1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 #define DEBUG_TYPE "lld" 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::support; 40 using namespace llvm::support::endian; 41 using namespace lld; 42 using namespace lld::elf; 43 44 namespace { 45 // The writer writes a SymbolTable result to a file. 46 template <class ELFT> class Writer { 47 public: 48 Writer() : buffer(errorHandler().outputBuffer) {} 49 using Elf_Shdr = typename ELFT::Shdr; 50 using Elf_Ehdr = typename ELFT::Ehdr; 51 using Elf_Phdr = typename ELFT::Phdr; 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 if (config->zKeepTextSectionPrefix) 135 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 136 ".text.startup.", ".text.exit."}) 137 if (isSectionPrefix(v, s->name)) 138 return v.drop_back(); 139 140 for (StringRef v : 141 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 142 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 143 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab.", 144 ".openbsd.randomdata."}) 145 if (isSectionPrefix(v, s->name)) 146 return v.drop_back(); 147 148 return s->name; 149 } 150 151 static bool needsInterpSection() { 152 return !config->relocatable && !config->shared && 153 !config->dynamicLinker.empty() && script->needsInterpSection(); 154 } 155 156 template <class ELFT> void elf::writeResult() { 157 llvm::TimeTraceScope timeScope("Write output file"); 158 Writer<ELFT>().run(); 159 } 160 161 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 162 auto it = std::stable_partition( 163 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 164 if (p->p_type != PT_LOAD) 165 return true; 166 if (!p->firstSec) 167 return false; 168 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 169 return size != 0; 170 }); 171 172 // Clear OutputSection::ptLoad for sections contained in removed 173 // segments. 174 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 175 for (OutputSection *sec : outputSections) 176 if (removed.count(sec->ptLoad)) 177 sec->ptLoad = nullptr; 178 phdrs.erase(it, phdrs.end()); 179 } 180 181 void elf::copySectionsIntoPartitions() { 182 std::vector<InputSectionBase *> newSections; 183 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 184 for (InputSectionBase *s : inputSections) { 185 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 186 continue; 187 InputSectionBase *copy; 188 if (s->type == SHT_NOTE) 189 copy = make<InputSection>(cast<InputSection>(*s)); 190 else if (auto *es = dyn_cast<EhInputSection>(s)) 191 copy = make<EhInputSection>(*es); 192 else 193 continue; 194 copy->partition = part; 195 newSections.push_back(copy); 196 } 197 } 198 199 inputSections.insert(inputSections.end(), newSections.begin(), 200 newSections.end()); 201 } 202 203 void elf::combineEhSections() { 204 for (InputSectionBase *&s : inputSections) { 205 // Ignore dead sections and the partition end marker (.part.end), 206 // whose partition number is out of bounds. 207 if (!s->isLive() || s->partition == 255) 208 continue; 209 210 Partition &part = s->getPartition(); 211 if (auto *es = dyn_cast<EhInputSection>(s)) { 212 part.ehFrame->addSection(es); 213 s = nullptr; 214 } else if (s->kind() == SectionBase::Regular && part.armExidx && 215 part.armExidx->addSection(cast<InputSection>(s))) { 216 s = nullptr; 217 } 218 } 219 220 std::vector<InputSectionBase *> &v = inputSections; 221 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 222 } 223 224 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 225 uint64_t val, uint8_t stOther = STV_HIDDEN, 226 uint8_t binding = STB_GLOBAL) { 227 Symbol *s = symtab->find(name); 228 if (!s || s->isDefined()) 229 return nullptr; 230 231 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 232 /*size=*/0, sec}); 233 return cast<Defined>(s); 234 } 235 236 static Defined *addAbsolute(StringRef name) { 237 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 238 STT_NOTYPE, 0, 0, nullptr}); 239 return cast<Defined>(sym); 240 } 241 242 // The linker is expected to define some symbols depending on 243 // the linking result. This function defines such symbols. 244 void elf::addReservedSymbols() { 245 if (config->emachine == EM_MIPS) { 246 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 247 // so that it points to an absolute address which by default is relative 248 // to GOT. Default offset is 0x7ff0. 249 // See "Global Data Symbols" in Chapter 6 in the following document: 250 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 251 ElfSym::mipsGp = addAbsolute("_gp"); 252 253 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 254 // start of function and 'gp' pointer into GOT. 255 if (symtab->find("_gp_disp")) 256 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 257 258 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 259 // pointer. This symbol is used in the code generated by .cpload pseudo-op 260 // in case of using -mno-shared option. 261 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 262 if (symtab->find("__gnu_local_gp")) 263 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 264 } else if (config->emachine == EM_PPC) { 265 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 266 // support Small Data Area, define it arbitrarily as 0. 267 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 268 } else if (config->emachine == EM_PPC64) { 269 addPPC64SaveRestore(); 270 } 271 272 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 273 // combines the typical ELF GOT with the small data sections. It commonly 274 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 275 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 276 // represent the TOC base which is offset by 0x8000 bytes from the start of 277 // the .got section. 278 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 279 // correctness of some relocations depends on its value. 280 StringRef gotSymName = 281 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 282 283 if (Symbol *s = symtab->find(gotSymName)) { 284 if (s->isDefined()) { 285 error(toString(s->file) + " cannot redefine linker defined symbol '" + 286 gotSymName + "'"); 287 return; 288 } 289 290 uint64_t gotOff = 0; 291 if (config->emachine == EM_PPC64) 292 gotOff = 0x8000; 293 294 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 295 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 296 ElfSym::globalOffsetTable = cast<Defined>(s); 297 } 298 299 // __ehdr_start is the location of ELF file headers. Note that we define 300 // this symbol unconditionally even when using a linker script, which 301 // differs from the behavior implemented by GNU linker which only define 302 // this symbol if ELF headers are in the memory mapped segment. 303 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 304 305 // __executable_start is not documented, but the expectation of at 306 // least the Android libc is that it points to the ELF header. 307 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 308 309 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 310 // each DSO. The address of the symbol doesn't matter as long as they are 311 // different in different DSOs, so we chose the start address of the DSO. 312 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 313 314 // If linker script do layout we do not need to create any standard symbols. 315 if (script->hasSectionsCommand) 316 return; 317 318 auto add = [](StringRef s, int64_t pos) { 319 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 320 }; 321 322 ElfSym::bss = add("__bss_start", 0); 323 ElfSym::data = add("__data_start", 0); 324 ElfSym::end1 = add("end", -1); 325 ElfSym::end2 = add("_end", -1); 326 ElfSym::etext1 = add("etext", -1); 327 ElfSym::etext2 = add("_etext", -1); 328 ElfSym::edata1 = add("edata", -1); 329 ElfSym::edata2 = add("_edata", -1); 330 } 331 332 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 333 for (BaseCommand *base : script->sectionCommands) 334 if (auto *sec = dyn_cast<OutputSection>(base)) 335 if (sec->name == name && sec->partition == partition) 336 return sec; 337 return nullptr; 338 } 339 340 template <class ELFT> void elf::createSyntheticSections() { 341 // Initialize all pointers with NULL. This is needed because 342 // you can call lld::elf::main more than once as a library. 343 memset(&Out::first, 0, sizeof(Out)); 344 345 // Add the .interp section first because it is not a SyntheticSection. 346 // The removeUnusedSyntheticSections() function relies on the 347 // SyntheticSections coming last. 348 if (needsInterpSection()) { 349 for (size_t i = 1; i <= partitions.size(); ++i) { 350 InputSection *sec = createInterpSection(); 351 sec->partition = i; 352 inputSections.push_back(sec); 353 } 354 } 355 356 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 357 358 in.shStrTab = make<StringTableSection>(".shstrtab", false); 359 360 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 361 Out::programHeaders->alignment = config->wordsize; 362 363 if (config->strip != StripPolicy::All) { 364 in.strTab = make<StringTableSection>(".strtab", false); 365 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 366 in.symTabShndx = make<SymtabShndxSection>(); 367 } 368 369 in.bss = make<BssSection>(".bss", 0, 1); 370 add(in.bss); 371 372 // If there is a SECTIONS command and a .data.rel.ro section name use name 373 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 374 // This makes sure our relro is contiguous. 375 bool hasDataRelRo = 376 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 377 in.bssRelRo = 378 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 379 add(in.bssRelRo); 380 381 // Add MIPS-specific sections. 382 if (config->emachine == EM_MIPS) { 383 if (!config->shared && config->hasDynSymTab) { 384 in.mipsRldMap = make<MipsRldMapSection>(); 385 add(in.mipsRldMap); 386 } 387 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 388 add(sec); 389 if (auto *sec = MipsOptionsSection<ELFT>::create()) 390 add(sec); 391 if (auto *sec = MipsReginfoSection<ELFT>::create()) 392 add(sec); 393 } 394 395 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 396 397 for (Partition &part : partitions) { 398 auto add = [&](SyntheticSection *sec) { 399 sec->partition = part.getNumber(); 400 inputSections.push_back(sec); 401 }; 402 403 if (!part.name.empty()) { 404 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 405 part.elfHeader->name = part.name; 406 add(part.elfHeader); 407 408 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 409 add(part.programHeaders); 410 } 411 412 if (config->buildId != BuildIdKind::None) { 413 part.buildId = make<BuildIdSection>(); 414 add(part.buildId); 415 } 416 417 part.dynStrTab = make<StringTableSection>(".dynstr", true); 418 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 419 part.dynamic = make<DynamicSection<ELFT>>(); 420 if (config->androidPackDynRelocs) 421 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 422 else 423 part.relaDyn = 424 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 425 426 if (config->hasDynSymTab) { 427 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 428 add(part.dynSymTab); 429 430 part.verSym = make<VersionTableSection>(); 431 add(part.verSym); 432 433 if (!namedVersionDefs().empty()) { 434 part.verDef = make<VersionDefinitionSection>(); 435 add(part.verDef); 436 } 437 438 part.verNeed = make<VersionNeedSection<ELFT>>(); 439 add(part.verNeed); 440 441 if (config->gnuHash) { 442 part.gnuHashTab = make<GnuHashTableSection>(); 443 add(part.gnuHashTab); 444 } 445 446 if (config->sysvHash) { 447 part.hashTab = make<HashTableSection>(); 448 add(part.hashTab); 449 } 450 451 add(part.dynamic); 452 add(part.dynStrTab); 453 add(part.relaDyn); 454 } 455 456 if (config->relrPackDynRelocs) { 457 part.relrDyn = make<RelrSection<ELFT>>(); 458 add(part.relrDyn); 459 } 460 461 if (!config->relocatable) { 462 if (config->ehFrameHdr) { 463 part.ehFrameHdr = make<EhFrameHeader>(); 464 add(part.ehFrameHdr); 465 } 466 part.ehFrame = make<EhFrameSection>(); 467 add(part.ehFrame); 468 } 469 470 if (config->emachine == EM_ARM && !config->relocatable) { 471 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 472 // InputSections. 473 part.armExidx = make<ARMExidxSyntheticSection>(); 474 add(part.armExidx); 475 } 476 } 477 478 if (partitions.size() != 1) { 479 // Create the partition end marker. This needs to be in partition number 255 480 // so that it is sorted after all other partitions. It also has other 481 // special handling (see createPhdrs() and combineEhSections()). 482 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 483 in.partEnd->partition = 255; 484 add(in.partEnd); 485 486 in.partIndex = make<PartitionIndexSection>(); 487 addOptionalRegular("__part_index_begin", in.partIndex, 0); 488 addOptionalRegular("__part_index_end", in.partIndex, 489 in.partIndex->getSize()); 490 add(in.partIndex); 491 } 492 493 // Add .got. MIPS' .got is so different from the other archs, 494 // it has its own class. 495 if (config->emachine == EM_MIPS) { 496 in.mipsGot = make<MipsGotSection>(); 497 add(in.mipsGot); 498 } else { 499 in.got = make<GotSection>(); 500 add(in.got); 501 } 502 503 if (config->emachine == EM_PPC) { 504 in.ppc32Got2 = make<PPC32Got2Section>(); 505 add(in.ppc32Got2); 506 } 507 508 if (config->emachine == EM_PPC64) { 509 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 510 add(in.ppc64LongBranchTarget); 511 } 512 513 in.gotPlt = make<GotPltSection>(); 514 add(in.gotPlt); 515 in.igotPlt = make<IgotPltSection>(); 516 add(in.igotPlt); 517 518 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 519 // it as a relocation and ensure the referenced section is created. 520 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 521 if (target->gotBaseSymInGotPlt) 522 in.gotPlt->hasGotPltOffRel = true; 523 else 524 in.got->hasGotOffRel = true; 525 } 526 527 if (config->gdbIndex) 528 add(GdbIndexSection::create<ELFT>()); 529 530 // We always need to add rel[a].plt to output if it has entries. 531 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 532 in.relaPlt = make<RelocationSection<ELFT>>( 533 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 534 add(in.relaPlt); 535 536 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 537 // relocations are processed last by the dynamic loader. We cannot place the 538 // iplt section in .rel.dyn when Android relocation packing is enabled because 539 // that would cause a section type mismatch. However, because the Android 540 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 541 // behaviour by placing the iplt section in .rel.plt. 542 in.relaIplt = make<RelocationSection<ELFT>>( 543 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 544 /*sort=*/false); 545 add(in.relaIplt); 546 547 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 548 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 549 in.ibtPlt = make<IBTPltSection>(); 550 add(in.ibtPlt); 551 } 552 553 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 554 : make<PltSection>(); 555 add(in.plt); 556 in.iplt = make<IpltSection>(); 557 add(in.iplt); 558 559 if (config->andFeatures) 560 add(make<GnuPropertySection>()); 561 562 // .note.GNU-stack is always added when we are creating a re-linkable 563 // object file. Other linkers are using the presence of this marker 564 // section to control the executable-ness of the stack area, but that 565 // is irrelevant these days. Stack area should always be non-executable 566 // by default. So we emit this section unconditionally. 567 if (config->relocatable) 568 add(make<GnuStackSection>()); 569 570 if (in.symTab) 571 add(in.symTab); 572 if (in.symTabShndx) 573 add(in.symTabShndx); 574 add(in.shStrTab); 575 if (in.strTab) 576 add(in.strTab); 577 } 578 579 // The main function of the writer. 580 template <class ELFT> void Writer<ELFT>::run() { 581 copyLocalSymbols(); 582 583 if (config->copyRelocs) 584 addSectionSymbols(); 585 586 // Now that we have a complete set of output sections. This function 587 // completes section contents. For example, we need to add strings 588 // to the string table, and add entries to .got and .plt. 589 // finalizeSections does that. 590 finalizeSections(); 591 checkExecuteOnly(); 592 if (errorCount()) 593 return; 594 595 // If -compressed-debug-sections is specified, we need to compress 596 // .debug_* sections. Do it right now because it changes the size of 597 // output sections. 598 for (OutputSection *sec : outputSections) 599 sec->maybeCompress<ELFT>(); 600 601 if (script->hasSectionsCommand) 602 script->allocateHeaders(mainPart->phdrs); 603 604 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 605 // 0 sized region. This has to be done late since only after assignAddresses 606 // we know the size of the sections. 607 for (Partition &part : partitions) 608 removeEmptyPTLoad(part.phdrs); 609 610 if (!config->oFormatBinary) 611 assignFileOffsets(); 612 else 613 assignFileOffsetsBinary(); 614 615 for (Partition &part : partitions) 616 setPhdrs(part); 617 618 if (config->relocatable) 619 for (OutputSection *sec : outputSections) 620 sec->addr = 0; 621 622 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 623 // before checkSections() because the files may be useful in case 624 // checkSections() or openFile() fails, for example, due to an erroneous file 625 // size. 626 writeMapFile(); 627 writeCrossReferenceTable(); 628 writeArchiveStats(); 629 630 if (config->checkSections) 631 checkSections(); 632 633 // It does not make sense try to open the file if we have error already. 634 if (errorCount()) 635 return; 636 // Write the result down to a file. 637 openFile(); 638 if (errorCount()) 639 return; 640 641 if (!config->oFormatBinary) { 642 if (config->zSeparate != SeparateSegmentKind::None) 643 writeTrapInstr(); 644 writeHeader(); 645 writeSections(); 646 } else { 647 writeSectionsBinary(); 648 } 649 650 // Backfill .note.gnu.build-id section content. This is done at last 651 // because the content is usually a hash value of the entire output file. 652 writeBuildId(); 653 if (errorCount()) 654 return; 655 656 if (auto e = buffer->commit()) 657 error("failed to write to the output file: " + toString(std::move(e))); 658 } 659 660 template <class ELFT, class RelTy> 661 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 662 llvm::ArrayRef<RelTy> rels) { 663 for (const RelTy &rel : rels) { 664 Symbol &sym = file->getRelocTargetSym(rel); 665 if (sym.isLocal()) 666 sym.used = true; 667 } 668 } 669 670 // The function ensures that the "used" field of local symbols reflects the fact 671 // that the symbol is used in a relocation from a live section. 672 template <class ELFT> static void markUsedLocalSymbols() { 673 // With --gc-sections, the field is already filled. 674 // See MarkLive<ELFT>::resolveReloc(). 675 if (config->gcSections) 676 return; 677 // Without --gc-sections, the field is initialized with "true". 678 // Drop the flag first and then rise for symbols referenced in relocations. 679 for (InputFile *file : objectFiles) { 680 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 681 for (Symbol *b : f->getLocalSymbols()) 682 b->used = false; 683 for (InputSectionBase *s : f->getSections()) { 684 InputSection *isec = dyn_cast_or_null<InputSection>(s); 685 if (!isec) 686 continue; 687 if (isec->type == SHT_REL) 688 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 689 else if (isec->type == SHT_RELA) 690 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 691 } 692 } 693 } 694 695 static bool shouldKeepInSymtab(const Defined &sym) { 696 if (sym.isSection()) 697 return false; 698 699 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 700 // from live sections. 701 if (config->copyRelocs && sym.used) 702 return true; 703 704 // Exclude local symbols pointing to .ARM.exidx sections. 705 // They are probably mapping symbols "$d", which are optional for these 706 // sections. After merging the .ARM.exidx sections, some of these symbols 707 // may become dangling. The easiest way to avoid the issue is not to add 708 // them to the symbol table from the beginning. 709 if (config->emachine == EM_ARM && sym.section && 710 sym.section->type == SHT_ARM_EXIDX) 711 return false; 712 713 if (config->discard == DiscardPolicy::None) 714 return true; 715 if (config->discard == DiscardPolicy::All) 716 return false; 717 718 // In ELF assembly .L symbols are normally discarded by the assembler. 719 // If the assembler fails to do so, the linker discards them if 720 // * --discard-locals is used. 721 // * The symbol is in a SHF_MERGE section, which is normally the reason for 722 // the assembler keeping the .L symbol. 723 StringRef name = sym.getName(); 724 bool isLocal = name.startswith(".L") || name.empty(); 725 if (!isLocal) 726 return true; 727 728 if (config->discard == DiscardPolicy::Locals) 729 return false; 730 731 SectionBase *sec = sym.section; 732 return !sec || !(sec->flags & SHF_MERGE); 733 } 734 735 static bool includeInSymtab(const Symbol &b) { 736 if (!b.isLocal() && !b.isUsedInRegularObj) 737 return false; 738 739 if (auto *d = dyn_cast<Defined>(&b)) { 740 // Always include absolute symbols. 741 SectionBase *sec = d->section; 742 if (!sec) 743 return true; 744 sec = sec->repl; 745 746 // Exclude symbols pointing to garbage-collected sections. 747 if (isa<InputSectionBase>(sec) && !sec->isLive()) 748 return false; 749 750 if (auto *s = dyn_cast<MergeInputSection>(sec)) 751 if (!s->getSectionPiece(d->value)->live) 752 return false; 753 return true; 754 } 755 return b.used; 756 } 757 758 // Local symbols are not in the linker's symbol table. This function scans 759 // each object file's symbol table to copy local symbols to the output. 760 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 761 if (!in.symTab) 762 return; 763 if (config->copyRelocs && config->discard != DiscardPolicy::None) 764 markUsedLocalSymbols<ELFT>(); 765 for (InputFile *file : objectFiles) { 766 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 767 for (Symbol *b : f->getLocalSymbols()) { 768 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 769 auto *dr = dyn_cast<Defined>(b); 770 771 // No reason to keep local undefined symbol in symtab. 772 if (!dr) 773 continue; 774 if (!includeInSymtab(*b)) 775 continue; 776 if (!shouldKeepInSymtab(*dr)) 777 continue; 778 in.symTab->addSymbol(b); 779 } 780 } 781 } 782 783 // Create a section symbol for each output section so that we can represent 784 // relocations that point to the section. If we know that no relocation is 785 // referring to a section (that happens if the section is a synthetic one), we 786 // don't create a section symbol for that section. 787 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 788 for (BaseCommand *base : script->sectionCommands) { 789 auto *sec = dyn_cast<OutputSection>(base); 790 if (!sec) 791 continue; 792 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 793 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 794 return !isd->sections.empty(); 795 return false; 796 }); 797 if (i == sec->sectionCommands.end()) 798 continue; 799 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 800 801 // Relocations are not using REL[A] section symbols. 802 if (isec->type == SHT_REL || isec->type == SHT_RELA) 803 continue; 804 805 // Unlike other synthetic sections, mergeable output sections contain data 806 // copied from input sections, and there may be a relocation pointing to its 807 // contents if -r or -emit-reloc are given. 808 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 809 continue; 810 811 auto *sym = 812 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 813 /*value=*/0, /*size=*/0, isec); 814 in.symTab->addSymbol(sym); 815 } 816 } 817 818 // Today's loaders have a feature to make segments read-only after 819 // processing dynamic relocations to enhance security. PT_GNU_RELRO 820 // is defined for that. 821 // 822 // This function returns true if a section needs to be put into a 823 // PT_GNU_RELRO segment. 824 static bool isRelroSection(const OutputSection *sec) { 825 if (!config->zRelro) 826 return false; 827 828 uint64_t flags = sec->flags; 829 830 // Non-allocatable or non-writable sections don't need RELRO because 831 // they are not writable or not even mapped to memory in the first place. 832 // RELRO is for sections that are essentially read-only but need to 833 // be writable only at process startup to allow dynamic linker to 834 // apply relocations. 835 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 836 return false; 837 838 // Once initialized, TLS data segments are used as data templates 839 // for a thread-local storage. For each new thread, runtime 840 // allocates memory for a TLS and copy templates there. No thread 841 // are supposed to use templates directly. Thus, it can be in RELRO. 842 if (flags & SHF_TLS) 843 return true; 844 845 // .init_array, .preinit_array and .fini_array contain pointers to 846 // functions that are executed on process startup or exit. These 847 // pointers are set by the static linker, and they are not expected 848 // to change at runtime. But if you are an attacker, you could do 849 // interesting things by manipulating pointers in .fini_array, for 850 // example. So they are put into RELRO. 851 uint32_t type = sec->type; 852 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 853 type == SHT_PREINIT_ARRAY) 854 return true; 855 856 // .got contains pointers to external symbols. They are resolved by 857 // the dynamic linker when a module is loaded into memory, and after 858 // that they are not expected to change. So, it can be in RELRO. 859 if (in.got && sec == in.got->getParent()) 860 return true; 861 862 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 863 // through r2 register, which is reserved for that purpose. Since r2 is used 864 // for accessing .got as well, .got and .toc need to be close enough in the 865 // virtual address space. Usually, .toc comes just after .got. Since we place 866 // .got into RELRO, .toc needs to be placed into RELRO too. 867 if (sec->name.equals(".toc")) 868 return true; 869 870 // .got.plt contains pointers to external function symbols. They are 871 // by default resolved lazily, so we usually cannot put it into RELRO. 872 // However, if "-z now" is given, the lazy symbol resolution is 873 // disabled, which enables us to put it into RELRO. 874 if (sec == in.gotPlt->getParent()) 875 #ifndef __OpenBSD__ 876 return config->zNow; 877 #else 878 return true; /* kbind(2) means we can always put these in RELRO */ 879 #endif 880 881 // .dynamic section contains data for the dynamic linker, and 882 // there's no need to write to it at runtime, so it's better to put 883 // it into RELRO. 884 if (sec->name == ".dynamic") 885 return true; 886 887 // Sections with some special names are put into RELRO. This is a 888 // bit unfortunate because section names shouldn't be significant in 889 // ELF in spirit. But in reality many linker features depend on 890 // magic section names. 891 StringRef s = sec->name; 892 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 893 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 894 s == ".fini_array" || s == ".init_array" || 895 s == ".openbsd.randomdata" || s == ".preinit_array"; 896 } 897 898 // We compute a rank for each section. The rank indicates where the 899 // section should be placed in the file. Instead of using simple 900 // numbers (0,1,2...), we use a series of flags. One for each decision 901 // point when placing the section. 902 // Using flags has two key properties: 903 // * It is easy to check if a give branch was taken. 904 // * It is easy two see how similar two ranks are (see getRankProximity). 905 enum RankFlags { 906 RF_NOT_ADDR_SET = 1 << 27, 907 RF_NOT_ALLOC = 1 << 26, 908 RF_PARTITION = 1 << 18, // Partition number (8 bits) 909 RF_NOT_PART_EHDR = 1 << 17, 910 RF_NOT_PART_PHDR = 1 << 16, 911 RF_NOT_INTERP = 1 << 15, 912 RF_NOT_NOTE = 1 << 14, 913 RF_WRITE = 1 << 13, 914 RF_EXEC_WRITE = 1 << 12, 915 RF_EXEC = 1 << 11, 916 RF_RODATA = 1 << 10, 917 RF_NOT_RELRO = 1 << 9, 918 RF_NOT_TLS = 1 << 8, 919 RF_BSS = 1 << 7, 920 RF_PPC_NOT_TOCBSS = 1 << 6, 921 RF_PPC_TOCL = 1 << 5, 922 RF_PPC_TOC = 1 << 4, 923 RF_PPC_GOT = 1 << 3, 924 RF_PPC_BRANCH_LT = 1 << 2, 925 RF_MIPS_GPREL = 1 << 1, 926 RF_MIPS_NOT_GOT = 1 << 0 927 }; 928 929 static unsigned getSectionRank(const OutputSection *sec) { 930 unsigned rank = sec->partition * RF_PARTITION; 931 932 // We want to put section specified by -T option first, so we 933 // can start assigning VA starting from them later. 934 if (config->sectionStartMap.count(sec->name)) 935 return rank; 936 rank |= RF_NOT_ADDR_SET; 937 938 // Allocatable sections go first to reduce the total PT_LOAD size and 939 // so debug info doesn't change addresses in actual code. 940 if (!(sec->flags & SHF_ALLOC)) 941 return rank | RF_NOT_ALLOC; 942 943 if (sec->type == SHT_LLVM_PART_EHDR) 944 return rank; 945 rank |= RF_NOT_PART_EHDR; 946 947 if (sec->type == SHT_LLVM_PART_PHDR) 948 return rank; 949 rank |= RF_NOT_PART_PHDR; 950 951 // Put .interp first because some loaders want to see that section 952 // on the first page of the executable file when loaded into memory. 953 if (sec->name == ".interp") 954 return rank; 955 rank |= RF_NOT_INTERP; 956 957 // Put .note sections (which make up one PT_NOTE) at the beginning so that 958 // they are likely to be included in a core file even if core file size is 959 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 960 // included in a core to match core files with executables. 961 if (sec->type == SHT_NOTE) 962 return rank; 963 rank |= RF_NOT_NOTE; 964 965 // Sort sections based on their access permission in the following 966 // order: R, RX, RWX, RW. This order is based on the following 967 // considerations: 968 // * Read-only sections come first such that they go in the 969 // PT_LOAD covering the program headers at the start of the file. 970 // * Read-only, executable sections come next. 971 // * Writable, executable sections follow such that .plt on 972 // architectures where it needs to be writable will be placed 973 // between .text and .data. 974 // * Writable sections come last, such that .bss lands at the very 975 // end of the last PT_LOAD. 976 bool isExec = sec->flags & SHF_EXECINSTR; 977 bool isWrite = sec->flags & SHF_WRITE; 978 979 if (isExec) { 980 if (isWrite) 981 rank |= RF_EXEC_WRITE; 982 else 983 rank |= RF_EXEC; 984 } else if (isWrite) { 985 rank |= RF_WRITE; 986 } else if (sec->type == SHT_PROGBITS) { 987 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 988 // .eh_frame) closer to .text. They likely contain PC or GOT relative 989 // relocations and there could be relocation overflow if other huge sections 990 // (.dynstr .dynsym) were placed in between. 991 rank |= RF_RODATA; 992 } 993 994 // Place RelRo sections first. After considering SHT_NOBITS below, the 995 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 996 // where | marks where page alignment happens. An alternative ordering is 997 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 998 // waste more bytes due to 2 alignment places. 999 if (!isRelroSection(sec)) 1000 rank |= RF_NOT_RELRO; 1001 1002 // If we got here we know that both A and B are in the same PT_LOAD. 1003 1004 // The TLS initialization block needs to be a single contiguous block in a R/W 1005 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1006 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1007 // after PROGBITS. 1008 if (!(sec->flags & SHF_TLS)) 1009 rank |= RF_NOT_TLS; 1010 1011 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1012 // sections, place non-NOBITS sections first. 1013 if (sec->type == SHT_NOBITS) 1014 rank |= RF_BSS; 1015 1016 // Some architectures have additional ordering restrictions for sections 1017 // within the same PT_LOAD. 1018 if (config->emachine == EM_PPC64) { 1019 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1020 // that we would like to make sure appear is a specific order to maximize 1021 // their coverage by a single signed 16-bit offset from the TOC base 1022 // pointer. Conversely, the special .tocbss section should be first among 1023 // all SHT_NOBITS sections. This will put it next to the loaded special 1024 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1025 StringRef name = sec->name; 1026 if (name != ".tocbss") 1027 rank |= RF_PPC_NOT_TOCBSS; 1028 1029 if (name == ".toc1") 1030 rank |= RF_PPC_TOCL; 1031 1032 if (name == ".toc") 1033 rank |= RF_PPC_TOC; 1034 1035 if (name == ".got") 1036 rank |= RF_PPC_GOT; 1037 1038 if (name == ".branch_lt") 1039 rank |= RF_PPC_BRANCH_LT; 1040 } 1041 1042 if (config->emachine == EM_MIPS) { 1043 // All sections with SHF_MIPS_GPREL flag should be grouped together 1044 // because data in these sections is addressable with a gp relative address. 1045 if (sec->flags & SHF_MIPS_GPREL) 1046 rank |= RF_MIPS_GPREL; 1047 1048 if (sec->name != ".got") 1049 rank |= RF_MIPS_NOT_GOT; 1050 } 1051 1052 return rank; 1053 } 1054 1055 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1056 const OutputSection *a = cast<OutputSection>(aCmd); 1057 const OutputSection *b = cast<OutputSection>(bCmd); 1058 1059 if (a->sortRank != b->sortRank) 1060 return a->sortRank < b->sortRank; 1061 1062 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1063 return config->sectionStartMap.lookup(a->name) < 1064 config->sectionStartMap.lookup(b->name); 1065 return false; 1066 } 1067 1068 void PhdrEntry::add(OutputSection *sec) { 1069 lastSec = sec; 1070 if (!firstSec) 1071 firstSec = sec; 1072 p_align = std::max(p_align, sec->alignment); 1073 if (p_type == PT_LOAD) 1074 sec->ptLoad = this; 1075 } 1076 1077 // The beginning and the ending of .rel[a].plt section are marked 1078 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1079 // executable. The runtime needs these symbols in order to resolve 1080 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1081 // need these symbols, since IRELATIVE relocs are resolved through GOT 1082 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1083 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1084 if (config->relocatable || needsInterpSection()) 1085 return; 1086 1087 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1088 // because .rela.plt might be empty and thus removed from output. 1089 // We'll override Out::elfHeader with In.relaIplt later when we are 1090 // sure that .rela.plt exists in output. 1091 ElfSym::relaIpltStart = addOptionalRegular( 1092 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1093 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1094 1095 ElfSym::relaIpltEnd = addOptionalRegular( 1096 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1097 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1098 } 1099 1100 template <class ELFT> 1101 void Writer<ELFT>::forEachRelSec( 1102 llvm::function_ref<void(InputSectionBase &)> fn) { 1103 // Scan all relocations. Each relocation goes through a series 1104 // of tests to determine if it needs special treatment, such as 1105 // creating GOT, PLT, copy relocations, etc. 1106 // Note that relocations for non-alloc sections are directly 1107 // processed by InputSection::relocateNonAlloc. 1108 for (InputSectionBase *isec : inputSections) 1109 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1110 fn(*isec); 1111 for (Partition &part : partitions) { 1112 for (EhInputSection *es : part.ehFrame->sections) 1113 fn(*es); 1114 if (part.armExidx && part.armExidx->isLive()) 1115 for (InputSection *ex : part.armExidx->exidxSections) 1116 fn(*ex); 1117 } 1118 } 1119 1120 // This function generates assignments for predefined symbols (e.g. _end or 1121 // _etext) and inserts them into the commands sequence to be processed at the 1122 // appropriate time. This ensures that the value is going to be correct by the 1123 // time any references to these symbols are processed and is equivalent to 1124 // defining these symbols explicitly in the linker script. 1125 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1126 if (ElfSym::globalOffsetTable) { 1127 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1128 // to the start of the .got or .got.plt section. 1129 InputSection *gotSection = in.gotPlt; 1130 if (!target->gotBaseSymInGotPlt) 1131 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1132 : cast<InputSection>(in.got); 1133 ElfSym::globalOffsetTable->section = gotSection; 1134 } 1135 1136 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1137 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1138 ElfSym::relaIpltStart->section = in.relaIplt; 1139 ElfSym::relaIpltEnd->section = in.relaIplt; 1140 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1141 } 1142 1143 PhdrEntry *last = nullptr; 1144 PhdrEntry *lastRO = nullptr; 1145 1146 for (Partition &part : partitions) { 1147 for (PhdrEntry *p : part.phdrs) { 1148 if (p->p_type != PT_LOAD) 1149 continue; 1150 last = p; 1151 if (!(p->p_flags & PF_W)) 1152 lastRO = p; 1153 } 1154 } 1155 1156 if (lastRO) { 1157 // _etext is the first location after the last read-only loadable segment. 1158 if (ElfSym::etext1) 1159 ElfSym::etext1->section = lastRO->lastSec; 1160 if (ElfSym::etext2) 1161 ElfSym::etext2->section = lastRO->lastSec; 1162 } 1163 1164 if (last) { 1165 // _edata points to the end of the last mapped initialized section. 1166 OutputSection *edata = nullptr; 1167 for (OutputSection *os : outputSections) { 1168 if (os->type != SHT_NOBITS) 1169 edata = os; 1170 if (os == last->lastSec) 1171 break; 1172 } 1173 1174 if (ElfSym::edata1) 1175 ElfSym::edata1->section = edata; 1176 if (ElfSym::edata2) 1177 ElfSym::edata2->section = edata; 1178 1179 // _end is the first location after the uninitialized data region. 1180 if (ElfSym::end1) 1181 ElfSym::end1->section = last->lastSec; 1182 if (ElfSym::end2) 1183 ElfSym::end2->section = last->lastSec; 1184 } 1185 1186 if (ElfSym::bss) 1187 ElfSym::bss->section = findSection(".bss"); 1188 1189 if (ElfSym::data) 1190 ElfSym::data->section = findSection(".data"); 1191 1192 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1193 // be equal to the _gp symbol's value. 1194 if (ElfSym::mipsGp) { 1195 // Find GP-relative section with the lowest address 1196 // and use this address to calculate default _gp value. 1197 for (OutputSection *os : outputSections) { 1198 if (os->flags & SHF_MIPS_GPREL) { 1199 ElfSym::mipsGp->section = os; 1200 ElfSym::mipsGp->value = 0x7ff0; 1201 break; 1202 } 1203 } 1204 } 1205 } 1206 1207 // We want to find how similar two ranks are. 1208 // The more branches in getSectionRank that match, the more similar they are. 1209 // Since each branch corresponds to a bit flag, we can just use 1210 // countLeadingZeros. 1211 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1212 return countLeadingZeros(a->sortRank ^ b->sortRank); 1213 } 1214 1215 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1216 auto *sec = dyn_cast<OutputSection>(b); 1217 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1218 } 1219 1220 // When placing orphan sections, we want to place them after symbol assignments 1221 // so that an orphan after 1222 // begin_foo = .; 1223 // foo : { *(foo) } 1224 // end_foo = .; 1225 // doesn't break the intended meaning of the begin/end symbols. 1226 // We don't want to go over sections since findOrphanPos is the 1227 // one in charge of deciding the order of the sections. 1228 // We don't want to go over changes to '.', since doing so in 1229 // rx_sec : { *(rx_sec) } 1230 // . = ALIGN(0x1000); 1231 // /* The RW PT_LOAD starts here*/ 1232 // rw_sec : { *(rw_sec) } 1233 // would mean that the RW PT_LOAD would become unaligned. 1234 static bool shouldSkip(BaseCommand *cmd) { 1235 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1236 return assign->name != "."; 1237 return false; 1238 } 1239 1240 // We want to place orphan sections so that they share as much 1241 // characteristics with their neighbors as possible. For example, if 1242 // both are rw, or both are tls. 1243 static std::vector<BaseCommand *>::iterator 1244 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1245 std::vector<BaseCommand *>::iterator e) { 1246 OutputSection *sec = cast<OutputSection>(*e); 1247 1248 // Find the first element that has as close a rank as possible. 1249 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1250 return getRankProximity(sec, a) < getRankProximity(sec, b); 1251 }); 1252 if (i == e) 1253 return e; 1254 1255 // Consider all existing sections with the same proximity. 1256 int proximity = getRankProximity(sec, *i); 1257 for (; i != e; ++i) { 1258 auto *curSec = dyn_cast<OutputSection>(*i); 1259 if (!curSec || !curSec->hasInputSections) 1260 continue; 1261 if (getRankProximity(sec, curSec) != proximity || 1262 sec->sortRank < curSec->sortRank) 1263 break; 1264 } 1265 1266 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1267 auto *os = dyn_cast<OutputSection>(cmd); 1268 return os && os->hasInputSections; 1269 }; 1270 auto j = std::find_if(llvm::make_reverse_iterator(i), 1271 llvm::make_reverse_iterator(b), 1272 isOutputSecWithInputSections); 1273 i = j.base(); 1274 1275 // As a special case, if the orphan section is the last section, put 1276 // it at the very end, past any other commands. 1277 // This matches bfd's behavior and is convenient when the linker script fully 1278 // specifies the start of the file, but doesn't care about the end (the non 1279 // alloc sections for example). 1280 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1281 if (nextSec == e) 1282 return e; 1283 1284 while (i != e && shouldSkip(*i)) 1285 ++i; 1286 return i; 1287 } 1288 1289 // Adds random priorities to sections not already in the map. 1290 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1291 if (!config->shuffleSectionSeed) 1292 return; 1293 1294 std::vector<int> priorities(inputSections.size() - order.size()); 1295 // Existing priorities are < 0, so use priorities >= 0 for the missing 1296 // sections. 1297 int curPrio = 0; 1298 for (int &prio : priorities) 1299 prio = curPrio++; 1300 uint32_t seed = *config->shuffleSectionSeed; 1301 std::mt19937 g(seed ? seed : std::random_device()()); 1302 llvm::shuffle(priorities.begin(), priorities.end(), g); 1303 int prioIndex = 0; 1304 for (InputSectionBase *sec : inputSections) { 1305 if (order.try_emplace(sec, priorities[prioIndex]).second) 1306 ++prioIndex; 1307 } 1308 } 1309 1310 // Builds section order for handling --symbol-ordering-file. 1311 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1312 DenseMap<const InputSectionBase *, int> sectionOrder; 1313 // Use the rarely used option -call-graph-ordering-file to sort sections. 1314 if (!config->callGraphProfile.empty()) 1315 return computeCallGraphProfileOrder(); 1316 1317 if (config->symbolOrderingFile.empty()) 1318 return sectionOrder; 1319 1320 struct SymbolOrderEntry { 1321 int priority; 1322 bool present; 1323 }; 1324 1325 // Build a map from symbols to their priorities. Symbols that didn't 1326 // appear in the symbol ordering file have the lowest priority 0. 1327 // All explicitly mentioned symbols have negative (higher) priorities. 1328 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1329 int priority = -config->symbolOrderingFile.size(); 1330 for (StringRef s : config->symbolOrderingFile) 1331 symbolOrder.insert({s, {priority++, false}}); 1332 1333 // Build a map from sections to their priorities. 1334 auto addSym = [&](Symbol &sym) { 1335 auto it = symbolOrder.find(sym.getName()); 1336 if (it == symbolOrder.end()) 1337 return; 1338 SymbolOrderEntry &ent = it->second; 1339 ent.present = true; 1340 1341 maybeWarnUnorderableSymbol(&sym); 1342 1343 if (auto *d = dyn_cast<Defined>(&sym)) { 1344 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1345 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1346 priority = std::min(priority, ent.priority); 1347 } 1348 } 1349 }; 1350 1351 // We want both global and local symbols. We get the global ones from the 1352 // symbol table and iterate the object files for the local ones. 1353 for (Symbol *sym : symtab->symbols()) 1354 if (!sym->isLazy()) 1355 addSym(*sym); 1356 1357 for (InputFile *file : objectFiles) 1358 for (Symbol *sym : file->getSymbols()) 1359 if (sym->isLocal()) 1360 addSym(*sym); 1361 1362 if (config->warnSymbolOrdering) 1363 for (auto orderEntry : symbolOrder) 1364 if (!orderEntry.second.present) 1365 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1366 1367 return sectionOrder; 1368 } 1369 1370 // Sorts the sections in ISD according to the provided section order. 1371 static void 1372 sortISDBySectionOrder(InputSectionDescription *isd, 1373 const DenseMap<const InputSectionBase *, int> &order) { 1374 std::vector<InputSection *> unorderedSections; 1375 std::vector<std::pair<InputSection *, int>> orderedSections; 1376 uint64_t unorderedSize = 0; 1377 1378 for (InputSection *isec : isd->sections) { 1379 auto i = order.find(isec); 1380 if (i == order.end()) { 1381 unorderedSections.push_back(isec); 1382 unorderedSize += isec->getSize(); 1383 continue; 1384 } 1385 orderedSections.push_back({isec, i->second}); 1386 } 1387 llvm::sort(orderedSections, llvm::less_second()); 1388 1389 // Find an insertion point for the ordered section list in the unordered 1390 // section list. On targets with limited-range branches, this is the mid-point 1391 // of the unordered section list. This decreases the likelihood that a range 1392 // extension thunk will be needed to enter or exit the ordered region. If the 1393 // ordered section list is a list of hot functions, we can generally expect 1394 // the ordered functions to be called more often than the unordered functions, 1395 // making it more likely that any particular call will be within range, and 1396 // therefore reducing the number of thunks required. 1397 // 1398 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1399 // If the layout is: 1400 // 1401 // 8MB hot 1402 // 32MB cold 1403 // 1404 // only the first 8-16MB of the cold code (depending on which hot function it 1405 // is actually calling) can call the hot code without a range extension thunk. 1406 // However, if we use this layout: 1407 // 1408 // 16MB cold 1409 // 8MB hot 1410 // 16MB cold 1411 // 1412 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1413 // of the second block of cold code can call the hot code without a thunk. So 1414 // we effectively double the amount of code that could potentially call into 1415 // the hot code without a thunk. 1416 size_t insPt = 0; 1417 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1418 uint64_t unorderedPos = 0; 1419 for (; insPt != unorderedSections.size(); ++insPt) { 1420 unorderedPos += unorderedSections[insPt]->getSize(); 1421 if (unorderedPos > unorderedSize / 2) 1422 break; 1423 } 1424 } 1425 1426 isd->sections.clear(); 1427 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1428 isd->sections.push_back(isec); 1429 for (std::pair<InputSection *, int> p : orderedSections) 1430 isd->sections.push_back(p.first); 1431 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1432 isd->sections.push_back(isec); 1433 } 1434 1435 static void sortSection(OutputSection *sec, 1436 const DenseMap<const InputSectionBase *, int> &order) { 1437 StringRef name = sec->name; 1438 1439 // Never sort these. 1440 if (name == ".init" || name == ".fini") 1441 return; 1442 1443 // Sort input sections by priority using the list provided by 1444 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1445 // digit radix sort. The sections may be sorted stably again by a more 1446 // significant key. 1447 if (!order.empty()) 1448 for (BaseCommand *b : sec->sectionCommands) 1449 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1450 sortISDBySectionOrder(isd, order); 1451 1452 // Sort input sections by section name suffixes for 1453 // __attribute__((init_priority(N))). 1454 if (name == ".init_array" || name == ".fini_array") { 1455 if (!script->hasSectionsCommand) 1456 sec->sortInitFini(); 1457 return; 1458 } 1459 1460 // Sort input sections by the special rule for .ctors and .dtors. 1461 if (name == ".ctors" || name == ".dtors") { 1462 if (!script->hasSectionsCommand) 1463 sec->sortCtorsDtors(); 1464 return; 1465 } 1466 1467 // .toc is allocated just after .got and is accessed using GOT-relative 1468 // relocations. Object files compiled with small code model have an 1469 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1470 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1471 // sections having smaller relocation offsets are at beginning of .toc 1472 if (config->emachine == EM_PPC64 && name == ".toc") { 1473 if (script->hasSectionsCommand) 1474 return; 1475 assert(sec->sectionCommands.size() == 1); 1476 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1477 llvm::stable_sort(isd->sections, 1478 [](const InputSection *a, const InputSection *b) -> bool { 1479 return a->file->ppc64SmallCodeModelTocRelocs && 1480 !b->file->ppc64SmallCodeModelTocRelocs; 1481 }); 1482 return; 1483 } 1484 } 1485 1486 // If no layout was provided by linker script, we want to apply default 1487 // sorting for special input sections. This also handles --symbol-ordering-file. 1488 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1489 // Build the order once since it is expensive. 1490 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1491 maybeShuffle(order); 1492 for (BaseCommand *base : script->sectionCommands) 1493 if (auto *sec = dyn_cast<OutputSection>(base)) 1494 sortSection(sec, order); 1495 } 1496 1497 template <class ELFT> void Writer<ELFT>::sortSections() { 1498 script->adjustSectionsBeforeSorting(); 1499 1500 // Don't sort if using -r. It is not necessary and we want to preserve the 1501 // relative order for SHF_LINK_ORDER sections. 1502 if (config->relocatable) 1503 return; 1504 1505 sortInputSections(); 1506 1507 for (BaseCommand *base : script->sectionCommands) { 1508 auto *os = dyn_cast<OutputSection>(base); 1509 if (!os) 1510 continue; 1511 os->sortRank = getSectionRank(os); 1512 1513 // We want to assign rude approximation values to outSecOff fields 1514 // to know the relative order of the input sections. We use it for 1515 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1516 uint64_t i = 0; 1517 for (InputSection *sec : getInputSections(os)) 1518 sec->outSecOff = i++; 1519 } 1520 1521 if (!script->hasSectionsCommand) { 1522 // We know that all the OutputSections are contiguous in this case. 1523 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1524 std::stable_sort( 1525 llvm::find_if(script->sectionCommands, isSection), 1526 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1527 compareSections); 1528 1529 // Process INSERT commands. From this point onwards the order of 1530 // script->sectionCommands is fixed. 1531 script->processInsertCommands(); 1532 return; 1533 } 1534 1535 script->processInsertCommands(); 1536 1537 // Orphan sections are sections present in the input files which are 1538 // not explicitly placed into the output file by the linker script. 1539 // 1540 // The sections in the linker script are already in the correct 1541 // order. We have to figuere out where to insert the orphan 1542 // sections. 1543 // 1544 // The order of the sections in the script is arbitrary and may not agree with 1545 // compareSections. This means that we cannot easily define a strict weak 1546 // ordering. To see why, consider a comparison of a section in the script and 1547 // one not in the script. We have a two simple options: 1548 // * Make them equivalent (a is not less than b, and b is not less than a). 1549 // The problem is then that equivalence has to be transitive and we can 1550 // have sections a, b and c with only b in a script and a less than c 1551 // which breaks this property. 1552 // * Use compareSectionsNonScript. Given that the script order doesn't have 1553 // to match, we can end up with sections a, b, c, d where b and c are in the 1554 // script and c is compareSectionsNonScript less than b. In which case d 1555 // can be equivalent to c, a to b and d < a. As a concrete example: 1556 // .a (rx) # not in script 1557 // .b (rx) # in script 1558 // .c (ro) # in script 1559 // .d (ro) # not in script 1560 // 1561 // The way we define an order then is: 1562 // * Sort only the orphan sections. They are in the end right now. 1563 // * Move each orphan section to its preferred position. We try 1564 // to put each section in the last position where it can share 1565 // a PT_LOAD. 1566 // 1567 // There is some ambiguity as to where exactly a new entry should be 1568 // inserted, because Commands contains not only output section 1569 // commands but also other types of commands such as symbol assignment 1570 // expressions. There's no correct answer here due to the lack of the 1571 // formal specification of the linker script. We use heuristics to 1572 // determine whether a new output command should be added before or 1573 // after another commands. For the details, look at shouldSkip 1574 // function. 1575 1576 auto i = script->sectionCommands.begin(); 1577 auto e = script->sectionCommands.end(); 1578 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1579 if (auto *sec = dyn_cast<OutputSection>(base)) 1580 return sec->sectionIndex == UINT32_MAX; 1581 return false; 1582 }); 1583 1584 // Sort the orphan sections. 1585 std::stable_sort(nonScriptI, e, compareSections); 1586 1587 // As a horrible special case, skip the first . assignment if it is before any 1588 // section. We do this because it is common to set a load address by starting 1589 // the script with ". = 0xabcd" and the expectation is that every section is 1590 // after that. 1591 auto firstSectionOrDotAssignment = 1592 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1593 if (firstSectionOrDotAssignment != e && 1594 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1595 ++firstSectionOrDotAssignment; 1596 i = firstSectionOrDotAssignment; 1597 1598 while (nonScriptI != e) { 1599 auto pos = findOrphanPos(i, nonScriptI); 1600 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1601 1602 // As an optimization, find all sections with the same sort rank 1603 // and insert them with one rotate. 1604 unsigned rank = orphan->sortRank; 1605 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1606 return cast<OutputSection>(cmd)->sortRank != rank; 1607 }); 1608 std::rotate(pos, nonScriptI, end); 1609 nonScriptI = end; 1610 } 1611 1612 script->adjustSectionsAfterSorting(); 1613 } 1614 1615 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1616 InputSection *la = a->getLinkOrderDep(); 1617 InputSection *lb = b->getLinkOrderDep(); 1618 OutputSection *aOut = la->getParent(); 1619 OutputSection *bOut = lb->getParent(); 1620 1621 if (aOut != bOut) 1622 return aOut->addr < bOut->addr; 1623 return la->outSecOff < lb->outSecOff; 1624 } 1625 1626 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1627 for (OutputSection *sec : outputSections) { 1628 if (!(sec->flags & SHF_LINK_ORDER)) 1629 continue; 1630 1631 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1632 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1633 if (!config->relocatable && config->emachine == EM_ARM && 1634 sec->type == SHT_ARM_EXIDX) 1635 continue; 1636 1637 // Link order may be distributed across several InputSectionDescriptions 1638 // but sort must consider them all at once. 1639 std::vector<InputSection **> scriptSections; 1640 std::vector<InputSection *> sections; 1641 bool started = false, stopped = false; 1642 for (BaseCommand *base : sec->sectionCommands) { 1643 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1644 for (InputSection *&isec : isd->sections) { 1645 if (!(isec->flags & SHF_LINK_ORDER)) { 1646 if (started) 1647 stopped = true; 1648 } else if (stopped) { 1649 error(toString(isec) + ": SHF_LINK_ORDER sections in " + sec->name + 1650 " are not contiguous"); 1651 } else { 1652 started = true; 1653 1654 scriptSections.push_back(&isec); 1655 sections.push_back(isec); 1656 1657 InputSection *link = isec->getLinkOrderDep(); 1658 if (!link->getParent()) 1659 error(toString(isec) + ": sh_link points to discarded section " + 1660 toString(link)); 1661 } 1662 } 1663 } else if (started) { 1664 stopped = true; 1665 } 1666 } 1667 1668 if (errorCount()) 1669 continue; 1670 1671 llvm::stable_sort(sections, compareByFilePosition); 1672 1673 for (int i = 0, n = sections.size(); i < n; ++i) 1674 *scriptSections[i] = sections[i]; 1675 } 1676 } 1677 1678 static void finalizeSynthetic(SyntheticSection *sec) { 1679 if (sec && sec->isNeeded() && sec->getParent()) 1680 sec->finalizeContents(); 1681 } 1682 1683 // We need to generate and finalize the content that depends on the address of 1684 // InputSections. As the generation of the content may also alter InputSection 1685 // addresses we must converge to a fixed point. We do that here. See the comment 1686 // in Writer<ELFT>::finalizeSections(). 1687 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1688 ThunkCreator tc; 1689 AArch64Err843419Patcher a64p; 1690 ARMErr657417Patcher a32p; 1691 script->assignAddresses(); 1692 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1693 // do require the relative addresses of OutputSections because linker scripts 1694 // can assign Virtual Addresses to OutputSections that are not monotonically 1695 // increasing. 1696 for (Partition &part : partitions) 1697 finalizeSynthetic(part.armExidx); 1698 resolveShfLinkOrder(); 1699 1700 // Converts call x@GDPLT to call __tls_get_addr 1701 if (config->emachine == EM_HEXAGON) 1702 hexagonTLSSymbolUpdate(outputSections); 1703 1704 int assignPasses = 0; 1705 for (;;) { 1706 bool changed = target->needsThunks && tc.createThunks(outputSections); 1707 1708 // With Thunk Size much smaller than branch range we expect to 1709 // converge quickly; if we get to 10 something has gone wrong. 1710 if (changed && tc.pass >= 10) { 1711 error("thunk creation not converged"); 1712 break; 1713 } 1714 1715 if (config->fixCortexA53Errata843419) { 1716 if (changed) 1717 script->assignAddresses(); 1718 changed |= a64p.createFixes(); 1719 } 1720 if (config->fixCortexA8) { 1721 if (changed) 1722 script->assignAddresses(); 1723 changed |= a32p.createFixes(); 1724 } 1725 1726 if (in.mipsGot) 1727 in.mipsGot->updateAllocSize(); 1728 1729 for (Partition &part : partitions) { 1730 changed |= part.relaDyn->updateAllocSize(); 1731 if (part.relrDyn) 1732 changed |= part.relrDyn->updateAllocSize(); 1733 } 1734 1735 const Defined *changedSym = script->assignAddresses(); 1736 if (!changed) { 1737 // Some symbols may be dependent on section addresses. When we break the 1738 // loop, the symbol values are finalized because a previous 1739 // assignAddresses() finalized section addresses. 1740 if (!changedSym) 1741 break; 1742 if (++assignPasses == 5) { 1743 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1744 " does not converge"); 1745 break; 1746 } 1747 } 1748 } 1749 1750 // If addrExpr is set, the address may not be a multiple of the alignment. 1751 // Warn because this is error-prone. 1752 for (BaseCommand *cmd : script->sectionCommands) 1753 if (auto *os = dyn_cast<OutputSection>(cmd)) 1754 if (os->addr % os->alignment != 0) 1755 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1756 os->name + " is not a multiple of alignment (" + 1757 Twine(os->alignment) + ")"); 1758 } 1759 1760 // If Input Sections have been shrinked (basic block sections) then 1761 // update symbol values and sizes associated with these sections. With basic 1762 // block sections, input sections can shrink when the jump instructions at 1763 // the end of the section are relaxed. 1764 static void fixSymbolsAfterShrinking() { 1765 for (InputFile *File : objectFiles) { 1766 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1767 auto *def = dyn_cast<Defined>(Sym); 1768 if (!def) 1769 return; 1770 1771 const SectionBase *sec = def->section; 1772 if (!sec) 1773 return; 1774 1775 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1776 if (!inputSec || !inputSec->bytesDropped) 1777 return; 1778 1779 const size_t OldSize = inputSec->data().size(); 1780 const size_t NewSize = OldSize - inputSec->bytesDropped; 1781 1782 if (def->value > NewSize && def->value <= OldSize) { 1783 LLVM_DEBUG(llvm::dbgs() 1784 << "Moving symbol " << Sym->getName() << " from " 1785 << def->value << " to " 1786 << def->value - inputSec->bytesDropped << " bytes\n"); 1787 def->value -= inputSec->bytesDropped; 1788 return; 1789 } 1790 1791 if (def->value + def->size > NewSize && def->value <= OldSize && 1792 def->value + def->size <= OldSize) { 1793 LLVM_DEBUG(llvm::dbgs() 1794 << "Shrinking symbol " << Sym->getName() << " from " 1795 << def->size << " to " << def->size - inputSec->bytesDropped 1796 << " bytes\n"); 1797 def->size -= inputSec->bytesDropped; 1798 } 1799 }); 1800 } 1801 } 1802 1803 // If basic block sections exist, there are opportunities to delete fall thru 1804 // jumps and shrink jump instructions after basic block reordering. This 1805 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1806 // option is used. 1807 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1808 assert(config->optimizeBBJumps); 1809 1810 script->assignAddresses(); 1811 // For every output section that has executable input sections, this 1812 // does the following: 1813 // 1. Deletes all direct jump instructions in input sections that 1814 // jump to the following section as it is not required. 1815 // 2. If there are two consecutive jump instructions, it checks 1816 // if they can be flipped and one can be deleted. 1817 for (OutputSection *os : outputSections) { 1818 if (!(os->flags & SHF_EXECINSTR)) 1819 continue; 1820 std::vector<InputSection *> sections = getInputSections(os); 1821 std::vector<unsigned> result(sections.size()); 1822 // Delete all fall through jump instructions. Also, check if two 1823 // consecutive jump instructions can be flipped so that a fall 1824 // through jmp instruction can be deleted. 1825 parallelForEachN(0, sections.size(), [&](size_t i) { 1826 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1827 InputSection &is = *sections[i]; 1828 result[i] = 1829 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1830 }); 1831 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1832 if (numDeleted > 0) { 1833 script->assignAddresses(); 1834 LLVM_DEBUG(llvm::dbgs() 1835 << "Removing " << numDeleted << " fall through jumps\n"); 1836 } 1837 } 1838 1839 fixSymbolsAfterShrinking(); 1840 1841 for (OutputSection *os : outputSections) { 1842 std::vector<InputSection *> sections = getInputSections(os); 1843 for (InputSection *is : sections) 1844 is->trim(); 1845 } 1846 } 1847 1848 // In order to allow users to manipulate linker-synthesized sections, 1849 // we had to add synthetic sections to the input section list early, 1850 // even before we make decisions whether they are needed. This allows 1851 // users to write scripts like this: ".mygot : { .got }". 1852 // 1853 // Doing it has an unintended side effects. If it turns out that we 1854 // don't need a .got (for example) at all because there's no 1855 // relocation that needs a .got, we don't want to emit .got. 1856 // 1857 // To deal with the above problem, this function is called after 1858 // scanRelocations is called to remove synthetic sections that turn 1859 // out to be empty. 1860 static void removeUnusedSyntheticSections() { 1861 // All input synthetic sections that can be empty are placed after 1862 // all regular ones. We iterate over them all and exit at first 1863 // non-synthetic. 1864 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1865 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1866 if (!ss) 1867 return; 1868 OutputSection *os = ss->getParent(); 1869 if (!os || ss->isNeeded()) 1870 continue; 1871 1872 // If we reach here, then ss is an unused synthetic section and we want to 1873 // remove it from the corresponding input section description, and 1874 // orphanSections. 1875 for (BaseCommand *b : os->sectionCommands) 1876 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1877 llvm::erase_if(isd->sections, 1878 [=](InputSection *isec) { return isec == ss; }); 1879 llvm::erase_if(script->orphanSections, 1880 [=](const InputSectionBase *isec) { return isec == ss; }); 1881 } 1882 } 1883 1884 // Create output section objects and add them to OutputSections. 1885 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1886 Out::preinitArray = findSection(".preinit_array"); 1887 Out::initArray = findSection(".init_array"); 1888 Out::finiArray = findSection(".fini_array"); 1889 1890 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1891 // symbols for sections, so that the runtime can get the start and end 1892 // addresses of each section by section name. Add such symbols. 1893 if (!config->relocatable) { 1894 addStartEndSymbols(); 1895 for (BaseCommand *base : script->sectionCommands) 1896 if (auto *sec = dyn_cast<OutputSection>(base)) 1897 addStartStopSymbols(sec); 1898 } 1899 1900 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1901 // It should be okay as no one seems to care about the type. 1902 // Even the author of gold doesn't remember why gold behaves that way. 1903 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1904 if (mainPart->dynamic->parent) 1905 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1906 STV_HIDDEN, STT_NOTYPE, 1907 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1908 1909 // Define __rel[a]_iplt_{start,end} symbols if needed. 1910 addRelIpltSymbols(); 1911 1912 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1913 // should only be defined in an executable. If .sdata does not exist, its 1914 // value/section does not matter but it has to be relative, so set its 1915 // st_shndx arbitrarily to 1 (Out::elfHeader). 1916 if (config->emachine == EM_RISCV && !config->shared) { 1917 OutputSection *sec = findSection(".sdata"); 1918 ElfSym::riscvGlobalPointer = 1919 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1920 0x800, STV_DEFAULT, STB_GLOBAL); 1921 } 1922 1923 if (config->emachine == EM_X86_64) { 1924 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1925 // way that: 1926 // 1927 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1928 // computes 0. 1929 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1930 // the TLS block). 1931 // 1932 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1933 // an absolute symbol of zero. This is different from GNU linkers which 1934 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1935 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1936 if (s && s->isUndefined()) { 1937 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1938 STT_TLS, /*value=*/0, 0, 1939 /*section=*/nullptr}); 1940 ElfSym::tlsModuleBase = cast<Defined>(s); 1941 } 1942 } 1943 1944 // This responsible for splitting up .eh_frame section into 1945 // pieces. The relocation scan uses those pieces, so this has to be 1946 // earlier. 1947 for (Partition &part : partitions) 1948 finalizeSynthetic(part.ehFrame); 1949 1950 for (Symbol *sym : symtab->symbols()) 1951 sym->isPreemptible = computeIsPreemptible(*sym); 1952 1953 // Change values of linker-script-defined symbols from placeholders (assigned 1954 // by declareSymbols) to actual definitions. 1955 script->processSymbolAssignments(); 1956 1957 // Scan relocations. This must be done after every symbol is declared so that 1958 // we can correctly decide if a dynamic relocation is needed. This is called 1959 // after processSymbolAssignments() because it needs to know whether a 1960 // linker-script-defined symbol is absolute. 1961 ppc64noTocRelax.clear(); 1962 if (!config->relocatable) { 1963 forEachRelSec(scanRelocations<ELFT>); 1964 reportUndefinedSymbols<ELFT>(); 1965 } 1966 1967 if (in.plt && in.plt->isNeeded()) 1968 in.plt->addSymbols(); 1969 if (in.iplt && in.iplt->isNeeded()) 1970 in.iplt->addSymbols(); 1971 1972 if (!config->allowShlibUndefined) { 1973 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1974 // entries are seen. These cases would otherwise lead to runtime errors 1975 // reported by the dynamic linker. 1976 // 1977 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1978 // catch more cases. That is too much for us. Our approach resembles the one 1979 // used in ld.gold, achieves a good balance to be useful but not too smart. 1980 for (SharedFile *file : sharedFiles) 1981 file->allNeededIsKnown = 1982 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1983 return symtab->soNames.count(needed); 1984 }); 1985 1986 for (Symbol *sym : symtab->symbols()) 1987 if (sym->isUndefined() && !sym->isWeak()) 1988 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1989 if (f->allNeededIsKnown) 1990 errorOrWarn(toString(f) + ": undefined reference to " + 1991 toString(*sym) + " [--no-allow-shlib-undefined]"); 1992 } 1993 1994 // Now that we have defined all possible global symbols including linker- 1995 // synthesized ones. Visit all symbols to give the finishing touches. 1996 for (Symbol *sym : symtab->symbols()) { 1997 if (!includeInSymtab(*sym)) 1998 continue; 1999 if (in.symTab) 2000 in.symTab->addSymbol(sym); 2001 2002 if (sym->includeInDynsym()) { 2003 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2004 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2005 if (file->isNeeded && !sym->isUndefined()) 2006 addVerneed(sym); 2007 } 2008 } 2009 2010 // We also need to scan the dynamic relocation tables of the other partitions 2011 // and add any referenced symbols to the partition's dynsym. 2012 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2013 DenseSet<Symbol *> syms; 2014 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2015 syms.insert(e.sym); 2016 for (DynamicReloc &reloc : part.relaDyn->relocs) 2017 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 2018 part.dynSymTab->addSymbol(reloc.sym); 2019 } 2020 2021 // Do not proceed if there was an undefined symbol. 2022 if (errorCount()) 2023 return; 2024 2025 if (in.mipsGot) 2026 in.mipsGot->build(); 2027 2028 removeUnusedSyntheticSections(); 2029 script->diagnoseOrphanHandling(); 2030 2031 sortSections(); 2032 2033 // Now that we have the final list, create a list of all the 2034 // OutputSections for convenience. 2035 for (BaseCommand *base : script->sectionCommands) 2036 if (auto *sec = dyn_cast<OutputSection>(base)) 2037 outputSections.push_back(sec); 2038 2039 // Prefer command line supplied address over other constraints. 2040 for (OutputSection *sec : outputSections) { 2041 auto i = config->sectionStartMap.find(sec->name); 2042 if (i != config->sectionStartMap.end()) 2043 sec->addrExpr = [=] { return i->second; }; 2044 } 2045 2046 // With the outputSections available check for GDPLT relocations 2047 // and add __tls_get_addr symbol if needed. 2048 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2049 Symbol *sym = symtab->addSymbol(Undefined{ 2050 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2051 sym->isPreemptible = true; 2052 partitions[0].dynSymTab->addSymbol(sym); 2053 } 2054 2055 // This is a bit of a hack. A value of 0 means undef, so we set it 2056 // to 1 to make __ehdr_start defined. The section number is not 2057 // particularly relevant. 2058 Out::elfHeader->sectionIndex = 1; 2059 2060 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2061 OutputSection *sec = outputSections[i]; 2062 sec->sectionIndex = i + 1; 2063 sec->shName = in.shStrTab->addString(sec->name); 2064 } 2065 2066 // Binary and relocatable output does not have PHDRS. 2067 // The headers have to be created before finalize as that can influence the 2068 // image base and the dynamic section on mips includes the image base. 2069 if (!config->relocatable && !config->oFormatBinary) { 2070 for (Partition &part : partitions) { 2071 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2072 : createPhdrs(part); 2073 if (config->emachine == EM_ARM) { 2074 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2075 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2076 } 2077 if (config->emachine == EM_MIPS) { 2078 // Add separate segments for MIPS-specific sections. 2079 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2080 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2081 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2082 } 2083 } 2084 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2085 2086 // Find the TLS segment. This happens before the section layout loop so that 2087 // Android relocation packing can look up TLS symbol addresses. We only need 2088 // to care about the main partition here because all TLS symbols were moved 2089 // to the main partition (see MarkLive.cpp). 2090 for (PhdrEntry *p : mainPart->phdrs) 2091 if (p->p_type == PT_TLS) 2092 Out::tlsPhdr = p; 2093 } 2094 2095 // Some symbols are defined in term of program headers. Now that we 2096 // have the headers, we can find out which sections they point to. 2097 setReservedSymbolSections(); 2098 2099 finalizeSynthetic(in.bss); 2100 finalizeSynthetic(in.bssRelRo); 2101 finalizeSynthetic(in.symTabShndx); 2102 finalizeSynthetic(in.shStrTab); 2103 finalizeSynthetic(in.strTab); 2104 finalizeSynthetic(in.got); 2105 finalizeSynthetic(in.mipsGot); 2106 finalizeSynthetic(in.igotPlt); 2107 finalizeSynthetic(in.gotPlt); 2108 finalizeSynthetic(in.relaIplt); 2109 finalizeSynthetic(in.relaPlt); 2110 finalizeSynthetic(in.plt); 2111 finalizeSynthetic(in.iplt); 2112 finalizeSynthetic(in.ppc32Got2); 2113 finalizeSynthetic(in.partIndex); 2114 2115 // Dynamic section must be the last one in this list and dynamic 2116 // symbol table section (dynSymTab) must be the first one. 2117 for (Partition &part : partitions) { 2118 finalizeSynthetic(part.dynSymTab); 2119 finalizeSynthetic(part.gnuHashTab); 2120 finalizeSynthetic(part.hashTab); 2121 finalizeSynthetic(part.verDef); 2122 finalizeSynthetic(part.relaDyn); 2123 finalizeSynthetic(part.relrDyn); 2124 finalizeSynthetic(part.ehFrameHdr); 2125 finalizeSynthetic(part.verSym); 2126 finalizeSynthetic(part.verNeed); 2127 finalizeSynthetic(part.dynamic); 2128 } 2129 2130 if (!script->hasSectionsCommand && !config->relocatable) 2131 fixSectionAlignments(); 2132 2133 // This is used to: 2134 // 1) Create "thunks": 2135 // Jump instructions in many ISAs have small displacements, and therefore 2136 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2137 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2138 // responsibility to create and insert small pieces of code between 2139 // sections to extend the ranges if jump targets are out of range. Such 2140 // code pieces are called "thunks". 2141 // 2142 // We add thunks at this stage. We couldn't do this before this point 2143 // because this is the earliest point where we know sizes of sections and 2144 // their layouts (that are needed to determine if jump targets are in 2145 // range). 2146 // 2147 // 2) Update the sections. We need to generate content that depends on the 2148 // address of InputSections. For example, MIPS GOT section content or 2149 // android packed relocations sections content. 2150 // 2151 // 3) Assign the final values for the linker script symbols. Linker scripts 2152 // sometimes using forward symbol declarations. We want to set the correct 2153 // values. They also might change after adding the thunks. 2154 finalizeAddressDependentContent(); 2155 if (errorCount()) 2156 return; 2157 2158 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 2159 finalizeSynthetic(in.symTab); 2160 finalizeSynthetic(in.ppc64LongBranchTarget); 2161 2162 // Relaxation to delete inter-basic block jumps created by basic block 2163 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2164 // can relax jump instructions based on symbol offset. 2165 if (config->optimizeBBJumps) 2166 optimizeBasicBlockJumps(); 2167 2168 // Fill other section headers. The dynamic table is finalized 2169 // at the end because some tags like RELSZ depend on result 2170 // of finalizing other sections. 2171 for (OutputSection *sec : outputSections) 2172 sec->finalize(); 2173 } 2174 2175 // Ensure data sections are not mixed with executable sections when 2176 // -execute-only is used. -execute-only is a feature to make pages executable 2177 // but not readable, and the feature is currently supported only on AArch64. 2178 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2179 if (!config->executeOnly) 2180 return; 2181 2182 for (OutputSection *os : outputSections) 2183 if (os->flags & SHF_EXECINSTR) 2184 for (InputSection *isec : getInputSections(os)) 2185 if (!(isec->flags & SHF_EXECINSTR)) 2186 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2187 ": -execute-only does not support intermingling data and code"); 2188 } 2189 2190 // The linker is expected to define SECNAME_start and SECNAME_end 2191 // symbols for a few sections. This function defines them. 2192 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2193 // If a section does not exist, there's ambiguity as to how we 2194 // define _start and _end symbols for an init/fini section. Since 2195 // the loader assume that the symbols are always defined, we need to 2196 // always define them. But what value? The loader iterates over all 2197 // pointers between _start and _end to run global ctors/dtors, so if 2198 // the section is empty, their symbol values don't actually matter 2199 // as long as _start and _end point to the same location. 2200 // 2201 // That said, we don't want to set the symbols to 0 (which is 2202 // probably the simplest value) because that could cause some 2203 // program to fail to link due to relocation overflow, if their 2204 // program text is above 2 GiB. We use the address of the .text 2205 // section instead to prevent that failure. 2206 // 2207 // In rare situations, the .text section may not exist. If that's the 2208 // case, use the image base address as a last resort. 2209 OutputSection *Default = findSection(".text"); 2210 if (!Default) 2211 Default = Out::elfHeader; 2212 2213 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2214 if (os) { 2215 addOptionalRegular(start, os, 0); 2216 addOptionalRegular(end, os, -1); 2217 } else { 2218 addOptionalRegular(start, Default, 0); 2219 addOptionalRegular(end, Default, 0); 2220 } 2221 }; 2222 2223 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2224 define("__init_array_start", "__init_array_end", Out::initArray); 2225 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2226 2227 if (OutputSection *sec = findSection(".ARM.exidx")) 2228 define("__exidx_start", "__exidx_end", sec); 2229 } 2230 2231 // If a section name is valid as a C identifier (which is rare because of 2232 // the leading '.'), linkers are expected to define __start_<secname> and 2233 // __stop_<secname> symbols. They are at beginning and end of the section, 2234 // respectively. This is not requested by the ELF standard, but GNU ld and 2235 // gold provide the feature, and used by many programs. 2236 template <class ELFT> 2237 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2238 StringRef s = sec->name; 2239 if (!isValidCIdentifier(s)) 2240 return; 2241 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2242 config->zStartStopVisibility); 2243 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2244 config->zStartStopVisibility); 2245 } 2246 2247 static bool needsPtLoad(OutputSection *sec) { 2248 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2249 return false; 2250 2251 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2252 // responsible for allocating space for them, not the PT_LOAD that 2253 // contains the TLS initialization image. 2254 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2255 return false; 2256 return true; 2257 } 2258 2259 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2260 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2261 // RW. This means that there is no alignment in the RO to RX transition and we 2262 // cannot create a PT_LOAD there. 2263 static uint64_t computeFlags(uint64_t flags) { 2264 if (config->omagic) 2265 return PF_R | PF_W | PF_X; 2266 if (config->executeOnly && (flags & PF_X)) 2267 return flags & ~PF_R; 2268 if (config->singleRoRx && !(flags & PF_W)) 2269 return flags | PF_X; 2270 return flags; 2271 } 2272 2273 // Decide which program headers to create and which sections to include in each 2274 // one. 2275 template <class ELFT> 2276 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2277 std::vector<PhdrEntry *> ret; 2278 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2279 ret.push_back(make<PhdrEntry>(type, flags)); 2280 return ret.back(); 2281 }; 2282 2283 unsigned partNo = part.getNumber(); 2284 bool isMain = partNo == 1; 2285 2286 // Add the first PT_LOAD segment for regular output sections. 2287 uint64_t flags = computeFlags(PF_R); 2288 PhdrEntry *load = nullptr; 2289 2290 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2291 // PT_LOAD. 2292 if (!config->nmagic && !config->omagic) { 2293 // The first phdr entry is PT_PHDR which describes the program header 2294 // itself. 2295 if (isMain) 2296 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2297 else 2298 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2299 2300 // PT_INTERP must be the second entry if exists. 2301 if (OutputSection *cmd = findSection(".interp", partNo)) 2302 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2303 2304 // Add the headers. We will remove them if they don't fit. 2305 // In the other partitions the headers are ordinary sections, so they don't 2306 // need to be added here. 2307 if (isMain) { 2308 load = addHdr(PT_LOAD, flags); 2309 load->add(Out::elfHeader); 2310 load->add(Out::programHeaders); 2311 } 2312 } 2313 2314 // PT_GNU_RELRO includes all sections that should be marked as 2315 // read-only by dynamic linker after processing relocations. 2316 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2317 // an error message if more than one PT_GNU_RELRO PHDR is required. 2318 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2319 bool inRelroPhdr = false; 2320 OutputSection *relroEnd = nullptr; 2321 for (OutputSection *sec : outputSections) { 2322 if (sec->partition != partNo || !needsPtLoad(sec)) 2323 continue; 2324 if (isRelroSection(sec)) { 2325 inRelroPhdr = true; 2326 if (!relroEnd) 2327 relRo->add(sec); 2328 else 2329 error("section: " + sec->name + " is not contiguous with other relro" + 2330 " sections"); 2331 } else if (inRelroPhdr) { 2332 inRelroPhdr = false; 2333 relroEnd = sec; 2334 } 2335 } 2336 2337 for (OutputSection *sec : outputSections) { 2338 if (!(sec->flags & SHF_ALLOC)) 2339 break; 2340 if (!needsPtLoad(sec)) 2341 continue; 2342 2343 // Normally, sections in partitions other than the current partition are 2344 // ignored. But partition number 255 is a special case: it contains the 2345 // partition end marker (.part.end). It needs to be added to the main 2346 // partition so that a segment is created for it in the main partition, 2347 // which will cause the dynamic loader to reserve space for the other 2348 // partitions. 2349 if (sec->partition != partNo) { 2350 if (isMain && sec->partition == 255) 2351 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2352 continue; 2353 } 2354 2355 // Segments are contiguous memory regions that has the same attributes 2356 // (e.g. executable or writable). There is one phdr for each segment. 2357 // Therefore, we need to create a new phdr when the next section has 2358 // different flags or is loaded at a discontiguous address or memory 2359 // region using AT or AT> linker script command, respectively. At the same 2360 // time, we don't want to create a separate load segment for the headers, 2361 // even if the first output section has an AT or AT> attribute. 2362 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2363 bool sameLMARegion = 2364 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2365 if (!(load && newFlags == flags && sec != relroEnd && 2366 sec->memRegion == load->firstSec->memRegion && 2367 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2368 load = addHdr(PT_LOAD, newFlags); 2369 flags = newFlags; 2370 } 2371 2372 load->add(sec); 2373 } 2374 2375 // Add a TLS segment if any. 2376 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2377 for (OutputSection *sec : outputSections) 2378 if (sec->partition == partNo && sec->flags & SHF_TLS) 2379 tlsHdr->add(sec); 2380 if (tlsHdr->firstSec) 2381 ret.push_back(tlsHdr); 2382 2383 // Add an entry for .dynamic. 2384 if (OutputSection *sec = part.dynamic->getParent()) 2385 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2386 2387 if (relRo->firstSec) 2388 ret.push_back(relRo); 2389 2390 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2391 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2392 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2393 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2394 ->add(part.ehFrameHdr->getParent()); 2395 2396 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2397 // the dynamic linker fill the segment with random data. 2398 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2399 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2400 2401 if (config->zGnustack != GnuStackKind::None) { 2402 // PT_GNU_STACK is a special section to tell the loader to make the 2403 // pages for the stack non-executable. If you really want an executable 2404 // stack, you can pass -z execstack, but that's not recommended for 2405 // security reasons. 2406 unsigned perm = PF_R | PF_W; 2407 if (config->zGnustack == GnuStackKind::Exec) 2408 perm |= PF_X; 2409 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2410 } 2411 2412 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2413 // is expected to perform W^X violations, such as calling mprotect(2) or 2414 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2415 // OpenBSD. 2416 if (config->zWxneeded) 2417 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2418 2419 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2420 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2421 2422 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2423 // same alignment. 2424 PhdrEntry *note = nullptr; 2425 for (OutputSection *sec : outputSections) { 2426 if (sec->partition != partNo) 2427 continue; 2428 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2429 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2430 note = addHdr(PT_NOTE, PF_R); 2431 note->add(sec); 2432 } else { 2433 note = nullptr; 2434 } 2435 } 2436 return ret; 2437 } 2438 2439 template <class ELFT> 2440 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2441 unsigned pType, unsigned pFlags) { 2442 unsigned partNo = part.getNumber(); 2443 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2444 return cmd->partition == partNo && cmd->type == shType; 2445 }); 2446 if (i == outputSections.end()) 2447 return; 2448 2449 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2450 entry->add(*i); 2451 part.phdrs.push_back(entry); 2452 } 2453 2454 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2455 // This is achieved by assigning an alignment expression to addrExpr of each 2456 // such section. 2457 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2458 const PhdrEntry *prev; 2459 auto pageAlign = [&](const PhdrEntry *p) { 2460 OutputSection *cmd = p->firstSec; 2461 if (!cmd) 2462 return; 2463 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2464 if (!cmd->addrExpr) { 2465 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2466 // padding in the file contents. 2467 // 2468 // When -z separate-code is used we must not have any overlap in pages 2469 // between an executable segment and a non-executable segment. We align to 2470 // the next maximum page size boundary on transitions between executable 2471 // and non-executable segments. 2472 // 2473 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2474 // sections will be extracted to a separate file. Align to the next 2475 // maximum page size boundary so that we can find the ELF header at the 2476 // start. We cannot benefit from overlapping p_offset ranges with the 2477 // previous segment anyway. 2478 if (config->zSeparate == SeparateSegmentKind::Loadable || 2479 (config->zSeparate == SeparateSegmentKind::Code && prev && 2480 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2481 cmd->type == SHT_LLVM_PART_EHDR) 2482 cmd->addrExpr = [] { 2483 return alignTo(script->getDot(), config->maxPageSize); 2484 }; 2485 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2486 // it must be the RW. Align to p_align(PT_TLS) to make sure 2487 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2488 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2489 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2490 // be congruent to 0 modulo p_align(PT_TLS). 2491 // 2492 // Technically this is not required, but as of 2019, some dynamic loaders 2493 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2494 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2495 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2496 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2497 // blocks correctly. We need to keep the workaround for a while. 2498 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2499 cmd->addrExpr = [] { 2500 return alignTo(script->getDot(), config->maxPageSize) + 2501 alignTo(script->getDot() % config->maxPageSize, 2502 Out::tlsPhdr->p_align); 2503 }; 2504 else 2505 cmd->addrExpr = [] { 2506 return alignTo(script->getDot(), config->maxPageSize) + 2507 script->getDot() % config->maxPageSize; 2508 }; 2509 } 2510 }; 2511 2512 #ifdef __OpenBSD__ 2513 // On i386, produce binaries that are compatible with our W^X implementation 2514 if (config->emachine == EM_386) { 2515 auto NXAlign = [](OutputSection *Cmd) { 2516 if (Cmd && !Cmd->addrExpr) 2517 Cmd->addrExpr = [=] { 2518 return alignTo(script->getDot(), 0x20000000); 2519 }; 2520 }; 2521 2522 for (Partition &part : partitions) { 2523 PhdrEntry *firstRW = nullptr; 2524 for (PhdrEntry *P : part.phdrs) { 2525 if (P->p_type == PT_LOAD && (P->p_flags & PF_W)) { 2526 firstRW = P; 2527 break; 2528 } 2529 } 2530 2531 if (firstRW) 2532 NXAlign(firstRW->firstSec); 2533 } 2534 } 2535 #endif 2536 2537 for (Partition &part : partitions) { 2538 prev = nullptr; 2539 for (const PhdrEntry *p : part.phdrs) 2540 if (p->p_type == PT_LOAD && p->firstSec) { 2541 pageAlign(p); 2542 prev = p; 2543 } 2544 } 2545 } 2546 2547 // Compute an in-file position for a given section. The file offset must be the 2548 // same with its virtual address modulo the page size, so that the loader can 2549 // load executables without any address adjustment. 2550 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2551 // The first section in a PT_LOAD has to have congruent offset and address 2552 // modulo the maximum page size. 2553 if (os->ptLoad && os->ptLoad->firstSec == os) 2554 return alignTo(off, os->ptLoad->p_align, os->addr); 2555 2556 // File offsets are not significant for .bss sections other than the first one 2557 // in a PT_LOAD. By convention, we keep section offsets monotonically 2558 // increasing rather than setting to zero. 2559 if (os->type == SHT_NOBITS) 2560 return off; 2561 2562 // If the section is not in a PT_LOAD, we just have to align it. 2563 if (!os->ptLoad) 2564 return alignTo(off, os->alignment); 2565 2566 // If two sections share the same PT_LOAD the file offset is calculated 2567 // using this formula: Off2 = Off1 + (VA2 - VA1). 2568 OutputSection *first = os->ptLoad->firstSec; 2569 return first->offset + os->addr - first->addr; 2570 } 2571 2572 // Set an in-file position to a given section and returns the end position of 2573 // the section. 2574 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2575 off = computeFileOffset(os, off); 2576 os->offset = off; 2577 2578 if (os->type == SHT_NOBITS) 2579 return off; 2580 return off + os->size; 2581 } 2582 2583 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2584 uint64_t off = 0; 2585 for (OutputSection *sec : outputSections) 2586 if (sec->flags & SHF_ALLOC) 2587 off = setFileOffset(sec, off); 2588 fileSize = alignTo(off, config->wordsize); 2589 } 2590 2591 static std::string rangeToString(uint64_t addr, uint64_t len) { 2592 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2593 } 2594 2595 // Assign file offsets to output sections. 2596 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2597 uint64_t off = 0; 2598 off = setFileOffset(Out::elfHeader, off); 2599 off = setFileOffset(Out::programHeaders, off); 2600 2601 PhdrEntry *lastRX = nullptr; 2602 for (Partition &part : partitions) 2603 for (PhdrEntry *p : part.phdrs) 2604 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2605 lastRX = p; 2606 2607 for (OutputSection *sec : outputSections) { 2608 off = setFileOffset(sec, off); 2609 2610 // If this is a last section of the last executable segment and that 2611 // segment is the last loadable segment, align the offset of the 2612 // following section to avoid loading non-segments parts of the file. 2613 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2614 lastRX->lastSec == sec) 2615 off = alignTo(off, config->commonPageSize); 2616 } 2617 2618 sectionHeaderOff = alignTo(off, config->wordsize); 2619 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2620 2621 // Our logic assumes that sections have rising VA within the same segment. 2622 // With use of linker scripts it is possible to violate this rule and get file 2623 // offset overlaps or overflows. That should never happen with a valid script 2624 // which does not move the location counter backwards and usually scripts do 2625 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2626 // kernel, which control segment distribution explicitly and move the counter 2627 // backwards, so we have to allow doing that to support linking them. We 2628 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2629 // we want to prevent file size overflows because it would crash the linker. 2630 for (OutputSection *sec : outputSections) { 2631 if (sec->type == SHT_NOBITS) 2632 continue; 2633 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2634 error("unable to place section " + sec->name + " at file offset " + 2635 rangeToString(sec->offset, sec->size) + 2636 "; check your linker script for overflows"); 2637 } 2638 } 2639 2640 // Finalize the program headers. We call this function after we assign 2641 // file offsets and VAs to all sections. 2642 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2643 for (PhdrEntry *p : part.phdrs) { 2644 OutputSection *first = p->firstSec; 2645 OutputSection *last = p->lastSec; 2646 2647 if (first) { 2648 p->p_filesz = last->offset - first->offset; 2649 if (last->type != SHT_NOBITS) 2650 p->p_filesz += last->size; 2651 2652 p->p_memsz = last->addr + last->size - first->addr; 2653 p->p_offset = first->offset; 2654 p->p_vaddr = first->addr; 2655 2656 // File offsets in partitions other than the main partition are relative 2657 // to the offset of the ELF headers. Perform that adjustment now. 2658 if (part.elfHeader) 2659 p->p_offset -= part.elfHeader->getParent()->offset; 2660 2661 if (!p->hasLMA) 2662 p->p_paddr = first->getLMA(); 2663 } 2664 2665 if (p->p_type == PT_GNU_RELRO) { 2666 p->p_align = 1; 2667 // musl/glibc ld.so rounds the size down, so we need to round up 2668 // to protect the last page. This is a no-op on FreeBSD which always 2669 // rounds up. 2670 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2671 p->p_offset; 2672 } 2673 } 2674 } 2675 2676 // A helper struct for checkSectionOverlap. 2677 namespace { 2678 struct SectionOffset { 2679 OutputSection *sec; 2680 uint64_t offset; 2681 }; 2682 } // namespace 2683 2684 // Check whether sections overlap for a specific address range (file offsets, 2685 // load and virtual addresses). 2686 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2687 bool isVirtualAddr) { 2688 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2689 return a.offset < b.offset; 2690 }); 2691 2692 // Finding overlap is easy given a vector is sorted by start position. 2693 // If an element starts before the end of the previous element, they overlap. 2694 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2695 SectionOffset a = sections[i - 1]; 2696 SectionOffset b = sections[i]; 2697 if (b.offset >= a.offset + a.sec->size) 2698 continue; 2699 2700 // If both sections are in OVERLAY we allow the overlapping of virtual 2701 // addresses, because it is what OVERLAY was designed for. 2702 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2703 continue; 2704 2705 errorOrWarn("section " + a.sec->name + " " + name + 2706 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2707 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2708 b.sec->name + " range is " + 2709 rangeToString(b.offset, b.sec->size)); 2710 } 2711 } 2712 2713 // Check for overlapping sections and address overflows. 2714 // 2715 // In this function we check that none of the output sections have overlapping 2716 // file offsets. For SHF_ALLOC sections we also check that the load address 2717 // ranges and the virtual address ranges don't overlap 2718 template <class ELFT> void Writer<ELFT>::checkSections() { 2719 // First, check that section's VAs fit in available address space for target. 2720 for (OutputSection *os : outputSections) 2721 if ((os->addr + os->size < os->addr) || 2722 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2723 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2724 " of size 0x" + utohexstr(os->size) + 2725 " exceeds available address space"); 2726 2727 // Check for overlapping file offsets. In this case we need to skip any 2728 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2729 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2730 // binary is specified only add SHF_ALLOC sections are added to the output 2731 // file so we skip any non-allocated sections in that case. 2732 std::vector<SectionOffset> fileOffs; 2733 for (OutputSection *sec : outputSections) 2734 if (sec->size > 0 && sec->type != SHT_NOBITS && 2735 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2736 fileOffs.push_back({sec, sec->offset}); 2737 checkOverlap("file", fileOffs, false); 2738 2739 // When linking with -r there is no need to check for overlapping virtual/load 2740 // addresses since those addresses will only be assigned when the final 2741 // executable/shared object is created. 2742 if (config->relocatable) 2743 return; 2744 2745 // Checking for overlapping virtual and load addresses only needs to take 2746 // into account SHF_ALLOC sections since others will not be loaded. 2747 // Furthermore, we also need to skip SHF_TLS sections since these will be 2748 // mapped to other addresses at runtime and can therefore have overlapping 2749 // ranges in the file. 2750 std::vector<SectionOffset> vmas; 2751 for (OutputSection *sec : outputSections) 2752 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2753 vmas.push_back({sec, sec->addr}); 2754 checkOverlap("virtual address", vmas, true); 2755 2756 // Finally, check that the load addresses don't overlap. This will usually be 2757 // the same as the virtual addresses but can be different when using a linker 2758 // script with AT(). 2759 std::vector<SectionOffset> lmas; 2760 for (OutputSection *sec : outputSections) 2761 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2762 lmas.push_back({sec, sec->getLMA()}); 2763 checkOverlap("load address", lmas, false); 2764 } 2765 2766 // The entry point address is chosen in the following ways. 2767 // 2768 // 1. the '-e' entry command-line option; 2769 // 2. the ENTRY(symbol) command in a linker control script; 2770 // 3. the value of the symbol _start, if present; 2771 // 4. the number represented by the entry symbol, if it is a number; 2772 // 5. the address of the first byte of the .text section, if present; 2773 // 6. the address 0. 2774 static uint64_t getEntryAddr() { 2775 // Case 1, 2 or 3 2776 if (Symbol *b = symtab->find(config->entry)) 2777 return b->getVA(); 2778 2779 // Case 4 2780 uint64_t addr; 2781 if (to_integer(config->entry, addr)) 2782 return addr; 2783 2784 // Case 5 2785 if (OutputSection *sec = findSection(".text")) { 2786 if (config->warnMissingEntry) 2787 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2788 utohexstr(sec->addr)); 2789 return sec->addr; 2790 } 2791 2792 // Case 6 2793 if (config->warnMissingEntry) 2794 warn("cannot find entry symbol " + config->entry + 2795 "; not setting start address"); 2796 return 0; 2797 } 2798 2799 static uint16_t getELFType() { 2800 if (config->isPic) 2801 return ET_DYN; 2802 if (config->relocatable) 2803 return ET_REL; 2804 return ET_EXEC; 2805 } 2806 2807 template <class ELFT> void Writer<ELFT>::writeHeader() { 2808 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2809 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2810 2811 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2812 eHdr->e_type = getELFType(); 2813 eHdr->e_entry = getEntryAddr(); 2814 eHdr->e_shoff = sectionHeaderOff; 2815 2816 // Write the section header table. 2817 // 2818 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2819 // and e_shstrndx fields. When the value of one of these fields exceeds 2820 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2821 // use fields in the section header at index 0 to store 2822 // the value. The sentinel values and fields are: 2823 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2824 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2825 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2826 size_t num = outputSections.size() + 1; 2827 if (num >= SHN_LORESERVE) 2828 sHdrs->sh_size = num; 2829 else 2830 eHdr->e_shnum = num; 2831 2832 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2833 if (strTabIndex >= SHN_LORESERVE) { 2834 sHdrs->sh_link = strTabIndex; 2835 eHdr->e_shstrndx = SHN_XINDEX; 2836 } else { 2837 eHdr->e_shstrndx = strTabIndex; 2838 } 2839 2840 for (OutputSection *sec : outputSections) 2841 sec->writeHeaderTo<ELFT>(++sHdrs); 2842 } 2843 2844 // Open a result file. 2845 template <class ELFT> void Writer<ELFT>::openFile() { 2846 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2847 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2848 error("output file too large: " + Twine(fileSize) + " bytes"); 2849 return; 2850 } 2851 2852 unlinkAsync(config->outputFile); 2853 unsigned flags = 0; 2854 if (!config->relocatable) 2855 flags |= FileOutputBuffer::F_executable; 2856 if (!config->mmapOutputFile) 2857 flags |= FileOutputBuffer::F_no_mmap; 2858 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2859 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2860 2861 if (!bufferOrErr) { 2862 error("failed to open " + config->outputFile + ": " + 2863 llvm::toString(bufferOrErr.takeError())); 2864 return; 2865 } 2866 buffer = std::move(*bufferOrErr); 2867 Out::bufferStart = buffer->getBufferStart(); 2868 } 2869 2870 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2871 for (OutputSection *sec : outputSections) 2872 if (sec->flags & SHF_ALLOC) 2873 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2874 } 2875 2876 static void fillTrap(uint8_t *i, uint8_t *end) { 2877 for (; i + 4 <= end; i += 4) 2878 memcpy(i, &target->trapInstr, 4); 2879 } 2880 2881 // Fill the last page of executable segments with trap instructions 2882 // instead of leaving them as zero. Even though it is not required by any 2883 // standard, it is in general a good thing to do for security reasons. 2884 // 2885 // We'll leave other pages in segments as-is because the rest will be 2886 // overwritten by output sections. 2887 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2888 for (Partition &part : partitions) { 2889 // Fill the last page. 2890 for (PhdrEntry *p : part.phdrs) 2891 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2892 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2893 config->commonPageSize), 2894 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2895 config->commonPageSize)); 2896 2897 // Round up the file size of the last segment to the page boundary iff it is 2898 // an executable segment to ensure that other tools don't accidentally 2899 // trim the instruction padding (e.g. when stripping the file). 2900 PhdrEntry *last = nullptr; 2901 for (PhdrEntry *p : part.phdrs) 2902 if (p->p_type == PT_LOAD) 2903 last = p; 2904 2905 if (last && (last->p_flags & PF_X)) 2906 last->p_memsz = last->p_filesz = 2907 alignTo(last->p_filesz, config->commonPageSize); 2908 } 2909 } 2910 2911 // Write section contents to a mmap'ed file. 2912 template <class ELFT> void Writer<ELFT>::writeSections() { 2913 // In -r or -emit-relocs mode, write the relocation sections first as in 2914 // ELf_Rel targets we might find out that we need to modify the relocated 2915 // section while doing it. 2916 for (OutputSection *sec : outputSections) 2917 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2918 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2919 2920 for (OutputSection *sec : outputSections) 2921 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2922 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2923 } 2924 2925 // Split one uint8 array into small pieces of uint8 arrays. 2926 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2927 size_t chunkSize) { 2928 std::vector<ArrayRef<uint8_t>> ret; 2929 while (arr.size() > chunkSize) { 2930 ret.push_back(arr.take_front(chunkSize)); 2931 arr = arr.drop_front(chunkSize); 2932 } 2933 if (!arr.empty()) 2934 ret.push_back(arr); 2935 return ret; 2936 } 2937 2938 // Computes a hash value of Data using a given hash function. 2939 // In order to utilize multiple cores, we first split data into 1MB 2940 // chunks, compute a hash for each chunk, and then compute a hash value 2941 // of the hash values. 2942 static void 2943 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2944 llvm::ArrayRef<uint8_t> data, 2945 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2946 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2947 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2948 2949 // Compute hash values. 2950 parallelForEachN(0, chunks.size(), [&](size_t i) { 2951 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2952 }); 2953 2954 // Write to the final output buffer. 2955 hashFn(hashBuf.data(), hashes); 2956 } 2957 2958 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2959 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2960 return; 2961 2962 if (config->buildId == BuildIdKind::Hexstring) { 2963 for (Partition &part : partitions) 2964 part.buildId->writeBuildId(config->buildIdVector); 2965 return; 2966 } 2967 2968 // Compute a hash of all sections of the output file. 2969 size_t hashSize = mainPart->buildId->hashSize; 2970 std::vector<uint8_t> buildId(hashSize); 2971 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2972 2973 switch (config->buildId) { 2974 case BuildIdKind::Fast: 2975 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2976 write64le(dest, xxHash64(arr)); 2977 }); 2978 break; 2979 case BuildIdKind::Md5: 2980 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2981 memcpy(dest, MD5::hash(arr).data(), hashSize); 2982 }); 2983 break; 2984 case BuildIdKind::Sha1: 2985 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2986 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2987 }); 2988 break; 2989 case BuildIdKind::Uuid: 2990 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2991 error("entropy source failure: " + ec.message()); 2992 break; 2993 default: 2994 llvm_unreachable("unknown BuildIdKind"); 2995 } 2996 for (Partition &part : partitions) 2997 part.buildId->writeBuildId(buildId); 2998 } 2999 3000 template void elf::createSyntheticSections<ELF32LE>(); 3001 template void elf::createSyntheticSections<ELF32BE>(); 3002 template void elf::createSyntheticSections<ELF64LE>(); 3003 template void elf::createSyntheticSections<ELF64BE>(); 3004 3005 template void elf::writeResult<ELF32LE>(); 3006 template void elf::writeResult<ELF32BE>(); 3007 template void elf::writeResult<ELF64LE>(); 3008 template void elf::writeResult<ELF64BE>(); 3009