1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Declaration.h" 13 #include "lldb/Core/Module.h" 14 #include "lldb/Core/ValueObjectCast.h" 15 #include "lldb/Core/ValueObjectChild.h" 16 #include "lldb/Core/ValueObjectConstResult.h" 17 #include "lldb/Core/ValueObjectDynamicValue.h" 18 #include "lldb/Core/ValueObjectMemory.h" 19 #include "lldb/Core/ValueObjectSyntheticFilter.h" 20 #include "lldb/DataFormatters/DataVisualization.h" 21 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 22 #include "lldb/DataFormatters/FormatManager.h" 23 #include "lldb/DataFormatters/StringPrinter.h" 24 #include "lldb/DataFormatters/TypeFormat.h" 25 #include "lldb/DataFormatters/TypeSummary.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Host/Config.h" 29 #include "lldb/Symbol/CompileUnit.h" 30 #include "lldb/Symbol/CompilerType.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <cassert> 61 #include <cinttypes> 62 #include <cstdio> 63 #include <cstring> 64 65 #include <lldb/Core/ValueObject.h> 66 67 namespace lldb_private { 68 class ExecutionContextScope; 69 } 70 namespace lldb_private { 71 class SymbolContextScope; 72 } 73 74 using namespace lldb; 75 using namespace lldb_private; 76 77 static user_id_t g_value_obj_uid = 0; 78 79 // ValueObject constructor 80 ValueObject::ValueObject(ValueObject &parent) 81 : m_parent(&parent), m_update_point(parent.GetUpdatePoint()), 82 m_manager(parent.GetManager()), m_id(++g_value_obj_uid) { 83 m_flags.m_is_synthetic_children_generated = 84 parent.m_flags.m_is_synthetic_children_generated; 85 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 86 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 87 m_manager->ManageObject(this); 88 } 89 90 // ValueObject constructor 91 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 92 ValueObjectManager &manager, 93 AddressType child_ptr_or_ref_addr_type) 94 : m_update_point(exe_scope), m_manager(&manager), 95 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 96 m_id(++g_value_obj_uid) { 97 if (exe_scope) { 98 TargetSP target_sp(exe_scope->CalculateTarget()); 99 if (target_sp) { 100 const ArchSpec &arch = target_sp->GetArchitecture(); 101 m_data.SetByteOrder(arch.GetByteOrder()); 102 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 103 } 104 } 105 m_manager->ManageObject(this); 106 } 107 108 // Destructor 109 ValueObject::~ValueObject() = default; 110 111 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 112 113 bool did_change_formats = false; 114 115 if (update_format) 116 did_change_formats = UpdateFormatsIfNeeded(); 117 118 // If this is a constant value, then our success is predicated on whether we 119 // have an error or not 120 if (GetIsConstant()) { 121 // if you are constant, things might still have changed behind your back 122 // (e.g. you are a frozen object and things have changed deeper than you 123 // cared to freeze-dry yourself) in this case, your value has not changed, 124 // but "computed" entries might have, so you might now have a different 125 // summary, or a different object description. clear these so we will 126 // recompute them 127 if (update_format && !did_change_formats) 128 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 129 eClearUserVisibleDataItemsDescription); 130 return m_error.Success(); 131 } 132 133 bool first_update = IsChecksumEmpty(); 134 135 if (NeedsUpdating()) { 136 m_update_point.SetUpdated(); 137 138 // Save the old value using swap to avoid a string copy which also will 139 // clear our m_value_str 140 if (m_value_str.empty()) { 141 m_flags.m_old_value_valid = false; 142 } else { 143 m_flags.m_old_value_valid = true; 144 m_old_value_str.swap(m_value_str); 145 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 146 } 147 148 ClearUserVisibleData(); 149 150 if (IsInScope()) { 151 const bool value_was_valid = GetValueIsValid(); 152 SetValueDidChange(false); 153 154 m_error.Clear(); 155 156 // Call the pure virtual function to update the value 157 158 bool need_compare_checksums = false; 159 llvm::SmallVector<uint8_t, 16> old_checksum; 160 161 if (!first_update && CanProvideValue()) { 162 need_compare_checksums = true; 163 old_checksum.resize(m_value_checksum.size()); 164 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 165 old_checksum.begin()); 166 } 167 168 bool success = UpdateValue(); 169 170 SetValueIsValid(success); 171 172 if (success) { 173 UpdateChildrenAddressType(); 174 const uint64_t max_checksum_size = 128; 175 m_data.Checksum(m_value_checksum, max_checksum_size); 176 } else { 177 need_compare_checksums = false; 178 m_value_checksum.clear(); 179 } 180 181 assert(!need_compare_checksums || 182 (!old_checksum.empty() && !m_value_checksum.empty())); 183 184 if (first_update) 185 SetValueDidChange(false); 186 else if (!m_flags.m_value_did_change && !success) { 187 // The value wasn't gotten successfully, so we mark this as changed if 188 // the value used to be valid and now isn't 189 SetValueDidChange(value_was_valid); 190 } else if (need_compare_checksums) { 191 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 192 m_value_checksum.size())); 193 } 194 195 } else { 196 m_error.SetErrorString("out of scope"); 197 } 198 } 199 return m_error.Success(); 200 } 201 202 bool ValueObject::UpdateFormatsIfNeeded() { 203 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 204 LLDB_LOGF(log, 205 "[%s %p] checking for FormatManager revisions. ValueObject " 206 "rev: %d - Global rev: %d", 207 GetName().GetCString(), static_cast<void *>(this), 208 m_last_format_mgr_revision, 209 DataVisualization::GetCurrentRevision()); 210 211 bool any_change = false; 212 213 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 214 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 215 any_change = true; 216 217 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 218 SetSummaryFormat( 219 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 220 #if LLDB_ENABLE_PYTHON 221 SetSyntheticChildren( 222 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 223 #endif 224 } 225 226 return any_change; 227 } 228 229 void ValueObject::SetNeedsUpdate() { 230 m_update_point.SetNeedsUpdate(); 231 // We have to clear the value string here so ConstResult children will notice 232 // if their values are changed by hand (i.e. with SetValueAsCString). 233 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 234 } 235 236 void ValueObject::ClearDynamicTypeInformation() { 237 m_flags.m_children_count_valid = false; 238 m_flags.m_did_calculate_complete_objc_class_type = false; 239 m_last_format_mgr_revision = 0; 240 m_override_type = CompilerType(); 241 SetValueFormat(lldb::TypeFormatImplSP()); 242 SetSummaryFormat(lldb::TypeSummaryImplSP()); 243 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 244 } 245 246 CompilerType ValueObject::MaybeCalculateCompleteType() { 247 CompilerType compiler_type(GetCompilerTypeImpl()); 248 249 if (m_flags.m_did_calculate_complete_objc_class_type) { 250 if (m_override_type.IsValid()) 251 return m_override_type; 252 else 253 return compiler_type; 254 } 255 256 m_flags.m_did_calculate_complete_objc_class_type = true; 257 258 ProcessSP process_sp( 259 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 260 261 if (!process_sp) 262 return compiler_type; 263 264 if (auto *runtime = 265 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 266 if (llvm::Optional<CompilerType> complete_type = 267 runtime->GetRuntimeType(compiler_type)) { 268 m_override_type = complete_type.getValue(); 269 if (m_override_type.IsValid()) 270 return m_override_type; 271 } 272 } 273 return compiler_type; 274 } 275 276 277 278 DataExtractor &ValueObject::GetDataExtractor() { 279 UpdateValueIfNeeded(false); 280 return m_data; 281 } 282 283 const Status &ValueObject::GetError() { 284 UpdateValueIfNeeded(false); 285 return m_error; 286 } 287 288 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 289 const DataExtractor &data) { 290 if (UpdateValueIfNeeded(false)) { 291 if (m_location_str.empty()) { 292 StreamString sstr; 293 294 Value::ValueType value_type = value.GetValueType(); 295 296 switch (value_type) { 297 case Value::ValueType::Invalid: 298 m_location_str = "invalid"; 299 break; 300 case Value::ValueType::Scalar: 301 if (value.GetContextType() == Value::ContextType::RegisterInfo) { 302 RegisterInfo *reg_info = value.GetRegisterInfo(); 303 if (reg_info) { 304 if (reg_info->name) 305 m_location_str = reg_info->name; 306 else if (reg_info->alt_name) 307 m_location_str = reg_info->alt_name; 308 if (m_location_str.empty()) 309 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 310 ? "vector" 311 : "scalar"; 312 } 313 } 314 if (m_location_str.empty()) 315 m_location_str = "scalar"; 316 break; 317 318 case Value::ValueType::LoadAddress: 319 case Value::ValueType::FileAddress: 320 case Value::ValueType::HostAddress: { 321 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 322 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 323 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 324 m_location_str = std::string(sstr.GetString()); 325 } break; 326 } 327 } 328 } 329 return m_location_str.c_str(); 330 } 331 332 bool ValueObject::ResolveValue(Scalar &scalar) { 333 if (UpdateValueIfNeeded( 334 false)) // make sure that you are up to date before returning anything 335 { 336 ExecutionContext exe_ctx(GetExecutionContextRef()); 337 Value tmp_value(m_value); 338 scalar = tmp_value.ResolveValue(&exe_ctx); 339 if (scalar.IsValid()) { 340 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 341 if (bitfield_bit_size) 342 return scalar.ExtractBitfield(bitfield_bit_size, 343 GetBitfieldBitOffset()); 344 return true; 345 } 346 } 347 return false; 348 } 349 350 bool ValueObject::IsLogicalTrue(Status &error) { 351 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 352 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 353 switch (is_logical_true) { 354 case eLazyBoolYes: 355 case eLazyBoolNo: 356 return (is_logical_true == true); 357 case eLazyBoolCalculate: 358 break; 359 } 360 } 361 362 Scalar scalar_value; 363 364 if (!ResolveValue(scalar_value)) { 365 error.SetErrorString("failed to get a scalar result"); 366 return false; 367 } 368 369 bool ret; 370 ret = scalar_value.ULongLong(1) != 0; 371 error.Clear(); 372 return ret; 373 } 374 375 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 376 ValueObjectSP child_sp; 377 // We may need to update our value if we are dynamic 378 if (IsPossibleDynamicType()) 379 UpdateValueIfNeeded(false); 380 if (idx < GetNumChildren()) { 381 // Check if we have already made the child value object? 382 if (can_create && !m_children.HasChildAtIndex(idx)) { 383 // No we haven't created the child at this index, so lets have our 384 // subclass do it and cache the result for quick future access. 385 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 386 } 387 388 ValueObject *child = m_children.GetChildAtIndex(idx); 389 if (child != nullptr) 390 return child->GetSP(); 391 } 392 return child_sp; 393 } 394 395 lldb::ValueObjectSP 396 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 397 size_t *index_of_error) { 398 if (idxs.size() == 0) 399 return GetSP(); 400 ValueObjectSP root(GetSP()); 401 for (size_t idx : idxs) { 402 root = root->GetChildAtIndex(idx, true); 403 if (!root) { 404 if (index_of_error) 405 *index_of_error = idx; 406 return root; 407 } 408 } 409 return root; 410 } 411 412 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 413 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 414 if (idxs.size() == 0) 415 return GetSP(); 416 ValueObjectSP root(GetSP()); 417 for (std::pair<size_t, bool> idx : idxs) { 418 root = root->GetChildAtIndex(idx.first, idx.second); 419 if (!root) { 420 if (index_of_error) 421 *index_of_error = idx.first; 422 return root; 423 } 424 } 425 return root; 426 } 427 428 lldb::ValueObjectSP 429 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 430 ConstString *name_of_error) { 431 if (names.size() == 0) 432 return GetSP(); 433 ValueObjectSP root(GetSP()); 434 for (ConstString name : names) { 435 root = root->GetChildMemberWithName(name, true); 436 if (!root) { 437 if (name_of_error) 438 *name_of_error = name; 439 return root; 440 } 441 } 442 return root; 443 } 444 445 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 446 llvm::ArrayRef<std::pair<ConstString, bool>> names, 447 ConstString *name_of_error) { 448 if (names.size() == 0) 449 return GetSP(); 450 ValueObjectSP root(GetSP()); 451 for (std::pair<ConstString, bool> name : names) { 452 root = root->GetChildMemberWithName(name.first, name.second); 453 if (!root) { 454 if (name_of_error) 455 *name_of_error = name.first; 456 return root; 457 } 458 } 459 return root; 460 } 461 462 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 463 bool omit_empty_base_classes = true; 464 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 465 omit_empty_base_classes); 466 } 467 468 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 469 bool can_create) { 470 // We may need to update our value if we are dynamic. 471 if (IsPossibleDynamicType()) 472 UpdateValueIfNeeded(false); 473 474 // When getting a child by name, it could be buried inside some base classes 475 // (which really aren't part of the expression path), so we need a vector of 476 // indexes that can get us down to the correct child. 477 std::vector<uint32_t> child_indexes; 478 bool omit_empty_base_classes = true; 479 480 if (!GetCompilerType().IsValid()) 481 return ValueObjectSP(); 482 483 const size_t num_child_indexes = 484 GetCompilerType().GetIndexOfChildMemberWithName( 485 name.GetCString(), omit_empty_base_classes, child_indexes); 486 if (num_child_indexes == 0) 487 return nullptr; 488 489 ValueObjectSP child_sp = GetSP(); 490 for (uint32_t idx : child_indexes) 491 if (child_sp) 492 child_sp = child_sp->GetChildAtIndex(idx, can_create); 493 return child_sp; 494 } 495 496 size_t ValueObject::GetNumChildren(uint32_t max) { 497 UpdateValueIfNeeded(); 498 499 if (max < UINT32_MAX) { 500 if (m_flags.m_children_count_valid) { 501 size_t children_count = m_children.GetChildrenCount(); 502 return children_count <= max ? children_count : max; 503 } else 504 return CalculateNumChildren(max); 505 } 506 507 if (!m_flags.m_children_count_valid) { 508 SetNumChildren(CalculateNumChildren()); 509 } 510 return m_children.GetChildrenCount(); 511 } 512 513 bool ValueObject::MightHaveChildren() { 514 bool has_children = false; 515 const uint32_t type_info = GetTypeInfo(); 516 if (type_info) { 517 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 518 has_children = true; 519 } else { 520 has_children = GetNumChildren() > 0; 521 } 522 return has_children; 523 } 524 525 // Should only be called by ValueObject::GetNumChildren() 526 void ValueObject::SetNumChildren(size_t num_children) { 527 m_flags.m_children_count_valid = true; 528 m_children.SetChildrenCount(num_children); 529 } 530 531 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 532 bool synthetic_array_member, 533 int32_t synthetic_index) { 534 ValueObject *valobj = nullptr; 535 536 bool omit_empty_base_classes = true; 537 bool ignore_array_bounds = synthetic_array_member; 538 std::string child_name_str; 539 uint32_t child_byte_size = 0; 540 int32_t child_byte_offset = 0; 541 uint32_t child_bitfield_bit_size = 0; 542 uint32_t child_bitfield_bit_offset = 0; 543 bool child_is_base_class = false; 544 bool child_is_deref_of_parent = false; 545 uint64_t language_flags = 0; 546 547 const bool transparent_pointers = !synthetic_array_member; 548 CompilerType child_compiler_type; 549 550 ExecutionContext exe_ctx(GetExecutionContextRef()); 551 552 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 553 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 554 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 555 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 556 child_is_deref_of_parent, this, language_flags); 557 if (child_compiler_type) { 558 if (synthetic_index) 559 child_byte_offset += child_byte_size * synthetic_index; 560 561 ConstString child_name; 562 if (!child_name_str.empty()) 563 child_name.SetCString(child_name_str.c_str()); 564 565 valobj = new ValueObjectChild( 566 *this, child_compiler_type, child_name, child_byte_size, 567 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 568 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 569 language_flags); 570 } 571 572 // In case of an incomplete type, try to use the ValueObject's 573 // synthetic value to create the child ValueObject. 574 if (!valobj && synthetic_array_member) { 575 if (ValueObjectSP synth_valobj_sp = GetSyntheticValue()) { 576 valobj = synth_valobj_sp 577 ->GetChildAtIndex(synthetic_index, synthetic_array_member) 578 .get(); 579 } 580 } 581 582 return valobj; 583 } 584 585 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 586 std::string &destination, 587 lldb::LanguageType lang) { 588 return GetSummaryAsCString(summary_ptr, destination, 589 TypeSummaryOptions().SetLanguage(lang)); 590 } 591 592 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 593 std::string &destination, 594 const TypeSummaryOptions &options) { 595 destination.clear(); 596 597 // ideally we would like to bail out if passing NULL, but if we do so we end 598 // up not providing the summary for function pointers anymore 599 if (/*summary_ptr == NULL ||*/ m_flags.m_is_getting_summary) 600 return false; 601 602 m_flags.m_is_getting_summary = true; 603 604 TypeSummaryOptions actual_options(options); 605 606 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 607 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 608 609 // this is a hot path in code and we prefer to avoid setting this string all 610 // too often also clearing out other information that we might care to see in 611 // a crash log. might be useful in very specific situations though. 612 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 613 Summary provider's description is %s", 614 GetTypeName().GetCString(), 615 GetName().GetCString(), 616 summary_ptr->GetDescription().c_str());*/ 617 618 if (UpdateValueIfNeeded(false) && summary_ptr) { 619 if (HasSyntheticValue()) 620 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 621 // the synthetic children being 622 // up-to-date (e.g. ${svar%#}) 623 summary_ptr->FormatObject(this, destination, actual_options); 624 } 625 m_flags.m_is_getting_summary = false; 626 return !destination.empty(); 627 } 628 629 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 630 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 631 TypeSummaryOptions summary_options; 632 summary_options.SetLanguage(lang); 633 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 634 summary_options); 635 } 636 if (m_summary_str.empty()) 637 return nullptr; 638 return m_summary_str.c_str(); 639 } 640 641 bool ValueObject::GetSummaryAsCString(std::string &destination, 642 const TypeSummaryOptions &options) { 643 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 644 } 645 646 bool ValueObject::IsCStringContainer(bool check_pointer) { 647 CompilerType pointee_or_element_compiler_type; 648 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 649 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 650 pointee_or_element_compiler_type.IsCharType()); 651 if (!is_char_arr_ptr) 652 return false; 653 if (!check_pointer) 654 return true; 655 if (type_flags.Test(eTypeIsArray)) 656 return true; 657 addr_t cstr_address = LLDB_INVALID_ADDRESS; 658 AddressType cstr_address_type = eAddressTypeInvalid; 659 cstr_address = GetPointerValue(&cstr_address_type); 660 return (cstr_address != LLDB_INVALID_ADDRESS); 661 } 662 663 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 664 uint32_t item_count) { 665 CompilerType pointee_or_element_compiler_type; 666 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 667 const bool is_pointer_type = type_info & eTypeIsPointer; 668 const bool is_array_type = type_info & eTypeIsArray; 669 if (!(is_pointer_type || is_array_type)) 670 return 0; 671 672 if (item_count == 0) 673 return 0; 674 675 ExecutionContext exe_ctx(GetExecutionContextRef()); 676 677 llvm::Optional<uint64_t> item_type_size = 678 pointee_or_element_compiler_type.GetByteSize( 679 exe_ctx.GetBestExecutionContextScope()); 680 if (!item_type_size) 681 return 0; 682 const uint64_t bytes = item_count * *item_type_size; 683 const uint64_t offset = item_idx * *item_type_size; 684 685 if (item_idx == 0 && item_count == 1) // simply a deref 686 { 687 if (is_pointer_type) { 688 Status error; 689 ValueObjectSP pointee_sp = Dereference(error); 690 if (error.Fail() || pointee_sp.get() == nullptr) 691 return 0; 692 return pointee_sp->GetData(data, error); 693 } else { 694 ValueObjectSP child_sp = GetChildAtIndex(0, true); 695 if (child_sp.get() == nullptr) 696 return 0; 697 Status error; 698 return child_sp->GetData(data, error); 699 } 700 return true; 701 } else /* (items > 1) */ 702 { 703 Status error; 704 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 705 lldb::DataBufferSP data_sp(heap_buf_ptr = 706 new lldb_private::DataBufferHeap()); 707 708 AddressType addr_type; 709 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 710 : GetAddressOf(true, &addr_type); 711 712 switch (addr_type) { 713 case eAddressTypeFile: { 714 ModuleSP module_sp(GetModule()); 715 if (module_sp) { 716 addr = addr + offset; 717 Address so_addr; 718 module_sp->ResolveFileAddress(addr, so_addr); 719 ExecutionContext exe_ctx(GetExecutionContextRef()); 720 Target *target = exe_ctx.GetTargetPtr(); 721 if (target) { 722 heap_buf_ptr->SetByteSize(bytes); 723 size_t bytes_read = target->ReadMemory( 724 so_addr, heap_buf_ptr->GetBytes(), bytes, error, true); 725 if (error.Success()) { 726 data.SetData(data_sp); 727 return bytes_read; 728 } 729 } 730 } 731 } break; 732 case eAddressTypeLoad: { 733 ExecutionContext exe_ctx(GetExecutionContextRef()); 734 Process *process = exe_ctx.GetProcessPtr(); 735 if (process) { 736 heap_buf_ptr->SetByteSize(bytes); 737 size_t bytes_read = process->ReadMemory( 738 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 739 if (error.Success() || bytes_read > 0) { 740 data.SetData(data_sp); 741 return bytes_read; 742 } 743 } 744 } break; 745 case eAddressTypeHost: { 746 auto max_bytes = 747 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 748 if (max_bytes && *max_bytes > offset) { 749 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 750 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 751 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 752 break; 753 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 754 data.SetData(data_sp); 755 return bytes_read; 756 } 757 } break; 758 case eAddressTypeInvalid: 759 break; 760 } 761 } 762 return 0; 763 } 764 765 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 766 UpdateValueIfNeeded(false); 767 ExecutionContext exe_ctx(GetExecutionContextRef()); 768 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 769 if (error.Fail()) { 770 if (m_data.GetByteSize()) { 771 data = m_data; 772 error.Clear(); 773 return data.GetByteSize(); 774 } else { 775 return 0; 776 } 777 } 778 data.SetAddressByteSize(m_data.GetAddressByteSize()); 779 data.SetByteOrder(m_data.GetByteOrder()); 780 return data.GetByteSize(); 781 } 782 783 bool ValueObject::SetData(DataExtractor &data, Status &error) { 784 error.Clear(); 785 // Make sure our value is up to date first so that our location and location 786 // type is valid. 787 if (!UpdateValueIfNeeded(false)) { 788 error.SetErrorString("unable to read value"); 789 return false; 790 } 791 792 uint64_t count = 0; 793 const Encoding encoding = GetCompilerType().GetEncoding(count); 794 795 const size_t byte_size = GetByteSize().getValueOr(0); 796 797 Value::ValueType value_type = m_value.GetValueType(); 798 799 switch (value_type) { 800 case Value::ValueType::Invalid: 801 error.SetErrorString("invalid location"); 802 return false; 803 case Value::ValueType::Scalar: { 804 Status set_error = 805 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 806 807 if (!set_error.Success()) { 808 error.SetErrorStringWithFormat("unable to set scalar value: %s", 809 set_error.AsCString()); 810 return false; 811 } 812 } break; 813 case Value::ValueType::LoadAddress: { 814 // If it is a load address, then the scalar value is the storage location 815 // of the data, and we have to shove this value down to that load location. 816 ExecutionContext exe_ctx(GetExecutionContextRef()); 817 Process *process = exe_ctx.GetProcessPtr(); 818 if (process) { 819 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 820 size_t bytes_written = process->WriteMemory( 821 target_addr, data.GetDataStart(), byte_size, error); 822 if (!error.Success()) 823 return false; 824 if (bytes_written != byte_size) { 825 error.SetErrorString("unable to write value to memory"); 826 return false; 827 } 828 } 829 } break; 830 case Value::ValueType::HostAddress: { 831 // If it is a host address, then we stuff the scalar as a DataBuffer into 832 // the Value's data. 833 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 834 m_data.SetData(buffer_sp, 0); 835 data.CopyByteOrderedData(0, byte_size, 836 const_cast<uint8_t *>(m_data.GetDataStart()), 837 byte_size, m_data.GetByteOrder()); 838 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 839 } break; 840 case Value::ValueType::FileAddress: 841 break; 842 } 843 844 // If we have reached this point, then we have successfully changed the 845 // value. 846 SetNeedsUpdate(); 847 return true; 848 } 849 850 static bool CopyStringDataToBufferSP(const StreamString &source, 851 lldb::DataBufferSP &destination) { 852 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 853 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 854 return true; 855 } 856 857 std::pair<size_t, bool> 858 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 859 uint32_t max_length, bool honor_array, 860 Format item_format) { 861 bool was_capped = false; 862 StreamString s; 863 ExecutionContext exe_ctx(GetExecutionContextRef()); 864 Target *target = exe_ctx.GetTargetPtr(); 865 866 if (!target) { 867 s << "<no target to read from>"; 868 error.SetErrorString("no target to read from"); 869 CopyStringDataToBufferSP(s, buffer_sp); 870 return {0, was_capped}; 871 } 872 873 if (max_length == 0) 874 max_length = target->GetMaximumSizeOfStringSummary(); 875 876 size_t bytes_read = 0; 877 size_t total_bytes_read = 0; 878 879 CompilerType compiler_type = GetCompilerType(); 880 CompilerType elem_or_pointee_compiler_type; 881 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 882 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 883 elem_or_pointee_compiler_type.IsCharType()) { 884 addr_t cstr_address = LLDB_INVALID_ADDRESS; 885 AddressType cstr_address_type = eAddressTypeInvalid; 886 887 size_t cstr_len = 0; 888 bool capped_data = false; 889 const bool is_array = type_flags.Test(eTypeIsArray); 890 if (is_array) { 891 // We have an array 892 uint64_t array_size = 0; 893 if (compiler_type.IsArrayType(nullptr, &array_size)) { 894 cstr_len = array_size; 895 if (cstr_len > max_length) { 896 capped_data = true; 897 cstr_len = max_length; 898 } 899 } 900 cstr_address = GetAddressOf(true, &cstr_address_type); 901 } else { 902 // We have a pointer 903 cstr_address = GetPointerValue(&cstr_address_type); 904 } 905 906 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 907 if (cstr_address_type == eAddressTypeHost && is_array) { 908 const char *cstr = GetDataExtractor().PeekCStr(0); 909 if (cstr == nullptr) { 910 s << "<invalid address>"; 911 error.SetErrorString("invalid address"); 912 CopyStringDataToBufferSP(s, buffer_sp); 913 return {0, was_capped}; 914 } 915 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 916 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 917 return {cstr_len, was_capped}; 918 } else { 919 s << "<invalid address>"; 920 error.SetErrorString("invalid address"); 921 CopyStringDataToBufferSP(s, buffer_sp); 922 return {0, was_capped}; 923 } 924 } 925 926 Address cstr_so_addr(cstr_address); 927 DataExtractor data; 928 if (cstr_len > 0 && honor_array) { 929 // I am using GetPointeeData() here to abstract the fact that some 930 // ValueObjects are actually frozen pointers in the host but the pointed- 931 // to data lives in the debuggee, and GetPointeeData() automatically 932 // takes care of this 933 GetPointeeData(data, 0, cstr_len); 934 935 if ((bytes_read = data.GetByteSize()) > 0) { 936 total_bytes_read = bytes_read; 937 for (size_t offset = 0; offset < bytes_read; offset++) 938 s.Printf("%c", *data.PeekData(offset, 1)); 939 if (capped_data) 940 was_capped = true; 941 } 942 } else { 943 cstr_len = max_length; 944 const size_t k_max_buf_size = 64; 945 946 size_t offset = 0; 947 948 int cstr_len_displayed = -1; 949 bool capped_cstr = false; 950 // I am using GetPointeeData() here to abstract the fact that some 951 // ValueObjects are actually frozen pointers in the host but the pointed- 952 // to data lives in the debuggee, and GetPointeeData() automatically 953 // takes care of this 954 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 955 total_bytes_read += bytes_read; 956 const char *cstr = data.PeekCStr(0); 957 size_t len = strnlen(cstr, k_max_buf_size); 958 if (cstr_len_displayed < 0) 959 cstr_len_displayed = len; 960 961 if (len == 0) 962 break; 963 cstr_len_displayed += len; 964 if (len > bytes_read) 965 len = bytes_read; 966 if (len > cstr_len) 967 len = cstr_len; 968 969 for (size_t offset = 0; offset < bytes_read; offset++) 970 s.Printf("%c", *data.PeekData(offset, 1)); 971 972 if (len < k_max_buf_size) 973 break; 974 975 if (len >= cstr_len) { 976 capped_cstr = true; 977 break; 978 } 979 980 cstr_len -= len; 981 offset += len; 982 } 983 984 if (cstr_len_displayed >= 0) { 985 if (capped_cstr) 986 was_capped = true; 987 } 988 } 989 } else { 990 error.SetErrorString("not a string object"); 991 s << "<not a string object>"; 992 } 993 CopyStringDataToBufferSP(s, buffer_sp); 994 return {total_bytes_read, was_capped}; 995 } 996 997 const char *ValueObject::GetObjectDescription() { 998 if (!UpdateValueIfNeeded(true)) 999 return nullptr; 1000 1001 // Return cached value. 1002 if (!m_object_desc_str.empty()) 1003 return m_object_desc_str.c_str(); 1004 1005 ExecutionContext exe_ctx(GetExecutionContextRef()); 1006 Process *process = exe_ctx.GetProcessPtr(); 1007 if (!process) 1008 return nullptr; 1009 1010 // Returns the object description produced by one language runtime. 1011 auto get_object_description = [&](LanguageType language) -> const char * { 1012 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1013 StreamString s; 1014 if (runtime->GetObjectDescription(s, *this)) { 1015 m_object_desc_str.append(std::string(s.GetString())); 1016 return m_object_desc_str.c_str(); 1017 } 1018 } 1019 return nullptr; 1020 }; 1021 1022 // Try the native language runtime first. 1023 LanguageType native_language = GetObjectRuntimeLanguage(); 1024 if (const char *desc = get_object_description(native_language)) 1025 return desc; 1026 1027 // Try the Objective-C language runtime. This fallback is necessary 1028 // for Objective-C++ and mixed Objective-C / C++ programs. 1029 if (Language::LanguageIsCFamily(native_language)) 1030 return get_object_description(eLanguageTypeObjC); 1031 return nullptr; 1032 } 1033 1034 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1035 std::string &destination) { 1036 if (UpdateValueIfNeeded(false)) 1037 return format.FormatObject(this, destination); 1038 else 1039 return false; 1040 } 1041 1042 bool ValueObject::GetValueAsCString(lldb::Format format, 1043 std::string &destination) { 1044 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1045 } 1046 1047 const char *ValueObject::GetValueAsCString() { 1048 if (UpdateValueIfNeeded(true)) { 1049 lldb::TypeFormatImplSP format_sp; 1050 lldb::Format my_format = GetFormat(); 1051 if (my_format == lldb::eFormatDefault) { 1052 if (m_type_format_sp) 1053 format_sp = m_type_format_sp; 1054 else { 1055 if (m_flags.m_is_bitfield_for_scalar) 1056 my_format = eFormatUnsigned; 1057 else { 1058 if (m_value.GetContextType() == Value::ContextType::RegisterInfo) { 1059 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1060 if (reg_info) 1061 my_format = reg_info->format; 1062 } else { 1063 my_format = GetValue().GetCompilerType().GetFormat(); 1064 } 1065 } 1066 } 1067 } 1068 if (my_format != m_last_format || m_value_str.empty()) { 1069 m_last_format = my_format; 1070 if (!format_sp) 1071 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1072 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1073 if (!m_flags.m_value_did_change && m_flags.m_old_value_valid) { 1074 // The value was gotten successfully, so we consider the value as 1075 // changed if the value string differs 1076 SetValueDidChange(m_old_value_str != m_value_str); 1077 } 1078 } 1079 } 1080 } 1081 if (m_value_str.empty()) 1082 return nullptr; 1083 return m_value_str.c_str(); 1084 } 1085 1086 // if > 8bytes, 0 is returned. this method should mostly be used to read 1087 // address values out of pointers 1088 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1089 // If our byte size is zero this is an aggregate type that has children 1090 if (CanProvideValue()) { 1091 Scalar scalar; 1092 if (ResolveValue(scalar)) { 1093 if (success) 1094 *success = true; 1095 scalar.MakeUnsigned(); 1096 return scalar.ULongLong(fail_value); 1097 } 1098 // fallthrough, otherwise... 1099 } 1100 1101 if (success) 1102 *success = false; 1103 return fail_value; 1104 } 1105 1106 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1107 // If our byte size is zero this is an aggregate type that has children 1108 if (CanProvideValue()) { 1109 Scalar scalar; 1110 if (ResolveValue(scalar)) { 1111 if (success) 1112 *success = true; 1113 scalar.MakeSigned(); 1114 return scalar.SLongLong(fail_value); 1115 } 1116 // fallthrough, otherwise... 1117 } 1118 1119 if (success) 1120 *success = false; 1121 return fail_value; 1122 } 1123 1124 // if any more "special cases" are added to 1125 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1126 // by returning true for your new special cases. We will eventually move to 1127 // checking this call result before trying to display special cases 1128 bool ValueObject::HasSpecialPrintableRepresentation( 1129 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1130 Flags flags(GetTypeInfo()); 1131 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1132 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1133 if (IsCStringContainer(true) && 1134 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1135 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1136 return true; 1137 1138 if (flags.Test(eTypeIsArray)) { 1139 if ((custom_format == eFormatBytes) || 1140 (custom_format == eFormatBytesWithASCII)) 1141 return true; 1142 1143 if ((custom_format == eFormatVectorOfChar) || 1144 (custom_format == eFormatVectorOfFloat32) || 1145 (custom_format == eFormatVectorOfFloat64) || 1146 (custom_format == eFormatVectorOfSInt16) || 1147 (custom_format == eFormatVectorOfSInt32) || 1148 (custom_format == eFormatVectorOfSInt64) || 1149 (custom_format == eFormatVectorOfSInt8) || 1150 (custom_format == eFormatVectorOfUInt128) || 1151 (custom_format == eFormatVectorOfUInt16) || 1152 (custom_format == eFormatVectorOfUInt32) || 1153 (custom_format == eFormatVectorOfUInt64) || 1154 (custom_format == eFormatVectorOfUInt8)) 1155 return true; 1156 } 1157 } 1158 return false; 1159 } 1160 1161 bool ValueObject::DumpPrintableRepresentation( 1162 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1163 Format custom_format, PrintableRepresentationSpecialCases special, 1164 bool do_dump_error) { 1165 1166 Flags flags(GetTypeInfo()); 1167 1168 bool allow_special = 1169 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1170 const bool only_special = false; 1171 1172 if (allow_special) { 1173 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1174 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1175 // when being asked to get a printable display an array or pointer type 1176 // directly, try to "do the right thing" 1177 1178 if (IsCStringContainer(true) && 1179 (custom_format == eFormatCString || 1180 custom_format == eFormatCharArray || custom_format == eFormatChar || 1181 custom_format == 1182 eFormatVectorOfChar)) // print char[] & char* directly 1183 { 1184 Status error; 1185 lldb::DataBufferSP buffer_sp; 1186 std::pair<size_t, bool> read_string = ReadPointedString( 1187 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1188 (custom_format == eFormatCharArray)); 1189 lldb_private::formatters::StringPrinter:: 1190 ReadBufferAndDumpToStreamOptions options(*this); 1191 options.SetData(DataExtractor( 1192 buffer_sp, lldb::eByteOrderInvalid, 1193 8)); // none of this matters for a string - pass some defaults 1194 options.SetStream(&s); 1195 options.SetPrefixToken(nullptr); 1196 options.SetQuote('"'); 1197 options.SetSourceSize(buffer_sp->GetByteSize()); 1198 options.SetIsTruncated(read_string.second); 1199 formatters::StringPrinter::ReadBufferAndDumpToStream< 1200 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1201 options); 1202 return !error.Fail(); 1203 } 1204 1205 if (custom_format == eFormatEnum) 1206 return false; 1207 1208 // this only works for arrays, because I have no way to know when the 1209 // pointed memory ends, and no special \0 end of data marker 1210 if (flags.Test(eTypeIsArray)) { 1211 if ((custom_format == eFormatBytes) || 1212 (custom_format == eFormatBytesWithASCII)) { 1213 const size_t count = GetNumChildren(); 1214 1215 s << '['; 1216 for (size_t low = 0; low < count; low++) { 1217 1218 if (low) 1219 s << ','; 1220 1221 ValueObjectSP child = GetChildAtIndex(low, true); 1222 if (!child.get()) { 1223 s << "<invalid child>"; 1224 continue; 1225 } 1226 child->DumpPrintableRepresentation( 1227 s, ValueObject::eValueObjectRepresentationStyleValue, 1228 custom_format); 1229 } 1230 1231 s << ']'; 1232 1233 return true; 1234 } 1235 1236 if ((custom_format == eFormatVectorOfChar) || 1237 (custom_format == eFormatVectorOfFloat32) || 1238 (custom_format == eFormatVectorOfFloat64) || 1239 (custom_format == eFormatVectorOfSInt16) || 1240 (custom_format == eFormatVectorOfSInt32) || 1241 (custom_format == eFormatVectorOfSInt64) || 1242 (custom_format == eFormatVectorOfSInt8) || 1243 (custom_format == eFormatVectorOfUInt128) || 1244 (custom_format == eFormatVectorOfUInt16) || 1245 (custom_format == eFormatVectorOfUInt32) || 1246 (custom_format == eFormatVectorOfUInt64) || 1247 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1248 // with ASCII or any vector 1249 // format should be printed 1250 // directly 1251 { 1252 const size_t count = GetNumChildren(); 1253 1254 Format format = FormatManager::GetSingleItemFormat(custom_format); 1255 1256 s << '['; 1257 for (size_t low = 0; low < count; low++) { 1258 1259 if (low) 1260 s << ','; 1261 1262 ValueObjectSP child = GetChildAtIndex(low, true); 1263 if (!child.get()) { 1264 s << "<invalid child>"; 1265 continue; 1266 } 1267 child->DumpPrintableRepresentation( 1268 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1269 } 1270 1271 s << ']'; 1272 1273 return true; 1274 } 1275 } 1276 1277 if ((custom_format == eFormatBoolean) || 1278 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1279 (custom_format == eFormatCharPrintable) || 1280 (custom_format == eFormatComplexFloat) || 1281 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1282 (custom_format == eFormatHexUppercase) || 1283 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1284 (custom_format == eFormatOSType) || 1285 (custom_format == eFormatUnicode16) || 1286 (custom_format == eFormatUnicode32) || 1287 (custom_format == eFormatUnsigned) || 1288 (custom_format == eFormatPointer) || 1289 (custom_format == eFormatComplexInteger) || 1290 (custom_format == eFormatComplex) || 1291 (custom_format == eFormatDefault)) // use the [] operator 1292 return false; 1293 } 1294 } 1295 1296 if (only_special) 1297 return false; 1298 1299 bool var_success = false; 1300 1301 { 1302 llvm::StringRef str; 1303 1304 // this is a local stream that we are using to ensure that the data pointed 1305 // to by cstr survives long enough for us to copy it to its destination - 1306 // it is necessary to have this temporary storage area for cases where our 1307 // desired output is not backed by some other longer-term storage 1308 StreamString strm; 1309 1310 if (custom_format != eFormatInvalid) 1311 SetFormat(custom_format); 1312 1313 switch (val_obj_display) { 1314 case eValueObjectRepresentationStyleValue: 1315 str = GetValueAsCString(); 1316 break; 1317 1318 case eValueObjectRepresentationStyleSummary: 1319 str = GetSummaryAsCString(); 1320 break; 1321 1322 case eValueObjectRepresentationStyleLanguageSpecific: 1323 str = GetObjectDescription(); 1324 break; 1325 1326 case eValueObjectRepresentationStyleLocation: 1327 str = GetLocationAsCString(); 1328 break; 1329 1330 case eValueObjectRepresentationStyleChildrenCount: 1331 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1332 str = strm.GetString(); 1333 break; 1334 1335 case eValueObjectRepresentationStyleType: 1336 str = GetTypeName().GetStringRef(); 1337 break; 1338 1339 case eValueObjectRepresentationStyleName: 1340 str = GetName().GetStringRef(); 1341 break; 1342 1343 case eValueObjectRepresentationStyleExpressionPath: 1344 GetExpressionPath(strm); 1345 str = strm.GetString(); 1346 break; 1347 } 1348 1349 if (str.empty()) { 1350 if (val_obj_display == eValueObjectRepresentationStyleValue) 1351 str = GetSummaryAsCString(); 1352 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1353 if (!CanProvideValue()) { 1354 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1355 GetLocationAsCString()); 1356 str = strm.GetString(); 1357 } else 1358 str = GetValueAsCString(); 1359 } 1360 } 1361 1362 if (!str.empty()) 1363 s << str; 1364 else { 1365 if (m_error.Fail()) { 1366 if (do_dump_error) 1367 s.Printf("<%s>", m_error.AsCString()); 1368 else 1369 return false; 1370 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1371 s.PutCString("<no summary available>"); 1372 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1373 s.PutCString("<no value available>"); 1374 else if (val_obj_display == 1375 eValueObjectRepresentationStyleLanguageSpecific) 1376 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1377 // have other runtimes 1378 // that support a 1379 // description 1380 else 1381 s.PutCString("<no printable representation>"); 1382 } 1383 1384 // we should only return false here if we could not do *anything* even if 1385 // we have an error message as output, that's a success from our callers' 1386 // perspective, so return true 1387 var_success = true; 1388 1389 if (custom_format != eFormatInvalid) 1390 SetFormat(eFormatDefault); 1391 } 1392 1393 return var_success; 1394 } 1395 1396 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1397 AddressType *address_type) { 1398 // Can't take address of a bitfield 1399 if (IsBitfield()) 1400 return LLDB_INVALID_ADDRESS; 1401 1402 if (!UpdateValueIfNeeded(false)) 1403 return LLDB_INVALID_ADDRESS; 1404 1405 switch (m_value.GetValueType()) { 1406 case Value::ValueType::Invalid: 1407 return LLDB_INVALID_ADDRESS; 1408 case Value::ValueType::Scalar: 1409 if (scalar_is_load_address) { 1410 if (address_type) 1411 *address_type = eAddressTypeLoad; 1412 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1413 } 1414 break; 1415 1416 case Value::ValueType::LoadAddress: 1417 case Value::ValueType::FileAddress: { 1418 if (address_type) 1419 *address_type = m_value.GetValueAddressType(); 1420 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1421 } break; 1422 case Value::ValueType::HostAddress: { 1423 if (address_type) 1424 *address_type = m_value.GetValueAddressType(); 1425 return LLDB_INVALID_ADDRESS; 1426 } break; 1427 } 1428 if (address_type) 1429 *address_type = eAddressTypeInvalid; 1430 return LLDB_INVALID_ADDRESS; 1431 } 1432 1433 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1434 addr_t address = LLDB_INVALID_ADDRESS; 1435 if (address_type) 1436 *address_type = eAddressTypeInvalid; 1437 1438 if (!UpdateValueIfNeeded(false)) 1439 return address; 1440 1441 switch (m_value.GetValueType()) { 1442 case Value::ValueType::Invalid: 1443 return LLDB_INVALID_ADDRESS; 1444 case Value::ValueType::Scalar: 1445 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1446 break; 1447 1448 case Value::ValueType::HostAddress: 1449 case Value::ValueType::LoadAddress: 1450 case Value::ValueType::FileAddress: { 1451 lldb::offset_t data_offset = 0; 1452 address = m_data.GetAddress(&data_offset); 1453 } break; 1454 } 1455 1456 if (address_type) 1457 *address_type = GetAddressTypeOfChildren(); 1458 1459 return address; 1460 } 1461 1462 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1463 error.Clear(); 1464 // Make sure our value is up to date first so that our location and location 1465 // type is valid. 1466 if (!UpdateValueIfNeeded(false)) { 1467 error.SetErrorString("unable to read value"); 1468 return false; 1469 } 1470 1471 uint64_t count = 0; 1472 const Encoding encoding = GetCompilerType().GetEncoding(count); 1473 1474 const size_t byte_size = GetByteSize().getValueOr(0); 1475 1476 Value::ValueType value_type = m_value.GetValueType(); 1477 1478 if (value_type == Value::ValueType::Scalar) { 1479 // If the value is already a scalar, then let the scalar change itself: 1480 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1481 } else if (byte_size <= 16) { 1482 // If the value fits in a scalar, then make a new scalar and again let the 1483 // scalar code do the conversion, then figure out where to put the new 1484 // value. 1485 Scalar new_scalar; 1486 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1487 if (error.Success()) { 1488 switch (value_type) { 1489 case Value::ValueType::LoadAddress: { 1490 // If it is a load address, then the scalar value is the storage 1491 // location of the data, and we have to shove this value down to that 1492 // load location. 1493 ExecutionContext exe_ctx(GetExecutionContextRef()); 1494 Process *process = exe_ctx.GetProcessPtr(); 1495 if (process) { 1496 addr_t target_addr = 1497 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1498 size_t bytes_written = process->WriteScalarToMemory( 1499 target_addr, new_scalar, byte_size, error); 1500 if (!error.Success()) 1501 return false; 1502 if (bytes_written != byte_size) { 1503 error.SetErrorString("unable to write value to memory"); 1504 return false; 1505 } 1506 } 1507 } break; 1508 case Value::ValueType::HostAddress: { 1509 // If it is a host address, then we stuff the scalar as a DataBuffer 1510 // into the Value's data. 1511 DataExtractor new_data; 1512 new_data.SetByteOrder(m_data.GetByteOrder()); 1513 1514 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1515 m_data.SetData(buffer_sp, 0); 1516 bool success = new_scalar.GetData(new_data); 1517 if (success) { 1518 new_data.CopyByteOrderedData( 1519 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1520 byte_size, m_data.GetByteOrder()); 1521 } 1522 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1523 1524 } break; 1525 case Value::ValueType::Invalid: 1526 error.SetErrorString("invalid location"); 1527 return false; 1528 case Value::ValueType::FileAddress: 1529 case Value::ValueType::Scalar: 1530 break; 1531 } 1532 } else { 1533 return false; 1534 } 1535 } else { 1536 // We don't support setting things bigger than a scalar at present. 1537 error.SetErrorString("unable to write aggregate data type"); 1538 return false; 1539 } 1540 1541 // If we have reached this point, then we have successfully changed the 1542 // value. 1543 SetNeedsUpdate(); 1544 return true; 1545 } 1546 1547 bool ValueObject::GetDeclaration(Declaration &decl) { 1548 decl.Clear(); 1549 return false; 1550 } 1551 1552 void ValueObject::AddSyntheticChild(ConstString key, 1553 ValueObject *valobj) { 1554 m_synthetic_children[key] = valobj; 1555 } 1556 1557 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1558 ValueObjectSP synthetic_child_sp; 1559 std::map<ConstString, ValueObject *>::const_iterator pos = 1560 m_synthetic_children.find(key); 1561 if (pos != m_synthetic_children.end()) 1562 synthetic_child_sp = pos->second->GetSP(); 1563 return synthetic_child_sp; 1564 } 1565 1566 bool ValueObject::IsPossibleDynamicType() { 1567 ExecutionContext exe_ctx(GetExecutionContextRef()); 1568 Process *process = exe_ctx.GetProcessPtr(); 1569 if (process) 1570 return process->IsPossibleDynamicValue(*this); 1571 else 1572 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1573 } 1574 1575 bool ValueObject::IsRuntimeSupportValue() { 1576 Process *process(GetProcessSP().get()); 1577 if (!process) 1578 return false; 1579 1580 // We trust that the compiler did the right thing and marked runtime support 1581 // values as artificial. 1582 if (!GetVariable() || !GetVariable()->IsArtificial()) 1583 return false; 1584 1585 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1586 if (runtime->IsAllowedRuntimeValue(GetName())) 1587 return false; 1588 1589 return true; 1590 } 1591 1592 bool ValueObject::IsNilReference() { 1593 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1594 return language->IsNilReference(*this); 1595 } 1596 return false; 1597 } 1598 1599 bool ValueObject::IsUninitializedReference() { 1600 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1601 return language->IsUninitializedReference(*this); 1602 } 1603 return false; 1604 } 1605 1606 // This allows you to create an array member using and index that doesn't not 1607 // fall in the normal bounds of the array. Many times structure can be defined 1608 // as: struct Collection { 1609 // uint32_t item_count; 1610 // Item item_array[0]; 1611 // }; 1612 // The size of the "item_array" is 1, but many times in practice there are more 1613 // items in "item_array". 1614 1615 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1616 bool can_create) { 1617 ValueObjectSP synthetic_child_sp; 1618 if (IsPointerType() || IsArrayType()) { 1619 std::string index_str = llvm::formatv("[{0}]", index); 1620 ConstString index_const_str(index_str); 1621 // Check if we have already created a synthetic array member in this valid 1622 // object. If we have we will re-use it. 1623 synthetic_child_sp = GetSyntheticChild(index_const_str); 1624 if (!synthetic_child_sp) { 1625 ValueObject *synthetic_child; 1626 // We haven't made a synthetic array member for INDEX yet, so lets make 1627 // one and cache it for any future reference. 1628 synthetic_child = CreateChildAtIndex(0, true, index); 1629 1630 // Cache the value if we got one back... 1631 if (synthetic_child) { 1632 AddSyntheticChild(index_const_str, synthetic_child); 1633 synthetic_child_sp = synthetic_child->GetSP(); 1634 synthetic_child_sp->SetName(ConstString(index_str)); 1635 synthetic_child_sp->m_flags.m_is_array_item_for_pointer = true; 1636 } 1637 } 1638 } 1639 return synthetic_child_sp; 1640 } 1641 1642 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1643 bool can_create) { 1644 ValueObjectSP synthetic_child_sp; 1645 if (IsScalarType()) { 1646 std::string index_str = llvm::formatv("[{0}-{1}]", from, to); 1647 ConstString index_const_str(index_str); 1648 // Check if we have already created a synthetic array member in this valid 1649 // object. If we have we will re-use it. 1650 synthetic_child_sp = GetSyntheticChild(index_const_str); 1651 if (!synthetic_child_sp) { 1652 uint32_t bit_field_size = to - from + 1; 1653 uint32_t bit_field_offset = from; 1654 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1655 bit_field_offset = 1656 GetByteSize().getValueOr(0) * 8 - bit_field_size - bit_field_offset; 1657 // We haven't made a synthetic array member for INDEX yet, so lets make 1658 // one and cache it for any future reference. 1659 ValueObjectChild *synthetic_child = new ValueObjectChild( 1660 *this, GetCompilerType(), index_const_str, 1661 GetByteSize().getValueOr(0), 0, bit_field_size, bit_field_offset, 1662 false, false, eAddressTypeInvalid, 0); 1663 1664 // Cache the value if we got one back... 1665 if (synthetic_child) { 1666 AddSyntheticChild(index_const_str, synthetic_child); 1667 synthetic_child_sp = synthetic_child->GetSP(); 1668 synthetic_child_sp->SetName(ConstString(index_str)); 1669 synthetic_child_sp->m_flags.m_is_bitfield_for_scalar = true; 1670 } 1671 } 1672 } 1673 return synthetic_child_sp; 1674 } 1675 1676 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1677 uint32_t offset, const CompilerType &type, bool can_create, 1678 ConstString name_const_str) { 1679 1680 ValueObjectSP synthetic_child_sp; 1681 1682 if (name_const_str.IsEmpty()) { 1683 name_const_str.SetString("@" + std::to_string(offset)); 1684 } 1685 1686 // Check if we have already created a synthetic array member in this valid 1687 // object. If we have we will re-use it. 1688 synthetic_child_sp = GetSyntheticChild(name_const_str); 1689 1690 if (synthetic_child_sp.get()) 1691 return synthetic_child_sp; 1692 1693 if (!can_create) 1694 return {}; 1695 1696 ExecutionContext exe_ctx(GetExecutionContextRef()); 1697 llvm::Optional<uint64_t> size = 1698 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1699 if (!size) 1700 return {}; 1701 ValueObjectChild *synthetic_child = 1702 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1703 false, false, eAddressTypeInvalid, 0); 1704 if (synthetic_child) { 1705 AddSyntheticChild(name_const_str, synthetic_child); 1706 synthetic_child_sp = synthetic_child->GetSP(); 1707 synthetic_child_sp->SetName(name_const_str); 1708 synthetic_child_sp->m_flags.m_is_child_at_offset = true; 1709 } 1710 return synthetic_child_sp; 1711 } 1712 1713 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1714 const CompilerType &type, 1715 bool can_create, 1716 ConstString name_const_str) { 1717 ValueObjectSP synthetic_child_sp; 1718 1719 if (name_const_str.IsEmpty()) { 1720 char name_str[128]; 1721 snprintf(name_str, sizeof(name_str), "base%s@%i", 1722 type.GetTypeName().AsCString("<unknown>"), offset); 1723 name_const_str.SetCString(name_str); 1724 } 1725 1726 // Check if we have already created a synthetic array member in this valid 1727 // object. If we have we will re-use it. 1728 synthetic_child_sp = GetSyntheticChild(name_const_str); 1729 1730 if (synthetic_child_sp.get()) 1731 return synthetic_child_sp; 1732 1733 if (!can_create) 1734 return {}; 1735 1736 const bool is_base_class = true; 1737 1738 ExecutionContext exe_ctx(GetExecutionContextRef()); 1739 llvm::Optional<uint64_t> size = 1740 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1741 if (!size) 1742 return {}; 1743 ValueObjectChild *synthetic_child = 1744 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1745 is_base_class, false, eAddressTypeInvalid, 0); 1746 if (synthetic_child) { 1747 AddSyntheticChild(name_const_str, synthetic_child); 1748 synthetic_child_sp = synthetic_child->GetSP(); 1749 synthetic_child_sp->SetName(name_const_str); 1750 } 1751 return synthetic_child_sp; 1752 } 1753 1754 // your expression path needs to have a leading . or -> (unless it somehow 1755 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1756 // is meaningful and should be shown to the user, . and -> are just parser 1757 // design, but by no means added information for the user.. strip them off 1758 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1759 if (!expression || !expression[0]) 1760 return expression; 1761 if (expression[0] == '.') 1762 return expression + 1; 1763 if (expression[0] == '-' && expression[1] == '>') 1764 return expression + 2; 1765 return expression; 1766 } 1767 1768 ValueObjectSP 1769 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1770 bool can_create) { 1771 ValueObjectSP synthetic_child_sp; 1772 ConstString name_const_string(expression); 1773 // Check if we have already created a synthetic array member in this valid 1774 // object. If we have we will re-use it. 1775 synthetic_child_sp = GetSyntheticChild(name_const_string); 1776 if (!synthetic_child_sp) { 1777 // We haven't made a synthetic array member for expression yet, so lets 1778 // make one and cache it for any future reference. 1779 synthetic_child_sp = GetValueForExpressionPath( 1780 expression, nullptr, nullptr, 1781 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1782 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1783 None)); 1784 1785 // Cache the value if we got one back... 1786 if (synthetic_child_sp.get()) { 1787 // FIXME: this causes a "real" child to end up with its name changed to 1788 // the contents of expression 1789 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1790 synthetic_child_sp->SetName( 1791 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1792 } 1793 } 1794 return synthetic_child_sp; 1795 } 1796 1797 void ValueObject::CalculateSyntheticValue() { 1798 TargetSP target_sp(GetTargetSP()); 1799 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1800 m_synthetic_value = nullptr; 1801 return; 1802 } 1803 1804 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1805 1806 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1807 return; 1808 1809 if (m_synthetic_children_sp.get() == nullptr) 1810 return; 1811 1812 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1813 return; 1814 1815 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1816 } 1817 1818 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1819 if (use_dynamic == eNoDynamicValues) 1820 return; 1821 1822 if (!m_dynamic_value && !IsDynamic()) { 1823 ExecutionContext exe_ctx(GetExecutionContextRef()); 1824 Process *process = exe_ctx.GetProcessPtr(); 1825 if (process && process->IsPossibleDynamicValue(*this)) { 1826 ClearDynamicTypeInformation(); 1827 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1828 } 1829 } 1830 } 1831 1832 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1833 if (use_dynamic == eNoDynamicValues) 1834 return ValueObjectSP(); 1835 1836 if (!IsDynamic() && m_dynamic_value == nullptr) { 1837 CalculateDynamicValue(use_dynamic); 1838 } 1839 if (m_dynamic_value) 1840 return m_dynamic_value->GetSP(); 1841 else 1842 return ValueObjectSP(); 1843 } 1844 1845 ValueObjectSP ValueObject::GetSyntheticValue() { 1846 CalculateSyntheticValue(); 1847 1848 if (m_synthetic_value) 1849 return m_synthetic_value->GetSP(); 1850 else 1851 return ValueObjectSP(); 1852 } 1853 1854 bool ValueObject::HasSyntheticValue() { 1855 UpdateFormatsIfNeeded(); 1856 1857 if (m_synthetic_children_sp.get() == nullptr) 1858 return false; 1859 1860 CalculateSyntheticValue(); 1861 1862 return m_synthetic_value != nullptr; 1863 } 1864 1865 ValueObject *ValueObject::GetNonBaseClassParent() { 1866 if (GetParent()) { 1867 if (GetParent()->IsBaseClass()) 1868 return GetParent()->GetNonBaseClassParent(); 1869 else 1870 return GetParent(); 1871 } 1872 return nullptr; 1873 } 1874 1875 bool ValueObject::IsBaseClass(uint32_t &depth) { 1876 if (!IsBaseClass()) { 1877 depth = 0; 1878 return false; 1879 } 1880 if (GetParent()) { 1881 GetParent()->IsBaseClass(depth); 1882 depth = depth + 1; 1883 return true; 1884 } 1885 // TODO: a base of no parent? weird.. 1886 depth = 1; 1887 return true; 1888 } 1889 1890 void ValueObject::GetExpressionPath(Stream &s, 1891 GetExpressionPathFormat epformat) { 1892 // synthetic children do not actually "exist" as part of the hierarchy, and 1893 // sometimes they are consed up in ways that don't make sense from an 1894 // underlying language/API standpoint. So, use a special code path here to 1895 // return something that can hopefully be used in expression 1896 if (m_flags.m_is_synthetic_children_generated) { 1897 UpdateValueIfNeeded(); 1898 1899 if (m_value.GetValueType() == Value::ValueType::LoadAddress) { 1900 if (IsPointerOrReferenceType()) { 1901 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 1902 GetValueAsUnsigned(0)); 1903 return; 1904 } else { 1905 uint64_t load_addr = 1906 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1907 if (load_addr != LLDB_INVALID_ADDRESS) { 1908 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 1909 load_addr); 1910 return; 1911 } 1912 } 1913 } 1914 1915 if (CanProvideValue()) { 1916 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 1917 GetValueAsCString()); 1918 return; 1919 } 1920 1921 return; 1922 } 1923 1924 const bool is_deref_of_parent = IsDereferenceOfParent(); 1925 1926 if (is_deref_of_parent && 1927 epformat == eGetExpressionPathFormatDereferencePointers) { 1928 // this is the original format of GetExpressionPath() producing code like 1929 // *(a_ptr).memberName, which is entirely fine, until you put this into 1930 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 1931 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 1932 // in this latter format 1933 s.PutCString("*("); 1934 } 1935 1936 ValueObject *parent = GetParent(); 1937 1938 if (parent) 1939 parent->GetExpressionPath(s, epformat); 1940 1941 // if we are a deref_of_parent just because we are synthetic array members 1942 // made up to allow ptr[%d] syntax to work in variable printing, then add our 1943 // name ([%d]) to the expression path 1944 if (m_flags.m_is_array_item_for_pointer && 1945 epformat == eGetExpressionPathFormatHonorPointers) 1946 s.PutCString(m_name.GetStringRef()); 1947 1948 if (!IsBaseClass()) { 1949 if (!is_deref_of_parent) { 1950 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 1951 if (non_base_class_parent && 1952 !non_base_class_parent->GetName().IsEmpty()) { 1953 CompilerType non_base_class_parent_compiler_type = 1954 non_base_class_parent->GetCompilerType(); 1955 if (non_base_class_parent_compiler_type) { 1956 if (parent && parent->IsDereferenceOfParent() && 1957 epformat == eGetExpressionPathFormatHonorPointers) { 1958 s.PutCString("->"); 1959 } else { 1960 const uint32_t non_base_class_parent_type_info = 1961 non_base_class_parent_compiler_type.GetTypeInfo(); 1962 1963 if (non_base_class_parent_type_info & eTypeIsPointer) { 1964 s.PutCString("->"); 1965 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 1966 !(non_base_class_parent_type_info & eTypeIsArray)) { 1967 s.PutChar('.'); 1968 } 1969 } 1970 } 1971 } 1972 1973 const char *name = GetName().GetCString(); 1974 if (name) 1975 s.PutCString(name); 1976 } 1977 } 1978 1979 if (is_deref_of_parent && 1980 epformat == eGetExpressionPathFormatDereferencePointers) { 1981 s.PutChar(')'); 1982 } 1983 } 1984 1985 ValueObjectSP ValueObject::GetValueForExpressionPath( 1986 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 1987 ExpressionPathEndResultType *final_value_type, 1988 const GetValueForExpressionPathOptions &options, 1989 ExpressionPathAftermath *final_task_on_target) { 1990 1991 ExpressionPathScanEndReason dummy_reason_to_stop = 1992 ValueObject::eExpressionPathScanEndReasonUnknown; 1993 ExpressionPathEndResultType dummy_final_value_type = 1994 ValueObject::eExpressionPathEndResultTypeInvalid; 1995 ExpressionPathAftermath dummy_final_task_on_target = 1996 ValueObject::eExpressionPathAftermathNothing; 1997 1998 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 1999 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2000 final_value_type ? final_value_type : &dummy_final_value_type, options, 2001 final_task_on_target ? final_task_on_target 2002 : &dummy_final_task_on_target); 2003 2004 if (!final_task_on_target || 2005 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2006 return ret_val; 2007 2008 if (ret_val.get() && 2009 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2010 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2011 // of plain objects 2012 { 2013 if ((final_task_on_target ? *final_task_on_target 2014 : dummy_final_task_on_target) == 2015 ValueObject::eExpressionPathAftermathDereference) { 2016 Status error; 2017 ValueObjectSP final_value = ret_val->Dereference(error); 2018 if (error.Fail() || !final_value.get()) { 2019 if (reason_to_stop) 2020 *reason_to_stop = 2021 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2022 if (final_value_type) 2023 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2024 return ValueObjectSP(); 2025 } else { 2026 if (final_task_on_target) 2027 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2028 return final_value; 2029 } 2030 } 2031 if (*final_task_on_target == 2032 ValueObject::eExpressionPathAftermathTakeAddress) { 2033 Status error; 2034 ValueObjectSP final_value = ret_val->AddressOf(error); 2035 if (error.Fail() || !final_value.get()) { 2036 if (reason_to_stop) 2037 *reason_to_stop = 2038 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2039 if (final_value_type) 2040 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2041 return ValueObjectSP(); 2042 } else { 2043 if (final_task_on_target) 2044 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2045 return final_value; 2046 } 2047 } 2048 } 2049 return ret_val; // final_task_on_target will still have its original value, so 2050 // you know I did not do it 2051 } 2052 2053 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2054 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2055 ExpressionPathEndResultType *final_result, 2056 const GetValueForExpressionPathOptions &options, 2057 ExpressionPathAftermath *what_next) { 2058 ValueObjectSP root = GetSP(); 2059 2060 if (!root) 2061 return nullptr; 2062 2063 llvm::StringRef remainder = expression; 2064 2065 while (true) { 2066 llvm::StringRef temp_expression = remainder; 2067 2068 CompilerType root_compiler_type = root->GetCompilerType(); 2069 CompilerType pointee_compiler_type; 2070 Flags pointee_compiler_type_info; 2071 2072 Flags root_compiler_type_info( 2073 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2074 if (pointee_compiler_type) 2075 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2076 2077 if (temp_expression.empty()) { 2078 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2079 return root; 2080 } 2081 2082 switch (temp_expression.front()) { 2083 case '-': { 2084 temp_expression = temp_expression.drop_front(); 2085 if (options.m_check_dot_vs_arrow_syntax && 2086 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2087 // use -> on a 2088 // non-pointer and I 2089 // must catch the error 2090 { 2091 *reason_to_stop = 2092 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2093 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2094 return ValueObjectSP(); 2095 } 2096 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2097 // extract an ObjC IVar 2098 // when this is forbidden 2099 root_compiler_type_info.Test(eTypeIsPointer) && 2100 options.m_no_fragile_ivar) { 2101 *reason_to_stop = 2102 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2103 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2104 return ValueObjectSP(); 2105 } 2106 if (!temp_expression.startswith(">")) { 2107 *reason_to_stop = 2108 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2109 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2110 return ValueObjectSP(); 2111 } 2112 } 2113 LLVM_FALLTHROUGH; 2114 case '.': // or fallthrough from -> 2115 { 2116 if (options.m_check_dot_vs_arrow_syntax && 2117 temp_expression.front() == '.' && 2118 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2119 // use . on a pointer 2120 // and I must catch the 2121 // error 2122 { 2123 *reason_to_stop = 2124 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2125 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2126 return nullptr; 2127 } 2128 temp_expression = temp_expression.drop_front(); // skip . or > 2129 2130 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2131 ConstString child_name; 2132 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2133 // expand this last layer 2134 { 2135 child_name.SetString(temp_expression); 2136 ValueObjectSP child_valobj_sp = 2137 root->GetChildMemberWithName(child_name, true); 2138 2139 if (child_valobj_sp.get()) // we know we are done, so just return 2140 { 2141 *reason_to_stop = 2142 ValueObject::eExpressionPathScanEndReasonEndOfString; 2143 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2144 return child_valobj_sp; 2145 } else { 2146 switch (options.m_synthetic_children_traversal) { 2147 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2148 None: 2149 break; 2150 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2151 FromSynthetic: 2152 if (root->IsSynthetic()) { 2153 child_valobj_sp = root->GetNonSyntheticValue(); 2154 if (child_valobj_sp.get()) 2155 child_valobj_sp = 2156 child_valobj_sp->GetChildMemberWithName(child_name, true); 2157 } 2158 break; 2159 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2160 ToSynthetic: 2161 if (!root->IsSynthetic()) { 2162 child_valobj_sp = root->GetSyntheticValue(); 2163 if (child_valobj_sp.get()) 2164 child_valobj_sp = 2165 child_valobj_sp->GetChildMemberWithName(child_name, true); 2166 } 2167 break; 2168 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2169 Both: 2170 if (root->IsSynthetic()) { 2171 child_valobj_sp = root->GetNonSyntheticValue(); 2172 if (child_valobj_sp.get()) 2173 child_valobj_sp = 2174 child_valobj_sp->GetChildMemberWithName(child_name, true); 2175 } else { 2176 child_valobj_sp = root->GetSyntheticValue(); 2177 if (child_valobj_sp.get()) 2178 child_valobj_sp = 2179 child_valobj_sp->GetChildMemberWithName(child_name, true); 2180 } 2181 break; 2182 } 2183 } 2184 2185 // if we are here and options.m_no_synthetic_children is true, 2186 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2187 // branch, and return an error 2188 if (child_valobj_sp.get()) // if it worked, just return 2189 { 2190 *reason_to_stop = 2191 ValueObject::eExpressionPathScanEndReasonEndOfString; 2192 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2193 return child_valobj_sp; 2194 } else { 2195 *reason_to_stop = 2196 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2197 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2198 return nullptr; 2199 } 2200 } else // other layers do expand 2201 { 2202 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2203 2204 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2205 2206 ValueObjectSP child_valobj_sp = 2207 root->GetChildMemberWithName(child_name, true); 2208 if (child_valobj_sp.get()) // store the new root and move on 2209 { 2210 root = child_valobj_sp; 2211 remainder = next_separator; 2212 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2213 continue; 2214 } else { 2215 switch (options.m_synthetic_children_traversal) { 2216 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2217 None: 2218 break; 2219 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2220 FromSynthetic: 2221 if (root->IsSynthetic()) { 2222 child_valobj_sp = root->GetNonSyntheticValue(); 2223 if (child_valobj_sp.get()) 2224 child_valobj_sp = 2225 child_valobj_sp->GetChildMemberWithName(child_name, true); 2226 } 2227 break; 2228 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2229 ToSynthetic: 2230 if (!root->IsSynthetic()) { 2231 child_valobj_sp = root->GetSyntheticValue(); 2232 if (child_valobj_sp.get()) 2233 child_valobj_sp = 2234 child_valobj_sp->GetChildMemberWithName(child_name, true); 2235 } 2236 break; 2237 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2238 Both: 2239 if (root->IsSynthetic()) { 2240 child_valobj_sp = root->GetNonSyntheticValue(); 2241 if (child_valobj_sp.get()) 2242 child_valobj_sp = 2243 child_valobj_sp->GetChildMemberWithName(child_name, true); 2244 } else { 2245 child_valobj_sp = root->GetSyntheticValue(); 2246 if (child_valobj_sp.get()) 2247 child_valobj_sp = 2248 child_valobj_sp->GetChildMemberWithName(child_name, true); 2249 } 2250 break; 2251 } 2252 } 2253 2254 // if we are here and options.m_no_synthetic_children is true, 2255 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2256 // branch, and return an error 2257 if (child_valobj_sp.get()) // if it worked, move on 2258 { 2259 root = child_valobj_sp; 2260 remainder = next_separator; 2261 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2262 continue; 2263 } else { 2264 *reason_to_stop = 2265 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2266 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2267 return nullptr; 2268 } 2269 } 2270 break; 2271 } 2272 case '[': { 2273 if (!root_compiler_type_info.Test(eTypeIsArray) && 2274 !root_compiler_type_info.Test(eTypeIsPointer) && 2275 !root_compiler_type_info.Test( 2276 eTypeIsVector)) // if this is not a T[] nor a T* 2277 { 2278 if (!root_compiler_type_info.Test( 2279 eTypeIsScalar)) // if this is not even a scalar... 2280 { 2281 if (options.m_synthetic_children_traversal == 2282 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2283 None) // ...only chance left is synthetic 2284 { 2285 *reason_to_stop = 2286 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2287 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2288 return ValueObjectSP(); 2289 } 2290 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2291 // check that we can 2292 // expand bitfields 2293 { 2294 *reason_to_stop = 2295 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2296 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2297 return ValueObjectSP(); 2298 } 2299 } 2300 if (temp_expression[1] == 2301 ']') // if this is an unbounded range it only works for arrays 2302 { 2303 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2304 *reason_to_stop = 2305 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2306 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2307 return nullptr; 2308 } else // even if something follows, we cannot expand unbounded ranges, 2309 // just let the caller do it 2310 { 2311 *reason_to_stop = 2312 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2313 *final_result = 2314 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2315 return root; 2316 } 2317 } 2318 2319 size_t close_bracket_position = temp_expression.find(']', 1); 2320 if (close_bracket_position == 2321 llvm::StringRef::npos) // if there is no ], this is a syntax error 2322 { 2323 *reason_to_stop = 2324 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2325 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2326 return nullptr; 2327 } 2328 2329 llvm::StringRef bracket_expr = 2330 temp_expression.slice(1, close_bracket_position); 2331 2332 // If this was an empty expression it would have been caught by the if 2333 // above. 2334 assert(!bracket_expr.empty()); 2335 2336 if (!bracket_expr.contains('-')) { 2337 // if no separator, this is of the form [N]. Note that this cannot be 2338 // an unbounded range of the form [], because that case was handled 2339 // above with an unconditional return. 2340 unsigned long index = 0; 2341 if (bracket_expr.getAsInteger(0, index)) { 2342 *reason_to_stop = 2343 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2344 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2345 return nullptr; 2346 } 2347 2348 // from here on we do have a valid index 2349 if (root_compiler_type_info.Test(eTypeIsArray)) { 2350 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2351 if (!child_valobj_sp) 2352 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2353 if (!child_valobj_sp) 2354 if (root->HasSyntheticValue() && 2355 root->GetSyntheticValue()->GetNumChildren() > index) 2356 child_valobj_sp = 2357 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2358 if (child_valobj_sp) { 2359 root = child_valobj_sp; 2360 remainder = 2361 temp_expression.substr(close_bracket_position + 1); // skip ] 2362 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2363 continue; 2364 } else { 2365 *reason_to_stop = 2366 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2367 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2368 return nullptr; 2369 } 2370 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2371 if (*what_next == 2372 ValueObject:: 2373 eExpressionPathAftermathDereference && // if this is a 2374 // ptr-to-scalar, I 2375 // am accessing it 2376 // by index and I 2377 // would have 2378 // deref'ed anyway, 2379 // then do it now 2380 // and use this as 2381 // a bitfield 2382 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2383 Status error; 2384 root = root->Dereference(error); 2385 if (error.Fail() || !root) { 2386 *reason_to_stop = 2387 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2388 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2389 return nullptr; 2390 } else { 2391 *what_next = eExpressionPathAftermathNothing; 2392 continue; 2393 } 2394 } else { 2395 if (root->GetCompilerType().GetMinimumLanguage() == 2396 eLanguageTypeObjC && 2397 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2398 root->HasSyntheticValue() && 2399 (options.m_synthetic_children_traversal == 2400 GetValueForExpressionPathOptions:: 2401 SyntheticChildrenTraversal::ToSynthetic || 2402 options.m_synthetic_children_traversal == 2403 GetValueForExpressionPathOptions:: 2404 SyntheticChildrenTraversal::Both)) { 2405 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2406 } else 2407 root = root->GetSyntheticArrayMember(index, true); 2408 if (!root) { 2409 *reason_to_stop = 2410 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2411 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2412 return nullptr; 2413 } else { 2414 remainder = 2415 temp_expression.substr(close_bracket_position + 1); // skip ] 2416 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2417 continue; 2418 } 2419 } 2420 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2421 root = root->GetSyntheticBitFieldChild(index, index, true); 2422 if (!root) { 2423 *reason_to_stop = 2424 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2425 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2426 return nullptr; 2427 } else // we do not know how to expand members of bitfields, so we 2428 // just return and let the caller do any further processing 2429 { 2430 *reason_to_stop = ValueObject:: 2431 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2432 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2433 return root; 2434 } 2435 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2436 root = root->GetChildAtIndex(index, true); 2437 if (!root) { 2438 *reason_to_stop = 2439 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2440 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2441 return ValueObjectSP(); 2442 } else { 2443 remainder = 2444 temp_expression.substr(close_bracket_position + 1); // skip ] 2445 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2446 continue; 2447 } 2448 } else if (options.m_synthetic_children_traversal == 2449 GetValueForExpressionPathOptions:: 2450 SyntheticChildrenTraversal::ToSynthetic || 2451 options.m_synthetic_children_traversal == 2452 GetValueForExpressionPathOptions:: 2453 SyntheticChildrenTraversal::Both) { 2454 if (root->HasSyntheticValue()) 2455 root = root->GetSyntheticValue(); 2456 else if (!root->IsSynthetic()) { 2457 *reason_to_stop = 2458 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2459 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2460 return nullptr; 2461 } 2462 // if we are here, then root itself is a synthetic VO.. should be 2463 // good to go 2464 2465 if (!root) { 2466 *reason_to_stop = 2467 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2468 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2469 return nullptr; 2470 } 2471 root = root->GetChildAtIndex(index, true); 2472 if (!root) { 2473 *reason_to_stop = 2474 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2475 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2476 return nullptr; 2477 } else { 2478 remainder = 2479 temp_expression.substr(close_bracket_position + 1); // skip ] 2480 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2481 continue; 2482 } 2483 } else { 2484 *reason_to_stop = 2485 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2486 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2487 return nullptr; 2488 } 2489 } else { 2490 // we have a low and a high index 2491 llvm::StringRef sleft, sright; 2492 unsigned long low_index, high_index; 2493 std::tie(sleft, sright) = bracket_expr.split('-'); 2494 if (sleft.getAsInteger(0, low_index) || 2495 sright.getAsInteger(0, high_index)) { 2496 *reason_to_stop = 2497 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2498 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2499 return nullptr; 2500 } 2501 2502 if (low_index > high_index) // swap indices if required 2503 std::swap(low_index, high_index); 2504 2505 if (root_compiler_type_info.Test( 2506 eTypeIsScalar)) // expansion only works for scalars 2507 { 2508 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2509 if (!root) { 2510 *reason_to_stop = 2511 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2512 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2513 return nullptr; 2514 } else { 2515 *reason_to_stop = ValueObject:: 2516 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2517 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2518 return root; 2519 } 2520 } else if (root_compiler_type_info.Test( 2521 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2522 // accessing it by index and I would 2523 // have deref'ed anyway, then do it 2524 // now and use this as a bitfield 2525 *what_next == 2526 ValueObject::eExpressionPathAftermathDereference && 2527 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2528 Status error; 2529 root = root->Dereference(error); 2530 if (error.Fail() || !root) { 2531 *reason_to_stop = 2532 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2533 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2534 return nullptr; 2535 } else { 2536 *what_next = ValueObject::eExpressionPathAftermathNothing; 2537 continue; 2538 } 2539 } else { 2540 *reason_to_stop = 2541 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2542 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2543 return root; 2544 } 2545 } 2546 break; 2547 } 2548 default: // some non-separator is in the way 2549 { 2550 *reason_to_stop = 2551 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2552 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2553 return nullptr; 2554 } 2555 } 2556 } 2557 } 2558 2559 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2560 2561 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2562 ValueObjectPrinter printer(this, &s, options); 2563 printer.PrintValueObject(); 2564 } 2565 2566 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2567 ValueObjectSP valobj_sp; 2568 2569 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2570 ExecutionContext exe_ctx(GetExecutionContextRef()); 2571 2572 DataExtractor data; 2573 data.SetByteOrder(m_data.GetByteOrder()); 2574 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2575 2576 if (IsBitfield()) { 2577 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2578 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2579 } else 2580 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2581 2582 valobj_sp = ValueObjectConstResult::Create( 2583 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2584 GetAddressOf()); 2585 } 2586 2587 if (!valobj_sp) { 2588 ExecutionContext exe_ctx(GetExecutionContextRef()); 2589 valobj_sp = ValueObjectConstResult::Create( 2590 exe_ctx.GetBestExecutionContextScope(), m_error); 2591 } 2592 return valobj_sp; 2593 } 2594 2595 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2596 lldb::DynamicValueType dynValue, bool synthValue) { 2597 ValueObjectSP result_sp(GetSP()); 2598 2599 switch (dynValue) { 2600 case lldb::eDynamicCanRunTarget: 2601 case lldb::eDynamicDontRunTarget: { 2602 if (!result_sp->IsDynamic()) { 2603 if (result_sp->GetDynamicValue(dynValue)) 2604 result_sp = result_sp->GetDynamicValue(dynValue); 2605 } 2606 } break; 2607 case lldb::eNoDynamicValues: { 2608 if (result_sp->IsDynamic()) { 2609 if (result_sp->GetStaticValue()) 2610 result_sp = result_sp->GetStaticValue(); 2611 } 2612 } break; 2613 } 2614 2615 if (synthValue) { 2616 if (!result_sp->IsSynthetic()) { 2617 if (result_sp->GetSyntheticValue()) 2618 result_sp = result_sp->GetSyntheticValue(); 2619 } 2620 } else { 2621 if (result_sp->IsSynthetic()) { 2622 if (result_sp->GetNonSyntheticValue()) 2623 result_sp = result_sp->GetNonSyntheticValue(); 2624 } 2625 } 2626 2627 return result_sp; 2628 } 2629 2630 ValueObjectSP ValueObject::Dereference(Status &error) { 2631 if (m_deref_valobj) 2632 return m_deref_valobj->GetSP(); 2633 2634 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2635 if (is_pointer_or_reference_type) { 2636 bool omit_empty_base_classes = true; 2637 bool ignore_array_bounds = false; 2638 2639 std::string child_name_str; 2640 uint32_t child_byte_size = 0; 2641 int32_t child_byte_offset = 0; 2642 uint32_t child_bitfield_bit_size = 0; 2643 uint32_t child_bitfield_bit_offset = 0; 2644 bool child_is_base_class = false; 2645 bool child_is_deref_of_parent = false; 2646 const bool transparent_pointers = false; 2647 CompilerType compiler_type = GetCompilerType(); 2648 CompilerType child_compiler_type; 2649 uint64_t language_flags = 0; 2650 2651 ExecutionContext exe_ctx(GetExecutionContextRef()); 2652 2653 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2654 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2655 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2656 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2657 child_is_deref_of_parent, this, language_flags); 2658 if (child_compiler_type && child_byte_size) { 2659 ConstString child_name; 2660 if (!child_name_str.empty()) 2661 child_name.SetCString(child_name_str.c_str()); 2662 2663 m_deref_valobj = new ValueObjectChild( 2664 *this, child_compiler_type, child_name, child_byte_size, 2665 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2666 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2667 language_flags); 2668 } 2669 2670 // In case of incomplete child compiler type, use the pointee type and try 2671 // to recreate a new ValueObjectChild using it. 2672 if (!m_deref_valobj) { 2673 if (HasSyntheticValue()) { 2674 child_compiler_type = compiler_type.GetPointeeType(); 2675 2676 if (child_compiler_type) { 2677 ConstString child_name; 2678 if (!child_name_str.empty()) 2679 child_name.SetCString(child_name_str.c_str()); 2680 2681 m_deref_valobj = new ValueObjectChild( 2682 *this, child_compiler_type, child_name, child_byte_size, 2683 child_byte_offset, child_bitfield_bit_size, 2684 child_bitfield_bit_offset, child_is_base_class, 2685 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2686 } 2687 } 2688 } 2689 2690 } else if (HasSyntheticValue()) { 2691 m_deref_valobj = 2692 GetSyntheticValue() 2693 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2694 .get(); 2695 } else if (IsSynthetic()) { 2696 m_deref_valobj = 2697 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2698 } 2699 2700 if (m_deref_valobj) { 2701 error.Clear(); 2702 return m_deref_valobj->GetSP(); 2703 } else { 2704 StreamString strm; 2705 GetExpressionPath(strm); 2706 2707 if (is_pointer_or_reference_type) 2708 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2709 GetTypeName().AsCString("<invalid type>"), 2710 strm.GetData()); 2711 else 2712 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2713 GetTypeName().AsCString("<invalid type>"), 2714 strm.GetData()); 2715 return ValueObjectSP(); 2716 } 2717 } 2718 2719 ValueObjectSP ValueObject::AddressOf(Status &error) { 2720 if (m_addr_of_valobj_sp) 2721 return m_addr_of_valobj_sp; 2722 2723 AddressType address_type = eAddressTypeInvalid; 2724 const bool scalar_is_load_address = false; 2725 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2726 error.Clear(); 2727 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2728 switch (address_type) { 2729 case eAddressTypeInvalid: { 2730 StreamString expr_path_strm; 2731 GetExpressionPath(expr_path_strm); 2732 error.SetErrorStringWithFormat("'%s' is not in memory", 2733 expr_path_strm.GetData()); 2734 } break; 2735 2736 case eAddressTypeFile: 2737 case eAddressTypeLoad: { 2738 CompilerType compiler_type = GetCompilerType(); 2739 if (compiler_type) { 2740 std::string name(1, '&'); 2741 name.append(m_name.AsCString("")); 2742 ExecutionContext exe_ctx(GetExecutionContextRef()); 2743 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2744 exe_ctx.GetBestExecutionContextScope(), 2745 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2746 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2747 } 2748 } break; 2749 default: 2750 break; 2751 } 2752 } else { 2753 StreamString expr_path_strm; 2754 GetExpressionPath(expr_path_strm); 2755 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2756 expr_path_strm.GetData()); 2757 } 2758 2759 return m_addr_of_valobj_sp; 2760 } 2761 2762 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2763 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2764 } 2765 2766 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2767 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2768 } 2769 2770 ValueObjectSP ValueObject::CastPointerType(const char *name, 2771 CompilerType &compiler_type) { 2772 ValueObjectSP valobj_sp; 2773 AddressType address_type; 2774 addr_t ptr_value = GetPointerValue(&address_type); 2775 2776 if (ptr_value != LLDB_INVALID_ADDRESS) { 2777 Address ptr_addr(ptr_value); 2778 ExecutionContext exe_ctx(GetExecutionContextRef()); 2779 valobj_sp = ValueObjectMemory::Create( 2780 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2781 } 2782 return valobj_sp; 2783 } 2784 2785 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2786 ValueObjectSP valobj_sp; 2787 AddressType address_type; 2788 addr_t ptr_value = GetPointerValue(&address_type); 2789 2790 if (ptr_value != LLDB_INVALID_ADDRESS) { 2791 Address ptr_addr(ptr_value); 2792 ExecutionContext exe_ctx(GetExecutionContextRef()); 2793 valobj_sp = ValueObjectMemory::Create( 2794 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2795 } 2796 return valobj_sp; 2797 } 2798 2799 ValueObject::EvaluationPoint::EvaluationPoint() : m_mod_id(), m_exe_ctx_ref() {} 2800 2801 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2802 bool use_selected) 2803 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2804 ExecutionContext exe_ctx(exe_scope); 2805 TargetSP target_sp(exe_ctx.GetTargetSP()); 2806 if (target_sp) { 2807 m_exe_ctx_ref.SetTargetSP(target_sp); 2808 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2809 if (!process_sp) 2810 process_sp = target_sp->GetProcessSP(); 2811 2812 if (process_sp) { 2813 m_mod_id = process_sp->GetModID(); 2814 m_exe_ctx_ref.SetProcessSP(process_sp); 2815 2816 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2817 2818 if (!thread_sp) { 2819 if (use_selected) 2820 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2821 } 2822 2823 if (thread_sp) { 2824 m_exe_ctx_ref.SetThreadSP(thread_sp); 2825 2826 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2827 if (!frame_sp) { 2828 if (use_selected) 2829 frame_sp = thread_sp->GetSelectedFrame(); 2830 } 2831 if (frame_sp) 2832 m_exe_ctx_ref.SetFrameSP(frame_sp); 2833 } 2834 } 2835 } 2836 } 2837 2838 ValueObject::EvaluationPoint::EvaluationPoint( 2839 const ValueObject::EvaluationPoint &rhs) 2840 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2841 2842 ValueObject::EvaluationPoint::~EvaluationPoint() = default; 2843 2844 // This function checks the EvaluationPoint against the current process state. 2845 // If the current state matches the evaluation point, or the evaluation point 2846 // is already invalid, then we return false, meaning "no change". If the 2847 // current state is different, we update our state, and return true meaning 2848 // "yes, change". If we did see a change, we also set m_needs_update to true, 2849 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2850 // the current execution context scope. 2851 2852 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2853 bool accept_invalid_exe_ctx) { 2854 // Start with the target, if it is NULL, then we're obviously not going to 2855 // get any further: 2856 const bool thread_and_frame_only_if_stopped = true; 2857 ExecutionContext exe_ctx( 2858 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 2859 2860 if (exe_ctx.GetTargetPtr() == nullptr) 2861 return false; 2862 2863 // If we don't have a process nothing can change. 2864 Process *process = exe_ctx.GetProcessPtr(); 2865 if (process == nullptr) 2866 return false; 2867 2868 // If our stop id is the current stop ID, nothing has changed: 2869 ProcessModID current_mod_id = process->GetModID(); 2870 2871 // If the current stop id is 0, either we haven't run yet, or the process 2872 // state has been cleared. In either case, we aren't going to be able to sync 2873 // with the process state. 2874 if (current_mod_id.GetStopID() == 0) 2875 return false; 2876 2877 bool changed = false; 2878 const bool was_valid = m_mod_id.IsValid(); 2879 if (was_valid) { 2880 if (m_mod_id == current_mod_id) { 2881 // Everything is already up to date in this object, no need to update the 2882 // execution context scope. 2883 changed = false; 2884 } else { 2885 m_mod_id = current_mod_id; 2886 m_needs_update = true; 2887 changed = true; 2888 } 2889 } 2890 2891 // Now re-look up the thread and frame in case the underlying objects have 2892 // gone away & been recreated. That way we'll be sure to return a valid 2893 // exe_scope. If we used to have a thread or a frame but can't find it 2894 // anymore, then mark ourselves as invalid. 2895 2896 if (!accept_invalid_exe_ctx) { 2897 if (m_exe_ctx_ref.HasThreadRef()) { 2898 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 2899 if (thread_sp) { 2900 if (m_exe_ctx_ref.HasFrameRef()) { 2901 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 2902 if (!frame_sp) { 2903 // We used to have a frame, but now it is gone 2904 SetInvalid(); 2905 changed = was_valid; 2906 } 2907 } 2908 } else { 2909 // We used to have a thread, but now it is gone 2910 SetInvalid(); 2911 changed = was_valid; 2912 } 2913 } 2914 } 2915 2916 return changed; 2917 } 2918 2919 void ValueObject::EvaluationPoint::SetUpdated() { 2920 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 2921 if (process_sp) 2922 m_mod_id = process_sp->GetModID(); 2923 m_needs_update = false; 2924 } 2925 2926 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 2927 if ((clear_mask & eClearUserVisibleDataItemsValue) == 2928 eClearUserVisibleDataItemsValue) 2929 m_value_str.clear(); 2930 2931 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 2932 eClearUserVisibleDataItemsLocation) 2933 m_location_str.clear(); 2934 2935 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 2936 eClearUserVisibleDataItemsSummary) 2937 m_summary_str.clear(); 2938 2939 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 2940 eClearUserVisibleDataItemsDescription) 2941 m_object_desc_str.clear(); 2942 2943 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 2944 eClearUserVisibleDataItemsSyntheticChildren) { 2945 if (m_synthetic_value) 2946 m_synthetic_value = nullptr; 2947 } 2948 } 2949 2950 SymbolContextScope *ValueObject::GetSymbolContextScope() { 2951 if (m_parent) { 2952 if (!m_parent->IsPointerOrReferenceType()) 2953 return m_parent->GetSymbolContextScope(); 2954 } 2955 return nullptr; 2956 } 2957 2958 lldb::ValueObjectSP 2959 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 2960 llvm::StringRef expression, 2961 const ExecutionContext &exe_ctx) { 2962 return CreateValueObjectFromExpression(name, expression, exe_ctx, 2963 EvaluateExpressionOptions()); 2964 } 2965 2966 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 2967 llvm::StringRef name, llvm::StringRef expression, 2968 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 2969 lldb::ValueObjectSP retval_sp; 2970 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 2971 if (!target_sp) 2972 return retval_sp; 2973 if (expression.empty()) 2974 return retval_sp; 2975 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 2976 retval_sp, options); 2977 if (retval_sp && !name.empty()) 2978 retval_sp->SetName(ConstString(name)); 2979 return retval_sp; 2980 } 2981 2982 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 2983 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 2984 CompilerType type) { 2985 if (type) { 2986 CompilerType pointer_type(type.GetPointerType()); 2987 if (pointer_type) { 2988 lldb::DataBufferSP buffer( 2989 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 2990 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 2991 exe_ctx.GetBestExecutionContextScope(), pointer_type, 2992 ConstString(name), buffer, exe_ctx.GetByteOrder(), 2993 exe_ctx.GetAddressByteSize())); 2994 if (ptr_result_valobj_sp) { 2995 ptr_result_valobj_sp->GetValue().SetValueType( 2996 Value::ValueType::LoadAddress); 2997 Status err; 2998 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 2999 if (ptr_result_valobj_sp && !name.empty()) 3000 ptr_result_valobj_sp->SetName(ConstString(name)); 3001 } 3002 return ptr_result_valobj_sp; 3003 } 3004 } 3005 return lldb::ValueObjectSP(); 3006 } 3007 3008 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3009 llvm::StringRef name, const DataExtractor &data, 3010 const ExecutionContext &exe_ctx, CompilerType type) { 3011 lldb::ValueObjectSP new_value_sp; 3012 new_value_sp = ValueObjectConstResult::Create( 3013 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3014 LLDB_INVALID_ADDRESS); 3015 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3016 if (new_value_sp && !name.empty()) 3017 new_value_sp->SetName(ConstString(name)); 3018 return new_value_sp; 3019 } 3020 3021 ModuleSP ValueObject::GetModule() { 3022 ValueObject *root(GetRoot()); 3023 if (root != this) 3024 return root->GetModule(); 3025 return lldb::ModuleSP(); 3026 } 3027 3028 ValueObject *ValueObject::GetRoot() { 3029 if (m_root) 3030 return m_root; 3031 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3032 return (vo->m_parent != nullptr); 3033 })); 3034 } 3035 3036 ValueObject * 3037 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3038 ValueObject *vo = this; 3039 while (vo) { 3040 if (!f(vo)) 3041 break; 3042 vo = vo->m_parent; 3043 } 3044 return vo; 3045 } 3046 3047 AddressType ValueObject::GetAddressTypeOfChildren() { 3048 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3049 ValueObject *root(GetRoot()); 3050 if (root != this) 3051 return root->GetAddressTypeOfChildren(); 3052 } 3053 return m_address_type_of_ptr_or_ref_children; 3054 } 3055 3056 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3057 ValueObject *with_dv_info = this; 3058 while (with_dv_info) { 3059 if (with_dv_info->HasDynamicValueTypeInfo()) 3060 return with_dv_info->GetDynamicValueTypeImpl(); 3061 with_dv_info = with_dv_info->m_parent; 3062 } 3063 return lldb::eNoDynamicValues; 3064 } 3065 3066 lldb::Format ValueObject::GetFormat() const { 3067 const ValueObject *with_fmt_info = this; 3068 while (with_fmt_info) { 3069 if (with_fmt_info->m_format != lldb::eFormatDefault) 3070 return with_fmt_info->m_format; 3071 with_fmt_info = with_fmt_info->m_parent; 3072 } 3073 return m_format; 3074 } 3075 3076 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3077 lldb::LanguageType type = m_preferred_display_language; 3078 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3079 if (GetRoot()) { 3080 if (GetRoot() == this) { 3081 if (StackFrameSP frame_sp = GetFrameSP()) { 3082 const SymbolContext &sc( 3083 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3084 if (CompileUnit *cu = sc.comp_unit) 3085 type = cu->GetLanguage(); 3086 } 3087 } else { 3088 type = GetRoot()->GetPreferredDisplayLanguage(); 3089 } 3090 } 3091 } 3092 return (m_preferred_display_language = type); // only compute it once 3093 } 3094 3095 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3096 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3097 SetPreferredDisplayLanguage(lt); 3098 } 3099 3100 bool ValueObject::CanProvideValue() { 3101 // we need to support invalid types as providers of values because some bare- 3102 // board debugging scenarios have no notion of types, but still manage to 3103 // have raw numeric values for things like registers. sigh. 3104 CompilerType type = GetCompilerType(); 3105 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3106 } 3107 3108 3109 3110 ValueObjectSP ValueObject::Persist() { 3111 if (!UpdateValueIfNeeded()) 3112 return nullptr; 3113 3114 TargetSP target_sp(GetTargetSP()); 3115 if (!target_sp) 3116 return nullptr; 3117 3118 PersistentExpressionState *persistent_state = 3119 target_sp->GetPersistentExpressionStateForLanguage( 3120 GetPreferredDisplayLanguage()); 3121 3122 if (!persistent_state) 3123 return nullptr; 3124 3125 ConstString name = persistent_state->GetNextPersistentVariableName(); 3126 3127 ValueObjectSP const_result_sp = 3128 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3129 3130 ExpressionVariableSP persistent_var_sp = 3131 persistent_state->CreatePersistentVariable(const_result_sp); 3132 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3133 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3134 3135 return persistent_var_sp->GetValueObject(); 3136 } 3137