xref: /openbsd-src/gnu/llvm/lld/ELF/InputFiles.cpp (revision 3374c67d44f9b75b98444cbf63020f777792342e)
1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::vector<ArchiveFile *> elf::archiveFiles;
47 std::vector<BinaryFile *> elf::binaryFiles;
48 std::vector<BitcodeFile *> elf::bitcodeFiles;
49 std::vector<LazyObjFile *> elf::lazyObjFiles;
50 std::vector<InputFile *> elf::objectFiles;
51 std::vector<SharedFile *> elf::sharedFiles;
52 
53 std::unique_ptr<TarWriter> elf::tar;
54 
55 DenseMap<StringRef, StringRef> elf::gnuWarnings;
56 
57 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
58 std::string lld::toString(const InputFile *f) {
59   if (!f)
60     return "<internal>";
61 
62   if (f->toStringCache.empty()) {
63     if (f->archiveName.empty())
64       f->toStringCache = std::string(f->getName());
65     else
66       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
67   }
68   return f->toStringCache;
69 }
70 
71 // .gnu.warning.SYMBOL are treated as warning symbols for the given symbol
72 void lld::parseGNUWarning(StringRef name, ArrayRef<char> data, size_t size) {
73   if (!name.empty() && name.startswith(".gnu.warning.")) {
74     StringRef wsym = name.substr(13);
75     StringRef s(data.begin());
76     StringRef wng(s.substr(0, size));
77     symtab->insert(wsym)->gwarn = true;
78     gnuWarnings.insert({wsym, wng});
79   }
80 }
81 
82 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
83   unsigned char size;
84   unsigned char endian;
85   std::tie(size, endian) = getElfArchType(mb.getBuffer());
86 
87   auto report = [&](StringRef msg) {
88     StringRef filename = mb.getBufferIdentifier();
89     if (archiveName.empty())
90       fatal(filename + ": " + msg);
91     else
92       fatal(archiveName + "(" + filename + "): " + msg);
93   };
94 
95   if (!mb.getBuffer().startswith(ElfMagic))
96     report("not an ELF file");
97   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
98     report("corrupted ELF file: invalid data encoding");
99   if (size != ELFCLASS32 && size != ELFCLASS64)
100     report("corrupted ELF file: invalid file class");
101 
102   size_t bufSize = mb.getBuffer().size();
103   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
104       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
105     report("corrupted ELF file: file is too short");
106 
107   if (size == ELFCLASS32)
108     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
109   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
110 }
111 
112 InputFile::InputFile(Kind k, MemoryBufferRef m)
113     : mb(m), groupId(nextGroupId), fileKind(k) {
114   // All files within the same --{start,end}-group get the same group ID.
115   // Otherwise, a new file will get a new group ID.
116   if (!isInGroup)
117     ++nextGroupId;
118 }
119 
120 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
121   llvm::TimeTraceScope timeScope("Load input files", path);
122 
123   // The --chroot option changes our virtual root directory.
124   // This is useful when you are dealing with files created by --reproduce.
125   if (!config->chroot.empty() && path.startswith("/"))
126     path = saver.save(config->chroot + path);
127 
128   log(path);
129   config->dependencyFiles.insert(llvm::CachedHashString(path));
130 
131   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
132                                        /*RequiresNullTerminator=*/false);
133   if (auto ec = mbOrErr.getError()) {
134     error("cannot open " + path + ": " + ec.message());
135     return None;
136   }
137 
138   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
139   MemoryBufferRef mbref = mb->getMemBufferRef();
140   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
141 
142   if (tar)
143     tar->append(relativeToRoot(path), mbref.getBuffer());
144   return mbref;
145 }
146 
147 // All input object files must be for the same architecture
148 // (e.g. it does not make sense to link x86 object files with
149 // MIPS object files.) This function checks for that error.
150 static bool isCompatible(InputFile *file) {
151   if (!file->isElf() && !isa<BitcodeFile>(file))
152     return true;
153 
154   if (file->ekind == config->ekind && file->emachine == config->emachine) {
155     if (config->emachine != EM_MIPS)
156       return true;
157     if (isMipsN32Abi(file) == config->mipsN32Abi)
158       return true;
159   }
160 
161   StringRef target =
162       !config->bfdname.empty() ? config->bfdname : config->emulation;
163   if (!target.empty()) {
164     error(toString(file) + " is incompatible with " + target);
165     return false;
166   }
167 
168   InputFile *existing;
169   if (!objectFiles.empty())
170     existing = objectFiles[0];
171   else if (!sharedFiles.empty())
172     existing = sharedFiles[0];
173   else if (!bitcodeFiles.empty())
174     existing = bitcodeFiles[0];
175   else
176     llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
177                      "determine target emulation");
178 
179   error(toString(file) + " is incompatible with " + toString(existing));
180   return false;
181 }
182 
183 template <class ELFT> static void doParseFile(InputFile *file) {
184   if (!isCompatible(file))
185     return;
186 
187   // Binary file
188   if (auto *f = dyn_cast<BinaryFile>(file)) {
189     binaryFiles.push_back(f);
190     f->parse();
191     return;
192   }
193 
194   // .a file
195   if (auto *f = dyn_cast<ArchiveFile>(file)) {
196     archiveFiles.push_back(f);
197     f->parse();
198     return;
199   }
200 
201   // Lazy object file
202   if (auto *f = dyn_cast<LazyObjFile>(file)) {
203     lazyObjFiles.push_back(f);
204     f->parse<ELFT>();
205     return;
206   }
207 
208   if (config->trace)
209     message(toString(file));
210 
211   // .so file
212   if (auto *f = dyn_cast<SharedFile>(file)) {
213     f->parse<ELFT>();
214     return;
215   }
216 
217   // LLVM bitcode file
218   if (auto *f = dyn_cast<BitcodeFile>(file)) {
219     bitcodeFiles.push_back(f);
220     f->parse<ELFT>();
221     return;
222   }
223 
224   // Regular object file
225   objectFiles.push_back(file);
226   cast<ObjFile<ELFT>>(file)->parse();
227 }
228 
229 // Add symbols in File to the symbol table.
230 void elf::parseFile(InputFile *file) {
231   switch (config->ekind) {
232   case ELF32LEKind:
233     doParseFile<ELF32LE>(file);
234     return;
235   case ELF32BEKind:
236     doParseFile<ELF32BE>(file);
237     return;
238   case ELF64LEKind:
239     doParseFile<ELF64LE>(file);
240     return;
241   case ELF64BEKind:
242     doParseFile<ELF64BE>(file);
243     return;
244   default:
245     llvm_unreachable("unknown ELFT");
246   }
247 }
248 
249 // Concatenates arguments to construct a string representing an error location.
250 static std::string createFileLineMsg(StringRef path, unsigned line) {
251   std::string filename = std::string(path::filename(path));
252   std::string lineno = ":" + std::to_string(line);
253   if (filename == path)
254     return filename + lineno;
255   return filename + lineno + " (" + path.str() + lineno + ")";
256 }
257 
258 template <class ELFT>
259 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
260                                 InputSectionBase &sec, uint64_t offset) {
261   // In DWARF, functions and variables are stored to different places.
262   // First, lookup a function for a given offset.
263   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
264     return createFileLineMsg(info->FileName, info->Line);
265 
266   // If it failed, lookup again as a variable.
267   if (Optional<std::pair<std::string, unsigned>> fileLine =
268           file.getVariableLoc(sym.getName()))
269     return createFileLineMsg(fileLine->first, fileLine->second);
270 
271   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
272   return std::string(file.sourceFile);
273 }
274 
275 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
276                                  uint64_t offset) {
277   if (kind() != ObjKind)
278     return "";
279   switch (config->ekind) {
280   default:
281     llvm_unreachable("Invalid kind");
282   case ELF32LEKind:
283     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
284   case ELF32BEKind:
285     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
286   case ELF64LEKind:
287     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
288   case ELF64BEKind:
289     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
290   }
291 }
292 
293 StringRef InputFile::getNameForScript() const {
294   if (archiveName.empty())
295     return getName();
296 
297   if (nameForScriptCache.empty())
298     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
299 
300   return nameForScriptCache;
301 }
302 
303 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
304   llvm::call_once(initDwarf, [this]() {
305     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
306         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
307         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
308         [&](Error warning) {
309           warn(getName() + ": " + toString(std::move(warning)));
310         }));
311   });
312 
313   return dwarf.get();
314 }
315 
316 // Returns the pair of file name and line number describing location of data
317 // object (variable, array, etc) definition.
318 template <class ELFT>
319 Optional<std::pair<std::string, unsigned>>
320 ObjFile<ELFT>::getVariableLoc(StringRef name) {
321   return getDwarf()->getVariableLoc(name);
322 }
323 
324 // Returns source line information for a given offset
325 // using DWARF debug info.
326 template <class ELFT>
327 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
328                                                   uint64_t offset) {
329   // Detect SectionIndex for specified section.
330   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
331   ArrayRef<InputSectionBase *> sections = s->file->getSections();
332   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
333     if (s == sections[curIndex]) {
334       sectionIndex = curIndex;
335       break;
336     }
337   }
338 
339   return getDwarf()->getDILineInfo(offset, sectionIndex);
340 }
341 
342 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
343   ekind = getELFKind(mb, "");
344 
345   switch (ekind) {
346   case ELF32LEKind:
347     init<ELF32LE>();
348     break;
349   case ELF32BEKind:
350     init<ELF32BE>();
351     break;
352   case ELF64LEKind:
353     init<ELF64LE>();
354     break;
355   case ELF64BEKind:
356     init<ELF64BE>();
357     break;
358   default:
359     llvm_unreachable("getELFKind");
360   }
361 }
362 
363 template <typename Elf_Shdr>
364 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
365   for (const Elf_Shdr &sec : sections)
366     if (sec.sh_type == type)
367       return &sec;
368   return nullptr;
369 }
370 
371 template <class ELFT> void ELFFileBase::init() {
372   using Elf_Shdr = typename ELFT::Shdr;
373   using Elf_Sym = typename ELFT::Sym;
374 
375   // Initialize trivial attributes.
376   const ELFFile<ELFT> &obj = getObj<ELFT>();
377   emachine = obj.getHeader().e_machine;
378   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
379   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
380 
381   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
382 
383   // Find a symbol table.
384   bool isDSO =
385       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
386   const Elf_Shdr *symtabSec =
387       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
388 
389   if (!symtabSec)
390     return;
391 
392   // Initialize members corresponding to a symbol table.
393   firstGlobal = symtabSec->sh_info;
394 
395   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
396   if (firstGlobal == 0 || firstGlobal > eSyms.size())
397     fatal(toString(this) + ": invalid sh_info in symbol table");
398 
399   elfSyms = reinterpret_cast<const void *>(eSyms.data());
400   numELFSyms = eSyms.size();
401   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
402 }
403 
404 template <class ELFT>
405 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
406   return CHECK(
407       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
408       this);
409 }
410 
411 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
412   if (this->symbols.empty())
413     return {};
414   return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
415 }
416 
417 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
418   return makeArrayRef(this->symbols).slice(this->firstGlobal);
419 }
420 
421 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
422   // Read a section table. justSymbols is usually false.
423   if (this->justSymbols)
424     initializeJustSymbols();
425   else
426     initializeSections(ignoreComdats);
427 
428   // Read a symbol table.
429   initializeSymbols();
430 }
431 
432 // Sections with SHT_GROUP and comdat bits define comdat section groups.
433 // They are identified and deduplicated by group name. This function
434 // returns a group name.
435 template <class ELFT>
436 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
437                                               const Elf_Shdr &sec) {
438   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
439   if (sec.sh_info >= symbols.size())
440     fatal(toString(this) + ": invalid symbol index");
441   const typename ELFT::Sym &sym = symbols[sec.sh_info];
442   StringRef signature = CHECK(sym.getName(this->stringTable), this);
443 
444   // As a special case, if a symbol is a section symbol and has no name,
445   // we use a section name as a signature.
446   //
447   // Such SHT_GROUP sections are invalid from the perspective of the ELF
448   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
449   // older produce such sections as outputs for the -r option, so we need
450   // a bug-compatibility.
451   if (signature.empty() && sym.getType() == STT_SECTION)
452     return getSectionName(sec);
453   return signature;
454 }
455 
456 template <class ELFT>
457 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
458   if (!(sec.sh_flags & SHF_MERGE))
459     return false;
460 
461   // On a regular link we don't merge sections if -O0 (default is -O1). This
462   // sometimes makes the linker significantly faster, although the output will
463   // be bigger.
464   //
465   // Doing the same for -r would create a problem as it would combine sections
466   // with different sh_entsize. One option would be to just copy every SHF_MERGE
467   // section as is to the output. While this would produce a valid ELF file with
468   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
469   // they see two .debug_str. We could have separate logic for combining
470   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
471   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
472   // logic for -r.
473   if (config->optimize == 0 && !config->relocatable)
474     return false;
475 
476   // A mergeable section with size 0 is useless because they don't have
477   // any data to merge. A mergeable string section with size 0 can be
478   // argued as invalid because it doesn't end with a null character.
479   // We'll avoid a mess by handling them as if they were non-mergeable.
480   if (sec.sh_size == 0)
481     return false;
482 
483   // Check for sh_entsize. The ELF spec is not clear about the zero
484   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
485   // the section does not hold a table of fixed-size entries". We know
486   // that Rust 1.13 produces a string mergeable section with a zero
487   // sh_entsize. Here we just accept it rather than being picky about it.
488   uint64_t entSize = sec.sh_entsize;
489   if (entSize == 0)
490     return false;
491   if (sec.sh_size % entSize)
492     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
493           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
494           Twine(entSize) + ")");
495 
496   if (sec.sh_flags & SHF_WRITE)
497     fatal(toString(this) + ":(" + name +
498           "): writable SHF_MERGE section is not supported");
499 
500   return true;
501 }
502 
503 // This is for --just-symbols.
504 //
505 // --just-symbols is a very minor feature that allows you to link your
506 // output against other existing program, so that if you load both your
507 // program and the other program into memory, your output can refer the
508 // other program's symbols.
509 //
510 // When the option is given, we link "just symbols". The section table is
511 // initialized with null pointers.
512 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
513   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
514   this->sections.resize(sections.size());
515 }
516 
517 // An ELF object file may contain a `.deplibs` section. If it exists, the
518 // section contains a list of library specifiers such as `m` for libm. This
519 // function resolves a given name by finding the first matching library checking
520 // the various ways that a library can be specified to LLD. This ELF extension
521 // is a form of autolinking and is called `dependent libraries`. It is currently
522 // unique to LLVM and lld.
523 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
524   if (!config->dependentLibraries)
525     return;
526   if (fs::exists(specifier))
527     driver->addFile(specifier, /*withLOption=*/false);
528   else if (Optional<std::string> s = findFromSearchPaths(specifier))
529     driver->addFile(*s, /*withLOption=*/true);
530   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
531     driver->addFile(*s, /*withLOption=*/true);
532   else
533     error(toString(f) +
534           ": unable to find library from dependent library specifier: " +
535           specifier);
536 }
537 
538 // Record the membership of a section group so that in the garbage collection
539 // pass, section group members are kept or discarded as a unit.
540 template <class ELFT>
541 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
542                                ArrayRef<typename ELFT::Word> entries) {
543   bool hasAlloc = false;
544   for (uint32_t index : entries.slice(1)) {
545     if (index >= sections.size())
546       return;
547     if (InputSectionBase *s = sections[index])
548       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
549         hasAlloc = true;
550   }
551 
552   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
553   // collection. See the comment in markLive(). This rule retains .debug_types
554   // and .rela.debug_types.
555   if (!hasAlloc)
556     return;
557 
558   // Connect the members in a circular doubly-linked list via
559   // nextInSectionGroup.
560   InputSectionBase *head;
561   InputSectionBase *prev = nullptr;
562   for (uint32_t index : entries.slice(1)) {
563     InputSectionBase *s = sections[index];
564     if (!s || s == &InputSection::discarded)
565       continue;
566     if (prev)
567       prev->nextInSectionGroup = s;
568     else
569       head = s;
570     prev = s;
571   }
572   if (prev)
573     prev->nextInSectionGroup = head;
574 }
575 
576 template <class ELFT>
577 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
578   const ELFFile<ELFT> &obj = this->getObj();
579 
580   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
581   uint64_t size = objSections.size();
582   this->sections.resize(size);
583   this->sectionStringTable =
584       CHECK(obj.getSectionStringTable(objSections), this);
585 
586   std::vector<ArrayRef<Elf_Word>> selectedGroups;
587 
588   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
589     if (this->sections[i] == &InputSection::discarded)
590       continue;
591     const Elf_Shdr &sec = objSections[i];
592 
593     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
594       cgProfileSectionIndex = i;
595 
596     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
597     // if -r is given, we'll let the final link discard such sections.
598     // This is compatible with GNU.
599     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
600       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
601         // We ignore the address-significance table if we know that the object
602         // file was created by objcopy or ld -r. This is because these tools
603         // will reorder the symbols in the symbol table, invalidating the data
604         // in the address-significance table, which refers to symbols by index.
605         if (sec.sh_link != 0)
606           this->addrsigSec = &sec;
607         else if (config->icf == ICFLevel::Safe)
608           warn(toString(this) +
609                ": --icf=safe conservatively ignores "
610                "SHT_LLVM_ADDRSIG [index " +
611                Twine(i) +
612                "] with sh_link=0 "
613                "(likely created using objcopy or ld -r)");
614       }
615       this->sections[i] = &InputSection::discarded;
616       continue;
617     }
618 
619     switch (sec.sh_type) {
620     case SHT_GROUP: {
621       // De-duplicate section groups by their signatures.
622       StringRef signature = getShtGroupSignature(objSections, sec);
623       this->sections[i] = &InputSection::discarded;
624 
625       ArrayRef<Elf_Word> entries =
626           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
627       if (entries.empty())
628         fatal(toString(this) + ": empty SHT_GROUP");
629 
630       Elf_Word flag = entries[0];
631       if (flag && flag != GRP_COMDAT)
632         fatal(toString(this) + ": unsupported SHT_GROUP format");
633 
634       bool keepGroup =
635           (flag & GRP_COMDAT) == 0 || ignoreComdats ||
636           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
637               .second;
638       if (keepGroup) {
639         if (config->relocatable)
640           this->sections[i] = createInputSection(sec);
641         selectedGroups.push_back(entries);
642         continue;
643       }
644 
645       // Otherwise, discard group members.
646       for (uint32_t secIndex : entries.slice(1)) {
647         if (secIndex >= size)
648           fatal(toString(this) +
649                 ": invalid section index in group: " + Twine(secIndex));
650         this->sections[secIndex] = &InputSection::discarded;
651       }
652       break;
653     }
654     case SHT_SYMTAB_SHNDX:
655       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
656       break;
657     case SHT_SYMTAB:
658     case SHT_STRTAB:
659     case SHT_REL:
660     case SHT_RELA:
661     case SHT_NULL:
662       break;
663     case SHT_PROGBITS: {
664       this->sections[i] = createInputSection(sec);
665       StringRef name = CHECK(obj.getSectionName(sec, this->sectionStringTable), this);
666       ArrayRef<char> data =
667           CHECK(obj.template getSectionContentsAsArray<char>(sec), this);
668       parseGNUWarning(name, data, sec.sh_size);
669       }
670       break;
671     default:
672       this->sections[i] = createInputSection(sec);
673     }
674   }
675 
676   // We have a second loop. It is used to:
677   // 1) handle SHF_LINK_ORDER sections.
678   // 2) create SHT_REL[A] sections. In some cases the section header index of a
679   //    relocation section may be smaller than that of the relocated section. In
680   //    such cases, the relocation section would attempt to reference a target
681   //    section that has not yet been created. For simplicity, delay creation of
682   //    relocation sections until now.
683   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
684     if (this->sections[i] == &InputSection::discarded)
685       continue;
686     const Elf_Shdr &sec = objSections[i];
687 
688     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
689       this->sections[i] = createInputSection(sec);
690 
691     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
692     // the flag.
693     if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
694       continue;
695 
696     InputSectionBase *linkSec = nullptr;
697     if (sec.sh_link < this->sections.size())
698       linkSec = this->sections[sec.sh_link];
699     if (!linkSec)
700       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
701 
702     // A SHF_LINK_ORDER section is discarded if its linked-to section is
703     // discarded.
704     InputSection *isec = cast<InputSection>(this->sections[i]);
705     linkSec->dependentSections.push_back(isec);
706     if (!isa<InputSection>(linkSec))
707       error("a section " + isec->name +
708             " with SHF_LINK_ORDER should not refer a non-regular section: " +
709             toString(linkSec));
710   }
711 
712   for (ArrayRef<Elf_Word> entries : selectedGroups)
713     handleSectionGroup<ELFT>(this->sections, entries);
714 }
715 
716 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
717 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
718 // the input objects have been compiled.
719 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
720                              const InputFile *f) {
721   Optional<unsigned> attr =
722       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
723   if (!attr.hasValue())
724     // If an ABI tag isn't present then it is implicitly given the value of 0
725     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
726     // including some in glibc that don't use FP args (and should have value 3)
727     // don't have the attribute so we do not consider an implicit value of 0
728     // as a clash.
729     return;
730 
731   unsigned vfpArgs = attr.getValue();
732   ARMVFPArgKind arg;
733   switch (vfpArgs) {
734   case ARMBuildAttrs::BaseAAPCS:
735     arg = ARMVFPArgKind::Base;
736     break;
737   case ARMBuildAttrs::HardFPAAPCS:
738     arg = ARMVFPArgKind::VFP;
739     break;
740   case ARMBuildAttrs::ToolChainFPPCS:
741     // Tool chain specific convention that conforms to neither AAPCS variant.
742     arg = ARMVFPArgKind::ToolChain;
743     break;
744   case ARMBuildAttrs::CompatibleFPAAPCS:
745     // Object compatible with all conventions.
746     return;
747   default:
748     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
749     return;
750   }
751   // Follow ld.bfd and error if there is a mix of calling conventions.
752   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
753     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
754   else
755     config->armVFPArgs = arg;
756 }
757 
758 // The ARM support in lld makes some use of instructions that are not available
759 // on all ARM architectures. Namely:
760 // - Use of BLX instruction for interworking between ARM and Thumb state.
761 // - Use of the extended Thumb branch encoding in relocation.
762 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
763 // The ARM Attributes section contains information about the architecture chosen
764 // at compile time. We follow the convention that if at least one input object
765 // is compiled with an architecture that supports these features then lld is
766 // permitted to use them.
767 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
768   Optional<unsigned> attr =
769       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
770   if (!attr.hasValue())
771     return;
772   auto arch = attr.getValue();
773   switch (arch) {
774   case ARMBuildAttrs::Pre_v4:
775   case ARMBuildAttrs::v4:
776   case ARMBuildAttrs::v4T:
777     // Architectures prior to v5 do not support BLX instruction
778     break;
779   case ARMBuildAttrs::v5T:
780   case ARMBuildAttrs::v5TE:
781   case ARMBuildAttrs::v5TEJ:
782   case ARMBuildAttrs::v6:
783   case ARMBuildAttrs::v6KZ:
784   case ARMBuildAttrs::v6K:
785     config->armHasBlx = true;
786     // Architectures used in pre-Cortex processors do not support
787     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
788     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
789     break;
790   default:
791     // All other Architectures have BLX and extended branch encoding
792     config->armHasBlx = true;
793     config->armJ1J2BranchEncoding = true;
794     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
795       // All Architectures used in Cortex processors with the exception
796       // of v6-M and v6S-M have the MOVT and MOVW instructions.
797       config->armHasMovtMovw = true;
798     break;
799   }
800 }
801 
802 // If a source file is compiled with x86 hardware-assisted call flow control
803 // enabled, the generated object file contains feature flags indicating that
804 // fact. This function reads the feature flags and returns it.
805 //
806 // Essentially we want to read a single 32-bit value in this function, but this
807 // function is rather complicated because the value is buried deep inside a
808 // .note.gnu.property section.
809 //
810 // The section consists of one or more NOTE records. Each NOTE record consists
811 // of zero or more type-length-value fields. We want to find a field of a
812 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
813 // the ABI is unnecessarily complicated.
814 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
815   using Elf_Nhdr = typename ELFT::Nhdr;
816   using Elf_Note = typename ELFT::Note;
817 
818   uint32_t featuresSet = 0;
819   ArrayRef<uint8_t> data = sec.data();
820   auto reportFatal = [&](const uint8_t *place, const char *msg) {
821     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
822           Twine::utohexstr(place - sec.data().data()) + "): " + msg);
823   };
824   while (!data.empty()) {
825     // Read one NOTE record.
826     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
827     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
828       reportFatal(data.data(), "data is too short");
829 
830     Elf_Note note(*nhdr);
831     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
832       data = data.slice(nhdr->getSize());
833       continue;
834     }
835 
836     uint32_t featureAndType = config->emachine == EM_AARCH64
837                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
838                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
839 
840     // Read a body of a NOTE record, which consists of type-length-value fields.
841     ArrayRef<uint8_t> desc = note.getDesc();
842     while (!desc.empty()) {
843       const uint8_t *place = desc.data();
844       if (desc.size() < 8)
845         reportFatal(place, "program property is too short");
846       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
847       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
848       desc = desc.slice(8);
849       if (desc.size() < size)
850         reportFatal(place, "program property is too short");
851 
852       if (type == featureAndType) {
853         // We found a FEATURE_1_AND field. There may be more than one of these
854         // in a .note.gnu.property section, for a relocatable object we
855         // accumulate the bits set.
856         if (size < 4)
857           reportFatal(place, "FEATURE_1_AND entry is too short");
858         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
859       }
860 
861       // Padding is present in the note descriptor, if necessary.
862       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
863     }
864 
865     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
866     data = data.slice(nhdr->getSize());
867   }
868 
869   return featuresSet;
870 }
871 
872 template <class ELFT>
873 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
874   uint32_t idx = sec.sh_info;
875   if (idx >= this->sections.size())
876     fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
877   InputSectionBase *target = this->sections[idx];
878 
879   // Strictly speaking, a relocation section must be included in the
880   // group of the section it relocates. However, LLVM 3.3 and earlier
881   // would fail to do so, so we gracefully handle that case.
882   if (target == &InputSection::discarded)
883     return nullptr;
884 
885   if (!target)
886     fatal(toString(this) + ": unsupported relocation reference");
887   return target;
888 }
889 
890 // Create a regular InputSection class that has the same contents
891 // as a given section.
892 static InputSection *toRegularSection(MergeInputSection *sec) {
893   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
894                             sec->data(), sec->name);
895 }
896 
897 template <class ELFT>
898 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
899   StringRef name = getSectionName(sec);
900 
901   if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
902     ARMAttributeParser attributes;
903     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
904     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
905                                                  ? support::little
906                                                  : support::big)) {
907       auto *isec = make<InputSection>(*this, sec, name);
908       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
909     } else {
910       updateSupportedARMFeatures(attributes);
911       updateARMVFPArgs(attributes, this);
912 
913       // FIXME: Retain the first attribute section we see. The eglibc ARM
914       // dynamic loaders require the presence of an attribute section for dlopen
915       // to work. In a full implementation we would merge all attribute
916       // sections.
917       if (in.attributes == nullptr) {
918         in.attributes = make<InputSection>(*this, sec, name);
919         return in.attributes;
920       }
921       return &InputSection::discarded;
922     }
923   }
924 
925   if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
926     RISCVAttributeParser attributes;
927     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
928     if (Error e = attributes.parse(contents, support::little)) {
929       auto *isec = make<InputSection>(*this, sec, name);
930       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
931     } else {
932       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
933       // present.
934 
935       // FIXME: Retain the first attribute section we see. Tools such as
936       // llvm-objdump make use of the attribute section to determine which
937       // standard extensions to enable. In a full implementation we would merge
938       // all attribute sections.
939       if (in.attributes == nullptr) {
940         in.attributes = make<InputSection>(*this, sec, name);
941         return in.attributes;
942       }
943       return &InputSection::discarded;
944     }
945   }
946 
947   switch (sec.sh_type) {
948   case SHT_LLVM_DEPENDENT_LIBRARIES: {
949     if (config->relocatable)
950       break;
951     ArrayRef<char> data =
952         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
953     if (!data.empty() && data.back() != '\0') {
954       error(toString(this) +
955             ": corrupted dependent libraries section (unterminated string): " +
956             name);
957       return &InputSection::discarded;
958     }
959     for (const char *d = data.begin(), *e = data.end(); d < e;) {
960       StringRef s(d);
961       addDependentLibrary(s, this);
962       d += s.size() + 1;
963     }
964     return &InputSection::discarded;
965   }
966   case SHT_RELA:
967   case SHT_REL: {
968     // Find a relocation target section and associate this section with that.
969     // Target may have been discarded if it is in a different section group
970     // and the group is discarded, even though it's a violation of the
971     // spec. We handle that situation gracefully by discarding dangling
972     // relocation sections.
973     InputSectionBase *target = getRelocTarget(sec);
974     if (!target)
975       return nullptr;
976 
977     // ELF spec allows mergeable sections with relocations, but they are
978     // rare, and it is in practice hard to merge such sections by contents,
979     // because applying relocations at end of linking changes section
980     // contents. So, we simply handle such sections as non-mergeable ones.
981     // Degrading like this is acceptable because section merging is optional.
982     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
983       target = toRegularSection(ms);
984       this->sections[sec.sh_info] = target;
985     }
986 
987     if (target->firstRelocation)
988       fatal(toString(this) +
989             ": multiple relocation sections to one section are not supported");
990 
991     if (sec.sh_type == SHT_RELA) {
992       ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this);
993       target->firstRelocation = rels.begin();
994       target->numRelocations = rels.size();
995       target->areRelocsRela = true;
996     } else {
997       ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this);
998       target->firstRelocation = rels.begin();
999       target->numRelocations = rels.size();
1000       target->areRelocsRela = false;
1001     }
1002     assert(isUInt<31>(target->numRelocations));
1003 
1004     // Relocation sections are usually removed from the output, so return
1005     // `nullptr` for the normal case. However, if -r or --emit-relocs is
1006     // specified, we need to copy them to the output. (Some post link analysis
1007     // tools specify --emit-relocs to obtain the information.)
1008     if (!config->relocatable && !config->emitRelocs)
1009       return nullptr;
1010     InputSection *relocSec = make<InputSection>(*this, sec, name);
1011     // If the relocated section is discarded (due to /DISCARD/ or
1012     // --gc-sections), the relocation section should be discarded as well.
1013     target->dependentSections.push_back(relocSec);
1014     return relocSec;
1015   }
1016   }
1017 
1018   // The GNU linker uses .note.GNU-stack section as a marker indicating
1019   // that the code in the object file does not expect that the stack is
1020   // executable (in terms of NX bit). If all input files have the marker,
1021   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
1022   // make the stack non-executable. Most object files have this section as
1023   // of 2017.
1024   //
1025   // But making the stack non-executable is a norm today for security
1026   // reasons. Failure to do so may result in a serious security issue.
1027   // Therefore, we make LLD always add PT_GNU_STACK unless it is
1028   // explicitly told to do otherwise (by -z execstack). Because the stack
1029   // executable-ness is controlled solely by command line options,
1030   // .note.GNU-stack sections are simply ignored.
1031   if (name == ".note.GNU-stack")
1032     return &InputSection::discarded;
1033 
1034   // Object files that use processor features such as Intel Control-Flow
1035   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
1036   // .note.gnu.property section containing a bitfield of feature bits like the
1037   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
1038   //
1039   // Since we merge bitmaps from multiple object files to create a new
1040   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1041   // file's .note.gnu.property section.
1042   if (name == ".note.gnu.property") {
1043     this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
1044     return &InputSection::discarded;
1045   }
1046 
1047   // Split stacks is a feature to support a discontiguous stack,
1048   // commonly used in the programming language Go. For the details,
1049   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1050   // for split stack will include a .note.GNU-split-stack section.
1051   if (name == ".note.GNU-split-stack") {
1052     if (config->relocatable) {
1053       error("cannot mix split-stack and non-split-stack in a relocatable link");
1054       return &InputSection::discarded;
1055     }
1056     this->splitStack = true;
1057     return &InputSection::discarded;
1058   }
1059 
1060   // An object file cmpiled for split stack, but where some of the
1061   // functions were compiled with the no_split_stack_attribute will
1062   // include a .note.GNU-no-split-stack section.
1063   if (name == ".note.GNU-no-split-stack") {
1064     this->someNoSplitStack = true;
1065     return &InputSection::discarded;
1066   }
1067 
1068   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1069   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1070   // sections. Drop those sections to avoid duplicate symbol errors.
1071   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1072   // fixed for a while.
1073   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1074       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1075     return &InputSection::discarded;
1076 
1077   // If we are creating a new .build-id section, strip existing .build-id
1078   // sections so that the output won't have more than one .build-id.
1079   // This is not usually a problem because input object files normally don't
1080   // have .build-id sections, but you can create such files by
1081   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1082   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1083     return &InputSection::discarded;
1084 
1085   // The linker merges EH (exception handling) frames and creates a
1086   // .eh_frame_hdr section for runtime. So we handle them with a special
1087   // class. For relocatable outputs, they are just passed through.
1088   if (name == ".eh_frame" && !config->relocatable)
1089     return make<EhInputSection>(*this, sec, name);
1090 
1091   if (shouldMerge(sec, name))
1092     return make<MergeInputSection>(*this, sec, name);
1093   return make<InputSection>(*this, sec, name);
1094 }
1095 
1096 template <class ELFT>
1097 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1098   return CHECK(getObj().getSectionName(sec, sectionStringTable), this);
1099 }
1100 
1101 // Initialize this->Symbols. this->Symbols is a parallel array as
1102 // its corresponding ELF symbol table.
1103 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1104   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1105   this->symbols.resize(eSyms.size());
1106 
1107   // Fill in InputFile::symbols. Some entries have been initialized
1108   // because of LazyObjFile.
1109   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1110     if (this->symbols[i])
1111       continue;
1112     const Elf_Sym &eSym = eSyms[i];
1113     uint32_t secIdx = getSectionIndex(eSym);
1114     if (secIdx >= this->sections.size())
1115       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1116     if (eSym.getBinding() != STB_LOCAL) {
1117       if (i < firstGlobal)
1118         error(toString(this) + ": non-local symbol (" + Twine(i) +
1119               ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
1120               ")");
1121       this->symbols[i] =
1122           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1123       continue;
1124     }
1125 
1126     // Handle local symbols. Local symbols are not added to the symbol
1127     // table because they are not visible from other object files. We
1128     // allocate symbol instances and add their pointers to symbols.
1129     if (i >= firstGlobal)
1130       errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
1131                   ") found at index >= .symtab's sh_info (" +
1132                   Twine(firstGlobal) + ")");
1133 
1134     InputSectionBase *sec = this->sections[secIdx];
1135     uint8_t type = eSym.getType();
1136     if (type == STT_FILE)
1137       sourceFile = CHECK(eSym.getName(this->stringTable), this);
1138     if (this->stringTable.size() <= eSym.st_name)
1139       fatal(toString(this) + ": invalid symbol name offset");
1140     StringRefZ name = this->stringTable.data() + eSym.st_name;
1141 
1142     if (eSym.st_shndx == SHN_UNDEF)
1143       this->symbols[i] =
1144           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type);
1145     else if (sec == &InputSection::discarded)
1146       this->symbols[i] =
1147           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type,
1148                           /*discardedSecIdx=*/secIdx);
1149     else
1150       this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other,
1151                                        type, eSym.st_value, eSym.st_size, sec);
1152   }
1153 
1154   // Symbol resolution of non-local symbols.
1155   SmallVector<unsigned, 32> undefineds;
1156   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1157     const Elf_Sym &eSym = eSyms[i];
1158     uint8_t binding = eSym.getBinding();
1159     if (binding == STB_LOCAL)
1160       continue; // Errored above.
1161 
1162     uint32_t secIdx = getSectionIndex(eSym);
1163     InputSectionBase *sec = this->sections[secIdx];
1164     uint8_t stOther = eSym.st_other;
1165     uint8_t type = eSym.getType();
1166     uint64_t value = eSym.st_value;
1167     uint64_t size = eSym.st_size;
1168     StringRefZ name = this->stringTable.data() + eSym.st_name;
1169 
1170     // Handle global undefined symbols.
1171     if (eSym.st_shndx == SHN_UNDEF) {
1172       undefineds.push_back(i);
1173       continue;
1174     }
1175 
1176     // Handle global common symbols.
1177     if (eSym.st_shndx == SHN_COMMON) {
1178       if (value == 0 || value >= UINT32_MAX)
1179         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1180               "' has invalid alignment: " + Twine(value));
1181       this->symbols[i]->resolve(
1182           CommonSymbol{this, name, binding, stOther, type, value, size});
1183       continue;
1184     }
1185 
1186     // If a defined symbol is in a discarded section, handle it as if it
1187     // were an undefined symbol. Such symbol doesn't comply with the
1188     // standard, but in practice, a .eh_frame often directly refer
1189     // COMDAT member sections, and if a comdat group is discarded, some
1190     // defined symbol in a .eh_frame becomes dangling symbols.
1191     if (sec == &InputSection::discarded) {
1192       Undefined und{this, name, binding, stOther, type, secIdx};
1193       Symbol *sym = this->symbols[i];
1194       // !ArchiveFile::parsed or LazyObjFile::fetched means that the file
1195       // containing this object has not finished processing, i.e. this symbol is
1196       // a result of a lazy symbol fetch. We should demote the lazy symbol to an
1197       // Undefined so that any relocations outside of the group to it will
1198       // trigger a discarded section error.
1199       if ((sym->symbolKind == Symbol::LazyArchiveKind &&
1200            !cast<ArchiveFile>(sym->file)->parsed) ||
1201           (sym->symbolKind == Symbol::LazyObjectKind &&
1202            cast<LazyObjFile>(sym->file)->fetched))
1203         sym->replace(und);
1204       else
1205         sym->resolve(und);
1206       continue;
1207     }
1208 
1209     // Handle global defined symbols.
1210     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1211         binding == STB_GNU_UNIQUE) {
1212       this->symbols[i]->resolve(
1213           Defined{this, name, binding, stOther, type, value, size, sec});
1214       continue;
1215     }
1216 
1217     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1218   }
1219 
1220   // Undefined symbols (excluding those defined relative to non-prevailing
1221   // sections) can trigger recursive fetch. Process defined symbols first so
1222   // that the relative order between a defined symbol and an undefined symbol
1223   // does not change the symbol resolution behavior. In addition, a set of
1224   // interconnected symbols will all be resolved to the same file, instead of
1225   // being resolved to different files.
1226   for (unsigned i : undefineds) {
1227     const Elf_Sym &eSym = eSyms[i];
1228     StringRefZ name = this->stringTable.data() + eSym.st_name;
1229     this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(),
1230                                         eSym.st_other, eSym.getType()});
1231     this->symbols[i]->referenced = true;
1232   }
1233 }
1234 
1235 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1236     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1237       file(std::move(file)) {}
1238 
1239 void ArchiveFile::parse() {
1240   for (const Archive::Symbol &sym : file->symbols())
1241     symtab->addSymbol(LazyArchive{*this, sym});
1242 
1243   // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
1244   // archive has been processed.
1245   parsed = true;
1246 }
1247 
1248 // Returns a buffer pointing to a member file containing a given symbol.
1249 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1250   Archive::Child c =
1251       CHECK(sym.getMember(), toString(this) +
1252                                  ": could not get the member for symbol " +
1253                                  toELFString(sym));
1254 
1255   if (!seen.insert(c.getChildOffset()).second)
1256     return;
1257 
1258   MemoryBufferRef mb =
1259       CHECK(c.getMemoryBufferRef(),
1260             toString(this) +
1261                 ": could not get the buffer for the member defining symbol " +
1262                 toELFString(sym));
1263 
1264   if (tar && c.getParent()->isThin())
1265     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1266 
1267   InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
1268   file->groupId = groupId;
1269   parseFile(file);
1270 }
1271 
1272 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1273 // A tentative definition will be promoted to a global definition if there are
1274 // no non-tentative definitions to dominate it. When we hold a tentative
1275 // definition to a symbol and are inspecting archive members for inclusion
1276 // there are 2 ways we can proceed:
1277 //
1278 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1279 //    tentative to real definition has already happened) and not inspect
1280 //    archive members for Global/Weak definitions to replace the tentative
1281 //    definition. An archive member would only be included if it satisfies some
1282 //    other undefined symbol. This is the behavior Gold uses.
1283 //
1284 // 2) Consider the tentative definition as still undefined (ie the promotion to
1285 //    a real definition happens only after all symbol resolution is done).
1286 //    The linker searches archive members for STB_GLOBAL definitions to
1287 //    replace the tentative definition with. This is the behavior used by
1288 //    GNU ld.
1289 //
1290 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1291 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1292 //  (pre F90) FORTRAN code that is packaged into an archive.
1293 //
1294 //  The following functions search archive members for definitions to replace
1295 //  tentative definitions (implementing behavior 2).
1296 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1297                                   StringRef archiveName) {
1298   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1299   for (const irsymtab::Reader::SymbolRef &sym :
1300        symtabFile.TheReader.symbols()) {
1301     if (sym.isGlobal() && sym.getName() == symName)
1302       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1303   }
1304   return false;
1305 }
1306 
1307 template <class ELFT>
1308 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1309                            StringRef archiveName) {
1310   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1311   StringRef stringtable = obj->getStringTable();
1312 
1313   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1314     Expected<StringRef> name = sym.getName(stringtable);
1315     if (name && name.get() == symName)
1316       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1317              !sym.isCommon();
1318   }
1319   return false;
1320 }
1321 
1322 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1323                            StringRef archiveName) {
1324   switch (getELFKind(mb, archiveName)) {
1325   case ELF32LEKind:
1326     return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1327   case ELF32BEKind:
1328     return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1329   case ELF64LEKind:
1330     return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1331   case ELF64BEKind:
1332     return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1333   default:
1334     llvm_unreachable("getELFKind");
1335   }
1336 }
1337 
1338 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) {
1339   Archive::Child c =
1340       CHECK(sym.getMember(), toString(this) +
1341                                  ": could not get the member for symbol " +
1342                                  toELFString(sym));
1343   MemoryBufferRef mb =
1344       CHECK(c.getMemoryBufferRef(),
1345             toString(this) +
1346                 ": could not get the buffer for the member defining symbol " +
1347                 toELFString(sym));
1348 
1349   if (isBitcode(mb))
1350     return isBitcodeNonCommonDef(mb, sym.getName(), getName());
1351 
1352   return isNonCommonDef(mb, sym.getName(), getName());
1353 }
1354 
1355 size_t ArchiveFile::getMemberCount() const {
1356   size_t count = 0;
1357   Error err = Error::success();
1358   for (const Archive::Child &c : file->children(err)) {
1359     (void)c;
1360     ++count;
1361   }
1362   // This function is used by --print-archive-stats=, where an error does not
1363   // really matter.
1364   consumeError(std::move(err));
1365   return count;
1366 }
1367 
1368 unsigned SharedFile::vernauxNum;
1369 
1370 // Parse the version definitions in the object file if present, and return a
1371 // vector whose nth element contains a pointer to the Elf_Verdef for version
1372 // identifier n. Version identifiers that are not definitions map to nullptr.
1373 template <typename ELFT>
1374 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1375                                               const typename ELFT::Shdr *sec) {
1376   if (!sec)
1377     return {};
1378 
1379   // We cannot determine the largest verdef identifier without inspecting
1380   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1381   // sequentially starting from 1, so we predict that the largest identifier
1382   // will be verdefCount.
1383   unsigned verdefCount = sec->sh_info;
1384   std::vector<const void *> verdefs(verdefCount + 1);
1385 
1386   // Build the Verdefs array by following the chain of Elf_Verdef objects
1387   // from the start of the .gnu.version_d section.
1388   const uint8_t *verdef = base + sec->sh_offset;
1389   for (unsigned i = 0; i != verdefCount; ++i) {
1390     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1391     verdef += curVerdef->vd_next;
1392     unsigned verdefIndex = curVerdef->vd_ndx;
1393     verdefs.resize(verdefIndex + 1);
1394     verdefs[verdefIndex] = curVerdef;
1395   }
1396   return verdefs;
1397 }
1398 
1399 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1400 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1401 // implement sophisticated error checking like in llvm-readobj because the value
1402 // of such diagnostics is low.
1403 template <typename ELFT>
1404 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1405                                                const typename ELFT::Shdr *sec) {
1406   if (!sec)
1407     return {};
1408   std::vector<uint32_t> verneeds;
1409   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1410   const uint8_t *verneedBuf = data.begin();
1411   for (unsigned i = 0; i != sec->sh_info; ++i) {
1412     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1413       fatal(toString(this) + " has an invalid Verneed");
1414     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1415     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1416     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1417       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1418         fatal(toString(this) + " has an invalid Vernaux");
1419       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1420       if (aux->vna_name >= this->stringTable.size())
1421         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1422       uint16_t version = aux->vna_other & VERSYM_VERSION;
1423       if (version >= verneeds.size())
1424         verneeds.resize(version + 1);
1425       verneeds[version] = aux->vna_name;
1426       vernauxBuf += aux->vna_next;
1427     }
1428     verneedBuf += vn->vn_next;
1429   }
1430   return verneeds;
1431 }
1432 
1433 // We do not usually care about alignments of data in shared object
1434 // files because the loader takes care of it. However, if we promote a
1435 // DSO symbol to point to .bss due to copy relocation, we need to keep
1436 // the original alignment requirements. We infer it in this function.
1437 template <typename ELFT>
1438 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1439                              const typename ELFT::Sym &sym) {
1440   uint64_t ret = UINT64_MAX;
1441   if (sym.st_value)
1442     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1443   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1444     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1445   return (ret > UINT32_MAX) ? 0 : ret;
1446 }
1447 
1448 // Fully parse the shared object file.
1449 //
1450 // This function parses symbol versions. If a DSO has version information,
1451 // the file has a ".gnu.version_d" section which contains symbol version
1452 // definitions. Each symbol is associated to one version through a table in
1453 // ".gnu.version" section. That table is a parallel array for the symbol
1454 // table, and each table entry contains an index in ".gnu.version_d".
1455 //
1456 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1457 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1458 // ".gnu.version_d".
1459 //
1460 // The file format for symbol versioning is perhaps a bit more complicated
1461 // than necessary, but you can easily understand the code if you wrap your
1462 // head around the data structure described above.
1463 template <class ELFT> void SharedFile::parse() {
1464   using Elf_Dyn = typename ELFT::Dyn;
1465   using Elf_Shdr = typename ELFT::Shdr;
1466   using Elf_Sym = typename ELFT::Sym;
1467   using Elf_Verdef = typename ELFT::Verdef;
1468   using Elf_Versym = typename ELFT::Versym;
1469 
1470   ArrayRef<Elf_Dyn> dynamicTags;
1471   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1472   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1473 
1474   StringRef sectionStringTable =
1475       CHECK(obj.getSectionStringTable(sections), this);
1476 
1477   const Elf_Shdr *versymSec = nullptr;
1478   const Elf_Shdr *verdefSec = nullptr;
1479   const Elf_Shdr *verneedSec = nullptr;
1480 
1481   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1482   for (const Elf_Shdr &sec : sections) {
1483     switch (sec.sh_type) {
1484     default:
1485       continue;
1486     case SHT_DYNAMIC:
1487       dynamicTags =
1488           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1489       break;
1490     case SHT_GNU_versym:
1491       versymSec = &sec;
1492       break;
1493     case SHT_GNU_verdef:
1494       verdefSec = &sec;
1495       break;
1496     case SHT_GNU_verneed:
1497       verneedSec = &sec;
1498       break;
1499     case SHT_PROGBITS: {
1500       StringRef name = CHECK(obj.getSectionName(sec, sectionStringTable), this);
1501       ArrayRef<char> data =
1502           CHECK(obj.template getSectionContentsAsArray<char>(sec), this);
1503       parseGNUWarning(name, data, sec.sh_size);
1504       break;
1505     }
1506     }
1507   }
1508 
1509   if (versymSec && numELFSyms == 0) {
1510     error("SHT_GNU_versym should be associated with symbol table");
1511     return;
1512   }
1513 
1514   // Search for a DT_SONAME tag to initialize this->soName.
1515   for (const Elf_Dyn &dyn : dynamicTags) {
1516     if (dyn.d_tag == DT_NEEDED) {
1517       uint64_t val = dyn.getVal();
1518       if (val >= this->stringTable.size())
1519         fatal(toString(this) + ": invalid DT_NEEDED entry");
1520       dtNeeded.push_back(this->stringTable.data() + val);
1521     } else if (dyn.d_tag == DT_SONAME) {
1522       uint64_t val = dyn.getVal();
1523       if (val >= this->stringTable.size())
1524         fatal(toString(this) + ": invalid DT_SONAME entry");
1525       soName = this->stringTable.data() + val;
1526     }
1527   }
1528 
1529   // DSOs are uniquified not by filename but by soname.
1530   DenseMap<StringRef, SharedFile *>::iterator it;
1531   bool wasInserted;
1532   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1533 
1534   // If a DSO appears more than once on the command line with and without
1535   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1536   // user can add an extra DSO with --no-as-needed to force it to be added to
1537   // the dependency list.
1538   it->second->isNeeded |= isNeeded;
1539   if (!wasInserted)
1540     return;
1541 
1542   sharedFiles.push_back(this);
1543 
1544   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1545   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1546 
1547   // Parse ".gnu.version" section which is a parallel array for the symbol
1548   // table. If a given file doesn't have a ".gnu.version" section, we use
1549   // VER_NDX_GLOBAL.
1550   size_t size = numELFSyms - firstGlobal;
1551   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1552   if (versymSec) {
1553     ArrayRef<Elf_Versym> versym =
1554         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1555               this)
1556             .slice(firstGlobal);
1557     for (size_t i = 0; i < size; ++i)
1558       versyms[i] = versym[i].vs_index;
1559   }
1560 
1561   // System libraries can have a lot of symbols with versions. Using a
1562   // fixed buffer for computing the versions name (foo@ver) can save a
1563   // lot of allocations.
1564   SmallString<0> versionedNameBuffer;
1565 
1566   // Add symbols to the symbol table.
1567   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1568   for (size_t i = 0; i < syms.size(); ++i) {
1569     const Elf_Sym &sym = syms[i];
1570 
1571     // ELF spec requires that all local symbols precede weak or global
1572     // symbols in each symbol table, and the index of first non-local symbol
1573     // is stored to sh_info. If a local symbol appears after some non-local
1574     // symbol, that's a violation of the spec.
1575     StringRef name = CHECK(sym.getName(this->stringTable), this);
1576     if (sym.getBinding() == STB_LOCAL) {
1577       warn("found local symbol '" + name +
1578            "' in global part of symbol table in file " + toString(this));
1579       continue;
1580     }
1581 
1582     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1583     if (sym.isUndefined()) {
1584       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1585       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1586       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1587         if (idx >= verneeds.size()) {
1588           error("corrupt input file: version need index " + Twine(idx) +
1589                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1590                 toString(this));
1591           continue;
1592         }
1593         StringRef verName = this->stringTable.data() + verneeds[idx];
1594         versionedNameBuffer.clear();
1595         name =
1596             saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
1597       }
1598       Symbol *s = symtab->addSymbol(
1599           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1600       s->exportDynamic = true;
1601       if (s->isUndefined() && sym.getBinding() != STB_WEAK &&
1602           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1603         requiredSymbols.push_back(s);
1604       continue;
1605     }
1606 
1607     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1608     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1609     // workaround for this bug.
1610     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1611         name == "_gp_disp")
1612       continue;
1613 
1614     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1615     if (!(versyms[i] & VERSYM_HIDDEN)) {
1616       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1617                                      sym.st_other, sym.getType(), sym.st_value,
1618                                      sym.st_size, alignment, idx});
1619     }
1620 
1621     // Also add the symbol with the versioned name to handle undefined symbols
1622     // with explicit versions.
1623     if (idx == VER_NDX_GLOBAL)
1624       continue;
1625 
1626     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1627       error("corrupt input file: version definition index " + Twine(idx) +
1628             " for symbol " + name + " is out of bounds\n>>> defined in " +
1629             toString(this));
1630       continue;
1631     }
1632 
1633     StringRef verName =
1634         this->stringTable.data() +
1635         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1636     versionedNameBuffer.clear();
1637     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1638     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1639                                    sym.st_other, sym.getType(), sym.st_value,
1640                                    sym.st_size, alignment, idx});
1641   }
1642 }
1643 
1644 static ELFKind getBitcodeELFKind(const Triple &t) {
1645   if (t.isLittleEndian())
1646     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1647   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1648 }
1649 
1650 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1651   switch (t.getArch()) {
1652   case Triple::aarch64:
1653   case Triple::aarch64_be:
1654     return EM_AARCH64;
1655   case Triple::amdgcn:
1656   case Triple::r600:
1657     return EM_AMDGPU;
1658   case Triple::arm:
1659   case Triple::thumb:
1660     return EM_ARM;
1661   case Triple::avr:
1662     return EM_AVR;
1663   case Triple::mips:
1664   case Triple::mipsel:
1665   case Triple::mips64:
1666   case Triple::mips64el:
1667     return EM_MIPS;
1668   case Triple::msp430:
1669     return EM_MSP430;
1670   case Triple::ppc:
1671   case Triple::ppcle:
1672     return EM_PPC;
1673   case Triple::ppc64:
1674   case Triple::ppc64le:
1675     return EM_PPC64;
1676   case Triple::riscv32:
1677   case Triple::riscv64:
1678     return EM_RISCV;
1679   case Triple::x86:
1680     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1681   case Triple::x86_64:
1682     return EM_X86_64;
1683   default:
1684     error(path + ": could not infer e_machine from bitcode target triple " +
1685           t.str());
1686     return EM_NONE;
1687   }
1688 }
1689 
1690 static uint8_t getOsAbi(const Triple &t) {
1691   switch (t.getOS()) {
1692   case Triple::AMDHSA:
1693     return ELF::ELFOSABI_AMDGPU_HSA;
1694   case Triple::AMDPAL:
1695     return ELF::ELFOSABI_AMDGPU_PAL;
1696   case Triple::Mesa3D:
1697     return ELF::ELFOSABI_AMDGPU_MESA3D;
1698   default:
1699     return ELF::ELFOSABI_NONE;
1700   }
1701 }
1702 
1703 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1704                          uint64_t offsetInArchive)
1705     : InputFile(BitcodeKind, mb) {
1706   this->archiveName = std::string(archiveName);
1707 
1708   std::string path = mb.getBufferIdentifier().str();
1709   if (config->thinLTOIndexOnly)
1710     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1711 
1712   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1713   // name. If two archives define two members with the same name, this
1714   // causes a collision which result in only one of the objects being taken
1715   // into consideration at LTO time (which very likely causes undefined
1716   // symbols later in the link stage). So we append file offset to make
1717   // filename unique.
1718   StringRef name =
1719       archiveName.empty()
1720           ? saver.save(path)
1721           : saver.save(archiveName + "(" + path::filename(path) + " at " +
1722                        utostr(offsetInArchive) + ")");
1723   MemoryBufferRef mbref(mb.getBuffer(), name);
1724 
1725   obj = CHECK(lto::InputFile::create(mbref), this);
1726 
1727   Triple t(obj->getTargetTriple());
1728   ekind = getBitcodeELFKind(t);
1729   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1730   osabi = getOsAbi(t);
1731 }
1732 
1733 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1734   switch (gvVisibility) {
1735   case GlobalValue::DefaultVisibility:
1736     return STV_DEFAULT;
1737   case GlobalValue::HiddenVisibility:
1738     return STV_HIDDEN;
1739   case GlobalValue::ProtectedVisibility:
1740     return STV_PROTECTED;
1741   }
1742   llvm_unreachable("unknown visibility");
1743 }
1744 
1745 template <class ELFT>
1746 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1747                                    const lto::InputFile::Symbol &objSym,
1748                                    BitcodeFile &f) {
1749   StringRef name = saver.save(objSym.getName());
1750   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1751   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1752   uint8_t visibility = mapVisibility(objSym.getVisibility());
1753   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1754 
1755   int c = objSym.getComdatIndex();
1756   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1757     Undefined newSym(&f, name, binding, visibility, type);
1758     if (canOmitFromDynSym)
1759       newSym.exportDynamic = false;
1760     Symbol *ret = symtab->addSymbol(newSym);
1761     ret->referenced = true;
1762     return ret;
1763   }
1764 
1765   if (objSym.isCommon())
1766     return symtab->addSymbol(
1767         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1768                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1769 
1770   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1771   if (canOmitFromDynSym)
1772     newSym.exportDynamic = false;
1773   return symtab->addSymbol(newSym);
1774 }
1775 
1776 template <class ELFT> void BitcodeFile::parse() {
1777   std::vector<bool> keptComdats;
1778   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1779     keptComdats.push_back(
1780         s.second == Comdat::NoDeduplicate ||
1781         symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1782             .second);
1783   }
1784 
1785   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1786     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1787 
1788   for (auto l : obj->getDependentLibraries())
1789     addDependentLibrary(l, this);
1790 }
1791 
1792 void BinaryFile::parse() {
1793   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1794   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1795                                      8, data, ".data");
1796   sections.push_back(section);
1797 
1798   // For each input file foo that is embedded to a result as a binary
1799   // blob, we define _binary_foo_{start,end,size} symbols, so that
1800   // user programs can access blobs by name. Non-alphanumeric
1801   // characters in a filename are replaced with underscore.
1802   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1803   for (size_t i = 0; i < s.size(); ++i)
1804     if (!isAlnum(s[i]))
1805       s[i] = '_';
1806 
1807   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1808                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1809   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1810                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1811   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1812                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1813 }
1814 
1815 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1816                                  uint64_t offsetInArchive) {
1817   if (isBitcode(mb))
1818     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1819 
1820   switch (getELFKind(mb, archiveName)) {
1821   case ELF32LEKind:
1822     return make<ObjFile<ELF32LE>>(mb, archiveName);
1823   case ELF32BEKind:
1824     return make<ObjFile<ELF32BE>>(mb, archiveName);
1825   case ELF64LEKind:
1826     return make<ObjFile<ELF64LE>>(mb, archiveName);
1827   case ELF64BEKind:
1828     return make<ObjFile<ELF64BE>>(mb, archiveName);
1829   default:
1830     llvm_unreachable("getELFKind");
1831   }
1832 }
1833 
1834 void LazyObjFile::fetch() {
1835   if (fetched)
1836     return;
1837   fetched = true;
1838 
1839   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1840   file->groupId = groupId;
1841 
1842   // Copy symbol vector so that the new InputFile doesn't have to
1843   // insert the same defined symbols to the symbol table again.
1844   file->symbols = std::move(symbols);
1845 
1846   parseFile(file);
1847 }
1848 
1849 template <class ELFT> void LazyObjFile::parse() {
1850   using Elf_Sym = typename ELFT::Sym;
1851 
1852   // A lazy object file wraps either a bitcode file or an ELF file.
1853   if (isBitcode(this->mb)) {
1854     std::unique_ptr<lto::InputFile> obj =
1855         CHECK(lto::InputFile::create(this->mb), this);
1856     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1857       if (sym.isUndefined())
1858         continue;
1859       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1860     }
1861     return;
1862   }
1863 
1864   if (getELFKind(this->mb, archiveName) != config->ekind) {
1865     error("incompatible file: " + this->mb.getBufferIdentifier());
1866     return;
1867   }
1868 
1869   // Find a symbol table.
1870   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1871   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1872 
1873   for (const typename ELFT::Shdr &sec : sections) {
1874     if (sec.sh_type != SHT_SYMTAB)
1875       continue;
1876 
1877     // A symbol table is found.
1878     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1879     uint32_t firstGlobal = sec.sh_info;
1880     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1881     this->symbols.resize(eSyms.size());
1882 
1883     // Get existing symbols or insert placeholder symbols.
1884     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1885       if (eSyms[i].st_shndx != SHN_UNDEF)
1886         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1887 
1888     // Replace existing symbols with LazyObject symbols.
1889     //
1890     // resolve() may trigger this->fetch() if an existing symbol is an
1891     // undefined symbol. If that happens, this LazyObjFile has served
1892     // its purpose, and we can exit from the loop early.
1893     for (Symbol *sym : this->symbols) {
1894       if (!sym)
1895         continue;
1896       sym->resolve(LazyObject{*this, sym->getName()});
1897 
1898       // If fetched, stop iterating because this->symbols has been transferred
1899       // to the instantiated ObjFile.
1900       if (fetched)
1901         return;
1902     }
1903     return;
1904   }
1905 }
1906 
1907 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) {
1908   if (isBitcode(mb))
1909     return isBitcodeNonCommonDef(mb, name, archiveName);
1910 
1911   return isNonCommonDef(mb, name, archiveName);
1912 }
1913 
1914 std::string elf::replaceThinLTOSuffix(StringRef path) {
1915   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1916   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1917 
1918   if (path.consume_back(suffix))
1919     return (path + repl).str();
1920   return std::string(path);
1921 }
1922 
1923 template void BitcodeFile::parse<ELF32LE>();
1924 template void BitcodeFile::parse<ELF32BE>();
1925 template void BitcodeFile::parse<ELF64LE>();
1926 template void BitcodeFile::parse<ELF64BE>();
1927 
1928 template void LazyObjFile::parse<ELF32LE>();
1929 template void LazyObjFile::parse<ELF32BE>();
1930 template void LazyObjFile::parse<ELF64LE>();
1931 template void LazyObjFile::parse<ELF64BE>();
1932 
1933 template class elf::ObjFile<ELF32LE>;
1934 template class elf::ObjFile<ELF32BE>;
1935 template class elf::ObjFile<ELF64LE>;
1936 template class elf::ObjFile<ELF64BE>;
1937 
1938 template void SharedFile::parse<ELF32LE>();
1939 template void SharedFile::parse<ELF32BE>();
1940 template void SharedFile::parse<ELF64LE>();
1941 template void SharedFile::parse<ELF64BE>();
1942