1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : UserID(++g_value_obj_uid), // Unique identifier for every value object 80 m_parent(&parent), m_root(nullptr), 81 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 82 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 83 m_summary_str(), m_object_desc_str(), m_manager(parent.GetManager()), 84 m_children(), m_synthetic_children(), m_dynamic_value(nullptr), 85 m_synthetic_value(nullptr), m_deref_valobj(nullptr), 86 m_format(eFormatDefault), m_last_format(eFormatDefault), 87 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 88 m_synthetic_children_sp(), m_user_id_of_forced_summary(), 89 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 90 m_value_checksum(), 91 m_preferred_display_language(lldb::eLanguageTypeUnknown), 92 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 93 m_children_count_valid(false), m_old_value_valid(false), 94 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 95 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 96 m_is_getting_summary(false), 97 m_did_calculate_complete_objc_class_type(false), 98 m_is_synthetic_children_generated( 99 parent.m_is_synthetic_children_generated) { 100 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 101 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 102 m_manager->ManageObject(this); 103 } 104 105 // ValueObject constructor 106 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 107 ValueObjectManager &manager, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_manager(&manager), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 if (exe_scope) { 130 TargetSP target_sp(exe_scope->CalculateTarget()); 131 if (target_sp) { 132 const ArchSpec &arch = target_sp->GetArchitecture(); 133 m_data.SetByteOrder(arch.GetByteOrder()); 134 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 135 } 136 } 137 m_manager->ManageObject(this); 138 } 139 140 // Destructor 141 ValueObject::~ValueObject() {} 142 143 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 144 145 bool did_change_formats = false; 146 147 if (update_format) 148 did_change_formats = UpdateFormatsIfNeeded(); 149 150 // If this is a constant value, then our success is predicated on whether we 151 // have an error or not 152 if (GetIsConstant()) { 153 // if you are constant, things might still have changed behind your back 154 // (e.g. you are a frozen object and things have changed deeper than you 155 // cared to freeze-dry yourself) in this case, your value has not changed, 156 // but "computed" entries might have, so you might now have a different 157 // summary, or a different object description. clear these so we will 158 // recompute them 159 if (update_format && !did_change_formats) 160 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 161 eClearUserVisibleDataItemsDescription); 162 return m_error.Success(); 163 } 164 165 bool first_update = IsChecksumEmpty(); 166 167 if (NeedsUpdating()) { 168 m_update_point.SetUpdated(); 169 170 // Save the old value using swap to avoid a string copy which also will 171 // clear our m_value_str 172 if (m_value_str.empty()) { 173 m_old_value_valid = false; 174 } else { 175 m_old_value_valid = true; 176 m_old_value_str.swap(m_value_str); 177 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 178 } 179 180 ClearUserVisibleData(); 181 182 if (IsInScope()) { 183 const bool value_was_valid = GetValueIsValid(); 184 SetValueDidChange(false); 185 186 m_error.Clear(); 187 188 // Call the pure virtual function to update the value 189 190 bool need_compare_checksums = false; 191 llvm::SmallVector<uint8_t, 16> old_checksum; 192 193 if (!first_update && CanProvideValue()) { 194 need_compare_checksums = true; 195 old_checksum.resize(m_value_checksum.size()); 196 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 197 old_checksum.begin()); 198 } 199 200 bool success = UpdateValue(); 201 202 SetValueIsValid(success); 203 204 if (success) { 205 UpdateChildrenAddressType(); 206 const uint64_t max_checksum_size = 128; 207 m_data.Checksum(m_value_checksum, max_checksum_size); 208 } else { 209 need_compare_checksums = false; 210 m_value_checksum.clear(); 211 } 212 213 assert(!need_compare_checksums || 214 (!old_checksum.empty() && !m_value_checksum.empty())); 215 216 if (first_update) 217 SetValueDidChange(false); 218 else if (!m_value_did_change && !success) { 219 // The value wasn't gotten successfully, so we mark this as changed if 220 // the value used to be valid and now isn't 221 SetValueDidChange(value_was_valid); 222 } else if (need_compare_checksums) { 223 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 224 m_value_checksum.size())); 225 } 226 227 } else { 228 m_error.SetErrorString("out of scope"); 229 } 230 } 231 return m_error.Success(); 232 } 233 234 bool ValueObject::UpdateFormatsIfNeeded() { 235 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 236 LLDB_LOGF(log, 237 "[%s %p] checking for FormatManager revisions. ValueObject " 238 "rev: %d - Global rev: %d", 239 GetName().GetCString(), static_cast<void *>(this), 240 m_last_format_mgr_revision, 241 DataVisualization::GetCurrentRevision()); 242 243 bool any_change = false; 244 245 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 246 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 247 any_change = true; 248 249 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 250 SetSummaryFormat( 251 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 252 #if LLDB_ENABLE_PYTHON 253 SetSyntheticChildren( 254 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 255 #endif 256 } 257 258 return any_change; 259 } 260 261 void ValueObject::SetNeedsUpdate() { 262 m_update_point.SetNeedsUpdate(); 263 // We have to clear the value string here so ConstResult children will notice 264 // if their values are changed by hand (i.e. with SetValueAsCString). 265 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 266 } 267 268 void ValueObject::ClearDynamicTypeInformation() { 269 m_children_count_valid = false; 270 m_did_calculate_complete_objc_class_type = false; 271 m_last_format_mgr_revision = 0; 272 m_override_type = CompilerType(); 273 SetValueFormat(lldb::TypeFormatImplSP()); 274 SetSummaryFormat(lldb::TypeSummaryImplSP()); 275 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 276 } 277 278 CompilerType ValueObject::MaybeCalculateCompleteType() { 279 CompilerType compiler_type(GetCompilerTypeImpl()); 280 281 if (m_did_calculate_complete_objc_class_type) { 282 if (m_override_type.IsValid()) 283 return m_override_type; 284 else 285 return compiler_type; 286 } 287 288 m_did_calculate_complete_objc_class_type = true; 289 290 ProcessSP process_sp( 291 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 292 293 if (!process_sp) 294 return compiler_type; 295 296 if (auto *runtime = 297 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 298 if (llvm::Optional<CompilerType> complete_type = 299 runtime->GetRuntimeType(compiler_type)) { 300 m_override_type = complete_type.getValue(); 301 if (m_override_type.IsValid()) 302 return m_override_type; 303 } 304 } 305 return compiler_type; 306 } 307 308 CompilerType ValueObject::GetCompilerType() { 309 return MaybeCalculateCompleteType(); 310 } 311 312 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 313 314 DataExtractor &ValueObject::GetDataExtractor() { 315 UpdateValueIfNeeded(false); 316 return m_data; 317 } 318 319 const Status &ValueObject::GetError() { 320 UpdateValueIfNeeded(false); 321 return m_error; 322 } 323 324 ConstString ValueObject::GetName() const { return m_name; } 325 326 const char *ValueObject::GetLocationAsCString() { 327 return GetLocationAsCStringImpl(m_value, m_data); 328 } 329 330 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 331 const DataExtractor &data) { 332 if (UpdateValueIfNeeded(false)) { 333 if (m_location_str.empty()) { 334 StreamString sstr; 335 336 Value::ValueType value_type = value.GetValueType(); 337 338 switch (value_type) { 339 case Value::eValueTypeScalar: 340 case Value::eValueTypeVector: 341 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 342 RegisterInfo *reg_info = value.GetRegisterInfo(); 343 if (reg_info) { 344 if (reg_info->name) 345 m_location_str = reg_info->name; 346 else if (reg_info->alt_name) 347 m_location_str = reg_info->alt_name; 348 if (m_location_str.empty()) 349 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 350 ? "vector" 351 : "scalar"; 352 } 353 } 354 if (m_location_str.empty()) 355 m_location_str = 356 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 357 break; 358 359 case Value::eValueTypeLoadAddress: 360 case Value::eValueTypeFileAddress: 361 case Value::eValueTypeHostAddress: { 362 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 363 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 364 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 365 m_location_str = std::string(sstr.GetString()); 366 } break; 367 } 368 } 369 } 370 return m_location_str.c_str(); 371 } 372 373 Value &ValueObject::GetValue() { return m_value; } 374 375 const Value &ValueObject::GetValue() const { return m_value; } 376 377 bool ValueObject::ResolveValue(Scalar &scalar) { 378 if (UpdateValueIfNeeded( 379 false)) // make sure that you are up to date before returning anything 380 { 381 ExecutionContext exe_ctx(GetExecutionContextRef()); 382 Value tmp_value(m_value); 383 scalar = tmp_value.ResolveValue(&exe_ctx); 384 if (scalar.IsValid()) { 385 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 386 if (bitfield_bit_size) 387 return scalar.ExtractBitfield(bitfield_bit_size, 388 GetBitfieldBitOffset()); 389 return true; 390 } 391 } 392 return false; 393 } 394 395 bool ValueObject::IsLogicalTrue(Status &error) { 396 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 397 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 398 switch (is_logical_true) { 399 case eLazyBoolYes: 400 case eLazyBoolNo: 401 return (is_logical_true == true); 402 case eLazyBoolCalculate: 403 break; 404 } 405 } 406 407 Scalar scalar_value; 408 409 if (!ResolveValue(scalar_value)) { 410 error.SetErrorString("failed to get a scalar result"); 411 return false; 412 } 413 414 bool ret; 415 ret = scalar_value.ULongLong(1) != 0; 416 error.Clear(); 417 return ret; 418 } 419 420 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 421 422 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 423 424 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 425 426 void ValueObject::SetValueDidChange(bool value_changed) { 427 m_value_did_change = value_changed; 428 } 429 430 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 431 ValueObjectSP child_sp; 432 // We may need to update our value if we are dynamic 433 if (IsPossibleDynamicType()) 434 UpdateValueIfNeeded(false); 435 if (idx < GetNumChildren()) { 436 // Check if we have already made the child value object? 437 if (can_create && !m_children.HasChildAtIndex(idx)) { 438 // No we haven't created the child at this index, so lets have our 439 // subclass do it and cache the result for quick future access. 440 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 441 } 442 443 ValueObject *child = m_children.GetChildAtIndex(idx); 444 if (child != nullptr) 445 return child->GetSP(); 446 } 447 return child_sp; 448 } 449 450 lldb::ValueObjectSP 451 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 452 size_t *index_of_error) { 453 if (idxs.size() == 0) 454 return GetSP(); 455 ValueObjectSP root(GetSP()); 456 for (size_t idx : idxs) { 457 root = root->GetChildAtIndex(idx, true); 458 if (!root) { 459 if (index_of_error) 460 *index_of_error = idx; 461 return root; 462 } 463 } 464 return root; 465 } 466 467 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 468 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 469 if (idxs.size() == 0) 470 return GetSP(); 471 ValueObjectSP root(GetSP()); 472 for (std::pair<size_t, bool> idx : idxs) { 473 root = root->GetChildAtIndex(idx.first, idx.second); 474 if (!root) { 475 if (index_of_error) 476 *index_of_error = idx.first; 477 return root; 478 } 479 } 480 return root; 481 } 482 483 lldb::ValueObjectSP 484 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 485 ConstString *name_of_error) { 486 if (names.size() == 0) 487 return GetSP(); 488 ValueObjectSP root(GetSP()); 489 for (ConstString name : names) { 490 root = root->GetChildMemberWithName(name, true); 491 if (!root) { 492 if (name_of_error) 493 *name_of_error = name; 494 return root; 495 } 496 } 497 return root; 498 } 499 500 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 501 llvm::ArrayRef<std::pair<ConstString, bool>> names, 502 ConstString *name_of_error) { 503 if (names.size() == 0) 504 return GetSP(); 505 ValueObjectSP root(GetSP()); 506 for (std::pair<ConstString, bool> name : names) { 507 root = root->GetChildMemberWithName(name.first, name.second); 508 if (!root) { 509 if (name_of_error) 510 *name_of_error = name.first; 511 return root; 512 } 513 } 514 return root; 515 } 516 517 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 518 bool omit_empty_base_classes = true; 519 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 520 omit_empty_base_classes); 521 } 522 523 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 524 bool can_create) { 525 // We may need to update our value if we are dynamic. 526 if (IsPossibleDynamicType()) 527 UpdateValueIfNeeded(false); 528 529 // When getting a child by name, it could be buried inside some base classes 530 // (which really aren't part of the expression path), so we need a vector of 531 // indexes that can get us down to the correct child. 532 std::vector<uint32_t> child_indexes; 533 bool omit_empty_base_classes = true; 534 535 if (!GetCompilerType().IsValid()) 536 return ValueObjectSP(); 537 538 const size_t num_child_indexes = 539 GetCompilerType().GetIndexOfChildMemberWithName( 540 name.GetCString(), omit_empty_base_classes, child_indexes); 541 if (num_child_indexes == 0) 542 return nullptr; 543 544 ValueObjectSP child_sp = GetSP(); 545 for (uint32_t idx : child_indexes) 546 if (child_sp) 547 child_sp = child_sp->GetChildAtIndex(idx, can_create); 548 return child_sp; 549 } 550 551 size_t ValueObject::GetNumChildren(uint32_t max) { 552 UpdateValueIfNeeded(); 553 554 if (max < UINT32_MAX) { 555 if (m_children_count_valid) { 556 size_t children_count = m_children.GetChildrenCount(); 557 return children_count <= max ? children_count : max; 558 } else 559 return CalculateNumChildren(max); 560 } 561 562 if (!m_children_count_valid) { 563 SetNumChildren(CalculateNumChildren()); 564 } 565 return m_children.GetChildrenCount(); 566 } 567 568 bool ValueObject::MightHaveChildren() { 569 bool has_children = false; 570 const uint32_t type_info = GetTypeInfo(); 571 if (type_info) { 572 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 573 has_children = true; 574 } else { 575 has_children = GetNumChildren() > 0; 576 } 577 return has_children; 578 } 579 580 // Should only be called by ValueObject::GetNumChildren() 581 void ValueObject::SetNumChildren(size_t num_children) { 582 m_children_count_valid = true; 583 m_children.SetChildrenCount(num_children); 584 } 585 586 void ValueObject::SetName(ConstString name) { m_name = name; } 587 588 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 589 bool synthetic_array_member, 590 int32_t synthetic_index) { 591 ValueObject *valobj = nullptr; 592 593 bool omit_empty_base_classes = true; 594 bool ignore_array_bounds = synthetic_array_member; 595 std::string child_name_str; 596 uint32_t child_byte_size = 0; 597 int32_t child_byte_offset = 0; 598 uint32_t child_bitfield_bit_size = 0; 599 uint32_t child_bitfield_bit_offset = 0; 600 bool child_is_base_class = false; 601 bool child_is_deref_of_parent = false; 602 uint64_t language_flags = 0; 603 604 const bool transparent_pointers = !synthetic_array_member; 605 CompilerType child_compiler_type; 606 607 ExecutionContext exe_ctx(GetExecutionContextRef()); 608 609 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 610 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 611 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 612 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 613 child_is_deref_of_parent, this, language_flags); 614 if (child_compiler_type) { 615 if (synthetic_index) 616 child_byte_offset += child_byte_size * synthetic_index; 617 618 ConstString child_name; 619 if (!child_name_str.empty()) 620 child_name.SetCString(child_name_str.c_str()); 621 622 valobj = new ValueObjectChild( 623 *this, child_compiler_type, child_name, child_byte_size, 624 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 625 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 626 language_flags); 627 } 628 629 // In case of an incomplete type, try to use the ValueObject's 630 // synthetic value to create the child ValueObject. 631 if (!valobj && synthetic_array_member) { 632 if (ValueObjectSP synth_valobj_sp = GetSyntheticValue()) { 633 valobj = synth_valobj_sp 634 ->GetChildAtIndex(synthetic_index, synthetic_array_member) 635 .get(); 636 } 637 } 638 639 return valobj; 640 } 641 642 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 643 std::string &destination, 644 lldb::LanguageType lang) { 645 return GetSummaryAsCString(summary_ptr, destination, 646 TypeSummaryOptions().SetLanguage(lang)); 647 } 648 649 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 650 std::string &destination, 651 const TypeSummaryOptions &options) { 652 destination.clear(); 653 654 // ideally we would like to bail out if passing NULL, but if we do so we end 655 // up not providing the summary for function pointers anymore 656 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 657 return false; 658 659 m_is_getting_summary = true; 660 661 TypeSummaryOptions actual_options(options); 662 663 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 664 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 665 666 // this is a hot path in code and we prefer to avoid setting this string all 667 // too often also clearing out other information that we might care to see in 668 // a crash log. might be useful in very specific situations though. 669 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 670 Summary provider's description is %s", 671 GetTypeName().GetCString(), 672 GetName().GetCString(), 673 summary_ptr->GetDescription().c_str());*/ 674 675 if (UpdateValueIfNeeded(false) && summary_ptr) { 676 if (HasSyntheticValue()) 677 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 678 // the synthetic children being 679 // up-to-date (e.g. ${svar%#}) 680 summary_ptr->FormatObject(this, destination, actual_options); 681 } 682 m_is_getting_summary = false; 683 return !destination.empty(); 684 } 685 686 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 687 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 688 TypeSummaryOptions summary_options; 689 summary_options.SetLanguage(lang); 690 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 691 summary_options); 692 } 693 if (m_summary_str.empty()) 694 return nullptr; 695 return m_summary_str.c_str(); 696 } 697 698 bool ValueObject::GetSummaryAsCString(std::string &destination, 699 const TypeSummaryOptions &options) { 700 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 701 } 702 703 bool ValueObject::IsCStringContainer(bool check_pointer) { 704 CompilerType pointee_or_element_compiler_type; 705 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 706 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 707 pointee_or_element_compiler_type.IsCharType()); 708 if (!is_char_arr_ptr) 709 return false; 710 if (!check_pointer) 711 return true; 712 if (type_flags.Test(eTypeIsArray)) 713 return true; 714 addr_t cstr_address = LLDB_INVALID_ADDRESS; 715 AddressType cstr_address_type = eAddressTypeInvalid; 716 cstr_address = GetPointerValue(&cstr_address_type); 717 return (cstr_address != LLDB_INVALID_ADDRESS); 718 } 719 720 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 721 uint32_t item_count) { 722 CompilerType pointee_or_element_compiler_type; 723 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 724 const bool is_pointer_type = type_info & eTypeIsPointer; 725 const bool is_array_type = type_info & eTypeIsArray; 726 if (!(is_pointer_type || is_array_type)) 727 return 0; 728 729 if (item_count == 0) 730 return 0; 731 732 ExecutionContext exe_ctx(GetExecutionContextRef()); 733 734 llvm::Optional<uint64_t> item_type_size = 735 pointee_or_element_compiler_type.GetByteSize( 736 exe_ctx.GetBestExecutionContextScope()); 737 if (!item_type_size) 738 return 0; 739 const uint64_t bytes = item_count * *item_type_size; 740 const uint64_t offset = item_idx * *item_type_size; 741 742 if (item_idx == 0 && item_count == 1) // simply a deref 743 { 744 if (is_pointer_type) { 745 Status error; 746 ValueObjectSP pointee_sp = Dereference(error); 747 if (error.Fail() || pointee_sp.get() == nullptr) 748 return 0; 749 return pointee_sp->GetData(data, error); 750 } else { 751 ValueObjectSP child_sp = GetChildAtIndex(0, true); 752 if (child_sp.get() == nullptr) 753 return 0; 754 Status error; 755 return child_sp->GetData(data, error); 756 } 757 return true; 758 } else /* (items > 1) */ 759 { 760 Status error; 761 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 762 lldb::DataBufferSP data_sp(heap_buf_ptr = 763 new lldb_private::DataBufferHeap()); 764 765 AddressType addr_type; 766 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 767 : GetAddressOf(true, &addr_type); 768 769 switch (addr_type) { 770 case eAddressTypeFile: { 771 ModuleSP module_sp(GetModule()); 772 if (module_sp) { 773 addr = addr + offset; 774 Address so_addr; 775 module_sp->ResolveFileAddress(addr, so_addr); 776 ExecutionContext exe_ctx(GetExecutionContextRef()); 777 Target *target = exe_ctx.GetTargetPtr(); 778 if (target) { 779 heap_buf_ptr->SetByteSize(bytes); 780 size_t bytes_read = target->ReadMemory( 781 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 782 if (error.Success()) { 783 data.SetData(data_sp); 784 return bytes_read; 785 } 786 } 787 } 788 } break; 789 case eAddressTypeLoad: { 790 ExecutionContext exe_ctx(GetExecutionContextRef()); 791 Process *process = exe_ctx.GetProcessPtr(); 792 if (process) { 793 heap_buf_ptr->SetByteSize(bytes); 794 size_t bytes_read = process->ReadMemory( 795 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 796 if (error.Success() || bytes_read > 0) { 797 data.SetData(data_sp); 798 return bytes_read; 799 } 800 } 801 } break; 802 case eAddressTypeHost: { 803 auto max_bytes = 804 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 805 if (max_bytes && *max_bytes > offset) { 806 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 807 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 808 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 809 break; 810 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 811 data.SetData(data_sp); 812 return bytes_read; 813 } 814 } break; 815 case eAddressTypeInvalid: 816 break; 817 } 818 } 819 return 0; 820 } 821 822 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 823 UpdateValueIfNeeded(false); 824 ExecutionContext exe_ctx(GetExecutionContextRef()); 825 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 826 if (error.Fail()) { 827 if (m_data.GetByteSize()) { 828 data = m_data; 829 error.Clear(); 830 return data.GetByteSize(); 831 } else { 832 return 0; 833 } 834 } 835 data.SetAddressByteSize(m_data.GetAddressByteSize()); 836 data.SetByteOrder(m_data.GetByteOrder()); 837 return data.GetByteSize(); 838 } 839 840 bool ValueObject::SetData(DataExtractor &data, Status &error) { 841 error.Clear(); 842 // Make sure our value is up to date first so that our location and location 843 // type is valid. 844 if (!UpdateValueIfNeeded(false)) { 845 error.SetErrorString("unable to read value"); 846 return false; 847 } 848 849 uint64_t count = 0; 850 const Encoding encoding = GetCompilerType().GetEncoding(count); 851 852 const size_t byte_size = GetByteSize(); 853 854 Value::ValueType value_type = m_value.GetValueType(); 855 856 switch (value_type) { 857 case Value::eValueTypeScalar: { 858 Status set_error = 859 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 860 861 if (!set_error.Success()) { 862 error.SetErrorStringWithFormat("unable to set scalar value: %s", 863 set_error.AsCString()); 864 return false; 865 } 866 } break; 867 case Value::eValueTypeLoadAddress: { 868 // If it is a load address, then the scalar value is the storage location 869 // of the data, and we have to shove this value down to that load location. 870 ExecutionContext exe_ctx(GetExecutionContextRef()); 871 Process *process = exe_ctx.GetProcessPtr(); 872 if (process) { 873 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 874 size_t bytes_written = process->WriteMemory( 875 target_addr, data.GetDataStart(), byte_size, error); 876 if (!error.Success()) 877 return false; 878 if (bytes_written != byte_size) { 879 error.SetErrorString("unable to write value to memory"); 880 return false; 881 } 882 } 883 } break; 884 case Value::eValueTypeHostAddress: { 885 // If it is a host address, then we stuff the scalar as a DataBuffer into 886 // the Value's data. 887 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 888 m_data.SetData(buffer_sp, 0); 889 data.CopyByteOrderedData(0, byte_size, 890 const_cast<uint8_t *>(m_data.GetDataStart()), 891 byte_size, m_data.GetByteOrder()); 892 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 893 } break; 894 case Value::eValueTypeFileAddress: 895 case Value::eValueTypeVector: 896 break; 897 } 898 899 // If we have reached this point, then we have successfully changed the 900 // value. 901 SetNeedsUpdate(); 902 return true; 903 } 904 905 static bool CopyStringDataToBufferSP(const StreamString &source, 906 lldb::DataBufferSP &destination) { 907 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 908 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 909 return true; 910 } 911 912 std::pair<size_t, bool> 913 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 914 uint32_t max_length, bool honor_array, 915 Format item_format) { 916 bool was_capped = false; 917 StreamString s; 918 ExecutionContext exe_ctx(GetExecutionContextRef()); 919 Target *target = exe_ctx.GetTargetPtr(); 920 921 if (!target) { 922 s << "<no target to read from>"; 923 error.SetErrorString("no target to read from"); 924 CopyStringDataToBufferSP(s, buffer_sp); 925 return {0, was_capped}; 926 } 927 928 if (max_length == 0) 929 max_length = target->GetMaximumSizeOfStringSummary(); 930 931 size_t bytes_read = 0; 932 size_t total_bytes_read = 0; 933 934 CompilerType compiler_type = GetCompilerType(); 935 CompilerType elem_or_pointee_compiler_type; 936 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 937 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 938 elem_or_pointee_compiler_type.IsCharType()) { 939 addr_t cstr_address = LLDB_INVALID_ADDRESS; 940 AddressType cstr_address_type = eAddressTypeInvalid; 941 942 size_t cstr_len = 0; 943 bool capped_data = false; 944 const bool is_array = type_flags.Test(eTypeIsArray); 945 if (is_array) { 946 // We have an array 947 uint64_t array_size = 0; 948 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 949 cstr_len = array_size; 950 if (cstr_len > max_length) { 951 capped_data = true; 952 cstr_len = max_length; 953 } 954 } 955 cstr_address = GetAddressOf(true, &cstr_address_type); 956 } else { 957 // We have a pointer 958 cstr_address = GetPointerValue(&cstr_address_type); 959 } 960 961 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 962 if (cstr_address_type == eAddressTypeHost && is_array) { 963 const char *cstr = GetDataExtractor().PeekCStr(0); 964 if (cstr == nullptr) { 965 s << "<invalid address>"; 966 error.SetErrorString("invalid address"); 967 CopyStringDataToBufferSP(s, buffer_sp); 968 return {0, was_capped}; 969 } 970 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 971 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 972 return {cstr_len, was_capped}; 973 } else { 974 s << "<invalid address>"; 975 error.SetErrorString("invalid address"); 976 CopyStringDataToBufferSP(s, buffer_sp); 977 return {0, was_capped}; 978 } 979 } 980 981 Address cstr_so_addr(cstr_address); 982 DataExtractor data; 983 if (cstr_len > 0 && honor_array) { 984 // I am using GetPointeeData() here to abstract the fact that some 985 // ValueObjects are actually frozen pointers in the host but the pointed- 986 // to data lives in the debuggee, and GetPointeeData() automatically 987 // takes care of this 988 GetPointeeData(data, 0, cstr_len); 989 990 if ((bytes_read = data.GetByteSize()) > 0) { 991 total_bytes_read = bytes_read; 992 for (size_t offset = 0; offset < bytes_read; offset++) 993 s.Printf("%c", *data.PeekData(offset, 1)); 994 if (capped_data) 995 was_capped = true; 996 } 997 } else { 998 cstr_len = max_length; 999 const size_t k_max_buf_size = 64; 1000 1001 size_t offset = 0; 1002 1003 int cstr_len_displayed = -1; 1004 bool capped_cstr = false; 1005 // I am using GetPointeeData() here to abstract the fact that some 1006 // ValueObjects are actually frozen pointers in the host but the pointed- 1007 // to data lives in the debuggee, and GetPointeeData() automatically 1008 // takes care of this 1009 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1010 total_bytes_read += bytes_read; 1011 const char *cstr = data.PeekCStr(0); 1012 size_t len = strnlen(cstr, k_max_buf_size); 1013 if (cstr_len_displayed < 0) 1014 cstr_len_displayed = len; 1015 1016 if (len == 0) 1017 break; 1018 cstr_len_displayed += len; 1019 if (len > bytes_read) 1020 len = bytes_read; 1021 if (len > cstr_len) 1022 len = cstr_len; 1023 1024 for (size_t offset = 0; offset < bytes_read; offset++) 1025 s.Printf("%c", *data.PeekData(offset, 1)); 1026 1027 if (len < k_max_buf_size) 1028 break; 1029 1030 if (len >= cstr_len) { 1031 capped_cstr = true; 1032 break; 1033 } 1034 1035 cstr_len -= len; 1036 offset += len; 1037 } 1038 1039 if (cstr_len_displayed >= 0) { 1040 if (capped_cstr) 1041 was_capped = true; 1042 } 1043 } 1044 } else { 1045 error.SetErrorString("not a string object"); 1046 s << "<not a string object>"; 1047 } 1048 CopyStringDataToBufferSP(s, buffer_sp); 1049 return {total_bytes_read, was_capped}; 1050 } 1051 1052 const char *ValueObject::GetObjectDescription() { 1053 if (!UpdateValueIfNeeded(true)) 1054 return nullptr; 1055 1056 // Return cached value. 1057 if (!m_object_desc_str.empty()) 1058 return m_object_desc_str.c_str(); 1059 1060 ExecutionContext exe_ctx(GetExecutionContextRef()); 1061 Process *process = exe_ctx.GetProcessPtr(); 1062 if (!process) 1063 return nullptr; 1064 1065 // Returns the object description produced by one language runtime. 1066 auto get_object_description = [&](LanguageType language) -> const char * { 1067 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1068 StreamString s; 1069 if (runtime->GetObjectDescription(s, *this)) { 1070 m_object_desc_str.append(std::string(s.GetString())); 1071 return m_object_desc_str.c_str(); 1072 } 1073 } 1074 return nullptr; 1075 }; 1076 1077 // Try the native language runtime first. 1078 LanguageType native_language = GetObjectRuntimeLanguage(); 1079 if (const char *desc = get_object_description(native_language)) 1080 return desc; 1081 1082 // Try the Objective-C language runtime. This fallback is necessary 1083 // for Objective-C++ and mixed Objective-C / C++ programs. 1084 if (Language::LanguageIsCFamily(native_language)) 1085 return get_object_description(eLanguageTypeObjC); 1086 return nullptr; 1087 } 1088 1089 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1090 std::string &destination) { 1091 if (UpdateValueIfNeeded(false)) 1092 return format.FormatObject(this, destination); 1093 else 1094 return false; 1095 } 1096 1097 bool ValueObject::GetValueAsCString(lldb::Format format, 1098 std::string &destination) { 1099 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1100 } 1101 1102 const char *ValueObject::GetValueAsCString() { 1103 if (UpdateValueIfNeeded(true)) { 1104 lldb::TypeFormatImplSP format_sp; 1105 lldb::Format my_format = GetFormat(); 1106 if (my_format == lldb::eFormatDefault) { 1107 if (m_type_format_sp) 1108 format_sp = m_type_format_sp; 1109 else { 1110 if (m_is_bitfield_for_scalar) 1111 my_format = eFormatUnsigned; 1112 else { 1113 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1114 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1115 if (reg_info) 1116 my_format = reg_info->format; 1117 } else { 1118 my_format = GetValue().GetCompilerType().GetFormat(); 1119 } 1120 } 1121 } 1122 } 1123 if (my_format != m_last_format || m_value_str.empty()) { 1124 m_last_format = my_format; 1125 if (!format_sp) 1126 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1127 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1128 if (!m_value_did_change && m_old_value_valid) { 1129 // The value was gotten successfully, so we consider the value as 1130 // changed if the value string differs 1131 SetValueDidChange(m_old_value_str != m_value_str); 1132 } 1133 } 1134 } 1135 } 1136 if (m_value_str.empty()) 1137 return nullptr; 1138 return m_value_str.c_str(); 1139 } 1140 1141 // if > 8bytes, 0 is returned. this method should mostly be used to read 1142 // address values out of pointers 1143 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1144 // If our byte size is zero this is an aggregate type that has children 1145 if (CanProvideValue()) { 1146 Scalar scalar; 1147 if (ResolveValue(scalar)) { 1148 if (success) 1149 *success = true; 1150 scalar.MakeUnsigned(); 1151 return scalar.ULongLong(fail_value); 1152 } 1153 // fallthrough, otherwise... 1154 } 1155 1156 if (success) 1157 *success = false; 1158 return fail_value; 1159 } 1160 1161 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1162 // If our byte size is zero this is an aggregate type that has children 1163 if (CanProvideValue()) { 1164 Scalar scalar; 1165 if (ResolveValue(scalar)) { 1166 if (success) 1167 *success = true; 1168 scalar.MakeSigned(); 1169 return scalar.SLongLong(fail_value); 1170 } 1171 // fallthrough, otherwise... 1172 } 1173 1174 if (success) 1175 *success = false; 1176 return fail_value; 1177 } 1178 1179 // if any more "special cases" are added to 1180 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1181 // by returning true for your new special cases. We will eventually move to 1182 // checking this call result before trying to display special cases 1183 bool ValueObject::HasSpecialPrintableRepresentation( 1184 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1185 Flags flags(GetTypeInfo()); 1186 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1187 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1188 if (IsCStringContainer(true) && 1189 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1190 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1191 return true; 1192 1193 if (flags.Test(eTypeIsArray)) { 1194 if ((custom_format == eFormatBytes) || 1195 (custom_format == eFormatBytesWithASCII)) 1196 return true; 1197 1198 if ((custom_format == eFormatVectorOfChar) || 1199 (custom_format == eFormatVectorOfFloat32) || 1200 (custom_format == eFormatVectorOfFloat64) || 1201 (custom_format == eFormatVectorOfSInt16) || 1202 (custom_format == eFormatVectorOfSInt32) || 1203 (custom_format == eFormatVectorOfSInt64) || 1204 (custom_format == eFormatVectorOfSInt8) || 1205 (custom_format == eFormatVectorOfUInt128) || 1206 (custom_format == eFormatVectorOfUInt16) || 1207 (custom_format == eFormatVectorOfUInt32) || 1208 (custom_format == eFormatVectorOfUInt64) || 1209 (custom_format == eFormatVectorOfUInt8)) 1210 return true; 1211 } 1212 } 1213 return false; 1214 } 1215 1216 bool ValueObject::DumpPrintableRepresentation( 1217 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1218 Format custom_format, PrintableRepresentationSpecialCases special, 1219 bool do_dump_error) { 1220 1221 Flags flags(GetTypeInfo()); 1222 1223 bool allow_special = 1224 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1225 const bool only_special = false; 1226 1227 if (allow_special) { 1228 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1229 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1230 // when being asked to get a printable display an array or pointer type 1231 // directly, try to "do the right thing" 1232 1233 if (IsCStringContainer(true) && 1234 (custom_format == eFormatCString || 1235 custom_format == eFormatCharArray || custom_format == eFormatChar || 1236 custom_format == 1237 eFormatVectorOfChar)) // print char[] & char* directly 1238 { 1239 Status error; 1240 lldb::DataBufferSP buffer_sp; 1241 std::pair<size_t, bool> read_string = ReadPointedString( 1242 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1243 (custom_format == eFormatCharArray)); 1244 lldb_private::formatters::StringPrinter:: 1245 ReadBufferAndDumpToStreamOptions options(*this); 1246 options.SetData(DataExtractor( 1247 buffer_sp, lldb::eByteOrderInvalid, 1248 8)); // none of this matters for a string - pass some defaults 1249 options.SetStream(&s); 1250 options.SetPrefixToken(nullptr); 1251 options.SetQuote('"'); 1252 options.SetSourceSize(buffer_sp->GetByteSize()); 1253 options.SetIsTruncated(read_string.second); 1254 formatters::StringPrinter::ReadBufferAndDumpToStream< 1255 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1256 options); 1257 return !error.Fail(); 1258 } 1259 1260 if (custom_format == eFormatEnum) 1261 return false; 1262 1263 // this only works for arrays, because I have no way to know when the 1264 // pointed memory ends, and no special \0 end of data marker 1265 if (flags.Test(eTypeIsArray)) { 1266 if ((custom_format == eFormatBytes) || 1267 (custom_format == eFormatBytesWithASCII)) { 1268 const size_t count = GetNumChildren(); 1269 1270 s << '['; 1271 for (size_t low = 0; low < count; low++) { 1272 1273 if (low) 1274 s << ','; 1275 1276 ValueObjectSP child = GetChildAtIndex(low, true); 1277 if (!child.get()) { 1278 s << "<invalid child>"; 1279 continue; 1280 } 1281 child->DumpPrintableRepresentation( 1282 s, ValueObject::eValueObjectRepresentationStyleValue, 1283 custom_format); 1284 } 1285 1286 s << ']'; 1287 1288 return true; 1289 } 1290 1291 if ((custom_format == eFormatVectorOfChar) || 1292 (custom_format == eFormatVectorOfFloat32) || 1293 (custom_format == eFormatVectorOfFloat64) || 1294 (custom_format == eFormatVectorOfSInt16) || 1295 (custom_format == eFormatVectorOfSInt32) || 1296 (custom_format == eFormatVectorOfSInt64) || 1297 (custom_format == eFormatVectorOfSInt8) || 1298 (custom_format == eFormatVectorOfUInt128) || 1299 (custom_format == eFormatVectorOfUInt16) || 1300 (custom_format == eFormatVectorOfUInt32) || 1301 (custom_format == eFormatVectorOfUInt64) || 1302 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1303 // with ASCII or any vector 1304 // format should be printed 1305 // directly 1306 { 1307 const size_t count = GetNumChildren(); 1308 1309 Format format = FormatManager::GetSingleItemFormat(custom_format); 1310 1311 s << '['; 1312 for (size_t low = 0; low < count; low++) { 1313 1314 if (low) 1315 s << ','; 1316 1317 ValueObjectSP child = GetChildAtIndex(low, true); 1318 if (!child.get()) { 1319 s << "<invalid child>"; 1320 continue; 1321 } 1322 child->DumpPrintableRepresentation( 1323 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1324 } 1325 1326 s << ']'; 1327 1328 return true; 1329 } 1330 } 1331 1332 if ((custom_format == eFormatBoolean) || 1333 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1334 (custom_format == eFormatCharPrintable) || 1335 (custom_format == eFormatComplexFloat) || 1336 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1337 (custom_format == eFormatHexUppercase) || 1338 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1339 (custom_format == eFormatOSType) || 1340 (custom_format == eFormatUnicode16) || 1341 (custom_format == eFormatUnicode32) || 1342 (custom_format == eFormatUnsigned) || 1343 (custom_format == eFormatPointer) || 1344 (custom_format == eFormatComplexInteger) || 1345 (custom_format == eFormatComplex) || 1346 (custom_format == eFormatDefault)) // use the [] operator 1347 return false; 1348 } 1349 } 1350 1351 if (only_special) 1352 return false; 1353 1354 bool var_success = false; 1355 1356 { 1357 llvm::StringRef str; 1358 1359 // this is a local stream that we are using to ensure that the data pointed 1360 // to by cstr survives long enough for us to copy it to its destination - 1361 // it is necessary to have this temporary storage area for cases where our 1362 // desired output is not backed by some other longer-term storage 1363 StreamString strm; 1364 1365 if (custom_format != eFormatInvalid) 1366 SetFormat(custom_format); 1367 1368 switch (val_obj_display) { 1369 case eValueObjectRepresentationStyleValue: 1370 str = GetValueAsCString(); 1371 break; 1372 1373 case eValueObjectRepresentationStyleSummary: 1374 str = GetSummaryAsCString(); 1375 break; 1376 1377 case eValueObjectRepresentationStyleLanguageSpecific: 1378 str = GetObjectDescription(); 1379 break; 1380 1381 case eValueObjectRepresentationStyleLocation: 1382 str = GetLocationAsCString(); 1383 break; 1384 1385 case eValueObjectRepresentationStyleChildrenCount: 1386 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1387 str = strm.GetString(); 1388 break; 1389 1390 case eValueObjectRepresentationStyleType: 1391 str = GetTypeName().GetStringRef(); 1392 break; 1393 1394 case eValueObjectRepresentationStyleName: 1395 str = GetName().GetStringRef(); 1396 break; 1397 1398 case eValueObjectRepresentationStyleExpressionPath: 1399 GetExpressionPath(strm); 1400 str = strm.GetString(); 1401 break; 1402 } 1403 1404 if (str.empty()) { 1405 if (val_obj_display == eValueObjectRepresentationStyleValue) 1406 str = GetSummaryAsCString(); 1407 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1408 if (!CanProvideValue()) { 1409 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1410 GetLocationAsCString()); 1411 str = strm.GetString(); 1412 } else 1413 str = GetValueAsCString(); 1414 } 1415 } 1416 1417 if (!str.empty()) 1418 s << str; 1419 else { 1420 if (m_error.Fail()) { 1421 if (do_dump_error) 1422 s.Printf("<%s>", m_error.AsCString()); 1423 else 1424 return false; 1425 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1426 s.PutCString("<no summary available>"); 1427 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1428 s.PutCString("<no value available>"); 1429 else if (val_obj_display == 1430 eValueObjectRepresentationStyleLanguageSpecific) 1431 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1432 // have other runtimes 1433 // that support a 1434 // description 1435 else 1436 s.PutCString("<no printable representation>"); 1437 } 1438 1439 // we should only return false here if we could not do *anything* even if 1440 // we have an error message as output, that's a success from our callers' 1441 // perspective, so return true 1442 var_success = true; 1443 1444 if (custom_format != eFormatInvalid) 1445 SetFormat(eFormatDefault); 1446 } 1447 1448 return var_success; 1449 } 1450 1451 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1452 AddressType *address_type) { 1453 // Can't take address of a bitfield 1454 if (IsBitfield()) 1455 return LLDB_INVALID_ADDRESS; 1456 1457 if (!UpdateValueIfNeeded(false)) 1458 return LLDB_INVALID_ADDRESS; 1459 1460 switch (m_value.GetValueType()) { 1461 case Value::eValueTypeScalar: 1462 case Value::eValueTypeVector: 1463 if (scalar_is_load_address) { 1464 if (address_type) 1465 *address_type = eAddressTypeLoad; 1466 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1467 } 1468 break; 1469 1470 case Value::eValueTypeLoadAddress: 1471 case Value::eValueTypeFileAddress: { 1472 if (address_type) 1473 *address_type = m_value.GetValueAddressType(); 1474 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1475 } break; 1476 case Value::eValueTypeHostAddress: { 1477 if (address_type) 1478 *address_type = m_value.GetValueAddressType(); 1479 return LLDB_INVALID_ADDRESS; 1480 } break; 1481 } 1482 if (address_type) 1483 *address_type = eAddressTypeInvalid; 1484 return LLDB_INVALID_ADDRESS; 1485 } 1486 1487 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1488 addr_t address = LLDB_INVALID_ADDRESS; 1489 if (address_type) 1490 *address_type = eAddressTypeInvalid; 1491 1492 if (!UpdateValueIfNeeded(false)) 1493 return address; 1494 1495 switch (m_value.GetValueType()) { 1496 case Value::eValueTypeScalar: 1497 case Value::eValueTypeVector: 1498 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1499 break; 1500 1501 case Value::eValueTypeHostAddress: 1502 case Value::eValueTypeLoadAddress: 1503 case Value::eValueTypeFileAddress: { 1504 lldb::offset_t data_offset = 0; 1505 address = m_data.GetAddress(&data_offset); 1506 } break; 1507 } 1508 1509 if (address_type) 1510 *address_type = GetAddressTypeOfChildren(); 1511 1512 return address; 1513 } 1514 1515 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1516 error.Clear(); 1517 // Make sure our value is up to date first so that our location and location 1518 // type is valid. 1519 if (!UpdateValueIfNeeded(false)) { 1520 error.SetErrorString("unable to read value"); 1521 return false; 1522 } 1523 1524 uint64_t count = 0; 1525 const Encoding encoding = GetCompilerType().GetEncoding(count); 1526 1527 const size_t byte_size = GetByteSize(); 1528 1529 Value::ValueType value_type = m_value.GetValueType(); 1530 1531 if (value_type == Value::eValueTypeScalar) { 1532 // If the value is already a scalar, then let the scalar change itself: 1533 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1534 } else if (byte_size <= 16) { 1535 // If the value fits in a scalar, then make a new scalar and again let the 1536 // scalar code do the conversion, then figure out where to put the new 1537 // value. 1538 Scalar new_scalar; 1539 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1540 if (error.Success()) { 1541 switch (value_type) { 1542 case Value::eValueTypeLoadAddress: { 1543 // If it is a load address, then the scalar value is the storage 1544 // location of the data, and we have to shove this value down to that 1545 // load location. 1546 ExecutionContext exe_ctx(GetExecutionContextRef()); 1547 Process *process = exe_ctx.GetProcessPtr(); 1548 if (process) { 1549 addr_t target_addr = 1550 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1551 size_t bytes_written = process->WriteScalarToMemory( 1552 target_addr, new_scalar, byte_size, error); 1553 if (!error.Success()) 1554 return false; 1555 if (bytes_written != byte_size) { 1556 error.SetErrorString("unable to write value to memory"); 1557 return false; 1558 } 1559 } 1560 } break; 1561 case Value::eValueTypeHostAddress: { 1562 // If it is a host address, then we stuff the scalar as a DataBuffer 1563 // into the Value's data. 1564 DataExtractor new_data; 1565 new_data.SetByteOrder(m_data.GetByteOrder()); 1566 1567 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1568 m_data.SetData(buffer_sp, 0); 1569 bool success = new_scalar.GetData(new_data); 1570 if (success) { 1571 new_data.CopyByteOrderedData( 1572 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1573 byte_size, m_data.GetByteOrder()); 1574 } 1575 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1576 1577 } break; 1578 case Value::eValueTypeFileAddress: 1579 case Value::eValueTypeScalar: 1580 case Value::eValueTypeVector: 1581 break; 1582 } 1583 } else { 1584 return false; 1585 } 1586 } else { 1587 // We don't support setting things bigger than a scalar at present. 1588 error.SetErrorString("unable to write aggregate data type"); 1589 return false; 1590 } 1591 1592 // If we have reached this point, then we have successfully changed the 1593 // value. 1594 SetNeedsUpdate(); 1595 return true; 1596 } 1597 1598 bool ValueObject::GetDeclaration(Declaration &decl) { 1599 decl.Clear(); 1600 return false; 1601 } 1602 1603 ConstString ValueObject::GetTypeName() { 1604 return GetCompilerType().GetTypeName(); 1605 } 1606 1607 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1608 1609 ConstString ValueObject::GetQualifiedTypeName() { 1610 return GetCompilerType().GetTypeName(); 1611 } 1612 1613 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1614 return GetCompilerType().GetMinimumLanguage(); 1615 } 1616 1617 void ValueObject::AddSyntheticChild(ConstString key, 1618 ValueObject *valobj) { 1619 m_synthetic_children[key] = valobj; 1620 } 1621 1622 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1623 ValueObjectSP synthetic_child_sp; 1624 std::map<ConstString, ValueObject *>::const_iterator pos = 1625 m_synthetic_children.find(key); 1626 if (pos != m_synthetic_children.end()) 1627 synthetic_child_sp = pos->second->GetSP(); 1628 return synthetic_child_sp; 1629 } 1630 1631 uint32_t 1632 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1633 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1634 } 1635 1636 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1637 1638 bool ValueObject::IsArrayType() { 1639 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1640 } 1641 1642 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1643 1644 bool ValueObject::IsIntegerType(bool &is_signed) { 1645 return GetCompilerType().IsIntegerType(is_signed); 1646 } 1647 1648 bool ValueObject::IsPointerOrReferenceType() { 1649 return GetCompilerType().IsPointerOrReferenceType(); 1650 } 1651 1652 bool ValueObject::IsPossibleDynamicType() { 1653 ExecutionContext exe_ctx(GetExecutionContextRef()); 1654 Process *process = exe_ctx.GetProcessPtr(); 1655 if (process) 1656 return process->IsPossibleDynamicValue(*this); 1657 else 1658 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1659 } 1660 1661 bool ValueObject::IsRuntimeSupportValue() { 1662 Process *process(GetProcessSP().get()); 1663 if (!process) 1664 return false; 1665 1666 // We trust the the compiler did the right thing and marked runtime support 1667 // values as artificial. 1668 if (!GetVariable() || !GetVariable()->IsArtificial()) 1669 return false; 1670 1671 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1672 if (runtime->IsAllowedRuntimeValue(GetName())) 1673 return false; 1674 1675 return true; 1676 } 1677 1678 bool ValueObject::IsNilReference() { 1679 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1680 return language->IsNilReference(*this); 1681 } 1682 return false; 1683 } 1684 1685 bool ValueObject::IsUninitializedReference() { 1686 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1687 return language->IsUninitializedReference(*this); 1688 } 1689 return false; 1690 } 1691 1692 // This allows you to create an array member using and index that doesn't not 1693 // fall in the normal bounds of the array. Many times structure can be defined 1694 // as: struct Collection { 1695 // uint32_t item_count; 1696 // Item item_array[0]; 1697 // }; 1698 // The size of the "item_array" is 1, but many times in practice there are more 1699 // items in "item_array". 1700 1701 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1702 bool can_create) { 1703 ValueObjectSP synthetic_child_sp; 1704 if (IsPointerType() || IsArrayType()) { 1705 char index_str[64]; 1706 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1707 ConstString index_const_str(index_str); 1708 // Check if we have already created a synthetic array member in this valid 1709 // object. If we have we will re-use it. 1710 synthetic_child_sp = GetSyntheticChild(index_const_str); 1711 if (!synthetic_child_sp) { 1712 ValueObject *synthetic_child; 1713 // We haven't made a synthetic array member for INDEX yet, so lets make 1714 // one and cache it for any future reference. 1715 synthetic_child = CreateChildAtIndex(0, true, index); 1716 1717 // Cache the value if we got one back... 1718 if (synthetic_child) { 1719 AddSyntheticChild(index_const_str, synthetic_child); 1720 synthetic_child_sp = synthetic_child->GetSP(); 1721 synthetic_child_sp->SetName(ConstString(index_str)); 1722 synthetic_child_sp->m_is_array_item_for_pointer = true; 1723 } 1724 } 1725 } 1726 return synthetic_child_sp; 1727 } 1728 1729 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1730 bool can_create) { 1731 ValueObjectSP synthetic_child_sp; 1732 if (IsScalarType()) { 1733 char index_str[64]; 1734 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1735 ConstString index_const_str(index_str); 1736 // Check if we have already created a synthetic array member in this valid 1737 // object. If we have we will re-use it. 1738 synthetic_child_sp = GetSyntheticChild(index_const_str); 1739 if (!synthetic_child_sp) { 1740 uint32_t bit_field_size = to - from + 1; 1741 uint32_t bit_field_offset = from; 1742 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1743 bit_field_offset = 1744 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1745 // We haven't made a synthetic array member for INDEX yet, so lets make 1746 // one and cache it for any future reference. 1747 ValueObjectChild *synthetic_child = new ValueObjectChild( 1748 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1749 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1750 0); 1751 1752 // Cache the value if we got one back... 1753 if (synthetic_child) { 1754 AddSyntheticChild(index_const_str, synthetic_child); 1755 synthetic_child_sp = synthetic_child->GetSP(); 1756 synthetic_child_sp->SetName(ConstString(index_str)); 1757 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1758 } 1759 } 1760 } 1761 return synthetic_child_sp; 1762 } 1763 1764 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1765 uint32_t offset, const CompilerType &type, bool can_create, 1766 ConstString name_const_str) { 1767 1768 ValueObjectSP synthetic_child_sp; 1769 1770 if (name_const_str.IsEmpty()) { 1771 char name_str[64]; 1772 snprintf(name_str, sizeof(name_str), "@%i", offset); 1773 name_const_str.SetCString(name_str); 1774 } 1775 1776 // Check if we have already created a synthetic array member in this valid 1777 // object. If we have we will re-use it. 1778 synthetic_child_sp = GetSyntheticChild(name_const_str); 1779 1780 if (synthetic_child_sp.get()) 1781 return synthetic_child_sp; 1782 1783 if (!can_create) 1784 return {}; 1785 1786 ExecutionContext exe_ctx(GetExecutionContextRef()); 1787 llvm::Optional<uint64_t> size = 1788 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1789 if (!size) 1790 return {}; 1791 ValueObjectChild *synthetic_child = 1792 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1793 false, false, eAddressTypeInvalid, 0); 1794 if (synthetic_child) { 1795 AddSyntheticChild(name_const_str, synthetic_child); 1796 synthetic_child_sp = synthetic_child->GetSP(); 1797 synthetic_child_sp->SetName(name_const_str); 1798 synthetic_child_sp->m_is_child_at_offset = true; 1799 } 1800 return synthetic_child_sp; 1801 } 1802 1803 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1804 const CompilerType &type, 1805 bool can_create, 1806 ConstString name_const_str) { 1807 ValueObjectSP synthetic_child_sp; 1808 1809 if (name_const_str.IsEmpty()) { 1810 char name_str[128]; 1811 snprintf(name_str, sizeof(name_str), "base%s@%i", 1812 type.GetTypeName().AsCString("<unknown>"), offset); 1813 name_const_str.SetCString(name_str); 1814 } 1815 1816 // Check if we have already created a synthetic array member in this valid 1817 // object. If we have we will re-use it. 1818 synthetic_child_sp = GetSyntheticChild(name_const_str); 1819 1820 if (synthetic_child_sp.get()) 1821 return synthetic_child_sp; 1822 1823 if (!can_create) 1824 return {}; 1825 1826 const bool is_base_class = true; 1827 1828 ExecutionContext exe_ctx(GetExecutionContextRef()); 1829 llvm::Optional<uint64_t> size = 1830 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1831 if (!size) 1832 return {}; 1833 ValueObjectChild *synthetic_child = 1834 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1835 is_base_class, false, eAddressTypeInvalid, 0); 1836 if (synthetic_child) { 1837 AddSyntheticChild(name_const_str, synthetic_child); 1838 synthetic_child_sp = synthetic_child->GetSP(); 1839 synthetic_child_sp->SetName(name_const_str); 1840 } 1841 return synthetic_child_sp; 1842 } 1843 1844 // your expression path needs to have a leading . or -> (unless it somehow 1845 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1846 // is meaningful and should be shown to the user, . and -> are just parser 1847 // design, but by no means added information for the user.. strip them off 1848 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1849 if (!expression || !expression[0]) 1850 return expression; 1851 if (expression[0] == '.') 1852 return expression + 1; 1853 if (expression[0] == '-' && expression[1] == '>') 1854 return expression + 2; 1855 return expression; 1856 } 1857 1858 ValueObjectSP 1859 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1860 bool can_create) { 1861 ValueObjectSP synthetic_child_sp; 1862 ConstString name_const_string(expression); 1863 // Check if we have already created a synthetic array member in this valid 1864 // object. If we have we will re-use it. 1865 synthetic_child_sp = GetSyntheticChild(name_const_string); 1866 if (!synthetic_child_sp) { 1867 // We haven't made a synthetic array member for expression yet, so lets 1868 // make one and cache it for any future reference. 1869 synthetic_child_sp = GetValueForExpressionPath( 1870 expression, nullptr, nullptr, 1871 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1872 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1873 None)); 1874 1875 // Cache the value if we got one back... 1876 if (synthetic_child_sp.get()) { 1877 // FIXME: this causes a "real" child to end up with its name changed to 1878 // the contents of expression 1879 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1880 synthetic_child_sp->SetName( 1881 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1882 } 1883 } 1884 return synthetic_child_sp; 1885 } 1886 1887 void ValueObject::CalculateSyntheticValue() { 1888 TargetSP target_sp(GetTargetSP()); 1889 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1890 m_synthetic_value = nullptr; 1891 return; 1892 } 1893 1894 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1895 1896 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1897 return; 1898 1899 if (m_synthetic_children_sp.get() == nullptr) 1900 return; 1901 1902 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1903 return; 1904 1905 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1906 } 1907 1908 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1909 if (use_dynamic == eNoDynamicValues) 1910 return; 1911 1912 if (!m_dynamic_value && !IsDynamic()) { 1913 ExecutionContext exe_ctx(GetExecutionContextRef()); 1914 Process *process = exe_ctx.GetProcessPtr(); 1915 if (process && process->IsPossibleDynamicValue(*this)) { 1916 ClearDynamicTypeInformation(); 1917 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1918 } 1919 } 1920 } 1921 1922 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1923 if (use_dynamic == eNoDynamicValues) 1924 return ValueObjectSP(); 1925 1926 if (!IsDynamic() && m_dynamic_value == nullptr) { 1927 CalculateDynamicValue(use_dynamic); 1928 } 1929 if (m_dynamic_value) 1930 return m_dynamic_value->GetSP(); 1931 else 1932 return ValueObjectSP(); 1933 } 1934 1935 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1936 1937 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1938 1939 ValueObjectSP ValueObject::GetSyntheticValue() { 1940 CalculateSyntheticValue(); 1941 1942 if (m_synthetic_value) 1943 return m_synthetic_value->GetSP(); 1944 else 1945 return ValueObjectSP(); 1946 } 1947 1948 bool ValueObject::HasSyntheticValue() { 1949 UpdateFormatsIfNeeded(); 1950 1951 if (m_synthetic_children_sp.get() == nullptr) 1952 return false; 1953 1954 CalculateSyntheticValue(); 1955 1956 return m_synthetic_value != nullptr; 1957 } 1958 1959 ValueObject *ValueObject::GetNonBaseClassParent() { 1960 if (GetParent()) { 1961 if (GetParent()->IsBaseClass()) 1962 return GetParent()->GetNonBaseClassParent(); 1963 else 1964 return GetParent(); 1965 } 1966 return nullptr; 1967 } 1968 1969 bool ValueObject::IsBaseClass(uint32_t &depth) { 1970 if (!IsBaseClass()) { 1971 depth = 0; 1972 return false; 1973 } 1974 if (GetParent()) { 1975 GetParent()->IsBaseClass(depth); 1976 depth = depth + 1; 1977 return true; 1978 } 1979 // TODO: a base of no parent? weird.. 1980 depth = 1; 1981 return true; 1982 } 1983 1984 void ValueObject::GetExpressionPath(Stream &s, 1985 GetExpressionPathFormat epformat) { 1986 // synthetic children do not actually "exist" as part of the hierarchy, and 1987 // sometimes they are consed up in ways that don't make sense from an 1988 // underlying language/API standpoint. So, use a special code path here to 1989 // return something that can hopefully be used in expression 1990 if (m_is_synthetic_children_generated) { 1991 UpdateValueIfNeeded(); 1992 1993 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 1994 if (IsPointerOrReferenceType()) { 1995 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 1996 GetValueAsUnsigned(0)); 1997 return; 1998 } else { 1999 uint64_t load_addr = 2000 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2001 if (load_addr != LLDB_INVALID_ADDRESS) { 2002 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2003 load_addr); 2004 return; 2005 } 2006 } 2007 } 2008 2009 if (CanProvideValue()) { 2010 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2011 GetValueAsCString()); 2012 return; 2013 } 2014 2015 return; 2016 } 2017 2018 const bool is_deref_of_parent = IsDereferenceOfParent(); 2019 2020 if (is_deref_of_parent && 2021 epformat == eGetExpressionPathFormatDereferencePointers) { 2022 // this is the original format of GetExpressionPath() producing code like 2023 // *(a_ptr).memberName, which is entirely fine, until you put this into 2024 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2025 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2026 // in this latter format 2027 s.PutCString("*("); 2028 } 2029 2030 ValueObject *parent = GetParent(); 2031 2032 if (parent) 2033 parent->GetExpressionPath(s, epformat); 2034 2035 // if we are a deref_of_parent just because we are synthetic array members 2036 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2037 // name ([%d]) to the expression path 2038 if (m_is_array_item_for_pointer && 2039 epformat == eGetExpressionPathFormatHonorPointers) 2040 s.PutCString(m_name.GetStringRef()); 2041 2042 if (!IsBaseClass()) { 2043 if (!is_deref_of_parent) { 2044 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2045 if (non_base_class_parent && 2046 !non_base_class_parent->GetName().IsEmpty()) { 2047 CompilerType non_base_class_parent_compiler_type = 2048 non_base_class_parent->GetCompilerType(); 2049 if (non_base_class_parent_compiler_type) { 2050 if (parent && parent->IsDereferenceOfParent() && 2051 epformat == eGetExpressionPathFormatHonorPointers) { 2052 s.PutCString("->"); 2053 } else { 2054 const uint32_t non_base_class_parent_type_info = 2055 non_base_class_parent_compiler_type.GetTypeInfo(); 2056 2057 if (non_base_class_parent_type_info & eTypeIsPointer) { 2058 s.PutCString("->"); 2059 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2060 !(non_base_class_parent_type_info & eTypeIsArray)) { 2061 s.PutChar('.'); 2062 } 2063 } 2064 } 2065 } 2066 2067 const char *name = GetName().GetCString(); 2068 if (name) 2069 s.PutCString(name); 2070 } 2071 } 2072 2073 if (is_deref_of_parent && 2074 epformat == eGetExpressionPathFormatDereferencePointers) { 2075 s.PutChar(')'); 2076 } 2077 } 2078 2079 ValueObjectSP ValueObject::GetValueForExpressionPath( 2080 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2081 ExpressionPathEndResultType *final_value_type, 2082 const GetValueForExpressionPathOptions &options, 2083 ExpressionPathAftermath *final_task_on_target) { 2084 2085 ExpressionPathScanEndReason dummy_reason_to_stop = 2086 ValueObject::eExpressionPathScanEndReasonUnknown; 2087 ExpressionPathEndResultType dummy_final_value_type = 2088 ValueObject::eExpressionPathEndResultTypeInvalid; 2089 ExpressionPathAftermath dummy_final_task_on_target = 2090 ValueObject::eExpressionPathAftermathNothing; 2091 2092 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2093 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2094 final_value_type ? final_value_type : &dummy_final_value_type, options, 2095 final_task_on_target ? final_task_on_target 2096 : &dummy_final_task_on_target); 2097 2098 if (!final_task_on_target || 2099 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2100 return ret_val; 2101 2102 if (ret_val.get() && 2103 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2104 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2105 // of plain objects 2106 { 2107 if ((final_task_on_target ? *final_task_on_target 2108 : dummy_final_task_on_target) == 2109 ValueObject::eExpressionPathAftermathDereference) { 2110 Status error; 2111 ValueObjectSP final_value = ret_val->Dereference(error); 2112 if (error.Fail() || !final_value.get()) { 2113 if (reason_to_stop) 2114 *reason_to_stop = 2115 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2116 if (final_value_type) 2117 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2118 return ValueObjectSP(); 2119 } else { 2120 if (final_task_on_target) 2121 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2122 return final_value; 2123 } 2124 } 2125 if (*final_task_on_target == 2126 ValueObject::eExpressionPathAftermathTakeAddress) { 2127 Status error; 2128 ValueObjectSP final_value = ret_val->AddressOf(error); 2129 if (error.Fail() || !final_value.get()) { 2130 if (reason_to_stop) 2131 *reason_to_stop = 2132 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2133 if (final_value_type) 2134 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2135 return ValueObjectSP(); 2136 } else { 2137 if (final_task_on_target) 2138 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2139 return final_value; 2140 } 2141 } 2142 } 2143 return ret_val; // final_task_on_target will still have its original value, so 2144 // you know I did not do it 2145 } 2146 2147 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2148 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2149 ExpressionPathEndResultType *final_result, 2150 const GetValueForExpressionPathOptions &options, 2151 ExpressionPathAftermath *what_next) { 2152 ValueObjectSP root = GetSP(); 2153 2154 if (!root) 2155 return nullptr; 2156 2157 llvm::StringRef remainder = expression; 2158 2159 while (true) { 2160 llvm::StringRef temp_expression = remainder; 2161 2162 CompilerType root_compiler_type = root->GetCompilerType(); 2163 CompilerType pointee_compiler_type; 2164 Flags pointee_compiler_type_info; 2165 2166 Flags root_compiler_type_info( 2167 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2168 if (pointee_compiler_type) 2169 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2170 2171 if (temp_expression.empty()) { 2172 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2173 return root; 2174 } 2175 2176 switch (temp_expression.front()) { 2177 case '-': { 2178 temp_expression = temp_expression.drop_front(); 2179 if (options.m_check_dot_vs_arrow_syntax && 2180 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2181 // use -> on a 2182 // non-pointer and I 2183 // must catch the error 2184 { 2185 *reason_to_stop = 2186 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2187 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2188 return ValueObjectSP(); 2189 } 2190 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2191 // extract an ObjC IVar 2192 // when this is forbidden 2193 root_compiler_type_info.Test(eTypeIsPointer) && 2194 options.m_no_fragile_ivar) { 2195 *reason_to_stop = 2196 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2197 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2198 return ValueObjectSP(); 2199 } 2200 if (!temp_expression.startswith(">")) { 2201 *reason_to_stop = 2202 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2203 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2204 return ValueObjectSP(); 2205 } 2206 } 2207 LLVM_FALLTHROUGH; 2208 case '.': // or fallthrough from -> 2209 { 2210 if (options.m_check_dot_vs_arrow_syntax && 2211 temp_expression.front() == '.' && 2212 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2213 // use . on a pointer 2214 // and I must catch the 2215 // error 2216 { 2217 *reason_to_stop = 2218 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2219 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2220 return nullptr; 2221 } 2222 temp_expression = temp_expression.drop_front(); // skip . or > 2223 2224 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2225 ConstString child_name; 2226 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2227 // expand this last layer 2228 { 2229 child_name.SetString(temp_expression); 2230 ValueObjectSP child_valobj_sp = 2231 root->GetChildMemberWithName(child_name, true); 2232 2233 if (child_valobj_sp.get()) // we know we are done, so just return 2234 { 2235 *reason_to_stop = 2236 ValueObject::eExpressionPathScanEndReasonEndOfString; 2237 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2238 return child_valobj_sp; 2239 } else { 2240 switch (options.m_synthetic_children_traversal) { 2241 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2242 None: 2243 break; 2244 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2245 FromSynthetic: 2246 if (root->IsSynthetic()) { 2247 child_valobj_sp = root->GetNonSyntheticValue(); 2248 if (child_valobj_sp.get()) 2249 child_valobj_sp = 2250 child_valobj_sp->GetChildMemberWithName(child_name, true); 2251 } 2252 break; 2253 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2254 ToSynthetic: 2255 if (!root->IsSynthetic()) { 2256 child_valobj_sp = root->GetSyntheticValue(); 2257 if (child_valobj_sp.get()) 2258 child_valobj_sp = 2259 child_valobj_sp->GetChildMemberWithName(child_name, true); 2260 } 2261 break; 2262 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2263 Both: 2264 if (root->IsSynthetic()) { 2265 child_valobj_sp = root->GetNonSyntheticValue(); 2266 if (child_valobj_sp.get()) 2267 child_valobj_sp = 2268 child_valobj_sp->GetChildMemberWithName(child_name, true); 2269 } else { 2270 child_valobj_sp = root->GetSyntheticValue(); 2271 if (child_valobj_sp.get()) 2272 child_valobj_sp = 2273 child_valobj_sp->GetChildMemberWithName(child_name, true); 2274 } 2275 break; 2276 } 2277 } 2278 2279 // if we are here and options.m_no_synthetic_children is true, 2280 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2281 // branch, and return an error 2282 if (child_valobj_sp.get()) // if it worked, just return 2283 { 2284 *reason_to_stop = 2285 ValueObject::eExpressionPathScanEndReasonEndOfString; 2286 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2287 return child_valobj_sp; 2288 } else { 2289 *reason_to_stop = 2290 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2291 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2292 return nullptr; 2293 } 2294 } else // other layers do expand 2295 { 2296 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2297 2298 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2299 2300 ValueObjectSP child_valobj_sp = 2301 root->GetChildMemberWithName(child_name, true); 2302 if (child_valobj_sp.get()) // store the new root and move on 2303 { 2304 root = child_valobj_sp; 2305 remainder = next_separator; 2306 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2307 continue; 2308 } else { 2309 switch (options.m_synthetic_children_traversal) { 2310 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2311 None: 2312 break; 2313 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2314 FromSynthetic: 2315 if (root->IsSynthetic()) { 2316 child_valobj_sp = root->GetNonSyntheticValue(); 2317 if (child_valobj_sp.get()) 2318 child_valobj_sp = 2319 child_valobj_sp->GetChildMemberWithName(child_name, true); 2320 } 2321 break; 2322 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2323 ToSynthetic: 2324 if (!root->IsSynthetic()) { 2325 child_valobj_sp = root->GetSyntheticValue(); 2326 if (child_valobj_sp.get()) 2327 child_valobj_sp = 2328 child_valobj_sp->GetChildMemberWithName(child_name, true); 2329 } 2330 break; 2331 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2332 Both: 2333 if (root->IsSynthetic()) { 2334 child_valobj_sp = root->GetNonSyntheticValue(); 2335 if (child_valobj_sp.get()) 2336 child_valobj_sp = 2337 child_valobj_sp->GetChildMemberWithName(child_name, true); 2338 } else { 2339 child_valobj_sp = root->GetSyntheticValue(); 2340 if (child_valobj_sp.get()) 2341 child_valobj_sp = 2342 child_valobj_sp->GetChildMemberWithName(child_name, true); 2343 } 2344 break; 2345 } 2346 } 2347 2348 // if we are here and options.m_no_synthetic_children is true, 2349 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2350 // branch, and return an error 2351 if (child_valobj_sp.get()) // if it worked, move on 2352 { 2353 root = child_valobj_sp; 2354 remainder = next_separator; 2355 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2356 continue; 2357 } else { 2358 *reason_to_stop = 2359 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2360 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2361 return nullptr; 2362 } 2363 } 2364 break; 2365 } 2366 case '[': { 2367 if (!root_compiler_type_info.Test(eTypeIsArray) && 2368 !root_compiler_type_info.Test(eTypeIsPointer) && 2369 !root_compiler_type_info.Test( 2370 eTypeIsVector)) // if this is not a T[] nor a T* 2371 { 2372 if (!root_compiler_type_info.Test( 2373 eTypeIsScalar)) // if this is not even a scalar... 2374 { 2375 if (options.m_synthetic_children_traversal == 2376 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2377 None) // ...only chance left is synthetic 2378 { 2379 *reason_to_stop = 2380 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2381 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2382 return ValueObjectSP(); 2383 } 2384 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2385 // check that we can 2386 // expand bitfields 2387 { 2388 *reason_to_stop = 2389 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2390 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2391 return ValueObjectSP(); 2392 } 2393 } 2394 if (temp_expression[1] == 2395 ']') // if this is an unbounded range it only works for arrays 2396 { 2397 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2398 *reason_to_stop = 2399 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2400 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2401 return nullptr; 2402 } else // even if something follows, we cannot expand unbounded ranges, 2403 // just let the caller do it 2404 { 2405 *reason_to_stop = 2406 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2407 *final_result = 2408 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2409 return root; 2410 } 2411 } 2412 2413 size_t close_bracket_position = temp_expression.find(']', 1); 2414 if (close_bracket_position == 2415 llvm::StringRef::npos) // if there is no ], this is a syntax error 2416 { 2417 *reason_to_stop = 2418 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2419 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2420 return nullptr; 2421 } 2422 2423 llvm::StringRef bracket_expr = 2424 temp_expression.slice(1, close_bracket_position); 2425 2426 // If this was an empty expression it would have been caught by the if 2427 // above. 2428 assert(!bracket_expr.empty()); 2429 2430 if (!bracket_expr.contains('-')) { 2431 // if no separator, this is of the form [N]. Note that this cannot be 2432 // an unbounded range of the form [], because that case was handled 2433 // above with an unconditional return. 2434 unsigned long index = 0; 2435 if (bracket_expr.getAsInteger(0, index)) { 2436 *reason_to_stop = 2437 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2438 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2439 return nullptr; 2440 } 2441 2442 // from here on we do have a valid index 2443 if (root_compiler_type_info.Test(eTypeIsArray)) { 2444 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2445 if (!child_valobj_sp) 2446 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2447 if (!child_valobj_sp) 2448 if (root->HasSyntheticValue() && 2449 root->GetSyntheticValue()->GetNumChildren() > index) 2450 child_valobj_sp = 2451 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2452 if (child_valobj_sp) { 2453 root = child_valobj_sp; 2454 remainder = 2455 temp_expression.substr(close_bracket_position + 1); // skip ] 2456 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2457 continue; 2458 } else { 2459 *reason_to_stop = 2460 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2461 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2462 return nullptr; 2463 } 2464 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2465 if (*what_next == 2466 ValueObject:: 2467 eExpressionPathAftermathDereference && // if this is a 2468 // ptr-to-scalar, I 2469 // am accessing it 2470 // by index and I 2471 // would have 2472 // deref'ed anyway, 2473 // then do it now 2474 // and use this as 2475 // a bitfield 2476 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2477 Status error; 2478 root = root->Dereference(error); 2479 if (error.Fail() || !root) { 2480 *reason_to_stop = 2481 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2482 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2483 return nullptr; 2484 } else { 2485 *what_next = eExpressionPathAftermathNothing; 2486 continue; 2487 } 2488 } else { 2489 if (root->GetCompilerType().GetMinimumLanguage() == 2490 eLanguageTypeObjC && 2491 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2492 root->HasSyntheticValue() && 2493 (options.m_synthetic_children_traversal == 2494 GetValueForExpressionPathOptions:: 2495 SyntheticChildrenTraversal::ToSynthetic || 2496 options.m_synthetic_children_traversal == 2497 GetValueForExpressionPathOptions:: 2498 SyntheticChildrenTraversal::Both)) { 2499 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2500 } else 2501 root = root->GetSyntheticArrayMember(index, true); 2502 if (!root) { 2503 *reason_to_stop = 2504 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2505 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2506 return nullptr; 2507 } else { 2508 remainder = 2509 temp_expression.substr(close_bracket_position + 1); // skip ] 2510 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2511 continue; 2512 } 2513 } 2514 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2515 root = root->GetSyntheticBitFieldChild(index, index, true); 2516 if (!root) { 2517 *reason_to_stop = 2518 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2519 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2520 return nullptr; 2521 } else // we do not know how to expand members of bitfields, so we 2522 // just return and let the caller do any further processing 2523 { 2524 *reason_to_stop = ValueObject:: 2525 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2526 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2527 return root; 2528 } 2529 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2530 root = root->GetChildAtIndex(index, true); 2531 if (!root) { 2532 *reason_to_stop = 2533 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2534 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2535 return ValueObjectSP(); 2536 } else { 2537 remainder = 2538 temp_expression.substr(close_bracket_position + 1); // skip ] 2539 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2540 continue; 2541 } 2542 } else if (options.m_synthetic_children_traversal == 2543 GetValueForExpressionPathOptions:: 2544 SyntheticChildrenTraversal::ToSynthetic || 2545 options.m_synthetic_children_traversal == 2546 GetValueForExpressionPathOptions:: 2547 SyntheticChildrenTraversal::Both) { 2548 if (root->HasSyntheticValue()) 2549 root = root->GetSyntheticValue(); 2550 else if (!root->IsSynthetic()) { 2551 *reason_to_stop = 2552 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2553 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2554 return nullptr; 2555 } 2556 // if we are here, then root itself is a synthetic VO.. should be 2557 // good to go 2558 2559 if (!root) { 2560 *reason_to_stop = 2561 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2562 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2563 return nullptr; 2564 } 2565 root = root->GetChildAtIndex(index, true); 2566 if (!root) { 2567 *reason_to_stop = 2568 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2569 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2570 return nullptr; 2571 } else { 2572 remainder = 2573 temp_expression.substr(close_bracket_position + 1); // skip ] 2574 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2575 continue; 2576 } 2577 } else { 2578 *reason_to_stop = 2579 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2580 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2581 return nullptr; 2582 } 2583 } else { 2584 // we have a low and a high index 2585 llvm::StringRef sleft, sright; 2586 unsigned long low_index, high_index; 2587 std::tie(sleft, sright) = bracket_expr.split('-'); 2588 if (sleft.getAsInteger(0, low_index) || 2589 sright.getAsInteger(0, high_index)) { 2590 *reason_to_stop = 2591 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2592 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2593 return nullptr; 2594 } 2595 2596 if (low_index > high_index) // swap indices if required 2597 std::swap(low_index, high_index); 2598 2599 if (root_compiler_type_info.Test( 2600 eTypeIsScalar)) // expansion only works for scalars 2601 { 2602 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2603 if (!root) { 2604 *reason_to_stop = 2605 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2606 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2607 return nullptr; 2608 } else { 2609 *reason_to_stop = ValueObject:: 2610 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2611 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2612 return root; 2613 } 2614 } else if (root_compiler_type_info.Test( 2615 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2616 // accessing it by index and I would 2617 // have deref'ed anyway, then do it 2618 // now and use this as a bitfield 2619 *what_next == 2620 ValueObject::eExpressionPathAftermathDereference && 2621 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2622 Status error; 2623 root = root->Dereference(error); 2624 if (error.Fail() || !root) { 2625 *reason_to_stop = 2626 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2627 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2628 return nullptr; 2629 } else { 2630 *what_next = ValueObject::eExpressionPathAftermathNothing; 2631 continue; 2632 } 2633 } else { 2634 *reason_to_stop = 2635 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2636 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2637 return root; 2638 } 2639 } 2640 break; 2641 } 2642 default: // some non-separator is in the way 2643 { 2644 *reason_to_stop = 2645 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2646 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2647 return nullptr; 2648 } 2649 } 2650 } 2651 } 2652 2653 void ValueObject::LogValueObject(Log *log) { 2654 if (log) 2655 return LogValueObject(log, DumpValueObjectOptions(*this)); 2656 } 2657 2658 void ValueObject::LogValueObject(Log *log, 2659 const DumpValueObjectOptions &options) { 2660 if (log) { 2661 StreamString s; 2662 Dump(s, options); 2663 if (s.GetSize()) 2664 log->PutCString(s.GetData()); 2665 } 2666 } 2667 2668 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2669 2670 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2671 ValueObjectPrinter printer(this, &s, options); 2672 printer.PrintValueObject(); 2673 } 2674 2675 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2676 ValueObjectSP valobj_sp; 2677 2678 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2679 ExecutionContext exe_ctx(GetExecutionContextRef()); 2680 2681 DataExtractor data; 2682 data.SetByteOrder(m_data.GetByteOrder()); 2683 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2684 2685 if (IsBitfield()) { 2686 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2687 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2688 } else 2689 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2690 2691 valobj_sp = ValueObjectConstResult::Create( 2692 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2693 GetAddressOf()); 2694 } 2695 2696 if (!valobj_sp) { 2697 ExecutionContext exe_ctx(GetExecutionContextRef()); 2698 valobj_sp = ValueObjectConstResult::Create( 2699 exe_ctx.GetBestExecutionContextScope(), m_error); 2700 } 2701 return valobj_sp; 2702 } 2703 2704 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2705 lldb::DynamicValueType dynValue, bool synthValue) { 2706 ValueObjectSP result_sp(GetSP()); 2707 2708 switch (dynValue) { 2709 case lldb::eDynamicCanRunTarget: 2710 case lldb::eDynamicDontRunTarget: { 2711 if (!result_sp->IsDynamic()) { 2712 if (result_sp->GetDynamicValue(dynValue)) 2713 result_sp = result_sp->GetDynamicValue(dynValue); 2714 } 2715 } break; 2716 case lldb::eNoDynamicValues: { 2717 if (result_sp->IsDynamic()) { 2718 if (result_sp->GetStaticValue()) 2719 result_sp = result_sp->GetStaticValue(); 2720 } 2721 } break; 2722 } 2723 2724 if (synthValue) { 2725 if (!result_sp->IsSynthetic()) { 2726 if (result_sp->GetSyntheticValue()) 2727 result_sp = result_sp->GetSyntheticValue(); 2728 } 2729 } else { 2730 if (result_sp->IsSynthetic()) { 2731 if (result_sp->GetNonSyntheticValue()) 2732 result_sp = result_sp->GetNonSyntheticValue(); 2733 } 2734 } 2735 2736 return result_sp; 2737 } 2738 2739 ValueObjectSP ValueObject::Dereference(Status &error) { 2740 if (m_deref_valobj) 2741 return m_deref_valobj->GetSP(); 2742 2743 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2744 if (is_pointer_or_reference_type) { 2745 bool omit_empty_base_classes = true; 2746 bool ignore_array_bounds = false; 2747 2748 std::string child_name_str; 2749 uint32_t child_byte_size = 0; 2750 int32_t child_byte_offset = 0; 2751 uint32_t child_bitfield_bit_size = 0; 2752 uint32_t child_bitfield_bit_offset = 0; 2753 bool child_is_base_class = false; 2754 bool child_is_deref_of_parent = false; 2755 const bool transparent_pointers = false; 2756 CompilerType compiler_type = GetCompilerType(); 2757 CompilerType child_compiler_type; 2758 uint64_t language_flags = 0; 2759 2760 ExecutionContext exe_ctx(GetExecutionContextRef()); 2761 2762 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2763 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2764 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2765 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2766 child_is_deref_of_parent, this, language_flags); 2767 if (child_compiler_type && child_byte_size) { 2768 ConstString child_name; 2769 if (!child_name_str.empty()) 2770 child_name.SetCString(child_name_str.c_str()); 2771 2772 m_deref_valobj = new ValueObjectChild( 2773 *this, child_compiler_type, child_name, child_byte_size, 2774 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2775 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2776 language_flags); 2777 } 2778 2779 // In case of incomplete child compiler type, use the pointee type and try 2780 // to recreate a new ValueObjectChild using it. 2781 if (!m_deref_valobj) { 2782 if (HasSyntheticValue()) { 2783 child_compiler_type = compiler_type.GetPointeeType(); 2784 2785 if (child_compiler_type) { 2786 ConstString child_name; 2787 if (!child_name_str.empty()) 2788 child_name.SetCString(child_name_str.c_str()); 2789 2790 m_deref_valobj = new ValueObjectChild( 2791 *this, child_compiler_type, child_name, child_byte_size, 2792 child_byte_offset, child_bitfield_bit_size, 2793 child_bitfield_bit_offset, child_is_base_class, 2794 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2795 } 2796 } 2797 } 2798 2799 } else if (HasSyntheticValue()) { 2800 m_deref_valobj = 2801 GetSyntheticValue() 2802 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2803 .get(); 2804 } else if (IsSynthetic()) { 2805 m_deref_valobj = 2806 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2807 } 2808 2809 if (m_deref_valobj) { 2810 error.Clear(); 2811 return m_deref_valobj->GetSP(); 2812 } else { 2813 StreamString strm; 2814 GetExpressionPath(strm); 2815 2816 if (is_pointer_or_reference_type) 2817 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2818 GetTypeName().AsCString("<invalid type>"), 2819 strm.GetData()); 2820 else 2821 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2822 GetTypeName().AsCString("<invalid type>"), 2823 strm.GetData()); 2824 return ValueObjectSP(); 2825 } 2826 } 2827 2828 ValueObjectSP ValueObject::AddressOf(Status &error) { 2829 if (m_addr_of_valobj_sp) 2830 return m_addr_of_valobj_sp; 2831 2832 AddressType address_type = eAddressTypeInvalid; 2833 const bool scalar_is_load_address = false; 2834 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2835 error.Clear(); 2836 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2837 switch (address_type) { 2838 case eAddressTypeInvalid: { 2839 StreamString expr_path_strm; 2840 GetExpressionPath(expr_path_strm); 2841 error.SetErrorStringWithFormat("'%s' is not in memory", 2842 expr_path_strm.GetData()); 2843 } break; 2844 2845 case eAddressTypeFile: 2846 case eAddressTypeLoad: { 2847 CompilerType compiler_type = GetCompilerType(); 2848 if (compiler_type) { 2849 std::string name(1, '&'); 2850 name.append(m_name.AsCString("")); 2851 ExecutionContext exe_ctx(GetExecutionContextRef()); 2852 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2853 exe_ctx.GetBestExecutionContextScope(), 2854 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2855 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2856 } 2857 } break; 2858 default: 2859 break; 2860 } 2861 } else { 2862 StreamString expr_path_strm; 2863 GetExpressionPath(expr_path_strm); 2864 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2865 expr_path_strm.GetData()); 2866 } 2867 2868 return m_addr_of_valobj_sp; 2869 } 2870 2871 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2872 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2873 } 2874 2875 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2876 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2877 } 2878 2879 ValueObjectSP ValueObject::CastPointerType(const char *name, 2880 CompilerType &compiler_type) { 2881 ValueObjectSP valobj_sp; 2882 AddressType address_type; 2883 addr_t ptr_value = GetPointerValue(&address_type); 2884 2885 if (ptr_value != LLDB_INVALID_ADDRESS) { 2886 Address ptr_addr(ptr_value); 2887 ExecutionContext exe_ctx(GetExecutionContextRef()); 2888 valobj_sp = ValueObjectMemory::Create( 2889 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2890 } 2891 return valobj_sp; 2892 } 2893 2894 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2895 ValueObjectSP valobj_sp; 2896 AddressType address_type; 2897 addr_t ptr_value = GetPointerValue(&address_type); 2898 2899 if (ptr_value != LLDB_INVALID_ADDRESS) { 2900 Address ptr_addr(ptr_value); 2901 ExecutionContext exe_ctx(GetExecutionContextRef()); 2902 valobj_sp = ValueObjectMemory::Create( 2903 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2904 } 2905 return valobj_sp; 2906 } 2907 2908 ValueObject::EvaluationPoint::EvaluationPoint() 2909 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2910 2911 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2912 bool use_selected) 2913 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2914 ExecutionContext exe_ctx(exe_scope); 2915 TargetSP target_sp(exe_ctx.GetTargetSP()); 2916 if (target_sp) { 2917 m_exe_ctx_ref.SetTargetSP(target_sp); 2918 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2919 if (!process_sp) 2920 process_sp = target_sp->GetProcessSP(); 2921 2922 if (process_sp) { 2923 m_mod_id = process_sp->GetModID(); 2924 m_exe_ctx_ref.SetProcessSP(process_sp); 2925 2926 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2927 2928 if (!thread_sp) { 2929 if (use_selected) 2930 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2931 } 2932 2933 if (thread_sp) { 2934 m_exe_ctx_ref.SetThreadSP(thread_sp); 2935 2936 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2937 if (!frame_sp) { 2938 if (use_selected) 2939 frame_sp = thread_sp->GetSelectedFrame(); 2940 } 2941 if (frame_sp) 2942 m_exe_ctx_ref.SetFrameSP(frame_sp); 2943 } 2944 } 2945 } 2946 } 2947 2948 ValueObject::EvaluationPoint::EvaluationPoint( 2949 const ValueObject::EvaluationPoint &rhs) 2950 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2951 2952 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2953 2954 // This function checks the EvaluationPoint against the current process state. 2955 // If the current state matches the evaluation point, or the evaluation point 2956 // is already invalid, then we return false, meaning "no change". If the 2957 // current state is different, we update our state, and return true meaning 2958 // "yes, change". If we did see a change, we also set m_needs_update to true, 2959 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2960 // the current execution context scope. 2961 2962 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2963 bool accept_invalid_exe_ctx) { 2964 // Start with the target, if it is NULL, then we're obviously not going to 2965 // get any further: 2966 const bool thread_and_frame_only_if_stopped = true; 2967 ExecutionContext exe_ctx( 2968 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 2969 2970 if (exe_ctx.GetTargetPtr() == nullptr) 2971 return false; 2972 2973 // If we don't have a process nothing can change. 2974 Process *process = exe_ctx.GetProcessPtr(); 2975 if (process == nullptr) 2976 return false; 2977 2978 // If our stop id is the current stop ID, nothing has changed: 2979 ProcessModID current_mod_id = process->GetModID(); 2980 2981 // If the current stop id is 0, either we haven't run yet, or the process 2982 // state has been cleared. In either case, we aren't going to be able to sync 2983 // with the process state. 2984 if (current_mod_id.GetStopID() == 0) 2985 return false; 2986 2987 bool changed = false; 2988 const bool was_valid = m_mod_id.IsValid(); 2989 if (was_valid) { 2990 if (m_mod_id == current_mod_id) { 2991 // Everything is already up to date in this object, no need to update the 2992 // execution context scope. 2993 changed = false; 2994 } else { 2995 m_mod_id = current_mod_id; 2996 m_needs_update = true; 2997 changed = true; 2998 } 2999 } 3000 3001 // Now re-look up the thread and frame in case the underlying objects have 3002 // gone away & been recreated. That way we'll be sure to return a valid 3003 // exe_scope. If we used to have a thread or a frame but can't find it 3004 // anymore, then mark ourselves as invalid. 3005 3006 if (!accept_invalid_exe_ctx) { 3007 if (m_exe_ctx_ref.HasThreadRef()) { 3008 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3009 if (thread_sp) { 3010 if (m_exe_ctx_ref.HasFrameRef()) { 3011 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3012 if (!frame_sp) { 3013 // We used to have a frame, but now it is gone 3014 SetInvalid(); 3015 changed = was_valid; 3016 } 3017 } 3018 } else { 3019 // We used to have a thread, but now it is gone 3020 SetInvalid(); 3021 changed = was_valid; 3022 } 3023 } 3024 } 3025 3026 return changed; 3027 } 3028 3029 void ValueObject::EvaluationPoint::SetUpdated() { 3030 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3031 if (process_sp) 3032 m_mod_id = process_sp->GetModID(); 3033 m_needs_update = false; 3034 } 3035 3036 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3037 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3038 eClearUserVisibleDataItemsValue) 3039 m_value_str.clear(); 3040 3041 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3042 eClearUserVisibleDataItemsLocation) 3043 m_location_str.clear(); 3044 3045 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3046 eClearUserVisibleDataItemsSummary) 3047 m_summary_str.clear(); 3048 3049 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3050 eClearUserVisibleDataItemsDescription) 3051 m_object_desc_str.clear(); 3052 3053 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3054 eClearUserVisibleDataItemsSyntheticChildren) { 3055 if (m_synthetic_value) 3056 m_synthetic_value = nullptr; 3057 } 3058 } 3059 3060 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3061 if (m_parent) { 3062 if (!m_parent->IsPointerOrReferenceType()) 3063 return m_parent->GetSymbolContextScope(); 3064 } 3065 return nullptr; 3066 } 3067 3068 lldb::ValueObjectSP 3069 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3070 llvm::StringRef expression, 3071 const ExecutionContext &exe_ctx) { 3072 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3073 EvaluateExpressionOptions()); 3074 } 3075 3076 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3077 llvm::StringRef name, llvm::StringRef expression, 3078 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3079 lldb::ValueObjectSP retval_sp; 3080 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3081 if (!target_sp) 3082 return retval_sp; 3083 if (expression.empty()) 3084 return retval_sp; 3085 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3086 retval_sp, options); 3087 if (retval_sp && !name.empty()) 3088 retval_sp->SetName(ConstString(name)); 3089 return retval_sp; 3090 } 3091 3092 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3093 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3094 CompilerType type) { 3095 if (type) { 3096 CompilerType pointer_type(type.GetPointerType()); 3097 if (pointer_type) { 3098 lldb::DataBufferSP buffer( 3099 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3100 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3101 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3102 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3103 exe_ctx.GetAddressByteSize())); 3104 if (ptr_result_valobj_sp) { 3105 ptr_result_valobj_sp->GetValue().SetValueType( 3106 Value::eValueTypeLoadAddress); 3107 Status err; 3108 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3109 if (ptr_result_valobj_sp && !name.empty()) 3110 ptr_result_valobj_sp->SetName(ConstString(name)); 3111 } 3112 return ptr_result_valobj_sp; 3113 } 3114 } 3115 return lldb::ValueObjectSP(); 3116 } 3117 3118 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3119 llvm::StringRef name, const DataExtractor &data, 3120 const ExecutionContext &exe_ctx, CompilerType type) { 3121 lldb::ValueObjectSP new_value_sp; 3122 new_value_sp = ValueObjectConstResult::Create( 3123 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3124 LLDB_INVALID_ADDRESS); 3125 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3126 if (new_value_sp && !name.empty()) 3127 new_value_sp->SetName(ConstString(name)); 3128 return new_value_sp; 3129 } 3130 3131 ModuleSP ValueObject::GetModule() { 3132 ValueObject *root(GetRoot()); 3133 if (root != this) 3134 return root->GetModule(); 3135 return lldb::ModuleSP(); 3136 } 3137 3138 ValueObject *ValueObject::GetRoot() { 3139 if (m_root) 3140 return m_root; 3141 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3142 return (vo->m_parent != nullptr); 3143 })); 3144 } 3145 3146 ValueObject * 3147 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3148 ValueObject *vo = this; 3149 while (vo) { 3150 if (!f(vo)) 3151 break; 3152 vo = vo->m_parent; 3153 } 3154 return vo; 3155 } 3156 3157 AddressType ValueObject::GetAddressTypeOfChildren() { 3158 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3159 ValueObject *root(GetRoot()); 3160 if (root != this) 3161 return root->GetAddressTypeOfChildren(); 3162 } 3163 return m_address_type_of_ptr_or_ref_children; 3164 } 3165 3166 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3167 ValueObject *with_dv_info = this; 3168 while (with_dv_info) { 3169 if (with_dv_info->HasDynamicValueTypeInfo()) 3170 return with_dv_info->GetDynamicValueTypeImpl(); 3171 with_dv_info = with_dv_info->m_parent; 3172 } 3173 return lldb::eNoDynamicValues; 3174 } 3175 3176 lldb::Format ValueObject::GetFormat() const { 3177 const ValueObject *with_fmt_info = this; 3178 while (with_fmt_info) { 3179 if (with_fmt_info->m_format != lldb::eFormatDefault) 3180 return with_fmt_info->m_format; 3181 with_fmt_info = with_fmt_info->m_parent; 3182 } 3183 return m_format; 3184 } 3185 3186 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3187 lldb::LanguageType type = m_preferred_display_language; 3188 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3189 if (GetRoot()) { 3190 if (GetRoot() == this) { 3191 if (StackFrameSP frame_sp = GetFrameSP()) { 3192 const SymbolContext &sc( 3193 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3194 if (CompileUnit *cu = sc.comp_unit) 3195 type = cu->GetLanguage(); 3196 } 3197 } else { 3198 type = GetRoot()->GetPreferredDisplayLanguage(); 3199 } 3200 } 3201 } 3202 return (m_preferred_display_language = type); // only compute it once 3203 } 3204 3205 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3206 m_preferred_display_language = lt; 3207 } 3208 3209 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3210 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3211 SetPreferredDisplayLanguage(lt); 3212 } 3213 3214 bool ValueObject::CanProvideValue() { 3215 // we need to support invalid types as providers of values because some bare- 3216 // board debugging scenarios have no notion of types, but still manage to 3217 // have raw numeric values for things like registers. sigh. 3218 const CompilerType &type(GetCompilerType()); 3219 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3220 } 3221 3222 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3223 3224 ValueObjectSP ValueObject::Persist() { 3225 if (!UpdateValueIfNeeded()) 3226 return nullptr; 3227 3228 TargetSP target_sp(GetTargetSP()); 3229 if (!target_sp) 3230 return nullptr; 3231 3232 PersistentExpressionState *persistent_state = 3233 target_sp->GetPersistentExpressionStateForLanguage( 3234 GetPreferredDisplayLanguage()); 3235 3236 if (!persistent_state) 3237 return nullptr; 3238 3239 ConstString name = persistent_state->GetNextPersistentVariableName(); 3240 3241 ValueObjectSP const_result_sp = 3242 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3243 3244 ExpressionVariableSP persistent_var_sp = 3245 persistent_state->CreatePersistentVariable(const_result_sp); 3246 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3247 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3248 3249 return persistent_var_sp->GetValueObject(); 3250 } 3251 3252 bool ValueObject::IsSyntheticChildrenGenerated() { 3253 return m_is_synthetic_children_generated; 3254 } 3255 3256 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3257 m_is_synthetic_children_generated = b; 3258 } 3259 3260 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3261 3262 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3263 3264 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3265 lldb::DynamicValueType use_dynamic, 3266 bool use_synthetic) : m_root_valobj_sp(), 3267 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3268 m_use_synthetic(use_synthetic) { 3269 if (!in_valobj_sp) 3270 return; 3271 // If the user passes in a value object that is dynamic or synthetic, then 3272 // water it down to the static type. 3273 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3274 } 3275 3276 bool ValueObjectManager::IsValid() const { 3277 if (!m_root_valobj_sp) 3278 return false; 3279 lldb::TargetSP target_sp = GetTargetSP(); 3280 if (target_sp) 3281 return target_sp->IsValid(); 3282 return false; 3283 } 3284 3285 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3286 lldb::ProcessSP process_sp = GetProcessSP(); 3287 if (!process_sp) 3288 return lldb::ValueObjectSP(); 3289 3290 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3291 if (current_stop_id == m_stop_id) 3292 return m_user_valobj_sp; 3293 3294 m_stop_id = current_stop_id; 3295 3296 if (!m_root_valobj_sp) { 3297 m_user_valobj_sp.reset(); 3298 return m_root_valobj_sp; 3299 } 3300 3301 m_user_valobj_sp = m_root_valobj_sp; 3302 3303 if (m_use_dynamic != lldb::eNoDynamicValues) { 3304 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3305 if (dynamic_sp) 3306 m_user_valobj_sp = dynamic_sp; 3307 } 3308 3309 if (m_use_synthetic) { 3310 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(); 3311 if (synthetic_sp) 3312 m_user_valobj_sp = synthetic_sp; 3313 } 3314 3315 return m_user_valobj_sp; 3316 } 3317 3318 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3319 if (use_dynamic != m_use_dynamic) { 3320 m_use_dynamic = use_dynamic; 3321 m_user_valobj_sp.reset(); 3322 m_stop_id = UINT32_MAX; 3323 } 3324 } 3325 3326 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3327 if (m_use_synthetic != use_synthetic) { 3328 m_use_synthetic = use_synthetic; 3329 m_user_valobj_sp.reset(); 3330 m_stop_id = UINT32_MAX; 3331 } 3332 } 3333 3334 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3335 if (!m_root_valobj_sp) 3336 return m_root_valobj_sp->GetTargetSP(); 3337 return lldb::TargetSP(); 3338 } 3339 3340 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3341 if (m_root_valobj_sp) 3342 return m_root_valobj_sp->GetProcessSP(); 3343 return lldb::ProcessSP(); 3344 } 3345 3346 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3347 if (m_root_valobj_sp) 3348 return m_root_valobj_sp->GetThreadSP(); 3349 return lldb::ThreadSP(); 3350 } 3351 3352 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3353 if (m_root_valobj_sp) 3354 return m_root_valobj_sp->GetFrameSP(); 3355 return lldb::StackFrameSP(); 3356 } 3357