1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" 71 #include "lldb/Core/Debugger.h" 72 #include "lldb/Core/Disassembler.h" 73 #include "lldb/Core/Module.h" 74 #include "lldb/Core/StreamFile.h" 75 #include "lldb/Expression/IRExecutionUnit.h" 76 #include "lldb/Expression/IRInterpreter.h" 77 #include "lldb/Host/File.h" 78 #include "lldb/Host/HostInfo.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/Reproducer.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h" 95 96 #include <cctype> 97 #include <memory> 98 99 using namespace clang; 100 using namespace llvm; 101 using namespace lldb_private; 102 103 //===----------------------------------------------------------------------===// 104 // Utility Methods for Clang 105 //===----------------------------------------------------------------------===// 106 107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 108 ClangModulesDeclVendor &m_decl_vendor; 109 ClangPersistentVariables &m_persistent_vars; 110 clang::SourceManager &m_source_mgr; 111 StreamString m_error_stream; 112 bool m_has_errors = false; 113 114 public: 115 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 116 ClangPersistentVariables &persistent_vars, 117 clang::SourceManager &source_mgr) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 119 m_source_mgr(source_mgr) {} 120 121 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 122 const clang::Module * /*null*/) override { 123 // Ignore modules that are imported in the wrapper code as these are not 124 // loaded by the user. 125 llvm::StringRef filename = 126 m_source_mgr.getPresumedLoc(import_location).getFilename(); 127 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 128 return; 129 130 SourceModule module; 131 132 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 133 module.path.push_back(ConstString(component.first->getName())); 134 135 StreamString error_stream; 136 137 ClangModulesDeclVendor::ModuleVector exported_modules; 138 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 139 m_has_errors = true; 140 141 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 142 m_persistent_vars.AddHandLoadedClangModule(module); 143 } 144 145 bool hasErrors() { return m_has_errors; } 146 147 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 148 }; 149 150 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) { 151 for (auto &fix_it : Info.getFixItHints()) { 152 if (fix_it.isNull()) 153 continue; 154 diag->AddFixitHint(fix_it); 155 } 156 } 157 158 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 159 public: 160 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 161 DiagnosticOptions *options = new DiagnosticOptions(opts); 162 options->ShowPresumedLoc = true; 163 options->ShowLevel = false; 164 m_os = std::make_shared<llvm::raw_string_ostream>(m_output); 165 m_passthrough = 166 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options); 167 } 168 169 void ResetManager(DiagnosticManager *manager = nullptr) { 170 m_manager = manager; 171 } 172 173 /// Returns the last ClangDiagnostic message that the DiagnosticManager 174 /// received or a nullptr if the DiagnosticMangager hasn't seen any 175 /// Clang diagnostics yet. 176 ClangDiagnostic *MaybeGetLastClangDiag() const { 177 if (m_manager->Diagnostics().empty()) 178 return nullptr; 179 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get(); 180 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag); 181 return clang_diag; 182 } 183 184 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 185 const clang::Diagnostic &Info) override { 186 if (!m_manager) { 187 // We have no DiagnosticManager before/after parsing but we still could 188 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 189 // when we move the expression result ot the ScratchASTContext). Let's at 190 // least log these diagnostics until we find a way to properly render 191 // them and display them to the user. 192 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 193 if (log) { 194 llvm::SmallVector<char, 32> diag_str; 195 Info.FormatDiagnostic(diag_str); 196 diag_str.push_back('\0'); 197 const char *plain_diag = diag_str.data(); 198 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 199 } 200 return; 201 } 202 203 // Update error/warning counters. 204 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info); 205 206 // Render diagnostic message to m_output. 207 m_output.clear(); 208 m_passthrough->HandleDiagnostic(DiagLevel, Info); 209 m_os->flush(); 210 211 lldb_private::DiagnosticSeverity severity; 212 bool make_new_diagnostic = true; 213 214 switch (DiagLevel) { 215 case DiagnosticsEngine::Level::Fatal: 216 case DiagnosticsEngine::Level::Error: 217 severity = eDiagnosticSeverityError; 218 break; 219 case DiagnosticsEngine::Level::Warning: 220 severity = eDiagnosticSeverityWarning; 221 break; 222 case DiagnosticsEngine::Level::Remark: 223 case DiagnosticsEngine::Level::Ignored: 224 severity = eDiagnosticSeverityRemark; 225 break; 226 case DiagnosticsEngine::Level::Note: 227 m_manager->AppendMessageToDiagnostic(m_output); 228 make_new_diagnostic = false; 229 230 // 'note:' diagnostics for errors and warnings can also contain Fix-Its. 231 // We add these Fix-Its to the last error diagnostic to make sure 232 // that we later have all Fix-Its related to an 'error' diagnostic when 233 // we apply them to the user expression. 234 auto *clang_diag = MaybeGetLastClangDiag(); 235 // If we don't have a previous diagnostic there is nothing to do. 236 // If the previous diagnostic already has its own Fix-Its, assume that 237 // the 'note:' Fix-It is just an alternative way to solve the issue and 238 // ignore these Fix-Its. 239 if (!clang_diag || clang_diag->HasFixIts()) 240 break; 241 // Ignore all Fix-Its that are not associated with an error. 242 if (clang_diag->GetSeverity() != eDiagnosticSeverityError) 243 break; 244 AddAllFixIts(clang_diag, Info); 245 break; 246 } 247 if (make_new_diagnostic) { 248 // ClangDiagnostic messages are expected to have no whitespace/newlines 249 // around them. 250 std::string stripped_output = 251 std::string(llvm::StringRef(m_output).trim()); 252 253 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 254 stripped_output, severity, Info.getID()); 255 256 // Don't store away warning fixits, since the compiler doesn't have 257 // enough context in an expression for the warning to be useful. 258 // FIXME: Should we try to filter out FixIts that apply to our generated 259 // code, and not the user's expression? 260 if (severity == eDiagnosticSeverityError) 261 AddAllFixIts(new_diagnostic.get(), Info); 262 263 m_manager->AddDiagnostic(std::move(new_diagnostic)); 264 } 265 } 266 267 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override { 268 m_passthrough->BeginSourceFile(LO, PP); 269 } 270 271 void EndSourceFile() override { m_passthrough->EndSourceFile(); } 272 273 private: 274 DiagnosticManager *m_manager = nullptr; 275 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 276 /// Output stream of m_passthrough. 277 std::shared_ptr<llvm::raw_string_ostream> m_os; 278 /// Output string filled by m_os. 279 std::string m_output; 280 }; 281 282 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 283 std::vector<std::string> include_directories, 284 lldb::TargetSP target_sp) { 285 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 286 287 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 288 289 for (const std::string &dir : include_directories) { 290 search_opts.AddPath(dir, frontend::System, false, true); 291 LLDB_LOG(log, "Added user include dir: {0}", dir); 292 } 293 294 llvm::SmallString<128> module_cache; 295 const auto &props = ModuleList::GetGlobalModuleListProperties(); 296 props.GetClangModulesCachePath().GetPath(module_cache); 297 search_opts.ModuleCachePath = std::string(module_cache.str()); 298 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 299 300 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 301 302 search_opts.ImplicitModuleMaps = true; 303 } 304 305 //===----------------------------------------------------------------------===// 306 // Implementation of ClangExpressionParser 307 //===----------------------------------------------------------------------===// 308 309 ClangExpressionParser::ClangExpressionParser( 310 ExecutionContextScope *exe_scope, Expression &expr, 311 bool generate_debug_info, std::vector<std::string> include_directories, 312 std::string filename) 313 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 314 m_pp_callbacks(nullptr), 315 m_include_directories(std::move(include_directories)), 316 m_filename(std::move(filename)) { 317 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 318 319 // We can't compile expressions without a target. So if the exe_scope is 320 // null or doesn't have a target, then we just need to get out of here. I'll 321 // lldbassert and not make any of the compiler objects since 322 // I can't return errors directly from the constructor. Further calls will 323 // check if the compiler was made and 324 // bag out if it wasn't. 325 326 if (!exe_scope) { 327 lldbassert(exe_scope && 328 "Can't make an expression parser with a null scope."); 329 return; 330 } 331 332 lldb::TargetSP target_sp; 333 target_sp = exe_scope->CalculateTarget(); 334 if (!target_sp) { 335 lldbassert(target_sp.get() && 336 "Can't make an expression parser with a null target."); 337 return; 338 } 339 340 // 1. Create a new compiler instance. 341 m_compiler = std::make_unique<CompilerInstance>(); 342 343 // When capturing a reproducer, hook up the file collector with clang to 344 // collector modules and headers. 345 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 346 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 347 m_compiler->setModuleDepCollector( 348 std::make_shared<ModuleDependencyCollectorAdaptor>( 349 fp.GetFileCollector())); 350 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 351 opts.IncludeSystemHeaders = true; 352 opts.IncludeModuleFiles = true; 353 } 354 355 // Make sure clang uses the same VFS as LLDB. 356 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 357 358 lldb::LanguageType frame_lang = 359 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 360 bool overridden_target_opts = false; 361 lldb_private::LanguageRuntime *lang_rt = nullptr; 362 363 std::string abi; 364 ArchSpec target_arch; 365 target_arch = target_sp->GetArchitecture(); 366 367 const auto target_machine = target_arch.GetMachine(); 368 369 // If the expression is being evaluated in the context of an existing stack 370 // frame, we introspect to see if the language runtime is available. 371 372 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 373 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 374 375 // Make sure the user hasn't provided a preferred execution language with 376 // `expression --language X -- ...` 377 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 378 frame_lang = frame_sp->GetLanguage(); 379 380 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 381 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 382 LLDB_LOGF(log, "Frame has language of type %s", 383 Language::GetNameForLanguageType(frame_lang)); 384 } 385 386 // 2. Configure the compiler with a set of default options that are 387 // appropriate for most situations. 388 if (target_arch.IsValid()) { 389 std::string triple = target_arch.GetTriple().str(); 390 m_compiler->getTargetOpts().Triple = triple; 391 LLDB_LOGF(log, "Using %s as the target triple", 392 m_compiler->getTargetOpts().Triple.c_str()); 393 } else { 394 // If we get here we don't have a valid target and just have to guess. 395 // Sometimes this will be ok to just use the host target triple (when we 396 // evaluate say "2+3", but other expressions like breakpoint conditions and 397 // other things that _are_ target specific really shouldn't just be using 398 // the host triple. In such a case the language runtime should expose an 399 // overridden options set (3), below. 400 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 401 LLDB_LOGF(log, "Using default target triple of %s", 402 m_compiler->getTargetOpts().Triple.c_str()); 403 } 404 // Now add some special fixes for known architectures: Any arm32 iOS 405 // environment, but not on arm64 406 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 407 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 408 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 409 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 410 } 411 // Supported subsets of x86 412 if (target_machine == llvm::Triple::x86 || 413 target_machine == llvm::Triple::x86_64) { 414 m_compiler->getTargetOpts().Features.push_back("+sse"); 415 m_compiler->getTargetOpts().Features.push_back("+sse2"); 416 } 417 418 // Set the target CPU to generate code for. This will be empty for any CPU 419 // that doesn't really need to make a special 420 // CPU string. 421 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 422 423 // Set the target ABI 424 abi = GetClangTargetABI(target_arch); 425 if (!abi.empty()) 426 m_compiler->getTargetOpts().ABI = abi; 427 428 // 3. Now allow the runtime to provide custom configuration options for the 429 // target. In this case, a specialized language runtime is available and we 430 // can query it for extra options. For 99% of use cases, this will not be 431 // needed and should be provided when basic platform detection is not enough. 432 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this 433 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime 434 // having knowledge of clang::TargetOpts. 435 if (auto *renderscript_rt = 436 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt)) 437 overridden_target_opts = 438 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 439 440 if (overridden_target_opts) 441 if (log && log->GetVerbose()) { 442 LLDB_LOGV( 443 log, "Using overridden target options for the expression evaluation"); 444 445 auto opts = m_compiler->getTargetOpts(); 446 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 447 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 448 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 449 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 450 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 451 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 452 StringList::LogDump(log, opts.Features, "Features"); 453 } 454 455 // 4. Create and install the target on the compiler. 456 m_compiler->createDiagnostics(); 457 auto target_info = TargetInfo::CreateTargetInfo( 458 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 459 if (log) { 460 LLDB_LOGF(log, "Using SIMD alignment: %d", 461 target_info->getSimdDefaultAlign()); 462 LLDB_LOGF(log, "Target datalayout string: '%s'", 463 target_info->getDataLayout().getStringRepresentation().c_str()); 464 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 465 LLDB_LOGF(log, "Target vector alignment: %d", 466 target_info->getMaxVectorAlign()); 467 } 468 m_compiler->setTarget(target_info); 469 470 assert(m_compiler->hasTarget()); 471 472 // 5. Set language options. 473 lldb::LanguageType language = expr.Language(); 474 LangOptions &lang_opts = m_compiler->getLangOpts(); 475 476 switch (language) { 477 case lldb::eLanguageTypeC: 478 case lldb::eLanguageTypeC89: 479 case lldb::eLanguageTypeC99: 480 case lldb::eLanguageTypeC11: 481 // FIXME: the following language option is a temporary workaround, 482 // to "ask for C, get C++." 483 // For now, the expression parser must use C++ anytime the language is a C 484 // family language, because the expression parser uses features of C++ to 485 // capture values. 486 lang_opts.CPlusPlus = true; 487 break; 488 case lldb::eLanguageTypeObjC: 489 lang_opts.ObjC = true; 490 // FIXME: the following language option is a temporary workaround, 491 // to "ask for ObjC, get ObjC++" (see comment above). 492 lang_opts.CPlusPlus = true; 493 494 // Clang now sets as default C++14 as the default standard (with 495 // GNU extensions), so we do the same here to avoid mismatches that 496 // cause compiler error when evaluating expressions (e.g. nullptr not found 497 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 498 // two lines below) so we decide to be consistent with that, but this could 499 // be re-evaluated in the future. 500 lang_opts.CPlusPlus11 = true; 501 break; 502 case lldb::eLanguageTypeC_plus_plus: 503 case lldb::eLanguageTypeC_plus_plus_11: 504 case lldb::eLanguageTypeC_plus_plus_14: 505 lang_opts.CPlusPlus11 = true; 506 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 507 LLVM_FALLTHROUGH; 508 case lldb::eLanguageTypeC_plus_plus_03: 509 lang_opts.CPlusPlus = true; 510 if (process_sp) 511 lang_opts.ObjC = 512 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 513 break; 514 case lldb::eLanguageTypeObjC_plus_plus: 515 case lldb::eLanguageTypeUnknown: 516 default: 517 lang_opts.ObjC = true; 518 lang_opts.CPlusPlus = true; 519 lang_opts.CPlusPlus11 = true; 520 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 521 break; 522 } 523 524 lang_opts.Bool = true; 525 lang_opts.WChar = true; 526 lang_opts.Blocks = true; 527 lang_opts.DebuggerSupport = 528 true; // Features specifically for debugger clients 529 if (expr.DesiredResultType() == Expression::eResultTypeId) 530 lang_opts.DebuggerCastResultToId = true; 531 532 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 533 .CharIsSignedByDefault(); 534 535 // Spell checking is a nice feature, but it ends up completing a lot of types 536 // that we didn't strictly speaking need to complete. As a result, we spend a 537 // long time parsing and importing debug information. 538 lang_opts.SpellChecking = false; 539 540 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 541 if (clang_expr && clang_expr->DidImportCxxModules()) { 542 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 543 544 lang_opts.Modules = true; 545 // We want to implicitly build modules. 546 lang_opts.ImplicitModules = true; 547 // To automatically import all submodules when we import 'std'. 548 lang_opts.ModulesLocalVisibility = false; 549 550 // We use the @import statements, so we need this: 551 // FIXME: We could use the modules-ts, but that currently doesn't work. 552 lang_opts.ObjC = true; 553 554 // Options we need to parse libc++ code successfully. 555 // FIXME: We should ask the driver for the appropriate default flags. 556 lang_opts.GNUMode = true; 557 lang_opts.GNUKeywords = true; 558 lang_opts.DoubleSquareBracketAttributes = true; 559 lang_opts.CPlusPlus11 = true; 560 561 // The Darwin libc expects this macro to be set. 562 lang_opts.GNUCVersion = 40201; 563 564 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 565 target_sp); 566 } 567 568 if (process_sp && lang_opts.ObjC) { 569 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 570 if (runtime->GetRuntimeVersion() == 571 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 572 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 573 else 574 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 575 VersionTuple(10, 7)); 576 577 if (runtime->HasNewLiteralsAndIndexing()) 578 lang_opts.DebuggerObjCLiteral = true; 579 } 580 } 581 582 lang_opts.ThreadsafeStatics = false; 583 lang_opts.AccessControl = false; // Debuggers get universal access 584 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 585 // We enable all builtin functions beside the builtins from libc/libm (e.g. 586 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 587 // additionally enabling them as expandable builtins is breaking Clang. 588 lang_opts.NoBuiltin = true; 589 590 // Set CodeGen options 591 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 592 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 593 m_compiler->getCodeGenOpts().setFramePointer( 594 CodeGenOptions::FramePointerKind::All); 595 if (generate_debug_info) 596 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 597 else 598 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 599 600 // Disable some warnings. 601 m_compiler->getDiagnostics().setSeverityForGroup( 602 clang::diag::Flavor::WarningOrError, "unused-value", 603 clang::diag::Severity::Ignored, SourceLocation()); 604 m_compiler->getDiagnostics().setSeverityForGroup( 605 clang::diag::Flavor::WarningOrError, "odr", 606 clang::diag::Severity::Ignored, SourceLocation()); 607 608 // Inform the target of the language options 609 // 610 // FIXME: We shouldn't need to do this, the target should be immutable once 611 // created. This complexity should be lifted elsewhere. 612 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 613 614 // 6. Set up the diagnostic buffer for reporting errors 615 616 auto diag_mgr = new ClangDiagnosticManagerAdapter( 617 m_compiler->getDiagnostics().getDiagnosticOptions()); 618 m_compiler->getDiagnostics().setClient(diag_mgr); 619 620 // 7. Set up the source management objects inside the compiler 621 m_compiler->createFileManager(); 622 if (!m_compiler->hasSourceManager()) 623 m_compiler->createSourceManager(m_compiler->getFileManager()); 624 m_compiler->createPreprocessor(TU_Complete); 625 626 if (ClangModulesDeclVendor *decl_vendor = 627 target_sp->GetClangModulesDeclVendor()) { 628 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 629 target_sp->GetPersistentExpressionStateForLanguage( 630 lldb::eLanguageTypeC))) { 631 std::unique_ptr<PPCallbacks> pp_callbacks( 632 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 633 m_compiler->getSourceManager())); 634 m_pp_callbacks = 635 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 636 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 637 } 638 } 639 640 // 8. Most of this we get from the CompilerInstance, but we also want to give 641 // the context an ExternalASTSource. 642 643 auto &PP = m_compiler->getPreprocessor(); 644 auto &builtin_context = PP.getBuiltinInfo(); 645 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 646 m_compiler->getLangOpts()); 647 648 m_compiler->createASTContext(); 649 clang::ASTContext &ast_context = m_compiler->getASTContext(); 650 651 m_ast_context = std::make_unique<TypeSystemClang>( 652 "Expression ASTContext for '" + m_filename + "'", ast_context); 653 654 std::string module_name("$__lldb_module"); 655 656 m_llvm_context = std::make_unique<LLVMContext>(); 657 m_code_generator.reset(CreateLLVMCodeGen( 658 m_compiler->getDiagnostics(), module_name, 659 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 660 m_compiler->getCodeGenOpts(), *m_llvm_context)); 661 } 662 663 ClangExpressionParser::~ClangExpressionParser() {} 664 665 namespace { 666 667 /// \class CodeComplete 668 /// 669 /// A code completion consumer for the clang Sema that is responsible for 670 /// creating the completion suggestions when a user requests completion 671 /// of an incomplete `expr` invocation. 672 class CodeComplete : public CodeCompleteConsumer { 673 CodeCompletionTUInfo m_info; 674 675 std::string m_expr; 676 unsigned m_position = 0; 677 /// The printing policy we use when printing declarations for our completion 678 /// descriptions. 679 clang::PrintingPolicy m_desc_policy; 680 681 struct CompletionWithPriority { 682 CompletionResult::Completion completion; 683 /// See CodeCompletionResult::Priority; 684 unsigned Priority; 685 686 /// Establishes a deterministic order in a list of CompletionWithPriority. 687 /// The order returned here is the order in which the completions are 688 /// displayed to the user. 689 bool operator<(const CompletionWithPriority &o) const { 690 // High priority results should come first. 691 if (Priority != o.Priority) 692 return Priority > o.Priority; 693 694 // Identical priority, so just make sure it's a deterministic order. 695 return completion.GetUniqueKey() < o.completion.GetUniqueKey(); 696 } 697 }; 698 699 /// The stored completions. 700 /// Warning: These are in a non-deterministic order until they are sorted 701 /// and returned back to the caller. 702 std::vector<CompletionWithPriority> m_completions; 703 704 /// Returns true if the given character can be used in an identifier. 705 /// This also returns true for numbers because for completion we usually 706 /// just iterate backwards over iterators. 707 /// 708 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 709 static bool IsIdChar(char c) { 710 return c == '_' || std::isalnum(c) || c == '$'; 711 } 712 713 /// Returns true if the given character is used to separate arguments 714 /// in the command line of lldb. 715 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 716 717 /// Drops all tokens in front of the expression that are unrelated for 718 /// the completion of the cmd line. 'unrelated' means here that the token 719 /// is not interested for the lldb completion API result. 720 StringRef dropUnrelatedFrontTokens(StringRef cmd) const { 721 if (cmd.empty()) 722 return cmd; 723 724 // If we are at the start of a word, then all tokens are unrelated to 725 // the current completion logic. 726 if (IsTokenSeparator(cmd.back())) 727 return StringRef(); 728 729 // Remove all previous tokens from the string as they are unrelated 730 // to completing the current token. 731 StringRef to_remove = cmd; 732 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 733 to_remove = to_remove.drop_back(); 734 } 735 cmd = cmd.drop_front(to_remove.size()); 736 737 return cmd; 738 } 739 740 /// Removes the last identifier token from the given cmd line. 741 StringRef removeLastToken(StringRef cmd) const { 742 while (!cmd.empty() && IsIdChar(cmd.back())) { 743 cmd = cmd.drop_back(); 744 } 745 return cmd; 746 } 747 748 /// Attempts to merge the given completion from the given position into the 749 /// existing command. Returns the completion string that can be returned to 750 /// the lldb completion API. 751 std::string mergeCompletion(StringRef existing, unsigned pos, 752 StringRef completion) const { 753 StringRef existing_command = existing.substr(0, pos); 754 // We rewrite the last token with the completion, so let's drop that 755 // token from the command. 756 existing_command = removeLastToken(existing_command); 757 // We also should remove all previous tokens from the command as they 758 // would otherwise be added to the completion that already has the 759 // completion. 760 existing_command = dropUnrelatedFrontTokens(existing_command); 761 return existing_command.str() + completion.str(); 762 } 763 764 public: 765 /// Constructs a CodeComplete consumer that can be attached to a Sema. 766 /// 767 /// \param[out] expr 768 /// The whole expression string that we are currently parsing. This 769 /// string needs to be equal to the input the user typed, and NOT the 770 /// final code that Clang is parsing. 771 /// \param[out] position 772 /// The character position of the user cursor in the `expr` parameter. 773 /// 774 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position) 775 : CodeCompleteConsumer(CodeCompleteOptions()), 776 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 777 m_position(position), m_desc_policy(ops) { 778 779 // Ensure that the printing policy is producing a description that is as 780 // short as possible. 781 m_desc_policy.SuppressScope = true; 782 m_desc_policy.SuppressTagKeyword = true; 783 m_desc_policy.FullyQualifiedName = false; 784 m_desc_policy.TerseOutput = true; 785 m_desc_policy.IncludeNewlines = false; 786 m_desc_policy.UseVoidForZeroParams = false; 787 m_desc_policy.Bool = true; 788 } 789 790 /// \name Code-completion filtering 791 /// Check if the result should be filtered out. 792 bool isResultFilteredOut(StringRef Filter, 793 CodeCompletionResult Result) override { 794 // This code is mostly copied from CodeCompleteConsumer. 795 switch (Result.Kind) { 796 case CodeCompletionResult::RK_Declaration: 797 return !( 798 Result.Declaration->getIdentifier() && 799 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 800 case CodeCompletionResult::RK_Keyword: 801 return !StringRef(Result.Keyword).startswith(Filter); 802 case CodeCompletionResult::RK_Macro: 803 return !Result.Macro->getName().startswith(Filter); 804 case CodeCompletionResult::RK_Pattern: 805 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 806 } 807 // If we trigger this assert or the above switch yields a warning, then 808 // CodeCompletionResult has been enhanced with more kinds of completion 809 // results. Expand the switch above in this case. 810 assert(false && "Unknown completion result type?"); 811 // If we reach this, then we should just ignore whatever kind of unknown 812 // result we got back. We probably can't turn it into any kind of useful 813 // completion suggestion with the existing code. 814 return true; 815 } 816 817 private: 818 /// Generate the completion strings for the given CodeCompletionResult. 819 /// Note that this function has to process results that could come in 820 /// non-deterministic order, so this function should have no side effects. 821 /// To make this easier to enforce, this function and all its parameters 822 /// should always be const-qualified. 823 /// \return Returns llvm::None if no completion should be provided for the 824 /// given CodeCompletionResult. 825 llvm::Optional<CompletionWithPriority> 826 getCompletionForResult(const CodeCompletionResult &R) const { 827 std::string ToInsert; 828 std::string Description; 829 // Handle the different completion kinds that come from the Sema. 830 switch (R.Kind) { 831 case CodeCompletionResult::RK_Declaration: { 832 const NamedDecl *D = R.Declaration; 833 ToInsert = R.Declaration->getNameAsString(); 834 // If we have a function decl that has no arguments we want to 835 // complete the empty parantheses for the user. If the function has 836 // arguments, we at least complete the opening bracket. 837 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 838 if (F->getNumParams() == 0) 839 ToInsert += "()"; 840 else 841 ToInsert += "("; 842 raw_string_ostream OS(Description); 843 F->print(OS, m_desc_policy, false); 844 OS.flush(); 845 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 846 Description = V->getType().getAsString(m_desc_policy); 847 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 848 Description = F->getType().getAsString(m_desc_policy); 849 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 850 // If we try to complete a namespace, then we can directly append 851 // the '::'. 852 if (!N->isAnonymousNamespace()) 853 ToInsert += "::"; 854 } 855 break; 856 } 857 case CodeCompletionResult::RK_Keyword: 858 ToInsert = R.Keyword; 859 break; 860 case CodeCompletionResult::RK_Macro: 861 ToInsert = R.Macro->getName().str(); 862 break; 863 case CodeCompletionResult::RK_Pattern: 864 ToInsert = R.Pattern->getTypedText(); 865 break; 866 } 867 // We also filter some internal lldb identifiers here. The user 868 // shouldn't see these. 869 if (llvm::StringRef(ToInsert).startswith("$__lldb_")) 870 return llvm::None; 871 if (ToInsert.empty()) 872 return llvm::None; 873 // Merge the suggested Token into the existing command line to comply 874 // with the kind of result the lldb API expects. 875 std::string CompletionSuggestion = 876 mergeCompletion(m_expr, m_position, ToInsert); 877 878 CompletionResult::Completion completion(CompletionSuggestion, Description, 879 CompletionMode::Normal); 880 return {{completion, R.Priority}}; 881 } 882 883 public: 884 /// Adds the completions to the given CompletionRequest. 885 void GetCompletions(CompletionRequest &request) { 886 // Bring m_completions into a deterministic order and pass it on to the 887 // CompletionRequest. 888 llvm::sort(m_completions); 889 890 for (const CompletionWithPriority &C : m_completions) 891 request.AddCompletion(C.completion.GetCompletion(), 892 C.completion.GetDescription(), 893 C.completion.GetMode()); 894 } 895 896 /// \name Code-completion callbacks 897 /// Process the finalized code-completion results. 898 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 899 CodeCompletionResult *Results, 900 unsigned NumResults) override { 901 902 // The Sema put the incomplete token we try to complete in here during 903 // lexing, so we need to retrieve it here to know what we are completing. 904 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 905 906 // Iterate over all the results. Filter out results we don't want and 907 // process the rest. 908 for (unsigned I = 0; I != NumResults; ++I) { 909 // Filter the results with the information from the Sema. 910 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 911 continue; 912 913 CodeCompletionResult &R = Results[I]; 914 llvm::Optional<CompletionWithPriority> CompletionAndPriority = 915 getCompletionForResult(R); 916 if (!CompletionAndPriority) 917 continue; 918 m_completions.push_back(*CompletionAndPriority); 919 } 920 } 921 922 /// \param S the semantic-analyzer object for which code-completion is being 923 /// done. 924 /// 925 /// \param CurrentArg the index of the current argument. 926 /// 927 /// \param Candidates an array of overload candidates. 928 /// 929 /// \param NumCandidates the number of overload candidates 930 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 931 OverloadCandidate *Candidates, 932 unsigned NumCandidates, 933 SourceLocation OpenParLoc) override { 934 // At the moment we don't filter out any overloaded candidates. 935 } 936 937 CodeCompletionAllocator &getAllocator() override { 938 return m_info.getAllocator(); 939 } 940 941 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 942 }; 943 } // namespace 944 945 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 946 unsigned pos, unsigned typed_pos) { 947 DiagnosticManager mgr; 948 // We need the raw user expression here because that's what the CodeComplete 949 // class uses to provide completion suggestions. 950 // However, the `Text` method only gives us the transformed expression here. 951 // To actually get the raw user input here, we have to cast our expression to 952 // the LLVMUserExpression which exposes the right API. This should never fail 953 // as we always have a ClangUserExpression whenever we call this. 954 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 955 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(), 956 typed_pos); 957 // We don't need a code generator for parsing. 958 m_code_generator.reset(); 959 // Start parsing the expression with our custom code completion consumer. 960 ParseInternal(mgr, &CC, line, pos); 961 CC.GetCompletions(request); 962 return true; 963 } 964 965 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 966 return ParseInternal(diagnostic_manager); 967 } 968 969 unsigned 970 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 971 CodeCompleteConsumer *completion_consumer, 972 unsigned completion_line, 973 unsigned completion_column) { 974 ClangDiagnosticManagerAdapter *adapter = 975 static_cast<ClangDiagnosticManagerAdapter *>( 976 m_compiler->getDiagnostics().getClient()); 977 978 adapter->ResetManager(&diagnostic_manager); 979 980 const char *expr_text = m_expr.Text(); 981 982 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 983 bool created_main_file = false; 984 985 // Clang wants to do completion on a real file known by Clang's file manager, 986 // so we have to create one to make this work. 987 // TODO: We probably could also simulate to Clang's file manager that there 988 // is a real file that contains our code. 989 bool should_create_file = completion_consumer != nullptr; 990 991 // We also want a real file on disk if we generate full debug info. 992 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 993 codegenoptions::FullDebugInfo; 994 995 if (should_create_file) { 996 int temp_fd = -1; 997 llvm::SmallString<128> result_path; 998 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 999 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 1000 std::string temp_source_path = tmpdir_file_spec.GetPath(); 1001 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 1002 } else { 1003 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 1004 } 1005 1006 if (temp_fd != -1) { 1007 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true); 1008 const size_t expr_text_len = strlen(expr_text); 1009 size_t bytes_written = expr_text_len; 1010 if (file.Write(expr_text, bytes_written).Success()) { 1011 if (bytes_written == expr_text_len) { 1012 file.Close(); 1013 if (auto fileEntry = 1014 m_compiler->getFileManager().getFile(result_path)) { 1015 source_mgr.setMainFileID(source_mgr.createFileID( 1016 *fileEntry, 1017 SourceLocation(), SrcMgr::C_User)); 1018 created_main_file = true; 1019 } 1020 } 1021 } 1022 } 1023 } 1024 1025 if (!created_main_file) { 1026 std::unique_ptr<MemoryBuffer> memory_buffer = 1027 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 1028 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 1029 } 1030 1031 adapter->BeginSourceFile(m_compiler->getLangOpts(), 1032 &m_compiler->getPreprocessor()); 1033 1034 ClangExpressionHelper *type_system_helper = 1035 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1036 1037 // If we want to parse for code completion, we need to attach our code 1038 // completion consumer to the Sema and specify a completion position. 1039 // While parsing the Sema will call this consumer with the provided 1040 // completion suggestions. 1041 if (completion_consumer) { 1042 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 1043 auto &PP = m_compiler->getPreprocessor(); 1044 // Lines and columns start at 1 in Clang, but code completion positions are 1045 // indexed from 0, so we need to add 1 to the line and column here. 1046 ++completion_line; 1047 ++completion_column; 1048 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 1049 } 1050 1051 ASTConsumer *ast_transformer = 1052 type_system_helper->ASTTransformer(m_code_generator.get()); 1053 1054 std::unique_ptr<clang::ASTConsumer> Consumer; 1055 if (ast_transformer) { 1056 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer); 1057 } else if (m_code_generator) { 1058 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get()); 1059 } else { 1060 Consumer = std::make_unique<ASTConsumer>(); 1061 } 1062 1063 clang::ASTContext &ast_context = m_compiler->getASTContext(); 1064 1065 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 1066 *Consumer, TU_Complete, completion_consumer)); 1067 m_compiler->setASTConsumer(std::move(Consumer)); 1068 1069 if (ast_context.getLangOpts().Modules) { 1070 m_compiler->createASTReader(); 1071 m_ast_context->setSema(&m_compiler->getSema()); 1072 } 1073 1074 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 1075 if (decl_map) { 1076 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 1077 1078 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 1079 1080 if (ast_context.getExternalSource()) { 1081 auto module_wrapper = 1082 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 1083 1084 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 1085 1086 auto multiplexer = 1087 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 1088 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 1089 ast_context.setExternalSource(Source); 1090 } else { 1091 ast_context.setExternalSource(ast_source); 1092 } 1093 decl_map->InstallASTContext(*m_ast_context); 1094 } 1095 1096 // Check that the ASTReader is properly attached to ASTContext and Sema. 1097 if (ast_context.getLangOpts().Modules) { 1098 assert(m_compiler->getASTContext().getExternalSource() && 1099 "ASTContext doesn't know about the ASTReader?"); 1100 assert(m_compiler->getSema().getExternalSource() && 1101 "Sema doesn't know about the ASTReader?"); 1102 } 1103 1104 { 1105 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1106 &m_compiler->getSema()); 1107 ParseAST(m_compiler->getSema(), false, false); 1108 } 1109 1110 // Make sure we have no pointer to the Sema we are about to destroy. 1111 if (ast_context.getLangOpts().Modules) 1112 m_ast_context->setSema(nullptr); 1113 // Destroy the Sema. This is necessary because we want to emulate the 1114 // original behavior of ParseAST (which also destroys the Sema after parsing). 1115 m_compiler->setSema(nullptr); 1116 1117 adapter->EndSourceFile(); 1118 1119 unsigned num_errors = adapter->getNumErrors(); 1120 1121 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1122 num_errors++; 1123 diagnostic_manager.PutString(eDiagnosticSeverityError, 1124 "while importing modules:"); 1125 diagnostic_manager.AppendMessageToDiagnostic( 1126 m_pp_callbacks->getErrorString()); 1127 } 1128 1129 if (!num_errors) { 1130 type_system_helper->CommitPersistentDecls(); 1131 } 1132 1133 adapter->ResetManager(); 1134 1135 return num_errors; 1136 } 1137 1138 std::string 1139 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1140 std::string abi; 1141 1142 if (target_arch.IsMIPS()) { 1143 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1144 case ArchSpec::eMIPSABI_N64: 1145 abi = "n64"; 1146 break; 1147 case ArchSpec::eMIPSABI_N32: 1148 abi = "n32"; 1149 break; 1150 case ArchSpec::eMIPSABI_O32: 1151 abi = "o32"; 1152 break; 1153 default: 1154 break; 1155 } 1156 } 1157 return abi; 1158 } 1159 1160 /// Applies the given Fix-It hint to the given commit. 1161 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) { 1162 // This is cobbed from clang::Rewrite::FixItRewriter. 1163 if (fixit.CodeToInsert.empty()) { 1164 if (fixit.InsertFromRange.isValid()) { 1165 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1166 fixit.InsertFromRange, /*afterToken=*/false, 1167 fixit.BeforePreviousInsertions); 1168 return; 1169 } 1170 commit.remove(fixit.RemoveRange); 1171 return; 1172 } 1173 if (fixit.RemoveRange.isTokenRange() || 1174 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) { 1175 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1176 return; 1177 } 1178 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1179 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1180 } 1181 1182 bool ClangExpressionParser::RewriteExpression( 1183 DiagnosticManager &diagnostic_manager) { 1184 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1185 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1186 nullptr); 1187 clang::edit::Commit commit(editor); 1188 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1189 1190 class RewritesReceiver : public edit::EditsReceiver { 1191 Rewriter &rewrite; 1192 1193 public: 1194 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1195 1196 void insert(SourceLocation loc, StringRef text) override { 1197 rewrite.InsertText(loc, text); 1198 } 1199 void replace(CharSourceRange range, StringRef text) override { 1200 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1201 } 1202 }; 1203 1204 RewritesReceiver rewrites_receiver(rewriter); 1205 1206 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1207 size_t num_diags = diagnostics.size(); 1208 if (num_diags == 0) 1209 return false; 1210 1211 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1212 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1213 if (!diagnostic) 1214 continue; 1215 if (!diagnostic->HasFixIts()) 1216 continue; 1217 for (const FixItHint &fixit : diagnostic->FixIts()) 1218 ApplyFixIt(fixit, commit); 1219 } 1220 1221 // FIXME - do we want to try to propagate specific errors here? 1222 if (!commit.isCommitable()) 1223 return false; 1224 else if (!editor.commit(commit)) 1225 return false; 1226 1227 // Now play all the edits, and stash the result in the diagnostic manager. 1228 editor.applyRewrites(rewrites_receiver); 1229 RewriteBuffer &main_file_buffer = 1230 rewriter.getEditBuffer(source_manager.getMainFileID()); 1231 1232 std::string fixed_expression; 1233 llvm::raw_string_ostream out_stream(fixed_expression); 1234 1235 main_file_buffer.write(out_stream); 1236 out_stream.flush(); 1237 diagnostic_manager.SetFixedExpression(fixed_expression); 1238 1239 return true; 1240 } 1241 1242 static bool FindFunctionInModule(ConstString &mangled_name, 1243 llvm::Module *module, const char *orig_name) { 1244 for (const auto &func : module->getFunctionList()) { 1245 const StringRef &name = func.getName(); 1246 if (name.find(orig_name) != StringRef::npos) { 1247 mangled_name.SetString(name); 1248 return true; 1249 } 1250 } 1251 1252 return false; 1253 } 1254 1255 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1256 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1257 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1258 bool &can_interpret, ExecutionPolicy execution_policy) { 1259 func_addr = LLDB_INVALID_ADDRESS; 1260 func_end = LLDB_INVALID_ADDRESS; 1261 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1262 1263 lldb_private::Status err; 1264 1265 std::unique_ptr<llvm::Module> llvm_module_up( 1266 m_code_generator->ReleaseModule()); 1267 1268 if (!llvm_module_up) { 1269 err.SetErrorToGenericError(); 1270 err.SetErrorString("IR doesn't contain a module"); 1271 return err; 1272 } 1273 1274 ConstString function_name; 1275 1276 if (execution_policy != eExecutionPolicyTopLevel) { 1277 // Find the actual name of the function (it's often mangled somehow) 1278 1279 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1280 m_expr.FunctionName())) { 1281 err.SetErrorToGenericError(); 1282 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1283 m_expr.FunctionName()); 1284 return err; 1285 } else { 1286 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1287 m_expr.FunctionName()); 1288 } 1289 } 1290 1291 SymbolContext sc; 1292 1293 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1294 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1295 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1296 sc.target_sp = target_sp; 1297 } 1298 1299 LLVMUserExpression::IRPasses custom_passes; 1300 { 1301 auto lang = m_expr.Language(); 1302 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1303 Language::GetNameForLanguageType(lang)); 1304 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1305 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1306 auto runtime = process_sp->GetLanguageRuntime(lang); 1307 if (runtime) 1308 runtime->GetIRPasses(custom_passes); 1309 } 1310 } 1311 1312 if (custom_passes.EarlyPasses) { 1313 LLDB_LOGF(log, 1314 "%s - Running Early IR Passes from LanguageRuntime on " 1315 "expression module '%s'", 1316 __FUNCTION__, m_expr.FunctionName()); 1317 1318 custom_passes.EarlyPasses->run(*llvm_module_up); 1319 } 1320 1321 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1322 m_llvm_context, // handed off here 1323 llvm_module_up, // handed off here 1324 function_name, exe_ctx.GetTargetSP(), sc, 1325 m_compiler->getTargetOpts().Features); 1326 1327 ClangExpressionHelper *type_system_helper = 1328 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1329 ClangExpressionDeclMap *decl_map = 1330 type_system_helper->DeclMap(); // result can be NULL 1331 1332 if (decl_map) { 1333 StreamString error_stream; 1334 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1335 *execution_unit_sp, error_stream, 1336 function_name.AsCString()); 1337 1338 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) { 1339 err.SetErrorString(error_stream.GetString()); 1340 return err; 1341 } 1342 1343 Process *process = exe_ctx.GetProcessPtr(); 1344 1345 if (execution_policy != eExecutionPolicyAlways && 1346 execution_policy != eExecutionPolicyTopLevel) { 1347 lldb_private::Status interpret_error; 1348 1349 bool interpret_function_calls = 1350 !process ? false : process->CanInterpretFunctionCalls(); 1351 can_interpret = IRInterpreter::CanInterpret( 1352 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1353 interpret_error, interpret_function_calls); 1354 1355 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1356 err.SetErrorStringWithFormat( 1357 "Can't evaluate the expression without a running target due to: %s", 1358 interpret_error.AsCString()); 1359 return err; 1360 } 1361 } 1362 1363 if (!process && execution_policy == eExecutionPolicyAlways) { 1364 err.SetErrorString("Expression needed to run in the target, but the " 1365 "target can't be run"); 1366 return err; 1367 } 1368 1369 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1370 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1371 "target, but the target can't be run"); 1372 return err; 1373 } 1374 1375 if (execution_policy == eExecutionPolicyAlways || 1376 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1377 if (m_expr.NeedsValidation() && process) { 1378 if (!process->GetDynamicCheckers()) { 1379 ClangDynamicCheckerFunctions *dynamic_checkers = 1380 new ClangDynamicCheckerFunctions(); 1381 1382 DiagnosticManager install_diagnostics; 1383 1384 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1385 if (install_diagnostics.Diagnostics().size()) 1386 err.SetErrorString(install_diagnostics.GetString().c_str()); 1387 else 1388 err.SetErrorString("couldn't install checkers, unknown error"); 1389 1390 return err; 1391 } 1392 1393 process->SetDynamicCheckers(dynamic_checkers); 1394 1395 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1396 "Finished installing dynamic checkers =="); 1397 } 1398 1399 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1400 process->GetDynamicCheckers())) { 1401 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1402 function_name.AsCString()); 1403 1404 llvm::Module *module = execution_unit_sp->GetModule(); 1405 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1406 err.SetErrorToGenericError(); 1407 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1408 return err; 1409 } 1410 1411 if (custom_passes.LatePasses) { 1412 LLDB_LOGF(log, 1413 "%s - Running Late IR Passes from LanguageRuntime on " 1414 "expression module '%s'", 1415 __FUNCTION__, m_expr.FunctionName()); 1416 1417 custom_passes.LatePasses->run(*module); 1418 } 1419 } 1420 } 1421 } 1422 1423 if (execution_policy == eExecutionPolicyAlways || 1424 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1425 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1426 } 1427 } else { 1428 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1429 } 1430 1431 return err; 1432 } 1433 1434 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1435 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1436 lldb_private::Status err; 1437 1438 lldbassert(execution_unit_sp.get()); 1439 lldbassert(exe_ctx.HasThreadScope()); 1440 1441 if (!execution_unit_sp.get()) { 1442 err.SetErrorString( 1443 "can't run static initializers for a NULL execution unit"); 1444 return err; 1445 } 1446 1447 if (!exe_ctx.HasThreadScope()) { 1448 err.SetErrorString("can't run static initializers without a thread"); 1449 return err; 1450 } 1451 1452 std::vector<lldb::addr_t> static_initializers; 1453 1454 execution_unit_sp->GetStaticInitializers(static_initializers); 1455 1456 for (lldb::addr_t static_initializer : static_initializers) { 1457 EvaluateExpressionOptions options; 1458 1459 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1460 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1461 llvm::ArrayRef<lldb::addr_t>(), options)); 1462 1463 DiagnosticManager execution_errors; 1464 lldb::ExpressionResults results = 1465 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1466 exe_ctx, call_static_initializer, options, execution_errors); 1467 1468 if (results != lldb::eExpressionCompleted) { 1469 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1470 execution_errors.GetString().c_str()); 1471 return err; 1472 } 1473 } 1474 1475 return err; 1476 } 1477