1ece8a530Spatrick //===- Writer.cpp ---------------------------------------------------------===// 2ece8a530Spatrick // 3ece8a530Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4ece8a530Spatrick // See https://llvm.org/LICENSE.txt for license information. 5ece8a530Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6ece8a530Spatrick // 7ece8a530Spatrick //===----------------------------------------------------------------------===// 8ece8a530Spatrick 9ece8a530Spatrick #include "Writer.h" 10ece8a530Spatrick #include "AArch64ErrataFix.h" 11ece8a530Spatrick #include "ARMErrataFix.h" 12ece8a530Spatrick #include "CallGraphSort.h" 13ece8a530Spatrick #include "Config.h" 14ece8a530Spatrick #include "LinkerScript.h" 15ece8a530Spatrick #include "MapFile.h" 16ece8a530Spatrick #include "OutputSections.h" 17ece8a530Spatrick #include "Relocations.h" 18ece8a530Spatrick #include "SymbolTable.h" 19ece8a530Spatrick #include "Symbols.h" 20ece8a530Spatrick #include "SyntheticSections.h" 21ece8a530Spatrick #include "Target.h" 22*a0747c9fSpatrick #include "lld/Common/Arrays.h" 23ece8a530Spatrick #include "lld/Common/Filesystem.h" 24ece8a530Spatrick #include "lld/Common/Memory.h" 25ece8a530Spatrick #include "lld/Common/Strings.h" 26ece8a530Spatrick #include "llvm/ADT/StringMap.h" 27ece8a530Spatrick #include "llvm/ADT/StringSwitch.h" 28bb684c34Spatrick #include "llvm/Support/Parallel.h" 29ece8a530Spatrick #include "llvm/Support/RandomNumberGenerator.h" 30ece8a530Spatrick #include "llvm/Support/SHA1.h" 31bb684c34Spatrick #include "llvm/Support/TimeProfiler.h" 32ece8a530Spatrick #include "llvm/Support/xxhash.h" 33ece8a530Spatrick #include <climits> 34ece8a530Spatrick 35bb684c34Spatrick #define DEBUG_TYPE "lld" 36bb684c34Spatrick 37ece8a530Spatrick using namespace llvm; 38ece8a530Spatrick using namespace llvm::ELF; 39ece8a530Spatrick using namespace llvm::object; 40ece8a530Spatrick using namespace llvm::support; 41ece8a530Spatrick using namespace llvm::support::endian; 42bb684c34Spatrick using namespace lld; 43bb684c34Spatrick using namespace lld::elf; 44ece8a530Spatrick 45ece8a530Spatrick namespace { 46ece8a530Spatrick // The writer writes a SymbolTable result to a file. 47ece8a530Spatrick template <class ELFT> class Writer { 48ece8a530Spatrick public: 49*a0747c9fSpatrick LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50*a0747c9fSpatrick 51ece8a530Spatrick Writer() : buffer(errorHandler().outputBuffer) {} 52ece8a530Spatrick 53ece8a530Spatrick void run(); 54ece8a530Spatrick 55ece8a530Spatrick private: 56ece8a530Spatrick void copyLocalSymbols(); 57ece8a530Spatrick void addSectionSymbols(); 58ece8a530Spatrick void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59ece8a530Spatrick void sortSections(); 60ece8a530Spatrick void resolveShfLinkOrder(); 61ece8a530Spatrick void finalizeAddressDependentContent(); 62bb684c34Spatrick void optimizeBasicBlockJumps(); 63ece8a530Spatrick void sortInputSections(); 64ece8a530Spatrick void finalizeSections(); 65ece8a530Spatrick void checkExecuteOnly(); 66ece8a530Spatrick void setReservedSymbolSections(); 67ece8a530Spatrick 68ece8a530Spatrick std::vector<PhdrEntry *> createPhdrs(Partition &part); 69ece8a530Spatrick void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70ece8a530Spatrick unsigned pFlags); 71ece8a530Spatrick void assignFileOffsets(); 72ece8a530Spatrick void assignFileOffsetsBinary(); 73ece8a530Spatrick void setPhdrs(Partition &part); 74ece8a530Spatrick void checkSections(); 75ece8a530Spatrick void fixSectionAlignments(); 76ece8a530Spatrick void openFile(); 77ece8a530Spatrick void writeTrapInstr(); 78ece8a530Spatrick void writeHeader(); 79ece8a530Spatrick void writeSections(); 80ece8a530Spatrick void writeSectionsBinary(); 81ece8a530Spatrick void writeBuildId(); 82ece8a530Spatrick 83ece8a530Spatrick std::unique_ptr<FileOutputBuffer> &buffer; 84ece8a530Spatrick 85ece8a530Spatrick void addRelIpltSymbols(); 86ece8a530Spatrick void addStartEndSymbols(); 87ece8a530Spatrick void addStartStopSymbols(OutputSection *sec); 88ece8a530Spatrick 89ece8a530Spatrick uint64_t fileSize; 90ece8a530Spatrick uint64_t sectionHeaderOff; 91ece8a530Spatrick }; 92ece8a530Spatrick } // anonymous namespace 93ece8a530Spatrick 94ece8a530Spatrick static bool isSectionPrefix(StringRef prefix, StringRef name) { 95ece8a530Spatrick return name.startswith(prefix) || name == prefix.drop_back(); 96ece8a530Spatrick } 97ece8a530Spatrick 98bb684c34Spatrick StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99ece8a530Spatrick if (config->relocatable) 100ece8a530Spatrick return s->name; 101ece8a530Spatrick 102ece8a530Spatrick // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103ece8a530Spatrick // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104ece8a530Spatrick // technically required, but not doing it is odd). This code guarantees that. 105ece8a530Spatrick if (auto *isec = dyn_cast<InputSection>(s)) { 106ece8a530Spatrick if (InputSectionBase *rel = isec->getRelocatedSection()) { 107ece8a530Spatrick OutputSection *out = rel->getOutputSection(); 108ece8a530Spatrick if (s->type == SHT_RELA) 109ece8a530Spatrick return saver.save(".rela" + out->name); 110ece8a530Spatrick return saver.save(".rel" + out->name); 111ece8a530Spatrick } 112ece8a530Spatrick } 113ece8a530Spatrick 114bb684c34Spatrick // A BssSection created for a common symbol is identified as "COMMON" in 115bb684c34Spatrick // linker scripts. It should go to .bss section. 116bb684c34Spatrick if (s->name == "COMMON") 117bb684c34Spatrick return ".bss"; 118bb684c34Spatrick 119bb684c34Spatrick if (script->hasSectionsCommand) 120bb684c34Spatrick return s->name; 121bb684c34Spatrick 122bb684c34Spatrick // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123bb684c34Spatrick // by grouping sections with certain prefixes. 124bb684c34Spatrick 125bb684c34Spatrick // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126bb684c34Spatrick // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127bb684c34Spatrick // We provide an option -z keep-text-section-prefix to group such sections 128bb684c34Spatrick // into separate output sections. This is more flexible. See also 129bb684c34Spatrick // sortISDBySectionOrder(). 130bb684c34Spatrick // ".text.unknown" means the hotness of the section is unknown. When 131bb684c34Spatrick // SampleFDO is used, if a function doesn't have sample, it could be very 132bb684c34Spatrick // cold or it could be a new function never being sampled. Those functions 133bb684c34Spatrick // will be kept in the ".text.unknown" section. 134*a0747c9fSpatrick // ".text.split." holds symbols which are split out from functions in other 135*a0747c9fSpatrick // input sections. For example, with -fsplit-machine-functions, placing the 136*a0747c9fSpatrick // cold parts in .text.split instead of .text.unlikely mitigates against poor 137*a0747c9fSpatrick // profile inaccuracy. Techniques such as hugepage remapping can make 138*a0747c9fSpatrick // conservative decisions at the section granularity. 139ece8a530Spatrick if (config->zKeepTextSectionPrefix) 140bb684c34Spatrick for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 141*a0747c9fSpatrick ".text.startup.", ".text.exit.", ".text.split."}) 142ece8a530Spatrick if (isSectionPrefix(v, s->name)) 143ece8a530Spatrick return v.drop_back(); 144ece8a530Spatrick 145ece8a530Spatrick for (StringRef v : 146ece8a530Spatrick {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 147ece8a530Spatrick ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 148adae0cfdSpatrick ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab.", 149adae0cfdSpatrick ".openbsd.randomdata."}) 150ece8a530Spatrick if (isSectionPrefix(v, s->name)) 151ece8a530Spatrick return v.drop_back(); 152ece8a530Spatrick 153ece8a530Spatrick return s->name; 154ece8a530Spatrick } 155ece8a530Spatrick 156ece8a530Spatrick static bool needsInterpSection() { 157ece8a530Spatrick return !config->relocatable && !config->shared && 158ece8a530Spatrick !config->dynamicLinker.empty() && script->needsInterpSection(); 159ece8a530Spatrick } 160ece8a530Spatrick 161bb684c34Spatrick template <class ELFT> void elf::writeResult() { 162bb684c34Spatrick Writer<ELFT>().run(); 163ece8a530Spatrick } 164ece8a530Spatrick 165bb684c34Spatrick static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 166bb684c34Spatrick auto it = std::stable_partition( 167bb684c34Spatrick phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 168bb684c34Spatrick if (p->p_type != PT_LOAD) 169bb684c34Spatrick return true; 170bb684c34Spatrick if (!p->firstSec) 171bb684c34Spatrick return false; 172bb684c34Spatrick uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 173bb684c34Spatrick return size != 0; 174bb684c34Spatrick }); 175bb684c34Spatrick 176bb684c34Spatrick // Clear OutputSection::ptLoad for sections contained in removed 177bb684c34Spatrick // segments. 178bb684c34Spatrick DenseSet<PhdrEntry *> removed(it, phdrs.end()); 179bb684c34Spatrick for (OutputSection *sec : outputSections) 180bb684c34Spatrick if (removed.count(sec->ptLoad)) 181bb684c34Spatrick sec->ptLoad = nullptr; 182bb684c34Spatrick phdrs.erase(it, phdrs.end()); 183bb684c34Spatrick } 184bb684c34Spatrick 185bb684c34Spatrick void elf::copySectionsIntoPartitions() { 186ece8a530Spatrick std::vector<InputSectionBase *> newSections; 187ece8a530Spatrick for (unsigned part = 2; part != partitions.size() + 1; ++part) { 188ece8a530Spatrick for (InputSectionBase *s : inputSections) { 189ece8a530Spatrick if (!(s->flags & SHF_ALLOC) || !s->isLive()) 190ece8a530Spatrick continue; 191ece8a530Spatrick InputSectionBase *copy; 192ece8a530Spatrick if (s->type == SHT_NOTE) 193ece8a530Spatrick copy = make<InputSection>(cast<InputSection>(*s)); 194ece8a530Spatrick else if (auto *es = dyn_cast<EhInputSection>(s)) 195ece8a530Spatrick copy = make<EhInputSection>(*es); 196ece8a530Spatrick else 197ece8a530Spatrick continue; 198ece8a530Spatrick copy->partition = part; 199ece8a530Spatrick newSections.push_back(copy); 200ece8a530Spatrick } 201ece8a530Spatrick } 202ece8a530Spatrick 203ece8a530Spatrick inputSections.insert(inputSections.end(), newSections.begin(), 204ece8a530Spatrick newSections.end()); 205ece8a530Spatrick } 206ece8a530Spatrick 207bb684c34Spatrick void elf::combineEhSections() { 208*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Combine EH sections"); 209ece8a530Spatrick for (InputSectionBase *&s : inputSections) { 210ece8a530Spatrick // Ignore dead sections and the partition end marker (.part.end), 211ece8a530Spatrick // whose partition number is out of bounds. 212ece8a530Spatrick if (!s->isLive() || s->partition == 255) 213ece8a530Spatrick continue; 214ece8a530Spatrick 215ece8a530Spatrick Partition &part = s->getPartition(); 216ece8a530Spatrick if (auto *es = dyn_cast<EhInputSection>(s)) { 217ece8a530Spatrick part.ehFrame->addSection(es); 218ece8a530Spatrick s = nullptr; 219ece8a530Spatrick } else if (s->kind() == SectionBase::Regular && part.armExidx && 220ece8a530Spatrick part.armExidx->addSection(cast<InputSection>(s))) { 221ece8a530Spatrick s = nullptr; 222ece8a530Spatrick } 223ece8a530Spatrick } 224ece8a530Spatrick 225ece8a530Spatrick std::vector<InputSectionBase *> &v = inputSections; 226ece8a530Spatrick v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 227ece8a530Spatrick } 228ece8a530Spatrick 229ece8a530Spatrick static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 230ece8a530Spatrick uint64_t val, uint8_t stOther = STV_HIDDEN, 231ece8a530Spatrick uint8_t binding = STB_GLOBAL) { 232ece8a530Spatrick Symbol *s = symtab->find(name); 233ece8a530Spatrick if (!s || s->isDefined()) 234ece8a530Spatrick return nullptr; 235ece8a530Spatrick 236ece8a530Spatrick s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 237ece8a530Spatrick /*size=*/0, sec}); 238ece8a530Spatrick return cast<Defined>(s); 239ece8a530Spatrick } 240ece8a530Spatrick 241ece8a530Spatrick static Defined *addAbsolute(StringRef name) { 242ece8a530Spatrick Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 243ece8a530Spatrick STT_NOTYPE, 0, 0, nullptr}); 244ece8a530Spatrick return cast<Defined>(sym); 245ece8a530Spatrick } 246ece8a530Spatrick 247ece8a530Spatrick // The linker is expected to define some symbols depending on 248ece8a530Spatrick // the linking result. This function defines such symbols. 249bb684c34Spatrick void elf::addReservedSymbols() { 250ece8a530Spatrick if (config->emachine == EM_MIPS) { 251ece8a530Spatrick // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 252ece8a530Spatrick // so that it points to an absolute address which by default is relative 253ece8a530Spatrick // to GOT. Default offset is 0x7ff0. 254ece8a530Spatrick // See "Global Data Symbols" in Chapter 6 in the following document: 255ece8a530Spatrick // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 256ece8a530Spatrick ElfSym::mipsGp = addAbsolute("_gp"); 257ece8a530Spatrick 258ece8a530Spatrick // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 259ece8a530Spatrick // start of function and 'gp' pointer into GOT. 260ece8a530Spatrick if (symtab->find("_gp_disp")) 261ece8a530Spatrick ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 262ece8a530Spatrick 263ece8a530Spatrick // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 264ece8a530Spatrick // pointer. This symbol is used in the code generated by .cpload pseudo-op 265ece8a530Spatrick // in case of using -mno-shared option. 266ece8a530Spatrick // https://sourceware.org/ml/binutils/2004-12/msg00094.html 267ece8a530Spatrick if (symtab->find("__gnu_local_gp")) 268ece8a530Spatrick ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 269ece8a530Spatrick } else if (config->emachine == EM_PPC) { 270ece8a530Spatrick // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 271ece8a530Spatrick // support Small Data Area, define it arbitrarily as 0. 272ece8a530Spatrick addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 273bb684c34Spatrick } else if (config->emachine == EM_PPC64) { 274bb684c34Spatrick addPPC64SaveRestore(); 275ece8a530Spatrick } 276ece8a530Spatrick 277ece8a530Spatrick // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 278ece8a530Spatrick // combines the typical ELF GOT with the small data sections. It commonly 279ece8a530Spatrick // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 280ece8a530Spatrick // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 281ece8a530Spatrick // represent the TOC base which is offset by 0x8000 bytes from the start of 282ece8a530Spatrick // the .got section. 283ece8a530Spatrick // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 284ece8a530Spatrick // correctness of some relocations depends on its value. 285ece8a530Spatrick StringRef gotSymName = 286ece8a530Spatrick (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 287ece8a530Spatrick 288ece8a530Spatrick if (Symbol *s = symtab->find(gotSymName)) { 289ece8a530Spatrick if (s->isDefined()) { 290ece8a530Spatrick error(toString(s->file) + " cannot redefine linker defined symbol '" + 291ece8a530Spatrick gotSymName + "'"); 292ece8a530Spatrick return; 293ece8a530Spatrick } 294ece8a530Spatrick 295ece8a530Spatrick uint64_t gotOff = 0; 296ece8a530Spatrick if (config->emachine == EM_PPC64) 297ece8a530Spatrick gotOff = 0x8000; 298ece8a530Spatrick 299ece8a530Spatrick s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 300ece8a530Spatrick STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 301ece8a530Spatrick ElfSym::globalOffsetTable = cast<Defined>(s); 302ece8a530Spatrick } 303ece8a530Spatrick 304ece8a530Spatrick // __ehdr_start is the location of ELF file headers. Note that we define 305ece8a530Spatrick // this symbol unconditionally even when using a linker script, which 306ece8a530Spatrick // differs from the behavior implemented by GNU linker which only define 307ece8a530Spatrick // this symbol if ELF headers are in the memory mapped segment. 308ece8a530Spatrick addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 309ece8a530Spatrick 310ece8a530Spatrick // __executable_start is not documented, but the expectation of at 311ece8a530Spatrick // least the Android libc is that it points to the ELF header. 312ece8a530Spatrick addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 313ece8a530Spatrick 314ece8a530Spatrick // __dso_handle symbol is passed to cxa_finalize as a marker to identify 315ece8a530Spatrick // each DSO. The address of the symbol doesn't matter as long as they are 316ece8a530Spatrick // different in different DSOs, so we chose the start address of the DSO. 317ece8a530Spatrick addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 318ece8a530Spatrick 319ece8a530Spatrick // If linker script do layout we do not need to create any standard symbols. 320ece8a530Spatrick if (script->hasSectionsCommand) 321ece8a530Spatrick return; 322ece8a530Spatrick 323ece8a530Spatrick auto add = [](StringRef s, int64_t pos) { 324ece8a530Spatrick return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 325ece8a530Spatrick }; 326ece8a530Spatrick 327ece8a530Spatrick ElfSym::bss = add("__bss_start", 0); 328adae0cfdSpatrick ElfSym::data = add("__data_start", 0); 329ece8a530Spatrick ElfSym::end1 = add("end", -1); 330ece8a530Spatrick ElfSym::end2 = add("_end", -1); 331ece8a530Spatrick ElfSym::etext1 = add("etext", -1); 332ece8a530Spatrick ElfSym::etext2 = add("_etext", -1); 333ece8a530Spatrick ElfSym::edata1 = add("edata", -1); 334ece8a530Spatrick ElfSym::edata2 = add("_edata", -1); 335ece8a530Spatrick } 336ece8a530Spatrick 337ece8a530Spatrick static OutputSection *findSection(StringRef name, unsigned partition = 1) { 338ece8a530Spatrick for (BaseCommand *base : script->sectionCommands) 339ece8a530Spatrick if (auto *sec = dyn_cast<OutputSection>(base)) 340ece8a530Spatrick if (sec->name == name && sec->partition == partition) 341ece8a530Spatrick return sec; 342ece8a530Spatrick return nullptr; 343ece8a530Spatrick } 344ece8a530Spatrick 345bb684c34Spatrick template <class ELFT> void elf::createSyntheticSections() { 346ece8a530Spatrick // Initialize all pointers with NULL. This is needed because 347ece8a530Spatrick // you can call lld::elf::main more than once as a library. 348ece8a530Spatrick memset(&Out::first, 0, sizeof(Out)); 349ece8a530Spatrick 350ece8a530Spatrick // Add the .interp section first because it is not a SyntheticSection. 351ece8a530Spatrick // The removeUnusedSyntheticSections() function relies on the 352ece8a530Spatrick // SyntheticSections coming last. 353ece8a530Spatrick if (needsInterpSection()) { 354ece8a530Spatrick for (size_t i = 1; i <= partitions.size(); ++i) { 355ece8a530Spatrick InputSection *sec = createInterpSection(); 356ece8a530Spatrick sec->partition = i; 357ece8a530Spatrick inputSections.push_back(sec); 358ece8a530Spatrick } 359ece8a530Spatrick } 360ece8a530Spatrick 361ece8a530Spatrick auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 362ece8a530Spatrick 363ece8a530Spatrick in.shStrTab = make<StringTableSection>(".shstrtab", false); 364ece8a530Spatrick 365ece8a530Spatrick Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 366ece8a530Spatrick Out::programHeaders->alignment = config->wordsize; 367ece8a530Spatrick 368ece8a530Spatrick if (config->strip != StripPolicy::All) { 369ece8a530Spatrick in.strTab = make<StringTableSection>(".strtab", false); 370ece8a530Spatrick in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 371ece8a530Spatrick in.symTabShndx = make<SymtabShndxSection>(); 372ece8a530Spatrick } 373ece8a530Spatrick 374ece8a530Spatrick in.bss = make<BssSection>(".bss", 0, 1); 375ece8a530Spatrick add(in.bss); 376ece8a530Spatrick 377ece8a530Spatrick // If there is a SECTIONS command and a .data.rel.ro section name use name 378ece8a530Spatrick // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 379ece8a530Spatrick // This makes sure our relro is contiguous. 380ece8a530Spatrick bool hasDataRelRo = 381ece8a530Spatrick script->hasSectionsCommand && findSection(".data.rel.ro", 0); 382ece8a530Spatrick in.bssRelRo = 383ece8a530Spatrick make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 384ece8a530Spatrick add(in.bssRelRo); 385ece8a530Spatrick 386ece8a530Spatrick // Add MIPS-specific sections. 387ece8a530Spatrick if (config->emachine == EM_MIPS) { 388ece8a530Spatrick if (!config->shared && config->hasDynSymTab) { 389ece8a530Spatrick in.mipsRldMap = make<MipsRldMapSection>(); 390ece8a530Spatrick add(in.mipsRldMap); 391ece8a530Spatrick } 392ece8a530Spatrick if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 393ece8a530Spatrick add(sec); 394ece8a530Spatrick if (auto *sec = MipsOptionsSection<ELFT>::create()) 395ece8a530Spatrick add(sec); 396ece8a530Spatrick if (auto *sec = MipsReginfoSection<ELFT>::create()) 397ece8a530Spatrick add(sec); 398ece8a530Spatrick } 399ece8a530Spatrick 400ece8a530Spatrick StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 401ece8a530Spatrick 402ece8a530Spatrick for (Partition &part : partitions) { 403ece8a530Spatrick auto add = [&](SyntheticSection *sec) { 404ece8a530Spatrick sec->partition = part.getNumber(); 405ece8a530Spatrick inputSections.push_back(sec); 406ece8a530Spatrick }; 407ece8a530Spatrick 408ece8a530Spatrick if (!part.name.empty()) { 409ece8a530Spatrick part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 410ece8a530Spatrick part.elfHeader->name = part.name; 411ece8a530Spatrick add(part.elfHeader); 412ece8a530Spatrick 413ece8a530Spatrick part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 414ece8a530Spatrick add(part.programHeaders); 415ece8a530Spatrick } 416ece8a530Spatrick 417ece8a530Spatrick if (config->buildId != BuildIdKind::None) { 418ece8a530Spatrick part.buildId = make<BuildIdSection>(); 419ece8a530Spatrick add(part.buildId); 420ece8a530Spatrick } 421ece8a530Spatrick 422ece8a530Spatrick part.dynStrTab = make<StringTableSection>(".dynstr", true); 423ece8a530Spatrick part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 424ece8a530Spatrick part.dynamic = make<DynamicSection<ELFT>>(); 425ece8a530Spatrick if (config->androidPackDynRelocs) 426ece8a530Spatrick part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 427ece8a530Spatrick else 428ece8a530Spatrick part.relaDyn = 429ece8a530Spatrick make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 430ece8a530Spatrick 431ece8a530Spatrick if (config->hasDynSymTab) { 432ece8a530Spatrick part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 433ece8a530Spatrick add(part.dynSymTab); 434ece8a530Spatrick 435ece8a530Spatrick part.verSym = make<VersionTableSection>(); 436ece8a530Spatrick add(part.verSym); 437ece8a530Spatrick 438ece8a530Spatrick if (!namedVersionDefs().empty()) { 439ece8a530Spatrick part.verDef = make<VersionDefinitionSection>(); 440ece8a530Spatrick add(part.verDef); 441ece8a530Spatrick } 442ece8a530Spatrick 443ece8a530Spatrick part.verNeed = make<VersionNeedSection<ELFT>>(); 444ece8a530Spatrick add(part.verNeed); 445ece8a530Spatrick 446ece8a530Spatrick if (config->gnuHash) { 447ece8a530Spatrick part.gnuHashTab = make<GnuHashTableSection>(); 448ece8a530Spatrick add(part.gnuHashTab); 449ece8a530Spatrick } 450ece8a530Spatrick 451ece8a530Spatrick if (config->sysvHash) { 452ece8a530Spatrick part.hashTab = make<HashTableSection>(); 453ece8a530Spatrick add(part.hashTab); 454ece8a530Spatrick } 455ece8a530Spatrick 456ece8a530Spatrick add(part.dynamic); 457ece8a530Spatrick add(part.dynStrTab); 458ece8a530Spatrick add(part.relaDyn); 459ece8a530Spatrick } 460ece8a530Spatrick 461ece8a530Spatrick if (config->relrPackDynRelocs) { 462ece8a530Spatrick part.relrDyn = make<RelrSection<ELFT>>(); 463ece8a530Spatrick add(part.relrDyn); 464ece8a530Spatrick } 465ece8a530Spatrick 466ece8a530Spatrick if (!config->relocatable) { 467ece8a530Spatrick if (config->ehFrameHdr) { 468ece8a530Spatrick part.ehFrameHdr = make<EhFrameHeader>(); 469ece8a530Spatrick add(part.ehFrameHdr); 470ece8a530Spatrick } 471ece8a530Spatrick part.ehFrame = make<EhFrameSection>(); 472ece8a530Spatrick add(part.ehFrame); 473ece8a530Spatrick } 474ece8a530Spatrick 475ece8a530Spatrick if (config->emachine == EM_ARM && !config->relocatable) { 476ece8a530Spatrick // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 477ece8a530Spatrick // InputSections. 478ece8a530Spatrick part.armExidx = make<ARMExidxSyntheticSection>(); 479ece8a530Spatrick add(part.armExidx); 480ece8a530Spatrick } 481ece8a530Spatrick } 482ece8a530Spatrick 483ece8a530Spatrick if (partitions.size() != 1) { 484ece8a530Spatrick // Create the partition end marker. This needs to be in partition number 255 485ece8a530Spatrick // so that it is sorted after all other partitions. It also has other 486ece8a530Spatrick // special handling (see createPhdrs() and combineEhSections()). 487ece8a530Spatrick in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 488ece8a530Spatrick in.partEnd->partition = 255; 489ece8a530Spatrick add(in.partEnd); 490ece8a530Spatrick 491ece8a530Spatrick in.partIndex = make<PartitionIndexSection>(); 492ece8a530Spatrick addOptionalRegular("__part_index_begin", in.partIndex, 0); 493ece8a530Spatrick addOptionalRegular("__part_index_end", in.partIndex, 494ece8a530Spatrick in.partIndex->getSize()); 495ece8a530Spatrick add(in.partIndex); 496ece8a530Spatrick } 497ece8a530Spatrick 498ece8a530Spatrick // Add .got. MIPS' .got is so different from the other archs, 499ece8a530Spatrick // it has its own class. 500ece8a530Spatrick if (config->emachine == EM_MIPS) { 501ece8a530Spatrick in.mipsGot = make<MipsGotSection>(); 502ece8a530Spatrick add(in.mipsGot); 503ece8a530Spatrick } else { 504ece8a530Spatrick in.got = make<GotSection>(); 505ece8a530Spatrick add(in.got); 506ece8a530Spatrick } 507ece8a530Spatrick 508ece8a530Spatrick if (config->emachine == EM_PPC) { 509ece8a530Spatrick in.ppc32Got2 = make<PPC32Got2Section>(); 510ece8a530Spatrick add(in.ppc32Got2); 511ece8a530Spatrick } 512ece8a530Spatrick 513ece8a530Spatrick if (config->emachine == EM_PPC64) { 514ece8a530Spatrick in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 515ece8a530Spatrick add(in.ppc64LongBranchTarget); 516ece8a530Spatrick } 517ece8a530Spatrick 518ece8a530Spatrick in.gotPlt = make<GotPltSection>(); 519ece8a530Spatrick add(in.gotPlt); 520ece8a530Spatrick in.igotPlt = make<IgotPltSection>(); 521ece8a530Spatrick add(in.igotPlt); 522ece8a530Spatrick 523ece8a530Spatrick // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 524ece8a530Spatrick // it as a relocation and ensure the referenced section is created. 525ece8a530Spatrick if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 526ece8a530Spatrick if (target->gotBaseSymInGotPlt) 527ece8a530Spatrick in.gotPlt->hasGotPltOffRel = true; 528ece8a530Spatrick else 529ece8a530Spatrick in.got->hasGotOffRel = true; 530ece8a530Spatrick } 531ece8a530Spatrick 532ece8a530Spatrick if (config->gdbIndex) 533ece8a530Spatrick add(GdbIndexSection::create<ELFT>()); 534ece8a530Spatrick 535ece8a530Spatrick // We always need to add rel[a].plt to output if it has entries. 536ece8a530Spatrick // Even for static linking it can contain R_[*]_IRELATIVE relocations. 537ece8a530Spatrick in.relaPlt = make<RelocationSection<ELFT>>( 538ece8a530Spatrick config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 539ece8a530Spatrick add(in.relaPlt); 540ece8a530Spatrick 541ece8a530Spatrick // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 542ece8a530Spatrick // relocations are processed last by the dynamic loader. We cannot place the 543ece8a530Spatrick // iplt section in .rel.dyn when Android relocation packing is enabled because 544ece8a530Spatrick // that would cause a section type mismatch. However, because the Android 545ece8a530Spatrick // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 546ece8a530Spatrick // behaviour by placing the iplt section in .rel.plt. 547ece8a530Spatrick in.relaIplt = make<RelocationSection<ELFT>>( 548ece8a530Spatrick config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 549ece8a530Spatrick /*sort=*/false); 550ece8a530Spatrick add(in.relaIplt); 551ece8a530Spatrick 552ece8a530Spatrick if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 553ece8a530Spatrick (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 554ece8a530Spatrick in.ibtPlt = make<IBTPltSection>(); 555ece8a530Spatrick add(in.ibtPlt); 556ece8a530Spatrick } 557ece8a530Spatrick 558bb684c34Spatrick in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 559bb684c34Spatrick : make<PltSection>(); 560ece8a530Spatrick add(in.plt); 561ece8a530Spatrick in.iplt = make<IpltSection>(); 562ece8a530Spatrick add(in.iplt); 563ece8a530Spatrick 564ece8a530Spatrick if (config->andFeatures) 565ece8a530Spatrick add(make<GnuPropertySection>()); 566ece8a530Spatrick 567ece8a530Spatrick // .note.GNU-stack is always added when we are creating a re-linkable 568ece8a530Spatrick // object file. Other linkers are using the presence of this marker 569ece8a530Spatrick // section to control the executable-ness of the stack area, but that 570ece8a530Spatrick // is irrelevant these days. Stack area should always be non-executable 571ece8a530Spatrick // by default. So we emit this section unconditionally. 572ece8a530Spatrick if (config->relocatable) 573ece8a530Spatrick add(make<GnuStackSection>()); 574ece8a530Spatrick 575ece8a530Spatrick if (in.symTab) 576ece8a530Spatrick add(in.symTab); 577ece8a530Spatrick if (in.symTabShndx) 578ece8a530Spatrick add(in.symTabShndx); 579ece8a530Spatrick add(in.shStrTab); 580ece8a530Spatrick if (in.strTab) 581ece8a530Spatrick add(in.strTab); 582ece8a530Spatrick } 583ece8a530Spatrick 584ece8a530Spatrick // The main function of the writer. 585ece8a530Spatrick template <class ELFT> void Writer<ELFT>::run() { 586ece8a530Spatrick copyLocalSymbols(); 587ece8a530Spatrick 588ece8a530Spatrick if (config->copyRelocs) 589ece8a530Spatrick addSectionSymbols(); 590ece8a530Spatrick 591ece8a530Spatrick // Now that we have a complete set of output sections. This function 592ece8a530Spatrick // completes section contents. For example, we need to add strings 593ece8a530Spatrick // to the string table, and add entries to .got and .plt. 594ece8a530Spatrick // finalizeSections does that. 595ece8a530Spatrick finalizeSections(); 596ece8a530Spatrick checkExecuteOnly(); 597ece8a530Spatrick if (errorCount()) 598ece8a530Spatrick return; 599ece8a530Spatrick 600ece8a530Spatrick // If -compressed-debug-sections is specified, we need to compress 601ece8a530Spatrick // .debug_* sections. Do it right now because it changes the size of 602ece8a530Spatrick // output sections. 603ece8a530Spatrick for (OutputSection *sec : outputSections) 604ece8a530Spatrick sec->maybeCompress<ELFT>(); 605ece8a530Spatrick 606ece8a530Spatrick if (script->hasSectionsCommand) 607ece8a530Spatrick script->allocateHeaders(mainPart->phdrs); 608ece8a530Spatrick 609ece8a530Spatrick // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 610ece8a530Spatrick // 0 sized region. This has to be done late since only after assignAddresses 611ece8a530Spatrick // we know the size of the sections. 612ece8a530Spatrick for (Partition &part : partitions) 613ece8a530Spatrick removeEmptyPTLoad(part.phdrs); 614ece8a530Spatrick 615ece8a530Spatrick if (!config->oFormatBinary) 616ece8a530Spatrick assignFileOffsets(); 617ece8a530Spatrick else 618ece8a530Spatrick assignFileOffsetsBinary(); 619ece8a530Spatrick 620ece8a530Spatrick for (Partition &part : partitions) 621ece8a530Spatrick setPhdrs(part); 622ece8a530Spatrick 623ece8a530Spatrick if (config->relocatable) 624ece8a530Spatrick for (OutputSection *sec : outputSections) 625ece8a530Spatrick sec->addr = 0; 626ece8a530Spatrick 627bb684c34Spatrick // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 628bb684c34Spatrick // before checkSections() because the files may be useful in case 629bb684c34Spatrick // checkSections() or openFile() fails, for example, due to an erroneous file 630bb684c34Spatrick // size. 631bb684c34Spatrick writeMapFile(); 632bb684c34Spatrick writeCrossReferenceTable(); 633bb684c34Spatrick writeArchiveStats(); 634bb684c34Spatrick 635ece8a530Spatrick if (config->checkSections) 636ece8a530Spatrick checkSections(); 637ece8a530Spatrick 638ece8a530Spatrick // It does not make sense try to open the file if we have error already. 639ece8a530Spatrick if (errorCount()) 640ece8a530Spatrick return; 641*a0747c9fSpatrick 642*a0747c9fSpatrick { 643*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Write output file"); 644ece8a530Spatrick // Write the result down to a file. 645ece8a530Spatrick openFile(); 646ece8a530Spatrick if (errorCount()) 647ece8a530Spatrick return; 648ece8a530Spatrick 649ece8a530Spatrick if (!config->oFormatBinary) { 650ece8a530Spatrick if (config->zSeparate != SeparateSegmentKind::None) 651ece8a530Spatrick writeTrapInstr(); 652ece8a530Spatrick writeHeader(); 653ece8a530Spatrick writeSections(); 654ece8a530Spatrick } else { 655ece8a530Spatrick writeSectionsBinary(); 656ece8a530Spatrick } 657ece8a530Spatrick 658ece8a530Spatrick // Backfill .note.gnu.build-id section content. This is done at last 659ece8a530Spatrick // because the content is usually a hash value of the entire output file. 660ece8a530Spatrick writeBuildId(); 661ece8a530Spatrick if (errorCount()) 662ece8a530Spatrick return; 663ece8a530Spatrick 664ece8a530Spatrick if (auto e = buffer->commit()) 665ece8a530Spatrick error("failed to write to the output file: " + toString(std::move(e))); 666ece8a530Spatrick } 667*a0747c9fSpatrick } 668ece8a530Spatrick 669bb684c34Spatrick template <class ELFT, class RelTy> 670bb684c34Spatrick static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 671bb684c34Spatrick llvm::ArrayRef<RelTy> rels) { 672bb684c34Spatrick for (const RelTy &rel : rels) { 673bb684c34Spatrick Symbol &sym = file->getRelocTargetSym(rel); 674bb684c34Spatrick if (sym.isLocal()) 675bb684c34Spatrick sym.used = true; 676bb684c34Spatrick } 677bb684c34Spatrick } 678bb684c34Spatrick 679bb684c34Spatrick // The function ensures that the "used" field of local symbols reflects the fact 680bb684c34Spatrick // that the symbol is used in a relocation from a live section. 681bb684c34Spatrick template <class ELFT> static void markUsedLocalSymbols() { 682bb684c34Spatrick // With --gc-sections, the field is already filled. 683bb684c34Spatrick // See MarkLive<ELFT>::resolveReloc(). 684bb684c34Spatrick if (config->gcSections) 685bb684c34Spatrick return; 686bb684c34Spatrick // Without --gc-sections, the field is initialized with "true". 687bb684c34Spatrick // Drop the flag first and then rise for symbols referenced in relocations. 688bb684c34Spatrick for (InputFile *file : objectFiles) { 689bb684c34Spatrick ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 690bb684c34Spatrick for (Symbol *b : f->getLocalSymbols()) 691bb684c34Spatrick b->used = false; 692bb684c34Spatrick for (InputSectionBase *s : f->getSections()) { 693bb684c34Spatrick InputSection *isec = dyn_cast_or_null<InputSection>(s); 694bb684c34Spatrick if (!isec) 695bb684c34Spatrick continue; 696bb684c34Spatrick if (isec->type == SHT_REL) 697bb684c34Spatrick markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 698bb684c34Spatrick else if (isec->type == SHT_RELA) 699bb684c34Spatrick markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 700bb684c34Spatrick } 701bb684c34Spatrick } 702bb684c34Spatrick } 703bb684c34Spatrick 704ece8a530Spatrick static bool shouldKeepInSymtab(const Defined &sym) { 705ece8a530Spatrick if (sym.isSection()) 706ece8a530Spatrick return false; 707ece8a530Spatrick 708bb684c34Spatrick // If --emit-reloc or -r is given, preserve symbols referenced by relocations 709bb684c34Spatrick // from live sections. 710bb684c34Spatrick if (config->copyRelocs && sym.used) 711ece8a530Spatrick return true; 712ece8a530Spatrick 713bb684c34Spatrick // Exclude local symbols pointing to .ARM.exidx sections. 714bb684c34Spatrick // They are probably mapping symbols "$d", which are optional for these 715bb684c34Spatrick // sections. After merging the .ARM.exidx sections, some of these symbols 716bb684c34Spatrick // may become dangling. The easiest way to avoid the issue is not to add 717bb684c34Spatrick // them to the symbol table from the beginning. 718bb684c34Spatrick if (config->emachine == EM_ARM && sym.section && 719bb684c34Spatrick sym.section->type == SHT_ARM_EXIDX) 720bb684c34Spatrick return false; 721bb684c34Spatrick 722bb684c34Spatrick if (config->discard == DiscardPolicy::None) 723ece8a530Spatrick return true; 724bb684c34Spatrick if (config->discard == DiscardPolicy::All) 725bb684c34Spatrick return false; 726ece8a530Spatrick 727ece8a530Spatrick // In ELF assembly .L symbols are normally discarded by the assembler. 728ece8a530Spatrick // If the assembler fails to do so, the linker discards them if 729ece8a530Spatrick // * --discard-locals is used. 730ece8a530Spatrick // * The symbol is in a SHF_MERGE section, which is normally the reason for 731ece8a530Spatrick // the assembler keeping the .L symbol. 732ece8a530Spatrick StringRef name = sym.getName(); 733ece8a530Spatrick bool isLocal = name.startswith(".L") || name.empty(); 734ece8a530Spatrick if (!isLocal) 735ece8a530Spatrick return true; 736ece8a530Spatrick 737ece8a530Spatrick if (config->discard == DiscardPolicy::Locals) 738ece8a530Spatrick return false; 739ece8a530Spatrick 740ece8a530Spatrick SectionBase *sec = sym.section; 741ece8a530Spatrick return !sec || !(sec->flags & SHF_MERGE); 742ece8a530Spatrick } 743ece8a530Spatrick 744ece8a530Spatrick static bool includeInSymtab(const Symbol &b) { 745ece8a530Spatrick if (!b.isLocal() && !b.isUsedInRegularObj) 746ece8a530Spatrick return false; 747ece8a530Spatrick 748ece8a530Spatrick if (auto *d = dyn_cast<Defined>(&b)) { 749ece8a530Spatrick // Always include absolute symbols. 750ece8a530Spatrick SectionBase *sec = d->section; 751ece8a530Spatrick if (!sec) 752ece8a530Spatrick return true; 753ece8a530Spatrick sec = sec->repl; 754ece8a530Spatrick 755ece8a530Spatrick // Exclude symbols pointing to garbage-collected sections. 756ece8a530Spatrick if (isa<InputSectionBase>(sec) && !sec->isLive()) 757ece8a530Spatrick return false; 758ece8a530Spatrick 759ece8a530Spatrick if (auto *s = dyn_cast<MergeInputSection>(sec)) 760ece8a530Spatrick if (!s->getSectionPiece(d->value)->live) 761ece8a530Spatrick return false; 762ece8a530Spatrick return true; 763ece8a530Spatrick } 764ece8a530Spatrick return b.used; 765ece8a530Spatrick } 766ece8a530Spatrick 767ece8a530Spatrick // Local symbols are not in the linker's symbol table. This function scans 768ece8a530Spatrick // each object file's symbol table to copy local symbols to the output. 769ece8a530Spatrick template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 770ece8a530Spatrick if (!in.symTab) 771ece8a530Spatrick return; 772*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Add local symbols"); 773bb684c34Spatrick if (config->copyRelocs && config->discard != DiscardPolicy::None) 774bb684c34Spatrick markUsedLocalSymbols<ELFT>(); 775ece8a530Spatrick for (InputFile *file : objectFiles) { 776ece8a530Spatrick ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 777ece8a530Spatrick for (Symbol *b : f->getLocalSymbols()) { 778bb684c34Spatrick assert(b->isLocal() && "should have been caught in initializeSymbols()"); 779ece8a530Spatrick auto *dr = dyn_cast<Defined>(b); 780ece8a530Spatrick 781ece8a530Spatrick // No reason to keep local undefined symbol in symtab. 782ece8a530Spatrick if (!dr) 783ece8a530Spatrick continue; 784ece8a530Spatrick if (!includeInSymtab(*b)) 785ece8a530Spatrick continue; 786ece8a530Spatrick if (!shouldKeepInSymtab(*dr)) 787ece8a530Spatrick continue; 788ece8a530Spatrick in.symTab->addSymbol(b); 789ece8a530Spatrick } 790ece8a530Spatrick } 791ece8a530Spatrick } 792ece8a530Spatrick 793ece8a530Spatrick // Create a section symbol for each output section so that we can represent 794ece8a530Spatrick // relocations that point to the section. If we know that no relocation is 795ece8a530Spatrick // referring to a section (that happens if the section is a synthetic one), we 796ece8a530Spatrick // don't create a section symbol for that section. 797ece8a530Spatrick template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 798ece8a530Spatrick for (BaseCommand *base : script->sectionCommands) { 799ece8a530Spatrick auto *sec = dyn_cast<OutputSection>(base); 800ece8a530Spatrick if (!sec) 801ece8a530Spatrick continue; 802ece8a530Spatrick auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 803ece8a530Spatrick if (auto *isd = dyn_cast<InputSectionDescription>(base)) 804ece8a530Spatrick return !isd->sections.empty(); 805ece8a530Spatrick return false; 806ece8a530Spatrick }); 807ece8a530Spatrick if (i == sec->sectionCommands.end()) 808ece8a530Spatrick continue; 809ece8a530Spatrick InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 810ece8a530Spatrick 811ece8a530Spatrick // Relocations are not using REL[A] section symbols. 812ece8a530Spatrick if (isec->type == SHT_REL || isec->type == SHT_RELA) 813ece8a530Spatrick continue; 814ece8a530Spatrick 815ece8a530Spatrick // Unlike other synthetic sections, mergeable output sections contain data 816ece8a530Spatrick // copied from input sections, and there may be a relocation pointing to its 817ece8a530Spatrick // contents if -r or -emit-reloc are given. 818ece8a530Spatrick if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 819ece8a530Spatrick continue; 820ece8a530Spatrick 821*a0747c9fSpatrick // Set the symbol to be relative to the output section so that its st_value 822*a0747c9fSpatrick // equals the output section address. Note, there may be a gap between the 823*a0747c9fSpatrick // start of the output section and isec. 824ece8a530Spatrick auto *sym = 825ece8a530Spatrick make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 826*a0747c9fSpatrick /*value=*/0, /*size=*/0, isec->getOutputSection()); 827ece8a530Spatrick in.symTab->addSymbol(sym); 828ece8a530Spatrick } 829ece8a530Spatrick } 830ece8a530Spatrick 831ece8a530Spatrick // Today's loaders have a feature to make segments read-only after 832ece8a530Spatrick // processing dynamic relocations to enhance security. PT_GNU_RELRO 833ece8a530Spatrick // is defined for that. 834ece8a530Spatrick // 835ece8a530Spatrick // This function returns true if a section needs to be put into a 836ece8a530Spatrick // PT_GNU_RELRO segment. 837ece8a530Spatrick static bool isRelroSection(const OutputSection *sec) { 838ece8a530Spatrick if (!config->zRelro) 839ece8a530Spatrick return false; 840ece8a530Spatrick 841ece8a530Spatrick uint64_t flags = sec->flags; 842ece8a530Spatrick 843ece8a530Spatrick // Non-allocatable or non-writable sections don't need RELRO because 844ece8a530Spatrick // they are not writable or not even mapped to memory in the first place. 845ece8a530Spatrick // RELRO is for sections that are essentially read-only but need to 846ece8a530Spatrick // be writable only at process startup to allow dynamic linker to 847ece8a530Spatrick // apply relocations. 848ece8a530Spatrick if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 849ece8a530Spatrick return false; 850ece8a530Spatrick 851ece8a530Spatrick // Once initialized, TLS data segments are used as data templates 852ece8a530Spatrick // for a thread-local storage. For each new thread, runtime 853ece8a530Spatrick // allocates memory for a TLS and copy templates there. No thread 854ece8a530Spatrick // are supposed to use templates directly. Thus, it can be in RELRO. 855ece8a530Spatrick if (flags & SHF_TLS) 856ece8a530Spatrick return true; 857ece8a530Spatrick 858ece8a530Spatrick // .init_array, .preinit_array and .fini_array contain pointers to 859ece8a530Spatrick // functions that are executed on process startup or exit. These 860ece8a530Spatrick // pointers are set by the static linker, and they are not expected 861ece8a530Spatrick // to change at runtime. But if you are an attacker, you could do 862ece8a530Spatrick // interesting things by manipulating pointers in .fini_array, for 863ece8a530Spatrick // example. So they are put into RELRO. 864ece8a530Spatrick uint32_t type = sec->type; 865ece8a530Spatrick if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 866ece8a530Spatrick type == SHT_PREINIT_ARRAY) 867ece8a530Spatrick return true; 868ece8a530Spatrick 869ece8a530Spatrick // .got contains pointers to external symbols. They are resolved by 870ece8a530Spatrick // the dynamic linker when a module is loaded into memory, and after 871ece8a530Spatrick // that they are not expected to change. So, it can be in RELRO. 872ece8a530Spatrick if (in.got && sec == in.got->getParent()) 873ece8a530Spatrick return true; 874ece8a530Spatrick 875ece8a530Spatrick // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 876ece8a530Spatrick // through r2 register, which is reserved for that purpose. Since r2 is used 877ece8a530Spatrick // for accessing .got as well, .got and .toc need to be close enough in the 878ece8a530Spatrick // virtual address space. Usually, .toc comes just after .got. Since we place 879ece8a530Spatrick // .got into RELRO, .toc needs to be placed into RELRO too. 880ece8a530Spatrick if (sec->name.equals(".toc")) 881ece8a530Spatrick return true; 882ece8a530Spatrick 883ece8a530Spatrick // .got.plt contains pointers to external function symbols. They are 884ece8a530Spatrick // by default resolved lazily, so we usually cannot put it into RELRO. 885ece8a530Spatrick // However, if "-z now" is given, the lazy symbol resolution is 886ece8a530Spatrick // disabled, which enables us to put it into RELRO. 887ece8a530Spatrick if (sec == in.gotPlt->getParent()) 888adae0cfdSpatrick #ifndef __OpenBSD__ 889ece8a530Spatrick return config->zNow; 890adae0cfdSpatrick #else 891adae0cfdSpatrick return true; /* kbind(2) means we can always put these in RELRO */ 892adae0cfdSpatrick #endif 893ece8a530Spatrick 894ece8a530Spatrick // .dynamic section contains data for the dynamic linker, and 895ece8a530Spatrick // there's no need to write to it at runtime, so it's better to put 896ece8a530Spatrick // it into RELRO. 897ece8a530Spatrick if (sec->name == ".dynamic") 898ece8a530Spatrick return true; 899ece8a530Spatrick 900ece8a530Spatrick // Sections with some special names are put into RELRO. This is a 901ece8a530Spatrick // bit unfortunate because section names shouldn't be significant in 902ece8a530Spatrick // ELF in spirit. But in reality many linker features depend on 903ece8a530Spatrick // magic section names. 904ece8a530Spatrick StringRef s = sec->name; 905ece8a530Spatrick return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 906ece8a530Spatrick s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 907bb684c34Spatrick s == ".fini_array" || s == ".init_array" || 908bb684c34Spatrick s == ".openbsd.randomdata" || s == ".preinit_array"; 909ece8a530Spatrick } 910ece8a530Spatrick 911ece8a530Spatrick // We compute a rank for each section. The rank indicates where the 912ece8a530Spatrick // section should be placed in the file. Instead of using simple 913ece8a530Spatrick // numbers (0,1,2...), we use a series of flags. One for each decision 914ece8a530Spatrick // point when placing the section. 915ece8a530Spatrick // Using flags has two key properties: 916ece8a530Spatrick // * It is easy to check if a give branch was taken. 917ece8a530Spatrick // * It is easy two see how similar two ranks are (see getRankProximity). 918ece8a530Spatrick enum RankFlags { 919ece8a530Spatrick RF_NOT_ADDR_SET = 1 << 27, 920ece8a530Spatrick RF_NOT_ALLOC = 1 << 26, 921ece8a530Spatrick RF_PARTITION = 1 << 18, // Partition number (8 bits) 922ece8a530Spatrick RF_NOT_PART_EHDR = 1 << 17, 923ece8a530Spatrick RF_NOT_PART_PHDR = 1 << 16, 924ece8a530Spatrick RF_NOT_INTERP = 1 << 15, 925ece8a530Spatrick RF_NOT_NOTE = 1 << 14, 926ece8a530Spatrick RF_WRITE = 1 << 13, 927ece8a530Spatrick RF_EXEC_WRITE = 1 << 12, 928ece8a530Spatrick RF_EXEC = 1 << 11, 929ece8a530Spatrick RF_RODATA = 1 << 10, 930ece8a530Spatrick RF_NOT_RELRO = 1 << 9, 931ece8a530Spatrick RF_NOT_TLS = 1 << 8, 932ece8a530Spatrick RF_BSS = 1 << 7, 933ece8a530Spatrick RF_PPC_NOT_TOCBSS = 1 << 6, 934ece8a530Spatrick RF_PPC_TOCL = 1 << 5, 935ece8a530Spatrick RF_PPC_TOC = 1 << 4, 936ece8a530Spatrick RF_PPC_GOT = 1 << 3, 937ece8a530Spatrick RF_PPC_BRANCH_LT = 1 << 2, 938ece8a530Spatrick RF_MIPS_GPREL = 1 << 1, 939ece8a530Spatrick RF_MIPS_NOT_GOT = 1 << 0 940ece8a530Spatrick }; 941ece8a530Spatrick 942ece8a530Spatrick static unsigned getSectionRank(const OutputSection *sec) { 943ece8a530Spatrick unsigned rank = sec->partition * RF_PARTITION; 944ece8a530Spatrick 945ece8a530Spatrick // We want to put section specified by -T option first, so we 946ece8a530Spatrick // can start assigning VA starting from them later. 947ece8a530Spatrick if (config->sectionStartMap.count(sec->name)) 948ece8a530Spatrick return rank; 949ece8a530Spatrick rank |= RF_NOT_ADDR_SET; 950ece8a530Spatrick 951ece8a530Spatrick // Allocatable sections go first to reduce the total PT_LOAD size and 952ece8a530Spatrick // so debug info doesn't change addresses in actual code. 953ece8a530Spatrick if (!(sec->flags & SHF_ALLOC)) 954ece8a530Spatrick return rank | RF_NOT_ALLOC; 955ece8a530Spatrick 956ece8a530Spatrick if (sec->type == SHT_LLVM_PART_EHDR) 957ece8a530Spatrick return rank; 958ece8a530Spatrick rank |= RF_NOT_PART_EHDR; 959ece8a530Spatrick 960ece8a530Spatrick if (sec->type == SHT_LLVM_PART_PHDR) 961ece8a530Spatrick return rank; 962ece8a530Spatrick rank |= RF_NOT_PART_PHDR; 963ece8a530Spatrick 964ece8a530Spatrick // Put .interp first because some loaders want to see that section 965ece8a530Spatrick // on the first page of the executable file when loaded into memory. 966ece8a530Spatrick if (sec->name == ".interp") 967ece8a530Spatrick return rank; 968ece8a530Spatrick rank |= RF_NOT_INTERP; 969ece8a530Spatrick 970ece8a530Spatrick // Put .note sections (which make up one PT_NOTE) at the beginning so that 971ece8a530Spatrick // they are likely to be included in a core file even if core file size is 972ece8a530Spatrick // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 973ece8a530Spatrick // included in a core to match core files with executables. 974ece8a530Spatrick if (sec->type == SHT_NOTE) 975ece8a530Spatrick return rank; 976ece8a530Spatrick rank |= RF_NOT_NOTE; 977ece8a530Spatrick 978ece8a530Spatrick // Sort sections based on their access permission in the following 979ece8a530Spatrick // order: R, RX, RWX, RW. This order is based on the following 980ece8a530Spatrick // considerations: 981ece8a530Spatrick // * Read-only sections come first such that they go in the 982ece8a530Spatrick // PT_LOAD covering the program headers at the start of the file. 983ece8a530Spatrick // * Read-only, executable sections come next. 984ece8a530Spatrick // * Writable, executable sections follow such that .plt on 985ece8a530Spatrick // architectures where it needs to be writable will be placed 986ece8a530Spatrick // between .text and .data. 987ece8a530Spatrick // * Writable sections come last, such that .bss lands at the very 988ece8a530Spatrick // end of the last PT_LOAD. 989ece8a530Spatrick bool isExec = sec->flags & SHF_EXECINSTR; 990ece8a530Spatrick bool isWrite = sec->flags & SHF_WRITE; 991ece8a530Spatrick 992ece8a530Spatrick if (isExec) { 993ece8a530Spatrick if (isWrite) 994ece8a530Spatrick rank |= RF_EXEC_WRITE; 995ece8a530Spatrick else 996ece8a530Spatrick rank |= RF_EXEC; 997ece8a530Spatrick } else if (isWrite) { 998ece8a530Spatrick rank |= RF_WRITE; 999ece8a530Spatrick } else if (sec->type == SHT_PROGBITS) { 1000ece8a530Spatrick // Make non-executable and non-writable PROGBITS sections (e.g .rodata 1001ece8a530Spatrick // .eh_frame) closer to .text. They likely contain PC or GOT relative 1002ece8a530Spatrick // relocations and there could be relocation overflow if other huge sections 1003ece8a530Spatrick // (.dynstr .dynsym) were placed in between. 1004ece8a530Spatrick rank |= RF_RODATA; 1005ece8a530Spatrick } 1006ece8a530Spatrick 1007ece8a530Spatrick // Place RelRo sections first. After considering SHT_NOBITS below, the 1008ece8a530Spatrick // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 1009ece8a530Spatrick // where | marks where page alignment happens. An alternative ordering is 1010ece8a530Spatrick // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 1011ece8a530Spatrick // waste more bytes due to 2 alignment places. 1012ece8a530Spatrick if (!isRelroSection(sec)) 1013ece8a530Spatrick rank |= RF_NOT_RELRO; 1014ece8a530Spatrick 1015ece8a530Spatrick // If we got here we know that both A and B are in the same PT_LOAD. 1016ece8a530Spatrick 1017ece8a530Spatrick // The TLS initialization block needs to be a single contiguous block in a R/W 1018ece8a530Spatrick // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1019ece8a530Spatrick // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1020ece8a530Spatrick // after PROGBITS. 1021ece8a530Spatrick if (!(sec->flags & SHF_TLS)) 1022ece8a530Spatrick rank |= RF_NOT_TLS; 1023ece8a530Spatrick 1024ece8a530Spatrick // Within TLS sections, or within other RelRo sections, or within non-RelRo 1025ece8a530Spatrick // sections, place non-NOBITS sections first. 1026ece8a530Spatrick if (sec->type == SHT_NOBITS) 1027ece8a530Spatrick rank |= RF_BSS; 1028ece8a530Spatrick 1029ece8a530Spatrick // Some architectures have additional ordering restrictions for sections 1030ece8a530Spatrick // within the same PT_LOAD. 1031ece8a530Spatrick if (config->emachine == EM_PPC64) { 1032ece8a530Spatrick // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1033ece8a530Spatrick // that we would like to make sure appear is a specific order to maximize 1034ece8a530Spatrick // their coverage by a single signed 16-bit offset from the TOC base 1035ece8a530Spatrick // pointer. Conversely, the special .tocbss section should be first among 1036ece8a530Spatrick // all SHT_NOBITS sections. This will put it next to the loaded special 1037ece8a530Spatrick // PPC64 sections (and, thus, within reach of the TOC base pointer). 1038ece8a530Spatrick StringRef name = sec->name; 1039ece8a530Spatrick if (name != ".tocbss") 1040ece8a530Spatrick rank |= RF_PPC_NOT_TOCBSS; 1041ece8a530Spatrick 1042ece8a530Spatrick if (name == ".toc1") 1043ece8a530Spatrick rank |= RF_PPC_TOCL; 1044ece8a530Spatrick 1045ece8a530Spatrick if (name == ".toc") 1046ece8a530Spatrick rank |= RF_PPC_TOC; 1047ece8a530Spatrick 1048ece8a530Spatrick if (name == ".got") 1049ece8a530Spatrick rank |= RF_PPC_GOT; 1050ece8a530Spatrick 1051ece8a530Spatrick if (name == ".branch_lt") 1052ece8a530Spatrick rank |= RF_PPC_BRANCH_LT; 1053ece8a530Spatrick } 1054ece8a530Spatrick 1055ece8a530Spatrick if (config->emachine == EM_MIPS) { 1056ece8a530Spatrick // All sections with SHF_MIPS_GPREL flag should be grouped together 1057ece8a530Spatrick // because data in these sections is addressable with a gp relative address. 1058ece8a530Spatrick if (sec->flags & SHF_MIPS_GPREL) 1059ece8a530Spatrick rank |= RF_MIPS_GPREL; 1060ece8a530Spatrick 1061ece8a530Spatrick if (sec->name != ".got") 1062ece8a530Spatrick rank |= RF_MIPS_NOT_GOT; 1063ece8a530Spatrick } 1064ece8a530Spatrick 1065ece8a530Spatrick return rank; 1066ece8a530Spatrick } 1067ece8a530Spatrick 1068ece8a530Spatrick static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1069ece8a530Spatrick const OutputSection *a = cast<OutputSection>(aCmd); 1070ece8a530Spatrick const OutputSection *b = cast<OutputSection>(bCmd); 1071ece8a530Spatrick 1072ece8a530Spatrick if (a->sortRank != b->sortRank) 1073ece8a530Spatrick return a->sortRank < b->sortRank; 1074ece8a530Spatrick 1075ece8a530Spatrick if (!(a->sortRank & RF_NOT_ADDR_SET)) 1076ece8a530Spatrick return config->sectionStartMap.lookup(a->name) < 1077ece8a530Spatrick config->sectionStartMap.lookup(b->name); 1078ece8a530Spatrick return false; 1079ece8a530Spatrick } 1080ece8a530Spatrick 1081ece8a530Spatrick void PhdrEntry::add(OutputSection *sec) { 1082ece8a530Spatrick lastSec = sec; 1083ece8a530Spatrick if (!firstSec) 1084ece8a530Spatrick firstSec = sec; 1085ece8a530Spatrick p_align = std::max(p_align, sec->alignment); 1086ece8a530Spatrick if (p_type == PT_LOAD) 1087ece8a530Spatrick sec->ptLoad = this; 1088ece8a530Spatrick } 1089ece8a530Spatrick 1090ece8a530Spatrick // The beginning and the ending of .rel[a].plt section are marked 1091ece8a530Spatrick // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1092ece8a530Spatrick // executable. The runtime needs these symbols in order to resolve 1093ece8a530Spatrick // all IRELATIVE relocs on startup. For dynamic executables, we don't 1094ece8a530Spatrick // need these symbols, since IRELATIVE relocs are resolved through GOT 1095ece8a530Spatrick // and PLT. For details, see http://www.airs.com/blog/archives/403. 1096ece8a530Spatrick template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1097*a0747c9fSpatrick if (config->relocatable || config->isPic) 1098ece8a530Spatrick return; 1099ece8a530Spatrick 1100ece8a530Spatrick // By default, __rela_iplt_{start,end} belong to a dummy section 0 1101ece8a530Spatrick // because .rela.plt might be empty and thus removed from output. 1102ece8a530Spatrick // We'll override Out::elfHeader with In.relaIplt later when we are 1103ece8a530Spatrick // sure that .rela.plt exists in output. 1104ece8a530Spatrick ElfSym::relaIpltStart = addOptionalRegular( 1105ece8a530Spatrick config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1106ece8a530Spatrick Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1107ece8a530Spatrick 1108ece8a530Spatrick ElfSym::relaIpltEnd = addOptionalRegular( 1109ece8a530Spatrick config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1110ece8a530Spatrick Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1111ece8a530Spatrick } 1112ece8a530Spatrick 1113ece8a530Spatrick template <class ELFT> 1114ece8a530Spatrick void Writer<ELFT>::forEachRelSec( 1115ece8a530Spatrick llvm::function_ref<void(InputSectionBase &)> fn) { 1116ece8a530Spatrick // Scan all relocations. Each relocation goes through a series 1117ece8a530Spatrick // of tests to determine if it needs special treatment, such as 1118ece8a530Spatrick // creating GOT, PLT, copy relocations, etc. 1119ece8a530Spatrick // Note that relocations for non-alloc sections are directly 1120ece8a530Spatrick // processed by InputSection::relocateNonAlloc. 1121ece8a530Spatrick for (InputSectionBase *isec : inputSections) 1122ece8a530Spatrick if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1123ece8a530Spatrick fn(*isec); 1124ece8a530Spatrick for (Partition &part : partitions) { 1125ece8a530Spatrick for (EhInputSection *es : part.ehFrame->sections) 1126ece8a530Spatrick fn(*es); 1127ece8a530Spatrick if (part.armExidx && part.armExidx->isLive()) 1128ece8a530Spatrick for (InputSection *ex : part.armExidx->exidxSections) 1129ece8a530Spatrick fn(*ex); 1130ece8a530Spatrick } 1131ece8a530Spatrick } 1132ece8a530Spatrick 1133ece8a530Spatrick // This function generates assignments for predefined symbols (e.g. _end or 1134ece8a530Spatrick // _etext) and inserts them into the commands sequence to be processed at the 1135ece8a530Spatrick // appropriate time. This ensures that the value is going to be correct by the 1136ece8a530Spatrick // time any references to these symbols are processed and is equivalent to 1137ece8a530Spatrick // defining these symbols explicitly in the linker script. 1138ece8a530Spatrick template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1139ece8a530Spatrick if (ElfSym::globalOffsetTable) { 1140ece8a530Spatrick // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1141ece8a530Spatrick // to the start of the .got or .got.plt section. 1142ece8a530Spatrick InputSection *gotSection = in.gotPlt; 1143ece8a530Spatrick if (!target->gotBaseSymInGotPlt) 1144ece8a530Spatrick gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1145ece8a530Spatrick : cast<InputSection>(in.got); 1146ece8a530Spatrick ElfSym::globalOffsetTable->section = gotSection; 1147ece8a530Spatrick } 1148ece8a530Spatrick 1149ece8a530Spatrick // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1150ece8a530Spatrick if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1151ece8a530Spatrick ElfSym::relaIpltStart->section = in.relaIplt; 1152ece8a530Spatrick ElfSym::relaIpltEnd->section = in.relaIplt; 1153ece8a530Spatrick ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1154ece8a530Spatrick } 1155ece8a530Spatrick 1156ece8a530Spatrick PhdrEntry *last = nullptr; 1157ece8a530Spatrick PhdrEntry *lastRO = nullptr; 1158ece8a530Spatrick 1159ece8a530Spatrick for (Partition &part : partitions) { 1160ece8a530Spatrick for (PhdrEntry *p : part.phdrs) { 1161ece8a530Spatrick if (p->p_type != PT_LOAD) 1162ece8a530Spatrick continue; 1163ece8a530Spatrick last = p; 1164ece8a530Spatrick if (!(p->p_flags & PF_W)) 1165ece8a530Spatrick lastRO = p; 1166ece8a530Spatrick } 1167ece8a530Spatrick } 1168ece8a530Spatrick 1169ece8a530Spatrick if (lastRO) { 1170ece8a530Spatrick // _etext is the first location after the last read-only loadable segment. 1171ece8a530Spatrick if (ElfSym::etext1) 1172ece8a530Spatrick ElfSym::etext1->section = lastRO->lastSec; 1173ece8a530Spatrick if (ElfSym::etext2) 1174ece8a530Spatrick ElfSym::etext2->section = lastRO->lastSec; 1175ece8a530Spatrick } 1176ece8a530Spatrick 1177ece8a530Spatrick if (last) { 1178ece8a530Spatrick // _edata points to the end of the last mapped initialized section. 1179ece8a530Spatrick OutputSection *edata = nullptr; 1180ece8a530Spatrick for (OutputSection *os : outputSections) { 1181ece8a530Spatrick if (os->type != SHT_NOBITS) 1182ece8a530Spatrick edata = os; 1183ece8a530Spatrick if (os == last->lastSec) 1184ece8a530Spatrick break; 1185ece8a530Spatrick } 1186ece8a530Spatrick 1187ece8a530Spatrick if (ElfSym::edata1) 1188ece8a530Spatrick ElfSym::edata1->section = edata; 1189ece8a530Spatrick if (ElfSym::edata2) 1190ece8a530Spatrick ElfSym::edata2->section = edata; 1191ece8a530Spatrick 1192ece8a530Spatrick // _end is the first location after the uninitialized data region. 1193ece8a530Spatrick if (ElfSym::end1) 1194ece8a530Spatrick ElfSym::end1->section = last->lastSec; 1195ece8a530Spatrick if (ElfSym::end2) 1196ece8a530Spatrick ElfSym::end2->section = last->lastSec; 1197ece8a530Spatrick } 1198ece8a530Spatrick 1199ece8a530Spatrick if (ElfSym::bss) 1200ece8a530Spatrick ElfSym::bss->section = findSection(".bss"); 1201ece8a530Spatrick 1202adae0cfdSpatrick if (ElfSym::data) 1203adae0cfdSpatrick ElfSym::data->section = findSection(".data"); 1204adae0cfdSpatrick 1205ece8a530Spatrick // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1206ece8a530Spatrick // be equal to the _gp symbol's value. 1207ece8a530Spatrick if (ElfSym::mipsGp) { 1208ece8a530Spatrick // Find GP-relative section with the lowest address 1209ece8a530Spatrick // and use this address to calculate default _gp value. 1210ece8a530Spatrick for (OutputSection *os : outputSections) { 1211ece8a530Spatrick if (os->flags & SHF_MIPS_GPREL) { 1212ece8a530Spatrick ElfSym::mipsGp->section = os; 1213ece8a530Spatrick ElfSym::mipsGp->value = 0x7ff0; 1214ece8a530Spatrick break; 1215ece8a530Spatrick } 1216ece8a530Spatrick } 1217ece8a530Spatrick } 1218ece8a530Spatrick } 1219ece8a530Spatrick 1220ece8a530Spatrick // We want to find how similar two ranks are. 1221ece8a530Spatrick // The more branches in getSectionRank that match, the more similar they are. 1222ece8a530Spatrick // Since each branch corresponds to a bit flag, we can just use 1223ece8a530Spatrick // countLeadingZeros. 1224ece8a530Spatrick static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1225ece8a530Spatrick return countLeadingZeros(a->sortRank ^ b->sortRank); 1226ece8a530Spatrick } 1227ece8a530Spatrick 1228ece8a530Spatrick static int getRankProximity(OutputSection *a, BaseCommand *b) { 1229ece8a530Spatrick auto *sec = dyn_cast<OutputSection>(b); 1230ece8a530Spatrick return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1231ece8a530Spatrick } 1232ece8a530Spatrick 1233ece8a530Spatrick // When placing orphan sections, we want to place them after symbol assignments 1234ece8a530Spatrick // so that an orphan after 1235ece8a530Spatrick // begin_foo = .; 1236ece8a530Spatrick // foo : { *(foo) } 1237ece8a530Spatrick // end_foo = .; 1238ece8a530Spatrick // doesn't break the intended meaning of the begin/end symbols. 1239ece8a530Spatrick // We don't want to go over sections since findOrphanPos is the 1240ece8a530Spatrick // one in charge of deciding the order of the sections. 1241ece8a530Spatrick // We don't want to go over changes to '.', since doing so in 1242ece8a530Spatrick // rx_sec : { *(rx_sec) } 1243ece8a530Spatrick // . = ALIGN(0x1000); 1244ece8a530Spatrick // /* The RW PT_LOAD starts here*/ 1245ece8a530Spatrick // rw_sec : { *(rw_sec) } 1246ece8a530Spatrick // would mean that the RW PT_LOAD would become unaligned. 1247ece8a530Spatrick static bool shouldSkip(BaseCommand *cmd) { 1248ece8a530Spatrick if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1249ece8a530Spatrick return assign->name != "."; 1250ece8a530Spatrick return false; 1251ece8a530Spatrick } 1252ece8a530Spatrick 1253ece8a530Spatrick // We want to place orphan sections so that they share as much 1254ece8a530Spatrick // characteristics with their neighbors as possible. For example, if 1255ece8a530Spatrick // both are rw, or both are tls. 1256ece8a530Spatrick static std::vector<BaseCommand *>::iterator 1257ece8a530Spatrick findOrphanPos(std::vector<BaseCommand *>::iterator b, 1258ece8a530Spatrick std::vector<BaseCommand *>::iterator e) { 1259ece8a530Spatrick OutputSection *sec = cast<OutputSection>(*e); 1260ece8a530Spatrick 1261ece8a530Spatrick // Find the first element that has as close a rank as possible. 1262ece8a530Spatrick auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1263ece8a530Spatrick return getRankProximity(sec, a) < getRankProximity(sec, b); 1264ece8a530Spatrick }); 1265ece8a530Spatrick if (i == e) 1266ece8a530Spatrick return e; 1267ece8a530Spatrick 1268ece8a530Spatrick // Consider all existing sections with the same proximity. 1269ece8a530Spatrick int proximity = getRankProximity(sec, *i); 1270ece8a530Spatrick for (; i != e; ++i) { 1271ece8a530Spatrick auto *curSec = dyn_cast<OutputSection>(*i); 1272ece8a530Spatrick if (!curSec || !curSec->hasInputSections) 1273ece8a530Spatrick continue; 1274ece8a530Spatrick if (getRankProximity(sec, curSec) != proximity || 1275ece8a530Spatrick sec->sortRank < curSec->sortRank) 1276ece8a530Spatrick break; 1277ece8a530Spatrick } 1278ece8a530Spatrick 1279ece8a530Spatrick auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1280ece8a530Spatrick auto *os = dyn_cast<OutputSection>(cmd); 1281ece8a530Spatrick return os && os->hasInputSections; 1282ece8a530Spatrick }; 1283ece8a530Spatrick auto j = std::find_if(llvm::make_reverse_iterator(i), 1284ece8a530Spatrick llvm::make_reverse_iterator(b), 1285ece8a530Spatrick isOutputSecWithInputSections); 1286ece8a530Spatrick i = j.base(); 1287ece8a530Spatrick 1288ece8a530Spatrick // As a special case, if the orphan section is the last section, put 1289ece8a530Spatrick // it at the very end, past any other commands. 1290ece8a530Spatrick // This matches bfd's behavior and is convenient when the linker script fully 1291ece8a530Spatrick // specifies the start of the file, but doesn't care about the end (the non 1292ece8a530Spatrick // alloc sections for example). 1293ece8a530Spatrick auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1294ece8a530Spatrick if (nextSec == e) 1295ece8a530Spatrick return e; 1296ece8a530Spatrick 1297ece8a530Spatrick while (i != e && shouldSkip(*i)) 1298ece8a530Spatrick ++i; 1299ece8a530Spatrick return i; 1300ece8a530Spatrick } 1301ece8a530Spatrick 1302bb684c34Spatrick // Adds random priorities to sections not already in the map. 1303bb684c34Spatrick static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1304*a0747c9fSpatrick if (config->shuffleSections.empty()) 1305bb684c34Spatrick return; 1306bb684c34Spatrick 1307*a0747c9fSpatrick std::vector<InputSectionBase *> matched, sections = inputSections; 1308*a0747c9fSpatrick matched.reserve(sections.size()); 1309*a0747c9fSpatrick for (const auto &patAndSeed : config->shuffleSections) { 1310*a0747c9fSpatrick matched.clear(); 1311*a0747c9fSpatrick for (InputSectionBase *sec : sections) 1312*a0747c9fSpatrick if (patAndSeed.first.match(sec->name)) 1313*a0747c9fSpatrick matched.push_back(sec); 1314*a0747c9fSpatrick const uint32_t seed = patAndSeed.second; 1315*a0747c9fSpatrick if (seed == UINT32_MAX) { 1316*a0747c9fSpatrick // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1317*a0747c9fSpatrick // section order is stable even if the number of sections changes. This is 1318*a0747c9fSpatrick // useful to catch issues like static initialization order fiasco 1319*a0747c9fSpatrick // reliably. 1320*a0747c9fSpatrick std::reverse(matched.begin(), matched.end()); 1321*a0747c9fSpatrick } else { 1322*a0747c9fSpatrick std::mt19937 g(seed ? seed : std::random_device()()); 1323*a0747c9fSpatrick llvm::shuffle(matched.begin(), matched.end(), g); 1324*a0747c9fSpatrick } 1325*a0747c9fSpatrick size_t i = 0; 1326*a0747c9fSpatrick for (InputSectionBase *&sec : sections) 1327*a0747c9fSpatrick if (patAndSeed.first.match(sec->name)) 1328*a0747c9fSpatrick sec = matched[i++]; 1329*a0747c9fSpatrick } 1330*a0747c9fSpatrick 1331bb684c34Spatrick // Existing priorities are < 0, so use priorities >= 0 for the missing 1332bb684c34Spatrick // sections. 1333*a0747c9fSpatrick int prio = 0; 1334*a0747c9fSpatrick for (InputSectionBase *sec : sections) { 1335*a0747c9fSpatrick if (order.try_emplace(sec, prio).second) 1336*a0747c9fSpatrick ++prio; 1337bb684c34Spatrick } 1338bb684c34Spatrick } 1339bb684c34Spatrick 1340ece8a530Spatrick // Builds section order for handling --symbol-ordering-file. 1341ece8a530Spatrick static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1342ece8a530Spatrick DenseMap<const InputSectionBase *, int> sectionOrder; 1343ece8a530Spatrick // Use the rarely used option -call-graph-ordering-file to sort sections. 1344ece8a530Spatrick if (!config->callGraphProfile.empty()) 1345ece8a530Spatrick return computeCallGraphProfileOrder(); 1346ece8a530Spatrick 1347ece8a530Spatrick if (config->symbolOrderingFile.empty()) 1348ece8a530Spatrick return sectionOrder; 1349ece8a530Spatrick 1350ece8a530Spatrick struct SymbolOrderEntry { 1351ece8a530Spatrick int priority; 1352ece8a530Spatrick bool present; 1353ece8a530Spatrick }; 1354ece8a530Spatrick 1355ece8a530Spatrick // Build a map from symbols to their priorities. Symbols that didn't 1356ece8a530Spatrick // appear in the symbol ordering file have the lowest priority 0. 1357ece8a530Spatrick // All explicitly mentioned symbols have negative (higher) priorities. 1358ece8a530Spatrick DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1359ece8a530Spatrick int priority = -config->symbolOrderingFile.size(); 1360ece8a530Spatrick for (StringRef s : config->symbolOrderingFile) 1361ece8a530Spatrick symbolOrder.insert({s, {priority++, false}}); 1362ece8a530Spatrick 1363ece8a530Spatrick // Build a map from sections to their priorities. 1364ece8a530Spatrick auto addSym = [&](Symbol &sym) { 1365ece8a530Spatrick auto it = symbolOrder.find(sym.getName()); 1366ece8a530Spatrick if (it == symbolOrder.end()) 1367ece8a530Spatrick return; 1368ece8a530Spatrick SymbolOrderEntry &ent = it->second; 1369ece8a530Spatrick ent.present = true; 1370ece8a530Spatrick 1371ece8a530Spatrick maybeWarnUnorderableSymbol(&sym); 1372ece8a530Spatrick 1373ece8a530Spatrick if (auto *d = dyn_cast<Defined>(&sym)) { 1374ece8a530Spatrick if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1375ece8a530Spatrick int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1376ece8a530Spatrick priority = std::min(priority, ent.priority); 1377ece8a530Spatrick } 1378ece8a530Spatrick } 1379ece8a530Spatrick }; 1380ece8a530Spatrick 1381ece8a530Spatrick // We want both global and local symbols. We get the global ones from the 1382ece8a530Spatrick // symbol table and iterate the object files for the local ones. 1383ece8a530Spatrick for (Symbol *sym : symtab->symbols()) 1384ece8a530Spatrick if (!sym->isLazy()) 1385ece8a530Spatrick addSym(*sym); 1386ece8a530Spatrick 1387ece8a530Spatrick for (InputFile *file : objectFiles) 1388*a0747c9fSpatrick for (Symbol *sym : file->getSymbols()) { 1389*a0747c9fSpatrick if (!sym->isLocal()) 1390*a0747c9fSpatrick break; 1391ece8a530Spatrick addSym(*sym); 1392*a0747c9fSpatrick } 1393ece8a530Spatrick 1394ece8a530Spatrick if (config->warnSymbolOrdering) 1395ece8a530Spatrick for (auto orderEntry : symbolOrder) 1396ece8a530Spatrick if (!orderEntry.second.present) 1397ece8a530Spatrick warn("symbol ordering file: no such symbol: " + orderEntry.first); 1398ece8a530Spatrick 1399ece8a530Spatrick return sectionOrder; 1400ece8a530Spatrick } 1401ece8a530Spatrick 1402ece8a530Spatrick // Sorts the sections in ISD according to the provided section order. 1403ece8a530Spatrick static void 1404ece8a530Spatrick sortISDBySectionOrder(InputSectionDescription *isd, 1405ece8a530Spatrick const DenseMap<const InputSectionBase *, int> &order) { 1406ece8a530Spatrick std::vector<InputSection *> unorderedSections; 1407ece8a530Spatrick std::vector<std::pair<InputSection *, int>> orderedSections; 1408ece8a530Spatrick uint64_t unorderedSize = 0; 1409ece8a530Spatrick 1410ece8a530Spatrick for (InputSection *isec : isd->sections) { 1411ece8a530Spatrick auto i = order.find(isec); 1412ece8a530Spatrick if (i == order.end()) { 1413ece8a530Spatrick unorderedSections.push_back(isec); 1414ece8a530Spatrick unorderedSize += isec->getSize(); 1415ece8a530Spatrick continue; 1416ece8a530Spatrick } 1417ece8a530Spatrick orderedSections.push_back({isec, i->second}); 1418ece8a530Spatrick } 1419ece8a530Spatrick llvm::sort(orderedSections, llvm::less_second()); 1420ece8a530Spatrick 1421ece8a530Spatrick // Find an insertion point for the ordered section list in the unordered 1422ece8a530Spatrick // section list. On targets with limited-range branches, this is the mid-point 1423ece8a530Spatrick // of the unordered section list. This decreases the likelihood that a range 1424ece8a530Spatrick // extension thunk will be needed to enter or exit the ordered region. If the 1425ece8a530Spatrick // ordered section list is a list of hot functions, we can generally expect 1426ece8a530Spatrick // the ordered functions to be called more often than the unordered functions, 1427ece8a530Spatrick // making it more likely that any particular call will be within range, and 1428ece8a530Spatrick // therefore reducing the number of thunks required. 1429ece8a530Spatrick // 1430ece8a530Spatrick // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1431ece8a530Spatrick // If the layout is: 1432ece8a530Spatrick // 1433ece8a530Spatrick // 8MB hot 1434ece8a530Spatrick // 32MB cold 1435ece8a530Spatrick // 1436ece8a530Spatrick // only the first 8-16MB of the cold code (depending on which hot function it 1437ece8a530Spatrick // is actually calling) can call the hot code without a range extension thunk. 1438ece8a530Spatrick // However, if we use this layout: 1439ece8a530Spatrick // 1440ece8a530Spatrick // 16MB cold 1441ece8a530Spatrick // 8MB hot 1442ece8a530Spatrick // 16MB cold 1443ece8a530Spatrick // 1444ece8a530Spatrick // both the last 8-16MB of the first block of cold code and the first 8-16MB 1445ece8a530Spatrick // of the second block of cold code can call the hot code without a thunk. So 1446ece8a530Spatrick // we effectively double the amount of code that could potentially call into 1447ece8a530Spatrick // the hot code without a thunk. 1448ece8a530Spatrick size_t insPt = 0; 1449ece8a530Spatrick if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1450ece8a530Spatrick uint64_t unorderedPos = 0; 1451ece8a530Spatrick for (; insPt != unorderedSections.size(); ++insPt) { 1452ece8a530Spatrick unorderedPos += unorderedSections[insPt]->getSize(); 1453ece8a530Spatrick if (unorderedPos > unorderedSize / 2) 1454ece8a530Spatrick break; 1455ece8a530Spatrick } 1456ece8a530Spatrick } 1457ece8a530Spatrick 1458ece8a530Spatrick isd->sections.clear(); 1459ece8a530Spatrick for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1460ece8a530Spatrick isd->sections.push_back(isec); 1461ece8a530Spatrick for (std::pair<InputSection *, int> p : orderedSections) 1462ece8a530Spatrick isd->sections.push_back(p.first); 1463ece8a530Spatrick for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1464ece8a530Spatrick isd->sections.push_back(isec); 1465ece8a530Spatrick } 1466ece8a530Spatrick 1467ece8a530Spatrick static void sortSection(OutputSection *sec, 1468ece8a530Spatrick const DenseMap<const InputSectionBase *, int> &order) { 1469ece8a530Spatrick StringRef name = sec->name; 1470ece8a530Spatrick 1471bb684c34Spatrick // Never sort these. 1472bb684c34Spatrick if (name == ".init" || name == ".fini") 1473bb684c34Spatrick return; 1474bb684c34Spatrick 1475*a0747c9fSpatrick // IRelative relocations that usually live in the .rel[a].dyn section should 1476*a0747c9fSpatrick // be processed last by the dynamic loader. To achieve that we add synthetic 1477*a0747c9fSpatrick // sections in the required order from the beginning so that the in.relaIplt 1478*a0747c9fSpatrick // section is placed last in an output section. Here we just do not apply 1479*a0747c9fSpatrick // sorting for an output section which holds the in.relaIplt section. 1480*a0747c9fSpatrick if (in.relaIplt->getParent() == sec) 1481*a0747c9fSpatrick return; 1482*a0747c9fSpatrick 1483bb684c34Spatrick // Sort input sections by priority using the list provided by 1484bb684c34Spatrick // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1485bb684c34Spatrick // digit radix sort. The sections may be sorted stably again by a more 1486bb684c34Spatrick // significant key. 1487bb684c34Spatrick if (!order.empty()) 1488bb684c34Spatrick for (BaseCommand *b : sec->sectionCommands) 1489bb684c34Spatrick if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1490bb684c34Spatrick sortISDBySectionOrder(isd, order); 1491bb684c34Spatrick 1492ece8a530Spatrick // Sort input sections by section name suffixes for 1493ece8a530Spatrick // __attribute__((init_priority(N))). 1494ece8a530Spatrick if (name == ".init_array" || name == ".fini_array") { 1495ece8a530Spatrick if (!script->hasSectionsCommand) 1496ece8a530Spatrick sec->sortInitFini(); 1497ece8a530Spatrick return; 1498ece8a530Spatrick } 1499ece8a530Spatrick 1500ece8a530Spatrick // Sort input sections by the special rule for .ctors and .dtors. 1501ece8a530Spatrick if (name == ".ctors" || name == ".dtors") { 1502ece8a530Spatrick if (!script->hasSectionsCommand) 1503ece8a530Spatrick sec->sortCtorsDtors(); 1504ece8a530Spatrick return; 1505ece8a530Spatrick } 1506ece8a530Spatrick 1507ece8a530Spatrick // .toc is allocated just after .got and is accessed using GOT-relative 1508ece8a530Spatrick // relocations. Object files compiled with small code model have an 1509ece8a530Spatrick // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1510ece8a530Spatrick // To reduce the risk of relocation overflow, .toc contents are sorted so that 1511ece8a530Spatrick // sections having smaller relocation offsets are at beginning of .toc 1512ece8a530Spatrick if (config->emachine == EM_PPC64 && name == ".toc") { 1513ece8a530Spatrick if (script->hasSectionsCommand) 1514ece8a530Spatrick return; 1515ece8a530Spatrick assert(sec->sectionCommands.size() == 1); 1516ece8a530Spatrick auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1517ece8a530Spatrick llvm::stable_sort(isd->sections, 1518ece8a530Spatrick [](const InputSection *a, const InputSection *b) -> bool { 1519ece8a530Spatrick return a->file->ppc64SmallCodeModelTocRelocs && 1520ece8a530Spatrick !b->file->ppc64SmallCodeModelTocRelocs; 1521ece8a530Spatrick }); 1522ece8a530Spatrick return; 1523ece8a530Spatrick } 1524ece8a530Spatrick } 1525ece8a530Spatrick 1526ece8a530Spatrick // If no layout was provided by linker script, we want to apply default 1527ece8a530Spatrick // sorting for special input sections. This also handles --symbol-ordering-file. 1528ece8a530Spatrick template <class ELFT> void Writer<ELFT>::sortInputSections() { 1529ece8a530Spatrick // Build the order once since it is expensive. 1530ece8a530Spatrick DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1531bb684c34Spatrick maybeShuffle(order); 1532ece8a530Spatrick for (BaseCommand *base : script->sectionCommands) 1533ece8a530Spatrick if (auto *sec = dyn_cast<OutputSection>(base)) 1534ece8a530Spatrick sortSection(sec, order); 1535ece8a530Spatrick } 1536ece8a530Spatrick 1537ece8a530Spatrick template <class ELFT> void Writer<ELFT>::sortSections() { 1538*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Sort sections"); 1539ece8a530Spatrick script->adjustSectionsBeforeSorting(); 1540ece8a530Spatrick 1541ece8a530Spatrick // Don't sort if using -r. It is not necessary and we want to preserve the 1542ece8a530Spatrick // relative order for SHF_LINK_ORDER sections. 1543ece8a530Spatrick if (config->relocatable) 1544ece8a530Spatrick return; 1545ece8a530Spatrick 1546ece8a530Spatrick sortInputSections(); 1547ece8a530Spatrick 1548ece8a530Spatrick for (BaseCommand *base : script->sectionCommands) { 1549ece8a530Spatrick auto *os = dyn_cast<OutputSection>(base); 1550ece8a530Spatrick if (!os) 1551ece8a530Spatrick continue; 1552ece8a530Spatrick os->sortRank = getSectionRank(os); 1553ece8a530Spatrick 1554ece8a530Spatrick // We want to assign rude approximation values to outSecOff fields 1555ece8a530Spatrick // to know the relative order of the input sections. We use it for 1556ece8a530Spatrick // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1557ece8a530Spatrick uint64_t i = 0; 1558ece8a530Spatrick for (InputSection *sec : getInputSections(os)) 1559ece8a530Spatrick sec->outSecOff = i++; 1560ece8a530Spatrick } 1561ece8a530Spatrick 1562ece8a530Spatrick if (!script->hasSectionsCommand) { 1563ece8a530Spatrick // We know that all the OutputSections are contiguous in this case. 1564ece8a530Spatrick auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1565ece8a530Spatrick std::stable_sort( 1566ece8a530Spatrick llvm::find_if(script->sectionCommands, isSection), 1567ece8a530Spatrick llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1568ece8a530Spatrick compareSections); 1569bb684c34Spatrick 1570bb684c34Spatrick // Process INSERT commands. From this point onwards the order of 1571bb684c34Spatrick // script->sectionCommands is fixed. 1572bb684c34Spatrick script->processInsertCommands(); 1573ece8a530Spatrick return; 1574ece8a530Spatrick } 1575ece8a530Spatrick 1576bb684c34Spatrick script->processInsertCommands(); 1577bb684c34Spatrick 1578ece8a530Spatrick // Orphan sections are sections present in the input files which are 1579ece8a530Spatrick // not explicitly placed into the output file by the linker script. 1580ece8a530Spatrick // 1581ece8a530Spatrick // The sections in the linker script are already in the correct 1582ece8a530Spatrick // order. We have to figuere out where to insert the orphan 1583ece8a530Spatrick // sections. 1584ece8a530Spatrick // 1585ece8a530Spatrick // The order of the sections in the script is arbitrary and may not agree with 1586ece8a530Spatrick // compareSections. This means that we cannot easily define a strict weak 1587ece8a530Spatrick // ordering. To see why, consider a comparison of a section in the script and 1588ece8a530Spatrick // one not in the script. We have a two simple options: 1589ece8a530Spatrick // * Make them equivalent (a is not less than b, and b is not less than a). 1590ece8a530Spatrick // The problem is then that equivalence has to be transitive and we can 1591ece8a530Spatrick // have sections a, b and c with only b in a script and a less than c 1592ece8a530Spatrick // which breaks this property. 1593ece8a530Spatrick // * Use compareSectionsNonScript. Given that the script order doesn't have 1594ece8a530Spatrick // to match, we can end up with sections a, b, c, d where b and c are in the 1595ece8a530Spatrick // script and c is compareSectionsNonScript less than b. In which case d 1596ece8a530Spatrick // can be equivalent to c, a to b and d < a. As a concrete example: 1597ece8a530Spatrick // .a (rx) # not in script 1598ece8a530Spatrick // .b (rx) # in script 1599ece8a530Spatrick // .c (ro) # in script 1600ece8a530Spatrick // .d (ro) # not in script 1601ece8a530Spatrick // 1602ece8a530Spatrick // The way we define an order then is: 1603ece8a530Spatrick // * Sort only the orphan sections. They are in the end right now. 1604ece8a530Spatrick // * Move each orphan section to its preferred position. We try 1605ece8a530Spatrick // to put each section in the last position where it can share 1606ece8a530Spatrick // a PT_LOAD. 1607ece8a530Spatrick // 1608ece8a530Spatrick // There is some ambiguity as to where exactly a new entry should be 1609ece8a530Spatrick // inserted, because Commands contains not only output section 1610ece8a530Spatrick // commands but also other types of commands such as symbol assignment 1611ece8a530Spatrick // expressions. There's no correct answer here due to the lack of the 1612ece8a530Spatrick // formal specification of the linker script. We use heuristics to 1613ece8a530Spatrick // determine whether a new output command should be added before or 1614ece8a530Spatrick // after another commands. For the details, look at shouldSkip 1615ece8a530Spatrick // function. 1616ece8a530Spatrick 1617ece8a530Spatrick auto i = script->sectionCommands.begin(); 1618ece8a530Spatrick auto e = script->sectionCommands.end(); 1619ece8a530Spatrick auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1620ece8a530Spatrick if (auto *sec = dyn_cast<OutputSection>(base)) 1621ece8a530Spatrick return sec->sectionIndex == UINT32_MAX; 1622ece8a530Spatrick return false; 1623ece8a530Spatrick }); 1624ece8a530Spatrick 1625ece8a530Spatrick // Sort the orphan sections. 1626ece8a530Spatrick std::stable_sort(nonScriptI, e, compareSections); 1627ece8a530Spatrick 1628ece8a530Spatrick // As a horrible special case, skip the first . assignment if it is before any 1629ece8a530Spatrick // section. We do this because it is common to set a load address by starting 1630ece8a530Spatrick // the script with ". = 0xabcd" and the expectation is that every section is 1631ece8a530Spatrick // after that. 1632ece8a530Spatrick auto firstSectionOrDotAssignment = 1633ece8a530Spatrick std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1634ece8a530Spatrick if (firstSectionOrDotAssignment != e && 1635ece8a530Spatrick isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1636ece8a530Spatrick ++firstSectionOrDotAssignment; 1637ece8a530Spatrick i = firstSectionOrDotAssignment; 1638ece8a530Spatrick 1639ece8a530Spatrick while (nonScriptI != e) { 1640ece8a530Spatrick auto pos = findOrphanPos(i, nonScriptI); 1641ece8a530Spatrick OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1642ece8a530Spatrick 1643ece8a530Spatrick // As an optimization, find all sections with the same sort rank 1644ece8a530Spatrick // and insert them with one rotate. 1645ece8a530Spatrick unsigned rank = orphan->sortRank; 1646ece8a530Spatrick auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1647ece8a530Spatrick return cast<OutputSection>(cmd)->sortRank != rank; 1648ece8a530Spatrick }); 1649ece8a530Spatrick std::rotate(pos, nonScriptI, end); 1650ece8a530Spatrick nonScriptI = end; 1651ece8a530Spatrick } 1652ece8a530Spatrick 1653ece8a530Spatrick script->adjustSectionsAfterSorting(); 1654ece8a530Spatrick } 1655ece8a530Spatrick 1656ece8a530Spatrick static bool compareByFilePosition(InputSection *a, InputSection *b) { 1657*a0747c9fSpatrick InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1658*a0747c9fSpatrick InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1659*a0747c9fSpatrick // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1660*a0747c9fSpatrick // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1661*a0747c9fSpatrick if (!la || !lb) 1662*a0747c9fSpatrick return la && !lb; 1663ece8a530Spatrick OutputSection *aOut = la->getParent(); 1664ece8a530Spatrick OutputSection *bOut = lb->getParent(); 1665ece8a530Spatrick 1666ece8a530Spatrick if (aOut != bOut) 1667bb684c34Spatrick return aOut->addr < bOut->addr; 1668ece8a530Spatrick return la->outSecOff < lb->outSecOff; 1669ece8a530Spatrick } 1670ece8a530Spatrick 1671ece8a530Spatrick template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1672*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1673ece8a530Spatrick for (OutputSection *sec : outputSections) { 1674ece8a530Spatrick if (!(sec->flags & SHF_LINK_ORDER)) 1675ece8a530Spatrick continue; 1676ece8a530Spatrick 1677ece8a530Spatrick // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1678ece8a530Spatrick // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1679ece8a530Spatrick if (!config->relocatable && config->emachine == EM_ARM && 1680ece8a530Spatrick sec->type == SHT_ARM_EXIDX) 1681ece8a530Spatrick continue; 1682ece8a530Spatrick 1683*a0747c9fSpatrick // Link order may be distributed across several InputSectionDescriptions. 1684*a0747c9fSpatrick // Sorting is performed separately. 1685ece8a530Spatrick std::vector<InputSection **> scriptSections; 1686ece8a530Spatrick std::vector<InputSection *> sections; 1687ece8a530Spatrick for (BaseCommand *base : sec->sectionCommands) { 1688*a0747c9fSpatrick auto *isd = dyn_cast<InputSectionDescription>(base); 1689*a0747c9fSpatrick if (!isd) 1690*a0747c9fSpatrick continue; 1691*a0747c9fSpatrick bool hasLinkOrder = false; 1692*a0747c9fSpatrick scriptSections.clear(); 1693*a0747c9fSpatrick sections.clear(); 1694ece8a530Spatrick for (InputSection *&isec : isd->sections) { 1695*a0747c9fSpatrick if (isec->flags & SHF_LINK_ORDER) { 1696ece8a530Spatrick InputSection *link = isec->getLinkOrderDep(); 1697*a0747c9fSpatrick if (link && !link->getParent()) 1698ece8a530Spatrick error(toString(isec) + ": sh_link points to discarded section " + 1699ece8a530Spatrick toString(link)); 1700*a0747c9fSpatrick hasLinkOrder = true; 1701ece8a530Spatrick } 1702*a0747c9fSpatrick scriptSections.push_back(&isec); 1703*a0747c9fSpatrick sections.push_back(isec); 1704ece8a530Spatrick } 1705*a0747c9fSpatrick if (hasLinkOrder && errorCount() == 0) { 1706ece8a530Spatrick llvm::stable_sort(sections, compareByFilePosition); 1707*a0747c9fSpatrick for (int i = 0, n = sections.size(); i != n; ++i) 1708ece8a530Spatrick *scriptSections[i] = sections[i]; 1709ece8a530Spatrick } 1710ece8a530Spatrick } 1711*a0747c9fSpatrick } 1712*a0747c9fSpatrick } 1713ece8a530Spatrick 1714bb684c34Spatrick static void finalizeSynthetic(SyntheticSection *sec) { 1715*a0747c9fSpatrick if (sec && sec->isNeeded() && sec->getParent()) { 1716*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1717bb684c34Spatrick sec->finalizeContents(); 1718bb684c34Spatrick } 1719*a0747c9fSpatrick } 1720bb684c34Spatrick 1721ece8a530Spatrick // We need to generate and finalize the content that depends on the address of 1722ece8a530Spatrick // InputSections. As the generation of the content may also alter InputSection 1723ece8a530Spatrick // addresses we must converge to a fixed point. We do that here. See the comment 1724ece8a530Spatrick // in Writer<ELFT>::finalizeSections(). 1725ece8a530Spatrick template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1726*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1727ece8a530Spatrick ThunkCreator tc; 1728ece8a530Spatrick AArch64Err843419Patcher a64p; 1729ece8a530Spatrick ARMErr657417Patcher a32p; 1730ece8a530Spatrick script->assignAddresses(); 1731bb684c34Spatrick // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1732bb684c34Spatrick // do require the relative addresses of OutputSections because linker scripts 1733bb684c34Spatrick // can assign Virtual Addresses to OutputSections that are not monotonically 1734bb684c34Spatrick // increasing. 1735bb684c34Spatrick for (Partition &part : partitions) 1736bb684c34Spatrick finalizeSynthetic(part.armExidx); 1737bb684c34Spatrick resolveShfLinkOrder(); 1738bb684c34Spatrick 1739bb684c34Spatrick // Converts call x@GDPLT to call __tls_get_addr 1740bb684c34Spatrick if (config->emachine == EM_HEXAGON) 1741bb684c34Spatrick hexagonTLSSymbolUpdate(outputSections); 1742ece8a530Spatrick 1743ece8a530Spatrick int assignPasses = 0; 1744ece8a530Spatrick for (;;) { 1745ece8a530Spatrick bool changed = target->needsThunks && tc.createThunks(outputSections); 1746ece8a530Spatrick 1747ece8a530Spatrick // With Thunk Size much smaller than branch range we expect to 1748*a0747c9fSpatrick // converge quickly; if we get to 15 something has gone wrong. 1749*a0747c9fSpatrick if (changed && tc.pass >= 15) { 1750ece8a530Spatrick error("thunk creation not converged"); 1751ece8a530Spatrick break; 1752ece8a530Spatrick } 1753ece8a530Spatrick 1754ece8a530Spatrick if (config->fixCortexA53Errata843419) { 1755ece8a530Spatrick if (changed) 1756ece8a530Spatrick script->assignAddresses(); 1757ece8a530Spatrick changed |= a64p.createFixes(); 1758ece8a530Spatrick } 1759ece8a530Spatrick if (config->fixCortexA8) { 1760ece8a530Spatrick if (changed) 1761ece8a530Spatrick script->assignAddresses(); 1762ece8a530Spatrick changed |= a32p.createFixes(); 1763ece8a530Spatrick } 1764ece8a530Spatrick 1765ece8a530Spatrick if (in.mipsGot) 1766ece8a530Spatrick in.mipsGot->updateAllocSize(); 1767ece8a530Spatrick 1768ece8a530Spatrick for (Partition &part : partitions) { 1769ece8a530Spatrick changed |= part.relaDyn->updateAllocSize(); 1770ece8a530Spatrick if (part.relrDyn) 1771ece8a530Spatrick changed |= part.relrDyn->updateAllocSize(); 1772ece8a530Spatrick } 1773ece8a530Spatrick 1774ece8a530Spatrick const Defined *changedSym = script->assignAddresses(); 1775ece8a530Spatrick if (!changed) { 1776ece8a530Spatrick // Some symbols may be dependent on section addresses. When we break the 1777ece8a530Spatrick // loop, the symbol values are finalized because a previous 1778ece8a530Spatrick // assignAddresses() finalized section addresses. 1779ece8a530Spatrick if (!changedSym) 1780ece8a530Spatrick break; 1781ece8a530Spatrick if (++assignPasses == 5) { 1782ece8a530Spatrick errorOrWarn("assignment to symbol " + toString(*changedSym) + 1783ece8a530Spatrick " does not converge"); 1784ece8a530Spatrick break; 1785ece8a530Spatrick } 1786ece8a530Spatrick } 1787ece8a530Spatrick } 1788bb684c34Spatrick 1789bb684c34Spatrick // If addrExpr is set, the address may not be a multiple of the alignment. 1790bb684c34Spatrick // Warn because this is error-prone. 1791bb684c34Spatrick for (BaseCommand *cmd : script->sectionCommands) 1792bb684c34Spatrick if (auto *os = dyn_cast<OutputSection>(cmd)) 1793bb684c34Spatrick if (os->addr % os->alignment != 0) 1794bb684c34Spatrick warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1795bb684c34Spatrick os->name + " is not a multiple of alignment (" + 1796bb684c34Spatrick Twine(os->alignment) + ")"); 1797ece8a530Spatrick } 1798ece8a530Spatrick 1799*a0747c9fSpatrick // If Input Sections have been shrunk (basic block sections) then 1800bb684c34Spatrick // update symbol values and sizes associated with these sections. With basic 1801bb684c34Spatrick // block sections, input sections can shrink when the jump instructions at 1802bb684c34Spatrick // the end of the section are relaxed. 1803bb684c34Spatrick static void fixSymbolsAfterShrinking() { 1804bb684c34Spatrick for (InputFile *File : objectFiles) { 1805bb684c34Spatrick parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1806bb684c34Spatrick auto *def = dyn_cast<Defined>(Sym); 1807bb684c34Spatrick if (!def) 1808bb684c34Spatrick return; 1809bb684c34Spatrick 1810bb684c34Spatrick const SectionBase *sec = def->section; 1811bb684c34Spatrick if (!sec) 1812bb684c34Spatrick return; 1813bb684c34Spatrick 1814bb684c34Spatrick const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1815bb684c34Spatrick if (!inputSec || !inputSec->bytesDropped) 1816bb684c34Spatrick return; 1817bb684c34Spatrick 1818bb684c34Spatrick const size_t OldSize = inputSec->data().size(); 1819bb684c34Spatrick const size_t NewSize = OldSize - inputSec->bytesDropped; 1820bb684c34Spatrick 1821bb684c34Spatrick if (def->value > NewSize && def->value <= OldSize) { 1822bb684c34Spatrick LLVM_DEBUG(llvm::dbgs() 1823bb684c34Spatrick << "Moving symbol " << Sym->getName() << " from " 1824bb684c34Spatrick << def->value << " to " 1825bb684c34Spatrick << def->value - inputSec->bytesDropped << " bytes\n"); 1826bb684c34Spatrick def->value -= inputSec->bytesDropped; 1827bb684c34Spatrick return; 1828bb684c34Spatrick } 1829bb684c34Spatrick 1830bb684c34Spatrick if (def->value + def->size > NewSize && def->value <= OldSize && 1831bb684c34Spatrick def->value + def->size <= OldSize) { 1832bb684c34Spatrick LLVM_DEBUG(llvm::dbgs() 1833bb684c34Spatrick << "Shrinking symbol " << Sym->getName() << " from " 1834bb684c34Spatrick << def->size << " to " << def->size - inputSec->bytesDropped 1835bb684c34Spatrick << " bytes\n"); 1836bb684c34Spatrick def->size -= inputSec->bytesDropped; 1837bb684c34Spatrick } 1838bb684c34Spatrick }); 1839bb684c34Spatrick } 1840bb684c34Spatrick } 1841bb684c34Spatrick 1842bb684c34Spatrick // If basic block sections exist, there are opportunities to delete fall thru 1843bb684c34Spatrick // jumps and shrink jump instructions after basic block reordering. This 1844bb684c34Spatrick // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1845bb684c34Spatrick // option is used. 1846bb684c34Spatrick template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1847bb684c34Spatrick assert(config->optimizeBBJumps); 1848bb684c34Spatrick 1849bb684c34Spatrick script->assignAddresses(); 1850bb684c34Spatrick // For every output section that has executable input sections, this 1851bb684c34Spatrick // does the following: 1852bb684c34Spatrick // 1. Deletes all direct jump instructions in input sections that 1853bb684c34Spatrick // jump to the following section as it is not required. 1854bb684c34Spatrick // 2. If there are two consecutive jump instructions, it checks 1855bb684c34Spatrick // if they can be flipped and one can be deleted. 1856bb684c34Spatrick for (OutputSection *os : outputSections) { 1857bb684c34Spatrick if (!(os->flags & SHF_EXECINSTR)) 1858bb684c34Spatrick continue; 1859bb684c34Spatrick std::vector<InputSection *> sections = getInputSections(os); 1860bb684c34Spatrick std::vector<unsigned> result(sections.size()); 1861bb684c34Spatrick // Delete all fall through jump instructions. Also, check if two 1862bb684c34Spatrick // consecutive jump instructions can be flipped so that a fall 1863bb684c34Spatrick // through jmp instruction can be deleted. 1864bb684c34Spatrick parallelForEachN(0, sections.size(), [&](size_t i) { 1865bb684c34Spatrick InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1866bb684c34Spatrick InputSection &is = *sections[i]; 1867bb684c34Spatrick result[i] = 1868bb684c34Spatrick target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1869bb684c34Spatrick }); 1870bb684c34Spatrick size_t numDeleted = std::count(result.begin(), result.end(), 1); 1871bb684c34Spatrick if (numDeleted > 0) { 1872bb684c34Spatrick script->assignAddresses(); 1873bb684c34Spatrick LLVM_DEBUG(llvm::dbgs() 1874bb684c34Spatrick << "Removing " << numDeleted << " fall through jumps\n"); 1875bb684c34Spatrick } 1876bb684c34Spatrick } 1877bb684c34Spatrick 1878bb684c34Spatrick fixSymbolsAfterShrinking(); 1879bb684c34Spatrick 1880bb684c34Spatrick for (OutputSection *os : outputSections) { 1881bb684c34Spatrick std::vector<InputSection *> sections = getInputSections(os); 1882bb684c34Spatrick for (InputSection *is : sections) 1883bb684c34Spatrick is->trim(); 1884bb684c34Spatrick } 1885ece8a530Spatrick } 1886ece8a530Spatrick 1887ece8a530Spatrick // In order to allow users to manipulate linker-synthesized sections, 1888ece8a530Spatrick // we had to add synthetic sections to the input section list early, 1889ece8a530Spatrick // even before we make decisions whether they are needed. This allows 1890ece8a530Spatrick // users to write scripts like this: ".mygot : { .got }". 1891ece8a530Spatrick // 1892ece8a530Spatrick // Doing it has an unintended side effects. If it turns out that we 1893ece8a530Spatrick // don't need a .got (for example) at all because there's no 1894ece8a530Spatrick // relocation that needs a .got, we don't want to emit .got. 1895ece8a530Spatrick // 1896ece8a530Spatrick // To deal with the above problem, this function is called after 1897ece8a530Spatrick // scanRelocations is called to remove synthetic sections that turn 1898ece8a530Spatrick // out to be empty. 1899ece8a530Spatrick static void removeUnusedSyntheticSections() { 1900ece8a530Spatrick // All input synthetic sections that can be empty are placed after 1901*a0747c9fSpatrick // all regular ones. Reverse iterate to find the first synthetic section 1902*a0747c9fSpatrick // after a non-synthetic one which will be our starting point. 1903*a0747c9fSpatrick auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1904*a0747c9fSpatrick [](InputSectionBase *s) { 1905*a0747c9fSpatrick return !isa<SyntheticSection>(s); 1906*a0747c9fSpatrick }) 1907*a0747c9fSpatrick .base(); 1908*a0747c9fSpatrick 1909*a0747c9fSpatrick DenseSet<InputSectionDescription *> isdSet; 1910*a0747c9fSpatrick // Mark unused synthetic sections for deletion 1911*a0747c9fSpatrick auto end = std::stable_partition( 1912*a0747c9fSpatrick start, inputSections.end(), [&](InputSectionBase *s) { 1913ece8a530Spatrick SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1914ece8a530Spatrick OutputSection *os = ss->getParent(); 1915ece8a530Spatrick if (!os || ss->isNeeded()) 1916*a0747c9fSpatrick return true; 1917ece8a530Spatrick 1918*a0747c9fSpatrick // If we reach here, then ss is an unused synthetic section and we want 1919*a0747c9fSpatrick // to remove it from the corresponding input section description, and 1920bb684c34Spatrick // orphanSections. 1921ece8a530Spatrick for (BaseCommand *b : os->sectionCommands) 1922ece8a530Spatrick if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1923*a0747c9fSpatrick isdSet.insert(isd); 1924*a0747c9fSpatrick 1925*a0747c9fSpatrick llvm::erase_if( 1926*a0747c9fSpatrick script->orphanSections, 1927bb684c34Spatrick [=](const InputSectionBase *isec) { return isec == ss; }); 1928*a0747c9fSpatrick 1929*a0747c9fSpatrick return false; 1930*a0747c9fSpatrick }); 1931*a0747c9fSpatrick 1932*a0747c9fSpatrick DenseSet<InputSectionBase *> unused(end, inputSections.end()); 1933*a0747c9fSpatrick for (auto *isd : isdSet) 1934*a0747c9fSpatrick llvm::erase_if(isd->sections, 1935*a0747c9fSpatrick [=](InputSection *isec) { return unused.count(isec); }); 1936*a0747c9fSpatrick 1937*a0747c9fSpatrick // Erase unused synthetic sections. 1938*a0747c9fSpatrick inputSections.erase(end, inputSections.end()); 1939ece8a530Spatrick } 1940ece8a530Spatrick 1941ece8a530Spatrick // Create output section objects and add them to OutputSections. 1942ece8a530Spatrick template <class ELFT> void Writer<ELFT>::finalizeSections() { 1943ece8a530Spatrick Out::preinitArray = findSection(".preinit_array"); 1944ece8a530Spatrick Out::initArray = findSection(".init_array"); 1945ece8a530Spatrick Out::finiArray = findSection(".fini_array"); 1946ece8a530Spatrick 1947ece8a530Spatrick // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1948ece8a530Spatrick // symbols for sections, so that the runtime can get the start and end 1949ece8a530Spatrick // addresses of each section by section name. Add such symbols. 1950ece8a530Spatrick if (!config->relocatable) { 1951ece8a530Spatrick addStartEndSymbols(); 1952ece8a530Spatrick for (BaseCommand *base : script->sectionCommands) 1953ece8a530Spatrick if (auto *sec = dyn_cast<OutputSection>(base)) 1954ece8a530Spatrick addStartStopSymbols(sec); 1955ece8a530Spatrick } 1956ece8a530Spatrick 1957ece8a530Spatrick // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1958ece8a530Spatrick // It should be okay as no one seems to care about the type. 1959ece8a530Spatrick // Even the author of gold doesn't remember why gold behaves that way. 1960ece8a530Spatrick // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1961ece8a530Spatrick if (mainPart->dynamic->parent) 1962ece8a530Spatrick symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1963ece8a530Spatrick STV_HIDDEN, STT_NOTYPE, 1964ece8a530Spatrick /*value=*/0, /*size=*/0, mainPart->dynamic}); 1965ece8a530Spatrick 1966ece8a530Spatrick // Define __rel[a]_iplt_{start,end} symbols if needed. 1967ece8a530Spatrick addRelIpltSymbols(); 1968ece8a530Spatrick 1969ece8a530Spatrick // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1970ece8a530Spatrick // should only be defined in an executable. If .sdata does not exist, its 1971ece8a530Spatrick // value/section does not matter but it has to be relative, so set its 1972ece8a530Spatrick // st_shndx arbitrarily to 1 (Out::elfHeader). 1973ece8a530Spatrick if (config->emachine == EM_RISCV && !config->shared) { 1974ece8a530Spatrick OutputSection *sec = findSection(".sdata"); 1975ece8a530Spatrick ElfSym::riscvGlobalPointer = 1976ece8a530Spatrick addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1977ece8a530Spatrick 0x800, STV_DEFAULT, STB_GLOBAL); 1978ece8a530Spatrick } 1979ece8a530Spatrick 1980ece8a530Spatrick if (config->emachine == EM_X86_64) { 1981ece8a530Spatrick // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1982ece8a530Spatrick // way that: 1983ece8a530Spatrick // 1984ece8a530Spatrick // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1985ece8a530Spatrick // computes 0. 1986ece8a530Spatrick // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1987ece8a530Spatrick // the TLS block). 1988ece8a530Spatrick // 1989ece8a530Spatrick // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1990ece8a530Spatrick // an absolute symbol of zero. This is different from GNU linkers which 1991ece8a530Spatrick // define _TLS_MODULE_BASE_ relative to the first TLS section. 1992ece8a530Spatrick Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1993ece8a530Spatrick if (s && s->isUndefined()) { 1994ece8a530Spatrick s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1995ece8a530Spatrick STT_TLS, /*value=*/0, 0, 1996ece8a530Spatrick /*section=*/nullptr}); 1997ece8a530Spatrick ElfSym::tlsModuleBase = cast<Defined>(s); 1998ece8a530Spatrick } 1999ece8a530Spatrick } 2000ece8a530Spatrick 2001*a0747c9fSpatrick { 2002*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 2003ece8a530Spatrick // This responsible for splitting up .eh_frame section into 2004ece8a530Spatrick // pieces. The relocation scan uses those pieces, so this has to be 2005ece8a530Spatrick // earlier. 2006ece8a530Spatrick for (Partition &part : partitions) 2007ece8a530Spatrick finalizeSynthetic(part.ehFrame); 2008*a0747c9fSpatrick } 2009ece8a530Spatrick 2010ece8a530Spatrick for (Symbol *sym : symtab->symbols()) 2011ece8a530Spatrick sym->isPreemptible = computeIsPreemptible(*sym); 2012ece8a530Spatrick 2013ece8a530Spatrick // Change values of linker-script-defined symbols from placeholders (assigned 2014ece8a530Spatrick // by declareSymbols) to actual definitions. 2015ece8a530Spatrick script->processSymbolAssignments(); 2016ece8a530Spatrick 2017*a0747c9fSpatrick { 2018*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Scan relocations"); 2019*a0747c9fSpatrick // Scan relocations. This must be done after every symbol is declared so 2020*a0747c9fSpatrick // that we can correctly decide if a dynamic relocation is needed. This is 2021*a0747c9fSpatrick // called after processSymbolAssignments() because it needs to know whether 2022*a0747c9fSpatrick // a linker-script-defined symbol is absolute. 2023bb684c34Spatrick ppc64noTocRelax.clear(); 2024ece8a530Spatrick if (!config->relocatable) { 2025ece8a530Spatrick forEachRelSec(scanRelocations<ELFT>); 2026ece8a530Spatrick reportUndefinedSymbols<ELFT>(); 2027ece8a530Spatrick } 2028*a0747c9fSpatrick } 2029ece8a530Spatrick 2030ece8a530Spatrick if (in.plt && in.plt->isNeeded()) 2031ece8a530Spatrick in.plt->addSymbols(); 2032ece8a530Spatrick if (in.iplt && in.iplt->isNeeded()) 2033ece8a530Spatrick in.iplt->addSymbols(); 2034ece8a530Spatrick 2035*a0747c9fSpatrick if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 2036*a0747c9fSpatrick auto diagnose = 2037*a0747c9fSpatrick config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 2038*a0747c9fSpatrick ? errorOrWarn 2039*a0747c9fSpatrick : warn; 2040ece8a530Spatrick // Error on undefined symbols in a shared object, if all of its DT_NEEDED 2041ece8a530Spatrick // entries are seen. These cases would otherwise lead to runtime errors 2042ece8a530Spatrick // reported by the dynamic linker. 2043ece8a530Spatrick // 2044ece8a530Spatrick // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 2045ece8a530Spatrick // catch more cases. That is too much for us. Our approach resembles the one 2046ece8a530Spatrick // used in ld.gold, achieves a good balance to be useful but not too smart. 2047*a0747c9fSpatrick for (SharedFile *file : sharedFiles) { 2048*a0747c9fSpatrick bool allNeededIsKnown = 2049ece8a530Spatrick llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2050ece8a530Spatrick return symtab->soNames.count(needed); 2051ece8a530Spatrick }); 2052*a0747c9fSpatrick if (!allNeededIsKnown) 2053*a0747c9fSpatrick continue; 2054*a0747c9fSpatrick for (Symbol *sym : file->requiredSymbols) 2055ece8a530Spatrick if (sym->isUndefined() && !sym->isWeak()) 2056*a0747c9fSpatrick diagnose(toString(file) + ": undefined reference to " + 2057bb684c34Spatrick toString(*sym) + " [--no-allow-shlib-undefined]"); 2058ece8a530Spatrick } 2059*a0747c9fSpatrick } 2060ece8a530Spatrick 2061*a0747c9fSpatrick { 2062*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2063ece8a530Spatrick // Now that we have defined all possible global symbols including linker- 2064ece8a530Spatrick // synthesized ones. Visit all symbols to give the finishing touches. 2065ece8a530Spatrick for (Symbol *sym : symtab->symbols()) { 2066ece8a530Spatrick if (!includeInSymtab(*sym)) 2067ece8a530Spatrick continue; 2068ece8a530Spatrick if (in.symTab) 2069ece8a530Spatrick in.symTab->addSymbol(sym); 2070ece8a530Spatrick 2071ece8a530Spatrick if (sym->includeInDynsym()) { 2072ece8a530Spatrick partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2073ece8a530Spatrick if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2074ece8a530Spatrick if (file->isNeeded && !sym->isUndefined()) 2075ece8a530Spatrick addVerneed(sym); 2076ece8a530Spatrick } 2077ece8a530Spatrick } 2078ece8a530Spatrick 2079*a0747c9fSpatrick // We also need to scan the dynamic relocation tables of the other 2080*a0747c9fSpatrick // partitions and add any referenced symbols to the partition's dynsym. 2081ece8a530Spatrick for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2082ece8a530Spatrick DenseSet<Symbol *> syms; 2083ece8a530Spatrick for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2084ece8a530Spatrick syms.insert(e.sym); 2085ece8a530Spatrick for (DynamicReloc &reloc : part.relaDyn->relocs) 2086*a0747c9fSpatrick if (reloc.sym && reloc.needsDynSymIndex() && 2087*a0747c9fSpatrick syms.insert(reloc.sym).second) 2088ece8a530Spatrick part.dynSymTab->addSymbol(reloc.sym); 2089ece8a530Spatrick } 2090*a0747c9fSpatrick } 2091ece8a530Spatrick 2092ece8a530Spatrick // Do not proceed if there was an undefined symbol. 2093ece8a530Spatrick if (errorCount()) 2094ece8a530Spatrick return; 2095ece8a530Spatrick 2096ece8a530Spatrick if (in.mipsGot) 2097ece8a530Spatrick in.mipsGot->build(); 2098ece8a530Spatrick 2099ece8a530Spatrick removeUnusedSyntheticSections(); 2100bb684c34Spatrick script->diagnoseOrphanHandling(); 2101ece8a530Spatrick 2102ece8a530Spatrick sortSections(); 2103ece8a530Spatrick 2104ece8a530Spatrick // Now that we have the final list, create a list of all the 2105ece8a530Spatrick // OutputSections for convenience. 2106ece8a530Spatrick for (BaseCommand *base : script->sectionCommands) 2107ece8a530Spatrick if (auto *sec = dyn_cast<OutputSection>(base)) 2108ece8a530Spatrick outputSections.push_back(sec); 2109ece8a530Spatrick 2110ece8a530Spatrick // Prefer command line supplied address over other constraints. 2111ece8a530Spatrick for (OutputSection *sec : outputSections) { 2112ece8a530Spatrick auto i = config->sectionStartMap.find(sec->name); 2113ece8a530Spatrick if (i != config->sectionStartMap.end()) 2114ece8a530Spatrick sec->addrExpr = [=] { return i->second; }; 2115ece8a530Spatrick } 2116ece8a530Spatrick 2117bb684c34Spatrick // With the outputSections available check for GDPLT relocations 2118bb684c34Spatrick // and add __tls_get_addr symbol if needed. 2119bb684c34Spatrick if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2120bb684c34Spatrick Symbol *sym = symtab->addSymbol(Undefined{ 2121bb684c34Spatrick nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2122bb684c34Spatrick sym->isPreemptible = true; 2123bb684c34Spatrick partitions[0].dynSymTab->addSymbol(sym); 2124bb684c34Spatrick } 2125bb684c34Spatrick 2126ece8a530Spatrick // This is a bit of a hack. A value of 0 means undef, so we set it 2127ece8a530Spatrick // to 1 to make __ehdr_start defined. The section number is not 2128ece8a530Spatrick // particularly relevant. 2129ece8a530Spatrick Out::elfHeader->sectionIndex = 1; 2130ece8a530Spatrick 2131ece8a530Spatrick for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2132ece8a530Spatrick OutputSection *sec = outputSections[i]; 2133ece8a530Spatrick sec->sectionIndex = i + 1; 2134ece8a530Spatrick sec->shName = in.shStrTab->addString(sec->name); 2135ece8a530Spatrick } 2136ece8a530Spatrick 2137ece8a530Spatrick // Binary and relocatable output does not have PHDRS. 2138ece8a530Spatrick // The headers have to be created before finalize as that can influence the 2139ece8a530Spatrick // image base and the dynamic section on mips includes the image base. 2140ece8a530Spatrick if (!config->relocatable && !config->oFormatBinary) { 2141ece8a530Spatrick for (Partition &part : partitions) { 2142ece8a530Spatrick part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2143ece8a530Spatrick : createPhdrs(part); 2144ece8a530Spatrick if (config->emachine == EM_ARM) { 2145ece8a530Spatrick // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2146ece8a530Spatrick addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2147ece8a530Spatrick } 2148ece8a530Spatrick if (config->emachine == EM_MIPS) { 2149ece8a530Spatrick // Add separate segments for MIPS-specific sections. 2150ece8a530Spatrick addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2151ece8a530Spatrick addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2152ece8a530Spatrick addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2153ece8a530Spatrick } 2154ece8a530Spatrick } 2155ece8a530Spatrick Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2156ece8a530Spatrick 2157ece8a530Spatrick // Find the TLS segment. This happens before the section layout loop so that 2158ece8a530Spatrick // Android relocation packing can look up TLS symbol addresses. We only need 2159ece8a530Spatrick // to care about the main partition here because all TLS symbols were moved 2160ece8a530Spatrick // to the main partition (see MarkLive.cpp). 2161ece8a530Spatrick for (PhdrEntry *p : mainPart->phdrs) 2162ece8a530Spatrick if (p->p_type == PT_TLS) 2163ece8a530Spatrick Out::tlsPhdr = p; 2164ece8a530Spatrick } 2165ece8a530Spatrick 2166ece8a530Spatrick // Some symbols are defined in term of program headers. Now that we 2167ece8a530Spatrick // have the headers, we can find out which sections they point to. 2168ece8a530Spatrick setReservedSymbolSections(); 2169ece8a530Spatrick 2170*a0747c9fSpatrick { 2171*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2172*a0747c9fSpatrick 2173ece8a530Spatrick finalizeSynthetic(in.bss); 2174ece8a530Spatrick finalizeSynthetic(in.bssRelRo); 2175ece8a530Spatrick finalizeSynthetic(in.symTabShndx); 2176ece8a530Spatrick finalizeSynthetic(in.shStrTab); 2177ece8a530Spatrick finalizeSynthetic(in.strTab); 2178ece8a530Spatrick finalizeSynthetic(in.got); 2179ece8a530Spatrick finalizeSynthetic(in.mipsGot); 2180ece8a530Spatrick finalizeSynthetic(in.igotPlt); 2181ece8a530Spatrick finalizeSynthetic(in.gotPlt); 2182ece8a530Spatrick finalizeSynthetic(in.relaIplt); 2183ece8a530Spatrick finalizeSynthetic(in.relaPlt); 2184ece8a530Spatrick finalizeSynthetic(in.plt); 2185ece8a530Spatrick finalizeSynthetic(in.iplt); 2186ece8a530Spatrick finalizeSynthetic(in.ppc32Got2); 2187ece8a530Spatrick finalizeSynthetic(in.partIndex); 2188ece8a530Spatrick 2189ece8a530Spatrick // Dynamic section must be the last one in this list and dynamic 2190ece8a530Spatrick // symbol table section (dynSymTab) must be the first one. 2191ece8a530Spatrick for (Partition &part : partitions) { 2192ece8a530Spatrick finalizeSynthetic(part.dynSymTab); 2193ece8a530Spatrick finalizeSynthetic(part.gnuHashTab); 2194ece8a530Spatrick finalizeSynthetic(part.hashTab); 2195ece8a530Spatrick finalizeSynthetic(part.verDef); 2196ece8a530Spatrick finalizeSynthetic(part.relaDyn); 2197ece8a530Spatrick finalizeSynthetic(part.relrDyn); 2198ece8a530Spatrick finalizeSynthetic(part.ehFrameHdr); 2199ece8a530Spatrick finalizeSynthetic(part.verSym); 2200ece8a530Spatrick finalizeSynthetic(part.verNeed); 2201ece8a530Spatrick finalizeSynthetic(part.dynamic); 2202ece8a530Spatrick } 2203*a0747c9fSpatrick } 2204ece8a530Spatrick 2205ece8a530Spatrick if (!script->hasSectionsCommand && !config->relocatable) 2206ece8a530Spatrick fixSectionAlignments(); 2207ece8a530Spatrick 2208ece8a530Spatrick // This is used to: 2209ece8a530Spatrick // 1) Create "thunks": 2210ece8a530Spatrick // Jump instructions in many ISAs have small displacements, and therefore 2211ece8a530Spatrick // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2212ece8a530Spatrick // JAL instruction can target only +-1 MiB from PC. It is a linker's 2213ece8a530Spatrick // responsibility to create and insert small pieces of code between 2214ece8a530Spatrick // sections to extend the ranges if jump targets are out of range. Such 2215ece8a530Spatrick // code pieces are called "thunks". 2216ece8a530Spatrick // 2217ece8a530Spatrick // We add thunks at this stage. We couldn't do this before this point 2218ece8a530Spatrick // because this is the earliest point where we know sizes of sections and 2219ece8a530Spatrick // their layouts (that are needed to determine if jump targets are in 2220ece8a530Spatrick // range). 2221ece8a530Spatrick // 2222ece8a530Spatrick // 2) Update the sections. We need to generate content that depends on the 2223ece8a530Spatrick // address of InputSections. For example, MIPS GOT section content or 2224ece8a530Spatrick // android packed relocations sections content. 2225ece8a530Spatrick // 2226ece8a530Spatrick // 3) Assign the final values for the linker script symbols. Linker scripts 2227ece8a530Spatrick // sometimes using forward symbol declarations. We want to set the correct 2228ece8a530Spatrick // values. They also might change after adding the thunks. 2229ece8a530Spatrick finalizeAddressDependentContent(); 2230bb684c34Spatrick if (errorCount()) 2231bb684c34Spatrick return; 2232ece8a530Spatrick 2233*a0747c9fSpatrick { 2234*a0747c9fSpatrick llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2235*a0747c9fSpatrick // finalizeAddressDependentContent may have added local symbols to the 2236*a0747c9fSpatrick // static symbol table. 2237ece8a530Spatrick finalizeSynthetic(in.symTab); 2238ece8a530Spatrick finalizeSynthetic(in.ppc64LongBranchTarget); 2239*a0747c9fSpatrick } 2240ece8a530Spatrick 2241bb684c34Spatrick // Relaxation to delete inter-basic block jumps created by basic block 2242bb684c34Spatrick // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2243bb684c34Spatrick // can relax jump instructions based on symbol offset. 2244bb684c34Spatrick if (config->optimizeBBJumps) 2245bb684c34Spatrick optimizeBasicBlockJumps(); 2246bb684c34Spatrick 2247ece8a530Spatrick // Fill other section headers. The dynamic table is finalized 2248ece8a530Spatrick // at the end because some tags like RELSZ depend on result 2249ece8a530Spatrick // of finalizing other sections. 2250ece8a530Spatrick for (OutputSection *sec : outputSections) 2251ece8a530Spatrick sec->finalize(); 2252ece8a530Spatrick } 2253ece8a530Spatrick 2254ece8a530Spatrick // Ensure data sections are not mixed with executable sections when 2255ece8a530Spatrick // -execute-only is used. -execute-only is a feature to make pages executable 2256ece8a530Spatrick // but not readable, and the feature is currently supported only on AArch64. 2257ece8a530Spatrick template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2258ece8a530Spatrick if (!config->executeOnly) 2259ece8a530Spatrick return; 2260ece8a530Spatrick 2261ece8a530Spatrick for (OutputSection *os : outputSections) 2262ece8a530Spatrick if (os->flags & SHF_EXECINSTR) 2263ece8a530Spatrick for (InputSection *isec : getInputSections(os)) 2264ece8a530Spatrick if (!(isec->flags & SHF_EXECINSTR)) 2265ece8a530Spatrick error("cannot place " + toString(isec) + " into " + toString(os->name) + 2266ece8a530Spatrick ": -execute-only does not support intermingling data and code"); 2267ece8a530Spatrick } 2268ece8a530Spatrick 2269ece8a530Spatrick // The linker is expected to define SECNAME_start and SECNAME_end 2270ece8a530Spatrick // symbols for a few sections. This function defines them. 2271ece8a530Spatrick template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2272ece8a530Spatrick // If a section does not exist, there's ambiguity as to how we 2273ece8a530Spatrick // define _start and _end symbols for an init/fini section. Since 2274ece8a530Spatrick // the loader assume that the symbols are always defined, we need to 2275ece8a530Spatrick // always define them. But what value? The loader iterates over all 2276ece8a530Spatrick // pointers between _start and _end to run global ctors/dtors, so if 2277ece8a530Spatrick // the section is empty, their symbol values don't actually matter 2278ece8a530Spatrick // as long as _start and _end point to the same location. 2279ece8a530Spatrick // 2280ece8a530Spatrick // That said, we don't want to set the symbols to 0 (which is 2281ece8a530Spatrick // probably the simplest value) because that could cause some 2282ece8a530Spatrick // program to fail to link due to relocation overflow, if their 2283ece8a530Spatrick // program text is above 2 GiB. We use the address of the .text 2284ece8a530Spatrick // section instead to prevent that failure. 2285ece8a530Spatrick // 2286ece8a530Spatrick // In rare situations, the .text section may not exist. If that's the 2287ece8a530Spatrick // case, use the image base address as a last resort. 2288ece8a530Spatrick OutputSection *Default = findSection(".text"); 2289ece8a530Spatrick if (!Default) 2290ece8a530Spatrick Default = Out::elfHeader; 2291ece8a530Spatrick 2292ece8a530Spatrick auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2293ece8a530Spatrick if (os) { 2294ece8a530Spatrick addOptionalRegular(start, os, 0); 2295ece8a530Spatrick addOptionalRegular(end, os, -1); 2296ece8a530Spatrick } else { 2297ece8a530Spatrick addOptionalRegular(start, Default, 0); 2298ece8a530Spatrick addOptionalRegular(end, Default, 0); 2299ece8a530Spatrick } 2300ece8a530Spatrick }; 2301ece8a530Spatrick 2302ece8a530Spatrick define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2303ece8a530Spatrick define("__init_array_start", "__init_array_end", Out::initArray); 2304ece8a530Spatrick define("__fini_array_start", "__fini_array_end", Out::finiArray); 2305ece8a530Spatrick 2306ece8a530Spatrick if (OutputSection *sec = findSection(".ARM.exidx")) 2307ece8a530Spatrick define("__exidx_start", "__exidx_end", sec); 2308ece8a530Spatrick } 2309ece8a530Spatrick 2310ece8a530Spatrick // If a section name is valid as a C identifier (which is rare because of 2311ece8a530Spatrick // the leading '.'), linkers are expected to define __start_<secname> and 2312ece8a530Spatrick // __stop_<secname> symbols. They are at beginning and end of the section, 2313ece8a530Spatrick // respectively. This is not requested by the ELF standard, but GNU ld and 2314ece8a530Spatrick // gold provide the feature, and used by many programs. 2315ece8a530Spatrick template <class ELFT> 2316ece8a530Spatrick void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2317ece8a530Spatrick StringRef s = sec->name; 2318ece8a530Spatrick if (!isValidCIdentifier(s)) 2319ece8a530Spatrick return; 2320bb684c34Spatrick addOptionalRegular(saver.save("__start_" + s), sec, 0, 2321bb684c34Spatrick config->zStartStopVisibility); 2322bb684c34Spatrick addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2323bb684c34Spatrick config->zStartStopVisibility); 2324ece8a530Spatrick } 2325ece8a530Spatrick 2326ece8a530Spatrick static bool needsPtLoad(OutputSection *sec) { 2327*a0747c9fSpatrick if (!(sec->flags & SHF_ALLOC)) 2328ece8a530Spatrick return false; 2329ece8a530Spatrick 2330ece8a530Spatrick // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2331ece8a530Spatrick // responsible for allocating space for them, not the PT_LOAD that 2332ece8a530Spatrick // contains the TLS initialization image. 2333ece8a530Spatrick if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2334ece8a530Spatrick return false; 2335ece8a530Spatrick return true; 2336ece8a530Spatrick } 2337ece8a530Spatrick 2338ece8a530Spatrick // Linker scripts are responsible for aligning addresses. Unfortunately, most 2339ece8a530Spatrick // linker scripts are designed for creating two PT_LOADs only, one RX and one 2340ece8a530Spatrick // RW. This means that there is no alignment in the RO to RX transition and we 2341ece8a530Spatrick // cannot create a PT_LOAD there. 2342ece8a530Spatrick static uint64_t computeFlags(uint64_t flags) { 2343ece8a530Spatrick if (config->omagic) 2344ece8a530Spatrick return PF_R | PF_W | PF_X; 2345ece8a530Spatrick if (config->executeOnly && (flags & PF_X)) 2346ece8a530Spatrick return flags & ~PF_R; 2347ece8a530Spatrick if (config->singleRoRx && !(flags & PF_W)) 2348ece8a530Spatrick return flags | PF_X; 2349ece8a530Spatrick return flags; 2350ece8a530Spatrick } 2351ece8a530Spatrick 2352ece8a530Spatrick // Decide which program headers to create and which sections to include in each 2353ece8a530Spatrick // one. 2354ece8a530Spatrick template <class ELFT> 2355ece8a530Spatrick std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2356ece8a530Spatrick std::vector<PhdrEntry *> ret; 2357ece8a530Spatrick auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2358ece8a530Spatrick ret.push_back(make<PhdrEntry>(type, flags)); 2359ece8a530Spatrick return ret.back(); 2360ece8a530Spatrick }; 2361ece8a530Spatrick 2362ece8a530Spatrick unsigned partNo = part.getNumber(); 2363ece8a530Spatrick bool isMain = partNo == 1; 2364ece8a530Spatrick 2365ece8a530Spatrick // Add the first PT_LOAD segment for regular output sections. 2366ece8a530Spatrick uint64_t flags = computeFlags(PF_R); 2367ece8a530Spatrick PhdrEntry *load = nullptr; 2368ece8a530Spatrick 2369ece8a530Spatrick // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2370ece8a530Spatrick // PT_LOAD. 2371ece8a530Spatrick if (!config->nmagic && !config->omagic) { 2372ece8a530Spatrick // The first phdr entry is PT_PHDR which describes the program header 2373ece8a530Spatrick // itself. 2374ece8a530Spatrick if (isMain) 2375ece8a530Spatrick addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2376ece8a530Spatrick else 2377ece8a530Spatrick addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2378ece8a530Spatrick 2379ece8a530Spatrick // PT_INTERP must be the second entry if exists. 2380ece8a530Spatrick if (OutputSection *cmd = findSection(".interp", partNo)) 2381ece8a530Spatrick addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2382ece8a530Spatrick 2383ece8a530Spatrick // Add the headers. We will remove them if they don't fit. 2384ece8a530Spatrick // In the other partitions the headers are ordinary sections, so they don't 2385ece8a530Spatrick // need to be added here. 2386ece8a530Spatrick if (isMain) { 2387ece8a530Spatrick load = addHdr(PT_LOAD, flags); 2388ece8a530Spatrick load->add(Out::elfHeader); 2389ece8a530Spatrick load->add(Out::programHeaders); 2390ece8a530Spatrick } 2391ece8a530Spatrick } 2392ece8a530Spatrick 2393ece8a530Spatrick // PT_GNU_RELRO includes all sections that should be marked as 2394ece8a530Spatrick // read-only by dynamic linker after processing relocations. 2395ece8a530Spatrick // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2396ece8a530Spatrick // an error message if more than one PT_GNU_RELRO PHDR is required. 2397ece8a530Spatrick PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2398ece8a530Spatrick bool inRelroPhdr = false; 2399ece8a530Spatrick OutputSection *relroEnd = nullptr; 2400ece8a530Spatrick for (OutputSection *sec : outputSections) { 2401ece8a530Spatrick if (sec->partition != partNo || !needsPtLoad(sec)) 2402ece8a530Spatrick continue; 2403ece8a530Spatrick if (isRelroSection(sec)) { 2404ece8a530Spatrick inRelroPhdr = true; 2405ece8a530Spatrick if (!relroEnd) 2406ece8a530Spatrick relRo->add(sec); 2407ece8a530Spatrick else 2408ece8a530Spatrick error("section: " + sec->name + " is not contiguous with other relro" + 2409ece8a530Spatrick " sections"); 2410ece8a530Spatrick } else if (inRelroPhdr) { 2411ece8a530Spatrick inRelroPhdr = false; 2412ece8a530Spatrick relroEnd = sec; 2413ece8a530Spatrick } 2414ece8a530Spatrick } 2415ece8a530Spatrick 2416ece8a530Spatrick for (OutputSection *sec : outputSections) { 2417ece8a530Spatrick if (!needsPtLoad(sec)) 2418ece8a530Spatrick continue; 2419ece8a530Spatrick 2420ece8a530Spatrick // Normally, sections in partitions other than the current partition are 2421ece8a530Spatrick // ignored. But partition number 255 is a special case: it contains the 2422ece8a530Spatrick // partition end marker (.part.end). It needs to be added to the main 2423ece8a530Spatrick // partition so that a segment is created for it in the main partition, 2424ece8a530Spatrick // which will cause the dynamic loader to reserve space for the other 2425ece8a530Spatrick // partitions. 2426ece8a530Spatrick if (sec->partition != partNo) { 2427ece8a530Spatrick if (isMain && sec->partition == 255) 2428ece8a530Spatrick addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2429ece8a530Spatrick continue; 2430ece8a530Spatrick } 2431ece8a530Spatrick 2432ece8a530Spatrick // Segments are contiguous memory regions that has the same attributes 2433ece8a530Spatrick // (e.g. executable or writable). There is one phdr for each segment. 2434ece8a530Spatrick // Therefore, we need to create a new phdr when the next section has 2435ece8a530Spatrick // different flags or is loaded at a discontiguous address or memory 2436ece8a530Spatrick // region using AT or AT> linker script command, respectively. At the same 2437ece8a530Spatrick // time, we don't want to create a separate load segment for the headers, 2438ece8a530Spatrick // even if the first output section has an AT or AT> attribute. 2439ece8a530Spatrick uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2440bb684c34Spatrick bool sameLMARegion = 2441bb684c34Spatrick load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2442bb684c34Spatrick if (!(load && newFlags == flags && sec != relroEnd && 2443bb684c34Spatrick sec->memRegion == load->firstSec->memRegion && 2444bb684c34Spatrick (sameLMARegion || load->lastSec == Out::programHeaders))) { 2445ece8a530Spatrick load = addHdr(PT_LOAD, newFlags); 2446ece8a530Spatrick flags = newFlags; 2447ece8a530Spatrick } 2448ece8a530Spatrick 2449ece8a530Spatrick load->add(sec); 2450ece8a530Spatrick } 2451ece8a530Spatrick 2452ece8a530Spatrick // Add a TLS segment if any. 2453ece8a530Spatrick PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2454ece8a530Spatrick for (OutputSection *sec : outputSections) 2455ece8a530Spatrick if (sec->partition == partNo && sec->flags & SHF_TLS) 2456ece8a530Spatrick tlsHdr->add(sec); 2457ece8a530Spatrick if (tlsHdr->firstSec) 2458ece8a530Spatrick ret.push_back(tlsHdr); 2459ece8a530Spatrick 2460ece8a530Spatrick // Add an entry for .dynamic. 2461ece8a530Spatrick if (OutputSection *sec = part.dynamic->getParent()) 2462ece8a530Spatrick addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2463ece8a530Spatrick 2464ece8a530Spatrick if (relRo->firstSec) 2465ece8a530Spatrick ret.push_back(relRo); 2466ece8a530Spatrick 2467ece8a530Spatrick // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2468ece8a530Spatrick if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2469ece8a530Spatrick part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2470ece8a530Spatrick addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2471ece8a530Spatrick ->add(part.ehFrameHdr->getParent()); 2472ece8a530Spatrick 2473ece8a530Spatrick // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2474ece8a530Spatrick // the dynamic linker fill the segment with random data. 2475ece8a530Spatrick if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2476ece8a530Spatrick addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2477ece8a530Spatrick 2478ece8a530Spatrick if (config->zGnustack != GnuStackKind::None) { 2479ece8a530Spatrick // PT_GNU_STACK is a special section to tell the loader to make the 2480ece8a530Spatrick // pages for the stack non-executable. If you really want an executable 2481ece8a530Spatrick // stack, you can pass -z execstack, but that's not recommended for 2482ece8a530Spatrick // security reasons. 2483ece8a530Spatrick unsigned perm = PF_R | PF_W; 2484ece8a530Spatrick if (config->zGnustack == GnuStackKind::Exec) 2485ece8a530Spatrick perm |= PF_X; 2486ece8a530Spatrick addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2487ece8a530Spatrick } 2488ece8a530Spatrick 2489ece8a530Spatrick // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2490ece8a530Spatrick // is expected to perform W^X violations, such as calling mprotect(2) or 2491ece8a530Spatrick // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2492ece8a530Spatrick // OpenBSD. 2493ece8a530Spatrick if (config->zWxneeded) 2494ece8a530Spatrick addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2495ece8a530Spatrick 2496ece8a530Spatrick if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2497ece8a530Spatrick addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2498ece8a530Spatrick 2499ece8a530Spatrick // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2500ece8a530Spatrick // same alignment. 2501ece8a530Spatrick PhdrEntry *note = nullptr; 2502ece8a530Spatrick for (OutputSection *sec : outputSections) { 2503ece8a530Spatrick if (sec->partition != partNo) 2504ece8a530Spatrick continue; 2505ece8a530Spatrick if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2506ece8a530Spatrick if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2507ece8a530Spatrick note = addHdr(PT_NOTE, PF_R); 2508ece8a530Spatrick note->add(sec); 2509ece8a530Spatrick } else { 2510ece8a530Spatrick note = nullptr; 2511ece8a530Spatrick } 2512ece8a530Spatrick } 2513ece8a530Spatrick return ret; 2514ece8a530Spatrick } 2515ece8a530Spatrick 2516ece8a530Spatrick template <class ELFT> 2517ece8a530Spatrick void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2518ece8a530Spatrick unsigned pType, unsigned pFlags) { 2519ece8a530Spatrick unsigned partNo = part.getNumber(); 2520ece8a530Spatrick auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2521ece8a530Spatrick return cmd->partition == partNo && cmd->type == shType; 2522ece8a530Spatrick }); 2523ece8a530Spatrick if (i == outputSections.end()) 2524ece8a530Spatrick return; 2525ece8a530Spatrick 2526ece8a530Spatrick PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2527ece8a530Spatrick entry->add(*i); 2528ece8a530Spatrick part.phdrs.push_back(entry); 2529ece8a530Spatrick } 2530ece8a530Spatrick 2531ece8a530Spatrick // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2532ece8a530Spatrick // This is achieved by assigning an alignment expression to addrExpr of each 2533ece8a530Spatrick // such section. 2534ece8a530Spatrick template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2535ece8a530Spatrick const PhdrEntry *prev; 2536ece8a530Spatrick auto pageAlign = [&](const PhdrEntry *p) { 2537ece8a530Spatrick OutputSection *cmd = p->firstSec; 2538bb684c34Spatrick if (!cmd) 2539bb684c34Spatrick return; 2540bb684c34Spatrick cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2541bb684c34Spatrick if (!cmd->addrExpr) { 2542ece8a530Spatrick // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2543ece8a530Spatrick // padding in the file contents. 2544ece8a530Spatrick // 2545ece8a530Spatrick // When -z separate-code is used we must not have any overlap in pages 2546ece8a530Spatrick // between an executable segment and a non-executable segment. We align to 2547ece8a530Spatrick // the next maximum page size boundary on transitions between executable 2548ece8a530Spatrick // and non-executable segments. 2549ece8a530Spatrick // 2550ece8a530Spatrick // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2551ece8a530Spatrick // sections will be extracted to a separate file. Align to the next 2552ece8a530Spatrick // maximum page size boundary so that we can find the ELF header at the 2553ece8a530Spatrick // start. We cannot benefit from overlapping p_offset ranges with the 2554ece8a530Spatrick // previous segment anyway. 2555ece8a530Spatrick if (config->zSeparate == SeparateSegmentKind::Loadable || 2556ece8a530Spatrick (config->zSeparate == SeparateSegmentKind::Code && prev && 2557ece8a530Spatrick (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2558ece8a530Spatrick cmd->type == SHT_LLVM_PART_EHDR) 2559ece8a530Spatrick cmd->addrExpr = [] { 2560ece8a530Spatrick return alignTo(script->getDot(), config->maxPageSize); 2561ece8a530Spatrick }; 2562ece8a530Spatrick // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2563ece8a530Spatrick // it must be the RW. Align to p_align(PT_TLS) to make sure 2564ece8a530Spatrick // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2565ece8a530Spatrick // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2566ece8a530Spatrick // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2567ece8a530Spatrick // be congruent to 0 modulo p_align(PT_TLS). 2568ece8a530Spatrick // 2569ece8a530Spatrick // Technically this is not required, but as of 2019, some dynamic loaders 2570ece8a530Spatrick // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2571ece8a530Spatrick // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2572ece8a530Spatrick // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2573ece8a530Spatrick // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2574ece8a530Spatrick // blocks correctly. We need to keep the workaround for a while. 2575ece8a530Spatrick else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2576ece8a530Spatrick cmd->addrExpr = [] { 2577ece8a530Spatrick return alignTo(script->getDot(), config->maxPageSize) + 2578ece8a530Spatrick alignTo(script->getDot() % config->maxPageSize, 2579ece8a530Spatrick Out::tlsPhdr->p_align); 2580ece8a530Spatrick }; 2581ece8a530Spatrick else 2582ece8a530Spatrick cmd->addrExpr = [] { 2583ece8a530Spatrick return alignTo(script->getDot(), config->maxPageSize) + 2584ece8a530Spatrick script->getDot() % config->maxPageSize; 2585ece8a530Spatrick }; 2586ece8a530Spatrick } 2587ece8a530Spatrick }; 2588ece8a530Spatrick 2589adae0cfdSpatrick #ifdef __OpenBSD__ 2590adae0cfdSpatrick // On i386, produce binaries that are compatible with our W^X implementation 2591adae0cfdSpatrick if (config->emachine == EM_386) { 2592adae0cfdSpatrick auto NXAlign = [](OutputSection *Cmd) { 2593adae0cfdSpatrick if (Cmd && !Cmd->addrExpr) 2594adae0cfdSpatrick Cmd->addrExpr = [=] { 2595adae0cfdSpatrick return alignTo(script->getDot(), 0x20000000); 2596adae0cfdSpatrick }; 2597adae0cfdSpatrick }; 2598adae0cfdSpatrick 2599adae0cfdSpatrick for (Partition &part : partitions) { 2600adae0cfdSpatrick PhdrEntry *firstRW = nullptr; 2601adae0cfdSpatrick for (PhdrEntry *P : part.phdrs) { 2602adae0cfdSpatrick if (P->p_type == PT_LOAD && (P->p_flags & PF_W)) { 2603adae0cfdSpatrick firstRW = P; 2604adae0cfdSpatrick break; 2605adae0cfdSpatrick } 2606adae0cfdSpatrick } 2607adae0cfdSpatrick 2608adae0cfdSpatrick if (firstRW) 2609adae0cfdSpatrick NXAlign(firstRW->firstSec); 2610adae0cfdSpatrick } 2611adae0cfdSpatrick } 2612adae0cfdSpatrick #endif 2613adae0cfdSpatrick 2614ece8a530Spatrick for (Partition &part : partitions) { 2615ece8a530Spatrick prev = nullptr; 2616ece8a530Spatrick for (const PhdrEntry *p : part.phdrs) 2617ece8a530Spatrick if (p->p_type == PT_LOAD && p->firstSec) { 2618ece8a530Spatrick pageAlign(p); 2619ece8a530Spatrick prev = p; 2620ece8a530Spatrick } 2621ece8a530Spatrick } 2622ece8a530Spatrick } 2623ece8a530Spatrick 2624ece8a530Spatrick // Compute an in-file position for a given section. The file offset must be the 2625ece8a530Spatrick // same with its virtual address modulo the page size, so that the loader can 2626ece8a530Spatrick // load executables without any address adjustment. 2627ece8a530Spatrick static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2628ece8a530Spatrick // The first section in a PT_LOAD has to have congruent offset and address 2629ece8a530Spatrick // modulo the maximum page size. 2630ece8a530Spatrick if (os->ptLoad && os->ptLoad->firstSec == os) 2631ece8a530Spatrick return alignTo(off, os->ptLoad->p_align, os->addr); 2632ece8a530Spatrick 2633ece8a530Spatrick // File offsets are not significant for .bss sections other than the first one 2634ece8a530Spatrick // in a PT_LOAD. By convention, we keep section offsets monotonically 2635ece8a530Spatrick // increasing rather than setting to zero. 2636ece8a530Spatrick if (os->type == SHT_NOBITS) 2637ece8a530Spatrick return off; 2638ece8a530Spatrick 2639ece8a530Spatrick // If the section is not in a PT_LOAD, we just have to align it. 2640ece8a530Spatrick if (!os->ptLoad) 2641ece8a530Spatrick return alignTo(off, os->alignment); 2642ece8a530Spatrick 2643ece8a530Spatrick // If two sections share the same PT_LOAD the file offset is calculated 2644ece8a530Spatrick // using this formula: Off2 = Off1 + (VA2 - VA1). 2645ece8a530Spatrick OutputSection *first = os->ptLoad->firstSec; 2646ece8a530Spatrick return first->offset + os->addr - first->addr; 2647ece8a530Spatrick } 2648ece8a530Spatrick 2649ece8a530Spatrick // Set an in-file position to a given section and returns the end position of 2650ece8a530Spatrick // the section. 2651ece8a530Spatrick static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2652ece8a530Spatrick off = computeFileOffset(os, off); 2653ece8a530Spatrick os->offset = off; 2654ece8a530Spatrick 2655ece8a530Spatrick if (os->type == SHT_NOBITS) 2656ece8a530Spatrick return off; 2657ece8a530Spatrick return off + os->size; 2658ece8a530Spatrick } 2659ece8a530Spatrick 2660ece8a530Spatrick template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2661*a0747c9fSpatrick // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2662*a0747c9fSpatrick auto needsOffset = [](OutputSection &sec) { 2663*a0747c9fSpatrick return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2664*a0747c9fSpatrick }; 2665*a0747c9fSpatrick uint64_t minAddr = UINT64_MAX; 2666ece8a530Spatrick for (OutputSection *sec : outputSections) 2667*a0747c9fSpatrick if (needsOffset(*sec)) { 2668*a0747c9fSpatrick sec->offset = sec->getLMA(); 2669*a0747c9fSpatrick minAddr = std::min(minAddr, sec->offset); 2670*a0747c9fSpatrick } 2671*a0747c9fSpatrick 2672*a0747c9fSpatrick // Sections are laid out at LMA minus minAddr. 2673*a0747c9fSpatrick fileSize = 0; 2674*a0747c9fSpatrick for (OutputSection *sec : outputSections) 2675*a0747c9fSpatrick if (needsOffset(*sec)) { 2676*a0747c9fSpatrick sec->offset -= minAddr; 2677*a0747c9fSpatrick fileSize = std::max(fileSize, sec->offset + sec->size); 2678*a0747c9fSpatrick } 2679ece8a530Spatrick } 2680ece8a530Spatrick 2681ece8a530Spatrick static std::string rangeToString(uint64_t addr, uint64_t len) { 2682ece8a530Spatrick return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2683ece8a530Spatrick } 2684ece8a530Spatrick 2685ece8a530Spatrick // Assign file offsets to output sections. 2686ece8a530Spatrick template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2687ece8a530Spatrick uint64_t off = 0; 2688ece8a530Spatrick off = setFileOffset(Out::elfHeader, off); 2689ece8a530Spatrick off = setFileOffset(Out::programHeaders, off); 2690ece8a530Spatrick 2691ece8a530Spatrick PhdrEntry *lastRX = nullptr; 2692ece8a530Spatrick for (Partition &part : partitions) 2693ece8a530Spatrick for (PhdrEntry *p : part.phdrs) 2694ece8a530Spatrick if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2695ece8a530Spatrick lastRX = p; 2696ece8a530Spatrick 2697*a0747c9fSpatrick // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2698*a0747c9fSpatrick // will not occupy file offsets contained by a PT_LOAD. 2699ece8a530Spatrick for (OutputSection *sec : outputSections) { 2700*a0747c9fSpatrick if (!(sec->flags & SHF_ALLOC)) 2701*a0747c9fSpatrick continue; 2702ece8a530Spatrick off = setFileOffset(sec, off); 2703ece8a530Spatrick 2704ece8a530Spatrick // If this is a last section of the last executable segment and that 2705ece8a530Spatrick // segment is the last loadable segment, align the offset of the 2706ece8a530Spatrick // following section to avoid loading non-segments parts of the file. 2707ece8a530Spatrick if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2708ece8a530Spatrick lastRX->lastSec == sec) 2709ece8a530Spatrick off = alignTo(off, config->commonPageSize); 2710ece8a530Spatrick } 2711*a0747c9fSpatrick for (OutputSection *sec : outputSections) 2712*a0747c9fSpatrick if (!(sec->flags & SHF_ALLOC)) 2713*a0747c9fSpatrick off = setFileOffset(sec, off); 2714ece8a530Spatrick 2715ece8a530Spatrick sectionHeaderOff = alignTo(off, config->wordsize); 2716ece8a530Spatrick fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2717ece8a530Spatrick 2718ece8a530Spatrick // Our logic assumes that sections have rising VA within the same segment. 2719ece8a530Spatrick // With use of linker scripts it is possible to violate this rule and get file 2720ece8a530Spatrick // offset overlaps or overflows. That should never happen with a valid script 2721ece8a530Spatrick // which does not move the location counter backwards and usually scripts do 2722ece8a530Spatrick // not do that. Unfortunately, there are apps in the wild, for example, Linux 2723ece8a530Spatrick // kernel, which control segment distribution explicitly and move the counter 2724ece8a530Spatrick // backwards, so we have to allow doing that to support linking them. We 2725ece8a530Spatrick // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2726ece8a530Spatrick // we want to prevent file size overflows because it would crash the linker. 2727ece8a530Spatrick for (OutputSection *sec : outputSections) { 2728ece8a530Spatrick if (sec->type == SHT_NOBITS) 2729ece8a530Spatrick continue; 2730ece8a530Spatrick if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2731ece8a530Spatrick error("unable to place section " + sec->name + " at file offset " + 2732ece8a530Spatrick rangeToString(sec->offset, sec->size) + 2733ece8a530Spatrick "; check your linker script for overflows"); 2734ece8a530Spatrick } 2735ece8a530Spatrick } 2736ece8a530Spatrick 2737ece8a530Spatrick // Finalize the program headers. We call this function after we assign 2738ece8a530Spatrick // file offsets and VAs to all sections. 2739ece8a530Spatrick template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2740ece8a530Spatrick for (PhdrEntry *p : part.phdrs) { 2741ece8a530Spatrick OutputSection *first = p->firstSec; 2742ece8a530Spatrick OutputSection *last = p->lastSec; 2743ece8a530Spatrick 2744ece8a530Spatrick if (first) { 2745ece8a530Spatrick p->p_filesz = last->offset - first->offset; 2746ece8a530Spatrick if (last->type != SHT_NOBITS) 2747ece8a530Spatrick p->p_filesz += last->size; 2748ece8a530Spatrick 2749ece8a530Spatrick p->p_memsz = last->addr + last->size - first->addr; 2750ece8a530Spatrick p->p_offset = first->offset; 2751ece8a530Spatrick p->p_vaddr = first->addr; 2752ece8a530Spatrick 2753ece8a530Spatrick // File offsets in partitions other than the main partition are relative 2754ece8a530Spatrick // to the offset of the ELF headers. Perform that adjustment now. 2755ece8a530Spatrick if (part.elfHeader) 2756ece8a530Spatrick p->p_offset -= part.elfHeader->getParent()->offset; 2757ece8a530Spatrick 2758ece8a530Spatrick if (!p->hasLMA) 2759ece8a530Spatrick p->p_paddr = first->getLMA(); 2760ece8a530Spatrick } 2761ece8a530Spatrick 2762ece8a530Spatrick if (p->p_type == PT_GNU_RELRO) { 2763ece8a530Spatrick p->p_align = 1; 2764ece8a530Spatrick // musl/glibc ld.so rounds the size down, so we need to round up 2765ece8a530Spatrick // to protect the last page. This is a no-op on FreeBSD which always 2766ece8a530Spatrick // rounds up. 2767ece8a530Spatrick p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2768ece8a530Spatrick p->p_offset; 2769ece8a530Spatrick } 2770ece8a530Spatrick } 2771ece8a530Spatrick } 2772ece8a530Spatrick 2773ece8a530Spatrick // A helper struct for checkSectionOverlap. 2774ece8a530Spatrick namespace { 2775ece8a530Spatrick struct SectionOffset { 2776ece8a530Spatrick OutputSection *sec; 2777ece8a530Spatrick uint64_t offset; 2778ece8a530Spatrick }; 2779ece8a530Spatrick } // namespace 2780ece8a530Spatrick 2781ece8a530Spatrick // Check whether sections overlap for a specific address range (file offsets, 2782ece8a530Spatrick // load and virtual addresses). 2783ece8a530Spatrick static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2784ece8a530Spatrick bool isVirtualAddr) { 2785ece8a530Spatrick llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2786ece8a530Spatrick return a.offset < b.offset; 2787ece8a530Spatrick }); 2788ece8a530Spatrick 2789ece8a530Spatrick // Finding overlap is easy given a vector is sorted by start position. 2790ece8a530Spatrick // If an element starts before the end of the previous element, they overlap. 2791ece8a530Spatrick for (size_t i = 1, end = sections.size(); i < end; ++i) { 2792ece8a530Spatrick SectionOffset a = sections[i - 1]; 2793ece8a530Spatrick SectionOffset b = sections[i]; 2794ece8a530Spatrick if (b.offset >= a.offset + a.sec->size) 2795ece8a530Spatrick continue; 2796ece8a530Spatrick 2797ece8a530Spatrick // If both sections are in OVERLAY we allow the overlapping of virtual 2798ece8a530Spatrick // addresses, because it is what OVERLAY was designed for. 2799ece8a530Spatrick if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2800ece8a530Spatrick continue; 2801ece8a530Spatrick 2802ece8a530Spatrick errorOrWarn("section " + a.sec->name + " " + name + 2803ece8a530Spatrick " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2804ece8a530Spatrick " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2805ece8a530Spatrick b.sec->name + " range is " + 2806ece8a530Spatrick rangeToString(b.offset, b.sec->size)); 2807ece8a530Spatrick } 2808ece8a530Spatrick } 2809ece8a530Spatrick 2810ece8a530Spatrick // Check for overlapping sections and address overflows. 2811ece8a530Spatrick // 2812ece8a530Spatrick // In this function we check that none of the output sections have overlapping 2813ece8a530Spatrick // file offsets. For SHF_ALLOC sections we also check that the load address 2814ece8a530Spatrick // ranges and the virtual address ranges don't overlap 2815ece8a530Spatrick template <class ELFT> void Writer<ELFT>::checkSections() { 2816ece8a530Spatrick // First, check that section's VAs fit in available address space for target. 2817ece8a530Spatrick for (OutputSection *os : outputSections) 2818ece8a530Spatrick if ((os->addr + os->size < os->addr) || 2819ece8a530Spatrick (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2820ece8a530Spatrick errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2821ece8a530Spatrick " of size 0x" + utohexstr(os->size) + 2822ece8a530Spatrick " exceeds available address space"); 2823ece8a530Spatrick 2824ece8a530Spatrick // Check for overlapping file offsets. In this case we need to skip any 2825ece8a530Spatrick // section marked as SHT_NOBITS. These sections don't actually occupy space in 2826ece8a530Spatrick // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2827ece8a530Spatrick // binary is specified only add SHF_ALLOC sections are added to the output 2828ece8a530Spatrick // file so we skip any non-allocated sections in that case. 2829ece8a530Spatrick std::vector<SectionOffset> fileOffs; 2830ece8a530Spatrick for (OutputSection *sec : outputSections) 2831ece8a530Spatrick if (sec->size > 0 && sec->type != SHT_NOBITS && 2832ece8a530Spatrick (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2833ece8a530Spatrick fileOffs.push_back({sec, sec->offset}); 2834ece8a530Spatrick checkOverlap("file", fileOffs, false); 2835ece8a530Spatrick 2836ece8a530Spatrick // When linking with -r there is no need to check for overlapping virtual/load 2837ece8a530Spatrick // addresses since those addresses will only be assigned when the final 2838ece8a530Spatrick // executable/shared object is created. 2839ece8a530Spatrick if (config->relocatable) 2840ece8a530Spatrick return; 2841ece8a530Spatrick 2842ece8a530Spatrick // Checking for overlapping virtual and load addresses only needs to take 2843ece8a530Spatrick // into account SHF_ALLOC sections since others will not be loaded. 2844ece8a530Spatrick // Furthermore, we also need to skip SHF_TLS sections since these will be 2845ece8a530Spatrick // mapped to other addresses at runtime and can therefore have overlapping 2846ece8a530Spatrick // ranges in the file. 2847ece8a530Spatrick std::vector<SectionOffset> vmas; 2848ece8a530Spatrick for (OutputSection *sec : outputSections) 2849ece8a530Spatrick if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2850ece8a530Spatrick vmas.push_back({sec, sec->addr}); 2851ece8a530Spatrick checkOverlap("virtual address", vmas, true); 2852ece8a530Spatrick 2853ece8a530Spatrick // Finally, check that the load addresses don't overlap. This will usually be 2854ece8a530Spatrick // the same as the virtual addresses but can be different when using a linker 2855ece8a530Spatrick // script with AT(). 2856ece8a530Spatrick std::vector<SectionOffset> lmas; 2857ece8a530Spatrick for (OutputSection *sec : outputSections) 2858ece8a530Spatrick if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2859ece8a530Spatrick lmas.push_back({sec, sec->getLMA()}); 2860ece8a530Spatrick checkOverlap("load address", lmas, false); 2861ece8a530Spatrick } 2862ece8a530Spatrick 2863ece8a530Spatrick // The entry point address is chosen in the following ways. 2864ece8a530Spatrick // 2865ece8a530Spatrick // 1. the '-e' entry command-line option; 2866ece8a530Spatrick // 2. the ENTRY(symbol) command in a linker control script; 2867ece8a530Spatrick // 3. the value of the symbol _start, if present; 2868ece8a530Spatrick // 4. the number represented by the entry symbol, if it is a number; 2869ece8a530Spatrick // 5. the address of the first byte of the .text section, if present; 2870ece8a530Spatrick // 6. the address 0. 2871ece8a530Spatrick static uint64_t getEntryAddr() { 2872ece8a530Spatrick // Case 1, 2 or 3 2873ece8a530Spatrick if (Symbol *b = symtab->find(config->entry)) 2874ece8a530Spatrick return b->getVA(); 2875ece8a530Spatrick 2876ece8a530Spatrick // Case 4 2877ece8a530Spatrick uint64_t addr; 2878ece8a530Spatrick if (to_integer(config->entry, addr)) 2879ece8a530Spatrick return addr; 2880ece8a530Spatrick 2881ece8a530Spatrick // Case 5 2882ece8a530Spatrick if (OutputSection *sec = findSection(".text")) { 2883ece8a530Spatrick if (config->warnMissingEntry) 2884ece8a530Spatrick warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2885ece8a530Spatrick utohexstr(sec->addr)); 2886ece8a530Spatrick return sec->addr; 2887ece8a530Spatrick } 2888ece8a530Spatrick 2889ece8a530Spatrick // Case 6 2890ece8a530Spatrick if (config->warnMissingEntry) 2891ece8a530Spatrick warn("cannot find entry symbol " + config->entry + 2892ece8a530Spatrick "; not setting start address"); 2893ece8a530Spatrick return 0; 2894ece8a530Spatrick } 2895ece8a530Spatrick 2896ece8a530Spatrick static uint16_t getELFType() { 2897ece8a530Spatrick if (config->isPic) 2898ece8a530Spatrick return ET_DYN; 2899ece8a530Spatrick if (config->relocatable) 2900ece8a530Spatrick return ET_REL; 2901ece8a530Spatrick return ET_EXEC; 2902ece8a530Spatrick } 2903ece8a530Spatrick 2904ece8a530Spatrick template <class ELFT> void Writer<ELFT>::writeHeader() { 2905ece8a530Spatrick writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2906ece8a530Spatrick writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2907ece8a530Spatrick 2908ece8a530Spatrick auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2909ece8a530Spatrick eHdr->e_type = getELFType(); 2910ece8a530Spatrick eHdr->e_entry = getEntryAddr(); 2911ece8a530Spatrick eHdr->e_shoff = sectionHeaderOff; 2912ece8a530Spatrick 2913ece8a530Spatrick // Write the section header table. 2914ece8a530Spatrick // 2915ece8a530Spatrick // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2916ece8a530Spatrick // and e_shstrndx fields. When the value of one of these fields exceeds 2917ece8a530Spatrick // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2918ece8a530Spatrick // use fields in the section header at index 0 to store 2919ece8a530Spatrick // the value. The sentinel values and fields are: 2920ece8a530Spatrick // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2921ece8a530Spatrick // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2922ece8a530Spatrick auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2923ece8a530Spatrick size_t num = outputSections.size() + 1; 2924ece8a530Spatrick if (num >= SHN_LORESERVE) 2925ece8a530Spatrick sHdrs->sh_size = num; 2926ece8a530Spatrick else 2927ece8a530Spatrick eHdr->e_shnum = num; 2928ece8a530Spatrick 2929ece8a530Spatrick uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2930ece8a530Spatrick if (strTabIndex >= SHN_LORESERVE) { 2931ece8a530Spatrick sHdrs->sh_link = strTabIndex; 2932ece8a530Spatrick eHdr->e_shstrndx = SHN_XINDEX; 2933ece8a530Spatrick } else { 2934ece8a530Spatrick eHdr->e_shstrndx = strTabIndex; 2935ece8a530Spatrick } 2936ece8a530Spatrick 2937ece8a530Spatrick for (OutputSection *sec : outputSections) 2938ece8a530Spatrick sec->writeHeaderTo<ELFT>(++sHdrs); 2939ece8a530Spatrick } 2940ece8a530Spatrick 2941ece8a530Spatrick // Open a result file. 2942ece8a530Spatrick template <class ELFT> void Writer<ELFT>::openFile() { 2943ece8a530Spatrick uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2944ece8a530Spatrick if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2945*a0747c9fSpatrick std::string msg; 2946*a0747c9fSpatrick raw_string_ostream s(msg); 2947*a0747c9fSpatrick s << "output file too large: " << Twine(fileSize) << " bytes\n" 2948*a0747c9fSpatrick << "section sizes:\n"; 2949*a0747c9fSpatrick for (OutputSection *os : outputSections) 2950*a0747c9fSpatrick s << os->name << ' ' << os->size << "\n"; 2951*a0747c9fSpatrick error(s.str()); 2952ece8a530Spatrick return; 2953ece8a530Spatrick } 2954ece8a530Spatrick 2955ece8a530Spatrick unlinkAsync(config->outputFile); 2956ece8a530Spatrick unsigned flags = 0; 2957ece8a530Spatrick if (!config->relocatable) 2958ece8a530Spatrick flags |= FileOutputBuffer::F_executable; 2959ece8a530Spatrick if (!config->mmapOutputFile) 2960ece8a530Spatrick flags |= FileOutputBuffer::F_no_mmap; 2961ece8a530Spatrick Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2962ece8a530Spatrick FileOutputBuffer::create(config->outputFile, fileSize, flags); 2963ece8a530Spatrick 2964ece8a530Spatrick if (!bufferOrErr) { 2965ece8a530Spatrick error("failed to open " + config->outputFile + ": " + 2966ece8a530Spatrick llvm::toString(bufferOrErr.takeError())); 2967ece8a530Spatrick return; 2968ece8a530Spatrick } 2969ece8a530Spatrick buffer = std::move(*bufferOrErr); 2970ece8a530Spatrick Out::bufferStart = buffer->getBufferStart(); 2971ece8a530Spatrick } 2972ece8a530Spatrick 2973ece8a530Spatrick template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2974ece8a530Spatrick for (OutputSection *sec : outputSections) 2975ece8a530Spatrick if (sec->flags & SHF_ALLOC) 2976ece8a530Spatrick sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2977ece8a530Spatrick } 2978ece8a530Spatrick 2979ece8a530Spatrick static void fillTrap(uint8_t *i, uint8_t *end) { 2980ece8a530Spatrick for (; i + 4 <= end; i += 4) 2981ece8a530Spatrick memcpy(i, &target->trapInstr, 4); 2982ece8a530Spatrick } 2983ece8a530Spatrick 2984ece8a530Spatrick // Fill the last page of executable segments with trap instructions 2985ece8a530Spatrick // instead of leaving them as zero. Even though it is not required by any 2986ece8a530Spatrick // standard, it is in general a good thing to do for security reasons. 2987ece8a530Spatrick // 2988ece8a530Spatrick // We'll leave other pages in segments as-is because the rest will be 2989ece8a530Spatrick // overwritten by output sections. 2990ece8a530Spatrick template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2991ece8a530Spatrick for (Partition &part : partitions) { 2992ece8a530Spatrick // Fill the last page. 2993ece8a530Spatrick for (PhdrEntry *p : part.phdrs) 2994ece8a530Spatrick if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2995ece8a530Spatrick fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2996ece8a530Spatrick config->commonPageSize), 2997ece8a530Spatrick Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2998ece8a530Spatrick config->commonPageSize)); 2999ece8a530Spatrick 3000ece8a530Spatrick // Round up the file size of the last segment to the page boundary iff it is 3001ece8a530Spatrick // an executable segment to ensure that other tools don't accidentally 3002ece8a530Spatrick // trim the instruction padding (e.g. when stripping the file). 3003ece8a530Spatrick PhdrEntry *last = nullptr; 3004ece8a530Spatrick for (PhdrEntry *p : part.phdrs) 3005ece8a530Spatrick if (p->p_type == PT_LOAD) 3006ece8a530Spatrick last = p; 3007ece8a530Spatrick 3008ece8a530Spatrick if (last && (last->p_flags & PF_X)) 3009ece8a530Spatrick last->p_memsz = last->p_filesz = 3010ece8a530Spatrick alignTo(last->p_filesz, config->commonPageSize); 3011ece8a530Spatrick } 3012ece8a530Spatrick } 3013ece8a530Spatrick 3014ece8a530Spatrick // Write section contents to a mmap'ed file. 3015ece8a530Spatrick template <class ELFT> void Writer<ELFT>::writeSections() { 3016ece8a530Spatrick // In -r or -emit-relocs mode, write the relocation sections first as in 3017ece8a530Spatrick // ELf_Rel targets we might find out that we need to modify the relocated 3018ece8a530Spatrick // section while doing it. 3019ece8a530Spatrick for (OutputSection *sec : outputSections) 3020ece8a530Spatrick if (sec->type == SHT_REL || sec->type == SHT_RELA) 3021ece8a530Spatrick sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 3022ece8a530Spatrick 3023ece8a530Spatrick for (OutputSection *sec : outputSections) 3024ece8a530Spatrick if (sec->type != SHT_REL && sec->type != SHT_RELA) 3025ece8a530Spatrick sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 3026ece8a530Spatrick 3027*a0747c9fSpatrick // Finally, check that all dynamic relocation addends were written correctly. 3028*a0747c9fSpatrick if (config->checkDynamicRelocs && config->writeAddends) { 3029*a0747c9fSpatrick for (OutputSection *sec : outputSections) 3030*a0747c9fSpatrick if (sec->type == SHT_REL || sec->type == SHT_RELA) 3031*a0747c9fSpatrick sec->checkDynRelAddends(Out::bufferStart); 3032ece8a530Spatrick } 3033ece8a530Spatrick } 3034ece8a530Spatrick 3035ece8a530Spatrick // Computes a hash value of Data using a given hash function. 3036ece8a530Spatrick // In order to utilize multiple cores, we first split data into 1MB 3037ece8a530Spatrick // chunks, compute a hash for each chunk, and then compute a hash value 3038ece8a530Spatrick // of the hash values. 3039ece8a530Spatrick static void 3040ece8a530Spatrick computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 3041ece8a530Spatrick llvm::ArrayRef<uint8_t> data, 3042ece8a530Spatrick std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 3043ece8a530Spatrick std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 3044ece8a530Spatrick std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 3045ece8a530Spatrick 3046ece8a530Spatrick // Compute hash values. 3047ece8a530Spatrick parallelForEachN(0, chunks.size(), [&](size_t i) { 3048ece8a530Spatrick hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 3049ece8a530Spatrick }); 3050ece8a530Spatrick 3051ece8a530Spatrick // Write to the final output buffer. 3052ece8a530Spatrick hashFn(hashBuf.data(), hashes); 3053ece8a530Spatrick } 3054ece8a530Spatrick 3055ece8a530Spatrick template <class ELFT> void Writer<ELFT>::writeBuildId() { 3056ece8a530Spatrick if (!mainPart->buildId || !mainPart->buildId->getParent()) 3057ece8a530Spatrick return; 3058ece8a530Spatrick 3059ece8a530Spatrick if (config->buildId == BuildIdKind::Hexstring) { 3060ece8a530Spatrick for (Partition &part : partitions) 3061ece8a530Spatrick part.buildId->writeBuildId(config->buildIdVector); 3062ece8a530Spatrick return; 3063ece8a530Spatrick } 3064ece8a530Spatrick 3065ece8a530Spatrick // Compute a hash of all sections of the output file. 3066ece8a530Spatrick size_t hashSize = mainPart->buildId->hashSize; 3067ece8a530Spatrick std::vector<uint8_t> buildId(hashSize); 3068ece8a530Spatrick llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 3069ece8a530Spatrick 3070ece8a530Spatrick switch (config->buildId) { 3071ece8a530Spatrick case BuildIdKind::Fast: 3072ece8a530Spatrick computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3073ece8a530Spatrick write64le(dest, xxHash64(arr)); 3074ece8a530Spatrick }); 3075ece8a530Spatrick break; 3076ece8a530Spatrick case BuildIdKind::Md5: 3077ece8a530Spatrick computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3078ece8a530Spatrick memcpy(dest, MD5::hash(arr).data(), hashSize); 3079ece8a530Spatrick }); 3080ece8a530Spatrick break; 3081ece8a530Spatrick case BuildIdKind::Sha1: 3082ece8a530Spatrick computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3083ece8a530Spatrick memcpy(dest, SHA1::hash(arr).data(), hashSize); 3084ece8a530Spatrick }); 3085ece8a530Spatrick break; 3086ece8a530Spatrick case BuildIdKind::Uuid: 3087ece8a530Spatrick if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 3088ece8a530Spatrick error("entropy source failure: " + ec.message()); 3089ece8a530Spatrick break; 3090ece8a530Spatrick default: 3091ece8a530Spatrick llvm_unreachable("unknown BuildIdKind"); 3092ece8a530Spatrick } 3093ece8a530Spatrick for (Partition &part : partitions) 3094ece8a530Spatrick part.buildId->writeBuildId(buildId); 3095ece8a530Spatrick } 3096ece8a530Spatrick 3097bb684c34Spatrick template void elf::createSyntheticSections<ELF32LE>(); 3098bb684c34Spatrick template void elf::createSyntheticSections<ELF32BE>(); 3099bb684c34Spatrick template void elf::createSyntheticSections<ELF64LE>(); 3100bb684c34Spatrick template void elf::createSyntheticSections<ELF64BE>(); 3101ece8a530Spatrick 3102bb684c34Spatrick template void elf::writeResult<ELF32LE>(); 3103bb684c34Spatrick template void elf::writeResult<ELF32BE>(); 3104bb684c34Spatrick template void elf::writeResult<ELF64LE>(); 3105bb684c34Spatrick template void elf::writeResult<ELF64BE>(); 3106