1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputFiles.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/CommonLinkerContext.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <limits> 37 #include <string> 38 #include <vector> 39 40 using namespace llvm; 41 using namespace llvm::ELF; 42 using namespace llvm::object; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::elf; 46 47 std::unique_ptr<LinkerScript> elf::script; 48 49 static bool isSectionPrefix(StringRef prefix, StringRef name) { 50 return name.consume_front(prefix) && (name.empty() || name[0] == '.'); 51 } 52 53 static StringRef getOutputSectionName(const InputSectionBase *s) { 54 if (config->relocatable) 55 return s->name; 56 57 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 58 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 59 // technically required, but not doing it is odd). This code guarantees that. 60 if (auto *isec = dyn_cast<InputSection>(s)) { 61 if (InputSectionBase *rel = isec->getRelocatedSection()) { 62 OutputSection *out = rel->getOutputSection(); 63 if (s->type == SHT_RELA) 64 return saver().save(".rela" + out->name); 65 return saver().save(".rel" + out->name); 66 } 67 } 68 69 // A BssSection created for a common symbol is identified as "COMMON" in 70 // linker scripts. It should go to .bss section. 71 if (s->name == "COMMON") 72 return ".bss"; 73 74 if (script->hasSectionsCommand) 75 return s->name; 76 77 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 78 // by grouping sections with certain prefixes. 79 80 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 81 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 82 // We provide an option -z keep-text-section-prefix to group such sections 83 // into separate output sections. This is more flexible. See also 84 // sortISDBySectionOrder(). 85 // ".text.unknown" means the hotness of the section is unknown. When 86 // SampleFDO is used, if a function doesn't have sample, it could be very 87 // cold or it could be a new function never being sampled. Those functions 88 // will be kept in the ".text.unknown" section. 89 // ".text.split." holds symbols which are split out from functions in other 90 // input sections. For example, with -fsplit-machine-functions, placing the 91 // cold parts in .text.split instead of .text.unlikely mitigates against poor 92 // profile inaccuracy. Techniques such as hugepage remapping can make 93 // conservative decisions at the section granularity. 94 if (isSectionPrefix(".text", s->name)) { 95 if (config->zKeepTextSectionPrefix) 96 for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely", 97 ".text.startup", ".text.exit", ".text.split"}) 98 if (isSectionPrefix(v.substr(5), s->name.substr(5))) 99 return v; 100 return ".text"; 101 } 102 103 for (StringRef v : 104 {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", 105 ".gcc_except_table", ".init_array", ".fini_array", ".tbss", ".tdata", 106 ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors", 107 ".openbsd.randomdata", ".openbsd.mutable"}) 108 if (isSectionPrefix(v, s->name)) 109 return v; 110 111 return s->name; 112 } 113 114 uint64_t ExprValue::getValue() const { 115 if (sec) 116 return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val), 117 alignment); 118 return alignToPowerOf2(val, alignment); 119 } 120 121 uint64_t ExprValue::getSecAddr() const { 122 return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0; 123 } 124 125 uint64_t ExprValue::getSectionOffset() const { 126 // If the alignment is trivial, we don't have to compute the full 127 // value to know the offset. This allows this function to succeed in 128 // cases where the output section is not yet known. 129 if (alignment == 1 && !sec) 130 return val; 131 return getValue() - getSecAddr(); 132 } 133 134 OutputDesc *LinkerScript::createOutputSection(StringRef name, 135 StringRef location) { 136 OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)]; 137 OutputDesc *sec; 138 if (secRef && secRef->osec.location.empty()) { 139 // There was a forward reference. 140 sec = secRef; 141 } else { 142 sec = make<OutputDesc>(name, SHT_PROGBITS, 0); 143 if (!secRef) 144 secRef = sec; 145 } 146 sec->osec.location = std::string(location); 147 return sec; 148 } 149 150 OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) { 151 OutputDesc *&cmdRef = nameToOutputSection[CachedHashStringRef(name)]; 152 if (!cmdRef) 153 cmdRef = make<OutputDesc>(name, SHT_PROGBITS, 0); 154 return cmdRef; 155 } 156 157 // Expands the memory region by the specified size. 158 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 159 StringRef secName) { 160 memRegion->curPos += size; 161 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 162 uint64_t length = (memRegion->length)().getValue(); 163 if (newSize > length) 164 error("section '" + secName + "' will not fit in region '" + 165 memRegion->name + "': overflowed by " + Twine(newSize - length) + 166 " bytes"); 167 } 168 169 void LinkerScript::expandMemoryRegions(uint64_t size) { 170 if (state->memRegion) 171 expandMemoryRegion(state->memRegion, size, state->outSec->name); 172 // Only expand the LMARegion if it is different from memRegion. 173 if (state->lmaRegion && state->memRegion != state->lmaRegion) 174 expandMemoryRegion(state->lmaRegion, size, state->outSec->name); 175 } 176 177 void LinkerScript::expandOutputSection(uint64_t size) { 178 state->outSec->size += size; 179 expandMemoryRegions(size); 180 } 181 182 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 183 uint64_t val = e().getValue(); 184 if (val < dot && inSec) 185 error(loc + ": unable to move location counter backward for: " + 186 state->outSec->name); 187 188 // Update to location counter means update to section size. 189 if (inSec) 190 expandOutputSection(val - dot); 191 192 dot = val; 193 } 194 195 // Used for handling linker symbol assignments, for both finalizing 196 // their values and doing early declarations. Returns true if symbol 197 // should be defined from linker script. 198 static bool shouldDefineSym(SymbolAssignment *cmd) { 199 if (cmd->name == ".") 200 return false; 201 202 if (!cmd->provide) 203 return true; 204 205 // If a symbol was in PROVIDE(), we need to define it only 206 // when it is a referenced undefined symbol. 207 Symbol *b = symtab.find(cmd->name); 208 if (b && !b->isDefined() && !b->isCommon()) 209 return true; 210 return false; 211 } 212 213 // Called by processSymbolAssignments() to assign definitions to 214 // linker-script-defined symbols. 215 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 216 if (!shouldDefineSym(cmd)) 217 return; 218 219 // Define a symbol. 220 ExprValue value = cmd->expression(); 221 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 222 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 223 224 // When this function is called, section addresses have not been 225 // fixed yet. So, we may or may not know the value of the RHS 226 // expression. 227 // 228 // For example, if an expression is `x = 42`, we know x is always 42. 229 // However, if an expression is `x = .`, there's no way to know its 230 // value at the moment. 231 // 232 // We want to set symbol values early if we can. This allows us to 233 // use symbols as variables in linker scripts. Doing so allows us to 234 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 235 uint64_t symValue = value.sec ? 0 : value.getValue(); 236 237 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 238 symValue, 0, sec); 239 240 Symbol *sym = symtab.insert(cmd->name); 241 sym->mergeProperties(newSym); 242 newSym.overwrite(*sym); 243 sym->isUsedInRegularObj = true; 244 cmd->sym = cast<Defined>(sym); 245 } 246 247 // This function is called from LinkerScript::declareSymbols. 248 // It creates a placeholder symbol if needed. 249 static void declareSymbol(SymbolAssignment *cmd) { 250 if (!shouldDefineSym(cmd)) 251 return; 252 253 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 254 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 255 nullptr); 256 257 // We can't calculate final value right now. 258 Symbol *sym = symtab.insert(cmd->name); 259 sym->mergeProperties(newSym); 260 newSym.overwrite(*sym); 261 262 cmd->sym = cast<Defined>(sym); 263 cmd->provide = false; 264 sym->isUsedInRegularObj = true; 265 sym->scriptDefined = true; 266 } 267 268 using SymbolAssignmentMap = 269 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 270 271 // Collect section/value pairs of linker-script-defined symbols. This is used to 272 // check whether symbol values converge. 273 static SymbolAssignmentMap 274 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) { 275 SymbolAssignmentMap ret; 276 for (SectionCommand *cmd : sectionCommands) { 277 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 278 if (assign->sym) // sym is nullptr for dot. 279 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 280 assign->sym->value)); 281 continue; 282 } 283 for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands) 284 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 285 if (assign->sym) 286 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 287 assign->sym->value)); 288 } 289 return ret; 290 } 291 292 // Returns the lexicographical smallest (for determinism) Defined whose 293 // section/value has changed. 294 static const Defined * 295 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 296 const Defined *changed = nullptr; 297 for (auto &it : oldValues) { 298 const Defined *sym = it.first; 299 if (std::make_pair(sym->section, sym->value) != it.second && 300 (!changed || sym->getName() < changed->getName())) 301 changed = sym; 302 } 303 return changed; 304 } 305 306 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 307 // specified output section to the designated place. 308 void LinkerScript::processInsertCommands() { 309 SmallVector<OutputDesc *, 0> moves; 310 for (const InsertCommand &cmd : insertCommands) { 311 for (StringRef name : cmd.names) { 312 // If base is empty, it may have been discarded by 313 // adjustOutputSections(). We do not handle such output sections. 314 auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) { 315 return isa<OutputDesc>(subCmd) && 316 cast<OutputDesc>(subCmd)->osec.name == name; 317 }); 318 if (from == sectionCommands.end()) 319 continue; 320 moves.push_back(cast<OutputDesc>(*from)); 321 sectionCommands.erase(from); 322 } 323 324 auto insertPos = 325 llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) { 326 auto *to = dyn_cast<OutputDesc>(subCmd); 327 return to != nullptr && to->osec.name == cmd.where; 328 }); 329 if (insertPos == sectionCommands.end()) { 330 error("unable to insert " + cmd.names[0] + 331 (cmd.isAfter ? " after " : " before ") + cmd.where); 332 } else { 333 if (cmd.isAfter) 334 ++insertPos; 335 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 336 } 337 moves.clear(); 338 } 339 } 340 341 // Symbols defined in script should not be inlined by LTO. At the same time 342 // we don't know their final values until late stages of link. Here we scan 343 // over symbol assignment commands and create placeholder symbols if needed. 344 void LinkerScript::declareSymbols() { 345 assert(!state); 346 for (SectionCommand *cmd : sectionCommands) { 347 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 348 declareSymbol(assign); 349 continue; 350 } 351 352 // If the output section directive has constraints, 353 // we can't say for sure if it is going to be included or not. 354 // Skip such sections for now. Improve the checks if we ever 355 // need symbols from that sections to be declared early. 356 const OutputSection &sec = cast<OutputDesc>(cmd)->osec; 357 if (sec.constraint != ConstraintKind::NoConstraint) 358 continue; 359 for (SectionCommand *cmd : sec.commands) 360 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 361 declareSymbol(assign); 362 } 363 } 364 365 // This function is called from assignAddresses, while we are 366 // fixing the output section addresses. This function is supposed 367 // to set the final value for a given symbol assignment. 368 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 369 if (cmd->name == ".") { 370 setDot(cmd->expression, cmd->location, inSec); 371 return; 372 } 373 374 if (!cmd->sym) 375 return; 376 377 ExprValue v = cmd->expression(); 378 if (v.isAbsolute()) { 379 cmd->sym->section = nullptr; 380 cmd->sym->value = v.getValue(); 381 } else { 382 cmd->sym->section = v.sec; 383 cmd->sym->value = v.getSectionOffset(); 384 } 385 cmd->sym->type = v.type; 386 } 387 388 static inline StringRef getFilename(const InputFile *file) { 389 return file ? file->getNameForScript() : StringRef(); 390 } 391 392 bool InputSectionDescription::matchesFile(const InputFile *file) const { 393 if (filePat.isTrivialMatchAll()) 394 return true; 395 396 if (!matchesFileCache || matchesFileCache->first != file) 397 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 398 399 return matchesFileCache->second; 400 } 401 402 bool SectionPattern::excludesFile(const InputFile *file) const { 403 if (excludedFilePat.empty()) 404 return false; 405 406 if (!excludesFileCache || excludesFileCache->first != file) 407 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 408 409 return excludesFileCache->second; 410 } 411 412 bool LinkerScript::shouldKeep(InputSectionBase *s) { 413 for (InputSectionDescription *id : keptSections) 414 if (id->matchesFile(s->file)) 415 for (SectionPattern &p : id->sectionPatterns) 416 if (p.sectionPat.match(s->name) && 417 (s->flags & id->withFlags) == id->withFlags && 418 (s->flags & id->withoutFlags) == 0) 419 return true; 420 return false; 421 } 422 423 // A helper function for the SORT() command. 424 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 425 ConstraintKind kind) { 426 if (kind == ConstraintKind::NoConstraint) 427 return true; 428 429 bool isRW = llvm::any_of( 430 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 431 432 return (isRW && kind == ConstraintKind::ReadWrite) || 433 (!isRW && kind == ConstraintKind::ReadOnly); 434 } 435 436 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 437 SortSectionPolicy k) { 438 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 439 // ">" is not a mistake. Sections with larger alignments are placed 440 // before sections with smaller alignments in order to reduce the 441 // amount of padding necessary. This is compatible with GNU. 442 return a->addralign > b->addralign; 443 }; 444 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 445 return a->name < b->name; 446 }; 447 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 448 return getPriority(a->name) < getPriority(b->name); 449 }; 450 451 switch (k) { 452 case SortSectionPolicy::Default: 453 case SortSectionPolicy::None: 454 return; 455 case SortSectionPolicy::Alignment: 456 return llvm::stable_sort(vec, alignmentComparator); 457 case SortSectionPolicy::Name: 458 return llvm::stable_sort(vec, nameComparator); 459 case SortSectionPolicy::Priority: 460 return llvm::stable_sort(vec, priorityComparator); 461 } 462 } 463 464 // Sort sections as instructed by SORT-family commands and --sort-section 465 // option. Because SORT-family commands can be nested at most two depth 466 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 467 // line option is respected even if a SORT command is given, the exact 468 // behavior we have here is a bit complicated. Here are the rules. 469 // 470 // 1. If two SORT commands are given, --sort-section is ignored. 471 // 2. If one SORT command is given, and if it is not SORT_NONE, 472 // --sort-section is handled as an inner SORT command. 473 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 474 // 4. If no SORT command is given, sort according to --sort-section. 475 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 476 SortSectionPolicy outer, 477 SortSectionPolicy inner) { 478 if (outer == SortSectionPolicy::None) 479 return; 480 481 if (inner == SortSectionPolicy::Default) 482 sortSections(vec, config->sortSection); 483 else 484 sortSections(vec, inner); 485 sortSections(vec, outer); 486 } 487 488 // Compute and remember which sections the InputSectionDescription matches. 489 SmallVector<InputSectionBase *, 0> 490 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 491 ArrayRef<InputSectionBase *> sections) { 492 SmallVector<InputSectionBase *, 0> ret; 493 SmallVector<size_t, 0> indexes; 494 DenseSet<size_t> seen; 495 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 496 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 497 for (size_t i = begin; i != end; ++i) 498 ret[i] = sections[indexes[i]]; 499 sortInputSections( 500 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 501 config->sortSection, SortSectionPolicy::None); 502 }; 503 504 // Collects all sections that satisfy constraints of Cmd. 505 size_t sizeAfterPrevSort = 0; 506 for (const SectionPattern &pat : cmd->sectionPatterns) { 507 size_t sizeBeforeCurrPat = ret.size(); 508 509 for (size_t i = 0, e = sections.size(); i != e; ++i) { 510 // Skip if the section is dead or has been matched by a previous input 511 // section description or a previous pattern. 512 InputSectionBase *sec = sections[i]; 513 if (!sec->isLive() || sec->parent || seen.contains(i)) 514 continue; 515 516 // For --emit-relocs we have to ignore entries like 517 // .rela.dyn : { *(.rela.data) } 518 // which are common because they are in the default bfd script. 519 // We do not ignore SHT_REL[A] linker-synthesized sections here because 520 // want to support scripts that do custom layout for them. 521 if (isa<InputSection>(sec) && 522 cast<InputSection>(sec)->getRelocatedSection()) 523 continue; 524 525 // Check the name early to improve performance in the common case. 526 if (!pat.sectionPat.match(sec->name)) 527 continue; 528 529 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 530 (sec->flags & cmd->withFlags) != cmd->withFlags || 531 (sec->flags & cmd->withoutFlags) != 0) 532 continue; 533 534 ret.push_back(sec); 535 indexes.push_back(i); 536 seen.insert(i); 537 } 538 539 if (pat.sortOuter == SortSectionPolicy::Default) 540 continue; 541 542 // Matched sections are ordered by radix sort with the keys being (SORT*, 543 // --sort-section, input order), where SORT* (if present) is most 544 // significant. 545 // 546 // Matched sections between the previous SORT* and this SORT* are sorted by 547 // (--sort-alignment, input order). 548 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 549 // Matched sections by this SORT* pattern are sorted using all 3 keys. 550 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 551 // just sort by sortOuter and sortInner. 552 sortInputSections( 553 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 554 pat.sortOuter, pat.sortInner); 555 sizeAfterPrevSort = ret.size(); 556 } 557 // Matched sections after the last SORT* are sorted by (--sort-alignment, 558 // input order). 559 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 560 return ret; 561 } 562 563 void LinkerScript::discard(InputSectionBase &s) { 564 if (&s == in.shStrTab.get()) 565 error("discarding " + s.name + " section is not allowed"); 566 567 s.markDead(); 568 s.parent = nullptr; 569 for (InputSection *sec : s.dependentSections) 570 discard(*sec); 571 } 572 573 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 574 for (Partition &part : partitions) { 575 if (!part.armExidx || !part.armExidx->isLive()) 576 continue; 577 SmallVector<InputSectionBase *, 0> secs( 578 part.armExidx->exidxSections.begin(), 579 part.armExidx->exidxSections.end()); 580 for (SectionCommand *cmd : outCmd.commands) 581 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 582 for (InputSectionBase *s : computeInputSections(isd, secs)) 583 discard(*s); 584 } 585 } 586 587 SmallVector<InputSectionBase *, 0> 588 LinkerScript::createInputSectionList(OutputSection &outCmd) { 589 SmallVector<InputSectionBase *, 0> ret; 590 591 for (SectionCommand *cmd : outCmd.commands) { 592 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 593 isd->sectionBases = computeInputSections(isd, ctx.inputSections); 594 for (InputSectionBase *s : isd->sectionBases) 595 s->parent = &outCmd; 596 ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end()); 597 } 598 } 599 return ret; 600 } 601 602 // Create output sections described by SECTIONS commands. 603 void LinkerScript::processSectionCommands() { 604 auto process = [this](OutputSection *osec) { 605 SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec); 606 607 // The output section name `/DISCARD/' is special. 608 // Any input section assigned to it is discarded. 609 if (osec->name == "/DISCARD/") { 610 for (InputSectionBase *s : v) 611 discard(*s); 612 discardSynthetic(*osec); 613 osec->commands.clear(); 614 return false; 615 } 616 617 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 618 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 619 // sections satisfy a given constraint. If not, a directive is handled 620 // as if it wasn't present from the beginning. 621 // 622 // Because we'll iterate over SectionCommands many more times, the easy 623 // way to "make it as if it wasn't present" is to make it empty. 624 if (!matchConstraints(v, osec->constraint)) { 625 for (InputSectionBase *s : v) 626 s->parent = nullptr; 627 osec->commands.clear(); 628 return false; 629 } 630 631 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 632 // is given, input sections are aligned to that value, whether the 633 // given value is larger or smaller than the original section alignment. 634 if (osec->subalignExpr) { 635 uint32_t subalign = osec->subalignExpr().getValue(); 636 for (InputSectionBase *s : v) 637 s->addralign = subalign; 638 } 639 640 // Set the partition field the same way OutputSection::recordSection() 641 // does. Partitions cannot be used with the SECTIONS command, so this is 642 // always 1. 643 osec->partition = 1; 644 return true; 645 }; 646 647 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 648 // or orphans. 649 DenseMap<CachedHashStringRef, OutputDesc *> map; 650 size_t i = 0; 651 for (OutputDesc *osd : overwriteSections) { 652 OutputSection *osec = &osd->osec; 653 if (process(osec) && 654 !map.try_emplace(CachedHashStringRef(osec->name), osd).second) 655 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 656 } 657 for (SectionCommand *&base : sectionCommands) 658 if (auto *osd = dyn_cast<OutputDesc>(base)) { 659 OutputSection *osec = &osd->osec; 660 if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) { 661 log(overwrite->osec.location + " overwrites " + osec->name); 662 overwrite->osec.sectionIndex = i++; 663 base = overwrite; 664 } else if (process(osec)) { 665 osec->sectionIndex = i++; 666 } 667 } 668 669 // If an OVERWRITE_SECTIONS specified output section is not in 670 // sectionCommands, append it to the end. The section will be inserted by 671 // orphan placement. 672 for (OutputDesc *osd : overwriteSections) 673 if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX) 674 sectionCommands.push_back(osd); 675 } 676 677 void LinkerScript::processSymbolAssignments() { 678 // Dot outside an output section still represents a relative address, whose 679 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 680 // that fills the void outside a section. It has an index of one, which is 681 // indistinguishable from any other regular section index. 682 aether = make<OutputSection>("", 0, SHF_ALLOC); 683 aether->sectionIndex = 1; 684 685 // `st` captures the local AddressState and makes it accessible deliberately. 686 // This is needed as there are some cases where we cannot just thread the 687 // current state through to a lambda function created by the script parser. 688 AddressState st; 689 state = &st; 690 st.outSec = aether; 691 692 for (SectionCommand *cmd : sectionCommands) { 693 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 694 addSymbol(assign); 695 else 696 for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands) 697 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 698 addSymbol(assign); 699 } 700 701 state = nullptr; 702 } 703 704 static OutputSection *findByName(ArrayRef<SectionCommand *> vec, 705 StringRef name) { 706 for (SectionCommand *cmd : vec) 707 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 708 if (osd->osec.name == name) 709 return &osd->osec; 710 return nullptr; 711 } 712 713 static OutputDesc *createSection(InputSectionBase *isec, StringRef outsecName) { 714 OutputDesc *osd = script->createOutputSection(outsecName, "<internal>"); 715 osd->osec.recordSection(isec); 716 return osd; 717 } 718 719 static OutputDesc *addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 720 InputSectionBase *isec, StringRef outsecName) { 721 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 722 // option is given. A section with SHT_GROUP defines a "section group", and 723 // its members have SHF_GROUP attribute. Usually these flags have already been 724 // stripped by InputFiles.cpp as section groups are processed and uniquified. 725 // However, for the -r option, we want to pass through all section groups 726 // as-is because adding/removing members or merging them with other groups 727 // change their semantics. 728 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 729 return createSection(isec, outsecName); 730 731 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 732 // relocation sections .rela.foo and .rela.bar for example. Most tools do 733 // not allow multiple REL[A] sections for output section. Hence we 734 // should combine these relocation sections into single output. 735 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 736 // other REL[A] sections created by linker itself. 737 if (!isa<SyntheticSection>(isec) && 738 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 739 auto *sec = cast<InputSection>(isec); 740 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 741 742 if (out->relocationSection) { 743 out->relocationSection->recordSection(sec); 744 return nullptr; 745 } 746 747 OutputDesc *osd = createSection(isec, outsecName); 748 out->relocationSection = &osd->osec; 749 return osd; 750 } 751 752 // The ELF spec just says 753 // ---------------------------------------------------------------- 754 // In the first phase, input sections that match in name, type and 755 // attribute flags should be concatenated into single sections. 756 // ---------------------------------------------------------------- 757 // 758 // However, it is clear that at least some flags have to be ignored for 759 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 760 // ignored. We should not have two output .text sections just because one was 761 // in a group and another was not for example. 762 // 763 // It also seems that wording was a late addition and didn't get the 764 // necessary scrutiny. 765 // 766 // Merging sections with different flags is expected by some users. One 767 // reason is that if one file has 768 // 769 // int *const bar __attribute__((section(".foo"))) = (int *)0; 770 // 771 // gcc with -fPIC will produce a read only .foo section. But if another 772 // file has 773 // 774 // int zed; 775 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 776 // 777 // gcc with -fPIC will produce a read write section. 778 // 779 // Last but not least, when using linker script the merge rules are forced by 780 // the script. Unfortunately, linker scripts are name based. This means that 781 // expressions like *(.foo*) can refer to multiple input sections with 782 // different flags. We cannot put them in different output sections or we 783 // would produce wrong results for 784 // 785 // start = .; *(.foo.*) end = .; *(.bar) 786 // 787 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 788 // another. The problem is that there is no way to layout those output 789 // sections such that the .foo sections are the only thing between the start 790 // and end symbols. 791 // 792 // Given the above issues, we instead merge sections by name and error on 793 // incompatible types and flags. 794 TinyPtrVector<OutputSection *> &v = map[outsecName]; 795 for (OutputSection *sec : v) { 796 if (sec->partition != isec->partition) 797 continue; 798 799 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 800 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 801 // change their semantics, so we only merge them in -r links if they will 802 // end up being linked to the same output section. The casts are fine 803 // because everything in the map was created by the orphan placement code. 804 auto *firstIsec = cast<InputSectionBase>( 805 cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]); 806 OutputSection *firstIsecOut = 807 firstIsec->flags & SHF_LINK_ORDER 808 ? firstIsec->getLinkOrderDep()->getOutputSection() 809 : nullptr; 810 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 811 continue; 812 } 813 814 sec->recordSection(isec); 815 return nullptr; 816 } 817 818 OutputDesc *osd = createSection(isec, outsecName); 819 v.push_back(&osd->osec); 820 return osd; 821 } 822 823 // Add sections that didn't match any sections command. 824 void LinkerScript::addOrphanSections() { 825 StringMap<TinyPtrVector<OutputSection *>> map; 826 SmallVector<OutputDesc *, 0> v; 827 828 auto add = [&](InputSectionBase *s) { 829 if (s->isLive() && !s->parent) { 830 orphanSections.push_back(s); 831 832 StringRef name = getOutputSectionName(s); 833 if (config->unique) { 834 v.push_back(createSection(s, name)); 835 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 836 sec->recordSection(s); 837 } else { 838 if (OutputDesc *osd = addInputSec(map, s, name)) 839 v.push_back(osd); 840 assert(isa<MergeInputSection>(s) || 841 s->getOutputSection()->sectionIndex == UINT32_MAX); 842 } 843 } 844 }; 845 846 // For further --emit-reloc handling code we need target output section 847 // to be created before we create relocation output section, so we want 848 // to create target sections first. We do not want priority handling 849 // for synthetic sections because them are special. 850 size_t n = 0; 851 for (InputSectionBase *isec : ctx.inputSections) { 852 // Process InputSection and MergeInputSection. 853 if (LLVM_LIKELY(isa<InputSection>(isec))) 854 ctx.inputSections[n++] = isec; 855 856 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 857 // sections because we need to know the parent's output section before we 858 // can select an output section for the SHF_LINK_ORDER section. 859 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 860 continue; 861 862 if (auto *sec = dyn_cast<InputSection>(isec)) 863 if (InputSectionBase *rel = sec->getRelocatedSection()) 864 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 865 add(relIS); 866 add(isec); 867 if (config->relocatable) 868 for (InputSectionBase *depSec : isec->dependentSections) 869 if (depSec->flags & SHF_LINK_ORDER) 870 add(depSec); 871 } 872 // Keep just InputSection. 873 ctx.inputSections.resize(n); 874 875 // If no SECTIONS command was given, we should insert sections commands 876 // before others, so that we can handle scripts which refers them, 877 // for example: "foo = ABSOLUTE(ADDR(.text)));". 878 // When SECTIONS command is present we just add all orphans to the end. 879 if (hasSectionsCommand) 880 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 881 else 882 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 883 } 884 885 void LinkerScript::diagnoseOrphanHandling() const { 886 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 887 if (config->orphanHandling == OrphanHandlingPolicy::Place) 888 return; 889 for (const InputSectionBase *sec : orphanSections) { 890 // Input SHT_REL[A] retained by --emit-relocs are ignored by 891 // computeInputSections(). Don't warn/error. 892 if (isa<InputSection>(sec) && 893 cast<InputSection>(sec)->getRelocatedSection()) 894 continue; 895 896 StringRef name = getOutputSectionName(sec); 897 if (config->orphanHandling == OrphanHandlingPolicy::Error) 898 error(toString(sec) + " is being placed in '" + name + "'"); 899 else 900 warn(toString(sec) + " is being placed in '" + name + "'"); 901 } 902 } 903 904 // This function searches for a memory region to place the given output 905 // section in. If found, a pointer to the appropriate memory region is 906 // returned in the first member of the pair. Otherwise, a nullptr is returned. 907 // The second member of the pair is a hint that should be passed to the 908 // subsequent call of this method. 909 std::pair<MemoryRegion *, MemoryRegion *> 910 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { 911 // Non-allocatable sections are not part of the process image. 912 if (!(sec->flags & SHF_ALLOC)) { 913 if (!sec->memoryRegionName.empty()) 914 warn("ignoring memory region assignment for non-allocatable section '" + 915 sec->name + "'"); 916 return {nullptr, nullptr}; 917 } 918 919 // If a memory region name was specified in the output section command, 920 // then try to find that region first. 921 if (!sec->memoryRegionName.empty()) { 922 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 923 return {m, m}; 924 error("memory region '" + sec->memoryRegionName + "' not declared"); 925 return {nullptr, nullptr}; 926 } 927 928 // If at least one memory region is defined, all sections must 929 // belong to some memory region. Otherwise, we don't need to do 930 // anything for memory regions. 931 if (memoryRegions.empty()) 932 return {nullptr, nullptr}; 933 934 // An orphan section should continue the previous memory region. 935 if (sec->sectionIndex == UINT32_MAX && hint) 936 return {hint, hint}; 937 938 // See if a region can be found by matching section flags. 939 for (auto &pair : memoryRegions) { 940 MemoryRegion *m = pair.second; 941 if (m->compatibleWith(sec->flags)) 942 return {m, nullptr}; 943 } 944 945 // Otherwise, no suitable region was found. 946 error("no memory region specified for section '" + sec->name + "'"); 947 return {nullptr, nullptr}; 948 } 949 950 static OutputSection *findFirstSection(PhdrEntry *load) { 951 for (OutputSection *sec : outputSections) 952 if (sec->ptLoad == load) 953 return sec; 954 return nullptr; 955 } 956 957 // This function assigns offsets to input sections and an output section 958 // for a single sections command (e.g. ".text { *(.text); }"). 959 void LinkerScript::assignOffsets(OutputSection *sec) { 960 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 961 const bool sameMemRegion = state->memRegion == sec->memRegion; 962 const bool prevLMARegionIsDefault = state->lmaRegion == nullptr; 963 const uint64_t savedDot = dot; 964 state->memRegion = sec->memRegion; 965 state->lmaRegion = sec->lmaRegion; 966 967 if (!(sec->flags & SHF_ALLOC)) { 968 // Non-SHF_ALLOC sections have zero addresses. 969 dot = 0; 970 } else if (isTbss) { 971 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 972 // starts from the end address of the previous tbss section. 973 if (state->tbssAddr == 0) 974 state->tbssAddr = dot; 975 else 976 dot = state->tbssAddr; 977 } else { 978 if (state->memRegion) 979 dot = state->memRegion->curPos; 980 if (sec->addrExpr) 981 setDot(sec->addrExpr, sec->location, false); 982 983 // If the address of the section has been moved forward by an explicit 984 // expression so that it now starts past the current curPos of the enclosing 985 // region, we need to expand the current region to account for the space 986 // between the previous section, if any, and the start of this section. 987 if (state->memRegion && state->memRegion->curPos < dot) 988 expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos, 989 sec->name); 990 } 991 992 // This section was previously a call to switchTo(), but switchTo() 993 // was unrolled here. 994 // On OpenBSD, we had consistently moved the call to switchTo() 995 // below the next section. 996 state->outSec = sec; 997 if (sec->addrExpr && script->hasSectionsCommand) { 998 // The alignment is ignored. 999 sec->addr = dot; 1000 } else { 1001 // sec->alignment is the max of ALIGN and the maximum of input 1002 // section alignments. 1003 const uint64_t pos = dot; 1004 dot = alignToPowerOf2(dot, sec->addralign); 1005 sec->addr = dot; 1006 expandMemoryRegions(dot - pos); 1007 } 1008 1009 // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() 1010 // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA 1011 // region is the default, and the two sections are in the same memory region, 1012 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 1013 // heuristics described in 1014 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 1015 if (sec->lmaExpr) { 1016 state->lmaOffset = sec->lmaExpr().getValue() - dot; 1017 } else if (MemoryRegion *mr = sec->lmaRegion) { 1018 uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign); 1019 if (mr->curPos < lmaStart) 1020 expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); 1021 state->lmaOffset = lmaStart - dot; 1022 } else if (!sameMemRegion || !prevLMARegionIsDefault) { 1023 state->lmaOffset = 0; 1024 } 1025 1026 // On OpenBSD, the switchTo() call was here. 1027 1028 // Propagate state->lmaOffset to the first "non-header" section. 1029 if (PhdrEntry *l = sec->ptLoad) 1030 if (sec == findFirstSection(l)) 1031 l->lmaOffset = state->lmaOffset; 1032 1033 // We can call this method multiple times during the creation of 1034 // thunks and want to start over calculation each time. 1035 sec->size = 0; 1036 1037 // We visited SectionsCommands from processSectionCommands to 1038 // layout sections. Now, we visit SectionsCommands again to fix 1039 // section offsets. 1040 for (SectionCommand *cmd : sec->commands) { 1041 // This handles the assignments to symbol or to the dot. 1042 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1043 assign->addr = dot; 1044 assignSymbol(assign, true); 1045 assign->size = dot - assign->addr; 1046 continue; 1047 } 1048 1049 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 1050 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 1051 data->offset = dot - sec->addr; 1052 dot += data->size; 1053 expandOutputSection(data->size); 1054 continue; 1055 } 1056 1057 // Handle a single input section description command. 1058 // It calculates and assigns the offsets for each section and also 1059 // updates the output section size. 1060 for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) { 1061 assert(isec->getParent() == sec); 1062 const uint64_t pos = dot; 1063 dot = alignToPowerOf2(dot, isec->addralign); 1064 isec->outSecOff = dot - sec->addr; 1065 dot += isec->getSize(); 1066 1067 // Update output section size after adding each section. This is so that 1068 // SIZEOF works correctly in the case below: 1069 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 1070 expandOutputSection(dot - pos); 1071 } 1072 } 1073 1074 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1075 // as they are not part of the process image. 1076 if (!(sec->flags & SHF_ALLOC)) { 1077 dot = savedDot; 1078 } else if (isTbss) { 1079 // NOBITS TLS sections are similar. Additionally save the end address. 1080 state->tbssAddr = dot; 1081 dot = savedDot; 1082 } 1083 } 1084 1085 static bool isDiscardable(const OutputSection &sec) { 1086 if (sec.name == "/DISCARD/") 1087 return true; 1088 1089 // We do not want to remove OutputSections with expressions that reference 1090 // symbols even if the OutputSection is empty. We want to ensure that the 1091 // expressions can be evaluated and report an error if they cannot. 1092 if (sec.expressionsUseSymbols) 1093 return false; 1094 1095 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1096 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1097 // to maintain the integrity of the other Expression. 1098 if (sec.usedInExpression) 1099 return false; 1100 1101 for (SectionCommand *cmd : sec.commands) { 1102 if (auto assign = dyn_cast<SymbolAssignment>(cmd)) 1103 // Don't create empty output sections just for unreferenced PROVIDE 1104 // symbols. 1105 if (assign->name != "." && !assign->sym) 1106 continue; 1107 1108 if (!isa<InputSectionDescription>(*cmd)) 1109 return false; 1110 } 1111 return true; 1112 } 1113 1114 bool LinkerScript::isDiscarded(const OutputSection *sec) const { 1115 return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) && 1116 isDiscardable(*sec); 1117 } 1118 1119 static void maybePropagatePhdrs(OutputSection &sec, 1120 SmallVector<StringRef, 0> &phdrs) { 1121 if (sec.phdrs.empty()) { 1122 // To match the bfd linker script behaviour, only propagate program 1123 // headers to sections that are allocated. 1124 if (sec.flags & SHF_ALLOC) 1125 sec.phdrs = phdrs; 1126 } else { 1127 phdrs = sec.phdrs; 1128 } 1129 } 1130 1131 void LinkerScript::adjustOutputSections() { 1132 // If the output section contains only symbol assignments, create a 1133 // corresponding output section. The issue is what to do with linker script 1134 // like ".foo : { symbol = 42; }". One option would be to convert it to 1135 // "symbol = 42;". That is, move the symbol out of the empty section 1136 // description. That seems to be what bfd does for this simple case. The 1137 // problem is that this is not completely general. bfd will give up and 1138 // create a dummy section too if there is a ". = . + 1" inside the section 1139 // for example. 1140 // Given that we want to create the section, we have to worry what impact 1141 // it will have on the link. For example, if we just create a section with 1142 // 0 for flags, it would change which PT_LOADs are created. 1143 // We could remember that particular section is dummy and ignore it in 1144 // other parts of the linker, but unfortunately there are quite a few places 1145 // that would need to change: 1146 // * The program header creation. 1147 // * The orphan section placement. 1148 // * The address assignment. 1149 // The other option is to pick flags that minimize the impact the section 1150 // will have on the rest of the linker. That is why we copy the flags from 1151 // the previous sections. Only a few flags are needed to keep the impact low. 1152 uint64_t flags = SHF_ALLOC; 1153 1154 SmallVector<StringRef, 0> defPhdrs; 1155 for (SectionCommand *&cmd : sectionCommands) { 1156 if (!isa<OutputDesc>(cmd)) 1157 continue; 1158 auto *sec = &cast<OutputDesc>(cmd)->osec; 1159 1160 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1161 if (sec->alignExpr) 1162 sec->addralign = 1163 std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue()); 1164 1165 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1166 bool discardable = isEmpty && isDiscardable(*sec); 1167 // If sec has at least one input section and not discarded, remember its 1168 // flags to be inherited by subsequent output sections. (sec may contain 1169 // just one empty synthetic section.) 1170 if (sec->hasInputSections && !discardable) 1171 flags = sec->flags; 1172 1173 // We do not want to keep any special flags for output section 1174 // in case it is empty. 1175 if (isEmpty) 1176 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1177 SHF_WRITE | SHF_EXECINSTR); 1178 1179 // The code below may remove empty output sections. We should save the 1180 // specified program headers (if exist) and propagate them to subsequent 1181 // sections which do not specify program headers. 1182 // An example of such a linker script is: 1183 // SECTIONS { .empty : { *(.empty) } :rw 1184 // .foo : { *(.foo) } } 1185 // Note: at this point the order of output sections has not been finalized, 1186 // because orphans have not been inserted into their expected positions. We 1187 // will handle them in adjustSectionsAfterSorting(). 1188 if (sec->sectionIndex != UINT32_MAX) 1189 maybePropagatePhdrs(*sec, defPhdrs); 1190 1191 if (discardable) { 1192 sec->markDead(); 1193 cmd = nullptr; 1194 } 1195 } 1196 1197 // It is common practice to use very generic linker scripts. So for any 1198 // given run some of the output sections in the script will be empty. 1199 // We could create corresponding empty output sections, but that would 1200 // clutter the output. 1201 // We instead remove trivially empty sections. The bfd linker seems even 1202 // more aggressive at removing them. 1203 llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; }); 1204 } 1205 1206 void LinkerScript::adjustSectionsAfterSorting() { 1207 // Try and find an appropriate memory region to assign offsets in. 1208 MemoryRegion *hint = nullptr; 1209 for (SectionCommand *cmd : sectionCommands) { 1210 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1211 OutputSection *sec = &osd->osec; 1212 if (!sec->lmaRegionName.empty()) { 1213 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1214 sec->lmaRegion = m; 1215 else 1216 error("memory region '" + sec->lmaRegionName + "' not declared"); 1217 } 1218 std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); 1219 } 1220 } 1221 1222 // If output section command doesn't specify any segments, 1223 // and we haven't previously assigned any section to segment, 1224 // then we simply assign section to the very first load segment. 1225 // Below is an example of such linker script: 1226 // PHDRS { seg PT_LOAD; } 1227 // SECTIONS { .aaa : { *(.aaa) } } 1228 SmallVector<StringRef, 0> defPhdrs; 1229 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1230 return cmd.type == PT_LOAD; 1231 }); 1232 if (firstPtLoad != phdrsCommands.end()) 1233 defPhdrs.push_back(firstPtLoad->name); 1234 1235 // Walk the commands and propagate the program headers to commands that don't 1236 // explicitly specify them. 1237 for (SectionCommand *cmd : sectionCommands) 1238 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1239 maybePropagatePhdrs(osd->osec, defPhdrs); 1240 } 1241 1242 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1243 // If there is no SECTIONS or if the linkerscript is explicit about program 1244 // headers, do our best to allocate them. 1245 if (!script->hasSectionsCommand || allocateHeaders) 1246 return 0; 1247 // Otherwise only allocate program headers if that would not add a page. 1248 return alignDown(min, config->maxPageSize); 1249 } 1250 1251 // When the SECTIONS command is used, try to find an address for the file and 1252 // program headers output sections, which can be added to the first PT_LOAD 1253 // segment when program headers are created. 1254 // 1255 // We check if the headers fit below the first allocated section. If there isn't 1256 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1257 // and we'll also remove the PT_PHDR segment. 1258 void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) { 1259 uint64_t min = std::numeric_limits<uint64_t>::max(); 1260 for (OutputSection *sec : outputSections) 1261 if (sec->flags & SHF_ALLOC) 1262 min = std::min<uint64_t>(min, sec->addr); 1263 1264 auto it = llvm::find_if( 1265 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1266 if (it == phdrs.end()) 1267 return; 1268 PhdrEntry *firstPTLoad = *it; 1269 1270 bool hasExplicitHeaders = 1271 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1272 return cmd.hasPhdrs || cmd.hasFilehdr; 1273 }); 1274 bool paged = !config->omagic && !config->nmagic; 1275 uint64_t headerSize = getHeaderSize(); 1276 if ((paged || hasExplicitHeaders) && 1277 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1278 min = alignDown(min - headerSize, config->maxPageSize); 1279 Out::elfHeader->addr = min; 1280 Out::programHeaders->addr = min + Out::elfHeader->size; 1281 return; 1282 } 1283 1284 // Error if we were explicitly asked to allocate headers. 1285 if (hasExplicitHeaders) 1286 error("could not allocate headers"); 1287 1288 Out::elfHeader->ptLoad = nullptr; 1289 Out::programHeaders->ptLoad = nullptr; 1290 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1291 1292 llvm::erase_if(phdrs, 1293 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1294 } 1295 1296 LinkerScript::AddressState::AddressState() { 1297 for (auto &mri : script->memoryRegions) { 1298 MemoryRegion *mr = mri.second; 1299 mr->curPos = (mr->origin)().getValue(); 1300 } 1301 } 1302 1303 // Here we assign addresses as instructed by linker script SECTIONS 1304 // sub-commands. Doing that allows us to use final VA values, so here 1305 // we also handle rest commands like symbol assignments and ASSERTs. 1306 // Returns a symbol that has changed its section or value, or nullptr if no 1307 // symbol has changed. 1308 const Defined *LinkerScript::assignAddresses() { 1309 if (script->hasSectionsCommand) { 1310 // With a linker script, assignment of addresses to headers is covered by 1311 // allocateHeaders(). 1312 dot = config->imageBase.value_or(0); 1313 } else { 1314 // Assign addresses to headers right now. 1315 dot = target->getImageBase(); 1316 Out::elfHeader->addr = dot; 1317 Out::programHeaders->addr = dot + Out::elfHeader->size; 1318 dot += getHeaderSize(); 1319 } 1320 1321 AddressState st; 1322 state = &st; 1323 errorOnMissingSection = true; 1324 st.outSec = aether; 1325 1326 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1327 for (SectionCommand *cmd : sectionCommands) { 1328 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1329 assign->addr = dot; 1330 assignSymbol(assign, false); 1331 assign->size = dot - assign->addr; 1332 continue; 1333 } 1334 assignOffsets(&cast<OutputDesc>(cmd)->osec); 1335 } 1336 1337 state = nullptr; 1338 return getChangedSymbolAssignment(oldValues); 1339 } 1340 1341 // Creates program headers as instructed by PHDRS linker script command. 1342 SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() { 1343 SmallVector<PhdrEntry *, 0> ret; 1344 1345 // Process PHDRS and FILEHDR keywords because they are not 1346 // real output sections and cannot be added in the following loop. 1347 for (const PhdrsCommand &cmd : phdrsCommands) { 1348 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.value_or(PF_R)); 1349 1350 if (cmd.hasFilehdr) 1351 phdr->add(Out::elfHeader); 1352 if (cmd.hasPhdrs) 1353 phdr->add(Out::programHeaders); 1354 1355 if (cmd.lmaExpr) { 1356 phdr->p_paddr = cmd.lmaExpr().getValue(); 1357 phdr->hasLMA = true; 1358 } 1359 ret.push_back(phdr); 1360 } 1361 1362 // Add output sections to program headers. 1363 for (OutputSection *sec : outputSections) { 1364 // Assign headers specified by linker script 1365 for (size_t id : getPhdrIndices(sec)) { 1366 ret[id]->add(sec); 1367 if (!phdrsCommands[id].flags) 1368 ret[id]->p_flags |= sec->getPhdrFlags(); 1369 } 1370 } 1371 return ret; 1372 } 1373 1374 // Returns true if we should emit an .interp section. 1375 // 1376 // We usually do. But if PHDRS commands are given, and 1377 // no PT_INTERP is there, there's no place to emit an 1378 // .interp, so we don't do that in that case. 1379 bool LinkerScript::needsInterpSection() { 1380 if (phdrsCommands.empty()) 1381 return true; 1382 for (PhdrsCommand &cmd : phdrsCommands) 1383 if (cmd.type == PT_INTERP) 1384 return true; 1385 return false; 1386 } 1387 1388 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1389 if (name == ".") { 1390 if (state) 1391 return {state->outSec, false, dot - state->outSec->addr, loc}; 1392 error(loc + ": unable to get location counter value"); 1393 return 0; 1394 } 1395 1396 if (Symbol *sym = symtab.find(name)) { 1397 if (auto *ds = dyn_cast<Defined>(sym)) { 1398 ExprValue v{ds->section, false, ds->value, loc}; 1399 // Retain the original st_type, so that the alias will get the same 1400 // behavior in relocation processing. Any operation will reset st_type to 1401 // STT_NOTYPE. 1402 v.type = ds->type; 1403 return v; 1404 } 1405 if (isa<SharedSymbol>(sym)) 1406 if (!errorOnMissingSection) 1407 return {nullptr, false, 0, loc}; 1408 } 1409 1410 error(loc + ": symbol not found: " + name); 1411 return 0; 1412 } 1413 1414 // Returns the index of the segment named Name. 1415 static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1416 StringRef name) { 1417 for (size_t i = 0; i < vec.size(); ++i) 1418 if (vec[i].name == name) 1419 return i; 1420 return std::nullopt; 1421 } 1422 1423 // Returns indices of ELF headers containing specific section. Each index is a 1424 // zero based number of ELF header listed within PHDRS {} script block. 1425 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1426 SmallVector<size_t, 0> ret; 1427 1428 for (StringRef s : cmd->phdrs) { 1429 if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1430 ret.push_back(*idx); 1431 else if (s != "NONE") 1432 error(cmd->location + ": program header '" + s + 1433 "' is not listed in PHDRS"); 1434 } 1435 return ret; 1436 } 1437