1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 using namespace llvm::sys; 39 40 namespace lld { 41 // Returns a string to construct an error message. 42 std::string toString(const elf::InputSectionBase *sec) { 43 return (toString(sec->file) + ":(" + sec->name + ")").str(); 44 } 45 46 namespace elf { 47 std::vector<InputSectionBase *> inputSections; 48 49 template <class ELFT> 50 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 51 const typename ELFT::Shdr &hdr) { 52 if (hdr.sh_type == SHT_NOBITS) 53 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 54 return check(file.getObj().getSectionContents(&hdr)); 55 } 56 57 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 58 uint32_t type, uint64_t entsize, 59 uint32_t link, uint32_t info, 60 uint32_t alignment, ArrayRef<uint8_t> data, 61 StringRef name, Kind sectionKind) 62 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 63 link), 64 file(file), rawData(data) { 65 // In order to reduce memory allocation, we assume that mergeable 66 // sections are smaller than 4 GiB, which is not an unreasonable 67 // assumption as of 2017. 68 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 69 error(toString(this) + ": section too large"); 70 71 numRelocations = 0; 72 areRelocsRela = false; 73 74 // The ELF spec states that a value of 0 means the section has 75 // no alignment constraints. 76 uint32_t v = std::max<uint32_t>(alignment, 1); 77 if (!isPowerOf2_64(v)) 78 fatal(toString(this) + ": sh_addralign is not a power of 2"); 79 this->alignment = v; 80 81 // In ELF, each section can be compressed by zlib, and if compressed, 82 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 83 // If that's the case, demangle section name so that we can handle a 84 // section as if it weren't compressed. 85 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 86 if (!zlib::isAvailable()) 87 error(toString(file) + ": contains a compressed section, " + 88 "but zlib is not available"); 89 parseCompressedHeader(); 90 } 91 } 92 93 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 94 // SHF_GROUP is a marker that a section belongs to some comdat group. 95 // That flag doesn't make sense in an executable. 96 static uint64_t getFlags(uint64_t flags) { 97 flags &= ~(uint64_t)SHF_INFO_LINK; 98 if (!config->relocatable) 99 flags &= ~(uint64_t)SHF_GROUP; 100 return flags; 101 } 102 103 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 104 // March 2017) fail to infer section types for sections starting with 105 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 106 // SHF_INIT_ARRAY. As a result, the following assembler directive 107 // creates ".init_array.100" with SHT_PROGBITS, for example. 108 // 109 // .section .init_array.100, "aw" 110 // 111 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 112 // incorrect inputs as if they were correct from the beginning. 113 static uint64_t getType(uint64_t type, StringRef name) { 114 if (type == SHT_PROGBITS && name.startswith(".init_array.")) 115 return SHT_INIT_ARRAY; 116 if (type == SHT_PROGBITS && name.startswith(".fini_array.")) 117 return SHT_FINI_ARRAY; 118 return type; 119 } 120 121 template <class ELFT> 122 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 123 const typename ELFT::Shdr &hdr, 124 StringRef name, Kind sectionKind) 125 : InputSectionBase(&file, getFlags(hdr.sh_flags), 126 getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link, 127 hdr.sh_info, hdr.sh_addralign, 128 getSectionContents(file, hdr), name, sectionKind) { 129 // We reject object files having insanely large alignments even though 130 // they are allowed by the spec. I think 4GB is a reasonable limitation. 131 // We might want to relax this in the future. 132 if (hdr.sh_addralign > UINT32_MAX) 133 fatal(toString(&file) + ": section sh_addralign is too large"); 134 } 135 136 size_t InputSectionBase::getSize() const { 137 if (auto *s = dyn_cast<SyntheticSection>(this)) 138 return s->getSize(); 139 if (uncompressedSize >= 0) 140 return uncompressedSize; 141 return rawData.size(); 142 } 143 144 void InputSectionBase::uncompress() const { 145 size_t size = uncompressedSize; 146 char *uncompressedBuf; 147 { 148 static std::mutex mu; 149 std::lock_guard<std::mutex> lock(mu); 150 uncompressedBuf = bAlloc.Allocate<char>(size); 151 } 152 153 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 154 fatal(toString(this) + 155 ": uncompress failed: " + llvm::toString(std::move(e))); 156 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 157 uncompressedSize = -1; 158 } 159 160 uint64_t InputSectionBase::getOffsetInFile() const { 161 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 162 const uint8_t *secStart = data().begin(); 163 return secStart - fileStart; 164 } 165 166 uint64_t SectionBase::getOffset(uint64_t offset) const { 167 switch (kind()) { 168 case Output: { 169 auto *os = cast<OutputSection>(this); 170 // For output sections we treat offset -1 as the end of the section. 171 return offset == uint64_t(-1) ? os->size : offset; 172 } 173 case Regular: 174 case Synthetic: 175 return cast<InputSection>(this)->getOffset(offset); 176 case EHFrame: 177 // The file crtbeginT.o has relocations pointing to the start of an empty 178 // .eh_frame that is known to be the first in the link. It does that to 179 // identify the start of the output .eh_frame. 180 return offset; 181 case Merge: 182 const MergeInputSection *ms = cast<MergeInputSection>(this); 183 if (InputSection *isec = ms->getParent()) 184 return isec->getOffset(ms->getParentOffset(offset)); 185 return ms->getParentOffset(offset); 186 } 187 llvm_unreachable("invalid section kind"); 188 } 189 190 uint64_t SectionBase::getVA(uint64_t offset) const { 191 const OutputSection *out = getOutputSection(); 192 return (out ? out->addr : 0) + getOffset(offset); 193 } 194 195 OutputSection *SectionBase::getOutputSection() { 196 InputSection *sec; 197 if (auto *isec = dyn_cast<InputSection>(this)) 198 sec = isec; 199 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 200 sec = ms->getParent(); 201 else if (auto *eh = dyn_cast<EhInputSection>(this)) 202 sec = eh->getParent(); 203 else 204 return cast<OutputSection>(this); 205 return sec ? sec->getParent() : nullptr; 206 } 207 208 // When a section is compressed, `rawData` consists with a header followed 209 // by zlib-compressed data. This function parses a header to initialize 210 // `uncompressedSize` member and remove the header from `rawData`. 211 void InputSectionBase::parseCompressedHeader() { 212 using Chdr64 = typename ELF64LE::Chdr; 213 using Chdr32 = typename ELF32LE::Chdr; 214 215 // Old-style header 216 if (name.startswith(".zdebug")) { 217 if (!toStringRef(rawData).startswith("ZLIB")) { 218 error(toString(this) + ": corrupted compressed section header"); 219 return; 220 } 221 rawData = rawData.slice(4); 222 223 if (rawData.size() < 8) { 224 error(toString(this) + ": corrupted compressed section header"); 225 return; 226 } 227 228 uncompressedSize = read64be(rawData.data()); 229 rawData = rawData.slice(8); 230 231 // Restore the original section name. 232 // (e.g. ".zdebug_info" -> ".debug_info") 233 name = saver.save("." + name.substr(2)); 234 return; 235 } 236 237 assert(flags & SHF_COMPRESSED); 238 flags &= ~(uint64_t)SHF_COMPRESSED; 239 240 // New-style 64-bit header 241 if (config->is64) { 242 if (rawData.size() < sizeof(Chdr64)) { 243 error(toString(this) + ": corrupted compressed section"); 244 return; 245 } 246 247 auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data()); 248 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 249 error(toString(this) + ": unsupported compression type"); 250 return; 251 } 252 253 uncompressedSize = hdr->ch_size; 254 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 255 rawData = rawData.slice(sizeof(*hdr)); 256 return; 257 } 258 259 // New-style 32-bit header 260 if (rawData.size() < sizeof(Chdr32)) { 261 error(toString(this) + ": corrupted compressed section"); 262 return; 263 } 264 265 auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data()); 266 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 267 error(toString(this) + ": unsupported compression type"); 268 return; 269 } 270 271 uncompressedSize = hdr->ch_size; 272 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 273 rawData = rawData.slice(sizeof(*hdr)); 274 } 275 276 InputSection *InputSectionBase::getLinkOrderDep() const { 277 assert(link); 278 assert(flags & SHF_LINK_ORDER); 279 return cast<InputSection>(file->getSections()[link]); 280 } 281 282 // Find a function symbol that encloses a given location. 283 template <class ELFT> 284 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 285 for (Symbol *b : file->getSymbols()) 286 if (Defined *d = dyn_cast<Defined>(b)) 287 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 288 offset < d->value + d->size) 289 return d; 290 return nullptr; 291 } 292 293 // Returns a source location string. Used to construct an error message. 294 template <class ELFT> 295 std::string InputSectionBase::getLocation(uint64_t offset) { 296 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); 297 298 // We don't have file for synthetic sections. 299 if (getFile<ELFT>() == nullptr) 300 return (config->outputFile + ":(" + secAndOffset + ")") 301 .str(); 302 303 // First check if we can get desired values from debugging information. 304 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) 305 return info->FileName + ":" + std::to_string(info->Line) + ":(" + 306 secAndOffset + ")"; 307 308 // File->sourceFile contains STT_FILE symbol that contains a 309 // source file name. If it's missing, we use an object file name. 310 std::string srcFile = getFile<ELFT>()->sourceFile; 311 if (srcFile.empty()) 312 srcFile = toString(file); 313 314 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 315 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; 316 317 // If there's no symbol, print out the offset in the section. 318 return (srcFile + ":(" + secAndOffset + ")"); 319 } 320 321 // This function is intended to be used for constructing an error message. 322 // The returned message looks like this: 323 // 324 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 325 // 326 // Returns an empty string if there's no way to get line info. 327 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 328 return file->getSrcMsg(sym, *this, offset); 329 } 330 331 // Returns a filename string along with an optional section name. This 332 // function is intended to be used for constructing an error 333 // message. The returned message looks like this: 334 // 335 // path/to/foo.o:(function bar) 336 // 337 // or 338 // 339 // path/to/foo.o:(function bar) in archive path/to/bar.a 340 std::string InputSectionBase::getObjMsg(uint64_t off) { 341 std::string filename = file->getName(); 342 343 std::string archive; 344 if (!file->archiveName.empty()) 345 archive = " in archive " + file->archiveName; 346 347 // Find a symbol that encloses a given location. 348 for (Symbol *b : file->getSymbols()) 349 if (auto *d = dyn_cast<Defined>(b)) 350 if (d->section == this && d->value <= off && off < d->value + d->size) 351 return filename + ":(" + toString(*d) + ")" + archive; 352 353 // If there's no symbol, print out the offset in the section. 354 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 355 .str(); 356 } 357 358 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 359 360 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 361 uint32_t alignment, ArrayRef<uint8_t> data, 362 StringRef name, Kind k) 363 : InputSectionBase(f, flags, type, 364 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 365 name, k) {} 366 367 template <class ELFT> 368 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 369 StringRef name) 370 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 371 372 bool InputSection::classof(const SectionBase *s) { 373 return s->kind() == SectionBase::Regular || 374 s->kind() == SectionBase::Synthetic; 375 } 376 377 OutputSection *InputSection::getParent() const { 378 return cast_or_null<OutputSection>(parent); 379 } 380 381 // Copy SHT_GROUP section contents. Used only for the -r option. 382 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 383 // ELFT::Word is the 32-bit integral type in the target endianness. 384 using u32 = typename ELFT::Word; 385 ArrayRef<u32> from = getDataAs<u32>(); 386 auto *to = reinterpret_cast<u32 *>(buf); 387 388 // The first entry is not a section number but a flag. 389 *to++ = from[0]; 390 391 // Adjust section numbers because section numbers in an input object 392 // files are different in the output. 393 ArrayRef<InputSectionBase *> sections = file->getSections(); 394 for (uint32_t idx : from.slice(1)) 395 *to++ = sections[idx]->getOutputSection()->sectionIndex; 396 } 397 398 InputSectionBase *InputSection::getRelocatedSection() const { 399 if (!file || (type != SHT_RELA && type != SHT_REL)) 400 return nullptr; 401 ArrayRef<InputSectionBase *> sections = file->getSections(); 402 return sections[info]; 403 } 404 405 // This is used for -r and --emit-relocs. We can't use memcpy to copy 406 // relocations because we need to update symbol table offset and section index 407 // for each relocation. So we copy relocations one by one. 408 template <class ELFT, class RelTy> 409 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 410 InputSectionBase *sec = getRelocatedSection(); 411 412 for (const RelTy &rel : rels) { 413 RelType type = rel.getType(config->isMips64EL); 414 const ObjFile<ELFT> *file = getFile<ELFT>(); 415 Symbol &sym = file->getRelocTargetSym(rel); 416 417 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 418 buf += sizeof(RelTy); 419 420 if (RelTy::IsRela) 421 p->r_addend = getAddend<ELFT>(rel); 422 423 // Output section VA is zero for -r, so r_offset is an offset within the 424 // section, but for --emit-relocs it is a virtual address. 425 p->r_offset = sec->getVA(rel.r_offset); 426 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 427 config->isMips64EL); 428 429 if (sym.type == STT_SECTION) { 430 // We combine multiple section symbols into only one per 431 // section. This means we have to update the addend. That is 432 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 433 // section data. We do that by adding to the Relocation vector. 434 435 // .eh_frame is horribly special and can reference discarded sections. To 436 // avoid having to parse and recreate .eh_frame, we just replace any 437 // relocation in it pointing to discarded sections with R_*_NONE, which 438 // hopefully creates a frame that is ignored at runtime. Also, don't warn 439 // on .gcc_except_table and debug sections. 440 // 441 // See the comment in maybeReportUndefined for PPC64 .toc . 442 auto *d = dyn_cast<Defined>(&sym); 443 if (!d) { 444 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 445 sec->name != ".gcc_except_table" && sec->name != ".toc") { 446 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 447 Elf_Shdr_Impl<ELFT> sec = 448 CHECK(file->getObj().sections(), file)[secIdx]; 449 warn("relocation refers to a discarded section: " + 450 CHECK(file->getObj().getSectionName(&sec), file) + 451 "\n>>> referenced by " + getObjMsg(p->r_offset)); 452 } 453 p->setSymbolAndType(0, 0, false); 454 continue; 455 } 456 SectionBase *section = d->section->repl; 457 if (!section->isLive()) { 458 p->setSymbolAndType(0, 0, false); 459 continue; 460 } 461 462 int64_t addend = getAddend<ELFT>(rel); 463 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 464 if (!RelTy::IsRela) 465 addend = target->getImplicitAddend(bufLoc, type); 466 467 if (config->emachine == EM_MIPS && config->relocatable && 468 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 469 // Some MIPS relocations depend on "gp" value. By default, 470 // this value has 0x7ff0 offset from a .got section. But 471 // relocatable files produced by a compiler or a linker 472 // might redefine this default value and we must use it 473 // for a calculation of the relocation result. When we 474 // generate EXE or DSO it's trivial. Generating a relocatable 475 // output is more difficult case because the linker does 476 // not calculate relocations in this mode and loses 477 // individual "gp" values used by each input object file. 478 // As a workaround we add the "gp" value to the relocation 479 // addend and save it back to the file. 480 addend += sec->getFile<ELFT>()->mipsGp0; 481 } 482 483 if (RelTy::IsRela) 484 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 485 else if (config->relocatable && type != target->noneRel) 486 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 487 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 488 p->r_addend >= 0x8000) { 489 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 490 // indicates that r30 is relative to the input section .got2 491 // (r_addend>=0x8000), after linking, r30 should be relative to the output 492 // section .got2 . To compensate for the shift, adjust r_addend by 493 // ppc32Got2OutSecOff. 494 p->r_addend += sec->file->ppc32Got2OutSecOff; 495 } 496 } 497 } 498 499 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 500 // references specially. The general rule is that the value of the symbol in 501 // this context is the address of the place P. A further special case is that 502 // branch relocations to an undefined weak reference resolve to the next 503 // instruction. 504 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 505 uint32_t p) { 506 switch (type) { 507 // Unresolved branch relocations to weak references resolve to next 508 // instruction, this will be either 2 or 4 bytes on from P. 509 case R_ARM_THM_JUMP11: 510 return p + 2 + a; 511 case R_ARM_CALL: 512 case R_ARM_JUMP24: 513 case R_ARM_PC24: 514 case R_ARM_PLT32: 515 case R_ARM_PREL31: 516 case R_ARM_THM_JUMP19: 517 case R_ARM_THM_JUMP24: 518 return p + 4 + a; 519 case R_ARM_THM_CALL: 520 // We don't want an interworking BLX to ARM 521 return p + 5 + a; 522 // Unresolved non branch pc-relative relocations 523 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 524 // targets a weak-reference. 525 case R_ARM_MOVW_PREL_NC: 526 case R_ARM_MOVT_PREL: 527 case R_ARM_REL32: 528 case R_ARM_THM_MOVW_PREL_NC: 529 case R_ARM_THM_MOVT_PREL: 530 return p + a; 531 } 532 llvm_unreachable("ARM pc-relative relocation expected\n"); 533 } 534 535 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 536 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a, 537 uint64_t p) { 538 switch (type) { 539 // Unresolved branch relocations to weak references resolve to next 540 // instruction, this is 4 bytes on from P. 541 case R_AARCH64_CALL26: 542 case R_AARCH64_CONDBR19: 543 case R_AARCH64_JUMP26: 544 case R_AARCH64_TSTBR14: 545 return p + 4 + a; 546 // Unresolved non branch pc-relative relocations 547 case R_AARCH64_PREL16: 548 case R_AARCH64_PREL32: 549 case R_AARCH64_PREL64: 550 case R_AARCH64_ADR_PREL_LO21: 551 case R_AARCH64_LD_PREL_LO19: 552 return p + a; 553 } 554 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 555 } 556 557 // ARM SBREL relocations are of the form S + A - B where B is the static base 558 // The ARM ABI defines base to be "addressing origin of the output segment 559 // defining the symbol S". We defined the "addressing origin"/static base to be 560 // the base of the PT_LOAD segment containing the Sym. 561 // The procedure call standard only defines a Read Write Position Independent 562 // RWPI variant so in practice we should expect the static base to be the base 563 // of the RW segment. 564 static uint64_t getARMStaticBase(const Symbol &sym) { 565 OutputSection *os = sym.getOutputSection(); 566 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 567 fatal("SBREL relocation to " + sym.getName() + " without static base"); 568 return os->ptLoad->firstSec->addr; 569 } 570 571 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 572 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 573 // is calculated using PCREL_HI20's symbol. 574 // 575 // This function returns the R_RISCV_PCREL_HI20 relocation from 576 // R_RISCV_PCREL_LO12's symbol and addend. 577 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 578 const Defined *d = cast<Defined>(sym); 579 if (!d->section) { 580 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 581 sym->getName()); 582 return nullptr; 583 } 584 InputSection *isec = cast<InputSection>(d->section); 585 586 if (addend != 0) 587 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 588 isec->getObjMsg(d->value) + " is ignored"); 589 590 // Relocations are sorted by offset, so we can use std::equal_range to do 591 // binary search. 592 Relocation r; 593 r.offset = d->value; 594 auto range = 595 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 596 [](const Relocation &lhs, const Relocation &rhs) { 597 return lhs.offset < rhs.offset; 598 }); 599 600 for (auto it = range.first; it != range.second; ++it) 601 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 602 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 603 return &*it; 604 605 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 606 " without an associated R_RISCV_PCREL_HI20 relocation"); 607 return nullptr; 608 } 609 610 // A TLS symbol's virtual address is relative to the TLS segment. Add a 611 // target-specific adjustment to produce a thread-pointer-relative offset. 612 static int64_t getTlsTpOffset(const Symbol &s) { 613 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 614 if (&s == ElfSym::tlsModuleBase) 615 return 0; 616 617 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 618 // while most others use Variant 1. At run time TP will be aligned to p_align. 619 620 // Variant 1. TP will be followed by an optional gap (which is the size of 2 621 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 622 // padding, then the static TLS blocks. The alignment padding is added so that 623 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 624 // 625 // Variant 2. Static TLS blocks, followed by alignment padding are placed 626 // before TP. The alignment padding is added so that (TP - padding - 627 // p_memsz) is congruent to p_vaddr modulo p_align. 628 PhdrEntry *tls = Out::tlsPhdr; 629 switch (config->emachine) { 630 // Variant 1. 631 case EM_ARM: 632 case EM_AARCH64: 633 return s.getVA(0) + config->wordsize * 2 + 634 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 635 case EM_MIPS: 636 case EM_PPC: 637 case EM_PPC64: 638 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 639 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 640 // data and 0xf000 of the program's TLS segment. 641 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 642 case EM_RISCV: 643 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 644 645 // Variant 2. 646 case EM_HEXAGON: 647 case EM_386: 648 case EM_X86_64: 649 return s.getVA(0) - tls->p_memsz - 650 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 651 default: 652 llvm_unreachable("unhandled Config->EMachine"); 653 } 654 } 655 656 static uint64_t getRelocTargetVA(const InputFile *file, RelType type, int64_t a, 657 uint64_t p, const Symbol &sym, RelExpr expr) { 658 switch (expr) { 659 case R_ABS: 660 case R_DTPREL: 661 case R_RELAX_TLS_LD_TO_LE_ABS: 662 case R_RELAX_GOT_PC_NOPIC: 663 case R_RISCV_ADD: 664 return sym.getVA(a); 665 case R_ADDEND: 666 return a; 667 case R_ARM_SBREL: 668 return sym.getVA(a) - getARMStaticBase(sym); 669 case R_GOT: 670 case R_RELAX_TLS_GD_TO_IE_ABS: 671 return sym.getGotVA() + a; 672 case R_GOTONLY_PC: 673 return in.got->getVA() + a - p; 674 case R_GOTPLTONLY_PC: 675 return in.gotPlt->getVA() + a - p; 676 case R_GOTREL: 677 case R_PPC64_RELAX_TOC: 678 return sym.getVA(a) - in.got->getVA(); 679 case R_GOTPLTREL: 680 return sym.getVA(a) - in.gotPlt->getVA(); 681 case R_GOTPLT: 682 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 683 return sym.getGotVA() + a - in.gotPlt->getVA(); 684 case R_TLSLD_GOT_OFF: 685 case R_GOT_OFF: 686 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 687 return sym.getGotOffset() + a; 688 case R_AARCH64_GOT_PAGE_PC: 689 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 690 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 691 case R_GOT_PC: 692 case R_RELAX_TLS_GD_TO_IE: 693 return sym.getGotVA() + a - p; 694 case R_MIPS_GOTREL: 695 return sym.getVA(a) - in.mipsGot->getGp(file); 696 case R_MIPS_GOT_GP: 697 return in.mipsGot->getGp(file) + a; 698 case R_MIPS_GOT_GP_PC: { 699 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 700 // is _gp_disp symbol. In that case we should use the following 701 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 702 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 703 // microMIPS variants of these relocations use slightly different 704 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 705 // to correctly handle less-sugnificant bit of the microMIPS symbol. 706 uint64_t v = in.mipsGot->getGp(file) + a - p; 707 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 708 v += 4; 709 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 710 v -= 1; 711 return v; 712 } 713 case R_MIPS_GOT_LOCAL_PAGE: 714 // If relocation against MIPS local symbol requires GOT entry, this entry 715 // should be initialized by 'page address'. This address is high 16-bits 716 // of sum the symbol's value and the addend. 717 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 718 in.mipsGot->getGp(file); 719 case R_MIPS_GOT_OFF: 720 case R_MIPS_GOT_OFF32: 721 // In case of MIPS if a GOT relocation has non-zero addend this addend 722 // should be applied to the GOT entry content not to the GOT entry offset. 723 // That is why we use separate expression type. 724 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 725 in.mipsGot->getGp(file); 726 case R_MIPS_TLSGD: 727 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 728 in.mipsGot->getGp(file); 729 case R_MIPS_TLSLD: 730 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 731 in.mipsGot->getGp(file); 732 case R_AARCH64_PAGE_PC: { 733 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 734 return getAArch64Page(val) - getAArch64Page(p); 735 } 736 case R_RISCV_PC_INDIRECT: { 737 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 738 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 739 *hiRel->sym, hiRel->expr); 740 return 0; 741 } 742 case R_PC: { 743 uint64_t dest; 744 if (sym.isUndefWeak()) { 745 // On ARM and AArch64 a branch to an undefined weak resolves to the 746 // next instruction, otherwise the place. 747 if (config->emachine == EM_ARM) 748 dest = getARMUndefinedRelativeWeakVA(type, a, p); 749 else if (config->emachine == EM_AARCH64) 750 dest = getAArch64UndefinedRelativeWeakVA(type, a, p); 751 else if (config->emachine == EM_PPC) 752 dest = p; 753 else 754 dest = sym.getVA(a); 755 } else { 756 dest = sym.getVA(a); 757 } 758 return dest - p; 759 } 760 case R_PLT: 761 return sym.getPltVA() + a; 762 case R_PLT_PC: 763 case R_PPC64_CALL_PLT: 764 return sym.getPltVA() + a - p; 765 case R_PPC32_PLTREL: 766 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 767 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 768 // target VA computation. 769 return sym.getPltVA() - p; 770 case R_PPC64_CALL: { 771 uint64_t symVA = sym.getVA(a); 772 // If we have an undefined weak symbol, we might get here with a symbol 773 // address of zero. That could overflow, but the code must be unreachable, 774 // so don't bother doing anything at all. 775 if (!symVA) 776 return 0; 777 778 // PPC64 V2 ABI describes two entry points to a function. The global entry 779 // point is used for calls where the caller and callee (may) have different 780 // TOC base pointers and r2 needs to be modified to hold the TOC base for 781 // the callee. For local calls the caller and callee share the same 782 // TOC base and so the TOC pointer initialization code should be skipped by 783 // branching to the local entry point. 784 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 785 } 786 case R_PPC64_TOCBASE: 787 return getPPC64TocBase() + a; 788 case R_RELAX_GOT_PC: 789 return sym.getVA(a) - p; 790 case R_RELAX_TLS_GD_TO_LE: 791 case R_RELAX_TLS_IE_TO_LE: 792 case R_RELAX_TLS_LD_TO_LE: 793 case R_TLS: 794 // It is not very clear what to return if the symbol is undefined. With 795 // --noinhibit-exec, even a non-weak undefined reference may reach here. 796 // Just return A, which matches R_ABS, and the behavior of some dynamic 797 // loaders. 798 if (sym.isUndefined()) 799 return a; 800 return getTlsTpOffset(sym) + a; 801 case R_RELAX_TLS_GD_TO_LE_NEG: 802 case R_NEG_TLS: 803 if (sym.isUndefined()) 804 return a; 805 return -getTlsTpOffset(sym) + a; 806 case R_SIZE: 807 return sym.getSize() + a; 808 case R_TLSDESC: 809 return in.got->getGlobalDynAddr(sym) + a; 810 case R_TLSDESC_PC: 811 return in.got->getGlobalDynAddr(sym) + a - p; 812 case R_AARCH64_TLSDESC_PAGE: 813 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 814 getAArch64Page(p); 815 case R_TLSGD_GOT: 816 return in.got->getGlobalDynOffset(sym) + a; 817 case R_TLSGD_GOTPLT: 818 return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA(); 819 case R_TLSGD_PC: 820 return in.got->getGlobalDynAddr(sym) + a - p; 821 case R_TLSLD_GOTPLT: 822 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 823 case R_TLSLD_GOT: 824 return in.got->getTlsIndexOff() + a; 825 case R_TLSLD_PC: 826 return in.got->getTlsIndexVA() + a - p; 827 default: 828 llvm_unreachable("invalid expression"); 829 } 830 } 831 832 // This function applies relocations to sections without SHF_ALLOC bit. 833 // Such sections are never mapped to memory at runtime. Debug sections are 834 // an example. Relocations in non-alloc sections are much easier to 835 // handle than in allocated sections because it will never need complex 836 // treatment such as GOT or PLT (because at runtime no one refers them). 837 // So, we handle relocations for non-alloc sections directly in this 838 // function as a performance optimization. 839 template <class ELFT, class RelTy> 840 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 841 const unsigned bits = sizeof(typename ELFT::uint) * 8; 842 843 for (const RelTy &rel : rels) { 844 RelType type = rel.getType(config->isMips64EL); 845 846 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 847 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 848 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 849 // need to keep this bug-compatible code for a while. 850 if (config->emachine == EM_386 && type == R_386_GOTPC) 851 continue; 852 853 uint64_t offset = getOffset(rel.r_offset); 854 uint8_t *bufLoc = buf + offset; 855 int64_t addend = getAddend<ELFT>(rel); 856 if (!RelTy::IsRela) 857 addend += target->getImplicitAddend(bufLoc, type); 858 859 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 860 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 861 if (expr == R_NONE) 862 continue; 863 864 if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) { 865 std::string msg = getLocation<ELFT>(offset) + 866 ": has non-ABS relocation " + toString(type) + 867 " against symbol '" + toString(sym) + "'"; 868 if (expr != R_PC) { 869 error(msg); 870 return; 871 } 872 873 // If the control reaches here, we found a PC-relative relocation in a 874 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 875 // at runtime, the notion of PC-relative doesn't make sense here. So, 876 // this is a usage error. However, GNU linkers historically accept such 877 // relocations without any errors and relocate them as if they were at 878 // address 0. For bug-compatibilty, we accept them with warnings. We 879 // know Steel Bank Common Lisp as of 2018 have this bug. 880 warn(msg); 881 target->relocateOne(bufLoc, type, 882 SignExtend64<bits>(sym.getVA(addend - offset))); 883 continue; 884 } 885 886 if (sym.isTls() && !Out::tlsPhdr) 887 target->relocateOne(bufLoc, type, 0); 888 else 889 target->relocateOne(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 890 } 891 } 892 893 // This is used when '-r' is given. 894 // For REL targets, InputSection::copyRelocations() may store artificial 895 // relocations aimed to update addends. They are handled in relocateAlloc() 896 // for allocatable sections, and this function does the same for 897 // non-allocatable sections, such as sections with debug information. 898 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 899 const unsigned bits = config->is64 ? 64 : 32; 900 901 for (const Relocation &rel : sec->relocations) { 902 // InputSection::copyRelocations() adds only R_ABS relocations. 903 assert(rel.expr == R_ABS); 904 uint8_t *bufLoc = buf + rel.offset + sec->outSecOff; 905 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 906 target->relocateOne(bufLoc, rel.type, targetVA); 907 } 908 } 909 910 template <class ELFT> 911 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 912 if (flags & SHF_EXECINSTR) 913 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 914 915 if (flags & SHF_ALLOC) { 916 relocateAlloc(buf, bufEnd); 917 return; 918 } 919 920 auto *sec = cast<InputSection>(this); 921 if (config->relocatable) 922 relocateNonAllocForRelocatable(sec, buf); 923 else if (sec->areRelocsRela) 924 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>()); 925 else 926 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>()); 927 } 928 929 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 930 assert(flags & SHF_ALLOC); 931 const unsigned bits = config->wordsize * 8; 932 933 for (const Relocation &rel : relocations) { 934 uint64_t offset = rel.offset; 935 if (auto *sec = dyn_cast<InputSection>(this)) 936 offset += sec->outSecOff; 937 uint8_t *bufLoc = buf + offset; 938 RelType type = rel.type; 939 940 uint64_t addrLoc = getOutputSection()->addr + offset; 941 RelExpr expr = rel.expr; 942 uint64_t targetVA = SignExtend64( 943 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 944 bits); 945 946 switch (expr) { 947 case R_RELAX_GOT_PC: 948 case R_RELAX_GOT_PC_NOPIC: 949 target->relaxGot(bufLoc, type, targetVA); 950 break; 951 case R_PPC64_RELAX_TOC: 952 if (!tryRelaxPPC64TocIndirection(type, rel, bufLoc)) 953 target->relocateOne(bufLoc, type, targetVA); 954 break; 955 case R_RELAX_TLS_IE_TO_LE: 956 target->relaxTlsIeToLe(bufLoc, type, targetVA); 957 break; 958 case R_RELAX_TLS_LD_TO_LE: 959 case R_RELAX_TLS_LD_TO_LE_ABS: 960 target->relaxTlsLdToLe(bufLoc, type, targetVA); 961 break; 962 case R_RELAX_TLS_GD_TO_LE: 963 case R_RELAX_TLS_GD_TO_LE_NEG: 964 target->relaxTlsGdToLe(bufLoc, type, targetVA); 965 break; 966 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 967 case R_RELAX_TLS_GD_TO_IE: 968 case R_RELAX_TLS_GD_TO_IE_ABS: 969 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 970 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 971 target->relaxTlsGdToIe(bufLoc, type, targetVA); 972 break; 973 case R_PPC64_CALL: 974 // If this is a call to __tls_get_addr, it may be part of a TLS 975 // sequence that has been relaxed and turned into a nop. In this 976 // case, we don't want to handle it as a call. 977 if (read32(bufLoc) == 0x60000000) // nop 978 break; 979 980 // Patch a nop (0x60000000) to a ld. 981 if (rel.sym->needsTocRestore) { 982 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 983 // recursive calls even if the function is preemptible. This is not 984 // wrong in the common case where the function is not preempted at 985 // runtime. Just ignore. 986 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 987 rel.sym->file != file) { 988 // Use substr(6) to remove the "__plt_" prefix. 989 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 990 lld::toString(*rel.sym).substr(6) + 991 " lacks nop, can't restore toc"); 992 break; 993 } 994 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 995 } 996 target->relocateOne(bufLoc, type, targetVA); 997 break; 998 default: 999 target->relocateOne(bufLoc, type, targetVA); 1000 break; 1001 } 1002 } 1003 } 1004 1005 // For each function-defining prologue, find any calls to __morestack, 1006 // and replace them with calls to __morestack_non_split. 1007 static void switchMorestackCallsToMorestackNonSplit( 1008 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1009 1010 // If the target adjusted a function's prologue, all calls to 1011 // __morestack inside that function should be switched to 1012 // __morestack_non_split. 1013 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1014 if (!moreStackNonSplit) { 1015 error("Mixing split-stack objects requires a definition of " 1016 "__morestack_non_split"); 1017 return; 1018 } 1019 1020 // Sort both collections to compare addresses efficiently. 1021 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1022 return l->offset < r->offset; 1023 }); 1024 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1025 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1026 return l->value < r->value; 1027 }); 1028 1029 auto it = morestackCalls.begin(); 1030 for (Defined *f : functions) { 1031 // Find the first call to __morestack within the function. 1032 while (it != morestackCalls.end() && (*it)->offset < f->value) 1033 ++it; 1034 // Adjust all calls inside the function. 1035 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1036 (*it)->sym = moreStackNonSplit; 1037 ++it; 1038 } 1039 } 1040 } 1041 1042 static bool enclosingPrologueAttempted(uint64_t offset, 1043 const DenseSet<Defined *> &prologues) { 1044 for (Defined *f : prologues) 1045 if (f->value <= offset && offset < f->value + f->size) 1046 return true; 1047 return false; 1048 } 1049 1050 // If a function compiled for split stack calls a function not 1051 // compiled for split stack, then the caller needs its prologue 1052 // adjusted to ensure that the called function will have enough stack 1053 // available. Find those functions, and adjust their prologues. 1054 template <class ELFT> 1055 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1056 uint8_t *end) { 1057 if (!getFile<ELFT>()->splitStack) 1058 return; 1059 DenseSet<Defined *> prologues; 1060 std::vector<Relocation *> morestackCalls; 1061 1062 for (Relocation &rel : relocations) { 1063 // Local symbols can't possibly be cross-calls, and should have been 1064 // resolved long before this line. 1065 if (rel.sym->isLocal()) 1066 continue; 1067 1068 // Ignore calls into the split-stack api. 1069 if (rel.sym->getName().startswith("__morestack")) { 1070 if (rel.sym->getName().equals("__morestack")) 1071 morestackCalls.push_back(&rel); 1072 continue; 1073 } 1074 1075 // A relocation to non-function isn't relevant. Sometimes 1076 // __morestack is not marked as a function, so this check comes 1077 // after the name check. 1078 if (rel.sym->type != STT_FUNC) 1079 continue; 1080 1081 // If the callee's-file was compiled with split stack, nothing to do. In 1082 // this context, a "Defined" symbol is one "defined by the binary currently 1083 // being produced". So an "undefined" symbol might be provided by a shared 1084 // library. It is not possible to tell how such symbols were compiled, so be 1085 // conservative. 1086 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1087 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1088 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1089 continue; 1090 1091 if (enclosingPrologueAttempted(rel.offset, prologues)) 1092 continue; 1093 1094 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1095 prologues.insert(f); 1096 if (target->adjustPrologueForCrossSplitStack(buf + getOffset(f->value), 1097 end, f->stOther)) 1098 continue; 1099 if (!getFile<ELFT>()->someNoSplitStack) 1100 error(toString(this) + ": " + f->getName() + 1101 " (with -fsplit-stack) calls " + rel.sym->getName() + 1102 " (without -fsplit-stack), but couldn't adjust its prologue"); 1103 } 1104 } 1105 1106 if (target->needsMoreStackNonSplit) 1107 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1108 } 1109 1110 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1111 if (type == SHT_NOBITS) 1112 return; 1113 1114 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1115 s->writeTo(buf + outSecOff); 1116 return; 1117 } 1118 1119 // If -r or --emit-relocs is given, then an InputSection 1120 // may be a relocation section. 1121 if (type == SHT_RELA) { 1122 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1123 return; 1124 } 1125 if (type == SHT_REL) { 1126 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1127 return; 1128 } 1129 1130 // If -r is given, we may have a SHT_GROUP section. 1131 if (type == SHT_GROUP) { 1132 copyShtGroup<ELFT>(buf + outSecOff); 1133 return; 1134 } 1135 1136 // If this is a compressed section, uncompress section contents directly 1137 // to the buffer. 1138 if (uncompressedSize >= 0) { 1139 size_t size = uncompressedSize; 1140 if (Error e = zlib::uncompress(toStringRef(rawData), 1141 (char *)(buf + outSecOff), size)) 1142 fatal(toString(this) + 1143 ": uncompress failed: " + llvm::toString(std::move(e))); 1144 uint8_t *bufEnd = buf + outSecOff + size; 1145 relocate<ELFT>(buf, bufEnd); 1146 return; 1147 } 1148 1149 // Copy section contents from source object file to output file 1150 // and then apply relocations. 1151 memcpy(buf + outSecOff, data().data(), data().size()); 1152 uint8_t *bufEnd = buf + outSecOff + data().size(); 1153 relocate<ELFT>(buf, bufEnd); 1154 } 1155 1156 void InputSection::replace(InputSection *other) { 1157 alignment = std::max(alignment, other->alignment); 1158 1159 // When a section is replaced with another section that was allocated to 1160 // another partition, the replacement section (and its associated sections) 1161 // need to be placed in the main partition so that both partitions will be 1162 // able to access it. 1163 if (partition != other->partition) { 1164 partition = 1; 1165 for (InputSection *isec : dependentSections) 1166 isec->partition = 1; 1167 } 1168 1169 other->repl = repl; 1170 other->markDead(); 1171 } 1172 1173 template <class ELFT> 1174 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1175 const typename ELFT::Shdr &header, 1176 StringRef name) 1177 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1178 1179 SyntheticSection *EhInputSection::getParent() const { 1180 return cast_or_null<SyntheticSection>(parent); 1181 } 1182 1183 // Returns the index of the first relocation that points to a region between 1184 // Begin and Begin+Size. 1185 template <class IntTy, class RelTy> 1186 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1187 unsigned &relocI) { 1188 // Start search from RelocI for fast access. That works because the 1189 // relocations are sorted in .eh_frame. 1190 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1191 const RelTy &rel = rels[relocI]; 1192 if (rel.r_offset < begin) 1193 continue; 1194 1195 if (rel.r_offset < begin + size) 1196 return relocI; 1197 return -1; 1198 } 1199 return -1; 1200 } 1201 1202 // .eh_frame is a sequence of CIE or FDE records. 1203 // This function splits an input section into records and returns them. 1204 template <class ELFT> void EhInputSection::split() { 1205 if (areRelocsRela) 1206 split<ELFT>(relas<ELFT>()); 1207 else 1208 split<ELFT>(rels<ELFT>()); 1209 } 1210 1211 template <class ELFT, class RelTy> 1212 void EhInputSection::split(ArrayRef<RelTy> rels) { 1213 unsigned relI = 0; 1214 for (size_t off = 0, end = data().size(); off != end;) { 1215 size_t size = readEhRecordSize(this, off); 1216 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1217 // The empty record is the end marker. 1218 if (size == 4) 1219 break; 1220 off += size; 1221 } 1222 } 1223 1224 static size_t findNull(StringRef s, size_t entSize) { 1225 // Optimize the common case. 1226 if (entSize == 1) 1227 return s.find(0); 1228 1229 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1230 const char *b = s.begin() + i; 1231 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1232 return i; 1233 } 1234 return StringRef::npos; 1235 } 1236 1237 SyntheticSection *MergeInputSection::getParent() const { 1238 return cast_or_null<SyntheticSection>(parent); 1239 } 1240 1241 // Split SHF_STRINGS section. Such section is a sequence of 1242 // null-terminated strings. 1243 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1244 size_t off = 0; 1245 bool isAlloc = flags & SHF_ALLOC; 1246 StringRef s = toStringRef(data); 1247 1248 while (!s.empty()) { 1249 size_t end = findNull(s, entSize); 1250 if (end == StringRef::npos) 1251 fatal(toString(this) + ": string is not null terminated"); 1252 size_t size = end + entSize; 1253 1254 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1255 s = s.substr(size); 1256 off += size; 1257 } 1258 } 1259 1260 // Split non-SHF_STRINGS section. Such section is a sequence of 1261 // fixed size records. 1262 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1263 size_t entSize) { 1264 size_t size = data.size(); 1265 assert((size % entSize) == 0); 1266 bool isAlloc = flags & SHF_ALLOC; 1267 1268 for (size_t i = 0; i != size; i += entSize) 1269 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1270 } 1271 1272 template <class ELFT> 1273 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1274 const typename ELFT::Shdr &header, 1275 StringRef name) 1276 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1277 1278 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1279 uint64_t entsize, ArrayRef<uint8_t> data, 1280 StringRef name) 1281 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1282 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1283 1284 // This function is called after we obtain a complete list of input sections 1285 // that need to be linked. This is responsible to split section contents 1286 // into small chunks for further processing. 1287 // 1288 // Note that this function is called from parallelForEach. This must be 1289 // thread-safe (i.e. no memory allocation from the pools). 1290 void MergeInputSection::splitIntoPieces() { 1291 assert(pieces.empty()); 1292 1293 if (flags & SHF_STRINGS) 1294 splitStrings(data(), entsize); 1295 else 1296 splitNonStrings(data(), entsize); 1297 } 1298 1299 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1300 if (this->data().size() <= offset) 1301 fatal(toString(this) + ": offset is outside the section"); 1302 1303 // If Offset is not at beginning of a section piece, it is not in the map. 1304 // In that case we need to do a binary search of the original section piece vector. 1305 auto it = partition_point( 1306 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1307 return &it[-1]; 1308 } 1309 1310 // Returns the offset in an output section for a given input offset. 1311 // Because contents of a mergeable section is not contiguous in output, 1312 // it is not just an addition to a base output offset. 1313 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1314 // If Offset is not at beginning of a section piece, it is not in the map. 1315 // In that case we need to search from the original section piece vector. 1316 const SectionPiece &piece = 1317 *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset)); 1318 uint64_t addend = offset - piece.inputOff; 1319 return piece.outputOff + addend; 1320 } 1321 1322 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1323 StringRef); 1324 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1325 StringRef); 1326 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1327 StringRef); 1328 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1329 StringRef); 1330 1331 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1332 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1333 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1334 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1335 1336 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1337 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1338 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1339 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1340 1341 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1342 const ELF32LE::Shdr &, StringRef); 1343 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1344 const ELF32BE::Shdr &, StringRef); 1345 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1346 const ELF64LE::Shdr &, StringRef); 1347 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1348 const ELF64BE::Shdr &, StringRef); 1349 1350 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1351 const ELF32LE::Shdr &, StringRef); 1352 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1353 const ELF32BE::Shdr &, StringRef); 1354 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1355 const ELF64LE::Shdr &, StringRef); 1356 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1357 const ELF64BE::Shdr &, StringRef); 1358 1359 template void EhInputSection::split<ELF32LE>(); 1360 template void EhInputSection::split<ELF32BE>(); 1361 template void EhInputSection::split<ELF64LE>(); 1362 template void EhInputSection::split<ELF64BE>(); 1363 1364 } // namespace elf 1365 } // namespace lld 1366