xref: /openbsd-src/gnu/llvm/lld/ELF/Writer.cpp (revision 4e1ee0786f11cc571bd0be17d38e46f635c719fc)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "LinkerScript.h"
15 #include "MapFile.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "lld/Common/Filesystem.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/Parallel.h"
28 #include "llvm/Support/RandomNumberGenerator.h"
29 #include "llvm/Support/SHA1.h"
30 #include "llvm/Support/TimeProfiler.h"
31 #include "llvm/Support/xxhash.h"
32 #include <climits>
33 
34 #define DEBUG_TYPE "lld"
35 
36 using namespace llvm;
37 using namespace llvm::ELF;
38 using namespace llvm::object;
39 using namespace llvm::support;
40 using namespace llvm::support::endian;
41 using namespace lld;
42 using namespace lld::elf;
43 
44 namespace {
45 // The writer writes a SymbolTable result to a file.
46 template <class ELFT> class Writer {
47 public:
48   Writer() : buffer(errorHandler().outputBuffer) {}
49   using Elf_Shdr = typename ELFT::Shdr;
50   using Elf_Ehdr = typename ELFT::Ehdr;
51   using Elf_Phdr = typename ELFT::Phdr;
52 
53   void run();
54 
55 private:
56   void copyLocalSymbols();
57   void addSectionSymbols();
58   void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
59   void sortSections();
60   void resolveShfLinkOrder();
61   void finalizeAddressDependentContent();
62   void optimizeBasicBlockJumps();
63   void sortInputSections();
64   void finalizeSections();
65   void checkExecuteOnly();
66   void setReservedSymbolSections();
67 
68   std::vector<PhdrEntry *> createPhdrs(Partition &part);
69   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
70                          unsigned pFlags);
71   void assignFileOffsets();
72   void assignFileOffsetsBinary();
73   void setPhdrs(Partition &part);
74   void checkSections();
75   void fixSectionAlignments();
76   void openFile();
77   void writeTrapInstr();
78   void writeHeader();
79   void writeSections();
80   void writeSectionsBinary();
81   void writeBuildId();
82 
83   std::unique_ptr<FileOutputBuffer> &buffer;
84 
85   void addRelIpltSymbols();
86   void addStartEndSymbols();
87   void addStartStopSymbols(OutputSection *sec);
88 
89   uint64_t fileSize;
90   uint64_t sectionHeaderOff;
91 };
92 } // anonymous namespace
93 
94 static bool isSectionPrefix(StringRef prefix, StringRef name) {
95   return name.startswith(prefix) || name == prefix.drop_back();
96 }
97 
98 StringRef elf::getOutputSectionName(const InputSectionBase *s) {
99   if (config->relocatable)
100     return s->name;
101 
102   // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
103   // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
104   // technically required, but not doing it is odd). This code guarantees that.
105   if (auto *isec = dyn_cast<InputSection>(s)) {
106     if (InputSectionBase *rel = isec->getRelocatedSection()) {
107       OutputSection *out = rel->getOutputSection();
108       if (s->type == SHT_RELA)
109         return saver.save(".rela" + out->name);
110       return saver.save(".rel" + out->name);
111     }
112   }
113 
114   // A BssSection created for a common symbol is identified as "COMMON" in
115   // linker scripts. It should go to .bss section.
116   if (s->name == "COMMON")
117     return ".bss";
118 
119   if (script->hasSectionsCommand)
120     return s->name;
121 
122   // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
123   // by grouping sections with certain prefixes.
124 
125   // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
126   // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
127   // We provide an option -z keep-text-section-prefix to group such sections
128   // into separate output sections. This is more flexible. See also
129   // sortISDBySectionOrder().
130   // ".text.unknown" means the hotness of the section is unknown. When
131   // SampleFDO is used, if a function doesn't have sample, it could be very
132   // cold or it could be a new function never being sampled. Those functions
133   // will be kept in the ".text.unknown" section.
134   if (config->zKeepTextSectionPrefix)
135     for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.",
136                         ".text.startup.", ".text.exit."})
137       if (isSectionPrefix(v, s->name))
138         return v.drop_back();
139 
140   for (StringRef v :
141        {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
142         ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
143         ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab.",
144         ".openbsd.randomdata."})
145     if (isSectionPrefix(v, s->name))
146       return v.drop_back();
147 
148   return s->name;
149 }
150 
151 static bool needsInterpSection() {
152   return !config->relocatable && !config->shared &&
153          !config->dynamicLinker.empty() && script->needsInterpSection();
154 }
155 
156 template <class ELFT> void elf::writeResult() {
157   llvm::TimeTraceScope timeScope("Write output file");
158   Writer<ELFT>().run();
159 }
160 
161 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
162   auto it = std::stable_partition(
163       phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
164         if (p->p_type != PT_LOAD)
165           return true;
166         if (!p->firstSec)
167           return false;
168         uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
169         return size != 0;
170       });
171 
172   // Clear OutputSection::ptLoad for sections contained in removed
173   // segments.
174   DenseSet<PhdrEntry *> removed(it, phdrs.end());
175   for (OutputSection *sec : outputSections)
176     if (removed.count(sec->ptLoad))
177       sec->ptLoad = nullptr;
178   phdrs.erase(it, phdrs.end());
179 }
180 
181 void elf::copySectionsIntoPartitions() {
182   std::vector<InputSectionBase *> newSections;
183   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
184     for (InputSectionBase *s : inputSections) {
185       if (!(s->flags & SHF_ALLOC) || !s->isLive())
186         continue;
187       InputSectionBase *copy;
188       if (s->type == SHT_NOTE)
189         copy = make<InputSection>(cast<InputSection>(*s));
190       else if (auto *es = dyn_cast<EhInputSection>(s))
191         copy = make<EhInputSection>(*es);
192       else
193         continue;
194       copy->partition = part;
195       newSections.push_back(copy);
196     }
197   }
198 
199   inputSections.insert(inputSections.end(), newSections.begin(),
200                        newSections.end());
201 }
202 
203 void elf::combineEhSections() {
204   for (InputSectionBase *&s : inputSections) {
205     // Ignore dead sections and the partition end marker (.part.end),
206     // whose partition number is out of bounds.
207     if (!s->isLive() || s->partition == 255)
208       continue;
209 
210     Partition &part = s->getPartition();
211     if (auto *es = dyn_cast<EhInputSection>(s)) {
212       part.ehFrame->addSection(es);
213       s = nullptr;
214     } else if (s->kind() == SectionBase::Regular && part.armExidx &&
215                part.armExidx->addSection(cast<InputSection>(s))) {
216       s = nullptr;
217     }
218   }
219 
220   std::vector<InputSectionBase *> &v = inputSections;
221   v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
222 }
223 
224 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
225                                    uint64_t val, uint8_t stOther = STV_HIDDEN,
226                                    uint8_t binding = STB_GLOBAL) {
227   Symbol *s = symtab->find(name);
228   if (!s || s->isDefined())
229     return nullptr;
230 
231   s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
232                      /*size=*/0, sec});
233   return cast<Defined>(s);
234 }
235 
236 static Defined *addAbsolute(StringRef name) {
237   Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
238                                           STT_NOTYPE, 0, 0, nullptr});
239   return cast<Defined>(sym);
240 }
241 
242 // The linker is expected to define some symbols depending on
243 // the linking result. This function defines such symbols.
244 void elf::addReservedSymbols() {
245   if (config->emachine == EM_MIPS) {
246     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
247     // so that it points to an absolute address which by default is relative
248     // to GOT. Default offset is 0x7ff0.
249     // See "Global Data Symbols" in Chapter 6 in the following document:
250     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
251     ElfSym::mipsGp = addAbsolute("_gp");
252 
253     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
254     // start of function and 'gp' pointer into GOT.
255     if (symtab->find("_gp_disp"))
256       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
257 
258     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
259     // pointer. This symbol is used in the code generated by .cpload pseudo-op
260     // in case of using -mno-shared option.
261     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
262     if (symtab->find("__gnu_local_gp"))
263       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
264   } else if (config->emachine == EM_PPC) {
265     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
266     // support Small Data Area, define it arbitrarily as 0.
267     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
268   } else if (config->emachine == EM_PPC64) {
269     addPPC64SaveRestore();
270   }
271 
272   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
273   // combines the typical ELF GOT with the small data sections. It commonly
274   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
275   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
276   // represent the TOC base which is offset by 0x8000 bytes from the start of
277   // the .got section.
278   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
279   // correctness of some relocations depends on its value.
280   StringRef gotSymName =
281       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
282 
283   if (Symbol *s = symtab->find(gotSymName)) {
284     if (s->isDefined()) {
285       error(toString(s->file) + " cannot redefine linker defined symbol '" +
286             gotSymName + "'");
287       return;
288     }
289 
290     uint64_t gotOff = 0;
291     if (config->emachine == EM_PPC64)
292       gotOff = 0x8000;
293 
294     s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
295                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
296     ElfSym::globalOffsetTable = cast<Defined>(s);
297   }
298 
299   // __ehdr_start is the location of ELF file headers. Note that we define
300   // this symbol unconditionally even when using a linker script, which
301   // differs from the behavior implemented by GNU linker which only define
302   // this symbol if ELF headers are in the memory mapped segment.
303   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
304 
305   // __executable_start is not documented, but the expectation of at
306   // least the Android libc is that it points to the ELF header.
307   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
308 
309   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
310   // each DSO. The address of the symbol doesn't matter as long as they are
311   // different in different DSOs, so we chose the start address of the DSO.
312   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
313 
314   // If linker script do layout we do not need to create any standard symbols.
315   if (script->hasSectionsCommand)
316     return;
317 
318   auto add = [](StringRef s, int64_t pos) {
319     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
320   };
321 
322   ElfSym::bss = add("__bss_start", 0);
323   ElfSym::data = add("__data_start", 0);
324   ElfSym::end1 = add("end", -1);
325   ElfSym::end2 = add("_end", -1);
326   ElfSym::etext1 = add("etext", -1);
327   ElfSym::etext2 = add("_etext", -1);
328   ElfSym::edata1 = add("edata", -1);
329   ElfSym::edata2 = add("_edata", -1);
330 }
331 
332 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
333   for (BaseCommand *base : script->sectionCommands)
334     if (auto *sec = dyn_cast<OutputSection>(base))
335       if (sec->name == name && sec->partition == partition)
336         return sec;
337   return nullptr;
338 }
339 
340 template <class ELFT> void elf::createSyntheticSections() {
341   // Initialize all pointers with NULL. This is needed because
342   // you can call lld::elf::main more than once as a library.
343   memset(&Out::first, 0, sizeof(Out));
344 
345   // Add the .interp section first because it is not a SyntheticSection.
346   // The removeUnusedSyntheticSections() function relies on the
347   // SyntheticSections coming last.
348   if (needsInterpSection()) {
349     for (size_t i = 1; i <= partitions.size(); ++i) {
350       InputSection *sec = createInterpSection();
351       sec->partition = i;
352       inputSections.push_back(sec);
353     }
354   }
355 
356   auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
357 
358   in.shStrTab = make<StringTableSection>(".shstrtab", false);
359 
360   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
361   Out::programHeaders->alignment = config->wordsize;
362 
363   if (config->strip != StripPolicy::All) {
364     in.strTab = make<StringTableSection>(".strtab", false);
365     in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
366     in.symTabShndx = make<SymtabShndxSection>();
367   }
368 
369   in.bss = make<BssSection>(".bss", 0, 1);
370   add(in.bss);
371 
372   // If there is a SECTIONS command and a .data.rel.ro section name use name
373   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
374   // This makes sure our relro is contiguous.
375   bool hasDataRelRo =
376       script->hasSectionsCommand && findSection(".data.rel.ro", 0);
377   in.bssRelRo =
378       make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
379   add(in.bssRelRo);
380 
381   // Add MIPS-specific sections.
382   if (config->emachine == EM_MIPS) {
383     if (!config->shared && config->hasDynSymTab) {
384       in.mipsRldMap = make<MipsRldMapSection>();
385       add(in.mipsRldMap);
386     }
387     if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
388       add(sec);
389     if (auto *sec = MipsOptionsSection<ELFT>::create())
390       add(sec);
391     if (auto *sec = MipsReginfoSection<ELFT>::create())
392       add(sec);
393   }
394 
395   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
396 
397   for (Partition &part : partitions) {
398     auto add = [&](SyntheticSection *sec) {
399       sec->partition = part.getNumber();
400       inputSections.push_back(sec);
401     };
402 
403     if (!part.name.empty()) {
404       part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
405       part.elfHeader->name = part.name;
406       add(part.elfHeader);
407 
408       part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
409       add(part.programHeaders);
410     }
411 
412     if (config->buildId != BuildIdKind::None) {
413       part.buildId = make<BuildIdSection>();
414       add(part.buildId);
415     }
416 
417     part.dynStrTab = make<StringTableSection>(".dynstr", true);
418     part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
419     part.dynamic = make<DynamicSection<ELFT>>();
420     if (config->androidPackDynRelocs)
421       part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
422     else
423       part.relaDyn =
424           make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
425 
426     if (config->hasDynSymTab) {
427       part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
428       add(part.dynSymTab);
429 
430       part.verSym = make<VersionTableSection>();
431       add(part.verSym);
432 
433       if (!namedVersionDefs().empty()) {
434         part.verDef = make<VersionDefinitionSection>();
435         add(part.verDef);
436       }
437 
438       part.verNeed = make<VersionNeedSection<ELFT>>();
439       add(part.verNeed);
440 
441       if (config->gnuHash) {
442         part.gnuHashTab = make<GnuHashTableSection>();
443         add(part.gnuHashTab);
444       }
445 
446       if (config->sysvHash) {
447         part.hashTab = make<HashTableSection>();
448         add(part.hashTab);
449       }
450 
451       add(part.dynamic);
452       add(part.dynStrTab);
453       add(part.relaDyn);
454     }
455 
456     if (config->relrPackDynRelocs) {
457       part.relrDyn = make<RelrSection<ELFT>>();
458       add(part.relrDyn);
459     }
460 
461     if (!config->relocatable) {
462       if (config->ehFrameHdr) {
463         part.ehFrameHdr = make<EhFrameHeader>();
464         add(part.ehFrameHdr);
465       }
466       part.ehFrame = make<EhFrameSection>();
467       add(part.ehFrame);
468     }
469 
470     if (config->emachine == EM_ARM && !config->relocatable) {
471       // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
472       // InputSections.
473       part.armExidx = make<ARMExidxSyntheticSection>();
474       add(part.armExidx);
475     }
476   }
477 
478   if (partitions.size() != 1) {
479     // Create the partition end marker. This needs to be in partition number 255
480     // so that it is sorted after all other partitions. It also has other
481     // special handling (see createPhdrs() and combineEhSections()).
482     in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
483     in.partEnd->partition = 255;
484     add(in.partEnd);
485 
486     in.partIndex = make<PartitionIndexSection>();
487     addOptionalRegular("__part_index_begin", in.partIndex, 0);
488     addOptionalRegular("__part_index_end", in.partIndex,
489                        in.partIndex->getSize());
490     add(in.partIndex);
491   }
492 
493   // Add .got. MIPS' .got is so different from the other archs,
494   // it has its own class.
495   if (config->emachine == EM_MIPS) {
496     in.mipsGot = make<MipsGotSection>();
497     add(in.mipsGot);
498   } else {
499     in.got = make<GotSection>();
500     add(in.got);
501   }
502 
503   if (config->emachine == EM_PPC) {
504     in.ppc32Got2 = make<PPC32Got2Section>();
505     add(in.ppc32Got2);
506   }
507 
508   if (config->emachine == EM_PPC64) {
509     in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
510     add(in.ppc64LongBranchTarget);
511   }
512 
513   in.gotPlt = make<GotPltSection>();
514   add(in.gotPlt);
515   in.igotPlt = make<IgotPltSection>();
516   add(in.igotPlt);
517 
518   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
519   // it as a relocation and ensure the referenced section is created.
520   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
521     if (target->gotBaseSymInGotPlt)
522       in.gotPlt->hasGotPltOffRel = true;
523     else
524       in.got->hasGotOffRel = true;
525   }
526 
527   if (config->gdbIndex)
528     add(GdbIndexSection::create<ELFT>());
529 
530   // We always need to add rel[a].plt to output if it has entries.
531   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
532   in.relaPlt = make<RelocationSection<ELFT>>(
533       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
534   add(in.relaPlt);
535 
536   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
537   // relocations are processed last by the dynamic loader. We cannot place the
538   // iplt section in .rel.dyn when Android relocation packing is enabled because
539   // that would cause a section type mismatch. However, because the Android
540   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
541   // behaviour by placing the iplt section in .rel.plt.
542   in.relaIplt = make<RelocationSection<ELFT>>(
543       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
544       /*sort=*/false);
545   add(in.relaIplt);
546 
547   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
548       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
549     in.ibtPlt = make<IBTPltSection>();
550     add(in.ibtPlt);
551   }
552 
553   in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>()
554                                       : make<PltSection>();
555   add(in.plt);
556   in.iplt = make<IpltSection>();
557   add(in.iplt);
558 
559   if (config->andFeatures)
560     add(make<GnuPropertySection>());
561 
562   // .note.GNU-stack is always added when we are creating a re-linkable
563   // object file. Other linkers are using the presence of this marker
564   // section to control the executable-ness of the stack area, but that
565   // is irrelevant these days. Stack area should always be non-executable
566   // by default. So we emit this section unconditionally.
567   if (config->relocatable)
568     add(make<GnuStackSection>());
569 
570   if (in.symTab)
571     add(in.symTab);
572   if (in.symTabShndx)
573     add(in.symTabShndx);
574   add(in.shStrTab);
575   if (in.strTab)
576     add(in.strTab);
577 }
578 
579 // The main function of the writer.
580 template <class ELFT> void Writer<ELFT>::run() {
581   copyLocalSymbols();
582 
583   if (config->copyRelocs)
584     addSectionSymbols();
585 
586   // Now that we have a complete set of output sections. This function
587   // completes section contents. For example, we need to add strings
588   // to the string table, and add entries to .got and .plt.
589   // finalizeSections does that.
590   finalizeSections();
591   checkExecuteOnly();
592   if (errorCount())
593     return;
594 
595   // If -compressed-debug-sections is specified, we need to compress
596   // .debug_* sections. Do it right now because it changes the size of
597   // output sections.
598   for (OutputSection *sec : outputSections)
599     sec->maybeCompress<ELFT>();
600 
601   if (script->hasSectionsCommand)
602     script->allocateHeaders(mainPart->phdrs);
603 
604   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
605   // 0 sized region. This has to be done late since only after assignAddresses
606   // we know the size of the sections.
607   for (Partition &part : partitions)
608     removeEmptyPTLoad(part.phdrs);
609 
610   if (!config->oFormatBinary)
611     assignFileOffsets();
612   else
613     assignFileOffsetsBinary();
614 
615   for (Partition &part : partitions)
616     setPhdrs(part);
617 
618   if (config->relocatable)
619     for (OutputSection *sec : outputSections)
620       sec->addr = 0;
621 
622   // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them
623   // before checkSections() because the files may be useful in case
624   // checkSections() or openFile() fails, for example, due to an erroneous file
625   // size.
626   writeMapFile();
627   writeCrossReferenceTable();
628   writeArchiveStats();
629 
630   if (config->checkSections)
631     checkSections();
632 
633   // It does not make sense try to open the file if we have error already.
634   if (errorCount())
635     return;
636   // Write the result down to a file.
637   openFile();
638   if (errorCount())
639     return;
640 
641   if (!config->oFormatBinary) {
642     if (config->zSeparate != SeparateSegmentKind::None)
643       writeTrapInstr();
644     writeHeader();
645     writeSections();
646   } else {
647     writeSectionsBinary();
648   }
649 
650   // Backfill .note.gnu.build-id section content. This is done at last
651   // because the content is usually a hash value of the entire output file.
652   writeBuildId();
653   if (errorCount())
654     return;
655 
656   if (auto e = buffer->commit())
657     error("failed to write to the output file: " + toString(std::move(e)));
658 }
659 
660 template <class ELFT, class RelTy>
661 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
662                                      llvm::ArrayRef<RelTy> rels) {
663   for (const RelTy &rel : rels) {
664     Symbol &sym = file->getRelocTargetSym(rel);
665     if (sym.isLocal())
666       sym.used = true;
667   }
668 }
669 
670 // The function ensures that the "used" field of local symbols reflects the fact
671 // that the symbol is used in a relocation from a live section.
672 template <class ELFT> static void markUsedLocalSymbols() {
673   // With --gc-sections, the field is already filled.
674   // See MarkLive<ELFT>::resolveReloc().
675   if (config->gcSections)
676     return;
677   // Without --gc-sections, the field is initialized with "true".
678   // Drop the flag first and then rise for symbols referenced in relocations.
679   for (InputFile *file : objectFiles) {
680     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
681     for (Symbol *b : f->getLocalSymbols())
682       b->used = false;
683     for (InputSectionBase *s : f->getSections()) {
684       InputSection *isec = dyn_cast_or_null<InputSection>(s);
685       if (!isec)
686         continue;
687       if (isec->type == SHT_REL)
688         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
689       else if (isec->type == SHT_RELA)
690         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
691     }
692   }
693 }
694 
695 static bool shouldKeepInSymtab(const Defined &sym) {
696   if (sym.isSection())
697     return false;
698 
699   // If --emit-reloc or -r is given, preserve symbols referenced by relocations
700   // from live sections.
701   if (config->copyRelocs && sym.used)
702     return true;
703 
704   // Exclude local symbols pointing to .ARM.exidx sections.
705   // They are probably mapping symbols "$d", which are optional for these
706   // sections. After merging the .ARM.exidx sections, some of these symbols
707   // may become dangling. The easiest way to avoid the issue is not to add
708   // them to the symbol table from the beginning.
709   if (config->emachine == EM_ARM && sym.section &&
710       sym.section->type == SHT_ARM_EXIDX)
711     return false;
712 
713   if (config->discard == DiscardPolicy::None)
714     return true;
715   if (config->discard == DiscardPolicy::All)
716     return false;
717 
718   // In ELF assembly .L symbols are normally discarded by the assembler.
719   // If the assembler fails to do so, the linker discards them if
720   // * --discard-locals is used.
721   // * The symbol is in a SHF_MERGE section, which is normally the reason for
722   //   the assembler keeping the .L symbol.
723   StringRef name = sym.getName();
724   bool isLocal = name.startswith(".L") || name.empty();
725   if (!isLocal)
726     return true;
727 
728   if (config->discard == DiscardPolicy::Locals)
729     return false;
730 
731   SectionBase *sec = sym.section;
732   return !sec || !(sec->flags & SHF_MERGE);
733 }
734 
735 static bool includeInSymtab(const Symbol &b) {
736   if (!b.isLocal() && !b.isUsedInRegularObj)
737     return false;
738 
739   if (auto *d = dyn_cast<Defined>(&b)) {
740     // Always include absolute symbols.
741     SectionBase *sec = d->section;
742     if (!sec)
743       return true;
744     sec = sec->repl;
745 
746     // Exclude symbols pointing to garbage-collected sections.
747     if (isa<InputSectionBase>(sec) && !sec->isLive())
748       return false;
749 
750     if (auto *s = dyn_cast<MergeInputSection>(sec))
751       if (!s->getSectionPiece(d->value)->live)
752         return false;
753     return true;
754   }
755   return b.used;
756 }
757 
758 // Local symbols are not in the linker's symbol table. This function scans
759 // each object file's symbol table to copy local symbols to the output.
760 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
761   if (!in.symTab)
762     return;
763   if (config->copyRelocs && config->discard != DiscardPolicy::None)
764     markUsedLocalSymbols<ELFT>();
765   for (InputFile *file : objectFiles) {
766     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
767     for (Symbol *b : f->getLocalSymbols()) {
768       assert(b->isLocal() && "should have been caught in initializeSymbols()");
769       auto *dr = dyn_cast<Defined>(b);
770 
771       // No reason to keep local undefined symbol in symtab.
772       if (!dr)
773         continue;
774       if (!includeInSymtab(*b))
775         continue;
776       if (!shouldKeepInSymtab(*dr))
777         continue;
778       in.symTab->addSymbol(b);
779     }
780   }
781 }
782 
783 // Create a section symbol for each output section so that we can represent
784 // relocations that point to the section. If we know that no relocation is
785 // referring to a section (that happens if the section is a synthetic one), we
786 // don't create a section symbol for that section.
787 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
788   for (BaseCommand *base : script->sectionCommands) {
789     auto *sec = dyn_cast<OutputSection>(base);
790     if (!sec)
791       continue;
792     auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
793       if (auto *isd = dyn_cast<InputSectionDescription>(base))
794         return !isd->sections.empty();
795       return false;
796     });
797     if (i == sec->sectionCommands.end())
798       continue;
799     InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
800 
801     // Relocations are not using REL[A] section symbols.
802     if (isec->type == SHT_REL || isec->type == SHT_RELA)
803       continue;
804 
805     // Unlike other synthetic sections, mergeable output sections contain data
806     // copied from input sections, and there may be a relocation pointing to its
807     // contents if -r or -emit-reloc are given.
808     if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
809       continue;
810 
811     auto *sym =
812         make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
813                       /*value=*/0, /*size=*/0, isec);
814     in.symTab->addSymbol(sym);
815   }
816 }
817 
818 // Today's loaders have a feature to make segments read-only after
819 // processing dynamic relocations to enhance security. PT_GNU_RELRO
820 // is defined for that.
821 //
822 // This function returns true if a section needs to be put into a
823 // PT_GNU_RELRO segment.
824 static bool isRelroSection(const OutputSection *sec) {
825   if (!config->zRelro)
826     return false;
827 
828   uint64_t flags = sec->flags;
829 
830   // Non-allocatable or non-writable sections don't need RELRO because
831   // they are not writable or not even mapped to memory in the first place.
832   // RELRO is for sections that are essentially read-only but need to
833   // be writable only at process startup to allow dynamic linker to
834   // apply relocations.
835   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
836     return false;
837 
838   // Once initialized, TLS data segments are used as data templates
839   // for a thread-local storage. For each new thread, runtime
840   // allocates memory for a TLS and copy templates there. No thread
841   // are supposed to use templates directly. Thus, it can be in RELRO.
842   if (flags & SHF_TLS)
843     return true;
844 
845   // .init_array, .preinit_array and .fini_array contain pointers to
846   // functions that are executed on process startup or exit. These
847   // pointers are set by the static linker, and they are not expected
848   // to change at runtime. But if you are an attacker, you could do
849   // interesting things by manipulating pointers in .fini_array, for
850   // example. So they are put into RELRO.
851   uint32_t type = sec->type;
852   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
853       type == SHT_PREINIT_ARRAY)
854     return true;
855 
856   // .got contains pointers to external symbols. They are resolved by
857   // the dynamic linker when a module is loaded into memory, and after
858   // that they are not expected to change. So, it can be in RELRO.
859   if (in.got && sec == in.got->getParent())
860     return true;
861 
862   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
863   // through r2 register, which is reserved for that purpose. Since r2 is used
864   // for accessing .got as well, .got and .toc need to be close enough in the
865   // virtual address space. Usually, .toc comes just after .got. Since we place
866   // .got into RELRO, .toc needs to be placed into RELRO too.
867   if (sec->name.equals(".toc"))
868     return true;
869 
870   // .got.plt contains pointers to external function symbols. They are
871   // by default resolved lazily, so we usually cannot put it into RELRO.
872   // However, if "-z now" is given, the lazy symbol resolution is
873   // disabled, which enables us to put it into RELRO.
874   if (sec == in.gotPlt->getParent())
875 #ifndef __OpenBSD__
876     return config->zNow;
877 #else
878     return true;	/* kbind(2) means we can always put these in RELRO */
879 #endif
880 
881   // .dynamic section contains data for the dynamic linker, and
882   // there's no need to write to it at runtime, so it's better to put
883   // it into RELRO.
884   if (sec->name == ".dynamic")
885     return true;
886 
887   // Sections with some special names are put into RELRO. This is a
888   // bit unfortunate because section names shouldn't be significant in
889   // ELF in spirit. But in reality many linker features depend on
890   // magic section names.
891   StringRef s = sec->name;
892   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
893          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
894          s == ".fini_array" || s == ".init_array" ||
895          s == ".openbsd.randomdata" || s == ".preinit_array";
896 }
897 
898 // We compute a rank for each section. The rank indicates where the
899 // section should be placed in the file.  Instead of using simple
900 // numbers (0,1,2...), we use a series of flags. One for each decision
901 // point when placing the section.
902 // Using flags has two key properties:
903 // * It is easy to check if a give branch was taken.
904 // * It is easy two see how similar two ranks are (see getRankProximity).
905 enum RankFlags {
906   RF_NOT_ADDR_SET = 1 << 27,
907   RF_NOT_ALLOC = 1 << 26,
908   RF_PARTITION = 1 << 18, // Partition number (8 bits)
909   RF_NOT_PART_EHDR = 1 << 17,
910   RF_NOT_PART_PHDR = 1 << 16,
911   RF_NOT_INTERP = 1 << 15,
912   RF_NOT_NOTE = 1 << 14,
913   RF_WRITE = 1 << 13,
914   RF_EXEC_WRITE = 1 << 12,
915   RF_EXEC = 1 << 11,
916   RF_RODATA = 1 << 10,
917   RF_NOT_RELRO = 1 << 9,
918   RF_NOT_TLS = 1 << 8,
919   RF_BSS = 1 << 7,
920   RF_PPC_NOT_TOCBSS = 1 << 6,
921   RF_PPC_TOCL = 1 << 5,
922   RF_PPC_TOC = 1 << 4,
923   RF_PPC_GOT = 1 << 3,
924   RF_PPC_BRANCH_LT = 1 << 2,
925   RF_MIPS_GPREL = 1 << 1,
926   RF_MIPS_NOT_GOT = 1 << 0
927 };
928 
929 static unsigned getSectionRank(const OutputSection *sec) {
930   unsigned rank = sec->partition * RF_PARTITION;
931 
932   // We want to put section specified by -T option first, so we
933   // can start assigning VA starting from them later.
934   if (config->sectionStartMap.count(sec->name))
935     return rank;
936   rank |= RF_NOT_ADDR_SET;
937 
938   // Allocatable sections go first to reduce the total PT_LOAD size and
939   // so debug info doesn't change addresses in actual code.
940   if (!(sec->flags & SHF_ALLOC))
941     return rank | RF_NOT_ALLOC;
942 
943   if (sec->type == SHT_LLVM_PART_EHDR)
944     return rank;
945   rank |= RF_NOT_PART_EHDR;
946 
947   if (sec->type == SHT_LLVM_PART_PHDR)
948     return rank;
949   rank |= RF_NOT_PART_PHDR;
950 
951   // Put .interp first because some loaders want to see that section
952   // on the first page of the executable file when loaded into memory.
953   if (sec->name == ".interp")
954     return rank;
955   rank |= RF_NOT_INTERP;
956 
957   // Put .note sections (which make up one PT_NOTE) at the beginning so that
958   // they are likely to be included in a core file even if core file size is
959   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
960   // included in a core to match core files with executables.
961   if (sec->type == SHT_NOTE)
962     return rank;
963   rank |= RF_NOT_NOTE;
964 
965   // Sort sections based on their access permission in the following
966   // order: R, RX, RWX, RW.  This order is based on the following
967   // considerations:
968   // * Read-only sections come first such that they go in the
969   //   PT_LOAD covering the program headers at the start of the file.
970   // * Read-only, executable sections come next.
971   // * Writable, executable sections follow such that .plt on
972   //   architectures where it needs to be writable will be placed
973   //   between .text and .data.
974   // * Writable sections come last, such that .bss lands at the very
975   //   end of the last PT_LOAD.
976   bool isExec = sec->flags & SHF_EXECINSTR;
977   bool isWrite = sec->flags & SHF_WRITE;
978 
979   if (isExec) {
980     if (isWrite)
981       rank |= RF_EXEC_WRITE;
982     else
983       rank |= RF_EXEC;
984   } else if (isWrite) {
985     rank |= RF_WRITE;
986   } else if (sec->type == SHT_PROGBITS) {
987     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
988     // .eh_frame) closer to .text. They likely contain PC or GOT relative
989     // relocations and there could be relocation overflow if other huge sections
990     // (.dynstr .dynsym) were placed in between.
991     rank |= RF_RODATA;
992   }
993 
994   // Place RelRo sections first. After considering SHT_NOBITS below, the
995   // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
996   // where | marks where page alignment happens. An alternative ordering is
997   // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
998   // waste more bytes due to 2 alignment places.
999   if (!isRelroSection(sec))
1000     rank |= RF_NOT_RELRO;
1001 
1002   // If we got here we know that both A and B are in the same PT_LOAD.
1003 
1004   // The TLS initialization block needs to be a single contiguous block in a R/W
1005   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
1006   // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
1007   // after PROGBITS.
1008   if (!(sec->flags & SHF_TLS))
1009     rank |= RF_NOT_TLS;
1010 
1011   // Within TLS sections, or within other RelRo sections, or within non-RelRo
1012   // sections, place non-NOBITS sections first.
1013   if (sec->type == SHT_NOBITS)
1014     rank |= RF_BSS;
1015 
1016   // Some architectures have additional ordering restrictions for sections
1017   // within the same PT_LOAD.
1018   if (config->emachine == EM_PPC64) {
1019     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
1020     // that we would like to make sure appear is a specific order to maximize
1021     // their coverage by a single signed 16-bit offset from the TOC base
1022     // pointer. Conversely, the special .tocbss section should be first among
1023     // all SHT_NOBITS sections. This will put it next to the loaded special
1024     // PPC64 sections (and, thus, within reach of the TOC base pointer).
1025     StringRef name = sec->name;
1026     if (name != ".tocbss")
1027       rank |= RF_PPC_NOT_TOCBSS;
1028 
1029     if (name == ".toc1")
1030       rank |= RF_PPC_TOCL;
1031 
1032     if (name == ".toc")
1033       rank |= RF_PPC_TOC;
1034 
1035     if (name == ".got")
1036       rank |= RF_PPC_GOT;
1037 
1038     if (name == ".branch_lt")
1039       rank |= RF_PPC_BRANCH_LT;
1040   }
1041 
1042   if (config->emachine == EM_MIPS) {
1043     // All sections with SHF_MIPS_GPREL flag should be grouped together
1044     // because data in these sections is addressable with a gp relative address.
1045     if (sec->flags & SHF_MIPS_GPREL)
1046       rank |= RF_MIPS_GPREL;
1047 
1048     if (sec->name != ".got")
1049       rank |= RF_MIPS_NOT_GOT;
1050   }
1051 
1052   return rank;
1053 }
1054 
1055 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
1056   const OutputSection *a = cast<OutputSection>(aCmd);
1057   const OutputSection *b = cast<OutputSection>(bCmd);
1058 
1059   if (a->sortRank != b->sortRank)
1060     return a->sortRank < b->sortRank;
1061 
1062   if (!(a->sortRank & RF_NOT_ADDR_SET))
1063     return config->sectionStartMap.lookup(a->name) <
1064            config->sectionStartMap.lookup(b->name);
1065   return false;
1066 }
1067 
1068 void PhdrEntry::add(OutputSection *sec) {
1069   lastSec = sec;
1070   if (!firstSec)
1071     firstSec = sec;
1072   p_align = std::max(p_align, sec->alignment);
1073   if (p_type == PT_LOAD)
1074     sec->ptLoad = this;
1075 }
1076 
1077 // The beginning and the ending of .rel[a].plt section are marked
1078 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1079 // executable. The runtime needs these symbols in order to resolve
1080 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1081 // need these symbols, since IRELATIVE relocs are resolved through GOT
1082 // and PLT. For details, see http://www.airs.com/blog/archives/403.
1083 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1084   if (config->relocatable || needsInterpSection())
1085     return;
1086 
1087   // By default, __rela_iplt_{start,end} belong to a dummy section 0
1088   // because .rela.plt might be empty and thus removed from output.
1089   // We'll override Out::elfHeader with In.relaIplt later when we are
1090   // sure that .rela.plt exists in output.
1091   ElfSym::relaIpltStart = addOptionalRegular(
1092       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1093       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1094 
1095   ElfSym::relaIpltEnd = addOptionalRegular(
1096       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1097       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1098 }
1099 
1100 template <class ELFT>
1101 void Writer<ELFT>::forEachRelSec(
1102     llvm::function_ref<void(InputSectionBase &)> fn) {
1103   // Scan all relocations. Each relocation goes through a series
1104   // of tests to determine if it needs special treatment, such as
1105   // creating GOT, PLT, copy relocations, etc.
1106   // Note that relocations for non-alloc sections are directly
1107   // processed by InputSection::relocateNonAlloc.
1108   for (InputSectionBase *isec : inputSections)
1109     if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1110       fn(*isec);
1111   for (Partition &part : partitions) {
1112     for (EhInputSection *es : part.ehFrame->sections)
1113       fn(*es);
1114     if (part.armExidx && part.armExidx->isLive())
1115       for (InputSection *ex : part.armExidx->exidxSections)
1116         fn(*ex);
1117   }
1118 }
1119 
1120 // This function generates assignments for predefined symbols (e.g. _end or
1121 // _etext) and inserts them into the commands sequence to be processed at the
1122 // appropriate time. This ensures that the value is going to be correct by the
1123 // time any references to these symbols are processed and is equivalent to
1124 // defining these symbols explicitly in the linker script.
1125 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1126   if (ElfSym::globalOffsetTable) {
1127     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1128     // to the start of the .got or .got.plt section.
1129     InputSection *gotSection = in.gotPlt;
1130     if (!target->gotBaseSymInGotPlt)
1131       gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1132                               : cast<InputSection>(in.got);
1133     ElfSym::globalOffsetTable->section = gotSection;
1134   }
1135 
1136   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1137   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1138     ElfSym::relaIpltStart->section = in.relaIplt;
1139     ElfSym::relaIpltEnd->section = in.relaIplt;
1140     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1141   }
1142 
1143   PhdrEntry *last = nullptr;
1144   PhdrEntry *lastRO = nullptr;
1145 
1146   for (Partition &part : partitions) {
1147     for (PhdrEntry *p : part.phdrs) {
1148       if (p->p_type != PT_LOAD)
1149         continue;
1150       last = p;
1151       if (!(p->p_flags & PF_W))
1152         lastRO = p;
1153     }
1154   }
1155 
1156   if (lastRO) {
1157     // _etext is the first location after the last read-only loadable segment.
1158     if (ElfSym::etext1)
1159       ElfSym::etext1->section = lastRO->lastSec;
1160     if (ElfSym::etext2)
1161       ElfSym::etext2->section = lastRO->lastSec;
1162   }
1163 
1164   if (last) {
1165     // _edata points to the end of the last mapped initialized section.
1166     OutputSection *edata = nullptr;
1167     for (OutputSection *os : outputSections) {
1168       if (os->type != SHT_NOBITS)
1169         edata = os;
1170       if (os == last->lastSec)
1171         break;
1172     }
1173 
1174     if (ElfSym::edata1)
1175       ElfSym::edata1->section = edata;
1176     if (ElfSym::edata2)
1177       ElfSym::edata2->section = edata;
1178 
1179     // _end is the first location after the uninitialized data region.
1180     if (ElfSym::end1)
1181       ElfSym::end1->section = last->lastSec;
1182     if (ElfSym::end2)
1183       ElfSym::end2->section = last->lastSec;
1184   }
1185 
1186   if (ElfSym::bss)
1187     ElfSym::bss->section = findSection(".bss");
1188 
1189   if (ElfSym::data)
1190     ElfSym::data->section = findSection(".data");
1191 
1192   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1193   // be equal to the _gp symbol's value.
1194   if (ElfSym::mipsGp) {
1195     // Find GP-relative section with the lowest address
1196     // and use this address to calculate default _gp value.
1197     for (OutputSection *os : outputSections) {
1198       if (os->flags & SHF_MIPS_GPREL) {
1199         ElfSym::mipsGp->section = os;
1200         ElfSym::mipsGp->value = 0x7ff0;
1201         break;
1202       }
1203     }
1204   }
1205 }
1206 
1207 // We want to find how similar two ranks are.
1208 // The more branches in getSectionRank that match, the more similar they are.
1209 // Since each branch corresponds to a bit flag, we can just use
1210 // countLeadingZeros.
1211 static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1212   return countLeadingZeros(a->sortRank ^ b->sortRank);
1213 }
1214 
1215 static int getRankProximity(OutputSection *a, BaseCommand *b) {
1216   auto *sec = dyn_cast<OutputSection>(b);
1217   return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1218 }
1219 
1220 // When placing orphan sections, we want to place them after symbol assignments
1221 // so that an orphan after
1222 //   begin_foo = .;
1223 //   foo : { *(foo) }
1224 //   end_foo = .;
1225 // doesn't break the intended meaning of the begin/end symbols.
1226 // We don't want to go over sections since findOrphanPos is the
1227 // one in charge of deciding the order of the sections.
1228 // We don't want to go over changes to '.', since doing so in
1229 //  rx_sec : { *(rx_sec) }
1230 //  . = ALIGN(0x1000);
1231 //  /* The RW PT_LOAD starts here*/
1232 //  rw_sec : { *(rw_sec) }
1233 // would mean that the RW PT_LOAD would become unaligned.
1234 static bool shouldSkip(BaseCommand *cmd) {
1235   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1236     return assign->name != ".";
1237   return false;
1238 }
1239 
1240 // We want to place orphan sections so that they share as much
1241 // characteristics with their neighbors as possible. For example, if
1242 // both are rw, or both are tls.
1243 static std::vector<BaseCommand *>::iterator
1244 findOrphanPos(std::vector<BaseCommand *>::iterator b,
1245               std::vector<BaseCommand *>::iterator e) {
1246   OutputSection *sec = cast<OutputSection>(*e);
1247 
1248   // Find the first element that has as close a rank as possible.
1249   auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
1250     return getRankProximity(sec, a) < getRankProximity(sec, b);
1251   });
1252   if (i == e)
1253     return e;
1254 
1255   // Consider all existing sections with the same proximity.
1256   int proximity = getRankProximity(sec, *i);
1257   for (; i != e; ++i) {
1258     auto *curSec = dyn_cast<OutputSection>(*i);
1259     if (!curSec || !curSec->hasInputSections)
1260       continue;
1261     if (getRankProximity(sec, curSec) != proximity ||
1262         sec->sortRank < curSec->sortRank)
1263       break;
1264   }
1265 
1266   auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
1267     auto *os = dyn_cast<OutputSection>(cmd);
1268     return os && os->hasInputSections;
1269   };
1270   auto j = std::find_if(llvm::make_reverse_iterator(i),
1271                         llvm::make_reverse_iterator(b),
1272                         isOutputSecWithInputSections);
1273   i = j.base();
1274 
1275   // As a special case, if the orphan section is the last section, put
1276   // it at the very end, past any other commands.
1277   // This matches bfd's behavior and is convenient when the linker script fully
1278   // specifies the start of the file, but doesn't care about the end (the non
1279   // alloc sections for example).
1280   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1281   if (nextSec == e)
1282     return e;
1283 
1284   while (i != e && shouldSkip(*i))
1285     ++i;
1286   return i;
1287 }
1288 
1289 // Adds random priorities to sections not already in the map.
1290 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1291   if (!config->shuffleSectionSeed)
1292     return;
1293 
1294   std::vector<int> priorities(inputSections.size() - order.size());
1295   // Existing priorities are < 0, so use priorities >= 0 for the missing
1296   // sections.
1297   int curPrio = 0;
1298   for (int &prio : priorities)
1299     prio = curPrio++;
1300   uint32_t seed = *config->shuffleSectionSeed;
1301   std::mt19937 g(seed ? seed : std::random_device()());
1302   llvm::shuffle(priorities.begin(), priorities.end(), g);
1303   int prioIndex = 0;
1304   for (InputSectionBase *sec : inputSections) {
1305     if (order.try_emplace(sec, priorities[prioIndex]).second)
1306       ++prioIndex;
1307   }
1308 }
1309 
1310 // Builds section order for handling --symbol-ordering-file.
1311 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1312   DenseMap<const InputSectionBase *, int> sectionOrder;
1313   // Use the rarely used option -call-graph-ordering-file to sort sections.
1314   if (!config->callGraphProfile.empty())
1315     return computeCallGraphProfileOrder();
1316 
1317   if (config->symbolOrderingFile.empty())
1318     return sectionOrder;
1319 
1320   struct SymbolOrderEntry {
1321     int priority;
1322     bool present;
1323   };
1324 
1325   // Build a map from symbols to their priorities. Symbols that didn't
1326   // appear in the symbol ordering file have the lowest priority 0.
1327   // All explicitly mentioned symbols have negative (higher) priorities.
1328   DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1329   int priority = -config->symbolOrderingFile.size();
1330   for (StringRef s : config->symbolOrderingFile)
1331     symbolOrder.insert({s, {priority++, false}});
1332 
1333   // Build a map from sections to their priorities.
1334   auto addSym = [&](Symbol &sym) {
1335     auto it = symbolOrder.find(sym.getName());
1336     if (it == symbolOrder.end())
1337       return;
1338     SymbolOrderEntry &ent = it->second;
1339     ent.present = true;
1340 
1341     maybeWarnUnorderableSymbol(&sym);
1342 
1343     if (auto *d = dyn_cast<Defined>(&sym)) {
1344       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1345         int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1346         priority = std::min(priority, ent.priority);
1347       }
1348     }
1349   };
1350 
1351   // We want both global and local symbols. We get the global ones from the
1352   // symbol table and iterate the object files for the local ones.
1353   for (Symbol *sym : symtab->symbols())
1354     if (!sym->isLazy())
1355       addSym(*sym);
1356 
1357   for (InputFile *file : objectFiles)
1358     for (Symbol *sym : file->getSymbols())
1359       if (sym->isLocal())
1360         addSym(*sym);
1361 
1362   if (config->warnSymbolOrdering)
1363     for (auto orderEntry : symbolOrder)
1364       if (!orderEntry.second.present)
1365         warn("symbol ordering file: no such symbol: " + orderEntry.first);
1366 
1367   return sectionOrder;
1368 }
1369 
1370 // Sorts the sections in ISD according to the provided section order.
1371 static void
1372 sortISDBySectionOrder(InputSectionDescription *isd,
1373                       const DenseMap<const InputSectionBase *, int> &order) {
1374   std::vector<InputSection *> unorderedSections;
1375   std::vector<std::pair<InputSection *, int>> orderedSections;
1376   uint64_t unorderedSize = 0;
1377 
1378   for (InputSection *isec : isd->sections) {
1379     auto i = order.find(isec);
1380     if (i == order.end()) {
1381       unorderedSections.push_back(isec);
1382       unorderedSize += isec->getSize();
1383       continue;
1384     }
1385     orderedSections.push_back({isec, i->second});
1386   }
1387   llvm::sort(orderedSections, llvm::less_second());
1388 
1389   // Find an insertion point for the ordered section list in the unordered
1390   // section list. On targets with limited-range branches, this is the mid-point
1391   // of the unordered section list. This decreases the likelihood that a range
1392   // extension thunk will be needed to enter or exit the ordered region. If the
1393   // ordered section list is a list of hot functions, we can generally expect
1394   // the ordered functions to be called more often than the unordered functions,
1395   // making it more likely that any particular call will be within range, and
1396   // therefore reducing the number of thunks required.
1397   //
1398   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1399   // If the layout is:
1400   //
1401   // 8MB hot
1402   // 32MB cold
1403   //
1404   // only the first 8-16MB of the cold code (depending on which hot function it
1405   // is actually calling) can call the hot code without a range extension thunk.
1406   // However, if we use this layout:
1407   //
1408   // 16MB cold
1409   // 8MB hot
1410   // 16MB cold
1411   //
1412   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1413   // of the second block of cold code can call the hot code without a thunk. So
1414   // we effectively double the amount of code that could potentially call into
1415   // the hot code without a thunk.
1416   size_t insPt = 0;
1417   if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1418     uint64_t unorderedPos = 0;
1419     for (; insPt != unorderedSections.size(); ++insPt) {
1420       unorderedPos += unorderedSections[insPt]->getSize();
1421       if (unorderedPos > unorderedSize / 2)
1422         break;
1423     }
1424   }
1425 
1426   isd->sections.clear();
1427   for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1428     isd->sections.push_back(isec);
1429   for (std::pair<InputSection *, int> p : orderedSections)
1430     isd->sections.push_back(p.first);
1431   for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1432     isd->sections.push_back(isec);
1433 }
1434 
1435 static void sortSection(OutputSection *sec,
1436                         const DenseMap<const InputSectionBase *, int> &order) {
1437   StringRef name = sec->name;
1438 
1439   // Never sort these.
1440   if (name == ".init" || name == ".fini")
1441     return;
1442 
1443   // Sort input sections by priority using the list provided by
1444   // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1445   // digit radix sort. The sections may be sorted stably again by a more
1446   // significant key.
1447   if (!order.empty())
1448     for (BaseCommand *b : sec->sectionCommands)
1449       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1450         sortISDBySectionOrder(isd, order);
1451 
1452   // Sort input sections by section name suffixes for
1453   // __attribute__((init_priority(N))).
1454   if (name == ".init_array" || name == ".fini_array") {
1455     if (!script->hasSectionsCommand)
1456       sec->sortInitFini();
1457     return;
1458   }
1459 
1460   // Sort input sections by the special rule for .ctors and .dtors.
1461   if (name == ".ctors" || name == ".dtors") {
1462     if (!script->hasSectionsCommand)
1463       sec->sortCtorsDtors();
1464     return;
1465   }
1466 
1467   // .toc is allocated just after .got and is accessed using GOT-relative
1468   // relocations. Object files compiled with small code model have an
1469   // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1470   // To reduce the risk of relocation overflow, .toc contents are sorted so that
1471   // sections having smaller relocation offsets are at beginning of .toc
1472   if (config->emachine == EM_PPC64 && name == ".toc") {
1473     if (script->hasSectionsCommand)
1474       return;
1475     assert(sec->sectionCommands.size() == 1);
1476     auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
1477     llvm::stable_sort(isd->sections,
1478                       [](const InputSection *a, const InputSection *b) -> bool {
1479                         return a->file->ppc64SmallCodeModelTocRelocs &&
1480                                !b->file->ppc64SmallCodeModelTocRelocs;
1481                       });
1482     return;
1483   }
1484 }
1485 
1486 // If no layout was provided by linker script, we want to apply default
1487 // sorting for special input sections. This also handles --symbol-ordering-file.
1488 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1489   // Build the order once since it is expensive.
1490   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1491   maybeShuffle(order);
1492   for (BaseCommand *base : script->sectionCommands)
1493     if (auto *sec = dyn_cast<OutputSection>(base))
1494       sortSection(sec, order);
1495 }
1496 
1497 template <class ELFT> void Writer<ELFT>::sortSections() {
1498   script->adjustSectionsBeforeSorting();
1499 
1500   // Don't sort if using -r. It is not necessary and we want to preserve the
1501   // relative order for SHF_LINK_ORDER sections.
1502   if (config->relocatable)
1503     return;
1504 
1505   sortInputSections();
1506 
1507   for (BaseCommand *base : script->sectionCommands) {
1508     auto *os = dyn_cast<OutputSection>(base);
1509     if (!os)
1510       continue;
1511     os->sortRank = getSectionRank(os);
1512 
1513     // We want to assign rude approximation values to outSecOff fields
1514     // to know the relative order of the input sections. We use it for
1515     // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1516     uint64_t i = 0;
1517     for (InputSection *sec : getInputSections(os))
1518       sec->outSecOff = i++;
1519   }
1520 
1521   if (!script->hasSectionsCommand) {
1522     // We know that all the OutputSections are contiguous in this case.
1523     auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
1524     std::stable_sort(
1525         llvm::find_if(script->sectionCommands, isSection),
1526         llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1527         compareSections);
1528 
1529     // Process INSERT commands. From this point onwards the order of
1530     // script->sectionCommands is fixed.
1531     script->processInsertCommands();
1532     return;
1533   }
1534 
1535   script->processInsertCommands();
1536 
1537   // Orphan sections are sections present in the input files which are
1538   // not explicitly placed into the output file by the linker script.
1539   //
1540   // The sections in the linker script are already in the correct
1541   // order. We have to figuere out where to insert the orphan
1542   // sections.
1543   //
1544   // The order of the sections in the script is arbitrary and may not agree with
1545   // compareSections. This means that we cannot easily define a strict weak
1546   // ordering. To see why, consider a comparison of a section in the script and
1547   // one not in the script. We have a two simple options:
1548   // * Make them equivalent (a is not less than b, and b is not less than a).
1549   //   The problem is then that equivalence has to be transitive and we can
1550   //   have sections a, b and c with only b in a script and a less than c
1551   //   which breaks this property.
1552   // * Use compareSectionsNonScript. Given that the script order doesn't have
1553   //   to match, we can end up with sections a, b, c, d where b and c are in the
1554   //   script and c is compareSectionsNonScript less than b. In which case d
1555   //   can be equivalent to c, a to b and d < a. As a concrete example:
1556   //   .a (rx) # not in script
1557   //   .b (rx) # in script
1558   //   .c (ro) # in script
1559   //   .d (ro) # not in script
1560   //
1561   // The way we define an order then is:
1562   // *  Sort only the orphan sections. They are in the end right now.
1563   // *  Move each orphan section to its preferred position. We try
1564   //    to put each section in the last position where it can share
1565   //    a PT_LOAD.
1566   //
1567   // There is some ambiguity as to where exactly a new entry should be
1568   // inserted, because Commands contains not only output section
1569   // commands but also other types of commands such as symbol assignment
1570   // expressions. There's no correct answer here due to the lack of the
1571   // formal specification of the linker script. We use heuristics to
1572   // determine whether a new output command should be added before or
1573   // after another commands. For the details, look at shouldSkip
1574   // function.
1575 
1576   auto i = script->sectionCommands.begin();
1577   auto e = script->sectionCommands.end();
1578   auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
1579     if (auto *sec = dyn_cast<OutputSection>(base))
1580       return sec->sectionIndex == UINT32_MAX;
1581     return false;
1582   });
1583 
1584   // Sort the orphan sections.
1585   std::stable_sort(nonScriptI, e, compareSections);
1586 
1587   // As a horrible special case, skip the first . assignment if it is before any
1588   // section. We do this because it is common to set a load address by starting
1589   // the script with ". = 0xabcd" and the expectation is that every section is
1590   // after that.
1591   auto firstSectionOrDotAssignment =
1592       std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
1593   if (firstSectionOrDotAssignment != e &&
1594       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1595     ++firstSectionOrDotAssignment;
1596   i = firstSectionOrDotAssignment;
1597 
1598   while (nonScriptI != e) {
1599     auto pos = findOrphanPos(i, nonScriptI);
1600     OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1601 
1602     // As an optimization, find all sections with the same sort rank
1603     // and insert them with one rotate.
1604     unsigned rank = orphan->sortRank;
1605     auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
1606       return cast<OutputSection>(cmd)->sortRank != rank;
1607     });
1608     std::rotate(pos, nonScriptI, end);
1609     nonScriptI = end;
1610   }
1611 
1612   script->adjustSectionsAfterSorting();
1613 }
1614 
1615 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1616   InputSection *la = a->getLinkOrderDep();
1617   InputSection *lb = b->getLinkOrderDep();
1618   OutputSection *aOut = la->getParent();
1619   OutputSection *bOut = lb->getParent();
1620 
1621   if (aOut != bOut)
1622     return aOut->addr < bOut->addr;
1623   return la->outSecOff < lb->outSecOff;
1624 }
1625 
1626 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1627   for (OutputSection *sec : outputSections) {
1628     if (!(sec->flags & SHF_LINK_ORDER))
1629       continue;
1630 
1631     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1632     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1633     if (!config->relocatable && config->emachine == EM_ARM &&
1634         sec->type == SHT_ARM_EXIDX)
1635       continue;
1636 
1637     // Link order may be distributed across several InputSectionDescriptions
1638     // but sort must consider them all at once.
1639     std::vector<InputSection **> scriptSections;
1640     std::vector<InputSection *> sections;
1641     bool started = false, stopped = false;
1642     for (BaseCommand *base : sec->sectionCommands) {
1643       if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
1644         for (InputSection *&isec : isd->sections) {
1645           if (!(isec->flags & SHF_LINK_ORDER)) {
1646             if (started)
1647               stopped = true;
1648           } else if (stopped) {
1649             error(toString(isec) + ": SHF_LINK_ORDER sections in " + sec->name +
1650                   " are not contiguous");
1651           } else {
1652             started = true;
1653 
1654             scriptSections.push_back(&isec);
1655             sections.push_back(isec);
1656 
1657             InputSection *link = isec->getLinkOrderDep();
1658             if (!link->getParent())
1659               error(toString(isec) + ": sh_link points to discarded section " +
1660                     toString(link));
1661           }
1662         }
1663       } else if (started) {
1664         stopped = true;
1665       }
1666     }
1667 
1668     if (errorCount())
1669       continue;
1670 
1671     llvm::stable_sort(sections, compareByFilePosition);
1672 
1673     for (int i = 0, n = sections.size(); i < n; ++i)
1674       *scriptSections[i] = sections[i];
1675   }
1676 }
1677 
1678 static void finalizeSynthetic(SyntheticSection *sec) {
1679   if (sec && sec->isNeeded() && sec->getParent())
1680     sec->finalizeContents();
1681 }
1682 
1683 // We need to generate and finalize the content that depends on the address of
1684 // InputSections. As the generation of the content may also alter InputSection
1685 // addresses we must converge to a fixed point. We do that here. See the comment
1686 // in Writer<ELFT>::finalizeSections().
1687 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1688   ThunkCreator tc;
1689   AArch64Err843419Patcher a64p;
1690   ARMErr657417Patcher a32p;
1691   script->assignAddresses();
1692   // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1693   // do require the relative addresses of OutputSections because linker scripts
1694   // can assign Virtual Addresses to OutputSections that are not monotonically
1695   // increasing.
1696   for (Partition &part : partitions)
1697     finalizeSynthetic(part.armExidx);
1698   resolveShfLinkOrder();
1699 
1700   // Converts call x@GDPLT to call __tls_get_addr
1701   if (config->emachine == EM_HEXAGON)
1702     hexagonTLSSymbolUpdate(outputSections);
1703 
1704   int assignPasses = 0;
1705   for (;;) {
1706     bool changed = target->needsThunks && tc.createThunks(outputSections);
1707 
1708     // With Thunk Size much smaller than branch range we expect to
1709     // converge quickly; if we get to 10 something has gone wrong.
1710     if (changed && tc.pass >= 10) {
1711       error("thunk creation not converged");
1712       break;
1713     }
1714 
1715     if (config->fixCortexA53Errata843419) {
1716       if (changed)
1717         script->assignAddresses();
1718       changed |= a64p.createFixes();
1719     }
1720     if (config->fixCortexA8) {
1721       if (changed)
1722         script->assignAddresses();
1723       changed |= a32p.createFixes();
1724     }
1725 
1726     if (in.mipsGot)
1727       in.mipsGot->updateAllocSize();
1728 
1729     for (Partition &part : partitions) {
1730       changed |= part.relaDyn->updateAllocSize();
1731       if (part.relrDyn)
1732         changed |= part.relrDyn->updateAllocSize();
1733     }
1734 
1735     const Defined *changedSym = script->assignAddresses();
1736     if (!changed) {
1737       // Some symbols may be dependent on section addresses. When we break the
1738       // loop, the symbol values are finalized because a previous
1739       // assignAddresses() finalized section addresses.
1740       if (!changedSym)
1741         break;
1742       if (++assignPasses == 5) {
1743         errorOrWarn("assignment to symbol " + toString(*changedSym) +
1744                     " does not converge");
1745         break;
1746       }
1747     }
1748   }
1749 
1750   // If addrExpr is set, the address may not be a multiple of the alignment.
1751   // Warn because this is error-prone.
1752   for (BaseCommand *cmd : script->sectionCommands)
1753     if (auto *os = dyn_cast<OutputSection>(cmd))
1754       if (os->addr % os->alignment != 0)
1755         warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " +
1756              os->name + " is not a multiple of alignment (" +
1757              Twine(os->alignment) + ")");
1758 }
1759 
1760 // If Input Sections have been shrinked (basic block sections) then
1761 // update symbol values and sizes associated with these sections.  With basic
1762 // block sections, input sections can shrink when the jump instructions at
1763 // the end of the section are relaxed.
1764 static void fixSymbolsAfterShrinking() {
1765   for (InputFile *File : objectFiles) {
1766     parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1767       auto *def = dyn_cast<Defined>(Sym);
1768       if (!def)
1769         return;
1770 
1771       const SectionBase *sec = def->section;
1772       if (!sec)
1773         return;
1774 
1775       const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl);
1776       if (!inputSec || !inputSec->bytesDropped)
1777         return;
1778 
1779       const size_t OldSize = inputSec->data().size();
1780       const size_t NewSize = OldSize - inputSec->bytesDropped;
1781 
1782       if (def->value > NewSize && def->value <= OldSize) {
1783         LLVM_DEBUG(llvm::dbgs()
1784                    << "Moving symbol " << Sym->getName() << " from "
1785                    << def->value << " to "
1786                    << def->value - inputSec->bytesDropped << " bytes\n");
1787         def->value -= inputSec->bytesDropped;
1788         return;
1789       }
1790 
1791       if (def->value + def->size > NewSize && def->value <= OldSize &&
1792           def->value + def->size <= OldSize) {
1793         LLVM_DEBUG(llvm::dbgs()
1794                    << "Shrinking symbol " << Sym->getName() << " from "
1795                    << def->size << " to " << def->size - inputSec->bytesDropped
1796                    << " bytes\n");
1797         def->size -= inputSec->bytesDropped;
1798       }
1799     });
1800   }
1801 }
1802 
1803 // If basic block sections exist, there are opportunities to delete fall thru
1804 // jumps and shrink jump instructions after basic block reordering.  This
1805 // relaxation pass does that.  It is only enabled when --optimize-bb-jumps
1806 // option is used.
1807 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1808   assert(config->optimizeBBJumps);
1809 
1810   script->assignAddresses();
1811   // For every output section that has executable input sections, this
1812   // does the following:
1813   //   1. Deletes all direct jump instructions in input sections that
1814   //      jump to the following section as it is not required.
1815   //   2. If there are two consecutive jump instructions, it checks
1816   //      if they can be flipped and one can be deleted.
1817   for (OutputSection *os : outputSections) {
1818     if (!(os->flags & SHF_EXECINSTR))
1819       continue;
1820     std::vector<InputSection *> sections = getInputSections(os);
1821     std::vector<unsigned> result(sections.size());
1822     // Delete all fall through jump instructions.  Also, check if two
1823     // consecutive jump instructions can be flipped so that a fall
1824     // through jmp instruction can be deleted.
1825     parallelForEachN(0, sections.size(), [&](size_t i) {
1826       InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1827       InputSection &is = *sections[i];
1828       result[i] =
1829           target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0;
1830     });
1831     size_t numDeleted = std::count(result.begin(), result.end(), 1);
1832     if (numDeleted > 0) {
1833       script->assignAddresses();
1834       LLVM_DEBUG(llvm::dbgs()
1835                  << "Removing " << numDeleted << " fall through jumps\n");
1836     }
1837   }
1838 
1839   fixSymbolsAfterShrinking();
1840 
1841   for (OutputSection *os : outputSections) {
1842     std::vector<InputSection *> sections = getInputSections(os);
1843     for (InputSection *is : sections)
1844       is->trim();
1845   }
1846 }
1847 
1848 // In order to allow users to manipulate linker-synthesized sections,
1849 // we had to add synthetic sections to the input section list early,
1850 // even before we make decisions whether they are needed. This allows
1851 // users to write scripts like this: ".mygot : { .got }".
1852 //
1853 // Doing it has an unintended side effects. If it turns out that we
1854 // don't need a .got (for example) at all because there's no
1855 // relocation that needs a .got, we don't want to emit .got.
1856 //
1857 // To deal with the above problem, this function is called after
1858 // scanRelocations is called to remove synthetic sections that turn
1859 // out to be empty.
1860 static void removeUnusedSyntheticSections() {
1861   // All input synthetic sections that can be empty are placed after
1862   // all regular ones. We iterate over them all and exit at first
1863   // non-synthetic.
1864   for (InputSectionBase *s : llvm::reverse(inputSections)) {
1865     SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
1866     if (!ss)
1867       return;
1868     OutputSection *os = ss->getParent();
1869     if (!os || ss->isNeeded())
1870       continue;
1871 
1872     // If we reach here, then ss is an unused synthetic section and we want to
1873     // remove it from the corresponding input section description, and
1874     // orphanSections.
1875     for (BaseCommand *b : os->sectionCommands)
1876       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1877         llvm::erase_if(isd->sections,
1878                        [=](InputSection *isec) { return isec == ss; });
1879     llvm::erase_if(script->orphanSections,
1880                    [=](const InputSectionBase *isec) { return isec == ss; });
1881   }
1882 }
1883 
1884 // Create output section objects and add them to OutputSections.
1885 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1886   Out::preinitArray = findSection(".preinit_array");
1887   Out::initArray = findSection(".init_array");
1888   Out::finiArray = findSection(".fini_array");
1889 
1890   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1891   // symbols for sections, so that the runtime can get the start and end
1892   // addresses of each section by section name. Add such symbols.
1893   if (!config->relocatable) {
1894     addStartEndSymbols();
1895     for (BaseCommand *base : script->sectionCommands)
1896       if (auto *sec = dyn_cast<OutputSection>(base))
1897         addStartStopSymbols(sec);
1898   }
1899 
1900   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1901   // It should be okay as no one seems to care about the type.
1902   // Even the author of gold doesn't remember why gold behaves that way.
1903   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1904   if (mainPart->dynamic->parent)
1905     symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1906                               STV_HIDDEN, STT_NOTYPE,
1907                               /*value=*/0, /*size=*/0, mainPart->dynamic});
1908 
1909   // Define __rel[a]_iplt_{start,end} symbols if needed.
1910   addRelIpltSymbols();
1911 
1912   // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1913   // should only be defined in an executable. If .sdata does not exist, its
1914   // value/section does not matter but it has to be relative, so set its
1915   // st_shndx arbitrarily to 1 (Out::elfHeader).
1916   if (config->emachine == EM_RISCV && !config->shared) {
1917     OutputSection *sec = findSection(".sdata");
1918     ElfSym::riscvGlobalPointer =
1919         addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1920                            0x800, STV_DEFAULT, STB_GLOBAL);
1921   }
1922 
1923   if (config->emachine == EM_X86_64) {
1924     // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1925     // way that:
1926     //
1927     // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1928     // computes 0.
1929     // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1930     // the TLS block).
1931     //
1932     // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1933     // an absolute symbol of zero. This is different from GNU linkers which
1934     // define _TLS_MODULE_BASE_ relative to the first TLS section.
1935     Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1936     if (s && s->isUndefined()) {
1937       s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1938                          STT_TLS, /*value=*/0, 0,
1939                          /*section=*/nullptr});
1940       ElfSym::tlsModuleBase = cast<Defined>(s);
1941     }
1942   }
1943 
1944   // This responsible for splitting up .eh_frame section into
1945   // pieces. The relocation scan uses those pieces, so this has to be
1946   // earlier.
1947   for (Partition &part : partitions)
1948     finalizeSynthetic(part.ehFrame);
1949 
1950   for (Symbol *sym : symtab->symbols())
1951     sym->isPreemptible = computeIsPreemptible(*sym);
1952 
1953   // Change values of linker-script-defined symbols from placeholders (assigned
1954   // by declareSymbols) to actual definitions.
1955   script->processSymbolAssignments();
1956 
1957   // Scan relocations. This must be done after every symbol is declared so that
1958   // we can correctly decide if a dynamic relocation is needed. This is called
1959   // after processSymbolAssignments() because it needs to know whether a
1960   // linker-script-defined symbol is absolute.
1961   ppc64noTocRelax.clear();
1962   if (!config->relocatable) {
1963     forEachRelSec(scanRelocations<ELFT>);
1964     reportUndefinedSymbols<ELFT>();
1965   }
1966 
1967   if (in.plt && in.plt->isNeeded())
1968     in.plt->addSymbols();
1969   if (in.iplt && in.iplt->isNeeded())
1970     in.iplt->addSymbols();
1971 
1972   if (!config->allowShlibUndefined) {
1973     // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1974     // entries are seen. These cases would otherwise lead to runtime errors
1975     // reported by the dynamic linker.
1976     //
1977     // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1978     // catch more cases. That is too much for us. Our approach resembles the one
1979     // used in ld.gold, achieves a good balance to be useful but not too smart.
1980     for (SharedFile *file : sharedFiles)
1981       file->allNeededIsKnown =
1982           llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1983             return symtab->soNames.count(needed);
1984           });
1985 
1986     for (Symbol *sym : symtab->symbols())
1987       if (sym->isUndefined() && !sym->isWeak())
1988         if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
1989           if (f->allNeededIsKnown)
1990             errorOrWarn(toString(f) + ": undefined reference to " +
1991                         toString(*sym) + " [--no-allow-shlib-undefined]");
1992   }
1993 
1994   // Now that we have defined all possible global symbols including linker-
1995   // synthesized ones. Visit all symbols to give the finishing touches.
1996   for (Symbol *sym : symtab->symbols()) {
1997     if (!includeInSymtab(*sym))
1998       continue;
1999     if (in.symTab)
2000       in.symTab->addSymbol(sym);
2001 
2002     if (sym->includeInDynsym()) {
2003       partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
2004       if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
2005         if (file->isNeeded && !sym->isUndefined())
2006           addVerneed(sym);
2007     }
2008   }
2009 
2010   // We also need to scan the dynamic relocation tables of the other partitions
2011   // and add any referenced symbols to the partition's dynsym.
2012   for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
2013     DenseSet<Symbol *> syms;
2014     for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
2015       syms.insert(e.sym);
2016     for (DynamicReloc &reloc : part.relaDyn->relocs)
2017       if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
2018         part.dynSymTab->addSymbol(reloc.sym);
2019   }
2020 
2021   // Do not proceed if there was an undefined symbol.
2022   if (errorCount())
2023     return;
2024 
2025   if (in.mipsGot)
2026     in.mipsGot->build();
2027 
2028   removeUnusedSyntheticSections();
2029   script->diagnoseOrphanHandling();
2030 
2031   sortSections();
2032 
2033   // Now that we have the final list, create a list of all the
2034   // OutputSections for convenience.
2035   for (BaseCommand *base : script->sectionCommands)
2036     if (auto *sec = dyn_cast<OutputSection>(base))
2037       outputSections.push_back(sec);
2038 
2039   // Prefer command line supplied address over other constraints.
2040   for (OutputSection *sec : outputSections) {
2041     auto i = config->sectionStartMap.find(sec->name);
2042     if (i != config->sectionStartMap.end())
2043       sec->addrExpr = [=] { return i->second; };
2044   }
2045 
2046   // With the outputSections available check for GDPLT relocations
2047   // and add __tls_get_addr symbol if needed.
2048   if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2049     Symbol *sym = symtab->addSymbol(Undefined{
2050         nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2051     sym->isPreemptible = true;
2052     partitions[0].dynSymTab->addSymbol(sym);
2053   }
2054 
2055   // This is a bit of a hack. A value of 0 means undef, so we set it
2056   // to 1 to make __ehdr_start defined. The section number is not
2057   // particularly relevant.
2058   Out::elfHeader->sectionIndex = 1;
2059 
2060   for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
2061     OutputSection *sec = outputSections[i];
2062     sec->sectionIndex = i + 1;
2063     sec->shName = in.shStrTab->addString(sec->name);
2064   }
2065 
2066   // Binary and relocatable output does not have PHDRS.
2067   // The headers have to be created before finalize as that can influence the
2068   // image base and the dynamic section on mips includes the image base.
2069   if (!config->relocatable && !config->oFormatBinary) {
2070     for (Partition &part : partitions) {
2071       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2072                                               : createPhdrs(part);
2073       if (config->emachine == EM_ARM) {
2074         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2075         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2076       }
2077       if (config->emachine == EM_MIPS) {
2078         // Add separate segments for MIPS-specific sections.
2079         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2080         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2081         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2082       }
2083     }
2084     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2085 
2086     // Find the TLS segment. This happens before the section layout loop so that
2087     // Android relocation packing can look up TLS symbol addresses. We only need
2088     // to care about the main partition here because all TLS symbols were moved
2089     // to the main partition (see MarkLive.cpp).
2090     for (PhdrEntry *p : mainPart->phdrs)
2091       if (p->p_type == PT_TLS)
2092         Out::tlsPhdr = p;
2093   }
2094 
2095   // Some symbols are defined in term of program headers. Now that we
2096   // have the headers, we can find out which sections they point to.
2097   setReservedSymbolSections();
2098 
2099   finalizeSynthetic(in.bss);
2100   finalizeSynthetic(in.bssRelRo);
2101   finalizeSynthetic(in.symTabShndx);
2102   finalizeSynthetic(in.shStrTab);
2103   finalizeSynthetic(in.strTab);
2104   finalizeSynthetic(in.got);
2105   finalizeSynthetic(in.mipsGot);
2106   finalizeSynthetic(in.igotPlt);
2107   finalizeSynthetic(in.gotPlt);
2108   finalizeSynthetic(in.relaIplt);
2109   finalizeSynthetic(in.relaPlt);
2110   finalizeSynthetic(in.plt);
2111   finalizeSynthetic(in.iplt);
2112   finalizeSynthetic(in.ppc32Got2);
2113   finalizeSynthetic(in.partIndex);
2114 
2115   // Dynamic section must be the last one in this list and dynamic
2116   // symbol table section (dynSymTab) must be the first one.
2117   for (Partition &part : partitions) {
2118     finalizeSynthetic(part.dynSymTab);
2119     finalizeSynthetic(part.gnuHashTab);
2120     finalizeSynthetic(part.hashTab);
2121     finalizeSynthetic(part.verDef);
2122     finalizeSynthetic(part.relaDyn);
2123     finalizeSynthetic(part.relrDyn);
2124     finalizeSynthetic(part.ehFrameHdr);
2125     finalizeSynthetic(part.verSym);
2126     finalizeSynthetic(part.verNeed);
2127     finalizeSynthetic(part.dynamic);
2128   }
2129 
2130   if (!script->hasSectionsCommand && !config->relocatable)
2131     fixSectionAlignments();
2132 
2133   // This is used to:
2134   // 1) Create "thunks":
2135   //    Jump instructions in many ISAs have small displacements, and therefore
2136   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
2137   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
2138   //    responsibility to create and insert small pieces of code between
2139   //    sections to extend the ranges if jump targets are out of range. Such
2140   //    code pieces are called "thunks".
2141   //
2142   //    We add thunks at this stage. We couldn't do this before this point
2143   //    because this is the earliest point where we know sizes of sections and
2144   //    their layouts (that are needed to determine if jump targets are in
2145   //    range).
2146   //
2147   // 2) Update the sections. We need to generate content that depends on the
2148   //    address of InputSections. For example, MIPS GOT section content or
2149   //    android packed relocations sections content.
2150   //
2151   // 3) Assign the final values for the linker script symbols. Linker scripts
2152   //    sometimes using forward symbol declarations. We want to set the correct
2153   //    values. They also might change after adding the thunks.
2154   finalizeAddressDependentContent();
2155   if (errorCount())
2156     return;
2157 
2158   // finalizeAddressDependentContent may have added local symbols to the static symbol table.
2159   finalizeSynthetic(in.symTab);
2160   finalizeSynthetic(in.ppc64LongBranchTarget);
2161 
2162   // Relaxation to delete inter-basic block jumps created by basic block
2163   // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2164   // can relax jump instructions based on symbol offset.
2165   if (config->optimizeBBJumps)
2166     optimizeBasicBlockJumps();
2167 
2168   // Fill other section headers. The dynamic table is finalized
2169   // at the end because some tags like RELSZ depend on result
2170   // of finalizing other sections.
2171   for (OutputSection *sec : outputSections)
2172     sec->finalize();
2173 }
2174 
2175 // Ensure data sections are not mixed with executable sections when
2176 // -execute-only is used. -execute-only is a feature to make pages executable
2177 // but not readable, and the feature is currently supported only on AArch64.
2178 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2179   if (!config->executeOnly)
2180     return;
2181 
2182   for (OutputSection *os : outputSections)
2183     if (os->flags & SHF_EXECINSTR)
2184       for (InputSection *isec : getInputSections(os))
2185         if (!(isec->flags & SHF_EXECINSTR))
2186           error("cannot place " + toString(isec) + " into " + toString(os->name) +
2187                 ": -execute-only does not support intermingling data and code");
2188 }
2189 
2190 // The linker is expected to define SECNAME_start and SECNAME_end
2191 // symbols for a few sections. This function defines them.
2192 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2193   // If a section does not exist, there's ambiguity as to how we
2194   // define _start and _end symbols for an init/fini section. Since
2195   // the loader assume that the symbols are always defined, we need to
2196   // always define them. But what value? The loader iterates over all
2197   // pointers between _start and _end to run global ctors/dtors, so if
2198   // the section is empty, their symbol values don't actually matter
2199   // as long as _start and _end point to the same location.
2200   //
2201   // That said, we don't want to set the symbols to 0 (which is
2202   // probably the simplest value) because that could cause some
2203   // program to fail to link due to relocation overflow, if their
2204   // program text is above 2 GiB. We use the address of the .text
2205   // section instead to prevent that failure.
2206   //
2207   // In rare situations, the .text section may not exist. If that's the
2208   // case, use the image base address as a last resort.
2209   OutputSection *Default = findSection(".text");
2210   if (!Default)
2211     Default = Out::elfHeader;
2212 
2213   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2214     if (os) {
2215       addOptionalRegular(start, os, 0);
2216       addOptionalRegular(end, os, -1);
2217     } else {
2218       addOptionalRegular(start, Default, 0);
2219       addOptionalRegular(end, Default, 0);
2220     }
2221   };
2222 
2223   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2224   define("__init_array_start", "__init_array_end", Out::initArray);
2225   define("__fini_array_start", "__fini_array_end", Out::finiArray);
2226 
2227   if (OutputSection *sec = findSection(".ARM.exidx"))
2228     define("__exidx_start", "__exidx_end", sec);
2229 }
2230 
2231 // If a section name is valid as a C identifier (which is rare because of
2232 // the leading '.'), linkers are expected to define __start_<secname> and
2233 // __stop_<secname> symbols. They are at beginning and end of the section,
2234 // respectively. This is not requested by the ELF standard, but GNU ld and
2235 // gold provide the feature, and used by many programs.
2236 template <class ELFT>
2237 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
2238   StringRef s = sec->name;
2239   if (!isValidCIdentifier(s))
2240     return;
2241   addOptionalRegular(saver.save("__start_" + s), sec, 0,
2242                      config->zStartStopVisibility);
2243   addOptionalRegular(saver.save("__stop_" + s), sec, -1,
2244                      config->zStartStopVisibility);
2245 }
2246 
2247 static bool needsPtLoad(OutputSection *sec) {
2248   if (!(sec->flags & SHF_ALLOC) || sec->noload)
2249     return false;
2250 
2251   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2252   // responsible for allocating space for them, not the PT_LOAD that
2253   // contains the TLS initialization image.
2254   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2255     return false;
2256   return true;
2257 }
2258 
2259 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2260 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2261 // RW. This means that there is no alignment in the RO to RX transition and we
2262 // cannot create a PT_LOAD there.
2263 static uint64_t computeFlags(uint64_t flags) {
2264   if (config->omagic)
2265     return PF_R | PF_W | PF_X;
2266   if (config->executeOnly && (flags & PF_X))
2267     return flags & ~PF_R;
2268   if (config->singleRoRx && !(flags & PF_W))
2269     return flags | PF_X;
2270   return flags;
2271 }
2272 
2273 // Decide which program headers to create and which sections to include in each
2274 // one.
2275 template <class ELFT>
2276 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2277   std::vector<PhdrEntry *> ret;
2278   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2279     ret.push_back(make<PhdrEntry>(type, flags));
2280     return ret.back();
2281   };
2282 
2283   unsigned partNo = part.getNumber();
2284   bool isMain = partNo == 1;
2285 
2286   // Add the first PT_LOAD segment for regular output sections.
2287   uint64_t flags = computeFlags(PF_R);
2288   PhdrEntry *load = nullptr;
2289 
2290   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2291   // PT_LOAD.
2292   if (!config->nmagic && !config->omagic) {
2293     // The first phdr entry is PT_PHDR which describes the program header
2294     // itself.
2295     if (isMain)
2296       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2297     else
2298       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2299 
2300     // PT_INTERP must be the second entry if exists.
2301     if (OutputSection *cmd = findSection(".interp", partNo))
2302       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2303 
2304     // Add the headers. We will remove them if they don't fit.
2305     // In the other partitions the headers are ordinary sections, so they don't
2306     // need to be added here.
2307     if (isMain) {
2308       load = addHdr(PT_LOAD, flags);
2309       load->add(Out::elfHeader);
2310       load->add(Out::programHeaders);
2311     }
2312   }
2313 
2314   // PT_GNU_RELRO includes all sections that should be marked as
2315   // read-only by dynamic linker after processing relocations.
2316   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2317   // an error message if more than one PT_GNU_RELRO PHDR is required.
2318   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2319   bool inRelroPhdr = false;
2320   OutputSection *relroEnd = nullptr;
2321   for (OutputSection *sec : outputSections) {
2322     if (sec->partition != partNo || !needsPtLoad(sec))
2323       continue;
2324     if (isRelroSection(sec)) {
2325       inRelroPhdr = true;
2326       if (!relroEnd)
2327         relRo->add(sec);
2328       else
2329         error("section: " + sec->name + " is not contiguous with other relro" +
2330               " sections");
2331     } else if (inRelroPhdr) {
2332       inRelroPhdr = false;
2333       relroEnd = sec;
2334     }
2335   }
2336 
2337   for (OutputSection *sec : outputSections) {
2338     if (!(sec->flags & SHF_ALLOC))
2339       break;
2340     if (!needsPtLoad(sec))
2341       continue;
2342 
2343     // Normally, sections in partitions other than the current partition are
2344     // ignored. But partition number 255 is a special case: it contains the
2345     // partition end marker (.part.end). It needs to be added to the main
2346     // partition so that a segment is created for it in the main partition,
2347     // which will cause the dynamic loader to reserve space for the other
2348     // partitions.
2349     if (sec->partition != partNo) {
2350       if (isMain && sec->partition == 255)
2351         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2352       continue;
2353     }
2354 
2355     // Segments are contiguous memory regions that has the same attributes
2356     // (e.g. executable or writable). There is one phdr for each segment.
2357     // Therefore, we need to create a new phdr when the next section has
2358     // different flags or is loaded at a discontiguous address or memory
2359     // region using AT or AT> linker script command, respectively. At the same
2360     // time, we don't want to create a separate load segment for the headers,
2361     // even if the first output section has an AT or AT> attribute.
2362     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2363     bool sameLMARegion =
2364         load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2365     if (!(load && newFlags == flags && sec != relroEnd &&
2366           sec->memRegion == load->firstSec->memRegion &&
2367           (sameLMARegion || load->lastSec == Out::programHeaders))) {
2368       load = addHdr(PT_LOAD, newFlags);
2369       flags = newFlags;
2370     }
2371 
2372     load->add(sec);
2373   }
2374 
2375   // Add a TLS segment if any.
2376   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2377   for (OutputSection *sec : outputSections)
2378     if (sec->partition == partNo && sec->flags & SHF_TLS)
2379       tlsHdr->add(sec);
2380   if (tlsHdr->firstSec)
2381     ret.push_back(tlsHdr);
2382 
2383   // Add an entry for .dynamic.
2384   if (OutputSection *sec = part.dynamic->getParent())
2385     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2386 
2387   if (relRo->firstSec)
2388     ret.push_back(relRo);
2389 
2390   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2391   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2392       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2393     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2394         ->add(part.ehFrameHdr->getParent());
2395 
2396   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2397   // the dynamic linker fill the segment with random data.
2398   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2399     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2400 
2401   if (config->zGnustack != GnuStackKind::None) {
2402     // PT_GNU_STACK is a special section to tell the loader to make the
2403     // pages for the stack non-executable. If you really want an executable
2404     // stack, you can pass -z execstack, but that's not recommended for
2405     // security reasons.
2406     unsigned perm = PF_R | PF_W;
2407     if (config->zGnustack == GnuStackKind::Exec)
2408       perm |= PF_X;
2409     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2410   }
2411 
2412   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2413   // is expected to perform W^X violations, such as calling mprotect(2) or
2414   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2415   // OpenBSD.
2416   if (config->zWxneeded)
2417     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2418 
2419   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2420     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2421 
2422   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2423   // same alignment.
2424   PhdrEntry *note = nullptr;
2425   for (OutputSection *sec : outputSections) {
2426     if (sec->partition != partNo)
2427       continue;
2428     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2429       if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2430         note = addHdr(PT_NOTE, PF_R);
2431       note->add(sec);
2432     } else {
2433       note = nullptr;
2434     }
2435   }
2436   return ret;
2437 }
2438 
2439 template <class ELFT>
2440 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2441                                      unsigned pType, unsigned pFlags) {
2442   unsigned partNo = part.getNumber();
2443   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2444     return cmd->partition == partNo && cmd->type == shType;
2445   });
2446   if (i == outputSections.end())
2447     return;
2448 
2449   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2450   entry->add(*i);
2451   part.phdrs.push_back(entry);
2452 }
2453 
2454 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2455 // This is achieved by assigning an alignment expression to addrExpr of each
2456 // such section.
2457 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2458   const PhdrEntry *prev;
2459   auto pageAlign = [&](const PhdrEntry *p) {
2460     OutputSection *cmd = p->firstSec;
2461     if (!cmd)
2462       return;
2463     cmd->alignExpr = [align = cmd->alignment]() { return align; };
2464     if (!cmd->addrExpr) {
2465       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2466       // padding in the file contents.
2467       //
2468       // When -z separate-code is used we must not have any overlap in pages
2469       // between an executable segment and a non-executable segment. We align to
2470       // the next maximum page size boundary on transitions between executable
2471       // and non-executable segments.
2472       //
2473       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2474       // sections will be extracted to a separate file. Align to the next
2475       // maximum page size boundary so that we can find the ELF header at the
2476       // start. We cannot benefit from overlapping p_offset ranges with the
2477       // previous segment anyway.
2478       if (config->zSeparate == SeparateSegmentKind::Loadable ||
2479           (config->zSeparate == SeparateSegmentKind::Code && prev &&
2480            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2481           cmd->type == SHT_LLVM_PART_EHDR)
2482         cmd->addrExpr = [] {
2483           return alignTo(script->getDot(), config->maxPageSize);
2484         };
2485       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2486       // it must be the RW. Align to p_align(PT_TLS) to make sure
2487       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2488       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2489       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2490       // be congruent to 0 modulo p_align(PT_TLS).
2491       //
2492       // Technically this is not required, but as of 2019, some dynamic loaders
2493       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2494       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2495       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2496       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2497       // blocks correctly. We need to keep the workaround for a while.
2498       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2499         cmd->addrExpr = [] {
2500           return alignTo(script->getDot(), config->maxPageSize) +
2501                  alignTo(script->getDot() % config->maxPageSize,
2502                          Out::tlsPhdr->p_align);
2503         };
2504       else
2505         cmd->addrExpr = [] {
2506           return alignTo(script->getDot(), config->maxPageSize) +
2507                  script->getDot() % config->maxPageSize;
2508         };
2509     }
2510   };
2511 
2512 #ifdef __OpenBSD__
2513   // On i386, produce binaries that are compatible with our W^X implementation
2514   if (config->emachine == EM_386) {
2515     auto NXAlign = [](OutputSection *Cmd) {
2516       if (Cmd && !Cmd->addrExpr)
2517         Cmd->addrExpr = [=] {
2518           return alignTo(script->getDot(), 0x20000000);
2519         };
2520     };
2521 
2522     for (Partition &part : partitions) {
2523       PhdrEntry *firstRW = nullptr;
2524       for (PhdrEntry *P : part.phdrs) {
2525         if (P->p_type == PT_LOAD && (P->p_flags & PF_W)) {
2526           firstRW = P;
2527           break;
2528         }
2529       }
2530 
2531       if (firstRW)
2532         NXAlign(firstRW->firstSec);
2533     }
2534   }
2535 #endif
2536 
2537   for (Partition &part : partitions) {
2538     prev = nullptr;
2539     for (const PhdrEntry *p : part.phdrs)
2540       if (p->p_type == PT_LOAD && p->firstSec) {
2541         pageAlign(p);
2542         prev = p;
2543       }
2544   }
2545 }
2546 
2547 // Compute an in-file position for a given section. The file offset must be the
2548 // same with its virtual address modulo the page size, so that the loader can
2549 // load executables without any address adjustment.
2550 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2551   // The first section in a PT_LOAD has to have congruent offset and address
2552   // modulo the maximum page size.
2553   if (os->ptLoad && os->ptLoad->firstSec == os)
2554     return alignTo(off, os->ptLoad->p_align, os->addr);
2555 
2556   // File offsets are not significant for .bss sections other than the first one
2557   // in a PT_LOAD. By convention, we keep section offsets monotonically
2558   // increasing rather than setting to zero.
2559    if (os->type == SHT_NOBITS)
2560      return off;
2561 
2562   // If the section is not in a PT_LOAD, we just have to align it.
2563   if (!os->ptLoad)
2564     return alignTo(off, os->alignment);
2565 
2566   // If two sections share the same PT_LOAD the file offset is calculated
2567   // using this formula: Off2 = Off1 + (VA2 - VA1).
2568   OutputSection *first = os->ptLoad->firstSec;
2569   return first->offset + os->addr - first->addr;
2570 }
2571 
2572 // Set an in-file position to a given section and returns the end position of
2573 // the section.
2574 static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
2575   off = computeFileOffset(os, off);
2576   os->offset = off;
2577 
2578   if (os->type == SHT_NOBITS)
2579     return off;
2580   return off + os->size;
2581 }
2582 
2583 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2584   uint64_t off = 0;
2585   for (OutputSection *sec : outputSections)
2586     if (sec->flags & SHF_ALLOC)
2587       off = setFileOffset(sec, off);
2588   fileSize = alignTo(off, config->wordsize);
2589 }
2590 
2591 static std::string rangeToString(uint64_t addr, uint64_t len) {
2592   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2593 }
2594 
2595 // Assign file offsets to output sections.
2596 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2597   uint64_t off = 0;
2598   off = setFileOffset(Out::elfHeader, off);
2599   off = setFileOffset(Out::programHeaders, off);
2600 
2601   PhdrEntry *lastRX = nullptr;
2602   for (Partition &part : partitions)
2603     for (PhdrEntry *p : part.phdrs)
2604       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2605         lastRX = p;
2606 
2607   for (OutputSection *sec : outputSections) {
2608     off = setFileOffset(sec, off);
2609 
2610     // If this is a last section of the last executable segment and that
2611     // segment is the last loadable segment, align the offset of the
2612     // following section to avoid loading non-segments parts of the file.
2613     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2614         lastRX->lastSec == sec)
2615       off = alignTo(off, config->commonPageSize);
2616   }
2617 
2618   sectionHeaderOff = alignTo(off, config->wordsize);
2619   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2620 
2621   // Our logic assumes that sections have rising VA within the same segment.
2622   // With use of linker scripts it is possible to violate this rule and get file
2623   // offset overlaps or overflows. That should never happen with a valid script
2624   // which does not move the location counter backwards and usually scripts do
2625   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2626   // kernel, which control segment distribution explicitly and move the counter
2627   // backwards, so we have to allow doing that to support linking them. We
2628   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2629   // we want to prevent file size overflows because it would crash the linker.
2630   for (OutputSection *sec : outputSections) {
2631     if (sec->type == SHT_NOBITS)
2632       continue;
2633     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2634       error("unable to place section " + sec->name + " at file offset " +
2635             rangeToString(sec->offset, sec->size) +
2636             "; check your linker script for overflows");
2637   }
2638 }
2639 
2640 // Finalize the program headers. We call this function after we assign
2641 // file offsets and VAs to all sections.
2642 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2643   for (PhdrEntry *p : part.phdrs) {
2644     OutputSection *first = p->firstSec;
2645     OutputSection *last = p->lastSec;
2646 
2647     if (first) {
2648       p->p_filesz = last->offset - first->offset;
2649       if (last->type != SHT_NOBITS)
2650         p->p_filesz += last->size;
2651 
2652       p->p_memsz = last->addr + last->size - first->addr;
2653       p->p_offset = first->offset;
2654       p->p_vaddr = first->addr;
2655 
2656       // File offsets in partitions other than the main partition are relative
2657       // to the offset of the ELF headers. Perform that adjustment now.
2658       if (part.elfHeader)
2659         p->p_offset -= part.elfHeader->getParent()->offset;
2660 
2661       if (!p->hasLMA)
2662         p->p_paddr = first->getLMA();
2663     }
2664 
2665     if (p->p_type == PT_GNU_RELRO) {
2666       p->p_align = 1;
2667       // musl/glibc ld.so rounds the size down, so we need to round up
2668       // to protect the last page. This is a no-op on FreeBSD which always
2669       // rounds up.
2670       p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2671                    p->p_offset;
2672     }
2673   }
2674 }
2675 
2676 // A helper struct for checkSectionOverlap.
2677 namespace {
2678 struct SectionOffset {
2679   OutputSection *sec;
2680   uint64_t offset;
2681 };
2682 } // namespace
2683 
2684 // Check whether sections overlap for a specific address range (file offsets,
2685 // load and virtual addresses).
2686 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2687                          bool isVirtualAddr) {
2688   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2689     return a.offset < b.offset;
2690   });
2691 
2692   // Finding overlap is easy given a vector is sorted by start position.
2693   // If an element starts before the end of the previous element, they overlap.
2694   for (size_t i = 1, end = sections.size(); i < end; ++i) {
2695     SectionOffset a = sections[i - 1];
2696     SectionOffset b = sections[i];
2697     if (b.offset >= a.offset + a.sec->size)
2698       continue;
2699 
2700     // If both sections are in OVERLAY we allow the overlapping of virtual
2701     // addresses, because it is what OVERLAY was designed for.
2702     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2703       continue;
2704 
2705     errorOrWarn("section " + a.sec->name + " " + name +
2706                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2707                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2708                 b.sec->name + " range is " +
2709                 rangeToString(b.offset, b.sec->size));
2710   }
2711 }
2712 
2713 // Check for overlapping sections and address overflows.
2714 //
2715 // In this function we check that none of the output sections have overlapping
2716 // file offsets. For SHF_ALLOC sections we also check that the load address
2717 // ranges and the virtual address ranges don't overlap
2718 template <class ELFT> void Writer<ELFT>::checkSections() {
2719   // First, check that section's VAs fit in available address space for target.
2720   for (OutputSection *os : outputSections)
2721     if ((os->addr + os->size < os->addr) ||
2722         (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2723       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2724                   " of size 0x" + utohexstr(os->size) +
2725                   " exceeds available address space");
2726 
2727   // Check for overlapping file offsets. In this case we need to skip any
2728   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2729   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2730   // binary is specified only add SHF_ALLOC sections are added to the output
2731   // file so we skip any non-allocated sections in that case.
2732   std::vector<SectionOffset> fileOffs;
2733   for (OutputSection *sec : outputSections)
2734     if (sec->size > 0 && sec->type != SHT_NOBITS &&
2735         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2736       fileOffs.push_back({sec, sec->offset});
2737   checkOverlap("file", fileOffs, false);
2738 
2739   // When linking with -r there is no need to check for overlapping virtual/load
2740   // addresses since those addresses will only be assigned when the final
2741   // executable/shared object is created.
2742   if (config->relocatable)
2743     return;
2744 
2745   // Checking for overlapping virtual and load addresses only needs to take
2746   // into account SHF_ALLOC sections since others will not be loaded.
2747   // Furthermore, we also need to skip SHF_TLS sections since these will be
2748   // mapped to other addresses at runtime and can therefore have overlapping
2749   // ranges in the file.
2750   std::vector<SectionOffset> vmas;
2751   for (OutputSection *sec : outputSections)
2752     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2753       vmas.push_back({sec, sec->addr});
2754   checkOverlap("virtual address", vmas, true);
2755 
2756   // Finally, check that the load addresses don't overlap. This will usually be
2757   // the same as the virtual addresses but can be different when using a linker
2758   // script with AT().
2759   std::vector<SectionOffset> lmas;
2760   for (OutputSection *sec : outputSections)
2761     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2762       lmas.push_back({sec, sec->getLMA()});
2763   checkOverlap("load address", lmas, false);
2764 }
2765 
2766 // The entry point address is chosen in the following ways.
2767 //
2768 // 1. the '-e' entry command-line option;
2769 // 2. the ENTRY(symbol) command in a linker control script;
2770 // 3. the value of the symbol _start, if present;
2771 // 4. the number represented by the entry symbol, if it is a number;
2772 // 5. the address of the first byte of the .text section, if present;
2773 // 6. the address 0.
2774 static uint64_t getEntryAddr() {
2775   // Case 1, 2 or 3
2776   if (Symbol *b = symtab->find(config->entry))
2777     return b->getVA();
2778 
2779   // Case 4
2780   uint64_t addr;
2781   if (to_integer(config->entry, addr))
2782     return addr;
2783 
2784   // Case 5
2785   if (OutputSection *sec = findSection(".text")) {
2786     if (config->warnMissingEntry)
2787       warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
2788            utohexstr(sec->addr));
2789     return sec->addr;
2790   }
2791 
2792   // Case 6
2793   if (config->warnMissingEntry)
2794     warn("cannot find entry symbol " + config->entry +
2795          "; not setting start address");
2796   return 0;
2797 }
2798 
2799 static uint16_t getELFType() {
2800   if (config->isPic)
2801     return ET_DYN;
2802   if (config->relocatable)
2803     return ET_REL;
2804   return ET_EXEC;
2805 }
2806 
2807 template <class ELFT> void Writer<ELFT>::writeHeader() {
2808   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2809   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2810 
2811   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2812   eHdr->e_type = getELFType();
2813   eHdr->e_entry = getEntryAddr();
2814   eHdr->e_shoff = sectionHeaderOff;
2815 
2816   // Write the section header table.
2817   //
2818   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2819   // and e_shstrndx fields. When the value of one of these fields exceeds
2820   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2821   // use fields in the section header at index 0 to store
2822   // the value. The sentinel values and fields are:
2823   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2824   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2825   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2826   size_t num = outputSections.size() + 1;
2827   if (num >= SHN_LORESERVE)
2828     sHdrs->sh_size = num;
2829   else
2830     eHdr->e_shnum = num;
2831 
2832   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2833   if (strTabIndex >= SHN_LORESERVE) {
2834     sHdrs->sh_link = strTabIndex;
2835     eHdr->e_shstrndx = SHN_XINDEX;
2836   } else {
2837     eHdr->e_shstrndx = strTabIndex;
2838   }
2839 
2840   for (OutputSection *sec : outputSections)
2841     sec->writeHeaderTo<ELFT>(++sHdrs);
2842 }
2843 
2844 // Open a result file.
2845 template <class ELFT> void Writer<ELFT>::openFile() {
2846   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2847   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2848     error("output file too large: " + Twine(fileSize) + " bytes");
2849     return;
2850   }
2851 
2852   unlinkAsync(config->outputFile);
2853   unsigned flags = 0;
2854   if (!config->relocatable)
2855     flags |= FileOutputBuffer::F_executable;
2856   if (!config->mmapOutputFile)
2857     flags |= FileOutputBuffer::F_no_mmap;
2858   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2859       FileOutputBuffer::create(config->outputFile, fileSize, flags);
2860 
2861   if (!bufferOrErr) {
2862     error("failed to open " + config->outputFile + ": " +
2863           llvm::toString(bufferOrErr.takeError()));
2864     return;
2865   }
2866   buffer = std::move(*bufferOrErr);
2867   Out::bufferStart = buffer->getBufferStart();
2868 }
2869 
2870 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2871   for (OutputSection *sec : outputSections)
2872     if (sec->flags & SHF_ALLOC)
2873       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2874 }
2875 
2876 static void fillTrap(uint8_t *i, uint8_t *end) {
2877   for (; i + 4 <= end; i += 4)
2878     memcpy(i, &target->trapInstr, 4);
2879 }
2880 
2881 // Fill the last page of executable segments with trap instructions
2882 // instead of leaving them as zero. Even though it is not required by any
2883 // standard, it is in general a good thing to do for security reasons.
2884 //
2885 // We'll leave other pages in segments as-is because the rest will be
2886 // overwritten by output sections.
2887 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2888   for (Partition &part : partitions) {
2889     // Fill the last page.
2890     for (PhdrEntry *p : part.phdrs)
2891       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2892         fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2893                                               config->commonPageSize),
2894                  Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2895                                             config->commonPageSize));
2896 
2897     // Round up the file size of the last segment to the page boundary iff it is
2898     // an executable segment to ensure that other tools don't accidentally
2899     // trim the instruction padding (e.g. when stripping the file).
2900     PhdrEntry *last = nullptr;
2901     for (PhdrEntry *p : part.phdrs)
2902       if (p->p_type == PT_LOAD)
2903         last = p;
2904 
2905     if (last && (last->p_flags & PF_X))
2906       last->p_memsz = last->p_filesz =
2907           alignTo(last->p_filesz, config->commonPageSize);
2908   }
2909 }
2910 
2911 // Write section contents to a mmap'ed file.
2912 template <class ELFT> void Writer<ELFT>::writeSections() {
2913   // In -r or -emit-relocs mode, write the relocation sections first as in
2914   // ELf_Rel targets we might find out that we need to modify the relocated
2915   // section while doing it.
2916   for (OutputSection *sec : outputSections)
2917     if (sec->type == SHT_REL || sec->type == SHT_RELA)
2918       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2919 
2920   for (OutputSection *sec : outputSections)
2921     if (sec->type != SHT_REL && sec->type != SHT_RELA)
2922       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2923 }
2924 
2925 // Split one uint8 array into small pieces of uint8 arrays.
2926 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
2927                                             size_t chunkSize) {
2928   std::vector<ArrayRef<uint8_t>> ret;
2929   while (arr.size() > chunkSize) {
2930     ret.push_back(arr.take_front(chunkSize));
2931     arr = arr.drop_front(chunkSize);
2932   }
2933   if (!arr.empty())
2934     ret.push_back(arr);
2935   return ret;
2936 }
2937 
2938 // Computes a hash value of Data using a given hash function.
2939 // In order to utilize multiple cores, we first split data into 1MB
2940 // chunks, compute a hash for each chunk, and then compute a hash value
2941 // of the hash values.
2942 static void
2943 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2944             llvm::ArrayRef<uint8_t> data,
2945             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2946   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2947   std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
2948 
2949   // Compute hash values.
2950   parallelForEachN(0, chunks.size(), [&](size_t i) {
2951     hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
2952   });
2953 
2954   // Write to the final output buffer.
2955   hashFn(hashBuf.data(), hashes);
2956 }
2957 
2958 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2959   if (!mainPart->buildId || !mainPart->buildId->getParent())
2960     return;
2961 
2962   if (config->buildId == BuildIdKind::Hexstring) {
2963     for (Partition &part : partitions)
2964       part.buildId->writeBuildId(config->buildIdVector);
2965     return;
2966   }
2967 
2968   // Compute a hash of all sections of the output file.
2969   size_t hashSize = mainPart->buildId->hashSize;
2970   std::vector<uint8_t> buildId(hashSize);
2971   llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
2972 
2973   switch (config->buildId) {
2974   case BuildIdKind::Fast:
2975     computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2976       write64le(dest, xxHash64(arr));
2977     });
2978     break;
2979   case BuildIdKind::Md5:
2980     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2981       memcpy(dest, MD5::hash(arr).data(), hashSize);
2982     });
2983     break;
2984   case BuildIdKind::Sha1:
2985     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2986       memcpy(dest, SHA1::hash(arr).data(), hashSize);
2987     });
2988     break;
2989   case BuildIdKind::Uuid:
2990     if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
2991       error("entropy source failure: " + ec.message());
2992     break;
2993   default:
2994     llvm_unreachable("unknown BuildIdKind");
2995   }
2996   for (Partition &part : partitions)
2997     part.buildId->writeBuildId(buildId);
2998 }
2999 
3000 template void elf::createSyntheticSections<ELF32LE>();
3001 template void elf::createSyntheticSections<ELF32BE>();
3002 template void elf::createSyntheticSections<ELF64LE>();
3003 template void elf::createSyntheticSections<ELF64BE>();
3004 
3005 template void elf::writeResult<ELF32LE>();
3006 template void elf::writeResult<ELF32BE>();
3007 template void elf::writeResult<ELF64LE>();
3008 template void elf::writeResult<ELF64BE>();
3009