size_t bytes_read; 1255 if (llvm::Error Err = 1256 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1257 .ToError()) { 1258 return std::move(Err); 1259 } 1260 1261 auto restore_mem = llvm::make_scope_exit( 1262 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1263 1264 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1265 return std::move(Err); 1266 1267 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1268 if (llvm::Error Err = 1269 reg_ctx 1270 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1271 .ToError()) { 1272 return std::move(Err); 1273 } 1274 } 1275 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1276 syscall_data.Insn.size(), bytes_read) 1277 .ToError()) 1278 return std::move(Err); 1279 1280 m_mem_region_cache.clear(); 1281 1282 // With software single stepping the syscall insn buffer must also include a 1283 // trap instruction to stop the process. 1284 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1285 if (llvm::Error Err = 1286 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1287 return std::move(Err); 1288 1289 int status; 1290 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1291 &status, __WALL); 1292 if (wait_pid == -1) { 1293 return llvm::errorCodeToError( 1294 std::error_code(errno, std::generic_category())); 1295 } 1296 assert((unsigned)wait_pid == thread.GetID()); 1297 1298 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1299 1300 // Values larger than this are actually negative errno numbers. 1301 uint64_t errno_threshold = 1302 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1303 if (result > errno_threshold) { 1304 return llvm::errorCodeToError( 1305 std::error_code(-result & 0xfff, std::generic_category())); 1306 } 1307 1308 return result; 1309 } 1310 1311 llvm::Expected<addr_t> 1312 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1313 1314 std::optional<NativeRegisterContextLinux::MmapData> mmap_data = 1315 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1316 if (!mmap_data) 1317 return llvm::make_error<UnimplementedError>(); 1318 1319 unsigned prot = PROT_NONE; 1320 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1321 ePermissionsExecutable)) == permissions && 1322 "Unknown permission!"); 1323 if (permissions & ePermissionsReadable) 1324 prot |= PROT_READ; 1325 if (permissions & ePermissionsWritable) 1326 prot |= PROT_WRITE; 1327 if (permissions & ePermissionsExecutable) 1328 prot |= PROT_EXEC; 1329 1330 llvm::Expected<uint64_t> Result = 1331 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1332 uint64_t(-1), 0}); 1333 if (Result) 1334 m_allocated_memory.try_emplace(*Result, size); 1335 return Result; 1336 } 1337 1338 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1339 std::optional<NativeRegisterContextLinux::MmapData> mmap_data = 1340 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1341 if (!mmap_data) 1342 return llvm::make_error<UnimplementedError>(); 1343 1344 auto it = m_allocated_memory.find(addr); 1345 if (it == m_allocated_memory.end()) 1346 return llvm::createStringError(llvm::errc::invalid_argument, 1347 "Memory not allocated by the debugger."); 1348 1349 llvm::Expected<uint64_t> Result = 1350 Syscall({mmap_data->SysMunmap, addr, it->second}); 1351 if (!Result) 1352 return Result.takeError(); 1353 1354 m_allocated_memory.erase(it); 1355 return llvm::Error::success(); 1356 } 1357 1358 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1359 size_t len, 1360 std::vector<uint8_t> &tags) { 1361 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1362 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1363 if (!details) 1364 return Status(details.takeError()); 1365 1366 // Ignore 0 length read 1367 if (!len) 1368 return Status(); 1369 1370 // lldb will align the range it requests but it is not required to by 1371 // the protocol so we'll do it again just in case. 1372 // Remove tag bits too. Ptrace calls may work regardless but that 1373 // is not a guarantee. 1374 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1375 range = details->manager->ExpandToGranule(range); 1376 1377 // Allocate enough space for all tags to be read 1378 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1379 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1380 1381 struct iovec tags_iovec; 1382 uint8_t *dest = tags.data(); 1383 lldb::addr_t read_addr = range.GetRangeBase(); 1384 1385 // This call can return partial data so loop until we error or 1386 // get all tags back. 1387 while (num_tags) { 1388 tags_iovec.iov_base = dest; 1389 tags_iovec.iov_len = num_tags; 1390 1391 Status error = NativeProcessLinux::PtraceWrapper( 1392 details->ptrace_read_req, GetCurrentThreadID(), 1393 reinterpret_cast<void *>(read_addr), static_cast<void *>(&tags_iovec), 1394 0, nullptr); 1395 1396 if (error.Fail()) { 1397 // Discard partial reads 1398 tags.resize(0); 1399 return error; 1400 } 1401 1402 size_t tags_read = tags_iovec.iov_len; 1403 assert(tags_read && (tags_read <= num_tags)); 1404 1405 dest += tags_read * details->manager->GetTagSizeInBytes(); 1406 read_addr += details->manager->GetGranuleSize() * tags_read; 1407 num_tags -= tags_read; 1408 } 1409 1410 return Status(); 1411 } 1412 1413 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1414 size_t len, 1415 const std::vector<uint8_t> &tags) { 1416 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1417 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1418 if (!details) 1419 return Status(details.takeError()); 1420 1421 // Ignore 0 length write 1422 if (!len) 1423 return Status(); 1424 1425 // lldb will align the range it requests but it is not required to by 1426 // the protocol so we'll do it again just in case. 1427 // Remove tag bits too. Ptrace calls may work regardless but that 1428 // is not a guarantee. 1429 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1430 range = details->manager->ExpandToGranule(range); 1431 1432 // Not checking number of tags here, we may repeat them below 1433 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1434 details->manager->UnpackTagsData(tags); 1435 if (!unpacked_tags_or_err) 1436 return Status(unpacked_tags_or_err.takeError()); 1437 1438 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1439 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1440 if (!repeated_tags_or_err) 1441 return Status(repeated_tags_or_err.takeError()); 1442 1443 // Repack them for ptrace to use 1444 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1445 details->manager->PackTags(*repeated_tags_or_err); 1446 if (!final_tag_data) 1447 return Status(final_tag_data.takeError()); 1448 1449 struct iovec tags_vec; 1450 uint8_t *src = final_tag_data->data(); 1451 lldb::addr_t write_addr = range.GetRangeBase(); 1452 // unpacked tags size because the number of bytes per tag might not be 1 1453 size_t num_tags = repeated_tags_or_err->size(); 1454 1455 // This call can partially write tags, so we loop until we 1456 // error or all tags have been written. 1457 while (num_tags > 0) { 1458 tags_vec.iov_base = src; 1459 tags_vec.iov_len = num_tags; 1460 1461 Status error = NativeProcessLinux::PtraceWrapper( 1462 details->ptrace_write_req, GetCurrentThreadID(), 1463 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1464 nullptr); 1465 1466 if (error.Fail()) { 1467 // Don't attempt to restore the original values in the case of a partial 1468 // write 1469 return error; 1470 } 1471 1472 size_t tags_written = tags_vec.iov_len; 1473 assert(tags_written && (tags_written <= num_tags)); 1474 1475 src += tags_written * details->manager->GetTagSizeInBytes(); 1476 write_addr += details->manager->GetGranuleSize() * tags_written; 1477 num_tags -= tags_written; 1478 } 1479 1480 return Status(); 1481 } 1482 1483 size_t NativeProcessLinux::UpdateThreads() { 1484 // The NativeProcessLinux monitoring threads are always up to date with 1485 // respect to thread state and they keep the thread list populated properly. 1486 // All this method needs to do is return the thread count. 1487 return m_threads.size(); 1488 } 1489 1490 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1491 bool hardware) { 1492 if (hardware) 1493 return SetHardwareBreakpoint(addr, size); 1494 else 1495 return SetSoftwareBreakpoint(addr, size); 1496 } 1497 1498 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1499 if (hardware) 1500 return RemoveHardwareBreakpoint(addr); 1501 else 1502 return NativeProcessProtocol::RemoveBreakpoint(addr); 1503 } 1504 1505 llvm::Expected<llvm::ArrayRef<uint8_t>> 1506 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1507 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1508 // linux kernel does otherwise. 1509 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1510 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1511 1512 switch (GetArchitecture().GetMachine()) { 1513 case llvm::Triple::arm: 1514 switch (size_hint) { 1515 case 2: 1516 return llvm::ArrayRef(g_thumb_opcode); 1517 case 4: 1518 return llvm::ArrayRef(g_arm_opcode); 1519 default: 1520 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1521 "Unrecognised trap opcode size hint!"); 1522 } 1523 default: 1524 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1525 } 1526 } 1527 1528 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1529 size_t &bytes_read) { 1530 if (ProcessVmReadvSupported()) { 1531 // The process_vm_readv path is about 50 times faster than ptrace api. We 1532 // want to use this syscall if it is supported. 1533 1534 struct iovec local_iov, remote_iov; 1535 local_iov.iov_base = buf; 1536 local_iov.iov_len = size; 1537 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1538 remote_iov.iov_len = size; 1539 1540 bytes_read = process_vm_readv(GetCurrentThreadID(), &local_iov, 1, 1541 &remote_iov, 1, 0); 1542 const bool success = bytes_read == size; 1543 1544 Log *log = GetLog(POSIXLog::Process); 1545 LLDB_LOG(log, 1546 "using process_vm_readv to read {0} bytes from inferior " 1547 "address {1:x}: {2}", 1548 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1549 1550 if (success) 1551 return Status(); 1552 // else the call failed for some reason, let's retry the read using ptrace 1553 // api. 1554 } 1555 1556 unsigned char *dst = static_cast<unsigned char *>(buf); 1557 size_t remainder; 1558 long data; 1559 1560 Log *log = GetLog(POSIXLog::Memory); 1561 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1562 1563 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1564 Status error = NativeProcessLinux::PtraceWrapper( 1565 PTRACE_PEEKDATA, GetCurrentThreadID(), (void *)addr, nullptr, 0, &data); 1566 if (error.Fail()) 1567 return error; 1568 1569 remainder = size - bytes_read; 1570 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1571 1572 // Copy the data into our buffer 1573 memcpy(dst, &data, remainder); 1574 1575 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1576 addr += k_ptrace_word_size; 1577 dst += k_ptrace_word_size; 1578 } 1579 return Status(); 1580 } 1581 1582 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1583 size_t size, size_t &bytes_written) { 1584 const unsigned char *src = static_cast<const unsigned char *>(buf); 1585 size_t remainder; 1586 Status error; 1587 1588 Log *log = GetLog(POSIXLog::Memory); 1589 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1590 1591 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1592 remainder = size - bytes_written; 1593 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1594 1595 if (remainder == k_ptrace_word_size) { 1596 unsigned long data = 0; 1597 memcpy(&data, src, k_ptrace_word_size); 1598 1599 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1600 error = NativeProcessLinux::PtraceWrapper( 1601 PTRACE_POKEDATA, GetCurrentThreadID(), (void *)addr, (void *)data); 1602 if (error.Fail()) 1603 return error; 1604 } else { 1605 unsigned char buff[8]; 1606 size_t bytes_read; 1607 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1608 if (error.Fail()) 1609 return error; 1610 1611 memcpy(buff, src, remainder); 1612 1613 size_t bytes_written_rec; 1614 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1615 if (error.Fail()) 1616 return error; 1617 1618 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1619 *(unsigned long *)buff); 1620 } 1621 1622 addr += k_ptrace_word_size; 1623 src += k_ptrace_word_size; 1624 } 1625 return error; 1626 } 1627 1628 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const { 1629 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1630 } 1631 1632 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1633 unsigned long *message) { 1634 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1635 } 1636 1637 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1638 if (tid == LLDB_INVALID_THREAD_ID) 1639 return Status(); 1640 1641 return PtraceWrapper(PTRACE_DETACH, tid); 1642 } 1643 1644 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1645 for (const auto &thread : m_threads) { 1646 assert(thread && "thread list should not contain NULL threads"); 1647 if (thread->GetID() == thread_id) { 1648 // We have this thread. 1649 return true; 1650 } 1651 } 1652 1653 // We don't have this thread. 1654 return false; 1655 } 1656 1657 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { 1658 Log *const log = GetLog(POSIXLog::Thread); 1659 lldb::tid_t thread_id = thread.GetID(); 1660 LLDB_LOG(log, "tid: {0}", thread_id); 1661 1662 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) { 1663 return thread_up.get() == &thread; 1664 }); 1665 assert(it != m_threads.end()); 1666 m_threads.erase(it); 1667 1668 NotifyTracersOfThreadDestroyed(thread_id); 1669 SignalIfAllThreadsStopped(); 1670 } 1671 1672 void NativeProcessLinux::NotifyTracersProcessDidStop() { 1673 m_intel_pt_collector.ProcessDidStop(); 1674 } 1675 1676 void NativeProcessLinux::NotifyTracersProcessWillResume() { 1677 m_intel_pt_collector.ProcessWillResume(); 1678 } 1679 1680 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1681 Log *log = GetLog(POSIXLog::Thread); 1682 Status error(m_intel_pt_collector.OnThreadCreated(tid)); 1683 if (error.Fail()) 1684 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1685 tid, error.AsCString()); 1686 return error; 1687 } 1688 1689 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1690 Log *log = GetLog(POSIXLog::Thread); 1691 Status error(m_intel_pt_collector.OnThreadDestroyed(tid)); 1692 if (error.Fail()) 1693 LLDB_LOG(log, 1694 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1695 tid, error.AsCString()); 1696 return error; 1697 } 1698 1699 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1700 bool resume) { 1701 Log *log = GetLog(POSIXLog::Thread); 1702 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1703 1704 assert(!HasThreadNoLock(thread_id) && 1705 "attempted to add a thread by id that already exists"); 1706 1707 // If this is the first thread, save it as the current thread 1708 if (m_threads.empty()) 1709 SetCurrentThreadID(thread_id); 1710 1711 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1712 NativeThreadLinux &thread = 1713 static_cast<NativeThreadLinux &>(*m_threads.back()); 1714 1715 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1716 if (tracing_error.Fail()) { 1717 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1718 StopRunningThreads(thread.GetID()); 1719 } else if (resume) 1720 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1721 else 1722 thread.SetStoppedBySignal(SIGSTOP); 1723 1724 return thread; 1725 } 1726 1727 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1728 FileSpec &file_spec) { 1729 Status error = PopulateMemoryRegionCache(); 1730 if (error.Fail()) 1731 return error; 1732 1733 FileSpec module_file_spec(module_path); 1734 FileSystem::Instance().Resolve(module_file_spec); 1735 1736 file_spec.Clear(); 1737 for (const auto &it : m_mem_region_cache) { 1738 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1739 file_spec = it.second; 1740 return Status(); 1741 } 1742 } 1743 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1744 module_file_spec.GetFilename().AsCString(), GetID()); 1745 } 1746 1747 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1748 lldb::addr_t &load_addr) { 1749 load_addr = LLDB_INVALID_ADDRESS; 1750 Status error = PopulateMemoryRegionCache(); 1751 if (error.Fail()) 1752 return error; 1753 1754 FileSpec file(file_name); 1755 for (const auto &it : m_mem_region_cache) { 1756 if (it.second == file) { 1757 load_addr = it.first.GetRange().GetRangeBase(); 1758 return Status(); 1759 } 1760 } 1761 return Status("No load address found for specified file."); 1762 } 1763 1764 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1765 return static_cast<NativeThreadLinux *>( 1766 NativeProcessProtocol::GetThreadByID(tid)); 1767 } 1768 1769 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1770 return static_cast<NativeThreadLinux *>( 1771 NativeProcessProtocol::GetCurrentThread()); 1772 } 1773 1774 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1775 lldb::StateType state, int signo) { 1776 Log *const log = GetLog(POSIXLog::Thread); 1777 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1778 1779 // Before we do the resume below, first check if we have a pending stop 1780 // notification that is currently waiting for all threads to stop. This is 1781 // potentially a buggy situation since we're ostensibly waiting for threads 1782 // to stop before we send out the pending notification, and here we are 1783 // resuming one before we send out the pending stop notification. 1784 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1785 LLDB_LOG(log, 1786 "about to resume tid {0} per explicit request but we have a " 1787 "pending stop notification (tid {1}) that is actively " 1788 "waiting for this thread to stop. Valid sequence of events?", 1789 thread.GetID(), m_pending_notification_tid); 1790 } 1791 1792 // Request a resume. We expect this to be synchronous and the system to 1793 // reflect it is running after this completes. 1794 switch (state) { 1795 case eStateRunning: { 1796 const auto resume_result = thread.Resume(signo); 1797 if (resume_result.Success()) 1798 SetState(eStateRunning, true); 1799 return resume_result; 1800 } 1801 case eStateStepping: { 1802 const auto step_result = thread.SingleStep(signo); 1803 if (step_result.Success()) 1804 SetState(eStateRunning, true); 1805 return step_result; 1806 } 1807 default: 1808 LLDB_LOG(log, "Unhandled state {0}.", state); 1809 llvm_unreachable("Unhandled state for resume"); 1810 } 1811 } 1812 1813 //===----------------------------------------------------------------------===// 1814 1815 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1816 Log *const log = GetLog(POSIXLog::Thread); 1817 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1818 triggering_tid); 1819 1820 m_pending_notification_tid = triggering_tid; 1821 1822 // Request a stop for all the thread stops that need to be stopped and are 1823 // not already known to be stopped. 1824 for (const auto &thread : m_threads) { 1825 if (StateIsRunningState(thread->GetState())) 1826 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1827 } 1828 1829 SignalIfAllThreadsStopped(); 1830 LLDB_LOG(log, "event processing done"); 1831 } 1832 1833 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1834 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1835 return; // No pending notification. Nothing to do. 1836 1837 for (const auto &thread_sp : m_threads) { 1838 if (StateIsRunningState(thread_sp->GetState())) 1839 return; // Some threads are still running. Don't signal yet. 1840 } 1841 1842 // We have a pending notification and all threads have stopped. 1843 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 1844 1845 // Clear any temporary breakpoints we used to implement software single 1846 // stepping. 1847 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1848 Status error = RemoveBreakpoint(thread_info.second); 1849 if (error.Fail()) 1850 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1851 thread_info.first, error); 1852 } 1853 m_threads_stepping_with_breakpoint.clear(); 1854 1855 // Notify the delegate about the stop 1856 SetCurrentThreadID(m_pending_notification_tid); 1857 SetState(StateType::eStateStopped, true); 1858 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1859 } 1860 1861 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1862 Log *const log = GetLog(POSIXLog::Thread); 1863 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1864 1865 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1866 StateIsRunningState(thread.GetState())) { 1867 // We will need to wait for this new thread to stop as well before firing 1868 // the notification. 1869 thread.RequestStop(); 1870 } 1871 } 1872 1873 static std::optional<WaitStatus> HandlePid(::pid_t pid) { 1874 Log *log = GetLog(POSIXLog::Process); 1875 1876 int status; 1877 ::pid_t wait_pid = llvm::sys::RetryAfterSignal( 1878 -1, ::waitpid, pid, &status, __WALL | __WNOTHREAD | WNOHANG); 1879 1880 if (wait_pid == 0) 1881 return std::nullopt; 1882 1883 if (wait_pid == -1) { 1884 Status error(errno, eErrorTypePOSIX); 1885 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", pid, 1886 error); 1887 return std::nullopt; 1888 } 1889 1890 assert(wait_pid == pid); 1891 1892 WaitStatus wait_status = WaitStatus::Decode(status); 1893 1894 LLDB_LOG(log, "waitpid({0}) got status = {1}", pid, wait_status); 1895 return wait_status; 1896 } 1897 1898 void NativeProcessLinux::SigchldHandler() { 1899 Log *log = GetLog(POSIXLog::Process); 1900 1901 // Threads can appear or disappear as a result of event processing, so gather 1902 // the events upfront. 1903 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events; 1904 bool checked_main_thread = false; 1905 for (const auto &thread_up : m_threads) { 1906 if (thread_up->GetID() == GetID()) 1907 checked_main_thread = true; 1908 1909 if (std::optional<WaitStatus> status = HandlePid(thread_up->GetID())) 1910 tid_events.try_emplace(thread_up->GetID(), *status); 1911 } 1912 // Check the main thread even when we're not tracking it as process exit 1913 // events are reported that way. 1914 if (!checked_main_thread) { 1915 if (std::optional<WaitStatus> status = HandlePid(GetID())) 1916 tid_events.try_emplace(GetID(), *status); 1917 } 1918 1919 for (auto &KV : tid_events) { 1920 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second); 1921 if (KV.first == GetID() && (KV.second.type == WaitStatus::Exit || 1922 KV.second.type == WaitStatus::Signal)) { 1923 1924 // The process exited. We're done monitoring. Report to delegate. 1925 SetExitStatus(KV.second, true); 1926 return; 1927 } 1928 NativeThreadLinux *thread = GetThreadByID(KV.first); 1929 assert(thread && "Why did this thread disappear?"); 1930 MonitorCallback(*thread, KV.second); 1931 } 1932 } 1933 1934 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1935 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1936 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1937 void *data, size_t data_size, 1938 long *result) { 1939 Status error; 1940 long int ret; 1941 1942 Log *log = GetLog(POSIXLog::Ptrace); 1943 1944 PtraceDisplayBytes(req, data, data_size); 1945 1946 errno = 0; 1947 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1948 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1949 *(unsigned int *)addr, data); 1950 else 1951 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1952 addr, data); 1953 1954 if (ret == -1) 1955 error.SetErrorToErrno(); 1956 1957 if (result) 1958 *result = ret; 1959 1960 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1961 data_size, ret); 1962 1963 PtraceDisplayBytes(req, data, data_size); 1964 1965 if (error.Fail()) 1966 LLDB_LOG(log, "ptrace() failed: {0}", error); 1967 1968 return error; 1969 } 1970 1971 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 1972 if (IntelPTCollector::IsSupported()) 1973 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 1974 return NativeProcessProtocol::TraceSupported(); 1975 } 1976 1977 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 1978 if (type == "intel-pt") { 1979 if (Expected<TraceIntelPTStartRequest> request = 1980 json::parse<TraceIntelPTStartRequest>(json_request, 1981 "TraceIntelPTStartRequest")) { 1982 return m_intel_pt_collector.TraceStart(*request); 1983 } else 1984 return request.takeError(); 1985 } 1986 1987 return NativeProcessProtocol::TraceStart(json_request, type); 1988 } 1989 1990 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 1991 if (request.type == "intel-pt") 1992 return m_intel_pt_collector.TraceStop(request); 1993 return NativeProcessProtocol::TraceStop(request); 1994 } 1995 1996 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 1997 if (type == "intel-pt") 1998 return m_intel_pt_collector.GetState(); 1999 return NativeProcessProtocol::TraceGetState(type); 2000 } 2001 2002 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 2003 const TraceGetBinaryDataRequest &request) { 2004 if (request.type == "intel-pt") 2005 return m_intel_pt_collector.GetBinaryData(request); 2006 return NativeProcessProtocol::TraceGetBinaryData(request); 2007 } 2008