1 //===- Symbols.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Symbols.h" 10 #include "Driver.h" 11 #include "InputFiles.h" 12 #include "InputSection.h" 13 #include "OutputSections.h" 14 #include "SyntheticSections.h" 15 #include "Target.h" 16 #include "Writer.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "llvm/Demangle/Demangle.h" 19 #include "llvm/Support/Compiler.h" 20 #include <cstring> 21 22 using namespace llvm; 23 using namespace llvm::object; 24 using namespace llvm::ELF; 25 using namespace lld; 26 using namespace lld::elf; 27 28 static_assert(sizeof(SymbolUnion) <= 72, "SymbolUnion too large"); 29 30 template <typename T> struct AssertSymbol { 31 static_assert(std::is_trivially_destructible<T>(), 32 "Symbol types must be trivially destructible"); 33 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); 34 static_assert(alignof(T) <= alignof(SymbolUnion), 35 "SymbolUnion not aligned enough"); 36 }; 37 38 LLVM_ATTRIBUTE_UNUSED static inline void assertSymbols() { 39 AssertSymbol<Defined>(); 40 AssertSymbol<CommonSymbol>(); 41 AssertSymbol<Undefined>(); 42 AssertSymbol<SharedSymbol>(); 43 AssertSymbol<LazyObject>(); 44 } 45 46 // Returns a symbol for an error message. 47 static std::string maybeDemangleSymbol(StringRef symName) { 48 if (elf::config->demangle) 49 return demangle(symName.str()); 50 return symName.str(); 51 } 52 53 std::string lld::toString(const elf::Symbol &sym) { 54 StringRef name = sym.getName(); 55 std::string ret = maybeDemangleSymbol(name); 56 57 const char *suffix = sym.getVersionSuffix(); 58 if (*suffix == '@') 59 ret += suffix; 60 return ret; 61 } 62 63 Defined *ElfSym::bss; 64 Defined *ElfSym::data; 65 Defined *ElfSym::etext1; 66 Defined *ElfSym::etext2; 67 Defined *ElfSym::edata1; 68 Defined *ElfSym::edata2; 69 Defined *ElfSym::end1; 70 Defined *ElfSym::end2; 71 Defined *ElfSym::globalOffsetTable; 72 Defined *ElfSym::mipsGp; 73 Defined *ElfSym::mipsGpDisp; 74 Defined *ElfSym::mipsLocalGp; 75 Defined *ElfSym::relaIpltStart; 76 Defined *ElfSym::relaIpltEnd; 77 Defined *ElfSym::tlsModuleBase; 78 SmallVector<SymbolAux, 0> elf::symAux; 79 80 static uint64_t getSymVA(const Symbol &sym, int64_t addend) { 81 switch (sym.kind()) { 82 case Symbol::DefinedKind: { 83 auto &d = cast<Defined>(sym); 84 SectionBase *isec = d.section; 85 86 // This is an absolute symbol. 87 if (!isec) 88 return d.value; 89 90 assert(isec != &InputSection::discarded); 91 92 uint64_t offset = d.value; 93 94 // An object in an SHF_MERGE section might be referenced via a 95 // section symbol (as a hack for reducing the number of local 96 // symbols). 97 // Depending on the addend, the reference via a section symbol 98 // refers to a different object in the merge section. 99 // Since the objects in the merge section are not necessarily 100 // contiguous in the output, the addend can thus affect the final 101 // VA in a non-linear way. 102 // To make this work, we incorporate the addend into the section 103 // offset (and zero out the addend for later processing) so that 104 // we find the right object in the section. 105 if (d.isSection()) 106 offset += addend; 107 108 // In the typical case, this is actually very simple and boils 109 // down to adding together 3 numbers: 110 // 1. The address of the output section. 111 // 2. The offset of the input section within the output section. 112 // 3. The offset within the input section (this addition happens 113 // inside InputSection::getOffset). 114 // 115 // If you understand the data structures involved with this next 116 // line (and how they get built), then you have a pretty good 117 // understanding of the linker. 118 uint64_t va = isec->getVA(offset); 119 if (d.isSection()) 120 va -= addend; 121 122 // MIPS relocatable files can mix regular and microMIPS code. 123 // Linker needs to distinguish such code. To do so microMIPS 124 // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other` 125 // field. Unfortunately, the `MIPS::relocate()` method has 126 // a symbol value only. To pass type of the symbol (regular/microMIPS) 127 // to that routine as well as other places where we write 128 // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry` 129 // field etc) do the same trick as compiler uses to mark microMIPS 130 // for CPU - set the less-significant bit. 131 if (config->emachine == EM_MIPS && isMicroMips() && 132 ((sym.stOther & STO_MIPS_MICROMIPS) || sym.hasFlag(NEEDS_COPY))) 133 va |= 1; 134 135 if (d.isTls() && !config->relocatable) { 136 // Use the address of the TLS segment's first section rather than the 137 // segment's address, because segment addresses aren't initialized until 138 // after sections are finalized. (e.g. Measuring the size of .rela.dyn 139 // for Android relocation packing requires knowing TLS symbol addresses 140 // during section finalization.) 141 if (!Out::tlsPhdr || !Out::tlsPhdr->firstSec) 142 fatal(toString(d.file) + 143 " has an STT_TLS symbol but doesn't have an SHF_TLS section"); 144 return va - Out::tlsPhdr->firstSec->addr; 145 } 146 return va; 147 } 148 case Symbol::SharedKind: 149 case Symbol::UndefinedKind: 150 return 0; 151 case Symbol::LazyObjectKind: 152 llvm_unreachable("lazy symbol reached writer"); 153 case Symbol::CommonKind: 154 llvm_unreachable("common symbol reached writer"); 155 case Symbol::PlaceholderKind: 156 llvm_unreachable("placeholder symbol reached writer"); 157 } 158 llvm_unreachable("invalid symbol kind"); 159 } 160 161 uint64_t Symbol::getVA(int64_t addend) const { 162 return getSymVA(*this, addend) + addend; 163 } 164 165 uint64_t Symbol::getGotVA() const { 166 if (gotInIgot) 167 return in.igotPlt->getVA() + getGotPltOffset(); 168 return in.got->getVA() + getGotOffset(); 169 } 170 171 uint64_t Symbol::getGotOffset() const { 172 return getGotIdx() * target->gotEntrySize; 173 } 174 175 uint64_t Symbol::getGotPltVA() const { 176 if (isInIplt) 177 return in.igotPlt->getVA() + getGotPltOffset(); 178 return in.gotPlt->getVA() + getGotPltOffset(); 179 } 180 181 uint64_t Symbol::getGotPltOffset() const { 182 if (isInIplt) 183 return getPltIdx() * target->gotEntrySize; 184 return (getPltIdx() + target->gotPltHeaderEntriesNum) * target->gotEntrySize; 185 } 186 187 uint64_t Symbol::getPltVA() const { 188 uint64_t outVA = isInIplt 189 ? in.iplt->getVA() + getPltIdx() * target->ipltEntrySize 190 : in.plt->getVA() + in.plt->headerSize + 191 getPltIdx() * target->pltEntrySize; 192 193 // While linking microMIPS code PLT code are always microMIPS 194 // code. Set the less-significant bit to track that fact. 195 // See detailed comment in the `getSymVA` function. 196 if (config->emachine == EM_MIPS && isMicroMips()) 197 outVA |= 1; 198 return outVA; 199 } 200 201 uint64_t Symbol::getSize() const { 202 if (const auto *dr = dyn_cast<Defined>(this)) 203 return dr->size; 204 return cast<SharedSymbol>(this)->size; 205 } 206 207 OutputSection *Symbol::getOutputSection() const { 208 if (auto *s = dyn_cast<Defined>(this)) { 209 if (auto *sec = s->section) 210 return sec->getOutputSection(); 211 return nullptr; 212 } 213 return nullptr; 214 } 215 216 // If a symbol name contains '@', the characters after that is 217 // a symbol version name. This function parses that. 218 void Symbol::parseSymbolVersion() { 219 // Return if localized by a local: pattern in a version script. 220 if (versionId == VER_NDX_LOCAL) 221 return; 222 StringRef s = getName(); 223 size_t pos = s.find('@'); 224 if (pos == StringRef::npos) 225 return; 226 StringRef verstr = s.substr(pos + 1); 227 228 // Truncate the symbol name so that it doesn't include the version string. 229 nameSize = pos; 230 231 if (verstr.empty()) 232 return; 233 234 // If this is not in this DSO, it is not a definition. 235 if (!isDefined()) 236 return; 237 238 // '@@' in a symbol name means the default version. 239 // It is usually the most recent one. 240 bool isDefault = (verstr[0] == '@'); 241 if (isDefault) 242 verstr = verstr.substr(1); 243 244 for (const VersionDefinition &ver : namedVersionDefs()) { 245 if (ver.name != verstr) 246 continue; 247 248 if (isDefault) 249 versionId = ver.id; 250 else 251 versionId = ver.id | VERSYM_HIDDEN; 252 return; 253 } 254 255 // It is an error if the specified version is not defined. 256 // Usually version script is not provided when linking executable, 257 // but we may still want to override a versioned symbol from DSO, 258 // so we do not report error in this case. We also do not error 259 // if the symbol has a local version as it won't be in the dynamic 260 // symbol table. 261 if (config->shared && versionId != VER_NDX_LOCAL) 262 error(toString(file) + ": symbol " + s + " has undefined version " + 263 verstr); 264 } 265 266 void Symbol::extract() const { 267 if (file->lazy) { 268 file->lazy = false; 269 parseFile(file); 270 } 271 } 272 273 uint8_t Symbol::computeBinding() const { 274 auto v = visibility(); 275 if ((v != STV_DEFAULT && v != STV_PROTECTED) || versionId == VER_NDX_LOCAL) 276 return STB_LOCAL; 277 if (binding == STB_GNU_UNIQUE && !config->gnuUnique) 278 return STB_GLOBAL; 279 return binding; 280 } 281 282 bool Symbol::includeInDynsym() const { 283 if (computeBinding() == STB_LOCAL) 284 return false; 285 if (!isDefined() && !isCommon()) 286 // This should unconditionally return true, unfortunately glibc -static-pie 287 // expects undefined weak symbols not to exist in .dynsym, e.g. 288 // __pthread_mutex_lock reference in _dl_add_to_namespace_list, 289 // __pthread_initialize_minimal reference in csu/libc-start.c. 290 return !(isUndefWeak() && config->noDynamicLinker); 291 292 return exportDynamic || inDynamicList; 293 } 294 295 // Print out a log message for --trace-symbol. 296 void elf::printTraceSymbol(const Symbol &sym, StringRef name) { 297 std::string s; 298 if (sym.isUndefined()) 299 s = ": reference to "; 300 else if (sym.isLazy()) 301 s = ": lazy definition of "; 302 else if (sym.isShared()) 303 s = ": shared definition of "; 304 else if (sym.isCommon()) 305 s = ": common definition of "; 306 else 307 s = ": definition of "; 308 309 message(toString(sym.file) + s + name); 310 } 311 312 static void recordWhyExtract(const InputFile *reference, 313 const InputFile &extracted, const Symbol &sym) { 314 ctx.whyExtractRecords.emplace_back(toString(reference), &extracted, sym); 315 } 316 317 void elf::maybeWarnUnorderableSymbol(const Symbol *sym) { 318 if (!config->warnSymbolOrdering) 319 return; 320 321 // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning 322 // is emitted. It makes sense to not warn on undefined symbols. 323 // 324 // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols, 325 // but we don't have to be compatible here. 326 if (sym->isUndefined() && 327 config->unresolvedSymbols == UnresolvedPolicy::Ignore) 328 return; 329 330 const InputFile *file = sym->file; 331 auto *d = dyn_cast<Defined>(sym); 332 333 auto report = [&](StringRef s) { warn(toString(file) + s + sym->getName()); }; 334 335 if (sym->isUndefined()) 336 report(": unable to order undefined symbol: "); 337 else if (sym->isShared()) 338 report(": unable to order shared symbol: "); 339 else if (d && !d->section) 340 report(": unable to order absolute symbol: "); 341 else if (d && isa<OutputSection>(d->section)) 342 report(": unable to order synthetic symbol: "); 343 else if (d && !d->section->isLive()) 344 report(": unable to order discarded symbol: "); 345 } 346 347 // Returns true if a symbol can be replaced at load-time by a symbol 348 // with the same name defined in other ELF executable or DSO. 349 bool elf::computeIsPreemptible(const Symbol &sym) { 350 assert(!sym.isLocal() || sym.isPlaceholder()); 351 352 // Only symbols with default visibility that appear in dynsym can be 353 // preempted. Symbols with protected visibility cannot be preempted. 354 if (!sym.includeInDynsym() || sym.visibility() != STV_DEFAULT) 355 return false; 356 357 // At this point copy relocations have not been created yet, so any 358 // symbol that is not defined locally is preemptible. 359 if (!sym.isDefined()) 360 return true; 361 362 if (!config->shared) 363 return false; 364 365 // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is 366 // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is 367 // in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of 368 // -Bsymbolic-functions. 369 if (config->symbolic || 370 (config->bsymbolic == BsymbolicKind::Functions && sym.isFunc()) || 371 (config->bsymbolic == BsymbolicKind::NonWeakFunctions && sym.isFunc() && 372 sym.binding != STB_WEAK)) 373 return sym.inDynamicList; 374 return true; 375 } 376 377 // Merge symbol properties. 378 // 379 // When we have many symbols of the same name, we choose one of them, 380 // and that's the result of symbol resolution. However, symbols that 381 // were not chosen still affect some symbol properties. 382 void Symbol::mergeProperties(const Symbol &other) { 383 if (other.exportDynamic) 384 exportDynamic = true; 385 386 // DSO symbols do not affect visibility in the output. 387 if (!other.isShared() && other.visibility() != STV_DEFAULT) { 388 uint8_t v = visibility(), ov = other.visibility(); 389 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 390 } 391 } 392 393 void Symbol::resolve(const Undefined &other) { 394 if (other.visibility() != STV_DEFAULT) { 395 uint8_t v = visibility(), ov = other.visibility(); 396 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 397 } 398 // An undefined symbol with non default visibility must be satisfied 399 // in the same DSO. 400 // 401 // If this is a non-weak defined symbol in a discarded section, override the 402 // existing undefined symbol for better error message later. 403 if (isPlaceholder() || (isShared() && other.visibility() != STV_DEFAULT) || 404 (isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) { 405 other.overwrite(*this); 406 return; 407 } 408 409 if (traced) 410 printTraceSymbol(other, getName()); 411 412 if (isLazy()) { 413 // An undefined weak will not extract archive members. See comment on Lazy 414 // in Symbols.h for the details. 415 if (other.binding == STB_WEAK) { 416 binding = STB_WEAK; 417 type = other.type; 418 return; 419 } 420 421 // Do extra check for --warn-backrefs. 422 // 423 // --warn-backrefs is an option to prevent an undefined reference from 424 // extracting an archive member written earlier in the command line. It can 425 // be used to keep compatibility with GNU linkers to some degree. I'll 426 // explain the feature and why you may find it useful in this comment. 427 // 428 // lld's symbol resolution semantics is more relaxed than traditional Unix 429 // linkers. For example, 430 // 431 // ld.lld foo.a bar.o 432 // 433 // succeeds even if bar.o contains an undefined symbol that has to be 434 // resolved by some object file in foo.a. Traditional Unix linkers don't 435 // allow this kind of backward reference, as they visit each file only once 436 // from left to right in the command line while resolving all undefined 437 // symbols at the moment of visiting. 438 // 439 // In the above case, since there's no undefined symbol when a linker visits 440 // foo.a, no files are pulled out from foo.a, and because the linker forgets 441 // about foo.a after visiting, it can't resolve undefined symbols in bar.o 442 // that could have been resolved otherwise. 443 // 444 // That lld accepts more relaxed form means that (besides it'd make more 445 // sense) you can accidentally write a command line or a build file that 446 // works only with lld, even if you have a plan to distribute it to wider 447 // users who may be using GNU linkers. With --warn-backrefs, you can detect 448 // a library order that doesn't work with other Unix linkers. 449 // 450 // The option is also useful to detect cyclic dependencies between static 451 // archives. Again, lld accepts 452 // 453 // ld.lld foo.a bar.a 454 // 455 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is 456 // handled as an error. 457 // 458 // Here is how the option works. We assign a group ID to each file. A file 459 // with a smaller group ID can pull out object files from an archive file 460 // with an equal or greater group ID. Otherwise, it is a reverse dependency 461 // and an error. 462 // 463 // A file outside --{start,end}-group gets a fresh ID when instantiated. All 464 // files within the same --{start,end}-group get the same group ID. E.g. 465 // 466 // ld.lld A B --start-group C D --end-group E 467 // 468 // A forms group 0. B form group 1. C and D (including their member object 469 // files) form group 2. E forms group 3. I think that you can see how this 470 // group assignment rule simulates the traditional linker's semantics. 471 bool backref = config->warnBackrefs && other.file && 472 file->groupId < other.file->groupId; 473 extract(); 474 475 if (!config->whyExtract.empty()) 476 recordWhyExtract(other.file, *file, *this); 477 478 // We don't report backward references to weak symbols as they can be 479 // overridden later. 480 // 481 // A traditional linker does not error for -ldef1 -lref -ldef2 (linking 482 // sandwich), where def2 may or may not be the same as def1. We don't want 483 // to warn for this case, so dismiss the warning if we see a subsequent lazy 484 // definition. this->file needs to be saved because in the case of LTO it 485 // may be reset to nullptr or be replaced with a file named lto.tmp. 486 if (backref && !isWeak()) 487 ctx.backwardReferences.try_emplace(this, 488 std::make_pair(other.file, file)); 489 return; 490 } 491 492 // Undefined symbols in a SharedFile do not change the binding. 493 if (isa_and_nonnull<SharedFile>(other.file)) 494 return; 495 496 if (isUndefined() || isShared()) { 497 // The binding will be weak if there is at least one reference and all are 498 // weak. The binding has one opportunity to change to weak: if the first 499 // reference is weak. 500 if (other.binding != STB_WEAK || !referenced) 501 binding = other.binding; 502 } 503 } 504 505 // Compare two symbols. Return true if the new symbol should win. 506 bool Symbol::shouldReplace(const Defined &other) const { 507 if (LLVM_UNLIKELY(isCommon())) { 508 if (config->warnCommon) 509 warn("common " + getName() + " is overridden"); 510 return !other.isWeak(); 511 } 512 if (!isDefined()) 513 return true; 514 515 // Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes 516 // some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat 517 // STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all 518 // STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to 519 // an existing STB_WEAK, there may be discarded section errors because the 520 // selected copy may be in a non-prevailing COMDAT. 521 return !isGlobal() && other.isGlobal(); 522 } 523 524 void elf::reportDuplicate(const Symbol &sym, const InputFile *newFile, 525 InputSectionBase *errSec, uint64_t errOffset) { 526 if (config->allowMultipleDefinition) 527 return; 528 // In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which 529 // is sort of proto-comdat. There is actually no duplicate if we have 530 // full support for .gnu.linkonce. 531 const Defined *d = dyn_cast<Defined>(&sym); 532 if (!d || d->getName() == "__x86.get_pc_thunk.bx") 533 return; 534 // Allow absolute symbols with the same value for GNU ld compatibility. 535 if (!d->section && !errSec && errOffset && d->value == errOffset) 536 return; 537 if (!d->section || !errSec) { 538 error("duplicate symbol: " + toString(sym) + "\n>>> defined in " + 539 toString(sym.file) + "\n>>> defined in " + toString(newFile)); 540 return; 541 } 542 543 // Construct and print an error message in the form of: 544 // 545 // ld.lld: error: duplicate symbol: foo 546 // >>> defined at bar.c:30 547 // >>> bar.o (/home/alice/src/bar.o) 548 // >>> defined at baz.c:563 549 // >>> baz.o in archive libbaz.a 550 auto *sec1 = cast<InputSectionBase>(d->section); 551 std::string src1 = sec1->getSrcMsg(sym, d->value); 552 std::string obj1 = sec1->getObjMsg(d->value); 553 std::string src2 = errSec->getSrcMsg(sym, errOffset); 554 std::string obj2 = errSec->getObjMsg(errOffset); 555 556 std::string msg = "duplicate symbol: " + toString(sym) + "\n>>> defined at "; 557 if (!src1.empty()) 558 msg += src1 + "\n>>> "; 559 msg += obj1 + "\n>>> defined at "; 560 if (!src2.empty()) 561 msg += src2 + "\n>>> "; 562 msg += obj2; 563 error(msg); 564 } 565 566 void Symbol::checkDuplicate(const Defined &other) const { 567 if (isDefined() && !isWeak() && !other.isWeak()) 568 reportDuplicate(*this, other.file, 569 dyn_cast_or_null<InputSectionBase>(other.section), 570 other.value); 571 } 572 573 void Symbol::resolve(const CommonSymbol &other) { 574 if (other.exportDynamic) 575 exportDynamic = true; 576 if (other.visibility() != STV_DEFAULT) { 577 uint8_t v = visibility(), ov = other.visibility(); 578 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 579 } 580 if (isDefined() && !isWeak()) { 581 if (config->warnCommon) 582 warn("common " + getName() + " is overridden"); 583 return; 584 } 585 586 if (CommonSymbol *oldSym = dyn_cast<CommonSymbol>(this)) { 587 if (config->warnCommon) 588 warn("multiple common of " + getName()); 589 oldSym->alignment = std::max(oldSym->alignment, other.alignment); 590 if (oldSym->size < other.size) { 591 oldSym->file = other.file; 592 oldSym->size = other.size; 593 } 594 return; 595 } 596 597 if (auto *s = dyn_cast<SharedSymbol>(this)) { 598 // Increase st_size if the shared symbol has a larger st_size. The shared 599 // symbol may be created from common symbols. The fact that some object 600 // files were linked into a shared object first should not change the 601 // regular rule that picks the largest st_size. 602 uint64_t size = s->size; 603 other.overwrite(*this); 604 if (size > cast<CommonSymbol>(this)->size) 605 cast<CommonSymbol>(this)->size = size; 606 } else { 607 other.overwrite(*this); 608 } 609 } 610 611 void Symbol::resolve(const Defined &other) { 612 if (other.exportDynamic) 613 exportDynamic = true; 614 if (other.visibility() != STV_DEFAULT) { 615 uint8_t v = visibility(), ov = other.visibility(); 616 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 617 } 618 if (shouldReplace(other)) 619 other.overwrite(*this); 620 } 621 622 void Symbol::resolve(const LazyObject &other) { 623 if (isPlaceholder()) { 624 other.overwrite(*this); 625 return; 626 } 627 628 // For common objects, we want to look for global or weak definitions that 629 // should be extracted as the canonical definition instead. 630 if (LLVM_UNLIKELY(isCommon()) && elf::config->fortranCommon && 631 other.file->shouldExtractForCommon(getName())) { 632 ctx.backwardReferences.erase(this); 633 other.overwrite(*this); 634 other.extract(); 635 return; 636 } 637 638 if (!isUndefined()) { 639 // See the comment in resolveUndefined(). 640 if (isDefined()) 641 ctx.backwardReferences.erase(this); 642 return; 643 } 644 645 // An undefined weak will not extract archive members. See comment on Lazy in 646 // Symbols.h for the details. 647 if (isWeak()) { 648 uint8_t ty = type; 649 other.overwrite(*this); 650 type = ty; 651 binding = STB_WEAK; 652 return; 653 } 654 655 const InputFile *oldFile = file; 656 other.extract(); 657 if (!config->whyExtract.empty()) 658 recordWhyExtract(oldFile, *file, *this); 659 } 660 661 void Symbol::resolve(const SharedSymbol &other) { 662 exportDynamic = true; 663 if (isPlaceholder()) { 664 other.overwrite(*this); 665 return; 666 } 667 if (isCommon()) { 668 // See the comment in resolveCommon() above. 669 if (other.size > cast<CommonSymbol>(this)->size) 670 cast<CommonSymbol>(this)->size = other.size; 671 return; 672 } 673 if (visibility() == STV_DEFAULT && (isUndefined() || isLazy())) { 674 // An undefined symbol with non default visibility must be satisfied 675 // in the same DSO. 676 uint8_t bind = binding; 677 other.overwrite(*this); 678 binding = bind; 679 } else if (traced) 680 printTraceSymbol(other, getName()); 681 } 682