1 //===-- ObjectFileMachO.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/StringRef.h" 10 11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 15 #include "lldb/Core/Debugger.h" 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Module.h" 18 #include "lldb/Core/ModuleSpec.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Progress.h" 21 #include "lldb/Core/Section.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Host/Host.h" 24 #include "lldb/Host/SafeMachO.h" 25 #include "lldb/Symbol/DWARFCallFrameInfo.h" 26 #include "lldb/Symbol/LocateSymbolFile.h" 27 #include "lldb/Symbol/ObjectFile.h" 28 #include "lldb/Target/DynamicLoader.h" 29 #include "lldb/Target/MemoryRegionInfo.h" 30 #include "lldb/Target/Platform.h" 31 #include "lldb/Target/Process.h" 32 #include "lldb/Target/SectionLoadList.h" 33 #include "lldb/Target/Target.h" 34 #include "lldb/Target/Thread.h" 35 #include "lldb/Target/ThreadList.h" 36 #include "lldb/Utility/ArchSpec.h" 37 #include "lldb/Utility/DataBuffer.h" 38 #include "lldb/Utility/FileSpec.h" 39 #include "lldb/Utility/Log.h" 40 #include "lldb/Utility/RangeMap.h" 41 #include "lldb/Utility/RegisterValue.h" 42 #include "lldb/Utility/Status.h" 43 #include "lldb/Utility/StreamString.h" 44 #include "lldb/Utility/Timer.h" 45 #include "lldb/Utility/UUID.h" 46 47 #include "llvm/ADT/DenseSet.h" 48 #include "llvm/Support/FormatVariadic.h" 49 #include "llvm/Support/MemoryBuffer.h" 50 51 #include "ObjectFileMachO.h" 52 53 #if defined(__APPLE__) 54 #include <TargetConditionals.h> 55 // GetLLDBSharedCacheUUID() needs to call dlsym() 56 #include <dlfcn.h> 57 #endif 58 59 #ifndef __APPLE__ 60 #include "Utility/UuidCompatibility.h" 61 #else 62 #include <uuid/uuid.h> 63 #endif 64 65 #include <bitset> 66 #include <memory> 67 68 #if LLVM_SUPPORT_XCODE_SIGNPOSTS 69 // Unfortunately the signpost header pulls in the system MachO header, too. 70 #undef CPU_TYPE_ARM 71 #undef CPU_TYPE_ARM64 72 #undef CPU_TYPE_ARM64_32 73 #undef CPU_TYPE_I386 74 #undef CPU_TYPE_X86_64 75 #undef MH_BINDATLOAD 76 #undef MH_BUNDLE 77 #undef MH_CIGAM 78 #undef MH_CIGAM_64 79 #undef MH_CORE 80 #undef MH_DSYM 81 #undef MH_DYLDLINK 82 #undef MH_DYLIB 83 #undef MH_DYLIB_STUB 84 #undef MH_DYLINKER 85 #undef MH_DYLINKER 86 #undef MH_EXECUTE 87 #undef MH_FVMLIB 88 #undef MH_INCRLINK 89 #undef MH_KEXT_BUNDLE 90 #undef MH_MAGIC 91 #undef MH_MAGIC_64 92 #undef MH_NOUNDEFS 93 #undef MH_OBJECT 94 #undef MH_OBJECT 95 #undef MH_PRELOAD 96 97 #undef LC_BUILD_VERSION 98 #undef LC_VERSION_MIN_MACOSX 99 #undef LC_VERSION_MIN_IPHONEOS 100 #undef LC_VERSION_MIN_TVOS 101 #undef LC_VERSION_MIN_WATCHOS 102 103 #undef PLATFORM_MACOS 104 #undef PLATFORM_MACCATALYST 105 #undef PLATFORM_IOS 106 #undef PLATFORM_IOSSIMULATOR 107 #undef PLATFORM_TVOS 108 #undef PLATFORM_TVOSSIMULATOR 109 #undef PLATFORM_WATCHOS 110 #undef PLATFORM_WATCHOSSIMULATOR 111 #endif 112 113 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull 114 using namespace lldb; 115 using namespace lldb_private; 116 using namespace llvm::MachO; 117 118 LLDB_PLUGIN_DEFINE(ObjectFileMachO) 119 120 // Some structure definitions needed for parsing the dyld shared cache files 121 // found on iOS devices. 122 123 struct lldb_copy_dyld_cache_header_v1 { 124 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 125 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 126 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 127 uint32_t imagesOffset; 128 uint32_t imagesCount; 129 uint64_t dyldBaseAddress; 130 uint64_t codeSignatureOffset; 131 uint64_t codeSignatureSize; 132 uint64_t slideInfoOffset; 133 uint64_t slideInfoSize; 134 uint64_t localSymbolsOffset; 135 uint64_t localSymbolsSize; 136 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 137 // and later 138 }; 139 140 struct lldb_copy_dyld_cache_mapping_info { 141 uint64_t address; 142 uint64_t size; 143 uint64_t fileOffset; 144 uint32_t maxProt; 145 uint32_t initProt; 146 }; 147 148 struct lldb_copy_dyld_cache_local_symbols_info { 149 uint32_t nlistOffset; 150 uint32_t nlistCount; 151 uint32_t stringsOffset; 152 uint32_t stringsSize; 153 uint32_t entriesOffset; 154 uint32_t entriesCount; 155 }; 156 struct lldb_copy_dyld_cache_local_symbols_entry { 157 uint32_t dylibOffset; 158 uint32_t nlistStartIndex; 159 uint32_t nlistCount; 160 }; 161 162 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name, 163 const char *alt_name, size_t reg_byte_size, 164 Stream &data) { 165 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 166 if (reg_info == nullptr) 167 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 168 if (reg_info) { 169 lldb_private::RegisterValue reg_value; 170 if (reg_ctx->ReadRegister(reg_info, reg_value)) { 171 if (reg_info->byte_size >= reg_byte_size) 172 data.Write(reg_value.GetBytes(), reg_byte_size); 173 else { 174 data.Write(reg_value.GetBytes(), reg_info->byte_size); 175 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i) 176 data.PutChar(0); 177 } 178 return; 179 } 180 } 181 // Just write zeros if all else fails 182 for (size_t i = 0; i < reg_byte_size; ++i) 183 data.PutChar(0); 184 } 185 186 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 { 187 public: 188 RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread, 189 const DataExtractor &data) 190 : RegisterContextDarwin_x86_64(thread, 0) { 191 SetRegisterDataFrom_LC_THREAD(data); 192 } 193 194 void InvalidateAllRegisters() override { 195 // Do nothing... registers are always valid... 196 } 197 198 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 199 lldb::offset_t offset = 0; 200 SetError(GPRRegSet, Read, -1); 201 SetError(FPURegSet, Read, -1); 202 SetError(EXCRegSet, Read, -1); 203 bool done = false; 204 205 while (!done) { 206 int flavor = data.GetU32(&offset); 207 if (flavor == 0) 208 done = true; 209 else { 210 uint32_t i; 211 uint32_t count = data.GetU32(&offset); 212 switch (flavor) { 213 case GPRRegSet: 214 for (i = 0; i < count; ++i) 215 (&gpr.rax)[i] = data.GetU64(&offset); 216 SetError(GPRRegSet, Read, 0); 217 done = true; 218 219 break; 220 case FPURegSet: 221 // TODO: fill in FPU regs.... 222 // SetError (FPURegSet, Read, -1); 223 done = true; 224 225 break; 226 case EXCRegSet: 227 exc.trapno = data.GetU32(&offset); 228 exc.err = data.GetU32(&offset); 229 exc.faultvaddr = data.GetU64(&offset); 230 SetError(EXCRegSet, Read, 0); 231 done = true; 232 break; 233 case 7: 234 case 8: 235 case 9: 236 // fancy flavors that encapsulate of the above flavors... 237 break; 238 239 default: 240 done = true; 241 break; 242 } 243 } 244 } 245 } 246 247 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 248 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 249 if (reg_ctx_sp) { 250 RegisterContext *reg_ctx = reg_ctx_sp.get(); 251 252 data.PutHex32(GPRRegSet); // Flavor 253 data.PutHex32(GPRWordCount); 254 PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data); 255 PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data); 256 PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data); 257 PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data); 258 PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data); 259 PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data); 260 PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data); 261 PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data); 262 PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data); 263 PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data); 264 PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data); 265 PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data); 266 PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data); 267 PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data); 268 PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data); 269 PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data); 270 PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data); 271 PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data); 272 PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data); 273 PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data); 274 PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data); 275 276 // // Write out the FPU registers 277 // const size_t fpu_byte_size = sizeof(FPU); 278 // size_t bytes_written = 0; 279 // data.PutHex32 (FPURegSet); 280 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 281 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 282 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 283 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, 284 // data); // uint16_t fcw; // "fctrl" 285 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, 286 // data); // uint16_t fsw; // "fstat" 287 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, 288 // data); // uint8_t ftw; // "ftag" 289 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 290 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, 291 // data); // uint16_t fop; // "fop" 292 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, 293 // data); // uint32_t ip; // "fioff" 294 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, 295 // data); // uint16_t cs; // "fiseg" 296 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 297 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, 298 // data); // uint32_t dp; // "fooff" 299 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, 300 // data); // uint16_t ds; // "foseg" 301 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 302 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, 303 // data); // uint32_t mxcsr; 304 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 305 // 4, data);// uint32_t mxcsrmask; 306 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, 307 // sizeof(MMSReg), data); 308 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, 309 // sizeof(MMSReg), data); 310 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, 311 // sizeof(MMSReg), data); 312 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, 313 // sizeof(MMSReg), data); 314 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, 315 // sizeof(MMSReg), data); 316 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, 317 // sizeof(MMSReg), data); 318 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, 319 // sizeof(MMSReg), data); 320 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, 321 // sizeof(MMSReg), data); 322 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, 323 // sizeof(XMMReg), data); 324 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, 325 // sizeof(XMMReg), data); 326 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, 327 // sizeof(XMMReg), data); 328 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, 329 // sizeof(XMMReg), data); 330 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, 331 // sizeof(XMMReg), data); 332 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, 333 // sizeof(XMMReg), data); 334 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, 335 // sizeof(XMMReg), data); 336 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, 337 // sizeof(XMMReg), data); 338 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, 339 // sizeof(XMMReg), data); 340 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, 341 // sizeof(XMMReg), data); 342 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, 343 // sizeof(XMMReg), data); 344 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, 345 // sizeof(XMMReg), data); 346 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, 347 // sizeof(XMMReg), data); 348 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, 349 // sizeof(XMMReg), data); 350 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, 351 // sizeof(XMMReg), data); 352 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, 353 // sizeof(XMMReg), data); 354 // 355 // // Fill rest with zeros 356 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ 357 // i) 358 // data.PutChar(0); 359 360 // Write out the EXC registers 361 data.PutHex32(EXCRegSet); 362 data.PutHex32(EXCWordCount); 363 PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data); 364 PrintRegisterValue(reg_ctx, "err", nullptr, 4, data); 365 PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data); 366 return true; 367 } 368 return false; 369 } 370 371 protected: 372 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } 373 374 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } 375 376 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } 377 378 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 379 return 0; 380 } 381 382 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 383 return 0; 384 } 385 386 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 387 return 0; 388 } 389 }; 390 391 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 { 392 public: 393 RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread, 394 const DataExtractor &data) 395 : RegisterContextDarwin_i386(thread, 0) { 396 SetRegisterDataFrom_LC_THREAD(data); 397 } 398 399 void InvalidateAllRegisters() override { 400 // Do nothing... registers are always valid... 401 } 402 403 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 404 lldb::offset_t offset = 0; 405 SetError(GPRRegSet, Read, -1); 406 SetError(FPURegSet, Read, -1); 407 SetError(EXCRegSet, Read, -1); 408 bool done = false; 409 410 while (!done) { 411 int flavor = data.GetU32(&offset); 412 if (flavor == 0) 413 done = true; 414 else { 415 uint32_t i; 416 uint32_t count = data.GetU32(&offset); 417 switch (flavor) { 418 case GPRRegSet: 419 for (i = 0; i < count; ++i) 420 (&gpr.eax)[i] = data.GetU32(&offset); 421 SetError(GPRRegSet, Read, 0); 422 done = true; 423 424 break; 425 case FPURegSet: 426 // TODO: fill in FPU regs.... 427 // SetError (FPURegSet, Read, -1); 428 done = true; 429 430 break; 431 case EXCRegSet: 432 exc.trapno = data.GetU32(&offset); 433 exc.err = data.GetU32(&offset); 434 exc.faultvaddr = data.GetU32(&offset); 435 SetError(EXCRegSet, Read, 0); 436 done = true; 437 break; 438 case 7: 439 case 8: 440 case 9: 441 // fancy flavors that encapsulate of the above flavors... 442 break; 443 444 default: 445 done = true; 446 break; 447 } 448 } 449 } 450 } 451 452 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 453 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 454 if (reg_ctx_sp) { 455 RegisterContext *reg_ctx = reg_ctx_sp.get(); 456 457 data.PutHex32(GPRRegSet); // Flavor 458 data.PutHex32(GPRWordCount); 459 PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data); 460 PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data); 461 PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data); 462 PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data); 463 PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data); 464 PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data); 465 PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data); 466 PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data); 467 PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data); 468 PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data); 469 PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data); 470 PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data); 471 PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data); 472 PrintRegisterValue(reg_ctx, "es", nullptr, 4, data); 473 PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data); 474 PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data); 475 476 // Write out the EXC registers 477 data.PutHex32(EXCRegSet); 478 data.PutHex32(EXCWordCount); 479 PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data); 480 PrintRegisterValue(reg_ctx, "err", nullptr, 4, data); 481 PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data); 482 return true; 483 } 484 return false; 485 } 486 487 protected: 488 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } 489 490 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } 491 492 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } 493 494 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 495 return 0; 496 } 497 498 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 499 return 0; 500 } 501 502 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 503 return 0; 504 } 505 }; 506 507 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm { 508 public: 509 RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread, 510 const DataExtractor &data) 511 : RegisterContextDarwin_arm(thread, 0) { 512 SetRegisterDataFrom_LC_THREAD(data); 513 } 514 515 void InvalidateAllRegisters() override { 516 // Do nothing... registers are always valid... 517 } 518 519 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 520 lldb::offset_t offset = 0; 521 SetError(GPRRegSet, Read, -1); 522 SetError(FPURegSet, Read, -1); 523 SetError(EXCRegSet, Read, -1); 524 bool done = false; 525 526 while (!done) { 527 int flavor = data.GetU32(&offset); 528 uint32_t count = data.GetU32(&offset); 529 lldb::offset_t next_thread_state = offset + (count * 4); 530 switch (flavor) { 531 case GPRAltRegSet: 532 case GPRRegSet: 533 // On ARM, the CPSR register is also included in the count but it is 534 // not included in gpr.r so loop until (count-1). 535 for (uint32_t i = 0; i < (count - 1); ++i) { 536 gpr.r[i] = data.GetU32(&offset); 537 } 538 // Save cpsr explicitly. 539 gpr.cpsr = data.GetU32(&offset); 540 541 SetError(GPRRegSet, Read, 0); 542 offset = next_thread_state; 543 break; 544 545 case FPURegSet: { 546 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0]; 547 const int fpu_reg_buf_size = sizeof(fpu.floats); 548 if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, 549 fpu_reg_buf) == fpu_reg_buf_size) { 550 offset += fpu_reg_buf_size; 551 fpu.fpscr = data.GetU32(&offset); 552 SetError(FPURegSet, Read, 0); 553 } else { 554 done = true; 555 } 556 } 557 offset = next_thread_state; 558 break; 559 560 case EXCRegSet: 561 if (count == 3) { 562 exc.exception = data.GetU32(&offset); 563 exc.fsr = data.GetU32(&offset); 564 exc.far = data.GetU32(&offset); 565 SetError(EXCRegSet, Read, 0); 566 } 567 done = true; 568 offset = next_thread_state; 569 break; 570 571 // Unknown register set flavor, stop trying to parse. 572 default: 573 done = true; 574 } 575 } 576 } 577 578 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 579 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 580 if (reg_ctx_sp) { 581 RegisterContext *reg_ctx = reg_ctx_sp.get(); 582 583 data.PutHex32(GPRRegSet); // Flavor 584 data.PutHex32(GPRWordCount); 585 PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data); 586 PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data); 587 PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data); 588 PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data); 589 PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data); 590 PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data); 591 PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data); 592 PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data); 593 PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data); 594 PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data); 595 PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data); 596 PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data); 597 PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data); 598 PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data); 599 PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data); 600 PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data); 601 PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data); 602 603 // Write out the EXC registers 604 // data.PutHex32 (EXCRegSet); 605 // data.PutHex32 (EXCWordCount); 606 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 607 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 608 // WriteRegister (reg_ctx, "far", NULL, 4, data); 609 return true; 610 } 611 return false; 612 } 613 614 protected: 615 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } 616 617 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } 618 619 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } 620 621 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } 622 623 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 624 return 0; 625 } 626 627 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 628 return 0; 629 } 630 631 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 632 return 0; 633 } 634 635 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { 636 return -1; 637 } 638 }; 639 640 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 { 641 public: 642 RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread, 643 const DataExtractor &data) 644 : RegisterContextDarwin_arm64(thread, 0) { 645 SetRegisterDataFrom_LC_THREAD(data); 646 } 647 648 void InvalidateAllRegisters() override { 649 // Do nothing... registers are always valid... 650 } 651 652 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 653 lldb::offset_t offset = 0; 654 SetError(GPRRegSet, Read, -1); 655 SetError(FPURegSet, Read, -1); 656 SetError(EXCRegSet, Read, -1); 657 bool done = false; 658 while (!done) { 659 int flavor = data.GetU32(&offset); 660 uint32_t count = data.GetU32(&offset); 661 lldb::offset_t next_thread_state = offset + (count * 4); 662 switch (flavor) { 663 case GPRRegSet: 664 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 665 // 32-bit register) 666 if (count >= (33 * 2) + 1) { 667 for (uint32_t i = 0; i < 29; ++i) 668 gpr.x[i] = data.GetU64(&offset); 669 gpr.fp = data.GetU64(&offset); 670 gpr.lr = data.GetU64(&offset); 671 gpr.sp = data.GetU64(&offset); 672 gpr.pc = data.GetU64(&offset); 673 gpr.cpsr = data.GetU32(&offset); 674 SetError(GPRRegSet, Read, 0); 675 } 676 offset = next_thread_state; 677 break; 678 case FPURegSet: { 679 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0]; 680 const int fpu_reg_buf_size = sizeof(fpu); 681 if (fpu_reg_buf_size == count * sizeof(uint32_t) && 682 data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, 683 fpu_reg_buf) == fpu_reg_buf_size) { 684 SetError(FPURegSet, Read, 0); 685 } else { 686 done = true; 687 } 688 } 689 offset = next_thread_state; 690 break; 691 case EXCRegSet: 692 if (count == 4) { 693 exc.far = data.GetU64(&offset); 694 exc.esr = data.GetU32(&offset); 695 exc.exception = data.GetU32(&offset); 696 SetError(EXCRegSet, Read, 0); 697 } 698 offset = next_thread_state; 699 break; 700 default: 701 done = true; 702 break; 703 } 704 } 705 } 706 707 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 708 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 709 if (reg_ctx_sp) { 710 RegisterContext *reg_ctx = reg_ctx_sp.get(); 711 712 data.PutHex32(GPRRegSet); // Flavor 713 data.PutHex32(GPRWordCount); 714 PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data); 715 PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data); 716 PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data); 717 PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data); 718 PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data); 719 PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data); 720 PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data); 721 PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data); 722 PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data); 723 PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data); 724 PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data); 725 PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data); 726 PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data); 727 PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data); 728 PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data); 729 PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data); 730 PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data); 731 PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data); 732 PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data); 733 PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data); 734 PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data); 735 PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data); 736 PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data); 737 PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data); 738 PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data); 739 PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data); 740 PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data); 741 PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data); 742 PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data); 743 PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data); 744 PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data); 745 PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data); 746 PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data); 747 PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data); 748 749 // Write out the EXC registers 750 // data.PutHex32 (EXCRegSet); 751 // data.PutHex32 (EXCWordCount); 752 // WriteRegister (reg_ctx, "far", NULL, 8, data); 753 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 754 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 755 return true; 756 } 757 return false; 758 } 759 760 protected: 761 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } 762 763 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } 764 765 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } 766 767 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } 768 769 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 770 return 0; 771 } 772 773 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 774 return 0; 775 } 776 777 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 778 return 0; 779 } 780 781 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { 782 return -1; 783 } 784 }; 785 786 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) { 787 switch (magic) { 788 case MH_MAGIC: 789 case MH_CIGAM: 790 return sizeof(struct llvm::MachO::mach_header); 791 792 case MH_MAGIC_64: 793 case MH_CIGAM_64: 794 return sizeof(struct llvm::MachO::mach_header_64); 795 break; 796 797 default: 798 break; 799 } 800 return 0; 801 } 802 803 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 804 805 char ObjectFileMachO::ID; 806 807 void ObjectFileMachO::Initialize() { 808 PluginManager::RegisterPlugin( 809 GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, 810 CreateMemoryInstance, GetModuleSpecifications, SaveCore); 811 } 812 813 void ObjectFileMachO::Terminate() { 814 PluginManager::UnregisterPlugin(CreateInstance); 815 } 816 817 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() { 818 static ConstString g_name("mach-o"); 819 return g_name; 820 } 821 822 const char *ObjectFileMachO::GetPluginDescriptionStatic() { 823 return "Mach-o object file reader (32 and 64 bit)"; 824 } 825 826 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp, 827 DataBufferSP &data_sp, 828 lldb::offset_t data_offset, 829 const FileSpec *file, 830 lldb::offset_t file_offset, 831 lldb::offset_t length) { 832 if (!data_sp) { 833 data_sp = MapFileData(*file, length, file_offset); 834 if (!data_sp) 835 return nullptr; 836 data_offset = 0; 837 } 838 839 if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 840 return nullptr; 841 842 // Update the data to contain the entire file if it doesn't already 843 if (data_sp->GetByteSize() < length) { 844 data_sp = MapFileData(*file, length, file_offset); 845 if (!data_sp) 846 return nullptr; 847 data_offset = 0; 848 } 849 auto objfile_up = std::make_unique<ObjectFileMachO>( 850 module_sp, data_sp, data_offset, file, file_offset, length); 851 if (!objfile_up || !objfile_up->ParseHeader()) 852 return nullptr; 853 854 return objfile_up.release(); 855 } 856 857 ObjectFile *ObjectFileMachO::CreateMemoryInstance( 858 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 859 const ProcessSP &process_sp, lldb::addr_t header_addr) { 860 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 861 std::unique_ptr<ObjectFile> objfile_up( 862 new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr)); 863 if (objfile_up.get() && objfile_up->ParseHeader()) 864 return objfile_up.release(); 865 } 866 return nullptr; 867 } 868 869 size_t ObjectFileMachO::GetModuleSpecifications( 870 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 871 lldb::offset_t data_offset, lldb::offset_t file_offset, 872 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 873 const size_t initial_count = specs.GetSize(); 874 875 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 876 DataExtractor data; 877 data.SetData(data_sp); 878 llvm::MachO::mach_header header; 879 if (ParseHeader(data, &data_offset, header)) { 880 size_t header_and_load_cmds = 881 header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 882 if (header_and_load_cmds >= data_sp->GetByteSize()) { 883 data_sp = MapFileData(file, header_and_load_cmds, file_offset); 884 data.SetData(data_sp); 885 data_offset = MachHeaderSizeFromMagic(header.magic); 886 } 887 if (data_sp) { 888 ModuleSpec base_spec; 889 base_spec.GetFileSpec() = file; 890 base_spec.SetObjectOffset(file_offset); 891 base_spec.SetObjectSize(length); 892 GetAllArchSpecs(header, data, data_offset, base_spec, specs); 893 } 894 } 895 } 896 return specs.GetSize() - initial_count; 897 } 898 899 ConstString ObjectFileMachO::GetSegmentNameTEXT() { 900 static ConstString g_segment_name_TEXT("__TEXT"); 901 return g_segment_name_TEXT; 902 } 903 904 ConstString ObjectFileMachO::GetSegmentNameDATA() { 905 static ConstString g_segment_name_DATA("__DATA"); 906 return g_segment_name_DATA; 907 } 908 909 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() { 910 static ConstString g_segment_name("__DATA_DIRTY"); 911 return g_segment_name; 912 } 913 914 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() { 915 static ConstString g_segment_name("__DATA_CONST"); 916 return g_segment_name; 917 } 918 919 ConstString ObjectFileMachO::GetSegmentNameOBJC() { 920 static ConstString g_segment_name_OBJC("__OBJC"); 921 return g_segment_name_OBJC; 922 } 923 924 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() { 925 static ConstString g_section_name_LINKEDIT("__LINKEDIT"); 926 return g_section_name_LINKEDIT; 927 } 928 929 ConstString ObjectFileMachO::GetSegmentNameDWARF() { 930 static ConstString g_section_name("__DWARF"); 931 return g_section_name; 932 } 933 934 ConstString ObjectFileMachO::GetSectionNameEHFrame() { 935 static ConstString g_section_name_eh_frame("__eh_frame"); 936 return g_section_name_eh_frame; 937 } 938 939 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp, 940 lldb::addr_t data_offset, 941 lldb::addr_t data_length) { 942 DataExtractor data; 943 data.SetData(data_sp, data_offset, data_length); 944 lldb::offset_t offset = 0; 945 uint32_t magic = data.GetU32(&offset); 946 return MachHeaderSizeFromMagic(magic) != 0; 947 } 948 949 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 950 DataBufferSP &data_sp, 951 lldb::offset_t data_offset, 952 const FileSpec *file, 953 lldb::offset_t file_offset, 954 lldb::offset_t length) 955 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 956 m_mach_segments(), m_mach_sections(), m_entry_point_address(), 957 m_thread_context_offsets(), m_thread_context_offsets_valid(false), 958 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { 959 ::memset(&m_header, 0, sizeof(m_header)); 960 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 961 } 962 963 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 964 lldb::DataBufferSP &header_data_sp, 965 const lldb::ProcessSP &process_sp, 966 lldb::addr_t header_addr) 967 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 968 m_mach_segments(), m_mach_sections(), m_entry_point_address(), 969 m_thread_context_offsets(), m_thread_context_offsets_valid(false), 970 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { 971 ::memset(&m_header, 0, sizeof(m_header)); 972 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 973 } 974 975 bool ObjectFileMachO::ParseHeader(DataExtractor &data, 976 lldb::offset_t *data_offset_ptr, 977 llvm::MachO::mach_header &header) { 978 data.SetByteOrder(endian::InlHostByteOrder()); 979 // Leave magic in the original byte order 980 header.magic = data.GetU32(data_offset_ptr); 981 bool can_parse = false; 982 bool is_64_bit = false; 983 switch (header.magic) { 984 case MH_MAGIC: 985 data.SetByteOrder(endian::InlHostByteOrder()); 986 data.SetAddressByteSize(4); 987 can_parse = true; 988 break; 989 990 case MH_MAGIC_64: 991 data.SetByteOrder(endian::InlHostByteOrder()); 992 data.SetAddressByteSize(8); 993 can_parse = true; 994 is_64_bit = true; 995 break; 996 997 case MH_CIGAM: 998 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 999 ? eByteOrderLittle 1000 : eByteOrderBig); 1001 data.SetAddressByteSize(4); 1002 can_parse = true; 1003 break; 1004 1005 case MH_CIGAM_64: 1006 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1007 ? eByteOrderLittle 1008 : eByteOrderBig); 1009 data.SetAddressByteSize(8); 1010 is_64_bit = true; 1011 can_parse = true; 1012 break; 1013 1014 default: 1015 break; 1016 } 1017 1018 if (can_parse) { 1019 data.GetU32(data_offset_ptr, &header.cputype, 6); 1020 if (is_64_bit) 1021 *data_offset_ptr += 4; 1022 return true; 1023 } else { 1024 memset(&header, 0, sizeof(header)); 1025 } 1026 return false; 1027 } 1028 1029 bool ObjectFileMachO::ParseHeader() { 1030 ModuleSP module_sp(GetModule()); 1031 if (!module_sp) 1032 return false; 1033 1034 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 1035 bool can_parse = false; 1036 lldb::offset_t offset = 0; 1037 m_data.SetByteOrder(endian::InlHostByteOrder()); 1038 // Leave magic in the original byte order 1039 m_header.magic = m_data.GetU32(&offset); 1040 switch (m_header.magic) { 1041 case MH_MAGIC: 1042 m_data.SetByteOrder(endian::InlHostByteOrder()); 1043 m_data.SetAddressByteSize(4); 1044 can_parse = true; 1045 break; 1046 1047 case MH_MAGIC_64: 1048 m_data.SetByteOrder(endian::InlHostByteOrder()); 1049 m_data.SetAddressByteSize(8); 1050 can_parse = true; 1051 break; 1052 1053 case MH_CIGAM: 1054 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1055 ? eByteOrderLittle 1056 : eByteOrderBig); 1057 m_data.SetAddressByteSize(4); 1058 can_parse = true; 1059 break; 1060 1061 case MH_CIGAM_64: 1062 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1063 ? eByteOrderLittle 1064 : eByteOrderBig); 1065 m_data.SetAddressByteSize(8); 1066 can_parse = true; 1067 break; 1068 1069 default: 1070 break; 1071 } 1072 1073 if (can_parse) { 1074 m_data.GetU32(&offset, &m_header.cputype, 6); 1075 1076 ModuleSpecList all_specs; 1077 ModuleSpec base_spec; 1078 GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), 1079 base_spec, all_specs); 1080 1081 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { 1082 ArchSpec mach_arch = 1083 all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture(); 1084 1085 // Check if the module has a required architecture 1086 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1087 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1088 continue; 1089 1090 if (SetModulesArchitecture(mach_arch)) { 1091 const size_t header_and_lc_size = 1092 m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1093 if (m_data.GetByteSize() < header_and_lc_size) { 1094 DataBufferSP data_sp; 1095 ProcessSP process_sp(m_process_wp.lock()); 1096 if (process_sp) { 1097 data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size); 1098 } else { 1099 // Read in all only the load command data from the file on disk 1100 data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset); 1101 if (data_sp->GetByteSize() != header_and_lc_size) 1102 continue; 1103 } 1104 if (data_sp) 1105 m_data.SetData(data_sp); 1106 } 1107 } 1108 return true; 1109 } 1110 // None found. 1111 return false; 1112 } else { 1113 memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header)); 1114 } 1115 return false; 1116 } 1117 1118 ByteOrder ObjectFileMachO::GetByteOrder() const { 1119 return m_data.GetByteOrder(); 1120 } 1121 1122 bool ObjectFileMachO::IsExecutable() const { 1123 return m_header.filetype == MH_EXECUTE; 1124 } 1125 1126 bool ObjectFileMachO::IsDynamicLoader() const { 1127 return m_header.filetype == MH_DYLINKER; 1128 } 1129 1130 uint32_t ObjectFileMachO::GetAddressByteSize() const { 1131 return m_data.GetAddressByteSize(); 1132 } 1133 1134 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) { 1135 Symtab *symtab = GetSymtab(); 1136 if (!symtab) 1137 return AddressClass::eUnknown; 1138 1139 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1140 if (symbol) { 1141 if (symbol->ValueIsAddress()) { 1142 SectionSP section_sp(symbol->GetAddressRef().GetSection()); 1143 if (section_sp) { 1144 const lldb::SectionType section_type = section_sp->GetType(); 1145 switch (section_type) { 1146 case eSectionTypeInvalid: 1147 return AddressClass::eUnknown; 1148 1149 case eSectionTypeCode: 1150 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { 1151 // For ARM we have a bit in the n_desc field of the symbol that 1152 // tells us ARM/Thumb which is bit 0x0008. 1153 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1154 return AddressClass::eCodeAlternateISA; 1155 } 1156 return AddressClass::eCode; 1157 1158 case eSectionTypeContainer: 1159 return AddressClass::eUnknown; 1160 1161 case eSectionTypeData: 1162 case eSectionTypeDataCString: 1163 case eSectionTypeDataCStringPointers: 1164 case eSectionTypeDataSymbolAddress: 1165 case eSectionTypeData4: 1166 case eSectionTypeData8: 1167 case eSectionTypeData16: 1168 case eSectionTypeDataPointers: 1169 case eSectionTypeZeroFill: 1170 case eSectionTypeDataObjCMessageRefs: 1171 case eSectionTypeDataObjCCFStrings: 1172 case eSectionTypeGoSymtab: 1173 return AddressClass::eData; 1174 1175 case eSectionTypeDebug: 1176 case eSectionTypeDWARFDebugAbbrev: 1177 case eSectionTypeDWARFDebugAbbrevDwo: 1178 case eSectionTypeDWARFDebugAddr: 1179 case eSectionTypeDWARFDebugAranges: 1180 case eSectionTypeDWARFDebugCuIndex: 1181 case eSectionTypeDWARFDebugFrame: 1182 case eSectionTypeDWARFDebugInfo: 1183 case eSectionTypeDWARFDebugInfoDwo: 1184 case eSectionTypeDWARFDebugLine: 1185 case eSectionTypeDWARFDebugLineStr: 1186 case eSectionTypeDWARFDebugLoc: 1187 case eSectionTypeDWARFDebugLocDwo: 1188 case eSectionTypeDWARFDebugLocLists: 1189 case eSectionTypeDWARFDebugLocListsDwo: 1190 case eSectionTypeDWARFDebugMacInfo: 1191 case eSectionTypeDWARFDebugMacro: 1192 case eSectionTypeDWARFDebugNames: 1193 case eSectionTypeDWARFDebugPubNames: 1194 case eSectionTypeDWARFDebugPubTypes: 1195 case eSectionTypeDWARFDebugRanges: 1196 case eSectionTypeDWARFDebugRngLists: 1197 case eSectionTypeDWARFDebugRngListsDwo: 1198 case eSectionTypeDWARFDebugStr: 1199 case eSectionTypeDWARFDebugStrDwo: 1200 case eSectionTypeDWARFDebugStrOffsets: 1201 case eSectionTypeDWARFDebugStrOffsetsDwo: 1202 case eSectionTypeDWARFDebugTuIndex: 1203 case eSectionTypeDWARFDebugTypes: 1204 case eSectionTypeDWARFDebugTypesDwo: 1205 case eSectionTypeDWARFAppleNames: 1206 case eSectionTypeDWARFAppleTypes: 1207 case eSectionTypeDWARFAppleNamespaces: 1208 case eSectionTypeDWARFAppleObjC: 1209 case eSectionTypeDWARFGNUDebugAltLink: 1210 return AddressClass::eDebug; 1211 1212 case eSectionTypeEHFrame: 1213 case eSectionTypeARMexidx: 1214 case eSectionTypeARMextab: 1215 case eSectionTypeCompactUnwind: 1216 return AddressClass::eRuntime; 1217 1218 case eSectionTypeAbsoluteAddress: 1219 case eSectionTypeELFSymbolTable: 1220 case eSectionTypeELFDynamicSymbols: 1221 case eSectionTypeELFRelocationEntries: 1222 case eSectionTypeELFDynamicLinkInfo: 1223 case eSectionTypeOther: 1224 return AddressClass::eUnknown; 1225 } 1226 } 1227 } 1228 1229 const SymbolType symbol_type = symbol->GetType(); 1230 switch (symbol_type) { 1231 case eSymbolTypeAny: 1232 return AddressClass::eUnknown; 1233 case eSymbolTypeAbsolute: 1234 return AddressClass::eUnknown; 1235 1236 case eSymbolTypeCode: 1237 case eSymbolTypeTrampoline: 1238 case eSymbolTypeResolver: 1239 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { 1240 // For ARM we have a bit in the n_desc field of the symbol that tells 1241 // us ARM/Thumb which is bit 0x0008. 1242 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1243 return AddressClass::eCodeAlternateISA; 1244 } 1245 return AddressClass::eCode; 1246 1247 case eSymbolTypeData: 1248 return AddressClass::eData; 1249 case eSymbolTypeRuntime: 1250 return AddressClass::eRuntime; 1251 case eSymbolTypeException: 1252 return AddressClass::eRuntime; 1253 case eSymbolTypeSourceFile: 1254 return AddressClass::eDebug; 1255 case eSymbolTypeHeaderFile: 1256 return AddressClass::eDebug; 1257 case eSymbolTypeObjectFile: 1258 return AddressClass::eDebug; 1259 case eSymbolTypeCommonBlock: 1260 return AddressClass::eDebug; 1261 case eSymbolTypeBlock: 1262 return AddressClass::eDebug; 1263 case eSymbolTypeLocal: 1264 return AddressClass::eData; 1265 case eSymbolTypeParam: 1266 return AddressClass::eData; 1267 case eSymbolTypeVariable: 1268 return AddressClass::eData; 1269 case eSymbolTypeVariableType: 1270 return AddressClass::eDebug; 1271 case eSymbolTypeLineEntry: 1272 return AddressClass::eDebug; 1273 case eSymbolTypeLineHeader: 1274 return AddressClass::eDebug; 1275 case eSymbolTypeScopeBegin: 1276 return AddressClass::eDebug; 1277 case eSymbolTypeScopeEnd: 1278 return AddressClass::eDebug; 1279 case eSymbolTypeAdditional: 1280 return AddressClass::eUnknown; 1281 case eSymbolTypeCompiler: 1282 return AddressClass::eDebug; 1283 case eSymbolTypeInstrumentation: 1284 return AddressClass::eDebug; 1285 case eSymbolTypeUndefined: 1286 return AddressClass::eUnknown; 1287 case eSymbolTypeObjCClass: 1288 return AddressClass::eRuntime; 1289 case eSymbolTypeObjCMetaClass: 1290 return AddressClass::eRuntime; 1291 case eSymbolTypeObjCIVar: 1292 return AddressClass::eRuntime; 1293 case eSymbolTypeReExported: 1294 return AddressClass::eRuntime; 1295 } 1296 } 1297 return AddressClass::eUnknown; 1298 } 1299 1300 Symtab *ObjectFileMachO::GetSymtab() { 1301 ModuleSP module_sp(GetModule()); 1302 if (module_sp) { 1303 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 1304 if (m_symtab_up == nullptr) { 1305 m_symtab_up = std::make_unique<Symtab>(this); 1306 std::lock_guard<std::recursive_mutex> symtab_guard( 1307 m_symtab_up->GetMutex()); 1308 ParseSymtab(); 1309 m_symtab_up->Finalize(); 1310 } 1311 } 1312 return m_symtab_up.get(); 1313 } 1314 1315 bool ObjectFileMachO::IsStripped() { 1316 if (m_dysymtab.cmd == 0) { 1317 ModuleSP module_sp(GetModule()); 1318 if (module_sp) { 1319 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1320 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1321 const lldb::offset_t load_cmd_offset = offset; 1322 1323 llvm::MachO::load_command lc; 1324 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 1325 break; 1326 if (lc.cmd == LC_DYSYMTAB) { 1327 m_dysymtab.cmd = lc.cmd; 1328 m_dysymtab.cmdsize = lc.cmdsize; 1329 if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym, 1330 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == 1331 nullptr) { 1332 // Clear m_dysymtab if we were unable to read all items from the 1333 // load command 1334 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 1335 } 1336 } 1337 offset = load_cmd_offset + lc.cmdsize; 1338 } 1339 } 1340 } 1341 if (m_dysymtab.cmd) 1342 return m_dysymtab.nlocalsym <= 1; 1343 return false; 1344 } 1345 1346 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() { 1347 EncryptedFileRanges result; 1348 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1349 1350 llvm::MachO::encryption_info_command encryption_cmd; 1351 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1352 const lldb::offset_t load_cmd_offset = offset; 1353 if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr) 1354 break; 1355 1356 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the 1357 // 3 fields we care about, so treat them the same. 1358 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || 1359 encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) { 1360 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) { 1361 if (encryption_cmd.cryptid != 0) { 1362 EncryptedFileRanges::Entry entry; 1363 entry.SetRangeBase(encryption_cmd.cryptoff); 1364 entry.SetByteSize(encryption_cmd.cryptsize); 1365 result.Append(entry); 1366 } 1367 } 1368 } 1369 offset = load_cmd_offset + encryption_cmd.cmdsize; 1370 } 1371 1372 return result; 1373 } 1374 1375 void ObjectFileMachO::SanitizeSegmentCommand( 1376 llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) { 1377 if (m_length == 0 || seg_cmd.filesize == 0) 1378 return; 1379 1380 if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) { 1381 // In shared cache images, the load commands are relative to the 1382 // shared cache file, and not the specific image we are 1383 // examining. Let's fix this up so that it looks like a normal 1384 // image. 1385 if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0) 1386 m_text_address = seg_cmd.vmaddr; 1387 if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0) 1388 m_linkedit_original_offset = seg_cmd.fileoff; 1389 1390 seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address; 1391 } 1392 1393 if (seg_cmd.fileoff > m_length) { 1394 // We have a load command that says it extends past the end of the file. 1395 // This is likely a corrupt file. We don't have any way to return an error 1396 // condition here (this method was likely invoked from something like 1397 // ObjectFile::GetSectionList()), so we just null out the section contents, 1398 // and dump a message to stdout. The most common case here is core file 1399 // debugging with a truncated file. 1400 const char *lc_segment_name = 1401 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1402 GetModule()->ReportWarning( 1403 "load command %u %s has a fileoff (0x%" PRIx64 1404 ") that extends beyond the end of the file (0x%" PRIx64 1405 "), ignoring this section", 1406 cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length); 1407 1408 seg_cmd.fileoff = 0; 1409 seg_cmd.filesize = 0; 1410 } 1411 1412 if (seg_cmd.fileoff + seg_cmd.filesize > m_length) { 1413 // We have a load command that says it extends past the end of the file. 1414 // This is likely a corrupt file. We don't have any way to return an error 1415 // condition here (this method was likely invoked from something like 1416 // ObjectFile::GetSectionList()), so we just null out the section contents, 1417 // and dump a message to stdout. The most common case here is core file 1418 // debugging with a truncated file. 1419 const char *lc_segment_name = 1420 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1421 GetModule()->ReportWarning( 1422 "load command %u %s has a fileoff + filesize (0x%" PRIx64 1423 ") that extends beyond the end of the file (0x%" PRIx64 1424 "), the segment will be truncated to match", 1425 cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length); 1426 1427 // Truncate the length 1428 seg_cmd.filesize = m_length - seg_cmd.fileoff; 1429 } 1430 } 1431 1432 static uint32_t 1433 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) { 1434 uint32_t result = 0; 1435 if (seg_cmd.initprot & VM_PROT_READ) 1436 result |= ePermissionsReadable; 1437 if (seg_cmd.initprot & VM_PROT_WRITE) 1438 result |= ePermissionsWritable; 1439 if (seg_cmd.initprot & VM_PROT_EXECUTE) 1440 result |= ePermissionsExecutable; 1441 return result; 1442 } 1443 1444 static lldb::SectionType GetSectionType(uint32_t flags, 1445 ConstString section_name) { 1446 1447 if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1448 return eSectionTypeCode; 1449 1450 uint32_t mach_sect_type = flags & SECTION_TYPE; 1451 static ConstString g_sect_name_objc_data("__objc_data"); 1452 static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs"); 1453 static ConstString g_sect_name_objc_selrefs("__objc_selrefs"); 1454 static ConstString g_sect_name_objc_classrefs("__objc_classrefs"); 1455 static ConstString g_sect_name_objc_superrefs("__objc_superrefs"); 1456 static ConstString g_sect_name_objc_const("__objc_const"); 1457 static ConstString g_sect_name_objc_classlist("__objc_classlist"); 1458 static ConstString g_sect_name_cfstring("__cfstring"); 1459 1460 static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev"); 1461 static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges"); 1462 static ConstString g_sect_name_dwarf_debug_frame("__debug_frame"); 1463 static ConstString g_sect_name_dwarf_debug_info("__debug_info"); 1464 static ConstString g_sect_name_dwarf_debug_line("__debug_line"); 1465 static ConstString g_sect_name_dwarf_debug_loc("__debug_loc"); 1466 static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists"); 1467 static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo"); 1468 static ConstString g_sect_name_dwarf_debug_names("__debug_names"); 1469 static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames"); 1470 static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes"); 1471 static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges"); 1472 static ConstString g_sect_name_dwarf_debug_str("__debug_str"); 1473 static ConstString g_sect_name_dwarf_debug_types("__debug_types"); 1474 static ConstString g_sect_name_dwarf_apple_names("__apple_names"); 1475 static ConstString g_sect_name_dwarf_apple_types("__apple_types"); 1476 static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac"); 1477 static ConstString g_sect_name_dwarf_apple_objc("__apple_objc"); 1478 static ConstString g_sect_name_eh_frame("__eh_frame"); 1479 static ConstString g_sect_name_compact_unwind("__unwind_info"); 1480 static ConstString g_sect_name_text("__text"); 1481 static ConstString g_sect_name_data("__data"); 1482 static ConstString g_sect_name_go_symtab("__gosymtab"); 1483 1484 if (section_name == g_sect_name_dwarf_debug_abbrev) 1485 return eSectionTypeDWARFDebugAbbrev; 1486 if (section_name == g_sect_name_dwarf_debug_aranges) 1487 return eSectionTypeDWARFDebugAranges; 1488 if (section_name == g_sect_name_dwarf_debug_frame) 1489 return eSectionTypeDWARFDebugFrame; 1490 if (section_name == g_sect_name_dwarf_debug_info) 1491 return eSectionTypeDWARFDebugInfo; 1492 if (section_name == g_sect_name_dwarf_debug_line) 1493 return eSectionTypeDWARFDebugLine; 1494 if (section_name == g_sect_name_dwarf_debug_loc) 1495 return eSectionTypeDWARFDebugLoc; 1496 if (section_name == g_sect_name_dwarf_debug_loclists) 1497 return eSectionTypeDWARFDebugLocLists; 1498 if (section_name == g_sect_name_dwarf_debug_macinfo) 1499 return eSectionTypeDWARFDebugMacInfo; 1500 if (section_name == g_sect_name_dwarf_debug_names) 1501 return eSectionTypeDWARFDebugNames; 1502 if (section_name == g_sect_name_dwarf_debug_pubnames) 1503 return eSectionTypeDWARFDebugPubNames; 1504 if (section_name == g_sect_name_dwarf_debug_pubtypes) 1505 return eSectionTypeDWARFDebugPubTypes; 1506 if (section_name == g_sect_name_dwarf_debug_ranges) 1507 return eSectionTypeDWARFDebugRanges; 1508 if (section_name == g_sect_name_dwarf_debug_str) 1509 return eSectionTypeDWARFDebugStr; 1510 if (section_name == g_sect_name_dwarf_debug_types) 1511 return eSectionTypeDWARFDebugTypes; 1512 if (section_name == g_sect_name_dwarf_apple_names) 1513 return eSectionTypeDWARFAppleNames; 1514 if (section_name == g_sect_name_dwarf_apple_types) 1515 return eSectionTypeDWARFAppleTypes; 1516 if (section_name == g_sect_name_dwarf_apple_namespaces) 1517 return eSectionTypeDWARFAppleNamespaces; 1518 if (section_name == g_sect_name_dwarf_apple_objc) 1519 return eSectionTypeDWARFAppleObjC; 1520 if (section_name == g_sect_name_objc_selrefs) 1521 return eSectionTypeDataCStringPointers; 1522 if (section_name == g_sect_name_objc_msgrefs) 1523 return eSectionTypeDataObjCMessageRefs; 1524 if (section_name == g_sect_name_eh_frame) 1525 return eSectionTypeEHFrame; 1526 if (section_name == g_sect_name_compact_unwind) 1527 return eSectionTypeCompactUnwind; 1528 if (section_name == g_sect_name_cfstring) 1529 return eSectionTypeDataObjCCFStrings; 1530 if (section_name == g_sect_name_go_symtab) 1531 return eSectionTypeGoSymtab; 1532 if (section_name == g_sect_name_objc_data || 1533 section_name == g_sect_name_objc_classrefs || 1534 section_name == g_sect_name_objc_superrefs || 1535 section_name == g_sect_name_objc_const || 1536 section_name == g_sect_name_objc_classlist) { 1537 return eSectionTypeDataPointers; 1538 } 1539 1540 switch (mach_sect_type) { 1541 // TODO: categorize sections by other flags for regular sections 1542 case S_REGULAR: 1543 if (section_name == g_sect_name_text) 1544 return eSectionTypeCode; 1545 if (section_name == g_sect_name_data) 1546 return eSectionTypeData; 1547 return eSectionTypeOther; 1548 case S_ZEROFILL: 1549 return eSectionTypeZeroFill; 1550 case S_CSTRING_LITERALS: // section with only literal C strings 1551 return eSectionTypeDataCString; 1552 case S_4BYTE_LITERALS: // section with only 4 byte literals 1553 return eSectionTypeData4; 1554 case S_8BYTE_LITERALS: // section with only 8 byte literals 1555 return eSectionTypeData8; 1556 case S_LITERAL_POINTERS: // section with only pointers to literals 1557 return eSectionTypeDataPointers; 1558 case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers 1559 return eSectionTypeDataPointers; 1560 case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers 1561 return eSectionTypeDataPointers; 1562 case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in 1563 // the reserved2 field 1564 return eSectionTypeCode; 1565 case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for 1566 // initialization 1567 return eSectionTypeDataPointers; 1568 case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for 1569 // termination 1570 return eSectionTypeDataPointers; 1571 case S_COALESCED: 1572 return eSectionTypeOther; 1573 case S_GB_ZEROFILL: 1574 return eSectionTypeZeroFill; 1575 case S_INTERPOSING: // section with only pairs of function pointers for 1576 // interposing 1577 return eSectionTypeCode; 1578 case S_16BYTE_LITERALS: // section with only 16 byte literals 1579 return eSectionTypeData16; 1580 case S_DTRACE_DOF: 1581 return eSectionTypeDebug; 1582 case S_LAZY_DYLIB_SYMBOL_POINTERS: 1583 return eSectionTypeDataPointers; 1584 default: 1585 return eSectionTypeOther; 1586 } 1587 } 1588 1589 struct ObjectFileMachO::SegmentParsingContext { 1590 const EncryptedFileRanges EncryptedRanges; 1591 lldb_private::SectionList &UnifiedList; 1592 uint32_t NextSegmentIdx = 0; 1593 uint32_t NextSectionIdx = 0; 1594 bool FileAddressesChanged = false; 1595 1596 SegmentParsingContext(EncryptedFileRanges EncryptedRanges, 1597 lldb_private::SectionList &UnifiedList) 1598 : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {} 1599 }; 1600 1601 void ObjectFileMachO::ProcessSegmentCommand( 1602 const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset, 1603 uint32_t cmd_idx, SegmentParsingContext &context) { 1604 llvm::MachO::segment_command_64 load_cmd; 1605 memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_)); 1606 1607 if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16)) 1608 return; 1609 1610 ModuleSP module_sp = GetModule(); 1611 const bool is_core = GetType() == eTypeCoreFile; 1612 const bool is_dsym = (m_header.filetype == MH_DSYM); 1613 bool add_section = true; 1614 bool add_to_unified = true; 1615 ConstString const_segname( 1616 load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname))); 1617 1618 SectionSP unified_section_sp( 1619 context.UnifiedList.FindSectionByName(const_segname)); 1620 if (is_dsym && unified_section_sp) { 1621 if (const_segname == GetSegmentNameLINKEDIT()) { 1622 // We need to keep the __LINKEDIT segment private to this object file 1623 // only 1624 add_to_unified = false; 1625 } else { 1626 // This is the dSYM file and this section has already been created by the 1627 // object file, no need to create it. 1628 add_section = false; 1629 } 1630 } 1631 load_cmd.vmaddr = m_data.GetAddress(&offset); 1632 load_cmd.vmsize = m_data.GetAddress(&offset); 1633 load_cmd.fileoff = m_data.GetAddress(&offset); 1634 load_cmd.filesize = m_data.GetAddress(&offset); 1635 if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1636 return; 1637 1638 SanitizeSegmentCommand(load_cmd, cmd_idx); 1639 1640 const uint32_t segment_permissions = GetSegmentPermissions(load_cmd); 1641 const bool segment_is_encrypted = 1642 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1643 1644 // Keep a list of mach segments around in case we need to get at data that 1645 // isn't stored in the abstracted Sections. 1646 m_mach_segments.push_back(load_cmd); 1647 1648 // Use a segment ID of the segment index shifted left by 8 so they never 1649 // conflict with any of the sections. 1650 SectionSP segment_sp; 1651 if (add_section && (const_segname || is_core)) { 1652 segment_sp = std::make_shared<Section>( 1653 module_sp, // Module to which this section belongs 1654 this, // Object file to which this sections belongs 1655 ++context.NextSegmentIdx 1656 << 8, // Section ID is the 1 based segment index 1657 // shifted right by 8 bits as not to collide with any of the 256 1658 // section IDs that are possible 1659 const_segname, // Name of this section 1660 eSectionTypeContainer, // This section is a container of other 1661 // sections. 1662 load_cmd.vmaddr, // File VM address == addresses as they are 1663 // found in the object file 1664 load_cmd.vmsize, // VM size in bytes of this section 1665 load_cmd.fileoff, // Offset to the data for this section in 1666 // the file 1667 load_cmd.filesize, // Size in bytes of this section as found 1668 // in the file 1669 0, // Segments have no alignment information 1670 load_cmd.flags); // Flags for this section 1671 1672 segment_sp->SetIsEncrypted(segment_is_encrypted); 1673 m_sections_up->AddSection(segment_sp); 1674 segment_sp->SetPermissions(segment_permissions); 1675 if (add_to_unified) 1676 context.UnifiedList.AddSection(segment_sp); 1677 } else if (unified_section_sp) { 1678 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) { 1679 // Check to see if the module was read from memory? 1680 if (module_sp->GetObjectFile()->IsInMemory()) { 1681 // We have a module that is in memory and needs to have its file 1682 // address adjusted. We need to do this because when we load a file 1683 // from memory, its addresses will be slid already, yet the addresses 1684 // in the new symbol file will still be unslid. Since everything is 1685 // stored as section offset, this shouldn't cause any problems. 1686 1687 // Make sure we've parsed the symbol table from the ObjectFile before 1688 // we go around changing its Sections. 1689 module_sp->GetObjectFile()->GetSymtab(); 1690 // eh_frame would present the same problems but we parse that on a per- 1691 // function basis as-needed so it's more difficult to remove its use of 1692 // the Sections. Realistically, the environments where this code path 1693 // will be taken will not have eh_frame sections. 1694 1695 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1696 1697 // Notify the module that the section addresses have been changed once 1698 // we're done so any file-address caches can be updated. 1699 context.FileAddressesChanged = true; 1700 } 1701 } 1702 m_sections_up->AddSection(unified_section_sp); 1703 } 1704 1705 llvm::MachO::section_64 sect64; 1706 ::memset(§64, 0, sizeof(sect64)); 1707 // Push a section into our mach sections for the section at index zero 1708 // (NO_SECT) if we don't have any mach sections yet... 1709 if (m_mach_sections.empty()) 1710 m_mach_sections.push_back(sect64); 1711 uint32_t segment_sect_idx; 1712 const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1; 1713 1714 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1715 for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects; 1716 ++segment_sect_idx) { 1717 if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname, 1718 sizeof(sect64.sectname)) == nullptr) 1719 break; 1720 if (m_data.GetU8(&offset, (uint8_t *)sect64.segname, 1721 sizeof(sect64.segname)) == nullptr) 1722 break; 1723 sect64.addr = m_data.GetAddress(&offset); 1724 sect64.size = m_data.GetAddress(&offset); 1725 1726 if (m_data.GetU32(&offset, §64.offset, num_u32s) == nullptr) 1727 break; 1728 1729 if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) { 1730 sect64.offset = sect64.addr - m_text_address; 1731 } 1732 1733 // Keep a list of mach sections around in case we need to get at data that 1734 // isn't stored in the abstracted Sections. 1735 m_mach_sections.push_back(sect64); 1736 1737 if (add_section) { 1738 ConstString section_name( 1739 sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname))); 1740 if (!const_segname) { 1741 // We have a segment with no name so we need to conjure up segments 1742 // that correspond to the section's segname if there isn't already such 1743 // a section. If there is such a section, we resize the section so that 1744 // it spans all sections. We also mark these sections as fake so 1745 // address matches don't hit if they land in the gaps between the child 1746 // sections. 1747 const_segname.SetTrimmedCStringWithLength(sect64.segname, 1748 sizeof(sect64.segname)); 1749 segment_sp = context.UnifiedList.FindSectionByName(const_segname); 1750 if (segment_sp.get()) { 1751 Section *segment = segment_sp.get(); 1752 // Grow the section size as needed. 1753 const lldb::addr_t sect64_min_addr = sect64.addr; 1754 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1755 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1756 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1757 const lldb::addr_t curr_seg_max_addr = 1758 curr_seg_min_addr + curr_seg_byte_size; 1759 if (sect64_min_addr >= curr_seg_min_addr) { 1760 const lldb::addr_t new_seg_byte_size = 1761 sect64_max_addr - curr_seg_min_addr; 1762 // Only grow the section size if needed 1763 if (new_seg_byte_size > curr_seg_byte_size) 1764 segment->SetByteSize(new_seg_byte_size); 1765 } else { 1766 // We need to change the base address of the segment and adjust the 1767 // child section offsets for all existing children. 1768 const lldb::addr_t slide_amount = 1769 sect64_min_addr - curr_seg_min_addr; 1770 segment->Slide(slide_amount, false); 1771 segment->GetChildren().Slide(-slide_amount, false); 1772 segment->SetByteSize(curr_seg_max_addr - sect64_min_addr); 1773 } 1774 1775 // Grow the section size as needed. 1776 if (sect64.offset) { 1777 const lldb::addr_t segment_min_file_offset = 1778 segment->GetFileOffset(); 1779 const lldb::addr_t segment_max_file_offset = 1780 segment_min_file_offset + segment->GetFileSize(); 1781 1782 const lldb::addr_t section_min_file_offset = sect64.offset; 1783 const lldb::addr_t section_max_file_offset = 1784 section_min_file_offset + sect64.size; 1785 const lldb::addr_t new_file_offset = 1786 std::min(section_min_file_offset, segment_min_file_offset); 1787 const lldb::addr_t new_file_size = 1788 std::max(section_max_file_offset, segment_max_file_offset) - 1789 new_file_offset; 1790 segment->SetFileOffset(new_file_offset); 1791 segment->SetFileSize(new_file_size); 1792 } 1793 } else { 1794 // Create a fake section for the section's named segment 1795 segment_sp = std::make_shared<Section>( 1796 segment_sp, // Parent section 1797 module_sp, // Module to which this section belongs 1798 this, // Object file to which this section belongs 1799 ++context.NextSegmentIdx 1800 << 8, // Section ID is the 1 based segment index 1801 // shifted right by 8 bits as not to 1802 // collide with any of the 256 section IDs 1803 // that are possible 1804 const_segname, // Name of this section 1805 eSectionTypeContainer, // This section is a container of 1806 // other sections. 1807 sect64.addr, // File VM address == addresses as they are 1808 // found in the object file 1809 sect64.size, // VM size in bytes of this section 1810 sect64.offset, // Offset to the data for this section in 1811 // the file 1812 sect64.offset ? sect64.size : 0, // Size in bytes of 1813 // this section as 1814 // found in the file 1815 sect64.align, 1816 load_cmd.flags); // Flags for this section 1817 segment_sp->SetIsFake(true); 1818 segment_sp->SetPermissions(segment_permissions); 1819 m_sections_up->AddSection(segment_sp); 1820 if (add_to_unified) 1821 context.UnifiedList.AddSection(segment_sp); 1822 segment_sp->SetIsEncrypted(segment_is_encrypted); 1823 } 1824 } 1825 assert(segment_sp.get()); 1826 1827 lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name); 1828 1829 SectionSP section_sp(new Section( 1830 segment_sp, module_sp, this, ++context.NextSectionIdx, section_name, 1831 sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size, 1832 sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align, 1833 sect64.flags)); 1834 // Set the section to be encrypted to match the segment 1835 1836 bool section_is_encrypted = false; 1837 if (!segment_is_encrypted && load_cmd.filesize != 0) 1838 section_is_encrypted = context.EncryptedRanges.FindEntryThatContains( 1839 sect64.offset) != nullptr; 1840 1841 section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted); 1842 section_sp->SetPermissions(segment_permissions); 1843 segment_sp->GetChildren().AddSection(section_sp); 1844 1845 if (segment_sp->IsFake()) { 1846 segment_sp.reset(); 1847 const_segname.Clear(); 1848 } 1849 } 1850 } 1851 if (segment_sp && is_dsym) { 1852 if (first_segment_sectID <= context.NextSectionIdx) { 1853 lldb::user_id_t sect_uid; 1854 for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx; 1855 ++sect_uid) { 1856 SectionSP curr_section_sp( 1857 segment_sp->GetChildren().FindSectionByID(sect_uid)); 1858 SectionSP next_section_sp; 1859 if (sect_uid + 1 <= context.NextSectionIdx) 1860 next_section_sp = 1861 segment_sp->GetChildren().FindSectionByID(sect_uid + 1); 1862 1863 if (curr_section_sp.get()) { 1864 if (curr_section_sp->GetByteSize() == 0) { 1865 if (next_section_sp.get() != nullptr) 1866 curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() - 1867 curr_section_sp->GetFileAddress()); 1868 else 1869 curr_section_sp->SetByteSize(load_cmd.vmsize); 1870 } 1871 } 1872 } 1873 } 1874 } 1875 } 1876 1877 void ObjectFileMachO::ProcessDysymtabCommand( 1878 const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) { 1879 m_dysymtab.cmd = load_cmd.cmd; 1880 m_dysymtab.cmdsize = load_cmd.cmdsize; 1881 m_data.GetU32(&offset, &m_dysymtab.ilocalsym, 1882 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1883 } 1884 1885 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) { 1886 if (m_sections_up) 1887 return; 1888 1889 m_sections_up = std::make_unique<SectionList>(); 1890 1891 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1892 // bool dump_sections = false; 1893 ModuleSP module_sp(GetModule()); 1894 1895 offset = MachHeaderSizeFromMagic(m_header.magic); 1896 1897 SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list); 1898 llvm::MachO::load_command load_cmd; 1899 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1900 const lldb::offset_t load_cmd_offset = offset; 1901 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 1902 break; 1903 1904 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1905 ProcessSegmentCommand(load_cmd, offset, i, context); 1906 else if (load_cmd.cmd == LC_DYSYMTAB) 1907 ProcessDysymtabCommand(load_cmd, offset); 1908 1909 offset = load_cmd_offset + load_cmd.cmdsize; 1910 } 1911 1912 if (context.FileAddressesChanged && module_sp) 1913 module_sp->SectionFileAddressesChanged(); 1914 } 1915 1916 class MachSymtabSectionInfo { 1917 public: 1918 MachSymtabSectionInfo(SectionList *section_list) 1919 : m_section_list(section_list), m_section_infos() { 1920 // Get the number of sections down to a depth of 1 to include all segments 1921 // and their sections, but no other sections that may be added for debug 1922 // map or 1923 m_section_infos.resize(section_list->GetNumSections(1)); 1924 } 1925 1926 SectionSP GetSection(uint8_t n_sect, addr_t file_addr) { 1927 if (n_sect == 0) 1928 return SectionSP(); 1929 if (n_sect < m_section_infos.size()) { 1930 if (!m_section_infos[n_sect].section_sp) { 1931 SectionSP section_sp(m_section_list->FindSectionByID(n_sect)); 1932 m_section_infos[n_sect].section_sp = section_sp; 1933 if (section_sp) { 1934 m_section_infos[n_sect].vm_range.SetBaseAddress( 1935 section_sp->GetFileAddress()); 1936 m_section_infos[n_sect].vm_range.SetByteSize( 1937 section_sp->GetByteSize()); 1938 } else { 1939 std::string filename = "<unknown>"; 1940 SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0)); 1941 if (first_section_sp) 1942 filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath(); 1943 1944 Host::SystemLog(Host::eSystemLogError, 1945 "error: unable to find section %d for a symbol in " 1946 "%s, corrupt file?\n", 1947 n_sect, filename.c_str()); 1948 } 1949 } 1950 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) { 1951 // Symbol is in section. 1952 return m_section_infos[n_sect].section_sp; 1953 } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 && 1954 m_section_infos[n_sect].vm_range.GetBaseAddress() == 1955 file_addr) { 1956 // Symbol is in section with zero size, but has the same start address 1957 // as the section. This can happen with linker symbols (symbols that 1958 // start with the letter 'l' or 'L'. 1959 return m_section_infos[n_sect].section_sp; 1960 } 1961 } 1962 return m_section_list->FindSectionContainingFileAddress(file_addr); 1963 } 1964 1965 protected: 1966 struct SectionInfo { 1967 SectionInfo() : vm_range(), section_sp() {} 1968 1969 VMRange vm_range; 1970 SectionSP section_sp; 1971 }; 1972 SectionList *m_section_list; 1973 std::vector<SectionInfo> m_section_infos; 1974 }; 1975 1976 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63) 1977 struct TrieEntry { 1978 void Dump() const { 1979 printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 1980 static_cast<unsigned long long>(address), 1981 static_cast<unsigned long long>(flags), 1982 static_cast<unsigned long long>(other), name.GetCString()); 1983 if (import_name) 1984 printf(" -> \"%s\"\n", import_name.GetCString()); 1985 else 1986 printf("\n"); 1987 } 1988 ConstString name; 1989 uint64_t address = LLDB_INVALID_ADDRESS; 1990 uint64_t flags = 1991 0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, 1992 // TRIE_SYMBOL_IS_THUMB 1993 uint64_t other = 0; 1994 ConstString import_name; 1995 }; 1996 1997 struct TrieEntryWithOffset { 1998 lldb::offset_t nodeOffset; 1999 TrieEntry entry; 2000 2001 TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {} 2002 2003 void Dump(uint32_t idx) const { 2004 printf("[%3u] 0x%16.16llx: ", idx, 2005 static_cast<unsigned long long>(nodeOffset)); 2006 entry.Dump(); 2007 } 2008 2009 bool operator<(const TrieEntryWithOffset &other) const { 2010 return (nodeOffset < other.nodeOffset); 2011 } 2012 }; 2013 2014 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset, 2015 const bool is_arm, addr_t text_seg_base_addr, 2016 std::vector<llvm::StringRef> &nameSlices, 2017 std::set<lldb::addr_t> &resolver_addresses, 2018 std::vector<TrieEntryWithOffset> &reexports, 2019 std::vector<TrieEntryWithOffset> &ext_symbols) { 2020 if (!data.ValidOffset(offset)) 2021 return true; 2022 2023 // Terminal node -- end of a branch, possibly add this to 2024 // the symbol table or resolver table. 2025 const uint64_t terminalSize = data.GetULEB128(&offset); 2026 lldb::offset_t children_offset = offset + terminalSize; 2027 if (terminalSize != 0) { 2028 TrieEntryWithOffset e(offset); 2029 e.entry.flags = data.GetULEB128(&offset); 2030 const char *import_name = nullptr; 2031 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) { 2032 e.entry.address = 0; 2033 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2034 import_name = data.GetCStr(&offset); 2035 } else { 2036 e.entry.address = data.GetULEB128(&offset); 2037 if (text_seg_base_addr != LLDB_INVALID_ADDRESS) 2038 e.entry.address += text_seg_base_addr; 2039 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) { 2040 e.entry.other = data.GetULEB128(&offset); 2041 uint64_t resolver_addr = e.entry.other; 2042 if (text_seg_base_addr != LLDB_INVALID_ADDRESS) 2043 resolver_addr += text_seg_base_addr; 2044 if (is_arm) 2045 resolver_addr &= THUMB_ADDRESS_BIT_MASK; 2046 resolver_addresses.insert(resolver_addr); 2047 } else 2048 e.entry.other = 0; 2049 } 2050 bool add_this_entry = false; 2051 if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) && 2052 import_name && import_name[0]) { 2053 // add symbols that are reexport symbols with a valid import name. 2054 add_this_entry = true; 2055 } else if (e.entry.flags == 0 && 2056 (import_name == nullptr || import_name[0] == '\0')) { 2057 // add externally visible symbols, in case the nlist record has 2058 // been stripped/omitted. 2059 add_this_entry = true; 2060 } 2061 if (add_this_entry) { 2062 std::string name; 2063 if (!nameSlices.empty()) { 2064 for (auto name_slice : nameSlices) 2065 name.append(name_slice.data(), name_slice.size()); 2066 } 2067 if (name.size() > 1) { 2068 // Skip the leading '_' 2069 e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1); 2070 } 2071 if (import_name) { 2072 // Skip the leading '_' 2073 e.entry.import_name.SetCString(import_name + 1); 2074 } 2075 if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) { 2076 reexports.push_back(e); 2077 } else { 2078 if (is_arm && (e.entry.address & 1)) { 2079 e.entry.flags |= TRIE_SYMBOL_IS_THUMB; 2080 e.entry.address &= THUMB_ADDRESS_BIT_MASK; 2081 } 2082 ext_symbols.push_back(e); 2083 } 2084 } 2085 } 2086 2087 const uint8_t childrenCount = data.GetU8(&children_offset); 2088 for (uint8_t i = 0; i < childrenCount; ++i) { 2089 const char *cstr = data.GetCStr(&children_offset); 2090 if (cstr) 2091 nameSlices.push_back(llvm::StringRef(cstr)); 2092 else 2093 return false; // Corrupt data 2094 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2095 if (childNodeOffset) { 2096 if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr, 2097 nameSlices, resolver_addresses, reexports, 2098 ext_symbols)) { 2099 return false; 2100 } 2101 } 2102 nameSlices.pop_back(); 2103 } 2104 return true; 2105 } 2106 2107 static SymbolType GetSymbolType(const char *&symbol_name, 2108 bool &demangled_is_synthesized, 2109 const SectionSP &text_section_sp, 2110 const SectionSP &data_section_sp, 2111 const SectionSP &data_dirty_section_sp, 2112 const SectionSP &data_const_section_sp, 2113 const SectionSP &symbol_section) { 2114 SymbolType type = eSymbolTypeInvalid; 2115 2116 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 2117 if (symbol_section->IsDescendant(text_section_sp.get())) { 2118 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 2119 S_ATTR_SELF_MODIFYING_CODE | 2120 S_ATTR_SOME_INSTRUCTIONS)) 2121 type = eSymbolTypeData; 2122 else 2123 type = eSymbolTypeCode; 2124 } else if (symbol_section->IsDescendant(data_section_sp.get()) || 2125 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 2126 symbol_section->IsDescendant(data_const_section_sp.get())) { 2127 if (symbol_sect_name && 2128 ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { 2129 type = eSymbolTypeRuntime; 2130 2131 if (symbol_name) { 2132 llvm::StringRef symbol_name_ref(symbol_name); 2133 if (symbol_name_ref.startswith("OBJC_")) { 2134 static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_"); 2135 static const llvm::StringRef g_objc_v2_prefix_metaclass( 2136 "OBJC_METACLASS_$_"); 2137 static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_"); 2138 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 2139 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2140 type = eSymbolTypeObjCClass; 2141 demangled_is_synthesized = true; 2142 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { 2143 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2144 type = eSymbolTypeObjCMetaClass; 2145 demangled_is_synthesized = true; 2146 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { 2147 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2148 type = eSymbolTypeObjCIVar; 2149 demangled_is_synthesized = true; 2150 } 2151 } 2152 } 2153 } else if (symbol_sect_name && 2154 ::strstr(symbol_sect_name, "__gcc_except_tab") == 2155 symbol_sect_name) { 2156 type = eSymbolTypeException; 2157 } else { 2158 type = eSymbolTypeData; 2159 } 2160 } else if (symbol_sect_name && 2161 ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) { 2162 type = eSymbolTypeTrampoline; 2163 } 2164 return type; 2165 } 2166 2167 // Read the UUID out of a dyld_shared_cache file on-disk. 2168 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache, 2169 const ByteOrder byte_order, 2170 const uint32_t addr_byte_size) { 2171 UUID dsc_uuid; 2172 DataBufferSP DscData = MapFileData( 2173 dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); 2174 if (!DscData) 2175 return dsc_uuid; 2176 DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size); 2177 2178 char version_str[7]; 2179 lldb::offset_t offset = 0; 2180 memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6); 2181 version_str[6] = '\0'; 2182 if (strcmp(version_str, "dyld_v") == 0) { 2183 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid); 2184 dsc_uuid = UUID::fromOptionalData( 2185 dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t)); 2186 } 2187 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 2188 if (log && dsc_uuid.IsValid()) { 2189 LLDB_LOGF(log, "Shared cache %s has UUID %s", 2190 dyld_shared_cache.GetPath().c_str(), 2191 dsc_uuid.GetAsString().c_str()); 2192 } 2193 return dsc_uuid; 2194 } 2195 2196 static llvm::Optional<struct nlist_64> 2197 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset, 2198 size_t nlist_byte_size) { 2199 struct nlist_64 nlist; 2200 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2201 return {}; 2202 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 2203 nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset); 2204 nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset); 2205 nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset); 2206 nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset); 2207 return nlist; 2208 } 2209 2210 enum { DebugSymbols = true, NonDebugSymbols = false }; 2211 2212 size_t ObjectFileMachO::ParseSymtab() { 2213 LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", 2214 m_file.GetFilename().AsCString("")); 2215 ModuleSP module_sp(GetModule()); 2216 if (!module_sp) 2217 return 0; 2218 2219 Progress progress(llvm::formatv("Parsing symbol table for {0}", 2220 m_file.GetFilename().AsCString("<Unknown>"))); 2221 2222 llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0}; 2223 llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0}; 2224 llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 2225 // The data element of type bool indicates that this entry is thumb 2226 // code. 2227 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2228 2229 // Record the address of every function/data that we add to the symtab. 2230 // We add symbols to the table in the order of most information (nlist 2231 // records) to least (function starts), and avoid duplicating symbols 2232 // via this set. 2233 llvm::DenseSet<addr_t> symbols_added; 2234 2235 // We are using a llvm::DenseSet for "symbols_added" so we must be sure we 2236 // do not add the tombstone or empty keys to the set. 2237 auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) { 2238 // Don't add the tombstone or empty keys. 2239 if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1) 2240 return; 2241 symbols_added.insert(file_addr); 2242 }; 2243 FunctionStarts function_starts; 2244 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2245 uint32_t i; 2246 FileSpecList dylib_files; 2247 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 2248 llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_"); 2249 llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_"); 2250 llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); 2251 2252 for (i = 0; i < m_header.ncmds; ++i) { 2253 const lldb::offset_t cmd_offset = offset; 2254 // Read in the load command and load command size 2255 llvm::MachO::load_command lc; 2256 if (m_data.GetU32(&offset, &lc, 2) == nullptr) 2257 break; 2258 // Watch for the symbol table load command 2259 switch (lc.cmd) { 2260 case LC_SYMTAB: 2261 symtab_load_command.cmd = lc.cmd; 2262 symtab_load_command.cmdsize = lc.cmdsize; 2263 // Read in the rest of the symtab load command 2264 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 2265 nullptr) // fill in symoff, nsyms, stroff, strsize fields 2266 return 0; 2267 break; 2268 2269 case LC_DYLD_INFO: 2270 case LC_DYLD_INFO_ONLY: 2271 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) { 2272 dyld_info.cmd = lc.cmd; 2273 dyld_info.cmdsize = lc.cmdsize; 2274 } else { 2275 memset(&dyld_info, 0, sizeof(dyld_info)); 2276 } 2277 break; 2278 2279 case LC_LOAD_DYLIB: 2280 case LC_LOAD_WEAK_DYLIB: 2281 case LC_REEXPORT_DYLIB: 2282 case LC_LOADFVMLIB: 2283 case LC_LOAD_UPWARD_DYLIB: { 2284 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2285 const char *path = m_data.PeekCStr(name_offset); 2286 if (path) { 2287 FileSpec file_spec(path); 2288 // Strip the path if there is @rpath, @executable, etc so we just use 2289 // the basename 2290 if (path[0] == '@') 2291 file_spec.GetDirectory().Clear(); 2292 2293 if (lc.cmd == LC_REEXPORT_DYLIB) { 2294 m_reexported_dylibs.AppendIfUnique(file_spec); 2295 } 2296 2297 dylib_files.Append(file_spec); 2298 } 2299 } break; 2300 2301 case LC_FUNCTION_STARTS: 2302 function_starts_load_command.cmd = lc.cmd; 2303 function_starts_load_command.cmdsize = lc.cmdsize; 2304 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == 2305 nullptr) // fill in symoff, nsyms, stroff, strsize fields 2306 memset(&function_starts_load_command, 0, 2307 sizeof(function_starts_load_command)); 2308 break; 2309 2310 default: 2311 break; 2312 } 2313 offset = cmd_offset + lc.cmdsize; 2314 } 2315 2316 if (!symtab_load_command.cmd) 2317 return 0; 2318 2319 Symtab *symtab = m_symtab_up.get(); 2320 SectionList *section_list = GetSectionList(); 2321 if (section_list == nullptr) 2322 return 0; 2323 2324 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2325 const ByteOrder byte_order = m_data.GetByteOrder(); 2326 bool bit_width_32 = addr_byte_size == 4; 2327 const size_t nlist_byte_size = 2328 bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2329 2330 DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size); 2331 DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size); 2332 DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size); 2333 DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order, 2334 addr_byte_size); 2335 DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size); 2336 2337 const addr_t nlist_data_byte_size = 2338 symtab_load_command.nsyms * nlist_byte_size; 2339 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2340 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2341 2342 ProcessSP process_sp(m_process_wp.lock()); 2343 Process *process = process_sp.get(); 2344 2345 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2346 bool is_shared_cache_image = m_header.flags & MH_DYLIB_IN_CACHE; 2347 bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory(); 2348 SectionSP linkedit_section_sp( 2349 section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2350 2351 if (process && m_header.filetype != llvm::MachO::MH_OBJECT && 2352 !is_local_shared_cache_image) { 2353 Target &target = process->GetTarget(); 2354 2355 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2356 2357 // Reading mach file from memory in a process or core file... 2358 2359 if (linkedit_section_sp) { 2360 addr_t linkedit_load_addr = 2361 linkedit_section_sp->GetLoadBaseAddress(&target); 2362 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) { 2363 // We might be trying to access the symbol table before the 2364 // __LINKEDIT's load address has been set in the target. We can't 2365 // fail to read the symbol table, so calculate the right address 2366 // manually 2367 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage( 2368 m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2369 } 2370 2371 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2372 const addr_t symoff_addr = linkedit_load_addr + 2373 symtab_load_command.symoff - 2374 linkedit_file_offset; 2375 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - 2376 linkedit_file_offset; 2377 2378 // Always load dyld - the dynamic linker - from memory if we didn't 2379 // find a binary anywhere else. lldb will not register 2380 // dylib/framework/bundle loads/unloads if we don't have the dyld 2381 // symbols, we force dyld to load from memory despite the user's 2382 // target.memory-module-load-level setting. 2383 if (memory_module_load_level == eMemoryModuleLoadLevelComplete || 2384 m_header.filetype == llvm::MachO::MH_DYLINKER) { 2385 DataBufferSP nlist_data_sp( 2386 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size)); 2387 if (nlist_data_sp) 2388 nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2389 if (m_dysymtab.nindirectsyms != 0) { 2390 const addr_t indirect_syms_addr = linkedit_load_addr + 2391 m_dysymtab.indirectsymoff - 2392 linkedit_file_offset; 2393 DataBufferSP indirect_syms_data_sp(ReadMemory( 2394 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2395 if (indirect_syms_data_sp) 2396 indirect_symbol_index_data.SetData( 2397 indirect_syms_data_sp, 0, 2398 indirect_syms_data_sp->GetByteSize()); 2399 // If this binary is outside the shared cache, 2400 // cache the string table. 2401 // Binaries in the shared cache all share a giant string table, 2402 // and we can't share the string tables across multiple 2403 // ObjectFileMachO's, so we'd end up re-reading this mega-strtab 2404 // for every binary in the shared cache - it would be a big perf 2405 // problem. For binaries outside the shared cache, it's faster to 2406 // read the entire strtab at once instead of piece-by-piece as we 2407 // process the nlist records. 2408 if (!is_shared_cache_image) { 2409 DataBufferSP strtab_data_sp( 2410 ReadMemory(process_sp, strtab_addr, strtab_data_byte_size)); 2411 if (strtab_data_sp) { 2412 strtab_data.SetData(strtab_data_sp, 0, 2413 strtab_data_sp->GetByteSize()); 2414 } 2415 } 2416 } 2417 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) { 2418 if (function_starts_load_command.cmd) { 2419 const addr_t func_start_addr = 2420 linkedit_load_addr + function_starts_load_command.dataoff - 2421 linkedit_file_offset; 2422 DataBufferSP func_start_data_sp( 2423 ReadMemory(process_sp, func_start_addr, 2424 function_starts_load_command.datasize)); 2425 if (func_start_data_sp) 2426 function_starts_data.SetData(func_start_data_sp, 0, 2427 func_start_data_sp->GetByteSize()); 2428 } 2429 } 2430 } 2431 } 2432 } else { 2433 if (is_local_shared_cache_image) { 2434 // The load commands in shared cache images are relative to the 2435 // beginning of the shared cache, not the library image. The 2436 // data we get handed when creating the ObjectFileMachO starts 2437 // at the beginning of a specific library and spans to the end 2438 // of the cache to be able to reach the shared LINKEDIT 2439 // segments. We need to convert the load command offsets to be 2440 // relative to the beginning of our specific image. 2441 lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset(); 2442 lldb::offset_t linkedit_slide = 2443 linkedit_offset - m_linkedit_original_offset; 2444 symtab_load_command.symoff += linkedit_slide; 2445 symtab_load_command.stroff += linkedit_slide; 2446 dyld_info.export_off += linkedit_slide; 2447 m_dysymtab.indirectsymoff += linkedit_slide; 2448 function_starts_load_command.dataoff += linkedit_slide; 2449 } 2450 2451 nlist_data.SetData(m_data, symtab_load_command.symoff, 2452 nlist_data_byte_size); 2453 strtab_data.SetData(m_data, symtab_load_command.stroff, 2454 strtab_data_byte_size); 2455 2456 if (dyld_info.export_size > 0) { 2457 dyld_trie_data.SetData(m_data, dyld_info.export_off, 2458 dyld_info.export_size); 2459 } 2460 2461 if (m_dysymtab.nindirectsyms != 0) { 2462 indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff, 2463 m_dysymtab.nindirectsyms * 4); 2464 } 2465 if (function_starts_load_command.cmd) { 2466 function_starts_data.SetData(m_data, function_starts_load_command.dataoff, 2467 function_starts_load_command.datasize); 2468 } 2469 } 2470 2471 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2472 2473 ConstString g_segment_name_TEXT = GetSegmentNameTEXT(); 2474 ConstString g_segment_name_DATA = GetSegmentNameDATA(); 2475 ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); 2476 ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); 2477 ConstString g_segment_name_OBJC = GetSegmentNameOBJC(); 2478 ConstString g_section_name_eh_frame = GetSectionNameEHFrame(); 2479 SectionSP text_section_sp( 2480 section_list->FindSectionByName(g_segment_name_TEXT)); 2481 SectionSP data_section_sp( 2482 section_list->FindSectionByName(g_segment_name_DATA)); 2483 SectionSP data_dirty_section_sp( 2484 section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); 2485 SectionSP data_const_section_sp( 2486 section_list->FindSectionByName(g_segment_name_DATA_CONST)); 2487 SectionSP objc_section_sp( 2488 section_list->FindSectionByName(g_segment_name_OBJC)); 2489 SectionSP eh_frame_section_sp; 2490 if (text_section_sp.get()) 2491 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName( 2492 g_section_name_eh_frame); 2493 else 2494 eh_frame_section_sp = 2495 section_list->FindSectionByName(g_section_name_eh_frame); 2496 2497 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2498 const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions(); 2499 2500 // lldb works best if it knows the start address of all functions in a 2501 // module. Linker symbols or debug info are normally the best source of 2502 // information for start addr / size but they may be stripped in a released 2503 // binary. Two additional sources of information exist in Mach-O binaries: 2504 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each 2505 // function's start address in the 2506 // binary, relative to the text section. 2507 // eh_frame - the eh_frame FDEs have the start addr & size of 2508 // each function 2509 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on 2510 // all modern binaries. 2511 // Binaries built to run on older releases may need to use eh_frame 2512 // information. 2513 2514 if (text_section_sp && function_starts_data.GetByteSize()) { 2515 FunctionStarts::Entry function_start_entry; 2516 function_start_entry.data = false; 2517 lldb::offset_t function_start_offset = 0; 2518 function_start_entry.addr = text_section_sp->GetFileAddress(); 2519 uint64_t delta; 2520 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 2521 0) { 2522 // Now append the current entry 2523 function_start_entry.addr += delta; 2524 if (is_arm) { 2525 if (function_start_entry.addr & 1) { 2526 function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK; 2527 function_start_entry.data = true; 2528 } else if (always_thumb) { 2529 function_start_entry.data = true; 2530 } 2531 } 2532 function_starts.Append(function_start_entry); 2533 } 2534 } else { 2535 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the 2536 // load command claiming an eh_frame but it doesn't actually have the 2537 // eh_frame content. And if we have a dSYM, we don't need to do any of 2538 // this fill-in-the-missing-symbols works anyway - the debug info should 2539 // give us all the functions in the module. 2540 if (text_section_sp.get() && eh_frame_section_sp.get() && 2541 m_type != eTypeDebugInfo) { 2542 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, 2543 DWARFCallFrameInfo::EH); 2544 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2545 eh_frame.GetFunctionAddressAndSizeVector(functions); 2546 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2547 size_t count = functions.GetSize(); 2548 for (size_t i = 0; i < count; ++i) { 2549 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = 2550 functions.GetEntryAtIndex(i); 2551 if (func) { 2552 FunctionStarts::Entry function_start_entry; 2553 function_start_entry.addr = func->base - text_base_addr; 2554 if (is_arm) { 2555 if (function_start_entry.addr & 1) { 2556 function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK; 2557 function_start_entry.data = true; 2558 } else if (always_thumb) { 2559 function_start_entry.data = true; 2560 } 2561 } 2562 function_starts.Append(function_start_entry); 2563 } 2564 } 2565 } 2566 } 2567 2568 const size_t function_starts_count = function_starts.GetSize(); 2569 2570 // For user process binaries (executables, dylibs, frameworks, bundles), if 2571 // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're 2572 // going to assume the binary has been stripped. Don't allow assembly 2573 // language instruction emulation because we don't know proper function 2574 // start boundaries. 2575 // 2576 // For all other types of binaries (kernels, stand-alone bare board 2577 // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame 2578 // sections - we should not make any assumptions about them based on that. 2579 if (function_starts_count == 0 && CalculateStrata() == eStrataUser) { 2580 m_allow_assembly_emulation_unwind_plans = false; 2581 Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet( 2582 LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND)); 2583 2584 if (unwind_or_symbol_log) 2585 module_sp->LogMessage( 2586 unwind_or_symbol_log, 2587 "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds"); 2588 } 2589 2590 const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() 2591 ? eh_frame_section_sp->GetID() 2592 : static_cast<user_id_t>(NO_SECT); 2593 2594 lldb::offset_t nlist_data_offset = 0; 2595 2596 uint32_t N_SO_index = UINT32_MAX; 2597 2598 MachSymtabSectionInfo section_info(section_list); 2599 std::vector<uint32_t> N_FUN_indexes; 2600 std::vector<uint32_t> N_NSYM_indexes; 2601 std::vector<uint32_t> N_INCL_indexes; 2602 std::vector<uint32_t> N_BRAC_indexes; 2603 std::vector<uint32_t> N_COMM_indexes; 2604 typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap; 2605 typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2606 typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap; 2607 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2608 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2609 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2610 // Any symbols that get merged into another will get an entry in this map 2611 // so we know 2612 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2613 uint32_t nlist_idx = 0; 2614 Symbol *symbol_ptr = nullptr; 2615 2616 uint32_t sym_idx = 0; 2617 Symbol *sym = nullptr; 2618 size_t num_syms = 0; 2619 std::string memory_symbol_name; 2620 uint32_t unmapped_local_symbols_found = 0; 2621 2622 std::vector<TrieEntryWithOffset> reexport_trie_entries; 2623 std::vector<TrieEntryWithOffset> external_sym_trie_entries; 2624 std::set<lldb::addr_t> resolver_addresses; 2625 2626 if (dyld_trie_data.GetByteSize() > 0) { 2627 ConstString text_segment_name("__TEXT"); 2628 SectionSP text_segment_sp = 2629 GetSectionList()->FindSectionByName(text_segment_name); 2630 lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS; 2631 if (text_segment_sp) 2632 text_segment_file_addr = text_segment_sp->GetFileAddress(); 2633 std::vector<llvm::StringRef> nameSlices; 2634 ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr, 2635 nameSlices, resolver_addresses, reexport_trie_entries, 2636 external_sym_trie_entries); 2637 } 2638 2639 typedef std::set<ConstString> IndirectSymbols; 2640 IndirectSymbols indirect_symbol_names; 2641 2642 #if TARGET_OS_IPHONE 2643 2644 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been 2645 // optimized by moving LOCAL symbols out of the memory mapped portion of 2646 // the DSC. The symbol information has all been retained, but it isn't 2647 // available in the normal nlist data. However, there *are* duplicate 2648 // entries of *some* 2649 // LOCAL symbols in the normal nlist data. To handle this situation 2650 // correctly, we must first attempt 2651 // to parse any DSC unmapped symbol information. If we find any, we set a 2652 // flag that tells the normal nlist parser to ignore all LOCAL symbols. 2653 2654 if (m_header.flags & MH_DYLIB_IN_CACHE) { 2655 // Before we can start mapping the DSC, we need to make certain the 2656 // target process is actually using the cache we can find. 2657 2658 // Next we need to determine the correct path for the dyld shared cache. 2659 2660 ArchSpec header_arch = GetArchitecture(); 2661 char dsc_path[PATH_MAX]; 2662 char dsc_path_development[PATH_MAX]; 2663 2664 snprintf( 2665 dsc_path, sizeof(dsc_path), "%s%s%s", 2666 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR 2667 */ 2668 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2669 header_arch.GetArchitectureName()); 2670 2671 snprintf( 2672 dsc_path_development, sizeof(dsc_path), "%s%s%s%s", 2673 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR 2674 */ 2675 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2676 header_arch.GetArchitectureName(), ".development"); 2677 2678 FileSpec dsc_nondevelopment_filespec(dsc_path); 2679 FileSpec dsc_development_filespec(dsc_path_development); 2680 FileSpec dsc_filespec; 2681 2682 UUID dsc_uuid; 2683 UUID process_shared_cache_uuid; 2684 addr_t process_shared_cache_base_addr; 2685 2686 if (process) { 2687 GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, 2688 process_shared_cache_uuid); 2689 } 2690 2691 // First see if we can find an exact match for the inferior process 2692 // shared cache UUID in the development or non-development shared caches 2693 // on disk. 2694 if (process_shared_cache_uuid.IsValid()) { 2695 if (FileSystem::Instance().Exists(dsc_development_filespec)) { 2696 UUID dsc_development_uuid = GetSharedCacheUUID( 2697 dsc_development_filespec, byte_order, addr_byte_size); 2698 if (dsc_development_uuid.IsValid() && 2699 dsc_development_uuid == process_shared_cache_uuid) { 2700 dsc_filespec = dsc_development_filespec; 2701 dsc_uuid = dsc_development_uuid; 2702 } 2703 } 2704 if (!dsc_uuid.IsValid() && 2705 FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) { 2706 UUID dsc_nondevelopment_uuid = GetSharedCacheUUID( 2707 dsc_nondevelopment_filespec, byte_order, addr_byte_size); 2708 if (dsc_nondevelopment_uuid.IsValid() && 2709 dsc_nondevelopment_uuid == process_shared_cache_uuid) { 2710 dsc_filespec = dsc_nondevelopment_filespec; 2711 dsc_uuid = dsc_nondevelopment_uuid; 2712 } 2713 } 2714 } 2715 2716 // Failing a UUID match, prefer the development dyld_shared cache if both 2717 // are present. 2718 if (!FileSystem::Instance().Exists(dsc_filespec)) { 2719 if (FileSystem::Instance().Exists(dsc_development_filespec)) { 2720 dsc_filespec = dsc_development_filespec; 2721 } else { 2722 dsc_filespec = dsc_nondevelopment_filespec; 2723 } 2724 } 2725 2726 /* The dyld_cache_header has a pointer to the 2727 dyld_cache_local_symbols_info structure (localSymbolsOffset). 2728 The dyld_cache_local_symbols_info structure gives us three things: 2729 1. The start and count of the nlist records in the dyld_shared_cache 2730 file 2731 2. The start and size of the strings for these nlist records 2732 3. The start and count of dyld_cache_local_symbols_entry entries 2733 2734 There is one dyld_cache_local_symbols_entry per dylib/framework in the 2735 dyld shared cache. 2736 The "dylibOffset" field is the Mach-O header of this dylib/framework in 2737 the dyld shared cache. 2738 The dyld_cache_local_symbols_entry also lists the start of this 2739 dylib/framework's nlist records 2740 and the count of how many nlist records there are for this 2741 dylib/framework. 2742 */ 2743 2744 // Process the dyld shared cache header to find the unmapped symbols 2745 2746 DataBufferSP dsc_data_sp = MapFileData( 2747 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); 2748 if (!dsc_uuid.IsValid()) { 2749 dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size); 2750 } 2751 if (dsc_data_sp) { 2752 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2753 2754 bool uuid_match = true; 2755 if (dsc_uuid.IsValid() && process) { 2756 if (process_shared_cache_uuid.IsValid() && 2757 dsc_uuid != process_shared_cache_uuid) { 2758 // The on-disk dyld_shared_cache file is not the same as the one in 2759 // this process' memory, don't use it. 2760 uuid_match = false; 2761 ModuleSP module_sp(GetModule()); 2762 if (module_sp) 2763 module_sp->ReportWarning("process shared cache does not match " 2764 "on-disk dyld_shared_cache file, some " 2765 "symbol names will be missing."); 2766 } 2767 } 2768 2769 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2770 2771 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2772 2773 // If the mappingOffset points to a location inside the header, we've 2774 // opened an old dyld shared cache, and should not proceed further. 2775 if (uuid_match && 2776 mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) { 2777 2778 DataBufferSP dsc_mapping_info_data_sp = MapFileData( 2779 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info), 2780 mappingOffset); 2781 2782 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, 2783 byte_order, addr_byte_size); 2784 offset = 0; 2785 2786 // The File addresses (from the in-memory Mach-O load commands) for 2787 // the shared libraries in the shared library cache need to be 2788 // adjusted by an offset to match up with the dylibOffset identifying 2789 // field in the dyld_cache_local_symbol_entry's. This offset is 2790 // recorded in mapping_offset_value. 2791 const uint64_t mapping_offset_value = 2792 dsc_mapping_info_data.GetU64(&offset); 2793 2794 offset = 2795 offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2796 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2797 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2798 2799 if (localSymbolsOffset && localSymbolsSize) { 2800 // Map the local symbols 2801 DataBufferSP dsc_local_symbols_data_sp = 2802 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset); 2803 2804 if (dsc_local_symbols_data_sp) { 2805 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, 2806 byte_order, addr_byte_size); 2807 2808 offset = 0; 2809 2810 typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap; 2811 typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName; 2812 UndefinedNameToDescMap undefined_name_to_desc; 2813 SymbolIndexToName reexport_shlib_needs_fixup; 2814 2815 // Read the local_symbols_infos struct in one shot 2816 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2817 dsc_local_symbols_data.GetU32(&offset, 2818 &local_symbols_info.nlistOffset, 6); 2819 2820 SectionSP text_section_sp( 2821 section_list->FindSectionByName(GetSegmentNameTEXT())); 2822 2823 uint32_t header_file_offset = 2824 (text_section_sp->GetFileAddress() - mapping_offset_value); 2825 2826 offset = local_symbols_info.entriesOffset; 2827 for (uint32_t entry_index = 0; 2828 entry_index < local_symbols_info.entriesCount; entry_index++) { 2829 struct lldb_copy_dyld_cache_local_symbols_entry 2830 local_symbols_entry; 2831 local_symbols_entry.dylibOffset = 2832 dsc_local_symbols_data.GetU32(&offset); 2833 local_symbols_entry.nlistStartIndex = 2834 dsc_local_symbols_data.GetU32(&offset); 2835 local_symbols_entry.nlistCount = 2836 dsc_local_symbols_data.GetU32(&offset); 2837 2838 if (header_file_offset == local_symbols_entry.dylibOffset) { 2839 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2840 2841 // The normal nlist code cannot correctly size the Symbols 2842 // array, we need to allocate it here. 2843 sym = symtab->Resize( 2844 symtab_load_command.nsyms + m_dysymtab.nindirectsyms + 2845 unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2846 num_syms = symtab->GetNumSymbols(); 2847 2848 nlist_data_offset = 2849 local_symbols_info.nlistOffset + 2850 (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2851 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2852 2853 for (uint32_t nlist_index = 0; 2854 nlist_index < local_symbols_entry.nlistCount; 2855 nlist_index++) { 2856 ///////////////////////////// 2857 { 2858 llvm::Optional<struct nlist_64> nlist_maybe = 2859 ParseNList(dsc_local_symbols_data, nlist_data_offset, 2860 nlist_byte_size); 2861 if (!nlist_maybe) 2862 break; 2863 struct nlist_64 nlist = *nlist_maybe; 2864 2865 SymbolType type = eSymbolTypeInvalid; 2866 const char *symbol_name = dsc_local_symbols_data.PeekCStr( 2867 string_table_offset + nlist.n_strx); 2868 2869 if (symbol_name == NULL) { 2870 // No symbol should be NULL, even the symbols with no 2871 // string values should have an offset zero which 2872 // points to an empty C-string 2873 Host::SystemLog( 2874 Host::eSystemLogError, 2875 "error: DSC unmapped local symbol[%u] has invalid " 2876 "string table offset 0x%x in %s, ignoring symbol\n", 2877 entry_index, nlist.n_strx, 2878 module_sp->GetFileSpec().GetPath().c_str()); 2879 continue; 2880 } 2881 if (symbol_name[0] == '\0') 2882 symbol_name = NULL; 2883 2884 const char *symbol_name_non_abi_mangled = NULL; 2885 2886 SectionSP symbol_section; 2887 uint32_t symbol_byte_size = 0; 2888 bool add_nlist = true; 2889 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2890 bool demangled_is_synthesized = false; 2891 bool is_gsym = false; 2892 bool set_value = true; 2893 2894 assert(sym_idx < num_syms); 2895 2896 sym[sym_idx].SetDebug(is_debug); 2897 2898 if (is_debug) { 2899 switch (nlist.n_type) { 2900 case N_GSYM: 2901 // global symbol: name,,NO_SECT,type,0 2902 // Sometimes the N_GSYM value contains the address. 2903 2904 // FIXME: In the .o files, we have a GSYM and a debug 2905 // symbol for all the ObjC data. They 2906 // have the same address, but we want to ensure that 2907 // we always find only the real symbol, 'cause we 2908 // don't currently correctly attribute the 2909 // GSYM one to the ObjCClass/Ivar/MetaClass 2910 // symbol type. This is a temporary hack to make 2911 // sure the ObjectiveC symbols get treated correctly. 2912 // To do this right, we should coalesce all the GSYM 2913 // & global symbols that have the same address. 2914 2915 is_gsym = true; 2916 sym[sym_idx].SetExternal(true); 2917 2918 if (symbol_name && symbol_name[0] == '_' && 2919 symbol_name[1] == 'O') { 2920 llvm::StringRef symbol_name_ref(symbol_name); 2921 if (symbol_name_ref.startswith( 2922 g_objc_v2_prefix_class)) { 2923 symbol_name_non_abi_mangled = symbol_name + 1; 2924 symbol_name = 2925 symbol_name + g_objc_v2_prefix_class.size(); 2926 type = eSymbolTypeObjCClass; 2927 demangled_is_synthesized = true; 2928 2929 } else if (symbol_name_ref.startswith( 2930 g_objc_v2_prefix_metaclass)) { 2931 symbol_name_non_abi_mangled = symbol_name + 1; 2932 symbol_name = 2933 symbol_name + g_objc_v2_prefix_metaclass.size(); 2934 type = eSymbolTypeObjCMetaClass; 2935 demangled_is_synthesized = true; 2936 } else if (symbol_name_ref.startswith( 2937 g_objc_v2_prefix_ivar)) { 2938 symbol_name_non_abi_mangled = symbol_name + 1; 2939 symbol_name = 2940 symbol_name + g_objc_v2_prefix_ivar.size(); 2941 type = eSymbolTypeObjCIVar; 2942 demangled_is_synthesized = true; 2943 } 2944 } else { 2945 if (nlist.n_value != 0) 2946 symbol_section = section_info.GetSection( 2947 nlist.n_sect, nlist.n_value); 2948 type = eSymbolTypeData; 2949 } 2950 break; 2951 2952 case N_FNAME: 2953 // procedure name (f77 kludge): name,,NO_SECT,0,0 2954 type = eSymbolTypeCompiler; 2955 break; 2956 2957 case N_FUN: 2958 // procedure: name,,n_sect,linenumber,address 2959 if (symbol_name) { 2960 type = eSymbolTypeCode; 2961 symbol_section = section_info.GetSection( 2962 nlist.n_sect, nlist.n_value); 2963 2964 N_FUN_addr_to_sym_idx.insert( 2965 std::make_pair(nlist.n_value, sym_idx)); 2966 // We use the current number of symbols in the 2967 // symbol table in lieu of using nlist_idx in case 2968 // we ever start trimming entries out 2969 N_FUN_indexes.push_back(sym_idx); 2970 } else { 2971 type = eSymbolTypeCompiler; 2972 2973 if (!N_FUN_indexes.empty()) { 2974 // Copy the size of the function into the 2975 // original 2976 // STAB entry so we don't have 2977 // to hunt for it later 2978 symtab->SymbolAtIndex(N_FUN_indexes.back()) 2979 ->SetByteSize(nlist.n_value); 2980 N_FUN_indexes.pop_back(); 2981 // We don't really need the end function STAB as 2982 // it contains the size which we already placed 2983 // with the original symbol, so don't add it if 2984 // we want a minimal symbol table 2985 add_nlist = false; 2986 } 2987 } 2988 break; 2989 2990 case N_STSYM: 2991 // static symbol: name,,n_sect,type,address 2992 N_STSYM_addr_to_sym_idx.insert( 2993 std::make_pair(nlist.n_value, sym_idx)); 2994 symbol_section = section_info.GetSection(nlist.n_sect, 2995 nlist.n_value); 2996 if (symbol_name && symbol_name[0]) { 2997 type = ObjectFile::GetSymbolTypeFromName( 2998 symbol_name + 1, eSymbolTypeData); 2999 } 3000 break; 3001 3002 case N_LCSYM: 3003 // .lcomm symbol: name,,n_sect,type,address 3004 symbol_section = section_info.GetSection(nlist.n_sect, 3005 nlist.n_value); 3006 type = eSymbolTypeCommonBlock; 3007 break; 3008 3009 case N_BNSYM: 3010 // We use the current number of symbols in the symbol 3011 // table in lieu of using nlist_idx in case we ever 3012 // start trimming entries out Skip these if we want 3013 // minimal symbol tables 3014 add_nlist = false; 3015 break; 3016 3017 case N_ENSYM: 3018 // Set the size of the N_BNSYM to the terminating 3019 // index of this N_ENSYM so that we can always skip 3020 // the entire symbol if we need to navigate more 3021 // quickly at the source level when parsing STABS 3022 // Skip these if we want minimal symbol tables 3023 add_nlist = false; 3024 break; 3025 3026 case N_OPT: 3027 // emitted with gcc2_compiled and in gcc source 3028 type = eSymbolTypeCompiler; 3029 break; 3030 3031 case N_RSYM: 3032 // register sym: name,,NO_SECT,type,register 3033 type = eSymbolTypeVariable; 3034 break; 3035 3036 case N_SLINE: 3037 // src line: 0,,n_sect,linenumber,address 3038 symbol_section = section_info.GetSection(nlist.n_sect, 3039 nlist.n_value); 3040 type = eSymbolTypeLineEntry; 3041 break; 3042 3043 case N_SSYM: 3044 // structure elt: name,,NO_SECT,type,struct_offset 3045 type = eSymbolTypeVariableType; 3046 break; 3047 3048 case N_SO: 3049 // source file name 3050 type = eSymbolTypeSourceFile; 3051 if (symbol_name == NULL) { 3052 add_nlist = false; 3053 if (N_SO_index != UINT32_MAX) { 3054 // Set the size of the N_SO to the terminating 3055 // index of this N_SO so that we can always skip 3056 // the entire N_SO if we need to navigate more 3057 // quickly at the source level when parsing STABS 3058 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3059 symbol_ptr->SetByteSize(sym_idx); 3060 symbol_ptr->SetSizeIsSibling(true); 3061 } 3062 N_NSYM_indexes.clear(); 3063 N_INCL_indexes.clear(); 3064 N_BRAC_indexes.clear(); 3065 N_COMM_indexes.clear(); 3066 N_FUN_indexes.clear(); 3067 N_SO_index = UINT32_MAX; 3068 } else { 3069 // We use the current number of symbols in the 3070 // symbol table in lieu of using nlist_idx in case 3071 // we ever start trimming entries out 3072 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3073 if (N_SO_has_full_path) { 3074 if ((N_SO_index == sym_idx - 1) && 3075 ((sym_idx - 1) < num_syms)) { 3076 // We have two consecutive N_SO entries where 3077 // the first contains a directory and the 3078 // second contains a full path. 3079 sym[sym_idx - 1].GetMangled().SetValue( 3080 ConstString(symbol_name), false); 3081 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3082 add_nlist = false; 3083 } else { 3084 // This is the first entry in a N_SO that 3085 // contains a directory or 3086 // a full path to the source file 3087 N_SO_index = sym_idx; 3088 } 3089 } else if ((N_SO_index == sym_idx - 1) && 3090 ((sym_idx - 1) < num_syms)) { 3091 // This is usually the second N_SO entry that 3092 // contains just the filename, so here we combine 3093 // it with the first one if we are minimizing the 3094 // symbol table 3095 const char *so_path = sym[sym_idx - 1] 3096 .GetMangled() 3097 .GetDemangledName() 3098 .AsCString(); 3099 if (so_path && so_path[0]) { 3100 std::string full_so_path(so_path); 3101 const size_t double_slash_pos = 3102 full_so_path.find("//"); 3103 if (double_slash_pos != std::string::npos) { 3104 // The linker has been generating bad N_SO 3105 // entries with doubled up paths 3106 // in the format "%s%s" where the first 3107 // string in the DW_AT_comp_dir, and the 3108 // second is the directory for the source 3109 // file so you end up with a path that looks 3110 // like "/tmp/src//tmp/src/" 3111 FileSpec so_dir(so_path); 3112 if (!FileSystem::Instance().Exists(so_dir)) { 3113 so_dir.SetFile( 3114 &full_so_path[double_slash_pos + 1], 3115 FileSpec::Style::native); 3116 if (FileSystem::Instance().Exists(so_dir)) { 3117 // Trim off the incorrect path 3118 full_so_path.erase(0, double_slash_pos + 1); 3119 } 3120 } 3121 } 3122 if (*full_so_path.rbegin() != '/') 3123 full_so_path += '/'; 3124 full_so_path += symbol_name; 3125 sym[sym_idx - 1].GetMangled().SetValue( 3126 ConstString(full_so_path.c_str()), false); 3127 add_nlist = false; 3128 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3129 } 3130 } else { 3131 // This could be a relative path to a N_SO 3132 N_SO_index = sym_idx; 3133 } 3134 } 3135 break; 3136 3137 case N_OSO: 3138 // object file name: name,,0,0,st_mtime 3139 type = eSymbolTypeObjectFile; 3140 break; 3141 3142 case N_LSYM: 3143 // local sym: name,,NO_SECT,type,offset 3144 type = eSymbolTypeLocal; 3145 break; 3146 3147 // INCL scopes 3148 case N_BINCL: 3149 // include file beginning: name,,NO_SECT,0,sum We use 3150 // the current number of symbols in the symbol table 3151 // in lieu of using nlist_idx in case we ever start 3152 // trimming entries out 3153 N_INCL_indexes.push_back(sym_idx); 3154 type = eSymbolTypeScopeBegin; 3155 break; 3156 3157 case N_EINCL: 3158 // include file end: name,,NO_SECT,0,0 3159 // Set the size of the N_BINCL to the terminating 3160 // index of this N_EINCL so that we can always skip 3161 // the entire symbol if we need to navigate more 3162 // quickly at the source level when parsing STABS 3163 if (!N_INCL_indexes.empty()) { 3164 symbol_ptr = 3165 symtab->SymbolAtIndex(N_INCL_indexes.back()); 3166 symbol_ptr->SetByteSize(sym_idx + 1); 3167 symbol_ptr->SetSizeIsSibling(true); 3168 N_INCL_indexes.pop_back(); 3169 } 3170 type = eSymbolTypeScopeEnd; 3171 break; 3172 3173 case N_SOL: 3174 // #included file name: name,,n_sect,0,address 3175 type = eSymbolTypeHeaderFile; 3176 3177 // We currently don't use the header files on darwin 3178 add_nlist = false; 3179 break; 3180 3181 case N_PARAMS: 3182 // compiler parameters: name,,NO_SECT,0,0 3183 type = eSymbolTypeCompiler; 3184 break; 3185 3186 case N_VERSION: 3187 // compiler version: name,,NO_SECT,0,0 3188 type = eSymbolTypeCompiler; 3189 break; 3190 3191 case N_OLEVEL: 3192 // compiler -O level: name,,NO_SECT,0,0 3193 type = eSymbolTypeCompiler; 3194 break; 3195 3196 case N_PSYM: 3197 // parameter: name,,NO_SECT,type,offset 3198 type = eSymbolTypeVariable; 3199 break; 3200 3201 case N_ENTRY: 3202 // alternate entry: name,,n_sect,linenumber,address 3203 symbol_section = section_info.GetSection(nlist.n_sect, 3204 nlist.n_value); 3205 type = eSymbolTypeLineEntry; 3206 break; 3207 3208 // Left and Right Braces 3209 case N_LBRAC: 3210 // left bracket: 0,,NO_SECT,nesting level,address We 3211 // use the current number of symbols in the symbol 3212 // table in lieu of using nlist_idx in case we ever 3213 // start trimming entries out 3214 symbol_section = section_info.GetSection(nlist.n_sect, 3215 nlist.n_value); 3216 N_BRAC_indexes.push_back(sym_idx); 3217 type = eSymbolTypeScopeBegin; 3218 break; 3219 3220 case N_RBRAC: 3221 // right bracket: 0,,NO_SECT,nesting level,address 3222 // Set the size of the N_LBRAC to the terminating 3223 // index of this N_RBRAC so that we can always skip 3224 // the entire symbol if we need to navigate more 3225 // quickly at the source level when parsing STABS 3226 symbol_section = section_info.GetSection(nlist.n_sect, 3227 nlist.n_value); 3228 if (!N_BRAC_indexes.empty()) { 3229 symbol_ptr = 3230 symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3231 symbol_ptr->SetByteSize(sym_idx + 1); 3232 symbol_ptr->SetSizeIsSibling(true); 3233 N_BRAC_indexes.pop_back(); 3234 } 3235 type = eSymbolTypeScopeEnd; 3236 break; 3237 3238 case N_EXCL: 3239 // deleted include file: name,,NO_SECT,0,sum 3240 type = eSymbolTypeHeaderFile; 3241 break; 3242 3243 // COMM scopes 3244 case N_BCOMM: 3245 // begin common: name,,NO_SECT,0,0 3246 // We use the current number of symbols in the symbol 3247 // table in lieu of using nlist_idx in case we ever 3248 // start trimming entries out 3249 type = eSymbolTypeScopeBegin; 3250 N_COMM_indexes.push_back(sym_idx); 3251 break; 3252 3253 case N_ECOML: 3254 // end common (local name): 0,,n_sect,0,address 3255 symbol_section = section_info.GetSection(nlist.n_sect, 3256 nlist.n_value); 3257 // Fall through 3258 3259 case N_ECOMM: 3260 // end common: name,,n_sect,0,0 3261 // Set the size of the N_BCOMM to the terminating 3262 // index of this N_ECOMM/N_ECOML so that we can 3263 // always skip the entire symbol if we need to 3264 // navigate more quickly at the source level when 3265 // parsing STABS 3266 if (!N_COMM_indexes.empty()) { 3267 symbol_ptr = 3268 symtab->SymbolAtIndex(N_COMM_indexes.back()); 3269 symbol_ptr->SetByteSize(sym_idx + 1); 3270 symbol_ptr->SetSizeIsSibling(true); 3271 N_COMM_indexes.pop_back(); 3272 } 3273 type = eSymbolTypeScopeEnd; 3274 break; 3275 3276 case N_LENG: 3277 // second stab entry with length information 3278 type = eSymbolTypeAdditional; 3279 break; 3280 3281 default: 3282 break; 3283 } 3284 } else { 3285 // uint8_t n_pext = N_PEXT & nlist.n_type; 3286 uint8_t n_type = N_TYPE & nlist.n_type; 3287 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3288 3289 switch (n_type) { 3290 case N_INDR: { 3291 const char *reexport_name_cstr = 3292 strtab_data.PeekCStr(nlist.n_value); 3293 if (reexport_name_cstr && reexport_name_cstr[0]) { 3294 type = eSymbolTypeReExported; 3295 ConstString reexport_name( 3296 reexport_name_cstr + 3297 ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3298 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3299 set_value = false; 3300 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3301 indirect_symbol_names.insert(ConstString( 3302 symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3303 } else 3304 type = eSymbolTypeUndefined; 3305 } break; 3306 3307 case N_UNDF: 3308 if (symbol_name && symbol_name[0]) { 3309 ConstString undefined_name( 3310 symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3311 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3312 } 3313 // Fall through 3314 case N_PBUD: 3315 type = eSymbolTypeUndefined; 3316 break; 3317 3318 case N_ABS: 3319 type = eSymbolTypeAbsolute; 3320 break; 3321 3322 case N_SECT: { 3323 symbol_section = section_info.GetSection(nlist.n_sect, 3324 nlist.n_value); 3325 3326 if (symbol_section == NULL) { 3327 // TODO: warn about this? 3328 add_nlist = false; 3329 break; 3330 } 3331 3332 if (TEXT_eh_frame_sectID == nlist.n_sect) { 3333 type = eSymbolTypeException; 3334 } else { 3335 uint32_t section_type = 3336 symbol_section->Get() & SECTION_TYPE; 3337 3338 switch (section_type) { 3339 case S_CSTRING_LITERALS: 3340 type = eSymbolTypeData; 3341 break; // section with only literal C strings 3342 case S_4BYTE_LITERALS: 3343 type = eSymbolTypeData; 3344 break; // section with only 4 byte literals 3345 case S_8BYTE_LITERALS: 3346 type = eSymbolTypeData; 3347 break; // section with only 8 byte literals 3348 case S_LITERAL_POINTERS: 3349 type = eSymbolTypeTrampoline; 3350 break; // section with only pointers to literals 3351 case S_NON_LAZY_SYMBOL_POINTERS: 3352 type = eSymbolTypeTrampoline; 3353 break; // section with only non-lazy symbol 3354 // pointers 3355 case S_LAZY_SYMBOL_POINTERS: 3356 type = eSymbolTypeTrampoline; 3357 break; // section with only lazy symbol pointers 3358 case S_SYMBOL_STUBS: 3359 type = eSymbolTypeTrampoline; 3360 break; // section with only symbol stubs, byte 3361 // size of stub in the reserved2 field 3362 case S_MOD_INIT_FUNC_POINTERS: 3363 type = eSymbolTypeCode; 3364 break; // section with only function pointers for 3365 // initialization 3366 case S_MOD_TERM_FUNC_POINTERS: 3367 type = eSymbolTypeCode; 3368 break; // section with only function pointers for 3369 // termination 3370 case S_INTERPOSING: 3371 type = eSymbolTypeTrampoline; 3372 break; // section with only pairs of function 3373 // pointers for interposing 3374 case S_16BYTE_LITERALS: 3375 type = eSymbolTypeData; 3376 break; // section with only 16 byte literals 3377 case S_DTRACE_DOF: 3378 type = eSymbolTypeInstrumentation; 3379 break; 3380 case S_LAZY_DYLIB_SYMBOL_POINTERS: 3381 type = eSymbolTypeTrampoline; 3382 break; 3383 default: 3384 switch (symbol_section->GetType()) { 3385 case lldb::eSectionTypeCode: 3386 type = eSymbolTypeCode; 3387 break; 3388 case eSectionTypeData: 3389 case eSectionTypeDataCString: // Inlined C string 3390 // data 3391 case eSectionTypeDataCStringPointers: // Pointers 3392 // to C 3393 // string 3394 // data 3395 case eSectionTypeDataSymbolAddress: // Address of 3396 // a symbol in 3397 // the symbol 3398 // table 3399 case eSectionTypeData4: 3400 case eSectionTypeData8: 3401 case eSectionTypeData16: 3402 type = eSymbolTypeData; 3403 break; 3404 default: 3405 break; 3406 } 3407 break; 3408 } 3409 3410 if (type == eSymbolTypeInvalid) { 3411 const char *symbol_sect_name = 3412 symbol_section->GetName().AsCString(); 3413 if (symbol_section->IsDescendant( 3414 text_section_sp.get())) { 3415 if (symbol_section->IsClear( 3416 S_ATTR_PURE_INSTRUCTIONS | 3417 S_ATTR_SELF_MODIFYING_CODE | 3418 S_ATTR_SOME_INSTRUCTIONS)) 3419 type = eSymbolTypeData; 3420 else 3421 type = eSymbolTypeCode; 3422 } else if (symbol_section->IsDescendant( 3423 data_section_sp.get()) || 3424 symbol_section->IsDescendant( 3425 data_dirty_section_sp.get()) || 3426 symbol_section->IsDescendant( 3427 data_const_section_sp.get())) { 3428 if (symbol_sect_name && 3429 ::strstr(symbol_sect_name, "__objc") == 3430 symbol_sect_name) { 3431 type = eSymbolTypeRuntime; 3432 3433 if (symbol_name) { 3434 llvm::StringRef symbol_name_ref(symbol_name); 3435 if (symbol_name_ref.startswith("_OBJC_")) { 3436 llvm::StringRef 3437 g_objc_v2_prefix_class( 3438 "_OBJC_CLASS_$_"); 3439 llvm::StringRef 3440 g_objc_v2_prefix_metaclass( 3441 "_OBJC_METACLASS_$_"); 3442 llvm::StringRef 3443 g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); 3444 if (symbol_name_ref.startswith( 3445 g_objc_v2_prefix_class)) { 3446 symbol_name_non_abi_mangled = 3447 symbol_name + 1; 3448 symbol_name = 3449 symbol_name + 3450 g_objc_v2_prefix_class.size(); 3451 type = eSymbolTypeObjCClass; 3452 demangled_is_synthesized = true; 3453 } else if ( 3454 symbol_name_ref.startswith( 3455 g_objc_v2_prefix_metaclass)) { 3456 symbol_name_non_abi_mangled = 3457 symbol_name + 1; 3458 symbol_name = 3459 symbol_name + 3460 g_objc_v2_prefix_metaclass.size(); 3461 type = eSymbolTypeObjCMetaClass; 3462 demangled_is_synthesized = true; 3463 } else if (symbol_name_ref.startswith( 3464 g_objc_v2_prefix_ivar)) { 3465 symbol_name_non_abi_mangled = 3466 symbol_name + 1; 3467 symbol_name = 3468 symbol_name + 3469 g_objc_v2_prefix_ivar.size(); 3470 type = eSymbolTypeObjCIVar; 3471 demangled_is_synthesized = true; 3472 } 3473 } 3474 } 3475 } else if (symbol_sect_name && 3476 ::strstr(symbol_sect_name, 3477 "__gcc_except_tab") == 3478 symbol_sect_name) { 3479 type = eSymbolTypeException; 3480 } else { 3481 type = eSymbolTypeData; 3482 } 3483 } else if (symbol_sect_name && 3484 ::strstr(symbol_sect_name, "__IMPORT") == 3485 symbol_sect_name) { 3486 type = eSymbolTypeTrampoline; 3487 } else if (symbol_section->IsDescendant( 3488 objc_section_sp.get())) { 3489 type = eSymbolTypeRuntime; 3490 if (symbol_name && symbol_name[0] == '.') { 3491 llvm::StringRef symbol_name_ref(symbol_name); 3492 llvm::StringRef 3493 g_objc_v1_prefix_class(".objc_class_name_"); 3494 if (symbol_name_ref.startswith( 3495 g_objc_v1_prefix_class)) { 3496 symbol_name_non_abi_mangled = symbol_name; 3497 symbol_name = symbol_name + 3498 g_objc_v1_prefix_class.size(); 3499 type = eSymbolTypeObjCClass; 3500 demangled_is_synthesized = true; 3501 } 3502 } 3503 } 3504 } 3505 } 3506 } break; 3507 } 3508 } 3509 3510 if (add_nlist) { 3511 uint64_t symbol_value = nlist.n_value; 3512 if (symbol_name_non_abi_mangled) { 3513 sym[sym_idx].GetMangled().SetMangledName( 3514 ConstString(symbol_name_non_abi_mangled)); 3515 sym[sym_idx].GetMangled().SetDemangledName( 3516 ConstString(symbol_name)); 3517 } else { 3518 bool symbol_name_is_mangled = false; 3519 3520 if (symbol_name && symbol_name[0] == '_') { 3521 symbol_name_is_mangled = symbol_name[1] == '_'; 3522 symbol_name++; // Skip the leading underscore 3523 } 3524 3525 if (symbol_name) { 3526 ConstString const_symbol_name(symbol_name); 3527 sym[sym_idx].GetMangled().SetValue( 3528 const_symbol_name, symbol_name_is_mangled); 3529 if (is_gsym && is_debug) { 3530 const char *gsym_name = 3531 sym[sym_idx] 3532 .GetMangled() 3533 .GetName(Mangled::ePreferMangled) 3534 .GetCString(); 3535 if (gsym_name) 3536 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3537 } 3538 } 3539 } 3540 if (symbol_section) { 3541 const addr_t section_file_addr = 3542 symbol_section->GetFileAddress(); 3543 if (symbol_byte_size == 0 && 3544 function_starts_count > 0) { 3545 addr_t symbol_lookup_file_addr = nlist.n_value; 3546 // Do an exact address match for non-ARM addresses, 3547 // else get the closest since the symbol might be a 3548 // thumb symbol which has an address with bit zero 3549 // set 3550 FunctionStarts::Entry *func_start_entry = 3551 function_starts.FindEntry(symbol_lookup_file_addr, 3552 !is_arm); 3553 if (is_arm && func_start_entry) { 3554 // Verify that the function start address is the 3555 // symbol address (ARM) or the symbol address + 1 3556 // (thumb) 3557 if (func_start_entry->addr != 3558 symbol_lookup_file_addr && 3559 func_start_entry->addr != 3560 (symbol_lookup_file_addr + 1)) { 3561 // Not the right entry, NULL it out... 3562 func_start_entry = NULL; 3563 } 3564 } 3565 if (func_start_entry) { 3566 func_start_entry->data = true; 3567 3568 addr_t symbol_file_addr = func_start_entry->addr; 3569 uint32_t symbol_flags = 0; 3570 if (is_arm) { 3571 if (symbol_file_addr & 1) 3572 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3573 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3574 } 3575 3576 const FunctionStarts::Entry *next_func_start_entry = 3577 function_starts.FindNextEntry(func_start_entry); 3578 const addr_t section_end_file_addr = 3579 section_file_addr + 3580 symbol_section->GetByteSize(); 3581 if (next_func_start_entry) { 3582 addr_t next_symbol_file_addr = 3583 next_func_start_entry->addr; 3584 // Be sure the clear the Thumb address bit when 3585 // we calculate the size from the current and 3586 // next address 3587 if (is_arm) 3588 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3589 symbol_byte_size = std::min<lldb::addr_t>( 3590 next_symbol_file_addr - symbol_file_addr, 3591 section_end_file_addr - symbol_file_addr); 3592 } else { 3593 symbol_byte_size = 3594 section_end_file_addr - symbol_file_addr; 3595 } 3596 } 3597 } 3598 symbol_value -= section_file_addr; 3599 } 3600 3601 if (is_debug == false) { 3602 if (type == eSymbolTypeCode) { 3603 // See if we can find a N_FUN entry for any code 3604 // symbols. If we do find a match, and the name 3605 // matches, then we can merge the two into just the 3606 // function symbol to avoid duplicate entries in 3607 // the symbol table 3608 auto range = 3609 N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3610 if (range.first != range.second) { 3611 bool found_it = false; 3612 for (auto pos = range.first; pos != range.second; 3613 ++pos) { 3614 if (sym[sym_idx].GetMangled().GetName( 3615 Mangled::ePreferMangled) == 3616 sym[pos->second].GetMangled().GetName( 3617 Mangled::ePreferMangled)) { 3618 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3619 // We just need the flags from the linker 3620 // symbol, so put these flags 3621 // into the N_FUN flags to avoid duplicate 3622 // symbols in the symbol table 3623 sym[pos->second].SetExternal( 3624 sym[sym_idx].IsExternal()); 3625 sym[pos->second].SetFlags(nlist.n_type << 16 | 3626 nlist.n_desc); 3627 if (resolver_addresses.find(nlist.n_value) != 3628 resolver_addresses.end()) 3629 sym[pos->second].SetType(eSymbolTypeResolver); 3630 sym[sym_idx].Clear(); 3631 found_it = true; 3632 break; 3633 } 3634 } 3635 if (found_it) 3636 continue; 3637 } else { 3638 if (resolver_addresses.find(nlist.n_value) != 3639 resolver_addresses.end()) 3640 type = eSymbolTypeResolver; 3641 } 3642 } else if (type == eSymbolTypeData || 3643 type == eSymbolTypeObjCClass || 3644 type == eSymbolTypeObjCMetaClass || 3645 type == eSymbolTypeObjCIVar) { 3646 // See if we can find a N_STSYM entry for any data 3647 // symbols. If we do find a match, and the name 3648 // matches, then we can merge the two into just the 3649 // Static symbol to avoid duplicate entries in the 3650 // symbol table 3651 auto range = N_STSYM_addr_to_sym_idx.equal_range( 3652 nlist.n_value); 3653 if (range.first != range.second) { 3654 bool found_it = false; 3655 for (auto pos = range.first; pos != range.second; 3656 ++pos) { 3657 if (sym[sym_idx].GetMangled().GetName( 3658 Mangled::ePreferMangled) == 3659 sym[pos->second].GetMangled().GetName( 3660 Mangled::ePreferMangled)) { 3661 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3662 // We just need the flags from the linker 3663 // symbol, so put these flags 3664 // into the N_STSYM flags to avoid duplicate 3665 // symbols in the symbol table 3666 sym[pos->second].SetExternal( 3667 sym[sym_idx].IsExternal()); 3668 sym[pos->second].SetFlags(nlist.n_type << 16 | 3669 nlist.n_desc); 3670 sym[sym_idx].Clear(); 3671 found_it = true; 3672 break; 3673 } 3674 } 3675 if (found_it) 3676 continue; 3677 } else { 3678 const char *gsym_name = 3679 sym[sym_idx] 3680 .GetMangled() 3681 .GetName(Mangled::ePreferMangled) 3682 .GetCString(); 3683 if (gsym_name) { 3684 // Combine N_GSYM stab entries with the non 3685 // stab symbol 3686 ConstNameToSymbolIndexMap::const_iterator pos = 3687 N_GSYM_name_to_sym_idx.find(gsym_name); 3688 if (pos != N_GSYM_name_to_sym_idx.end()) { 3689 const uint32_t GSYM_sym_idx = pos->second; 3690 m_nlist_idx_to_sym_idx[nlist_idx] = 3691 GSYM_sym_idx; 3692 // Copy the address, because often the N_GSYM 3693 // address has an invalid address of zero 3694 // when the global is a common symbol 3695 sym[GSYM_sym_idx].GetAddressRef().SetSection( 3696 symbol_section); 3697 sym[GSYM_sym_idx].GetAddressRef().SetOffset( 3698 symbol_value); 3699 add_symbol_addr(sym[GSYM_sym_idx] 3700 .GetAddress() 3701 .GetFileAddress()); 3702 // We just need the flags from the linker 3703 // symbol, so put these flags 3704 // into the N_GSYM flags to avoid duplicate 3705 // symbols in the symbol table 3706 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | 3707 nlist.n_desc); 3708 sym[sym_idx].Clear(); 3709 continue; 3710 } 3711 } 3712 } 3713 } 3714 } 3715 3716 sym[sym_idx].SetID(nlist_idx); 3717 sym[sym_idx].SetType(type); 3718 if (set_value) { 3719 sym[sym_idx].GetAddressRef().SetSection(symbol_section); 3720 sym[sym_idx].GetAddressRef().SetOffset(symbol_value); 3721 add_symbol_addr( 3722 sym[sym_idx].GetAddress().GetFileAddress()); 3723 } 3724 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 3725 3726 if (symbol_byte_size > 0) 3727 sym[sym_idx].SetByteSize(symbol_byte_size); 3728 3729 if (demangled_is_synthesized) 3730 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3731 ++sym_idx; 3732 } else { 3733 sym[sym_idx].Clear(); 3734 } 3735 } 3736 ///////////////////////////// 3737 } 3738 break; // No more entries to consider 3739 } 3740 } 3741 3742 for (const auto &pos : reexport_shlib_needs_fixup) { 3743 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3744 if (undef_pos != undefined_name_to_desc.end()) { 3745 const uint8_t dylib_ordinal = 3746 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3747 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3748 sym[pos.first].SetReExportedSymbolSharedLibrary( 3749 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); 3750 } 3751 } 3752 } 3753 } 3754 } 3755 } 3756 } 3757 3758 // Must reset this in case it was mutated above! 3759 nlist_data_offset = 0; 3760 #endif 3761 3762 if (nlist_data.GetByteSize() > 0) { 3763 3764 // If the sym array was not created while parsing the DSC unmapped 3765 // symbols, create it now. 3766 if (sym == nullptr) { 3767 sym = 3768 symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3769 num_syms = symtab->GetNumSymbols(); 3770 } 3771 3772 if (unmapped_local_symbols_found) { 3773 assert(m_dysymtab.ilocalsym == 0); 3774 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3775 nlist_idx = m_dysymtab.nlocalsym; 3776 } else { 3777 nlist_idx = 0; 3778 } 3779 3780 typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap; 3781 typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName; 3782 UndefinedNameToDescMap undefined_name_to_desc; 3783 SymbolIndexToName reexport_shlib_needs_fixup; 3784 3785 // Symtab parsing is a huge mess. Everything is entangled and the code 3786 // requires access to a ridiculous amount of variables. LLDB depends 3787 // heavily on the proper merging of symbols and to get that right we need 3788 // to make sure we have parsed all the debug symbols first. Therefore we 3789 // invoke the lambda twice, once to parse only the debug symbols and then 3790 // once more to parse the remaining symbols. 3791 auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx, 3792 bool debug_only) { 3793 const bool is_debug = ((nlist.n_type & N_STAB) != 0); 3794 if (is_debug != debug_only) 3795 return true; 3796 3797 const char *symbol_name_non_abi_mangled = nullptr; 3798 const char *symbol_name = nullptr; 3799 3800 if (have_strtab_data) { 3801 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3802 3803 if (symbol_name == nullptr) { 3804 // No symbol should be NULL, even the symbols with no string values 3805 // should have an offset zero which points to an empty C-string 3806 Host::SystemLog(Host::eSystemLogError, 3807 "error: symbol[%u] has invalid string table offset " 3808 "0x%x in %s, ignoring symbol\n", 3809 nlist_idx, nlist.n_strx, 3810 module_sp->GetFileSpec().GetPath().c_str()); 3811 return true; 3812 } 3813 if (symbol_name[0] == '\0') 3814 symbol_name = nullptr; 3815 } else { 3816 const addr_t str_addr = strtab_addr + nlist.n_strx; 3817 Status str_error; 3818 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, 3819 str_error)) 3820 symbol_name = memory_symbol_name.c_str(); 3821 } 3822 3823 SymbolType type = eSymbolTypeInvalid; 3824 SectionSP symbol_section; 3825 lldb::addr_t symbol_byte_size = 0; 3826 bool add_nlist = true; 3827 bool is_gsym = false; 3828 bool demangled_is_synthesized = false; 3829 bool set_value = true; 3830 3831 assert(sym_idx < num_syms); 3832 sym[sym_idx].SetDebug(is_debug); 3833 3834 if (is_debug) { 3835 switch (nlist.n_type) { 3836 case N_GSYM: 3837 // global symbol: name,,NO_SECT,type,0 3838 // Sometimes the N_GSYM value contains the address. 3839 3840 // FIXME: In the .o files, we have a GSYM and a debug symbol for all 3841 // the ObjC data. They 3842 // have the same address, but we want to ensure that we always find 3843 // only the real symbol, 'cause we don't currently correctly 3844 // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol 3845 // type. This is a temporary hack to make sure the ObjectiveC 3846 // symbols get treated correctly. To do this right, we should 3847 // coalesce all the GSYM & global symbols that have the same 3848 // address. 3849 is_gsym = true; 3850 sym[sym_idx].SetExternal(true); 3851 3852 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { 3853 llvm::StringRef symbol_name_ref(symbol_name); 3854 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 3855 symbol_name_non_abi_mangled = symbol_name + 1; 3856 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3857 type = eSymbolTypeObjCClass; 3858 demangled_is_synthesized = true; 3859 3860 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { 3861 symbol_name_non_abi_mangled = symbol_name + 1; 3862 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3863 type = eSymbolTypeObjCMetaClass; 3864 demangled_is_synthesized = true; 3865 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { 3866 symbol_name_non_abi_mangled = symbol_name + 1; 3867 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3868 type = eSymbolTypeObjCIVar; 3869 demangled_is_synthesized = true; 3870 } 3871 } else { 3872 if (nlist.n_value != 0) 3873 symbol_section = 3874 section_info.GetSection(nlist.n_sect, nlist.n_value); 3875 type = eSymbolTypeData; 3876 } 3877 break; 3878 3879 case N_FNAME: 3880 // procedure name (f77 kludge): name,,NO_SECT,0,0 3881 type = eSymbolTypeCompiler; 3882 break; 3883 3884 case N_FUN: 3885 // procedure: name,,n_sect,linenumber,address 3886 if (symbol_name) { 3887 type = eSymbolTypeCode; 3888 symbol_section = 3889 section_info.GetSection(nlist.n_sect, nlist.n_value); 3890 3891 N_FUN_addr_to_sym_idx.insert( 3892 std::make_pair(nlist.n_value, sym_idx)); 3893 // We use the current number of symbols in the symbol table in 3894 // lieu of using nlist_idx in case we ever start trimming entries 3895 // out 3896 N_FUN_indexes.push_back(sym_idx); 3897 } else { 3898 type = eSymbolTypeCompiler; 3899 3900 if (!N_FUN_indexes.empty()) { 3901 // Copy the size of the function into the original STAB entry 3902 // so we don't have to hunt for it later 3903 symtab->SymbolAtIndex(N_FUN_indexes.back()) 3904 ->SetByteSize(nlist.n_value); 3905 N_FUN_indexes.pop_back(); 3906 // We don't really need the end function STAB as it contains 3907 // the size which we already placed with the original symbol, 3908 // so don't add it if we want a minimal symbol table 3909 add_nlist = false; 3910 } 3911 } 3912 break; 3913 3914 case N_STSYM: 3915 // static symbol: name,,n_sect,type,address 3916 N_STSYM_addr_to_sym_idx.insert( 3917 std::make_pair(nlist.n_value, sym_idx)); 3918 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 3919 if (symbol_name && symbol_name[0]) { 3920 type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1, 3921 eSymbolTypeData); 3922 } 3923 break; 3924 3925 case N_LCSYM: 3926 // .lcomm symbol: name,,n_sect,type,address 3927 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 3928 type = eSymbolTypeCommonBlock; 3929 break; 3930 3931 case N_BNSYM: 3932 // We use the current number of symbols in the symbol table in lieu 3933 // of using nlist_idx in case we ever start trimming entries out 3934 // Skip these if we want minimal symbol tables 3935 add_nlist = false; 3936 break; 3937 3938 case N_ENSYM: 3939 // Set the size of the N_BNSYM to the terminating index of this 3940 // N_ENSYM so that we can always skip the entire symbol if we need 3941 // to navigate more quickly at the source level when parsing STABS 3942 // Skip these if we want minimal symbol tables 3943 add_nlist = false; 3944 break; 3945 3946 case N_OPT: 3947 // emitted with gcc2_compiled and in gcc source 3948 type = eSymbolTypeCompiler; 3949 break; 3950 3951 case N_RSYM: 3952 // register sym: name,,NO_SECT,type,register 3953 type = eSymbolTypeVariable; 3954 break; 3955 3956 case N_SLINE: 3957 // src line: 0,,n_sect,linenumber,address 3958 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 3959 type = eSymbolTypeLineEntry; 3960 break; 3961 3962 case N_SSYM: 3963 // structure elt: name,,NO_SECT,type,struct_offset 3964 type = eSymbolTypeVariableType; 3965 break; 3966 3967 case N_SO: 3968 // source file name 3969 type = eSymbolTypeSourceFile; 3970 if (symbol_name == nullptr) { 3971 add_nlist = false; 3972 if (N_SO_index != UINT32_MAX) { 3973 // Set the size of the N_SO to the terminating index of this 3974 // N_SO so that we can always skip the entire N_SO if we need 3975 // to navigate more quickly at the source level when parsing 3976 // STABS 3977 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3978 symbol_ptr->SetByteSize(sym_idx); 3979 symbol_ptr->SetSizeIsSibling(true); 3980 } 3981 N_NSYM_indexes.clear(); 3982 N_INCL_indexes.clear(); 3983 N_BRAC_indexes.clear(); 3984 N_COMM_indexes.clear(); 3985 N_FUN_indexes.clear(); 3986 N_SO_index = UINT32_MAX; 3987 } else { 3988 // We use the current number of symbols in the symbol table in 3989 // lieu of using nlist_idx in case we ever start trimming entries 3990 // out 3991 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3992 if (N_SO_has_full_path) { 3993 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { 3994 // We have two consecutive N_SO entries where the first 3995 // contains a directory and the second contains a full path. 3996 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), 3997 false); 3998 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3999 add_nlist = false; 4000 } else { 4001 // This is the first entry in a N_SO that contains a 4002 // directory or a full path to the source file 4003 N_SO_index = sym_idx; 4004 } 4005 } else if ((N_SO_index == sym_idx - 1) && 4006 ((sym_idx - 1) < num_syms)) { 4007 // This is usually the second N_SO entry that contains just the 4008 // filename, so here we combine it with the first one if we are 4009 // minimizing the symbol table 4010 const char *so_path = 4011 sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 4012 if (so_path && so_path[0]) { 4013 std::string full_so_path(so_path); 4014 const size_t double_slash_pos = full_so_path.find("//"); 4015 if (double_slash_pos != std::string::npos) { 4016 // The linker has been generating bad N_SO entries with 4017 // doubled up paths in the format "%s%s" where the first 4018 // string in the DW_AT_comp_dir, and the second is the 4019 // directory for the source file so you end up with a path 4020 // that looks like "/tmp/src//tmp/src/" 4021 FileSpec so_dir(so_path); 4022 if (!FileSystem::Instance().Exists(so_dir)) { 4023 so_dir.SetFile(&full_so_path[double_slash_pos + 1], 4024 FileSpec::Style::native); 4025 if (FileSystem::Instance().Exists(so_dir)) { 4026 // Trim off the incorrect path 4027 full_so_path.erase(0, double_slash_pos + 1); 4028 } 4029 } 4030 } 4031 if (*full_so_path.rbegin() != '/') 4032 full_so_path += '/'; 4033 full_so_path += symbol_name; 4034 sym[sym_idx - 1].GetMangled().SetValue( 4035 ConstString(full_so_path.c_str()), false); 4036 add_nlist = false; 4037 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 4038 } 4039 } else { 4040 // This could be a relative path to a N_SO 4041 N_SO_index = sym_idx; 4042 } 4043 } 4044 break; 4045 4046 case N_OSO: 4047 // object file name: name,,0,0,st_mtime 4048 type = eSymbolTypeObjectFile; 4049 break; 4050 4051 case N_LSYM: 4052 // local sym: name,,NO_SECT,type,offset 4053 type = eSymbolTypeLocal; 4054 break; 4055 4056 // INCL scopes 4057 case N_BINCL: 4058 // include file beginning: name,,NO_SECT,0,sum We use the current 4059 // number of symbols in the symbol table in lieu of using nlist_idx 4060 // in case we ever start trimming entries out 4061 N_INCL_indexes.push_back(sym_idx); 4062 type = eSymbolTypeScopeBegin; 4063 break; 4064 4065 case N_EINCL: 4066 // include file end: name,,NO_SECT,0,0 4067 // Set the size of the N_BINCL to the terminating index of this 4068 // N_EINCL so that we can always skip the entire symbol if we need 4069 // to navigate more quickly at the source level when parsing STABS 4070 if (!N_INCL_indexes.empty()) { 4071 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 4072 symbol_ptr->SetByteSize(sym_idx + 1); 4073 symbol_ptr->SetSizeIsSibling(true); 4074 N_INCL_indexes.pop_back(); 4075 } 4076 type = eSymbolTypeScopeEnd; 4077 break; 4078 4079 case N_SOL: 4080 // #included file name: name,,n_sect,0,address 4081 type = eSymbolTypeHeaderFile; 4082 4083 // We currently don't use the header files on darwin 4084 add_nlist = false; 4085 break; 4086 4087 case N_PARAMS: 4088 // compiler parameters: name,,NO_SECT,0,0 4089 type = eSymbolTypeCompiler; 4090 break; 4091 4092 case N_VERSION: 4093 // compiler version: name,,NO_SECT,0,0 4094 type = eSymbolTypeCompiler; 4095 break; 4096 4097 case N_OLEVEL: 4098 // compiler -O level: name,,NO_SECT,0,0 4099 type = eSymbolTypeCompiler; 4100 break; 4101 4102 case N_PSYM: 4103 // parameter: name,,NO_SECT,type,offset 4104 type = eSymbolTypeVariable; 4105 break; 4106 4107 case N_ENTRY: 4108 // alternate entry: name,,n_sect,linenumber,address 4109 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4110 type = eSymbolTypeLineEntry; 4111 break; 4112 4113 // Left and Right Braces 4114 case N_LBRAC: 4115 // left bracket: 0,,NO_SECT,nesting level,address We use the 4116 // current number of symbols in the symbol table in lieu of using 4117 // nlist_idx in case we ever start trimming entries out 4118 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4119 N_BRAC_indexes.push_back(sym_idx); 4120 type = eSymbolTypeScopeBegin; 4121 break; 4122 4123 case N_RBRAC: 4124 // right bracket: 0,,NO_SECT,nesting level,address Set the size of 4125 // the N_LBRAC to the terminating index of this N_RBRAC so that we 4126 // can always skip the entire symbol if we need to navigate more 4127 // quickly at the source level when parsing STABS 4128 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4129 if (!N_BRAC_indexes.empty()) { 4130 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 4131 symbol_ptr->SetByteSize(sym_idx + 1); 4132 symbol_ptr->SetSizeIsSibling(true); 4133 N_BRAC_indexes.pop_back(); 4134 } 4135 type = eSymbolTypeScopeEnd; 4136 break; 4137 4138 case N_EXCL: 4139 // deleted include file: name,,NO_SECT,0,sum 4140 type = eSymbolTypeHeaderFile; 4141 break; 4142 4143 // COMM scopes 4144 case N_BCOMM: 4145 // begin common: name,,NO_SECT,0,0 4146 // We use the current number of symbols in the symbol table in lieu 4147 // of using nlist_idx in case we ever start trimming entries out 4148 type = eSymbolTypeScopeBegin; 4149 N_COMM_indexes.push_back(sym_idx); 4150 break; 4151 4152 case N_ECOML: 4153 // end common (local name): 0,,n_sect,0,address 4154 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4155 LLVM_FALLTHROUGH; 4156 4157 case N_ECOMM: 4158 // end common: name,,n_sect,0,0 4159 // Set the size of the N_BCOMM to the terminating index of this 4160 // N_ECOMM/N_ECOML so that we can always skip the entire symbol if 4161 // we need to navigate more quickly at the source level when 4162 // parsing STABS 4163 if (!N_COMM_indexes.empty()) { 4164 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4165 symbol_ptr->SetByteSize(sym_idx + 1); 4166 symbol_ptr->SetSizeIsSibling(true); 4167 N_COMM_indexes.pop_back(); 4168 } 4169 type = eSymbolTypeScopeEnd; 4170 break; 4171 4172 case N_LENG: 4173 // second stab entry with length information 4174 type = eSymbolTypeAdditional; 4175 break; 4176 4177 default: 4178 break; 4179 } 4180 } else { 4181 uint8_t n_type = N_TYPE & nlist.n_type; 4182 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4183 4184 switch (n_type) { 4185 case N_INDR: { 4186 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 4187 if (reexport_name_cstr && reexport_name_cstr[0]) { 4188 type = eSymbolTypeReExported; 4189 ConstString reexport_name(reexport_name_cstr + 4190 ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4191 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4192 set_value = false; 4193 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4194 indirect_symbol_names.insert( 4195 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4196 } else 4197 type = eSymbolTypeUndefined; 4198 } break; 4199 4200 case N_UNDF: 4201 if (symbol_name && symbol_name[0]) { 4202 ConstString undefined_name(symbol_name + 4203 ((symbol_name[0] == '_') ? 1 : 0)); 4204 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4205 } 4206 LLVM_FALLTHROUGH; 4207 4208 case N_PBUD: 4209 type = eSymbolTypeUndefined; 4210 break; 4211 4212 case N_ABS: 4213 type = eSymbolTypeAbsolute; 4214 break; 4215 4216 case N_SECT: { 4217 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4218 4219 if (!symbol_section) { 4220 // TODO: warn about this? 4221 add_nlist = false; 4222 break; 4223 } 4224 4225 if (TEXT_eh_frame_sectID == nlist.n_sect) { 4226 type = eSymbolTypeException; 4227 } else { 4228 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4229 4230 switch (section_type) { 4231 case S_CSTRING_LITERALS: 4232 type = eSymbolTypeData; 4233 break; // section with only literal C strings 4234 case S_4BYTE_LITERALS: 4235 type = eSymbolTypeData; 4236 break; // section with only 4 byte literals 4237 case S_8BYTE_LITERALS: 4238 type = eSymbolTypeData; 4239 break; // section with only 8 byte literals 4240 case S_LITERAL_POINTERS: 4241 type = eSymbolTypeTrampoline; 4242 break; // section with only pointers to literals 4243 case S_NON_LAZY_SYMBOL_POINTERS: 4244 type = eSymbolTypeTrampoline; 4245 break; // section with only non-lazy symbol pointers 4246 case S_LAZY_SYMBOL_POINTERS: 4247 type = eSymbolTypeTrampoline; 4248 break; // section with only lazy symbol pointers 4249 case S_SYMBOL_STUBS: 4250 type = eSymbolTypeTrampoline; 4251 break; // section with only symbol stubs, byte size of stub in 4252 // the reserved2 field 4253 case S_MOD_INIT_FUNC_POINTERS: 4254 type = eSymbolTypeCode; 4255 break; // section with only function pointers for initialization 4256 case S_MOD_TERM_FUNC_POINTERS: 4257 type = eSymbolTypeCode; 4258 break; // section with only function pointers for termination 4259 case S_INTERPOSING: 4260 type = eSymbolTypeTrampoline; 4261 break; // section with only pairs of function pointers for 4262 // interposing 4263 case S_16BYTE_LITERALS: 4264 type = eSymbolTypeData; 4265 break; // section with only 16 byte literals 4266 case S_DTRACE_DOF: 4267 type = eSymbolTypeInstrumentation; 4268 break; 4269 case S_LAZY_DYLIB_SYMBOL_POINTERS: 4270 type = eSymbolTypeTrampoline; 4271 break; 4272 default: 4273 switch (symbol_section->GetType()) { 4274 case lldb::eSectionTypeCode: 4275 type = eSymbolTypeCode; 4276 break; 4277 case eSectionTypeData: 4278 case eSectionTypeDataCString: // Inlined C string data 4279 case eSectionTypeDataCStringPointers: // Pointers to C string 4280 // data 4281 case eSectionTypeDataSymbolAddress: // Address of a symbol in 4282 // the symbol table 4283 case eSectionTypeData4: 4284 case eSectionTypeData8: 4285 case eSectionTypeData16: 4286 type = eSymbolTypeData; 4287 break; 4288 default: 4289 break; 4290 } 4291 break; 4292 } 4293 4294 if (type == eSymbolTypeInvalid) { 4295 const char *symbol_sect_name = 4296 symbol_section->GetName().AsCString(); 4297 if (symbol_section->IsDescendant(text_section_sp.get())) { 4298 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4299 S_ATTR_SELF_MODIFYING_CODE | 4300 S_ATTR_SOME_INSTRUCTIONS)) 4301 type = eSymbolTypeData; 4302 else 4303 type = eSymbolTypeCode; 4304 } else if (symbol_section->IsDescendant(data_section_sp.get()) || 4305 symbol_section->IsDescendant( 4306 data_dirty_section_sp.get()) || 4307 symbol_section->IsDescendant( 4308 data_const_section_sp.get())) { 4309 if (symbol_sect_name && 4310 ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { 4311 type = eSymbolTypeRuntime; 4312 4313 if (symbol_name) { 4314 llvm::StringRef symbol_name_ref(symbol_name); 4315 if (symbol_name_ref.startswith("_OBJC_")) { 4316 llvm::StringRef g_objc_v2_prefix_class( 4317 "_OBJC_CLASS_$_"); 4318 llvm::StringRef g_objc_v2_prefix_metaclass( 4319 "_OBJC_METACLASS_$_"); 4320 llvm::StringRef g_objc_v2_prefix_ivar( 4321 "_OBJC_IVAR_$_"); 4322 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 4323 symbol_name_non_abi_mangled = symbol_name + 1; 4324 symbol_name = 4325 symbol_name + g_objc_v2_prefix_class.size(); 4326 type = eSymbolTypeObjCClass; 4327 demangled_is_synthesized = true; 4328 } else if (symbol_name_ref.startswith( 4329 g_objc_v2_prefix_metaclass)) { 4330 symbol_name_non_abi_mangled = symbol_name + 1; 4331 symbol_name = 4332 symbol_name + g_objc_v2_prefix_metaclass.size(); 4333 type = eSymbolTypeObjCMetaClass; 4334 demangled_is_synthesized = true; 4335 } else if (symbol_name_ref.startswith( 4336 g_objc_v2_prefix_ivar)) { 4337 symbol_name_non_abi_mangled = symbol_name + 1; 4338 symbol_name = 4339 symbol_name + g_objc_v2_prefix_ivar.size(); 4340 type = eSymbolTypeObjCIVar; 4341 demangled_is_synthesized = true; 4342 } 4343 } 4344 } 4345 } else if (symbol_sect_name && 4346 ::strstr(symbol_sect_name, "__gcc_except_tab") == 4347 symbol_sect_name) { 4348 type = eSymbolTypeException; 4349 } else { 4350 type = eSymbolTypeData; 4351 } 4352 } else if (symbol_sect_name && 4353 ::strstr(symbol_sect_name, "__IMPORT") == 4354 symbol_sect_name) { 4355 type = eSymbolTypeTrampoline; 4356 } else if (symbol_section->IsDescendant(objc_section_sp.get())) { 4357 type = eSymbolTypeRuntime; 4358 if (symbol_name && symbol_name[0] == '.') { 4359 llvm::StringRef symbol_name_ref(symbol_name); 4360 llvm::StringRef g_objc_v1_prefix_class( 4361 ".objc_class_name_"); 4362 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) { 4363 symbol_name_non_abi_mangled = symbol_name; 4364 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4365 type = eSymbolTypeObjCClass; 4366 demangled_is_synthesized = true; 4367 } 4368 } 4369 } 4370 } 4371 } 4372 } break; 4373 } 4374 } 4375 4376 if (!add_nlist) { 4377 sym[sym_idx].Clear(); 4378 return true; 4379 } 4380 4381 uint64_t symbol_value = nlist.n_value; 4382 4383 if (symbol_name_non_abi_mangled) { 4384 sym[sym_idx].GetMangled().SetMangledName( 4385 ConstString(symbol_name_non_abi_mangled)); 4386 sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name)); 4387 } else { 4388 bool symbol_name_is_mangled = false; 4389 4390 if (symbol_name && symbol_name[0] == '_') { 4391 symbol_name_is_mangled = symbol_name[1] == '_'; 4392 symbol_name++; // Skip the leading underscore 4393 } 4394 4395 if (symbol_name) { 4396 ConstString const_symbol_name(symbol_name); 4397 sym[sym_idx].GetMangled().SetValue(const_symbol_name, 4398 symbol_name_is_mangled); 4399 } 4400 } 4401 4402 if (is_gsym) { 4403 const char *gsym_name = sym[sym_idx] 4404 .GetMangled() 4405 .GetName(Mangled::ePreferMangled) 4406 .GetCString(); 4407 if (gsym_name) 4408 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4409 } 4410 4411 if (symbol_section) { 4412 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4413 if (symbol_byte_size == 0 && function_starts_count > 0) { 4414 addr_t symbol_lookup_file_addr = nlist.n_value; 4415 // Do an exact address match for non-ARM addresses, else get the 4416 // closest since the symbol might be a thumb symbol which has an 4417 // address with bit zero set. 4418 FunctionStarts::Entry *func_start_entry = 4419 function_starts.FindEntry(symbol_lookup_file_addr, !is_arm); 4420 if (is_arm && func_start_entry) { 4421 // Verify that the function start address is the symbol address 4422 // (ARM) or the symbol address + 1 (thumb). 4423 if (func_start_entry->addr != symbol_lookup_file_addr && 4424 func_start_entry->addr != (symbol_lookup_file_addr + 1)) { 4425 // Not the right entry, NULL it out... 4426 func_start_entry = nullptr; 4427 } 4428 } 4429 if (func_start_entry) { 4430 func_start_entry->data = true; 4431 4432 addr_t symbol_file_addr = func_start_entry->addr; 4433 if (is_arm) 4434 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4435 4436 const FunctionStarts::Entry *next_func_start_entry = 4437 function_starts.FindNextEntry(func_start_entry); 4438 const addr_t section_end_file_addr = 4439 section_file_addr + symbol_section->GetByteSize(); 4440 if (next_func_start_entry) { 4441 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4442 // Be sure the clear the Thumb address bit when we calculate the 4443 // size from the current and next address 4444 if (is_arm) 4445 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4446 symbol_byte_size = std::min<lldb::addr_t>( 4447 next_symbol_file_addr - symbol_file_addr, 4448 section_end_file_addr - symbol_file_addr); 4449 } else { 4450 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4451 } 4452 } 4453 } 4454 symbol_value -= section_file_addr; 4455 } 4456 4457 if (!is_debug) { 4458 if (type == eSymbolTypeCode) { 4459 // See if we can find a N_FUN entry for any code symbols. If we do 4460 // find a match, and the name matches, then we can merge the two into 4461 // just the function symbol to avoid duplicate entries in the symbol 4462 // table. 4463 std::pair<ValueToSymbolIndexMap::const_iterator, 4464 ValueToSymbolIndexMap::const_iterator> 4465 range; 4466 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4467 if (range.first != range.second) { 4468 for (ValueToSymbolIndexMap::const_iterator pos = range.first; 4469 pos != range.second; ++pos) { 4470 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == 4471 sym[pos->second].GetMangled().GetName( 4472 Mangled::ePreferMangled)) { 4473 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4474 // We just need the flags from the linker symbol, so put these 4475 // flags into the N_FUN flags to avoid duplicate symbols in the 4476 // symbol table. 4477 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4478 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4479 if (resolver_addresses.find(nlist.n_value) != 4480 resolver_addresses.end()) 4481 sym[pos->second].SetType(eSymbolTypeResolver); 4482 sym[sym_idx].Clear(); 4483 return true; 4484 } 4485 } 4486 } else { 4487 if (resolver_addresses.find(nlist.n_value) != 4488 resolver_addresses.end()) 4489 type = eSymbolTypeResolver; 4490 } 4491 } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass || 4492 type == eSymbolTypeObjCMetaClass || 4493 type == eSymbolTypeObjCIVar) { 4494 // See if we can find a N_STSYM entry for any data symbols. If we do 4495 // find a match, and the name matches, then we can merge the two into 4496 // just the Static symbol to avoid duplicate entries in the symbol 4497 // table. 4498 std::pair<ValueToSymbolIndexMap::const_iterator, 4499 ValueToSymbolIndexMap::const_iterator> 4500 range; 4501 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4502 if (range.first != range.second) { 4503 for (ValueToSymbolIndexMap::const_iterator pos = range.first; 4504 pos != range.second; ++pos) { 4505 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == 4506 sym[pos->second].GetMangled().GetName( 4507 Mangled::ePreferMangled)) { 4508 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4509 // We just need the flags from the linker symbol, so put these 4510 // flags into the N_STSYM flags to avoid duplicate symbols in 4511 // the symbol table. 4512 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4513 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4514 sym[sym_idx].Clear(); 4515 return true; 4516 } 4517 } 4518 } else { 4519 // Combine N_GSYM stab entries with the non stab symbol. 4520 const char *gsym_name = sym[sym_idx] 4521 .GetMangled() 4522 .GetName(Mangled::ePreferMangled) 4523 .GetCString(); 4524 if (gsym_name) { 4525 ConstNameToSymbolIndexMap::const_iterator pos = 4526 N_GSYM_name_to_sym_idx.find(gsym_name); 4527 if (pos != N_GSYM_name_to_sym_idx.end()) { 4528 const uint32_t GSYM_sym_idx = pos->second; 4529 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4530 // Copy the address, because often the N_GSYM address has an 4531 // invalid address of zero when the global is a common symbol. 4532 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section); 4533 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value); 4534 add_symbol_addr( 4535 sym[GSYM_sym_idx].GetAddress().GetFileAddress()); 4536 // We just need the flags from the linker symbol, so put these 4537 // flags into the N_GSYM flags to avoid duplicate symbols in 4538 // the symbol table. 4539 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4540 sym[sym_idx].Clear(); 4541 return true; 4542 } 4543 } 4544 } 4545 } 4546 } 4547 4548 sym[sym_idx].SetID(nlist_idx); 4549 sym[sym_idx].SetType(type); 4550 if (set_value) { 4551 sym[sym_idx].GetAddressRef().SetSection(symbol_section); 4552 sym[sym_idx].GetAddressRef().SetOffset(symbol_value); 4553 if (symbol_section) 4554 add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress()); 4555 } 4556 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4557 if (nlist.n_desc & N_WEAK_REF) 4558 sym[sym_idx].SetIsWeak(true); 4559 4560 if (symbol_byte_size > 0) 4561 sym[sym_idx].SetByteSize(symbol_byte_size); 4562 4563 if (demangled_is_synthesized) 4564 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4565 4566 ++sym_idx; 4567 return true; 4568 }; 4569 4570 // First parse all the nlists but don't process them yet. See the next 4571 // comment for an explanation why. 4572 std::vector<struct nlist_64> nlists; 4573 nlists.reserve(symtab_load_command.nsyms); 4574 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) { 4575 if (auto nlist = 4576 ParseNList(nlist_data, nlist_data_offset, nlist_byte_size)) 4577 nlists.push_back(*nlist); 4578 else 4579 break; 4580 } 4581 4582 // Now parse all the debug symbols. This is needed to merge non-debug 4583 // symbols in the next step. Non-debug symbols are always coalesced into 4584 // the debug symbol. Doing this in one step would mean that some symbols 4585 // won't be merged. 4586 nlist_idx = 0; 4587 for (auto &nlist : nlists) { 4588 if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols)) 4589 break; 4590 } 4591 4592 // Finally parse all the non debug symbols. 4593 nlist_idx = 0; 4594 for (auto &nlist : nlists) { 4595 if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols)) 4596 break; 4597 } 4598 4599 for (const auto &pos : reexport_shlib_needs_fixup) { 4600 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4601 if (undef_pos != undefined_name_to_desc.end()) { 4602 const uint8_t dylib_ordinal = 4603 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4604 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4605 sym[pos.first].SetReExportedSymbolSharedLibrary( 4606 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); 4607 } 4608 } 4609 } 4610 4611 // Count how many trie symbols we'll add to the symbol table 4612 int trie_symbol_table_augment_count = 0; 4613 for (auto &e : external_sym_trie_entries) { 4614 if (symbols_added.find(e.entry.address) == symbols_added.end()) 4615 trie_symbol_table_augment_count++; 4616 } 4617 4618 if (num_syms < sym_idx + trie_symbol_table_augment_count) { 4619 num_syms = sym_idx + trie_symbol_table_augment_count; 4620 sym = symtab->Resize(num_syms); 4621 } 4622 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4623 4624 // Add symbols from the trie to the symbol table. 4625 for (auto &e : external_sym_trie_entries) { 4626 if (symbols_added.find(e.entry.address) != symbols_added.end()) 4627 continue; 4628 4629 // Find the section that this trie address is in, use that to annotate 4630 // symbol type as we add the trie address and name to the symbol table. 4631 Address symbol_addr; 4632 if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) { 4633 SectionSP symbol_section(symbol_addr.GetSection()); 4634 const char *symbol_name = e.entry.name.GetCString(); 4635 bool demangled_is_synthesized = false; 4636 SymbolType type = 4637 GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp, 4638 data_section_sp, data_dirty_section_sp, 4639 data_const_section_sp, symbol_section); 4640 4641 sym[sym_idx].SetType(type); 4642 if (symbol_section) { 4643 sym[sym_idx].SetID(synthetic_sym_id++); 4644 sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name)); 4645 if (demangled_is_synthesized) 4646 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4647 sym[sym_idx].SetIsSynthetic(true); 4648 sym[sym_idx].SetExternal(true); 4649 sym[sym_idx].GetAddressRef() = symbol_addr; 4650 add_symbol_addr(symbol_addr.GetFileAddress()); 4651 if (e.entry.flags & TRIE_SYMBOL_IS_THUMB) 4652 sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB); 4653 ++sym_idx; 4654 } 4655 } 4656 } 4657 4658 if (function_starts_count > 0) { 4659 uint32_t num_synthetic_function_symbols = 0; 4660 for (i = 0; i < function_starts_count; ++i) { 4661 if (symbols_added.find(function_starts.GetEntryRef(i).addr) == 4662 symbols_added.end()) 4663 ++num_synthetic_function_symbols; 4664 } 4665 4666 if (num_synthetic_function_symbols > 0) { 4667 if (num_syms < sym_idx + num_synthetic_function_symbols) { 4668 num_syms = sym_idx + num_synthetic_function_symbols; 4669 sym = symtab->Resize(num_syms); 4670 } 4671 for (i = 0; i < function_starts_count; ++i) { 4672 const FunctionStarts::Entry *func_start_entry = 4673 function_starts.GetEntryAtIndex(i); 4674 if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) { 4675 addr_t symbol_file_addr = func_start_entry->addr; 4676 uint32_t symbol_flags = 0; 4677 if (func_start_entry->data) 4678 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4679 Address symbol_addr; 4680 if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) { 4681 SectionSP symbol_section(symbol_addr.GetSection()); 4682 uint32_t symbol_byte_size = 0; 4683 if (symbol_section) { 4684 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4685 const FunctionStarts::Entry *next_func_start_entry = 4686 function_starts.FindNextEntry(func_start_entry); 4687 const addr_t section_end_file_addr = 4688 section_file_addr + symbol_section->GetByteSize(); 4689 if (next_func_start_entry) { 4690 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4691 if (is_arm) 4692 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4693 symbol_byte_size = std::min<lldb::addr_t>( 4694 next_symbol_file_addr - symbol_file_addr, 4695 section_end_file_addr - symbol_file_addr); 4696 } else { 4697 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4698 } 4699 sym[sym_idx].SetID(synthetic_sym_id++); 4700 // Don't set the name for any synthetic symbols, the Symbol 4701 // object will generate one if needed when the name is accessed 4702 // via accessors. 4703 sym[sym_idx].GetMangled().SetDemangledName(ConstString()); 4704 sym[sym_idx].SetType(eSymbolTypeCode); 4705 sym[sym_idx].SetIsSynthetic(true); 4706 sym[sym_idx].GetAddressRef() = symbol_addr; 4707 add_symbol_addr(symbol_addr.GetFileAddress()); 4708 if (symbol_flags) 4709 sym[sym_idx].SetFlags(symbol_flags); 4710 if (symbol_byte_size) 4711 sym[sym_idx].SetByteSize(symbol_byte_size); 4712 ++sym_idx; 4713 } 4714 } 4715 } 4716 } 4717 } 4718 } 4719 4720 // Trim our symbols down to just what we ended up with after removing any 4721 // symbols. 4722 if (sym_idx < num_syms) { 4723 num_syms = sym_idx; 4724 sym = symtab->Resize(num_syms); 4725 } 4726 4727 // Now synthesize indirect symbols 4728 if (m_dysymtab.nindirectsyms != 0) { 4729 if (indirect_symbol_index_data.GetByteSize()) { 4730 NListIndexToSymbolIndexMap::const_iterator end_index_pos = 4731 m_nlist_idx_to_sym_idx.end(); 4732 4733 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); 4734 ++sect_idx) { 4735 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == 4736 S_SYMBOL_STUBS) { 4737 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4738 if (symbol_stub_byte_size == 0) 4739 continue; 4740 4741 const uint32_t num_symbol_stubs = 4742 m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4743 4744 if (num_symbol_stubs == 0) 4745 continue; 4746 4747 const uint32_t symbol_stub_index_offset = 4748 m_mach_sections[sect_idx].reserved1; 4749 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) { 4750 const uint32_t symbol_stub_index = 4751 symbol_stub_index_offset + stub_idx; 4752 const lldb::addr_t symbol_stub_addr = 4753 m_mach_sections[sect_idx].addr + 4754 (stub_idx * symbol_stub_byte_size); 4755 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4756 if (indirect_symbol_index_data.ValidOffsetForDataOfSize( 4757 symbol_stub_offset, 4)) { 4758 const uint32_t stub_sym_id = 4759 indirect_symbol_index_data.GetU32(&symbol_stub_offset); 4760 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4761 continue; 4762 4763 NListIndexToSymbolIndexMap::const_iterator index_pos = 4764 m_nlist_idx_to_sym_idx.find(stub_sym_id); 4765 Symbol *stub_symbol = nullptr; 4766 if (index_pos != end_index_pos) { 4767 // We have a remapping from the original nlist index to a 4768 // current symbol index, so just look this up by index 4769 stub_symbol = symtab->SymbolAtIndex(index_pos->second); 4770 } else { 4771 // We need to lookup a symbol using the original nlist symbol 4772 // index since this index is coming from the S_SYMBOL_STUBS 4773 stub_symbol = symtab->FindSymbolByID(stub_sym_id); 4774 } 4775 4776 if (stub_symbol) { 4777 Address so_addr(symbol_stub_addr, section_list); 4778 4779 if (stub_symbol->GetType() == eSymbolTypeUndefined) { 4780 // Change the external symbol into a trampoline that makes 4781 // sense These symbols were N_UNDF N_EXT, and are useless 4782 // to us, so we can re-use them so we don't have to make up 4783 // a synthetic symbol for no good reason. 4784 if (resolver_addresses.find(symbol_stub_addr) == 4785 resolver_addresses.end()) 4786 stub_symbol->SetType(eSymbolTypeTrampoline); 4787 else 4788 stub_symbol->SetType(eSymbolTypeResolver); 4789 stub_symbol->SetExternal(false); 4790 stub_symbol->GetAddressRef() = so_addr; 4791 stub_symbol->SetByteSize(symbol_stub_byte_size); 4792 } else { 4793 // Make a synthetic symbol to describe the trampoline stub 4794 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4795 if (sym_idx >= num_syms) { 4796 sym = symtab->Resize(++num_syms); 4797 stub_symbol = nullptr; // this pointer no longer valid 4798 } 4799 sym[sym_idx].SetID(synthetic_sym_id++); 4800 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4801 if (resolver_addresses.find(symbol_stub_addr) == 4802 resolver_addresses.end()) 4803 sym[sym_idx].SetType(eSymbolTypeTrampoline); 4804 else 4805 sym[sym_idx].SetType(eSymbolTypeResolver); 4806 sym[sym_idx].SetIsSynthetic(true); 4807 sym[sym_idx].GetAddressRef() = so_addr; 4808 add_symbol_addr(so_addr.GetFileAddress()); 4809 sym[sym_idx].SetByteSize(symbol_stub_byte_size); 4810 ++sym_idx; 4811 } 4812 } else { 4813 if (log) 4814 log->Warning("symbol stub referencing symbol table symbol " 4815 "%u that isn't in our minimal symbol table, " 4816 "fix this!!!", 4817 stub_sym_id); 4818 } 4819 } 4820 } 4821 } 4822 } 4823 } 4824 } 4825 4826 if (!reexport_trie_entries.empty()) { 4827 for (const auto &e : reexport_trie_entries) { 4828 if (e.entry.import_name) { 4829 // Only add indirect symbols from the Trie entries if we didn't have 4830 // a N_INDR nlist entry for this already 4831 if (indirect_symbol_names.find(e.entry.name) == 4832 indirect_symbol_names.end()) { 4833 // Make a synthetic symbol to describe re-exported symbol. 4834 if (sym_idx >= num_syms) 4835 sym = symtab->Resize(++num_syms); 4836 sym[sym_idx].SetID(synthetic_sym_id++); 4837 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4838 sym[sym_idx].SetType(eSymbolTypeReExported); 4839 sym[sym_idx].SetIsSynthetic(true); 4840 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4841 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) { 4842 sym[sym_idx].SetReExportedSymbolSharedLibrary( 4843 dylib_files.GetFileSpecAtIndex(e.entry.other - 1)); 4844 } 4845 ++sym_idx; 4846 } 4847 } 4848 } 4849 } 4850 4851 // StreamFile s(stdout, false); 4852 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4853 // symtab->Dump(&s, NULL, eSortOrderNone); 4854 // Set symbol byte sizes correctly since mach-o nlist entries don't have 4855 // sizes 4856 symtab->CalculateSymbolSizes(); 4857 4858 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4859 // symtab->Dump(&s, NULL, eSortOrderNone); 4860 4861 return symtab->GetNumSymbols(); 4862 } 4863 4864 void ObjectFileMachO::Dump(Stream *s) { 4865 ModuleSP module_sp(GetModule()); 4866 if (module_sp) { 4867 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 4868 s->Printf("%p: ", static_cast<void *>(this)); 4869 s->Indent(); 4870 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4871 s->PutCString("ObjectFileMachO64"); 4872 else 4873 s->PutCString("ObjectFileMachO32"); 4874 4875 *s << ", file = '" << m_file; 4876 ModuleSpecList all_specs; 4877 ModuleSpec base_spec; 4878 GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), 4879 base_spec, all_specs); 4880 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { 4881 *s << "', triple"; 4882 if (e) 4883 s->Printf("[%d]", i); 4884 *s << " = "; 4885 *s << all_specs.GetModuleSpecRefAtIndex(i) 4886 .GetArchitecture() 4887 .GetTriple() 4888 .getTriple(); 4889 } 4890 *s << "\n"; 4891 SectionList *sections = GetSectionList(); 4892 if (sections) 4893 sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true, 4894 UINT32_MAX); 4895 4896 if (m_symtab_up) 4897 m_symtab_up->Dump(s, nullptr, eSortOrderNone); 4898 } 4899 } 4900 4901 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header, 4902 const lldb_private::DataExtractor &data, 4903 lldb::offset_t lc_offset) { 4904 uint32_t i; 4905 llvm::MachO::uuid_command load_cmd; 4906 4907 lldb::offset_t offset = lc_offset; 4908 for (i = 0; i < header.ncmds; ++i) { 4909 const lldb::offset_t cmd_offset = offset; 4910 if (data.GetU32(&offset, &load_cmd, 2) == nullptr) 4911 break; 4912 4913 if (load_cmd.cmd == LC_UUID) { 4914 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4915 4916 if (uuid_bytes) { 4917 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4918 // We pretend these object files have no UUID to prevent crashing. 4919 4920 const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8, 4921 0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63, 4922 0xbb, 0x14, 0xf0, 0x0d}; 4923 4924 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4925 return UUID(); 4926 4927 return UUID::fromOptionalData(uuid_bytes, 16); 4928 } 4929 return UUID(); 4930 } 4931 offset = cmd_offset + load_cmd.cmdsize; 4932 } 4933 return UUID(); 4934 } 4935 4936 static llvm::StringRef GetOSName(uint32_t cmd) { 4937 switch (cmd) { 4938 case llvm::MachO::LC_VERSION_MIN_IPHONEOS: 4939 return llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4940 case llvm::MachO::LC_VERSION_MIN_MACOSX: 4941 return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); 4942 case llvm::MachO::LC_VERSION_MIN_TVOS: 4943 return llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4944 case llvm::MachO::LC_VERSION_MIN_WATCHOS: 4945 return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4946 default: 4947 llvm_unreachable("unexpected LC_VERSION load command"); 4948 } 4949 } 4950 4951 namespace { 4952 struct OSEnv { 4953 llvm::StringRef os_type; 4954 llvm::StringRef environment; 4955 OSEnv(uint32_t cmd) { 4956 switch (cmd) { 4957 case llvm::MachO::PLATFORM_MACOS: 4958 os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); 4959 return; 4960 case llvm::MachO::PLATFORM_IOS: 4961 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4962 return; 4963 case llvm::MachO::PLATFORM_TVOS: 4964 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4965 return; 4966 case llvm::MachO::PLATFORM_WATCHOS: 4967 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4968 return; 4969 // NEED_BRIDGEOS_TRIPLE case llvm::MachO::PLATFORM_BRIDGEOS: 4970 // NEED_BRIDGEOS_TRIPLE os_type = 4971 // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS); 4972 // NEED_BRIDGEOS_TRIPLE return; 4973 case llvm::MachO::PLATFORM_MACCATALYST: 4974 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4975 environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI); 4976 return; 4977 case llvm::MachO::PLATFORM_IOSSIMULATOR: 4978 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4979 environment = 4980 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 4981 return; 4982 case llvm::MachO::PLATFORM_TVOSSIMULATOR: 4983 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4984 environment = 4985 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 4986 return; 4987 case llvm::MachO::PLATFORM_WATCHOSSIMULATOR: 4988 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4989 environment = 4990 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 4991 return; 4992 default: { 4993 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 4994 LIBLLDB_LOG_PROCESS)); 4995 LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION"); 4996 } 4997 } 4998 } 4999 }; 5000 5001 struct MinOS { 5002 uint32_t major_version, minor_version, patch_version; 5003 MinOS(uint32_t version) 5004 : major_version(version >> 16), minor_version((version >> 8) & 0xffu), 5005 patch_version(version & 0xffu) {} 5006 }; 5007 } // namespace 5008 5009 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header, 5010 const lldb_private::DataExtractor &data, 5011 lldb::offset_t lc_offset, 5012 ModuleSpec &base_spec, 5013 lldb_private::ModuleSpecList &all_specs) { 5014 auto &base_arch = base_spec.GetArchitecture(); 5015 base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype); 5016 if (!base_arch.IsValid()) 5017 return; 5018 5019 bool found_any = false; 5020 auto add_triple = [&](const llvm::Triple &triple) { 5021 auto spec = base_spec; 5022 spec.GetArchitecture().GetTriple() = triple; 5023 if (spec.GetArchitecture().IsValid()) { 5024 spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset); 5025 all_specs.Append(spec); 5026 found_any = true; 5027 } 5028 }; 5029 5030 // Set OS to an unspecified unknown or a "*" so it can match any OS 5031 llvm::Triple base_triple = base_arch.GetTriple(); 5032 base_triple.setOS(llvm::Triple::UnknownOS); 5033 base_triple.setOSName(llvm::StringRef()); 5034 5035 if (header.filetype == MH_PRELOAD) { 5036 if (header.cputype == CPU_TYPE_ARM) { 5037 // If this is a 32-bit arm binary, and it's a standalone binary, force 5038 // the Vendor to Apple so we don't accidentally pick up the generic 5039 // armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the 5040 // frame pointer register; most other armv7 ABIs use a combination of 5041 // r7 and r11. 5042 base_triple.setVendor(llvm::Triple::Apple); 5043 } else { 5044 // Set vendor to an unspecified unknown or a "*" so it can match any 5045 // vendor This is required for correct behavior of EFI debugging on 5046 // x86_64 5047 base_triple.setVendor(llvm::Triple::UnknownVendor); 5048 base_triple.setVendorName(llvm::StringRef()); 5049 } 5050 return add_triple(base_triple); 5051 } 5052 5053 llvm::MachO::load_command load_cmd; 5054 5055 // See if there is an LC_VERSION_MIN_* load command that can give 5056 // us the OS type. 5057 lldb::offset_t offset = lc_offset; 5058 for (uint32_t i = 0; i < header.ncmds; ++i) { 5059 const lldb::offset_t cmd_offset = offset; 5060 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 5061 break; 5062 5063 llvm::MachO::version_min_command version_min; 5064 switch (load_cmd.cmd) { 5065 case llvm::MachO::LC_VERSION_MIN_MACOSX: 5066 case llvm::MachO::LC_VERSION_MIN_IPHONEOS: 5067 case llvm::MachO::LC_VERSION_MIN_TVOS: 5068 case llvm::MachO::LC_VERSION_MIN_WATCHOS: { 5069 if (load_cmd.cmdsize != sizeof(version_min)) 5070 break; 5071 if (data.ExtractBytes(cmd_offset, sizeof(version_min), 5072 data.GetByteOrder(), &version_min) == 0) 5073 break; 5074 MinOS min_os(version_min.version); 5075 llvm::SmallString<32> os_name; 5076 llvm::raw_svector_ostream os(os_name); 5077 os << GetOSName(load_cmd.cmd) << min_os.major_version << '.' 5078 << min_os.minor_version << '.' << min_os.patch_version; 5079 5080 auto triple = base_triple; 5081 triple.setOSName(os.str()); 5082 5083 // Disambiguate legacy simulator platforms. 5084 if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX && 5085 (base_triple.getArch() == llvm::Triple::x86_64 || 5086 base_triple.getArch() == llvm::Triple::x86)) { 5087 // The combination of legacy LC_VERSION_MIN load command and 5088 // x86 architecture always indicates a simulator environment. 5089 // The combination of LC_VERSION_MIN and arm architecture only 5090 // appears for native binaries. Back-deploying simulator 5091 // binaries on Apple Silicon Macs use the modern unambigous 5092 // LC_BUILD_VERSION load commands; no special handling required. 5093 triple.setEnvironment(llvm::Triple::Simulator); 5094 } 5095 add_triple(triple); 5096 break; 5097 } 5098 default: 5099 break; 5100 } 5101 5102 offset = cmd_offset + load_cmd.cmdsize; 5103 } 5104 5105 // See if there are LC_BUILD_VERSION load commands that can give 5106 // us the OS type. 5107 offset = lc_offset; 5108 for (uint32_t i = 0; i < header.ncmds; ++i) { 5109 const lldb::offset_t cmd_offset = offset; 5110 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 5111 break; 5112 5113 do { 5114 if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) { 5115 llvm::MachO::build_version_command build_version; 5116 if (load_cmd.cmdsize < sizeof(build_version)) { 5117 // Malformed load command. 5118 break; 5119 } 5120 if (data.ExtractBytes(cmd_offset, sizeof(build_version), 5121 data.GetByteOrder(), &build_version) == 0) 5122 break; 5123 MinOS min_os(build_version.minos); 5124 OSEnv os_env(build_version.platform); 5125 llvm::SmallString<16> os_name; 5126 llvm::raw_svector_ostream os(os_name); 5127 os << os_env.os_type << min_os.major_version << '.' 5128 << min_os.minor_version << '.' << min_os.patch_version; 5129 auto triple = base_triple; 5130 triple.setOSName(os.str()); 5131 os_name.clear(); 5132 if (!os_env.environment.empty()) 5133 triple.setEnvironmentName(os_env.environment); 5134 add_triple(triple); 5135 } 5136 } while (0); 5137 offset = cmd_offset + load_cmd.cmdsize; 5138 } 5139 5140 if (!found_any) { 5141 if (header.filetype == MH_KEXT_BUNDLE) { 5142 base_triple.setVendor(llvm::Triple::Apple); 5143 add_triple(base_triple); 5144 } else { 5145 // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT 5146 // so lets not say our Vendor is Apple, leave it as an unspecified 5147 // unknown. 5148 base_triple.setVendor(llvm::Triple::UnknownVendor); 5149 base_triple.setVendorName(llvm::StringRef()); 5150 add_triple(base_triple); 5151 } 5152 } 5153 } 5154 5155 ArchSpec ObjectFileMachO::GetArchitecture( 5156 ModuleSP module_sp, const llvm::MachO::mach_header &header, 5157 const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) { 5158 ModuleSpecList all_specs; 5159 ModuleSpec base_spec; 5160 GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic), 5161 base_spec, all_specs); 5162 5163 // If the object file offers multiple alternative load commands, 5164 // pick the one that matches the module. 5165 if (module_sp) { 5166 const ArchSpec &module_arch = module_sp->GetArchitecture(); 5167 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { 5168 ArchSpec mach_arch = 5169 all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture(); 5170 if (module_arch.IsCompatibleMatch(mach_arch)) 5171 return mach_arch; 5172 } 5173 } 5174 5175 // Return the first arch we found. 5176 if (all_specs.GetSize() == 0) 5177 return {}; 5178 return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture(); 5179 } 5180 5181 UUID ObjectFileMachO::GetUUID() { 5182 ModuleSP module_sp(GetModule()); 5183 if (module_sp) { 5184 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5185 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5186 return GetUUID(m_header, m_data, offset); 5187 } 5188 return UUID(); 5189 } 5190 5191 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) { 5192 uint32_t count = 0; 5193 ModuleSP module_sp(GetModule()); 5194 if (module_sp) { 5195 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5196 llvm::MachO::load_command load_cmd; 5197 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5198 std::vector<std::string> rpath_paths; 5199 std::vector<std::string> rpath_relative_paths; 5200 std::vector<std::string> at_exec_relative_paths; 5201 uint32_t i; 5202 for (i = 0; i < m_header.ncmds; ++i) { 5203 const uint32_t cmd_offset = offset; 5204 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5205 break; 5206 5207 switch (load_cmd.cmd) { 5208 case LC_RPATH: 5209 case LC_LOAD_DYLIB: 5210 case LC_LOAD_WEAK_DYLIB: 5211 case LC_REEXPORT_DYLIB: 5212 case LC_LOAD_DYLINKER: 5213 case LC_LOADFVMLIB: 5214 case LC_LOAD_UPWARD_DYLIB: { 5215 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 5216 const char *path = m_data.PeekCStr(name_offset); 5217 if (path) { 5218 if (load_cmd.cmd == LC_RPATH) 5219 rpath_paths.push_back(path); 5220 else { 5221 if (path[0] == '@') { 5222 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 5223 rpath_relative_paths.push_back(path + strlen("@rpath")); 5224 else if (strncmp(path, "@executable_path", 5225 strlen("@executable_path")) == 0) 5226 at_exec_relative_paths.push_back(path + 5227 strlen("@executable_path")); 5228 } else { 5229 FileSpec file_spec(path); 5230 if (files.AppendIfUnique(file_spec)) 5231 count++; 5232 } 5233 } 5234 } 5235 } break; 5236 5237 default: 5238 break; 5239 } 5240 offset = cmd_offset + load_cmd.cmdsize; 5241 } 5242 5243 FileSpec this_file_spec(m_file); 5244 FileSystem::Instance().Resolve(this_file_spec); 5245 5246 if (!rpath_paths.empty()) { 5247 // Fixup all LC_RPATH values to be absolute paths 5248 std::string loader_path("@loader_path"); 5249 std::string executable_path("@executable_path"); 5250 for (auto &rpath : rpath_paths) { 5251 if (llvm::StringRef(rpath).startswith(loader_path)) { 5252 rpath.erase(0, loader_path.size()); 5253 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 5254 } else if (llvm::StringRef(rpath).startswith(executable_path)) { 5255 rpath.erase(0, executable_path.size()); 5256 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 5257 } 5258 } 5259 5260 for (const auto &rpath_relative_path : rpath_relative_paths) { 5261 for (const auto &rpath : rpath_paths) { 5262 std::string path = rpath; 5263 path += rpath_relative_path; 5264 // It is OK to resolve this path because we must find a file on disk 5265 // for us to accept it anyway if it is rpath relative. 5266 FileSpec file_spec(path); 5267 FileSystem::Instance().Resolve(file_spec); 5268 if (FileSystem::Instance().Exists(file_spec) && 5269 files.AppendIfUnique(file_spec)) { 5270 count++; 5271 break; 5272 } 5273 } 5274 } 5275 } 5276 5277 // We may have @executable_paths but no RPATHS. Figure those out here. 5278 // Only do this if this object file is the executable. We have no way to 5279 // get back to the actual executable otherwise, so we won't get the right 5280 // path. 5281 if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) { 5282 FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent(); 5283 for (const auto &at_exec_relative_path : at_exec_relative_paths) { 5284 FileSpec file_spec = 5285 exec_dir.CopyByAppendingPathComponent(at_exec_relative_path); 5286 if (FileSystem::Instance().Exists(file_spec) && 5287 files.AppendIfUnique(file_spec)) 5288 count++; 5289 } 5290 } 5291 } 5292 return count; 5293 } 5294 5295 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() { 5296 // If the object file is not an executable it can't hold the entry point. 5297 // m_entry_point_address is initialized to an invalid address, so we can just 5298 // return that. If m_entry_point_address is valid it means we've found it 5299 // already, so return the cached value. 5300 5301 if ((!IsExecutable() && !IsDynamicLoader()) || 5302 m_entry_point_address.IsValid()) { 5303 return m_entry_point_address; 5304 } 5305 5306 // Otherwise, look for the UnixThread or Thread command. The data for the 5307 // Thread command is given in /usr/include/mach-o.h, but it is basically: 5308 // 5309 // uint32_t flavor - this is the flavor argument you would pass to 5310 // thread_get_state 5311 // uint32_t count - this is the count of longs in the thread state data 5312 // struct XXX_thread_state state - this is the structure from 5313 // <machine/thread_status.h> corresponding to the flavor. 5314 // <repeat this trio> 5315 // 5316 // So we just keep reading the various register flavors till we find the GPR 5317 // one, then read the PC out of there. 5318 // FIXME: We will need to have a "RegisterContext data provider" class at some 5319 // point that can get all the registers 5320 // out of data in this form & attach them to a given thread. That should 5321 // underlie the MacOS X User process plugin, and we'll also need it for the 5322 // MacOS X Core File process plugin. When we have that we can also use it 5323 // here. 5324 // 5325 // For now we hard-code the offsets and flavors we need: 5326 // 5327 // 5328 5329 ModuleSP module_sp(GetModule()); 5330 if (module_sp) { 5331 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5332 llvm::MachO::load_command load_cmd; 5333 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5334 uint32_t i; 5335 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 5336 bool done = false; 5337 5338 for (i = 0; i < m_header.ncmds; ++i) { 5339 const lldb::offset_t cmd_offset = offset; 5340 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5341 break; 5342 5343 switch (load_cmd.cmd) { 5344 case LC_UNIXTHREAD: 5345 case LC_THREAD: { 5346 while (offset < cmd_offset + load_cmd.cmdsize) { 5347 uint32_t flavor = m_data.GetU32(&offset); 5348 uint32_t count = m_data.GetU32(&offset); 5349 if (count == 0) { 5350 // We've gotten off somehow, log and exit; 5351 return m_entry_point_address; 5352 } 5353 5354 switch (m_header.cputype) { 5355 case llvm::MachO::CPU_TYPE_ARM: 5356 if (flavor == 1 || 5357 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 5358 // from mach/arm/thread_status.h 5359 { 5360 offset += 60; // This is the offset of pc in the GPR thread state 5361 // data structure. 5362 start_address = m_data.GetU32(&offset); 5363 done = true; 5364 } 5365 break; 5366 case llvm::MachO::CPU_TYPE_ARM64: 5367 case llvm::MachO::CPU_TYPE_ARM64_32: 5368 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 5369 { 5370 offset += 256; // This is the offset of pc in the GPR thread state 5371 // data structure. 5372 start_address = m_data.GetU64(&offset); 5373 done = true; 5374 } 5375 break; 5376 case llvm::MachO::CPU_TYPE_I386: 5377 if (flavor == 5378 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 5379 { 5380 offset += 40; // This is the offset of eip in the GPR thread state 5381 // data structure. 5382 start_address = m_data.GetU32(&offset); 5383 done = true; 5384 } 5385 break; 5386 case llvm::MachO::CPU_TYPE_X86_64: 5387 if (flavor == 5388 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 5389 { 5390 offset += 16 * 8; // This is the offset of rip in the GPR thread 5391 // state data structure. 5392 start_address = m_data.GetU64(&offset); 5393 done = true; 5394 } 5395 break; 5396 default: 5397 return m_entry_point_address; 5398 } 5399 // Haven't found the GPR flavor yet, skip over the data for this 5400 // flavor: 5401 if (done) 5402 break; 5403 offset += count * 4; 5404 } 5405 } break; 5406 case LC_MAIN: { 5407 ConstString text_segment_name("__TEXT"); 5408 uint64_t entryoffset = m_data.GetU64(&offset); 5409 SectionSP text_segment_sp = 5410 GetSectionList()->FindSectionByName(text_segment_name); 5411 if (text_segment_sp) { 5412 done = true; 5413 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5414 } 5415 } break; 5416 5417 default: 5418 break; 5419 } 5420 if (done) 5421 break; 5422 5423 // Go to the next load command: 5424 offset = cmd_offset + load_cmd.cmdsize; 5425 } 5426 5427 if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) { 5428 if (GetSymtab()) { 5429 Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType( 5430 ConstString("_dyld_start"), SymbolType::eSymbolTypeCode, 5431 Symtab::eDebugAny, Symtab::eVisibilityAny); 5432 if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) { 5433 start_address = dyld_start_sym->GetAddress().GetFileAddress(); 5434 } 5435 } 5436 } 5437 5438 if (start_address != LLDB_INVALID_ADDRESS) { 5439 // We got the start address from the load commands, so now resolve that 5440 // address in the sections of this ObjectFile: 5441 if (!m_entry_point_address.ResolveAddressUsingFileSections( 5442 start_address, GetSectionList())) { 5443 m_entry_point_address.Clear(); 5444 } 5445 } else { 5446 // We couldn't read the UnixThread load command - maybe it wasn't there. 5447 // As a fallback look for the "start" symbol in the main executable. 5448 5449 ModuleSP module_sp(GetModule()); 5450 5451 if (module_sp) { 5452 SymbolContextList contexts; 5453 SymbolContext context; 5454 module_sp->FindSymbolsWithNameAndType(ConstString("start"), 5455 eSymbolTypeCode, contexts); 5456 if (contexts.GetSize()) { 5457 if (contexts.GetContextAtIndex(0, context)) 5458 m_entry_point_address = context.symbol->GetAddress(); 5459 } 5460 } 5461 } 5462 } 5463 5464 return m_entry_point_address; 5465 } 5466 5467 lldb_private::Address ObjectFileMachO::GetBaseAddress() { 5468 lldb_private::Address header_addr; 5469 SectionList *section_list = GetSectionList(); 5470 if (section_list) { 5471 SectionSP text_segment_sp( 5472 section_list->FindSectionByName(GetSegmentNameTEXT())); 5473 if (text_segment_sp) { 5474 header_addr.SetSection(text_segment_sp); 5475 header_addr.SetOffset(0); 5476 } 5477 } 5478 return header_addr; 5479 } 5480 5481 uint32_t ObjectFileMachO::GetNumThreadContexts() { 5482 ModuleSP module_sp(GetModule()); 5483 if (module_sp) { 5484 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5485 if (!m_thread_context_offsets_valid) { 5486 m_thread_context_offsets_valid = true; 5487 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5488 FileRangeArray::Entry file_range; 5489 llvm::MachO::thread_command thread_cmd; 5490 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5491 const uint32_t cmd_offset = offset; 5492 if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr) 5493 break; 5494 5495 if (thread_cmd.cmd == LC_THREAD) { 5496 file_range.SetRangeBase(offset); 5497 file_range.SetByteSize(thread_cmd.cmdsize - 8); 5498 m_thread_context_offsets.Append(file_range); 5499 } 5500 offset = cmd_offset + thread_cmd.cmdsize; 5501 } 5502 } 5503 } 5504 return m_thread_context_offsets.GetSize(); 5505 } 5506 5507 std::string ObjectFileMachO::GetIdentifierString() { 5508 std::string result; 5509 ModuleSP module_sp(GetModule()); 5510 if (module_sp) { 5511 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5512 5513 // First, look over the load commands for an LC_NOTE load command with 5514 // data_owner string "kern ver str" & use that if found. 5515 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5516 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5517 const uint32_t cmd_offset = offset; 5518 llvm::MachO::load_command lc; 5519 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5520 break; 5521 if (lc.cmd == LC_NOTE) { 5522 char data_owner[17]; 5523 m_data.CopyData(offset, 16, data_owner); 5524 data_owner[16] = '\0'; 5525 offset += 16; 5526 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 5527 uint64_t size = m_data.GetU64_unchecked(&offset); 5528 5529 // "kern ver str" has a uint32_t version and then a nul terminated 5530 // c-string. 5531 if (strcmp("kern ver str", data_owner) == 0) { 5532 offset = fileoff; 5533 uint32_t version; 5534 if (m_data.GetU32(&offset, &version, 1) != nullptr) { 5535 if (version == 1) { 5536 uint32_t strsize = size - sizeof(uint32_t); 5537 char *buf = (char *)malloc(strsize); 5538 if (buf) { 5539 m_data.CopyData(offset, strsize, buf); 5540 buf[strsize - 1] = '\0'; 5541 result = buf; 5542 if (buf) 5543 free(buf); 5544 return result; 5545 } 5546 } 5547 } 5548 } 5549 } 5550 offset = cmd_offset + lc.cmdsize; 5551 } 5552 5553 // Second, make a pass over the load commands looking for an obsolete 5554 // LC_IDENT load command. 5555 offset = MachHeaderSizeFromMagic(m_header.magic); 5556 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5557 const uint32_t cmd_offset = offset; 5558 llvm::MachO::ident_command ident_command; 5559 if (m_data.GetU32(&offset, &ident_command, 2) == nullptr) 5560 break; 5561 if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) { 5562 char *buf = (char *)malloc(ident_command.cmdsize); 5563 if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize, 5564 buf) == ident_command.cmdsize) { 5565 buf[ident_command.cmdsize - 1] = '\0'; 5566 result = buf; 5567 } 5568 if (buf) 5569 free(buf); 5570 } 5571 offset = cmd_offset + ident_command.cmdsize; 5572 } 5573 } 5574 return result; 5575 } 5576 5577 addr_t ObjectFileMachO::GetAddressMask() { 5578 addr_t mask = 0; 5579 ModuleSP module_sp(GetModule()); 5580 if (module_sp) { 5581 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5582 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5583 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5584 const uint32_t cmd_offset = offset; 5585 llvm::MachO::load_command lc; 5586 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5587 break; 5588 if (lc.cmd == LC_NOTE) { 5589 char data_owner[17]; 5590 m_data.CopyData(offset, 16, data_owner); 5591 data_owner[16] = '\0'; 5592 offset += 16; 5593 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 5594 5595 // "addrable bits" has a uint32_t version and a uint32_t 5596 // number of bits used in addressing. 5597 if (strcmp("addrable bits", data_owner) == 0) { 5598 offset = fileoff; 5599 uint32_t version; 5600 if (m_data.GetU32(&offset, &version, 1) != nullptr) { 5601 if (version == 3) { 5602 uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset); 5603 if (num_addr_bits != 0) { 5604 mask = ~((1ULL << num_addr_bits) - 1); 5605 } 5606 break; 5607 } 5608 } 5609 } 5610 } 5611 offset = cmd_offset + lc.cmdsize; 5612 } 5613 } 5614 return mask; 5615 } 5616 5617 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid, 5618 ObjectFile::BinaryType &type) { 5619 address = LLDB_INVALID_ADDRESS; 5620 uuid.Clear(); 5621 ModuleSP module_sp(GetModule()); 5622 if (module_sp) { 5623 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5624 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5625 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5626 const uint32_t cmd_offset = offset; 5627 llvm::MachO::load_command lc; 5628 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5629 break; 5630 if (lc.cmd == LC_NOTE) { 5631 char data_owner[17]; 5632 memset(data_owner, 0, sizeof(data_owner)); 5633 m_data.CopyData(offset, 16, data_owner); 5634 offset += 16; 5635 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 5636 uint64_t size = m_data.GetU64_unchecked(&offset); 5637 5638 // "main bin spec" (main binary specification) data payload is 5639 // formatted: 5640 // uint32_t version [currently 1] 5641 // uint32_t type [0 == unspecified, 1 == kernel, 5642 // 2 == user process, 3 == firmware ] 5643 // uint64_t address [ UINT64_MAX if address not specified ] 5644 // uuid_t uuid [ all zero's if uuid not specified ] 5645 // uint32_t log2_pagesize [ process page size in log base 5646 // 2, e.g. 4k pages are 12. 5647 // 0 for unspecified ] 5648 // uint32_t unused [ for alignment ] 5649 5650 if (strcmp("main bin spec", data_owner) == 0 && size >= 32) { 5651 offset = fileoff; 5652 uint32_t version; 5653 if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) { 5654 uint32_t binspec_type = 0; 5655 uuid_t raw_uuid; 5656 memset(raw_uuid, 0, sizeof(uuid_t)); 5657 5658 if (m_data.GetU32(&offset, &binspec_type, 1) && 5659 m_data.GetU64(&offset, &address, 1) && 5660 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) { 5661 uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t)); 5662 // convert the "main bin spec" type into our 5663 // ObjectFile::BinaryType enum 5664 switch (binspec_type) { 5665 case 0: 5666 type = eBinaryTypeUnknown; 5667 break; 5668 case 1: 5669 type = eBinaryTypeKernel; 5670 break; 5671 case 2: 5672 type = eBinaryTypeUser; 5673 break; 5674 case 3: 5675 type = eBinaryTypeStandalone; 5676 break; 5677 } 5678 return true; 5679 } 5680 } 5681 } 5682 } 5683 offset = cmd_offset + lc.cmdsize; 5684 } 5685 } 5686 return false; 5687 } 5688 5689 lldb::RegisterContextSP 5690 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx, 5691 lldb_private::Thread &thread) { 5692 lldb::RegisterContextSP reg_ctx_sp; 5693 5694 ModuleSP module_sp(GetModule()); 5695 if (module_sp) { 5696 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5697 if (!m_thread_context_offsets_valid) 5698 GetNumThreadContexts(); 5699 5700 const FileRangeArray::Entry *thread_context_file_range = 5701 m_thread_context_offsets.GetEntryAtIndex(idx); 5702 if (thread_context_file_range) { 5703 5704 DataExtractor data(m_data, thread_context_file_range->GetRangeBase(), 5705 thread_context_file_range->GetByteSize()); 5706 5707 switch (m_header.cputype) { 5708 case llvm::MachO::CPU_TYPE_ARM64: 5709 case llvm::MachO::CPU_TYPE_ARM64_32: 5710 reg_ctx_sp = 5711 std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data); 5712 break; 5713 5714 case llvm::MachO::CPU_TYPE_ARM: 5715 reg_ctx_sp = 5716 std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data); 5717 break; 5718 5719 case llvm::MachO::CPU_TYPE_I386: 5720 reg_ctx_sp = 5721 std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data); 5722 break; 5723 5724 case llvm::MachO::CPU_TYPE_X86_64: 5725 reg_ctx_sp = 5726 std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data); 5727 break; 5728 } 5729 } 5730 } 5731 return reg_ctx_sp; 5732 } 5733 5734 ObjectFile::Type ObjectFileMachO::CalculateType() { 5735 switch (m_header.filetype) { 5736 case MH_OBJECT: // 0x1u 5737 if (GetAddressByteSize() == 4) { 5738 // 32 bit kexts are just object files, but they do have a valid 5739 // UUID load command. 5740 if (GetUUID()) { 5741 // this checking for the UUID load command is not enough we could 5742 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as 5743 // this is required of kexts 5744 if (m_strata == eStrataInvalid) 5745 m_strata = eStrataKernel; 5746 return eTypeSharedLibrary; 5747 } 5748 } 5749 return eTypeObjectFile; 5750 5751 case MH_EXECUTE: 5752 return eTypeExecutable; // 0x2u 5753 case MH_FVMLIB: 5754 return eTypeSharedLibrary; // 0x3u 5755 case MH_CORE: 5756 return eTypeCoreFile; // 0x4u 5757 case MH_PRELOAD: 5758 return eTypeSharedLibrary; // 0x5u 5759 case MH_DYLIB: 5760 return eTypeSharedLibrary; // 0x6u 5761 case MH_DYLINKER: 5762 return eTypeDynamicLinker; // 0x7u 5763 case MH_BUNDLE: 5764 return eTypeSharedLibrary; // 0x8u 5765 case MH_DYLIB_STUB: 5766 return eTypeStubLibrary; // 0x9u 5767 case MH_DSYM: 5768 return eTypeDebugInfo; // 0xAu 5769 case MH_KEXT_BUNDLE: 5770 return eTypeSharedLibrary; // 0xBu 5771 default: 5772 break; 5773 } 5774 return eTypeUnknown; 5775 } 5776 5777 ObjectFile::Strata ObjectFileMachO::CalculateStrata() { 5778 switch (m_header.filetype) { 5779 case MH_OBJECT: // 0x1u 5780 { 5781 // 32 bit kexts are just object files, but they do have a valid 5782 // UUID load command. 5783 if (GetUUID()) { 5784 // this checking for the UUID load command is not enough we could 5785 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as 5786 // this is required of kexts 5787 if (m_type == eTypeInvalid) 5788 m_type = eTypeSharedLibrary; 5789 5790 return eStrataKernel; 5791 } 5792 } 5793 return eStrataUnknown; 5794 5795 case MH_EXECUTE: // 0x2u 5796 // Check for the MH_DYLDLINK bit in the flags 5797 if (m_header.flags & MH_DYLDLINK) { 5798 return eStrataUser; 5799 } else { 5800 SectionList *section_list = GetSectionList(); 5801 if (section_list) { 5802 static ConstString g_kld_section_name("__KLD"); 5803 if (section_list->FindSectionByName(g_kld_section_name)) 5804 return eStrataKernel; 5805 } 5806 } 5807 return eStrataRawImage; 5808 5809 case MH_FVMLIB: 5810 return eStrataUser; // 0x3u 5811 case MH_CORE: 5812 return eStrataUnknown; // 0x4u 5813 case MH_PRELOAD: 5814 return eStrataRawImage; // 0x5u 5815 case MH_DYLIB: 5816 return eStrataUser; // 0x6u 5817 case MH_DYLINKER: 5818 return eStrataUser; // 0x7u 5819 case MH_BUNDLE: 5820 return eStrataUser; // 0x8u 5821 case MH_DYLIB_STUB: 5822 return eStrataUser; // 0x9u 5823 case MH_DSYM: 5824 return eStrataUnknown; // 0xAu 5825 case MH_KEXT_BUNDLE: 5826 return eStrataKernel; // 0xBu 5827 default: 5828 break; 5829 } 5830 return eStrataUnknown; 5831 } 5832 5833 llvm::VersionTuple ObjectFileMachO::GetVersion() { 5834 ModuleSP module_sp(GetModule()); 5835 if (module_sp) { 5836 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5837 llvm::MachO::dylib_command load_cmd; 5838 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5839 uint32_t version_cmd = 0; 5840 uint64_t version = 0; 5841 uint32_t i; 5842 for (i = 0; i < m_header.ncmds; ++i) { 5843 const lldb::offset_t cmd_offset = offset; 5844 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5845 break; 5846 5847 if (load_cmd.cmd == LC_ID_DYLIB) { 5848 if (version_cmd == 0) { 5849 version_cmd = load_cmd.cmd; 5850 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr) 5851 break; 5852 version = load_cmd.dylib.current_version; 5853 } 5854 break; // Break for now unless there is another more complete version 5855 // number load command in the future. 5856 } 5857 offset = cmd_offset + load_cmd.cmdsize; 5858 } 5859 5860 if (version_cmd == LC_ID_DYLIB) { 5861 unsigned major = (version & 0xFFFF0000ull) >> 16; 5862 unsigned minor = (version & 0x0000FF00ull) >> 8; 5863 unsigned subminor = (version & 0x000000FFull); 5864 return llvm::VersionTuple(major, minor, subminor); 5865 } 5866 } 5867 return llvm::VersionTuple(); 5868 } 5869 5870 ArchSpec ObjectFileMachO::GetArchitecture() { 5871 ModuleSP module_sp(GetModule()); 5872 ArchSpec arch; 5873 if (module_sp) { 5874 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5875 5876 return GetArchitecture(module_sp, m_header, m_data, 5877 MachHeaderSizeFromMagic(m_header.magic)); 5878 } 5879 return arch; 5880 } 5881 5882 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, 5883 addr_t &base_addr, UUID &uuid) { 5884 uuid.Clear(); 5885 base_addr = LLDB_INVALID_ADDRESS; 5886 if (process && process->GetDynamicLoader()) { 5887 DynamicLoader *dl = process->GetDynamicLoader(); 5888 LazyBool using_shared_cache; 5889 LazyBool private_shared_cache; 5890 dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache, 5891 private_shared_cache); 5892 } 5893 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 5894 LIBLLDB_LOG_PROCESS)); 5895 LLDB_LOGF( 5896 log, 5897 "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64, 5898 uuid.GetAsString().c_str(), base_addr); 5899 } 5900 5901 // From dyld SPI header dyld_process_info.h 5902 typedef void *dyld_process_info; 5903 struct lldb_copy__dyld_process_cache_info { 5904 uuid_t cacheUUID; // UUID of cache used by process 5905 uint64_t cacheBaseAddress; // load address of dyld shared cache 5906 bool noCache; // process is running without a dyld cache 5907 bool privateCache; // process is using a private copy of its dyld cache 5908 }; 5909 5910 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with 5911 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile 5912 // errors. So we need to use the actual underlying types of task_t and 5913 // kern_return_t below. 5914 extern "C" unsigned int /*task_t*/ mach_task_self(); 5915 5916 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) { 5917 uuid.Clear(); 5918 base_addr = LLDB_INVALID_ADDRESS; 5919 5920 #if defined(__APPLE__) 5921 uint8_t *(*dyld_get_all_image_infos)(void); 5922 dyld_get_all_image_infos = 5923 (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5924 if (dyld_get_all_image_infos) { 5925 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5926 if (dyld_all_image_infos_address) { 5927 uint32_t *version = (uint32_t *) 5928 dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5929 if (*version >= 13) { 5930 uuid_t *sharedCacheUUID_address = 0; 5931 int wordsize = sizeof(uint8_t *); 5932 if (wordsize == 8) { 5933 sharedCacheUUID_address = 5934 (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 5935 160); // sharedCacheUUID <mach-o/dyld_images.h> 5936 if (*version >= 15) 5937 base_addr = 5938 *(uint64_t 5939 *)((uint8_t *)dyld_all_image_infos_address + 5940 176); // sharedCacheBaseAddress <mach-o/dyld_images.h> 5941 } else { 5942 sharedCacheUUID_address = 5943 (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 5944 84); // sharedCacheUUID <mach-o/dyld_images.h> 5945 if (*version >= 15) { 5946 base_addr = 0; 5947 base_addr = 5948 *(uint32_t 5949 *)((uint8_t *)dyld_all_image_infos_address + 5950 100); // sharedCacheBaseAddress <mach-o/dyld_images.h> 5951 } 5952 } 5953 uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t)); 5954 } 5955 } 5956 } else { 5957 // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI 5958 dyld_process_info (*dyld_process_info_create)( 5959 unsigned int /* task_t */ task, uint64_t timestamp, 5960 unsigned int /*kern_return_t*/ *kernelError); 5961 void (*dyld_process_info_get_cache)(void *info, void *cacheInfo); 5962 void (*dyld_process_info_release)(dyld_process_info info); 5963 5964 dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, 5965 unsigned int /*kern_return_t*/ *)) 5966 dlsym(RTLD_DEFAULT, "_dyld_process_info_create"); 5967 dyld_process_info_get_cache = (void (*)(void *, void *))dlsym( 5968 RTLD_DEFAULT, "_dyld_process_info_get_cache"); 5969 dyld_process_info_release = 5970 (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release"); 5971 5972 if (dyld_process_info_create && dyld_process_info_get_cache) { 5973 unsigned int /*kern_return_t */ kern_ret; 5974 dyld_process_info process_info = 5975 dyld_process_info_create(::mach_task_self(), 0, &kern_ret); 5976 if (process_info) { 5977 struct lldb_copy__dyld_process_cache_info sc_info; 5978 memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info)); 5979 dyld_process_info_get_cache(process_info, &sc_info); 5980 if (sc_info.cacheBaseAddress != 0) { 5981 base_addr = sc_info.cacheBaseAddress; 5982 uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t)); 5983 } 5984 dyld_process_info_release(process_info); 5985 } 5986 } 5987 } 5988 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 5989 LIBLLDB_LOG_PROCESS)); 5990 if (log && uuid.IsValid()) 5991 LLDB_LOGF(log, 5992 "lldb's in-memory shared cache has a UUID of %s base address of " 5993 "0x%" PRIx64, 5994 uuid.GetAsString().c_str(), base_addr); 5995 #endif 5996 } 5997 5998 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() { 5999 if (!m_min_os_version) { 6000 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 6001 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 6002 const lldb::offset_t load_cmd_offset = offset; 6003 6004 llvm::MachO::version_min_command lc; 6005 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 6006 break; 6007 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || 6008 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || 6009 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || 6010 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { 6011 if (m_data.GetU32(&offset, &lc.version, 6012 (sizeof(lc) / sizeof(uint32_t)) - 2)) { 6013 const uint32_t xxxx = lc.version >> 16; 6014 const uint32_t yy = (lc.version >> 8) & 0xffu; 6015 const uint32_t zz = lc.version & 0xffu; 6016 if (xxxx) { 6017 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); 6018 break; 6019 } 6020 } 6021 } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { 6022 // struct build_version_command { 6023 // uint32_t cmd; /* LC_BUILD_VERSION */ 6024 // uint32_t cmdsize; /* sizeof(struct 6025 // build_version_command) plus */ 6026 // /* ntools * sizeof(struct 6027 // build_tool_version) */ 6028 // uint32_t platform; /* platform */ 6029 // uint32_t minos; /* X.Y.Z is encoded in nibbles 6030 // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded in 6031 // nibbles xxxx.yy.zz */ uint32_t ntools; /* number of 6032 // tool entries following this */ 6033 // }; 6034 6035 offset += 4; // skip platform 6036 uint32_t minos = m_data.GetU32(&offset); 6037 6038 const uint32_t xxxx = minos >> 16; 6039 const uint32_t yy = (minos >> 8) & 0xffu; 6040 const uint32_t zz = minos & 0xffu; 6041 if (xxxx) { 6042 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); 6043 break; 6044 } 6045 } 6046 6047 offset = load_cmd_offset + lc.cmdsize; 6048 } 6049 6050 if (!m_min_os_version) { 6051 // Set version to an empty value so we don't keep trying to 6052 m_min_os_version = llvm::VersionTuple(); 6053 } 6054 } 6055 6056 return *m_min_os_version; 6057 } 6058 6059 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() { 6060 if (!m_sdk_versions.hasValue()) { 6061 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 6062 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 6063 const lldb::offset_t load_cmd_offset = offset; 6064 6065 llvm::MachO::version_min_command lc; 6066 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 6067 break; 6068 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || 6069 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || 6070 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || 6071 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { 6072 if (m_data.GetU32(&offset, &lc.version, 6073 (sizeof(lc) / sizeof(uint32_t)) - 2)) { 6074 const uint32_t xxxx = lc.sdk >> 16; 6075 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 6076 const uint32_t zz = lc.sdk & 0xffu; 6077 if (xxxx) { 6078 m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz); 6079 break; 6080 } else { 6081 GetModule()->ReportWarning("minimum OS version load command with " 6082 "invalid (0) version found."); 6083 } 6084 } 6085 } 6086 offset = load_cmd_offset + lc.cmdsize; 6087 } 6088 6089 if (!m_sdk_versions.hasValue()) { 6090 offset = MachHeaderSizeFromMagic(m_header.magic); 6091 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 6092 const lldb::offset_t load_cmd_offset = offset; 6093 6094 llvm::MachO::version_min_command lc; 6095 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 6096 break; 6097 if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { 6098 // struct build_version_command { 6099 // uint32_t cmd; /* LC_BUILD_VERSION */ 6100 // uint32_t cmdsize; /* sizeof(struct 6101 // build_version_command) plus */ 6102 // /* ntools * sizeof(struct 6103 // build_tool_version) */ 6104 // uint32_t platform; /* platform */ 6105 // uint32_t minos; /* X.Y.Z is encoded in nibbles 6106 // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded 6107 // in nibbles xxxx.yy.zz */ uint32_t ntools; /* number 6108 // of tool entries following this */ 6109 // }; 6110 6111 offset += 4; // skip platform 6112 uint32_t minos = m_data.GetU32(&offset); 6113 6114 const uint32_t xxxx = minos >> 16; 6115 const uint32_t yy = (minos >> 8) & 0xffu; 6116 const uint32_t zz = minos & 0xffu; 6117 if (xxxx) { 6118 m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz); 6119 break; 6120 } 6121 } 6122 offset = load_cmd_offset + lc.cmdsize; 6123 } 6124 } 6125 6126 if (!m_sdk_versions.hasValue()) 6127 m_sdk_versions = llvm::VersionTuple(); 6128 } 6129 6130 return m_sdk_versions.getValue(); 6131 } 6132 6133 bool ObjectFileMachO::GetIsDynamicLinkEditor() { 6134 return m_header.filetype == llvm::MachO::MH_DYLINKER; 6135 } 6136 6137 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() { 6138 return m_allow_assembly_emulation_unwind_plans; 6139 } 6140 6141 // PluginInterface protocol 6142 lldb_private::ConstString ObjectFileMachO::GetPluginName() { 6143 return GetPluginNameStatic(); 6144 } 6145 6146 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; } 6147 6148 Section *ObjectFileMachO::GetMachHeaderSection() { 6149 // Find the first address of the mach header which is the first non-zero file 6150 // sized section whose file offset is zero. This is the base file address of 6151 // the mach-o file which can be subtracted from the vmaddr of the other 6152 // segments found in memory and added to the load address 6153 ModuleSP module_sp = GetModule(); 6154 if (!module_sp) 6155 return nullptr; 6156 SectionList *section_list = GetSectionList(); 6157 if (!section_list) 6158 return nullptr; 6159 const size_t num_sections = section_list->GetSize(); 6160 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6161 Section *section = section_list->GetSectionAtIndex(sect_idx).get(); 6162 if (section->GetFileOffset() == 0 && SectionIsLoadable(section)) 6163 return section; 6164 } 6165 return nullptr; 6166 } 6167 6168 bool ObjectFileMachO::SectionIsLoadable(const Section *section) { 6169 if (!section) 6170 return false; 6171 const bool is_dsym = (m_header.filetype == MH_DSYM); 6172 if (section->GetFileSize() == 0 && !is_dsym) 6173 return false; 6174 if (section->IsThreadSpecific()) 6175 return false; 6176 if (GetModule().get() != section->GetModule().get()) 6177 return false; 6178 // Be careful with __LINKEDIT and __DWARF segments 6179 if (section->GetName() == GetSegmentNameLINKEDIT() || 6180 section->GetName() == GetSegmentNameDWARF()) { 6181 // Only map __LINKEDIT and __DWARF if we have an in memory image and 6182 // this isn't a kernel binary like a kext or mach_kernel. 6183 const bool is_memory_image = (bool)m_process_wp.lock(); 6184 const Strata strata = GetStrata(); 6185 if (is_memory_image == false || strata == eStrataKernel) 6186 return false; 6187 } 6188 return true; 6189 } 6190 6191 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage( 6192 lldb::addr_t header_load_address, const Section *header_section, 6193 const Section *section) { 6194 ModuleSP module_sp = GetModule(); 6195 if (module_sp && header_section && section && 6196 header_load_address != LLDB_INVALID_ADDRESS) { 6197 lldb::addr_t file_addr = header_section->GetFileAddress(); 6198 if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section)) 6199 return section->GetFileAddress() - file_addr + header_load_address; 6200 } 6201 return LLDB_INVALID_ADDRESS; 6202 } 6203 6204 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value, 6205 bool value_is_offset) { 6206 ModuleSP module_sp = GetModule(); 6207 if (!module_sp) 6208 return false; 6209 6210 SectionList *section_list = GetSectionList(); 6211 if (!section_list) 6212 return false; 6213 6214 size_t num_loaded_sections = 0; 6215 const size_t num_sections = section_list->GetSize(); 6216 6217 if (value_is_offset) { 6218 // "value" is an offset to apply to each top level segment 6219 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6220 // Iterate through the object file sections to find all of the 6221 // sections that size on disk (to avoid __PAGEZERO) and load them 6222 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 6223 if (SectionIsLoadable(section_sp.get())) 6224 if (target.GetSectionLoadList().SetSectionLoadAddress( 6225 section_sp, section_sp->GetFileAddress() + value)) 6226 ++num_loaded_sections; 6227 } 6228 } else { 6229 // "value" is the new base address of the mach_header, adjust each 6230 // section accordingly 6231 6232 Section *mach_header_section = GetMachHeaderSection(); 6233 if (mach_header_section) { 6234 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6235 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 6236 6237 lldb::addr_t section_load_addr = 6238 CalculateSectionLoadAddressForMemoryImage( 6239 value, mach_header_section, section_sp.get()); 6240 if (section_load_addr != LLDB_INVALID_ADDRESS) { 6241 if (target.GetSectionLoadList().SetSectionLoadAddress( 6242 section_sp, section_load_addr)) 6243 ++num_loaded_sections; 6244 } 6245 } 6246 } 6247 } 6248 return num_loaded_sections > 0; 6249 } 6250 6251 struct all_image_infos_header { 6252 uint32_t version; // currently 1 6253 uint32_t imgcount; // number of binary images 6254 uint64_t entries_fileoff; // file offset in the corefile of where the array of 6255 // struct entry's begin. 6256 uint32_t entries_size; // size of 'struct entry'. 6257 uint32_t unused; 6258 }; 6259 6260 struct image_entry { 6261 uint64_t filepath_offset; // offset in corefile to c-string of the file path, 6262 // UINT64_MAX if unavailable. 6263 uuid_t uuid; // uint8_t[16]. should be set to all zeroes if 6264 // uuid is unknown. 6265 uint64_t load_address; // UINT64_MAX if unknown. 6266 uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's. 6267 uint32_t segment_count; // The number of segments for this binary. 6268 uint32_t unused; 6269 6270 image_entry() { 6271 filepath_offset = UINT64_MAX; 6272 memset(&uuid, 0, sizeof(uuid_t)); 6273 segment_count = 0; 6274 load_address = UINT64_MAX; 6275 seg_addrs_offset = UINT64_MAX; 6276 unused = 0; 6277 } 6278 image_entry(const image_entry &rhs) { 6279 filepath_offset = rhs.filepath_offset; 6280 memcpy(&uuid, &rhs.uuid, sizeof(uuid_t)); 6281 segment_count = rhs.segment_count; 6282 seg_addrs_offset = rhs.seg_addrs_offset; 6283 load_address = rhs.load_address; 6284 unused = rhs.unused; 6285 } 6286 }; 6287 6288 struct segment_vmaddr { 6289 char segname[16]; 6290 uint64_t vmaddr; 6291 uint64_t unused; 6292 6293 segment_vmaddr() { 6294 memset(&segname, 0, 16); 6295 vmaddr = UINT64_MAX; 6296 unused = 0; 6297 } 6298 segment_vmaddr(const segment_vmaddr &rhs) { 6299 memcpy(&segname, &rhs.segname, 16); 6300 vmaddr = rhs.vmaddr; 6301 unused = rhs.unused; 6302 } 6303 }; 6304 6305 // Write the payload for the "all image infos" LC_NOTE into 6306 // the supplied all_image_infos_payload, assuming that this 6307 // will be written into the corefile starting at 6308 // initial_file_offset. 6309 // 6310 // The placement of this payload is a little tricky. We're 6311 // laying this out as 6312 // 6313 // 1. header (struct all_image_info_header) 6314 // 2. Array of fixed-size (struct image_entry)'s, one 6315 // per binary image present in the process. 6316 // 3. Arrays of (struct segment_vmaddr)'s, a varying number 6317 // for each binary image. 6318 // 4. Variable length c-strings of binary image filepaths, 6319 // one per binary. 6320 // 6321 // To compute where everything will be laid out in the 6322 // payload, we need to iterate over the images and calculate 6323 // how many segment_vmaddr structures each image will need, 6324 // and how long each image's filepath c-string is. There 6325 // are some multiple passes over the image list while calculating 6326 // everything. 6327 6328 static offset_t 6329 CreateAllImageInfosPayload(const lldb::ProcessSP &process_sp, 6330 offset_t initial_file_offset, 6331 StreamString &all_image_infos_payload) { 6332 Target &target = process_sp->GetTarget(); 6333 const ModuleList &modules = target.GetImages(); 6334 size_t modules_count = modules.GetSize(); 6335 6336 std::set<std::string> executing_uuids; 6337 ThreadList &thread_list(process_sp->GetThreadList()); 6338 for (uint32_t i = 0; i < thread_list.GetSize(); i++) { 6339 ThreadSP thread_sp = thread_list.GetThreadAtIndex(i); 6340 uint32_t stack_frame_count = thread_sp->GetStackFrameCount(); 6341 for (uint32_t j = 0; j < stack_frame_count; j++) { 6342 StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j); 6343 Address pc = stack_frame_sp->GetFrameCodeAddress(); 6344 ModuleSP module_sp = pc.GetModule(); 6345 if (module_sp) { 6346 UUID uuid = module_sp->GetUUID(); 6347 if (uuid.IsValid()) { 6348 executing_uuids.insert(uuid.GetAsString()); 6349 } 6350 } 6351 } 6352 } 6353 6354 struct all_image_infos_header infos; 6355 infos.version = 1; 6356 infos.imgcount = modules_count; 6357 infos.entries_size = sizeof(image_entry); 6358 infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header); 6359 infos.unused = 0; 6360 6361 all_image_infos_payload.PutHex32(infos.version); 6362 all_image_infos_payload.PutHex32(infos.imgcount); 6363 all_image_infos_payload.PutHex64(infos.entries_fileoff); 6364 all_image_infos_payload.PutHex32(infos.entries_size); 6365 all_image_infos_payload.PutHex32(infos.unused); 6366 6367 // First create the structures for all of the segment name+vmaddr vectors 6368 // for each module, so we will know the size of them as we add the 6369 // module entries. 6370 std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs; 6371 for (size_t i = 0; i < modules_count; i++) { 6372 ModuleSP module = modules.GetModuleAtIndex(i); 6373 6374 SectionList *sections = module->GetSectionList(); 6375 size_t sections_count = sections->GetSize(); 6376 std::vector<segment_vmaddr> segment_vmaddrs; 6377 for (size_t j = 0; j < sections_count; j++) { 6378 SectionSP section = sections->GetSectionAtIndex(j); 6379 if (!section->GetParent().get()) { 6380 addr_t vmaddr = section->GetLoadBaseAddress(&target); 6381 if (vmaddr == LLDB_INVALID_ADDRESS) 6382 continue; 6383 ConstString name = section->GetName(); 6384 segment_vmaddr seg_vmaddr; 6385 strncpy(seg_vmaddr.segname, name.AsCString(), 6386 sizeof(seg_vmaddr.segname)); 6387 seg_vmaddr.vmaddr = vmaddr; 6388 seg_vmaddr.unused = 0; 6389 segment_vmaddrs.push_back(seg_vmaddr); 6390 } 6391 } 6392 modules_segment_vmaddrs.push_back(segment_vmaddrs); 6393 } 6394 6395 offset_t size_of_vmaddr_structs = 0; 6396 for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) { 6397 size_of_vmaddr_structs += 6398 modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr); 6399 } 6400 6401 offset_t size_of_filepath_cstrings = 0; 6402 for (size_t i = 0; i < modules_count; i++) { 6403 ModuleSP module_sp = modules.GetModuleAtIndex(i); 6404 size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1; 6405 } 6406 6407 // Calculate the file offsets of our "all image infos" payload in the 6408 // corefile. initial_file_offset the original value passed in to this method. 6409 6410 offset_t start_of_entries = 6411 initial_file_offset + sizeof(all_image_infos_header); 6412 offset_t start_of_seg_vmaddrs = 6413 start_of_entries + sizeof(image_entry) * modules_count; 6414 offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs; 6415 6416 offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings; 6417 6418 // Now write the one-per-module 'struct image_entry' into the 6419 // StringStream; keep track of where the struct segment_vmaddr 6420 // entries for each module will end up in the corefile. 6421 6422 offset_t current_string_offset = start_of_filenames; 6423 offset_t current_segaddrs_offset = start_of_seg_vmaddrs; 6424 std::vector<struct image_entry> image_entries; 6425 for (size_t i = 0; i < modules_count; i++) { 6426 ModuleSP module_sp = modules.GetModuleAtIndex(i); 6427 6428 struct image_entry ent; 6429 memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid)); 6430 if (modules_segment_vmaddrs[i].size() > 0) { 6431 ent.segment_count = modules_segment_vmaddrs[i].size(); 6432 ent.seg_addrs_offset = current_segaddrs_offset; 6433 } 6434 ent.filepath_offset = current_string_offset; 6435 ObjectFile *objfile = module_sp->GetObjectFile(); 6436 if (objfile) { 6437 Address base_addr(objfile->GetBaseAddress()); 6438 if (base_addr.IsValid()) { 6439 ent.load_address = base_addr.GetLoadAddress(&target); 6440 } 6441 } 6442 6443 all_image_infos_payload.PutHex64(ent.filepath_offset); 6444 all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid)); 6445 all_image_infos_payload.PutHex64(ent.load_address); 6446 all_image_infos_payload.PutHex64(ent.seg_addrs_offset); 6447 all_image_infos_payload.PutHex32(ent.segment_count); 6448 6449 if (executing_uuids.find(module_sp->GetUUID().GetAsString()) != 6450 executing_uuids.end()) 6451 all_image_infos_payload.PutHex32(1); 6452 else 6453 all_image_infos_payload.PutHex32(0); 6454 6455 current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr); 6456 current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1; 6457 } 6458 6459 // Now write the struct segment_vmaddr entries into the StringStream. 6460 6461 for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) { 6462 if (modules_segment_vmaddrs[i].size() == 0) 6463 continue; 6464 for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) { 6465 all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname)); 6466 all_image_infos_payload.PutHex64(segvm.vmaddr); 6467 all_image_infos_payload.PutHex64(segvm.unused); 6468 } 6469 } 6470 6471 for (size_t i = 0; i < modules_count; i++) { 6472 ModuleSP module_sp = modules.GetModuleAtIndex(i); 6473 std::string filepath = module_sp->GetFileSpec().GetPath(); 6474 all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1); 6475 } 6476 6477 return final_file_offset; 6478 } 6479 6480 // Temp struct used to combine contiguous memory regions with 6481 // identical permissions. 6482 struct page_object { 6483 addr_t addr; 6484 addr_t size; 6485 uint32_t prot; 6486 }; 6487 6488 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp, 6489 const FileSpec &outfile, 6490 lldb::SaveCoreStyle &core_style, Status &error) { 6491 if (!process_sp) 6492 return false; 6493 6494 // For Mach-O, we can only create full corefiles or dirty-page-only 6495 // corefiles. The default is dirty-page-only. 6496 if (core_style != SaveCoreStyle::eSaveCoreFull) { 6497 core_style = SaveCoreStyle::eSaveCoreDirtyOnly; 6498 } else { 6499 core_style = SaveCoreStyle::eSaveCoreFull; 6500 } 6501 6502 Target &target = process_sp->GetTarget(); 6503 const ArchSpec target_arch = target.GetArchitecture(); 6504 const llvm::Triple &target_triple = target_arch.GetTriple(); 6505 if (target_triple.getVendor() == llvm::Triple::Apple && 6506 (target_triple.getOS() == llvm::Triple::MacOSX || 6507 target_triple.getOS() == llvm::Triple::IOS || 6508 target_triple.getOS() == llvm::Triple::WatchOS || 6509 target_triple.getOS() == llvm::Triple::TvOS)) { 6510 // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS)) 6511 // { 6512 bool make_core = false; 6513 switch (target_arch.GetMachine()) { 6514 case llvm::Triple::aarch64: 6515 case llvm::Triple::aarch64_32: 6516 case llvm::Triple::arm: 6517 case llvm::Triple::thumb: 6518 case llvm::Triple::x86: 6519 case llvm::Triple::x86_64: 6520 make_core = true; 6521 break; 6522 default: 6523 error.SetErrorStringWithFormat("unsupported core architecture: %s", 6524 target_triple.str().c_str()); 6525 break; 6526 } 6527 6528 if (make_core) { 6529 std::vector<llvm::MachO::segment_command_64> segment_load_commands; 6530 // uint32_t range_info_idx = 0; 6531 MemoryRegionInfo range_info; 6532 Status range_error = process_sp->GetMemoryRegionInfo(0, range_info); 6533 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 6534 const ByteOrder byte_order = target_arch.GetByteOrder(); 6535 std::vector<page_object> pages_to_copy; 6536 6537 if (range_error.Success()) { 6538 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) { 6539 // Calculate correct protections 6540 uint32_t prot = 0; 6541 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 6542 prot |= VM_PROT_READ; 6543 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 6544 prot |= VM_PROT_WRITE; 6545 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 6546 prot |= VM_PROT_EXECUTE; 6547 6548 const addr_t addr = range_info.GetRange().GetRangeBase(); 6549 const addr_t size = range_info.GetRange().GetByteSize(); 6550 6551 if (size == 0) 6552 break; 6553 6554 if (prot != 0) { 6555 addr_t pagesize = range_info.GetPageSize(); 6556 const llvm::Optional<std::vector<addr_t>> &dirty_page_list = 6557 range_info.GetDirtyPageList(); 6558 if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly && 6559 dirty_page_list.hasValue()) { 6560 core_style = SaveCoreStyle::eSaveCoreDirtyOnly; 6561 for (addr_t dirtypage : dirty_page_list.getValue()) { 6562 page_object obj; 6563 obj.addr = dirtypage; 6564 obj.size = pagesize; 6565 obj.prot = prot; 6566 pages_to_copy.push_back(obj); 6567 } 6568 } else { 6569 page_object obj; 6570 obj.addr = addr; 6571 obj.size = size; 6572 obj.prot = prot; 6573 pages_to_copy.push_back(obj); 6574 } 6575 } 6576 6577 range_error = process_sp->GetMemoryRegionInfo( 6578 range_info.GetRange().GetRangeEnd(), range_info); 6579 if (range_error.Fail()) 6580 break; 6581 } 6582 6583 // Combine contiguous entries that have the same 6584 // protections so we don't have an excess of 6585 // load commands. 6586 std::vector<page_object> combined_page_objects; 6587 page_object last_obj; 6588 last_obj.addr = LLDB_INVALID_ADDRESS; 6589 for (page_object obj : pages_to_copy) { 6590 if (last_obj.addr == LLDB_INVALID_ADDRESS) { 6591 last_obj = obj; 6592 continue; 6593 } 6594 if (last_obj.addr + last_obj.size == obj.addr && 6595 last_obj.prot == obj.prot) { 6596 last_obj.size += obj.size; 6597 continue; 6598 } 6599 combined_page_objects.push_back(last_obj); 6600 last_obj = obj; 6601 } 6602 6603 for (page_object obj : combined_page_objects) { 6604 uint32_t cmd_type = LC_SEGMENT_64; 6605 uint32_t segment_size = sizeof(llvm::MachO::segment_command_64); 6606 if (addr_byte_size == 4) { 6607 cmd_type = LC_SEGMENT; 6608 segment_size = sizeof(llvm::MachO::segment_command); 6609 } 6610 llvm::MachO::segment_command_64 segment = { 6611 cmd_type, // uint32_t cmd; 6612 segment_size, // uint32_t cmdsize; 6613 {0}, // char segname[16]; 6614 obj.addr, // uint64_t vmaddr; // uint32_t for 32-bit 6615 // Mach-O 6616 obj.size, // uint64_t vmsize; // uint32_t for 32-bit 6617 // Mach-O 6618 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 6619 obj.size, // uint64_t filesize; // uint32_t for 32-bit 6620 // Mach-O 6621 obj.prot, // uint32_t maxprot; 6622 obj.prot, // uint32_t initprot; 6623 0, // uint32_t nsects; 6624 0}; // uint32_t flags; 6625 segment_load_commands.push_back(segment); 6626 } 6627 6628 StreamString buffer(Stream::eBinary, addr_byte_size, byte_order); 6629 6630 llvm::MachO::mach_header_64 mach_header; 6631 if (addr_byte_size == 8) { 6632 mach_header.magic = MH_MAGIC_64; 6633 } else { 6634 mach_header.magic = MH_MAGIC; 6635 } 6636 mach_header.cputype = target_arch.GetMachOCPUType(); 6637 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 6638 mach_header.filetype = MH_CORE; 6639 mach_header.ncmds = segment_load_commands.size(); 6640 mach_header.flags = 0; 6641 mach_header.reserved = 0; 6642 ThreadList &thread_list = process_sp->GetThreadList(); 6643 const uint32_t num_threads = thread_list.GetSize(); 6644 6645 // Make an array of LC_THREAD data items. Each one contains the 6646 // contents of the LC_THREAD load command. The data doesn't contain 6647 // the load command + load command size, we will add the load command 6648 // and load command size as we emit the data. 6649 std::vector<StreamString> LC_THREAD_datas(num_threads); 6650 for (auto &LC_THREAD_data : LC_THREAD_datas) { 6651 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 6652 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 6653 LC_THREAD_data.SetByteOrder(byte_order); 6654 } 6655 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) { 6656 ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx)); 6657 if (thread_sp) { 6658 switch (mach_header.cputype) { 6659 case llvm::MachO::CPU_TYPE_ARM64: 6660 case llvm::MachO::CPU_TYPE_ARM64_32: 6661 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD( 6662 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6663 break; 6664 6665 case llvm::MachO::CPU_TYPE_ARM: 6666 RegisterContextDarwin_arm_Mach::Create_LC_THREAD( 6667 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6668 break; 6669 6670 case llvm::MachO::CPU_TYPE_I386: 6671 RegisterContextDarwin_i386_Mach::Create_LC_THREAD( 6672 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6673 break; 6674 6675 case llvm::MachO::CPU_TYPE_X86_64: 6676 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD( 6677 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6678 break; 6679 } 6680 } 6681 } 6682 6683 // The size of the load command is the size of the segments... 6684 if (addr_byte_size == 8) { 6685 mach_header.sizeofcmds = segment_load_commands.size() * 6686 sizeof(llvm::MachO::segment_command_64); 6687 } else { 6688 mach_header.sizeofcmds = segment_load_commands.size() * 6689 sizeof(llvm::MachO::segment_command); 6690 } 6691 6692 // and the size of all LC_THREAD load command 6693 for (const auto &LC_THREAD_data : LC_THREAD_datas) { 6694 ++mach_header.ncmds; 6695 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 6696 } 6697 6698 // Bits will be set to indicate which bits are NOT used in 6699 // addressing in this process or 0 for unknown. 6700 uint64_t address_mask = process_sp->GetCodeAddressMask(); 6701 if (address_mask != 0) { 6702 // LC_NOTE "addrable bits" 6703 mach_header.ncmds++; 6704 mach_header.sizeofcmds += sizeof(llvm::MachO::note_command); 6705 } 6706 6707 // LC_NOTE "all image infos" 6708 mach_header.ncmds++; 6709 mach_header.sizeofcmds += sizeof(llvm::MachO::note_command); 6710 6711 // Write the mach header 6712 buffer.PutHex32(mach_header.magic); 6713 buffer.PutHex32(mach_header.cputype); 6714 buffer.PutHex32(mach_header.cpusubtype); 6715 buffer.PutHex32(mach_header.filetype); 6716 buffer.PutHex32(mach_header.ncmds); 6717 buffer.PutHex32(mach_header.sizeofcmds); 6718 buffer.PutHex32(mach_header.flags); 6719 if (addr_byte_size == 8) { 6720 buffer.PutHex32(mach_header.reserved); 6721 } 6722 6723 // Skip the mach header and all load commands and align to the next 6724 // 0x1000 byte boundary 6725 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 6726 6727 file_offset = llvm::alignTo(file_offset, 16); 6728 std::vector<std::unique_ptr<LCNoteEntry>> lc_notes; 6729 6730 // Add "addrable bits" LC_NOTE when an address mask is available 6731 if (address_mask != 0) { 6732 std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up( 6733 new LCNoteEntry(addr_byte_size, byte_order)); 6734 addrable_bits_lcnote_up->name = "addrable bits"; 6735 addrable_bits_lcnote_up->payload_file_offset = file_offset; 6736 int bits = std::bitset<64>(~address_mask).count(); 6737 addrable_bits_lcnote_up->payload.PutHex32(3); // version 6738 addrable_bits_lcnote_up->payload.PutHex32( 6739 bits); // # of bits used for addressing 6740 addrable_bits_lcnote_up->payload.PutHex64(0); // unused 6741 6742 file_offset += addrable_bits_lcnote_up->payload.GetSize(); 6743 6744 lc_notes.push_back(std::move(addrable_bits_lcnote_up)); 6745 } 6746 6747 // Add "all image infos" LC_NOTE 6748 std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up( 6749 new LCNoteEntry(addr_byte_size, byte_order)); 6750 all_image_infos_lcnote_up->name = "all image infos"; 6751 all_image_infos_lcnote_up->payload_file_offset = file_offset; 6752 file_offset = CreateAllImageInfosPayload( 6753 process_sp, file_offset, all_image_infos_lcnote_up->payload); 6754 lc_notes.push_back(std::move(all_image_infos_lcnote_up)); 6755 6756 // Add LC_NOTE load commands 6757 for (auto &lcnote : lc_notes) { 6758 // Add the LC_NOTE load command to the file. 6759 buffer.PutHex32(LC_NOTE); 6760 buffer.PutHex32(sizeof(llvm::MachO::note_command)); 6761 char namebuf[16]; 6762 memset(namebuf, 0, sizeof(namebuf)); 6763 // this is the uncommon case where strncpy is exactly 6764 // the right one, doesn't need to be nul terminated. 6765 strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf)); 6766 buffer.PutRawBytes(namebuf, sizeof(namebuf)); 6767 buffer.PutHex64(lcnote->payload_file_offset); 6768 buffer.PutHex64(lcnote->payload.GetSize()); 6769 } 6770 6771 // Align to 4096-byte page boundary for the LC_SEGMENTs. 6772 file_offset = llvm::alignTo(file_offset, 4096); 6773 6774 for (auto &segment : segment_load_commands) { 6775 segment.fileoff = file_offset; 6776 file_offset += segment.filesize; 6777 } 6778 6779 // Write out all of the LC_THREAD load commands 6780 for (const auto &LC_THREAD_data : LC_THREAD_datas) { 6781 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 6782 buffer.PutHex32(LC_THREAD); 6783 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 6784 buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size); 6785 } 6786 6787 // Write out all of the segment load commands 6788 for (const auto &segment : segment_load_commands) { 6789 buffer.PutHex32(segment.cmd); 6790 buffer.PutHex32(segment.cmdsize); 6791 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 6792 if (addr_byte_size == 8) { 6793 buffer.PutHex64(segment.vmaddr); 6794 buffer.PutHex64(segment.vmsize); 6795 buffer.PutHex64(segment.fileoff); 6796 buffer.PutHex64(segment.filesize); 6797 } else { 6798 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 6799 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 6800 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 6801 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 6802 } 6803 buffer.PutHex32(segment.maxprot); 6804 buffer.PutHex32(segment.initprot); 6805 buffer.PutHex32(segment.nsects); 6806 buffer.PutHex32(segment.flags); 6807 } 6808 6809 std::string core_file_path(outfile.GetPath()); 6810 auto core_file = FileSystem::Instance().Open( 6811 outfile, File::eOpenOptionWrite | File::eOpenOptionTruncate | 6812 File::eOpenOptionCanCreate); 6813 if (!core_file) { 6814 error = core_file.takeError(); 6815 } else { 6816 // Read 1 page at a time 6817 uint8_t bytes[0x1000]; 6818 // Write the mach header and load commands out to the core file 6819 size_t bytes_written = buffer.GetString().size(); 6820 error = 6821 core_file.get()->Write(buffer.GetString().data(), bytes_written); 6822 if (error.Success()) { 6823 6824 for (auto &lcnote : lc_notes) { 6825 if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) == 6826 -1) { 6827 error.SetErrorStringWithFormat("Unable to seek to corefile pos " 6828 "to write '%s' LC_NOTE payload", 6829 lcnote->name.c_str()); 6830 return false; 6831 } 6832 bytes_written = lcnote->payload.GetSize(); 6833 error = core_file.get()->Write(lcnote->payload.GetData(), 6834 bytes_written); 6835 if (!error.Success()) 6836 return false; 6837 } 6838 6839 // Now write the file data for all memory segments in the process 6840 for (const auto &segment : segment_load_commands) { 6841 if (core_file.get()->SeekFromStart(segment.fileoff) == -1) { 6842 error.SetErrorStringWithFormat( 6843 "unable to seek to offset 0x%" PRIx64 " in '%s'", 6844 segment.fileoff, core_file_path.c_str()); 6845 break; 6846 } 6847 6848 target.GetDebugger().GetAsyncOutputStream()->Printf( 6849 "Saving %" PRId64 6850 " bytes of data for memory region at 0x%" PRIx64 "\n", 6851 segment.vmsize, segment.vmaddr); 6852 addr_t bytes_left = segment.vmsize; 6853 addr_t addr = segment.vmaddr; 6854 Status memory_read_error; 6855 while (bytes_left > 0 && error.Success()) { 6856 const size_t bytes_to_read = 6857 bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 6858 6859 // In a savecore setting, we don't really care about caching, 6860 // as the data is dumped and very likely never read again, 6861 // so we call ReadMemoryFromInferior to bypass it. 6862 const size_t bytes_read = process_sp->ReadMemoryFromInferior( 6863 addr, bytes, bytes_to_read, memory_read_error); 6864 6865 if (bytes_read == bytes_to_read) { 6866 size_t bytes_written = bytes_read; 6867 error = core_file.get()->Write(bytes, bytes_written); 6868 bytes_left -= bytes_read; 6869 addr += bytes_read; 6870 } else { 6871 // Some pages within regions are not readable, those should 6872 // be zero filled 6873 memset(bytes, 0, bytes_to_read); 6874 size_t bytes_written = bytes_to_read; 6875 error = core_file.get()->Write(bytes, bytes_written); 6876 bytes_left -= bytes_to_read; 6877 addr += bytes_to_read; 6878 } 6879 } 6880 } 6881 } 6882 } 6883 } else { 6884 error.SetErrorString( 6885 "process doesn't support getting memory region info"); 6886 } 6887 } 6888 return true; // This is the right plug to handle saving core files for 6889 // this process 6890 } 6891 return false; 6892 } 6893 6894 ObjectFileMachO::MachOCorefileAllImageInfos 6895 ObjectFileMachO::GetCorefileAllImageInfos() { 6896 MachOCorefileAllImageInfos image_infos; 6897 6898 // Look for an "all image infos" LC_NOTE. 6899 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 6900 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 6901 const uint32_t cmd_offset = offset; 6902 llvm::MachO::load_command lc; 6903 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 6904 break; 6905 if (lc.cmd == LC_NOTE) { 6906 char data_owner[17]; 6907 m_data.CopyData(offset, 16, data_owner); 6908 data_owner[16] = '\0'; 6909 offset += 16; 6910 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 6911 offset += 4; /* size unused */ 6912 6913 if (strcmp("all image infos", data_owner) == 0) { 6914 offset = fileoff; 6915 // Read the struct all_image_infos_header. 6916 uint32_t version = m_data.GetU32(&offset); 6917 if (version != 1) { 6918 return image_infos; 6919 } 6920 uint32_t imgcount = m_data.GetU32(&offset); 6921 uint64_t entries_fileoff = m_data.GetU64(&offset); 6922 offset += 4; // uint32_t entries_size; 6923 offset += 4; // uint32_t unused; 6924 6925 offset = entries_fileoff; 6926 for (uint32_t i = 0; i < imgcount; i++) { 6927 // Read the struct image_entry. 6928 offset_t filepath_offset = m_data.GetU64(&offset); 6929 uuid_t uuid; 6930 memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)), 6931 sizeof(uuid_t)); 6932 uint64_t load_address = m_data.GetU64(&offset); 6933 offset_t seg_addrs_offset = m_data.GetU64(&offset); 6934 uint32_t segment_count = m_data.GetU32(&offset); 6935 uint32_t currently_executing = m_data.GetU32(&offset); 6936 6937 MachOCorefileImageEntry image_entry; 6938 image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset); 6939 image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t)); 6940 image_entry.load_address = load_address; 6941 image_entry.currently_executing = currently_executing; 6942 6943 offset_t seg_vmaddrs_offset = seg_addrs_offset; 6944 for (uint32_t j = 0; j < segment_count; j++) { 6945 char segname[17]; 6946 m_data.CopyData(seg_vmaddrs_offset, 16, segname); 6947 segname[16] = '\0'; 6948 seg_vmaddrs_offset += 16; 6949 uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset); 6950 seg_vmaddrs_offset += 8; /* unused */ 6951 6952 std::tuple<ConstString, addr_t> new_seg{ConstString(segname), 6953 vmaddr}; 6954 image_entry.segment_load_addresses.push_back(new_seg); 6955 } 6956 image_infos.all_image_infos.push_back(image_entry); 6957 } 6958 } 6959 } 6960 offset = cmd_offset + lc.cmdsize; 6961 } 6962 6963 return image_infos; 6964 } 6965 6966 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) { 6967 MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos(); 6968 bool added_images = false; 6969 if (image_infos.IsValid()) { 6970 for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) { 6971 ModuleSpec module_spec; 6972 module_spec.GetUUID() = image.uuid; 6973 module_spec.GetFileSpec() = FileSpec(image.filename.c_str()); 6974 if (image.currently_executing) { 6975 Symbols::DownloadObjectAndSymbolFile(module_spec, true); 6976 if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) { 6977 process.GetTarget().GetOrCreateModule(module_spec, false); 6978 } 6979 } 6980 Status error; 6981 ModuleSP module_sp = 6982 process.GetTarget().GetOrCreateModule(module_spec, false, &error); 6983 if (!module_sp.get() || !module_sp->GetObjectFile()) { 6984 if (image.load_address != LLDB_INVALID_ADDRESS) { 6985 module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(), 6986 image.load_address); 6987 } 6988 } 6989 if (module_sp.get() && module_sp->GetObjectFile()) { 6990 added_images = true; 6991 if (module_sp->GetObjectFile()->GetType() == 6992 ObjectFile::eTypeExecutable) { 6993 process.GetTarget().SetExecutableModule(module_sp, eLoadDependentsNo); 6994 } 6995 for (auto name_vmaddr_tuple : image.segment_load_addresses) { 6996 SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList(); 6997 if (sectlist) { 6998 SectionSP sect_sp = 6999 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple)); 7000 if (sect_sp) { 7001 process.GetTarget().SetSectionLoadAddress( 7002 sect_sp, std::get<1>(name_vmaddr_tuple)); 7003 } 7004 } 7005 } 7006 } 7007 } 7008 } 7009 return added_images; 7010 } 7011