1 //===------------------------- UnwindCursor.hpp ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 // C++ interface to lower levels of libunwind 9 //===----------------------------------------------------------------------===// 10 11 #ifndef __UNWINDCURSOR_HPP__ 12 #define __UNWINDCURSOR_HPP__ 13 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <unwind.h> 18 19 #ifdef _WIN32 20 #include <windows.h> 21 #include <ntverp.h> 22 #endif 23 #ifdef __APPLE__ 24 #include <mach-o/dyld.h> 25 #endif 26 27 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 28 // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and 29 // earlier) SDKs. 30 // MinGW-w64 has always provided this struct. 31 #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \ 32 !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000 33 struct _DISPATCHER_CONTEXT { 34 ULONG64 ControlPc; 35 ULONG64 ImageBase; 36 PRUNTIME_FUNCTION FunctionEntry; 37 ULONG64 EstablisherFrame; 38 ULONG64 TargetIp; 39 PCONTEXT ContextRecord; 40 PEXCEPTION_ROUTINE LanguageHandler; 41 PVOID HandlerData; 42 PUNWIND_HISTORY_TABLE HistoryTable; 43 ULONG ScopeIndex; 44 ULONG Fill0; 45 }; 46 #endif 47 48 struct UNWIND_INFO { 49 uint8_t Version : 3; 50 uint8_t Flags : 5; 51 uint8_t SizeOfProlog; 52 uint8_t CountOfCodes; 53 uint8_t FrameRegister : 4; 54 uint8_t FrameOffset : 4; 55 uint16_t UnwindCodes[2]; 56 }; 57 58 extern "C" _Unwind_Reason_Code __libunwind_seh_personality( 59 int, _Unwind_Action, uint64_t, _Unwind_Exception *, 60 struct _Unwind_Context *); 61 62 #endif 63 64 #include "config.h" 65 66 #include "AddressSpace.hpp" 67 #include "CompactUnwinder.hpp" 68 #include "config.h" 69 #include "DwarfInstructions.hpp" 70 #include "EHHeaderParser.hpp" 71 #include "libunwind.h" 72 #include "Registers.hpp" 73 #include "RWMutex.hpp" 74 #include "Unwind-EHABI.h" 75 76 namespace libunwind { 77 78 static thread_local UnwindInfoSectionsCache uwis_cache; 79 80 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 81 /// Cache of recently found FDEs. 82 template <typename A> 83 class _LIBUNWIND_HIDDEN DwarfFDECache { 84 typedef typename A::pint_t pint_t; 85 public: 86 static pint_t findFDE(pint_t mh, pint_t pc); 87 static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); 88 static void removeAllIn(pint_t mh); 89 static void iterateCacheEntries(void (*func)(unw_word_t ip_start, 90 unw_word_t ip_end, 91 unw_word_t fde, unw_word_t mh)); 92 93 private: 94 95 struct entry { 96 pint_t mh; 97 pint_t ip_start; 98 pint_t ip_end; 99 pint_t fde; 100 }; 101 102 // These fields are all static to avoid needing an initializer. 103 // There is only one instance of this class per process. 104 static RWMutex _lock; 105 #ifdef __APPLE__ 106 static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); 107 static bool _registeredForDyldUnloads; 108 #endif 109 static entry *_buffer; 110 static entry *_bufferUsed; 111 static entry *_bufferEnd; 112 static entry _initialBuffer[64]; 113 }; 114 115 template <typename A> 116 typename DwarfFDECache<A>::entry * 117 DwarfFDECache<A>::_buffer = _initialBuffer; 118 119 template <typename A> 120 typename DwarfFDECache<A>::entry * 121 DwarfFDECache<A>::_bufferUsed = _initialBuffer; 122 123 template <typename A> 124 typename DwarfFDECache<A>::entry * 125 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; 126 127 template <typename A> 128 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; 129 130 template <typename A> 131 RWMutex DwarfFDECache<A>::_lock; 132 133 #ifdef __APPLE__ 134 template <typename A> 135 bool DwarfFDECache<A>::_registeredForDyldUnloads = false; 136 #endif 137 138 template <typename A> 139 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { 140 pint_t result = 0; 141 _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); 142 for (entry *p = _buffer; p < _bufferUsed; ++p) { 143 if ((mh == p->mh) || (mh == 0)) { 144 if ((p->ip_start <= pc) && (pc < p->ip_end)) { 145 result = p->fde; 146 break; 147 } 148 } 149 } 150 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); 151 return result; 152 } 153 154 template <typename A> 155 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, 156 pint_t fde) { 157 #if !defined(_LIBUNWIND_NO_HEAP) 158 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 159 if (_bufferUsed >= _bufferEnd) { 160 size_t oldSize = (size_t)(_bufferEnd - _buffer); 161 size_t newSize = oldSize * 4; 162 // Can't use operator new (we are below it). 163 entry *newBuffer = (entry *)malloc(newSize * sizeof(entry)); 164 memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); 165 if (_buffer != _initialBuffer) 166 free(_buffer); 167 _buffer = newBuffer; 168 _bufferUsed = &newBuffer[oldSize]; 169 _bufferEnd = &newBuffer[newSize]; 170 } 171 _bufferUsed->mh = mh; 172 _bufferUsed->ip_start = ip_start; 173 _bufferUsed->ip_end = ip_end; 174 _bufferUsed->fde = fde; 175 ++_bufferUsed; 176 #ifdef __APPLE__ 177 if (!_registeredForDyldUnloads) { 178 _dyld_register_func_for_remove_image(&dyldUnloadHook); 179 _registeredForDyldUnloads = true; 180 } 181 #endif 182 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 183 #endif 184 } 185 186 template <typename A> 187 void DwarfFDECache<A>::removeAllIn(pint_t mh) { 188 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 189 entry *d = _buffer; 190 for (const entry *s = _buffer; s < _bufferUsed; ++s) { 191 if (s->mh != mh) { 192 if (d != s) 193 *d = *s; 194 ++d; 195 } 196 } 197 _bufferUsed = d; 198 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 199 } 200 201 #ifdef __APPLE__ 202 template <typename A> 203 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { 204 removeAllIn((pint_t) mh); 205 } 206 #endif 207 208 template <typename A> 209 void DwarfFDECache<A>::iterateCacheEntries(void (*func)( 210 unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { 211 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 212 for (entry *p = _buffer; p < _bufferUsed; ++p) { 213 (*func)(p->ip_start, p->ip_end, p->fde, p->mh); 214 } 215 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 216 } 217 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 218 219 220 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field)) 221 222 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 223 template <typename A> class UnwindSectionHeader { 224 public: 225 UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) 226 : _addressSpace(addressSpace), _addr(addr) {} 227 228 uint32_t version() const { 229 return _addressSpace.get32(_addr + 230 offsetof(unwind_info_section_header, version)); 231 } 232 uint32_t commonEncodingsArraySectionOffset() const { 233 return _addressSpace.get32(_addr + 234 offsetof(unwind_info_section_header, 235 commonEncodingsArraySectionOffset)); 236 } 237 uint32_t commonEncodingsArrayCount() const { 238 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 239 commonEncodingsArrayCount)); 240 } 241 uint32_t personalityArraySectionOffset() const { 242 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 243 personalityArraySectionOffset)); 244 } 245 uint32_t personalityArrayCount() const { 246 return _addressSpace.get32( 247 _addr + offsetof(unwind_info_section_header, personalityArrayCount)); 248 } 249 uint32_t indexSectionOffset() const { 250 return _addressSpace.get32( 251 _addr + offsetof(unwind_info_section_header, indexSectionOffset)); 252 } 253 uint32_t indexCount() const { 254 return _addressSpace.get32( 255 _addr + offsetof(unwind_info_section_header, indexCount)); 256 } 257 258 private: 259 A &_addressSpace; 260 typename A::pint_t _addr; 261 }; 262 263 template <typename A> class UnwindSectionIndexArray { 264 public: 265 UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) 266 : _addressSpace(addressSpace), _addr(addr) {} 267 268 uint32_t functionOffset(uint32_t index) const { 269 return _addressSpace.get32( 270 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 271 functionOffset)); 272 } 273 uint32_t secondLevelPagesSectionOffset(uint32_t index) const { 274 return _addressSpace.get32( 275 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 276 secondLevelPagesSectionOffset)); 277 } 278 uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { 279 return _addressSpace.get32( 280 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 281 lsdaIndexArraySectionOffset)); 282 } 283 284 private: 285 A &_addressSpace; 286 typename A::pint_t _addr; 287 }; 288 289 template <typename A> class UnwindSectionRegularPageHeader { 290 public: 291 UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) 292 : _addressSpace(addressSpace), _addr(addr) {} 293 294 uint32_t kind() const { 295 return _addressSpace.get32( 296 _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); 297 } 298 uint16_t entryPageOffset() const { 299 return _addressSpace.get16( 300 _addr + offsetof(unwind_info_regular_second_level_page_header, 301 entryPageOffset)); 302 } 303 uint16_t entryCount() const { 304 return _addressSpace.get16( 305 _addr + 306 offsetof(unwind_info_regular_second_level_page_header, entryCount)); 307 } 308 309 private: 310 A &_addressSpace; 311 typename A::pint_t _addr; 312 }; 313 314 template <typename A> class UnwindSectionRegularArray { 315 public: 316 UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) 317 : _addressSpace(addressSpace), _addr(addr) {} 318 319 uint32_t functionOffset(uint32_t index) const { 320 return _addressSpace.get32( 321 _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, 322 functionOffset)); 323 } 324 uint32_t encoding(uint32_t index) const { 325 return _addressSpace.get32( 326 _addr + 327 arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); 328 } 329 330 private: 331 A &_addressSpace; 332 typename A::pint_t _addr; 333 }; 334 335 template <typename A> class UnwindSectionCompressedPageHeader { 336 public: 337 UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) 338 : _addressSpace(addressSpace), _addr(addr) {} 339 340 uint32_t kind() const { 341 return _addressSpace.get32( 342 _addr + 343 offsetof(unwind_info_compressed_second_level_page_header, kind)); 344 } 345 uint16_t entryPageOffset() const { 346 return _addressSpace.get16( 347 _addr + offsetof(unwind_info_compressed_second_level_page_header, 348 entryPageOffset)); 349 } 350 uint16_t entryCount() const { 351 return _addressSpace.get16( 352 _addr + 353 offsetof(unwind_info_compressed_second_level_page_header, entryCount)); 354 } 355 uint16_t encodingsPageOffset() const { 356 return _addressSpace.get16( 357 _addr + offsetof(unwind_info_compressed_second_level_page_header, 358 encodingsPageOffset)); 359 } 360 uint16_t encodingsCount() const { 361 return _addressSpace.get16( 362 _addr + offsetof(unwind_info_compressed_second_level_page_header, 363 encodingsCount)); 364 } 365 366 private: 367 A &_addressSpace; 368 typename A::pint_t _addr; 369 }; 370 371 template <typename A> class UnwindSectionCompressedArray { 372 public: 373 UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) 374 : _addressSpace(addressSpace), _addr(addr) {} 375 376 uint32_t functionOffset(uint32_t index) const { 377 return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( 378 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 379 } 380 uint16_t encodingIndex(uint32_t index) const { 381 return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( 382 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 383 } 384 385 private: 386 A &_addressSpace; 387 typename A::pint_t _addr; 388 }; 389 390 template <typename A> class UnwindSectionLsdaArray { 391 public: 392 UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) 393 : _addressSpace(addressSpace), _addr(addr) {} 394 395 uint32_t functionOffset(uint32_t index) const { 396 return _addressSpace.get32( 397 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 398 index, functionOffset)); 399 } 400 uint32_t lsdaOffset(uint32_t index) const { 401 return _addressSpace.get32( 402 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 403 index, lsdaOffset)); 404 } 405 406 private: 407 A &_addressSpace; 408 typename A::pint_t _addr; 409 }; 410 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 411 412 class _LIBUNWIND_HIDDEN AbstractUnwindCursor { 413 public: 414 // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) 415 // This avoids an unnecessary dependency to libc++abi. 416 void operator delete(void *, size_t) {} 417 418 virtual ~AbstractUnwindCursor() {} 419 virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } 420 virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } 421 virtual void setReg(int, unw_word_t) { 422 _LIBUNWIND_ABORT("setReg not implemented"); 423 } 424 virtual bool validFloatReg(int) { 425 _LIBUNWIND_ABORT("validFloatReg not implemented"); 426 } 427 virtual unw_fpreg_t getFloatReg(int) { 428 _LIBUNWIND_ABORT("getFloatReg not implemented"); 429 } 430 virtual void setFloatReg(int, unw_fpreg_t) { 431 _LIBUNWIND_ABORT("setFloatReg not implemented"); 432 } 433 virtual int step() { _LIBUNWIND_ABORT("step not implemented"); } 434 virtual void getInfo(unw_proc_info_t *) { 435 _LIBUNWIND_ABORT("getInfo not implemented"); 436 } 437 virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } 438 virtual bool isSignalFrame() { 439 _LIBUNWIND_ABORT("isSignalFrame not implemented"); 440 } 441 virtual bool getFunctionName(char *, size_t, unw_word_t *) { 442 _LIBUNWIND_ABORT("getFunctionName not implemented"); 443 } 444 virtual void setInfoBasedOnIPRegister(bool = false) { 445 _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); 446 } 447 virtual const char *getRegisterName(int) { 448 _LIBUNWIND_ABORT("getRegisterName not implemented"); 449 } 450 #ifdef __arm__ 451 virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } 452 #endif 453 }; 454 455 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32) 456 457 /// \c UnwindCursor contains all state (including all register values) during 458 /// an unwind. This is normally stack-allocated inside a unw_cursor_t. 459 template <typename A, typename R> 460 class UnwindCursor : public AbstractUnwindCursor { 461 typedef typename A::pint_t pint_t; 462 public: 463 UnwindCursor(unw_context_t *context, A &as); 464 UnwindCursor(CONTEXT *context, A &as); 465 UnwindCursor(A &as, void *threadArg); 466 virtual ~UnwindCursor() {} 467 virtual bool validReg(int); 468 virtual unw_word_t getReg(int); 469 virtual void setReg(int, unw_word_t); 470 virtual bool validFloatReg(int); 471 virtual unw_fpreg_t getFloatReg(int); 472 virtual void setFloatReg(int, unw_fpreg_t); 473 virtual int step(); 474 virtual void getInfo(unw_proc_info_t *); 475 virtual void jumpto(); 476 virtual bool isSignalFrame(); 477 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 478 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 479 virtual const char *getRegisterName(int num); 480 #ifdef __arm__ 481 virtual void saveVFPAsX(); 482 #endif 483 484 DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; } 485 void setDispatcherContext(DISPATCHER_CONTEXT *disp) { _dispContext = *disp; } 486 487 // libunwind does not and should not depend on C++ library which means that we 488 // need our own defition of inline placement new. 489 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 490 491 private: 492 493 pint_t getLastPC() const { return _dispContext.ControlPc; } 494 void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; } 495 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 496 _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc, 497 &_dispContext.ImageBase, 498 _dispContext.HistoryTable); 499 *base = _dispContext.ImageBase; 500 return _dispContext.FunctionEntry; 501 } 502 bool getInfoFromSEH(pint_t pc); 503 int stepWithSEHData() { 504 _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER, 505 _dispContext.ImageBase, 506 _dispContext.ControlPc, 507 _dispContext.FunctionEntry, 508 _dispContext.ContextRecord, 509 &_dispContext.HandlerData, 510 &_dispContext.EstablisherFrame, 511 NULL); 512 // Update some fields of the unwind info now, since we have them. 513 _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); 514 if (_dispContext.LanguageHandler) { 515 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 516 } else 517 _info.handler = 0; 518 return UNW_STEP_SUCCESS; 519 } 520 521 A &_addressSpace; 522 unw_proc_info_t _info; 523 DISPATCHER_CONTEXT _dispContext; 524 CONTEXT _msContext; 525 UNWIND_HISTORY_TABLE _histTable; 526 bool _unwindInfoMissing; 527 }; 528 529 530 template <typename A, typename R> 531 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 532 : _addressSpace(as), _unwindInfoMissing(false) { 533 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 534 "UnwindCursor<> does not fit in unw_cursor_t"); 535 memset(&_info, 0, sizeof(_info)); 536 memset(&_histTable, 0, sizeof(_histTable)); 537 _dispContext.ContextRecord = &_msContext; 538 _dispContext.HistoryTable = &_histTable; 539 // Initialize MS context from ours. 540 R r(context); 541 _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT; 542 #if defined(_LIBUNWIND_TARGET_X86_64) 543 _msContext.Rax = r.getRegister(UNW_X86_64_RAX); 544 _msContext.Rcx = r.getRegister(UNW_X86_64_RCX); 545 _msContext.Rdx = r.getRegister(UNW_X86_64_RDX); 546 _msContext.Rbx = r.getRegister(UNW_X86_64_RBX); 547 _msContext.Rsp = r.getRegister(UNW_X86_64_RSP); 548 _msContext.Rbp = r.getRegister(UNW_X86_64_RBP); 549 _msContext.Rsi = r.getRegister(UNW_X86_64_RSI); 550 _msContext.Rdi = r.getRegister(UNW_X86_64_RDI); 551 _msContext.R8 = r.getRegister(UNW_X86_64_R8); 552 _msContext.R9 = r.getRegister(UNW_X86_64_R9); 553 _msContext.R10 = r.getRegister(UNW_X86_64_R10); 554 _msContext.R11 = r.getRegister(UNW_X86_64_R11); 555 _msContext.R12 = r.getRegister(UNW_X86_64_R12); 556 _msContext.R13 = r.getRegister(UNW_X86_64_R13); 557 _msContext.R14 = r.getRegister(UNW_X86_64_R14); 558 _msContext.R15 = r.getRegister(UNW_X86_64_R15); 559 _msContext.Rip = r.getRegister(UNW_REG_IP); 560 union { 561 v128 v; 562 M128A m; 563 } t; 564 t.v = r.getVectorRegister(UNW_X86_64_XMM0); 565 _msContext.Xmm0 = t.m; 566 t.v = r.getVectorRegister(UNW_X86_64_XMM1); 567 _msContext.Xmm1 = t.m; 568 t.v = r.getVectorRegister(UNW_X86_64_XMM2); 569 _msContext.Xmm2 = t.m; 570 t.v = r.getVectorRegister(UNW_X86_64_XMM3); 571 _msContext.Xmm3 = t.m; 572 t.v = r.getVectorRegister(UNW_X86_64_XMM4); 573 _msContext.Xmm4 = t.m; 574 t.v = r.getVectorRegister(UNW_X86_64_XMM5); 575 _msContext.Xmm5 = t.m; 576 t.v = r.getVectorRegister(UNW_X86_64_XMM6); 577 _msContext.Xmm6 = t.m; 578 t.v = r.getVectorRegister(UNW_X86_64_XMM7); 579 _msContext.Xmm7 = t.m; 580 t.v = r.getVectorRegister(UNW_X86_64_XMM8); 581 _msContext.Xmm8 = t.m; 582 t.v = r.getVectorRegister(UNW_X86_64_XMM9); 583 _msContext.Xmm9 = t.m; 584 t.v = r.getVectorRegister(UNW_X86_64_XMM10); 585 _msContext.Xmm10 = t.m; 586 t.v = r.getVectorRegister(UNW_X86_64_XMM11); 587 _msContext.Xmm11 = t.m; 588 t.v = r.getVectorRegister(UNW_X86_64_XMM12); 589 _msContext.Xmm12 = t.m; 590 t.v = r.getVectorRegister(UNW_X86_64_XMM13); 591 _msContext.Xmm13 = t.m; 592 t.v = r.getVectorRegister(UNW_X86_64_XMM14); 593 _msContext.Xmm14 = t.m; 594 t.v = r.getVectorRegister(UNW_X86_64_XMM15); 595 _msContext.Xmm15 = t.m; 596 #elif defined(_LIBUNWIND_TARGET_ARM) 597 _msContext.R0 = r.getRegister(UNW_ARM_R0); 598 _msContext.R1 = r.getRegister(UNW_ARM_R1); 599 _msContext.R2 = r.getRegister(UNW_ARM_R2); 600 _msContext.R3 = r.getRegister(UNW_ARM_R3); 601 _msContext.R4 = r.getRegister(UNW_ARM_R4); 602 _msContext.R5 = r.getRegister(UNW_ARM_R5); 603 _msContext.R6 = r.getRegister(UNW_ARM_R6); 604 _msContext.R7 = r.getRegister(UNW_ARM_R7); 605 _msContext.R8 = r.getRegister(UNW_ARM_R8); 606 _msContext.R9 = r.getRegister(UNW_ARM_R9); 607 _msContext.R10 = r.getRegister(UNW_ARM_R10); 608 _msContext.R11 = r.getRegister(UNW_ARM_R11); 609 _msContext.R12 = r.getRegister(UNW_ARM_R12); 610 _msContext.Sp = r.getRegister(UNW_ARM_SP); 611 _msContext.Lr = r.getRegister(UNW_ARM_LR); 612 _msContext.Pc = r.getRegister(UNW_ARM_IP); 613 for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) { 614 union { 615 uint64_t w; 616 double d; 617 } d; 618 d.d = r.getFloatRegister(i); 619 _msContext.D[i - UNW_ARM_D0] = d.w; 620 } 621 #elif defined(_LIBUNWIND_TARGET_AARCH64) 622 for (int i = UNW_ARM64_X0; i <= UNW_ARM64_X30; ++i) 623 _msContext.X[i - UNW_ARM64_X0] = r.getRegister(i); 624 _msContext.Sp = r.getRegister(UNW_REG_SP); 625 _msContext.Pc = r.getRegister(UNW_REG_IP); 626 for (int i = UNW_ARM64_D0; i <= UNW_ARM64_D31; ++i) 627 _msContext.V[i - UNW_ARM64_D0].D[0] = r.getFloatRegister(i); 628 #endif 629 } 630 631 template <typename A, typename R> 632 UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as) 633 : _addressSpace(as), _unwindInfoMissing(false) { 634 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 635 "UnwindCursor<> does not fit in unw_cursor_t"); 636 memset(&_info, 0, sizeof(_info)); 637 memset(&_histTable, 0, sizeof(_histTable)); 638 _dispContext.ContextRecord = &_msContext; 639 _dispContext.HistoryTable = &_histTable; 640 _msContext = *context; 641 } 642 643 644 template <typename A, typename R> 645 bool UnwindCursor<A, R>::validReg(int regNum) { 646 if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true; 647 #if defined(_LIBUNWIND_TARGET_X86_64) 648 if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_R15) return true; 649 #elif defined(_LIBUNWIND_TARGET_ARM) 650 if (regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) return true; 651 #elif defined(_LIBUNWIND_TARGET_AARCH64) 652 if (regNum >= UNW_ARM64_X0 && regNum <= UNW_ARM64_X30) return true; 653 #endif 654 return false; 655 } 656 657 template <typename A, typename R> 658 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 659 switch (regNum) { 660 #if defined(_LIBUNWIND_TARGET_X86_64) 661 case UNW_REG_IP: return _msContext.Rip; 662 case UNW_X86_64_RAX: return _msContext.Rax; 663 case UNW_X86_64_RDX: return _msContext.Rdx; 664 case UNW_X86_64_RCX: return _msContext.Rcx; 665 case UNW_X86_64_RBX: return _msContext.Rbx; 666 case UNW_REG_SP: 667 case UNW_X86_64_RSP: return _msContext.Rsp; 668 case UNW_X86_64_RBP: return _msContext.Rbp; 669 case UNW_X86_64_RSI: return _msContext.Rsi; 670 case UNW_X86_64_RDI: return _msContext.Rdi; 671 case UNW_X86_64_R8: return _msContext.R8; 672 case UNW_X86_64_R9: return _msContext.R9; 673 case UNW_X86_64_R10: return _msContext.R10; 674 case UNW_X86_64_R11: return _msContext.R11; 675 case UNW_X86_64_R12: return _msContext.R12; 676 case UNW_X86_64_R13: return _msContext.R13; 677 case UNW_X86_64_R14: return _msContext.R14; 678 case UNW_X86_64_R15: return _msContext.R15; 679 #elif defined(_LIBUNWIND_TARGET_ARM) 680 case UNW_ARM_R0: return _msContext.R0; 681 case UNW_ARM_R1: return _msContext.R1; 682 case UNW_ARM_R2: return _msContext.R2; 683 case UNW_ARM_R3: return _msContext.R3; 684 case UNW_ARM_R4: return _msContext.R4; 685 case UNW_ARM_R5: return _msContext.R5; 686 case UNW_ARM_R6: return _msContext.R6; 687 case UNW_ARM_R7: return _msContext.R7; 688 case UNW_ARM_R8: return _msContext.R8; 689 case UNW_ARM_R9: return _msContext.R9; 690 case UNW_ARM_R10: return _msContext.R10; 691 case UNW_ARM_R11: return _msContext.R11; 692 case UNW_ARM_R12: return _msContext.R12; 693 case UNW_REG_SP: 694 case UNW_ARM_SP: return _msContext.Sp; 695 case UNW_ARM_LR: return _msContext.Lr; 696 case UNW_REG_IP: 697 case UNW_ARM_IP: return _msContext.Pc; 698 #elif defined(_LIBUNWIND_TARGET_AARCH64) 699 case UNW_REG_SP: return _msContext.Sp; 700 case UNW_REG_IP: return _msContext.Pc; 701 default: return _msContext.X[regNum - UNW_ARM64_X0]; 702 #endif 703 } 704 _LIBUNWIND_ABORT("unsupported register"); 705 } 706 707 template <typename A, typename R> 708 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 709 switch (regNum) { 710 #if defined(_LIBUNWIND_TARGET_X86_64) 711 case UNW_REG_IP: _msContext.Rip = value; break; 712 case UNW_X86_64_RAX: _msContext.Rax = value; break; 713 case UNW_X86_64_RDX: _msContext.Rdx = value; break; 714 case UNW_X86_64_RCX: _msContext.Rcx = value; break; 715 case UNW_X86_64_RBX: _msContext.Rbx = value; break; 716 case UNW_REG_SP: 717 case UNW_X86_64_RSP: _msContext.Rsp = value; break; 718 case UNW_X86_64_RBP: _msContext.Rbp = value; break; 719 case UNW_X86_64_RSI: _msContext.Rsi = value; break; 720 case UNW_X86_64_RDI: _msContext.Rdi = value; break; 721 case UNW_X86_64_R8: _msContext.R8 = value; break; 722 case UNW_X86_64_R9: _msContext.R9 = value; break; 723 case UNW_X86_64_R10: _msContext.R10 = value; break; 724 case UNW_X86_64_R11: _msContext.R11 = value; break; 725 case UNW_X86_64_R12: _msContext.R12 = value; break; 726 case UNW_X86_64_R13: _msContext.R13 = value; break; 727 case UNW_X86_64_R14: _msContext.R14 = value; break; 728 case UNW_X86_64_R15: _msContext.R15 = value; break; 729 #elif defined(_LIBUNWIND_TARGET_ARM) 730 case UNW_ARM_R0: _msContext.R0 = value; break; 731 case UNW_ARM_R1: _msContext.R1 = value; break; 732 case UNW_ARM_R2: _msContext.R2 = value; break; 733 case UNW_ARM_R3: _msContext.R3 = value; break; 734 case UNW_ARM_R4: _msContext.R4 = value; break; 735 case UNW_ARM_R5: _msContext.R5 = value; break; 736 case UNW_ARM_R6: _msContext.R6 = value; break; 737 case UNW_ARM_R7: _msContext.R7 = value; break; 738 case UNW_ARM_R8: _msContext.R8 = value; break; 739 case UNW_ARM_R9: _msContext.R9 = value; break; 740 case UNW_ARM_R10: _msContext.R10 = value; break; 741 case UNW_ARM_R11: _msContext.R11 = value; break; 742 case UNW_ARM_R12: _msContext.R12 = value; break; 743 case UNW_REG_SP: 744 case UNW_ARM_SP: _msContext.Sp = value; break; 745 case UNW_ARM_LR: _msContext.Lr = value; break; 746 case UNW_REG_IP: 747 case UNW_ARM_IP: _msContext.Pc = value; break; 748 #elif defined(_LIBUNWIND_TARGET_AARCH64) 749 case UNW_REG_SP: _msContext.Sp = value; break; 750 case UNW_REG_IP: _msContext.Pc = value; break; 751 case UNW_ARM64_X0: 752 case UNW_ARM64_X1: 753 case UNW_ARM64_X2: 754 case UNW_ARM64_X3: 755 case UNW_ARM64_X4: 756 case UNW_ARM64_X5: 757 case UNW_ARM64_X6: 758 case UNW_ARM64_X7: 759 case UNW_ARM64_X8: 760 case UNW_ARM64_X9: 761 case UNW_ARM64_X10: 762 case UNW_ARM64_X11: 763 case UNW_ARM64_X12: 764 case UNW_ARM64_X13: 765 case UNW_ARM64_X14: 766 case UNW_ARM64_X15: 767 case UNW_ARM64_X16: 768 case UNW_ARM64_X17: 769 case UNW_ARM64_X18: 770 case UNW_ARM64_X19: 771 case UNW_ARM64_X20: 772 case UNW_ARM64_X21: 773 case UNW_ARM64_X22: 774 case UNW_ARM64_X23: 775 case UNW_ARM64_X24: 776 case UNW_ARM64_X25: 777 case UNW_ARM64_X26: 778 case UNW_ARM64_X27: 779 case UNW_ARM64_X28: 780 case UNW_ARM64_FP: 781 case UNW_ARM64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break; 782 #endif 783 default: 784 _LIBUNWIND_ABORT("unsupported register"); 785 } 786 } 787 788 template <typename A, typename R> 789 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 790 #if defined(_LIBUNWIND_TARGET_ARM) 791 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true; 792 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true; 793 #elif defined(_LIBUNWIND_TARGET_AARCH64) 794 if (regNum >= UNW_ARM64_D0 && regNum <= UNW_ARM64_D31) return true; 795 #else 796 (void)regNum; 797 #endif 798 return false; 799 } 800 801 template <typename A, typename R> 802 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 803 #if defined(_LIBUNWIND_TARGET_ARM) 804 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 805 union { 806 uint32_t w; 807 float f; 808 } d; 809 d.w = _msContext.S[regNum - UNW_ARM_S0]; 810 return d.f; 811 } 812 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 813 union { 814 uint64_t w; 815 double d; 816 } d; 817 d.w = _msContext.D[regNum - UNW_ARM_D0]; 818 return d.d; 819 } 820 _LIBUNWIND_ABORT("unsupported float register"); 821 #elif defined(_LIBUNWIND_TARGET_AARCH64) 822 return _msContext.V[regNum - UNW_ARM64_D0].D[0]; 823 #else 824 (void)regNum; 825 _LIBUNWIND_ABORT("float registers unimplemented"); 826 #endif 827 } 828 829 template <typename A, typename R> 830 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 831 #if defined(_LIBUNWIND_TARGET_ARM) 832 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 833 union { 834 uint32_t w; 835 float f; 836 } d; 837 d.f = value; 838 _msContext.S[regNum - UNW_ARM_S0] = d.w; 839 } 840 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 841 union { 842 uint64_t w; 843 double d; 844 } d; 845 d.d = value; 846 _msContext.D[regNum - UNW_ARM_D0] = d.w; 847 } 848 _LIBUNWIND_ABORT("unsupported float register"); 849 #elif defined(_LIBUNWIND_TARGET_AARCH64) 850 _msContext.V[regNum - UNW_ARM64_D0].D[0] = value; 851 #else 852 (void)regNum; 853 (void)value; 854 _LIBUNWIND_ABORT("float registers unimplemented"); 855 #endif 856 } 857 858 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 859 RtlRestoreContext(&_msContext, nullptr); 860 } 861 862 #ifdef __arm__ 863 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {} 864 #endif 865 866 template <typename A, typename R> 867 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 868 return R::getRegisterName(regNum); 869 } 870 871 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 872 return false; 873 } 874 875 #else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32) 876 877 /// UnwindCursor contains all state (including all register values) during 878 /// an unwind. This is normally stack allocated inside a unw_cursor_t. 879 template <typename A, typename R> 880 class UnwindCursor : public AbstractUnwindCursor{ 881 typedef typename A::pint_t pint_t; 882 public: 883 UnwindCursor(unw_context_t *context, A &as); 884 UnwindCursor(A &as, void *threadArg); 885 virtual ~UnwindCursor() {} 886 virtual bool validReg(int); 887 virtual unw_word_t getReg(int); 888 virtual void setReg(int, unw_word_t); 889 virtual bool validFloatReg(int); 890 virtual unw_fpreg_t getFloatReg(int); 891 virtual void setFloatReg(int, unw_fpreg_t); 892 virtual int step(); 893 virtual void getInfo(unw_proc_info_t *); 894 virtual void jumpto(); 895 virtual bool isSignalFrame(); 896 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 897 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 898 virtual const char *getRegisterName(int num); 899 #ifdef __arm__ 900 virtual void saveVFPAsX(); 901 #endif 902 903 // libunwind does not and should not depend on C++ library which means that we 904 // need our own defition of inline placement new. 905 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 906 907 private: 908 909 #if defined(_LIBUNWIND_ARM_EHABI) 910 bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); 911 912 int stepWithEHABI() { 913 size_t len = 0; 914 size_t off = 0; 915 // FIXME: Calling decode_eht_entry() here is violating the libunwind 916 // abstraction layer. 917 const uint32_t *ehtp = 918 decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info), 919 &off, &len); 920 if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != 921 _URC_CONTINUE_UNWIND) 922 return UNW_STEP_END; 923 return UNW_STEP_SUCCESS; 924 } 925 #endif 926 927 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 928 bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, 929 uint32_t fdeSectionOffsetHint=0); 930 int stepWithDwarfFDE() { 931 return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace, 932 (pint_t)this->getReg(UNW_REG_IP), 933 (pint_t)_info.unwind_info, 934 _registers, _isSignalFrame); 935 } 936 #endif 937 938 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 939 bool getInfoFromCompactEncodingSection(pint_t pc, 940 const UnwindInfoSections §s); 941 int stepWithCompactEncoding() { 942 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 943 if ( compactSaysUseDwarf() ) 944 return stepWithDwarfFDE(); 945 #endif 946 R dummy; 947 return stepWithCompactEncoding(dummy); 948 } 949 950 #if defined(_LIBUNWIND_TARGET_X86_64) 951 int stepWithCompactEncoding(Registers_x86_64 &) { 952 return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( 953 _info.format, _info.start_ip, _addressSpace, _registers); 954 } 955 #endif 956 957 #if defined(_LIBUNWIND_TARGET_I386) 958 int stepWithCompactEncoding(Registers_x86 &) { 959 return CompactUnwinder_x86<A>::stepWithCompactEncoding( 960 _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); 961 } 962 #endif 963 964 #if defined(_LIBUNWIND_TARGET_PPC) 965 int stepWithCompactEncoding(Registers_ppc &) { 966 return UNW_EINVAL; 967 } 968 #endif 969 970 #if defined(_LIBUNWIND_TARGET_PPC64) 971 int stepWithCompactEncoding(Registers_ppc64 &) { 972 return UNW_EINVAL; 973 } 974 #endif 975 976 977 #if defined(_LIBUNWIND_TARGET_AARCH64) 978 int stepWithCompactEncoding(Registers_arm64 &) { 979 return CompactUnwinder_arm64<A>::stepWithCompactEncoding( 980 _info.format, _info.start_ip, _addressSpace, _registers); 981 } 982 #endif 983 984 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 985 int stepWithCompactEncoding(Registers_mips_o32 &) { 986 return UNW_EINVAL; 987 } 988 #endif 989 990 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 991 int stepWithCompactEncoding(Registers_mips_newabi &) { 992 return UNW_EINVAL; 993 } 994 #endif 995 996 #if defined(_LIBUNWIND_TARGET_SPARC) 997 int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; } 998 #endif 999 1000 #if defined (_LIBUNWIND_TARGET_RISCV) 1001 int stepWithCompactEncoding(Registers_riscv &) { 1002 return UNW_EINVAL; 1003 } 1004 #endif 1005 1006 bool compactSaysUseDwarf(uint32_t *offset=NULL) const { 1007 R dummy; 1008 return compactSaysUseDwarf(dummy, offset); 1009 } 1010 1011 #if defined(_LIBUNWIND_TARGET_X86_64) 1012 bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { 1013 if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { 1014 if (offset) 1015 *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); 1016 return true; 1017 } 1018 return false; 1019 } 1020 #endif 1021 1022 #if defined(_LIBUNWIND_TARGET_I386) 1023 bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { 1024 if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { 1025 if (offset) 1026 *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); 1027 return true; 1028 } 1029 return false; 1030 } 1031 #endif 1032 1033 #if defined(_LIBUNWIND_TARGET_PPC) 1034 bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { 1035 return true; 1036 } 1037 #endif 1038 1039 #if defined(_LIBUNWIND_TARGET_PPC64) 1040 bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { 1041 return true; 1042 } 1043 #endif 1044 1045 #if defined(_LIBUNWIND_TARGET_AARCH64) 1046 bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { 1047 if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { 1048 if (offset) 1049 *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); 1050 return true; 1051 } 1052 return false; 1053 } 1054 #endif 1055 1056 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 1057 bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { 1058 return true; 1059 } 1060 #endif 1061 1062 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 1063 bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { 1064 return true; 1065 } 1066 #endif 1067 1068 #if defined(_LIBUNWIND_TARGET_SPARC) 1069 bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; } 1070 #endif 1071 1072 #if defined (_LIBUNWIND_TARGET_RISCV) 1073 bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const { 1074 return true; 1075 } 1076 #endif 1077 1078 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1079 1080 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1081 compact_unwind_encoding_t dwarfEncoding() const { 1082 R dummy; 1083 return dwarfEncoding(dummy); 1084 } 1085 1086 #if defined(_LIBUNWIND_TARGET_X86_64) 1087 compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { 1088 return UNWIND_X86_64_MODE_DWARF; 1089 } 1090 #endif 1091 1092 #if defined(_LIBUNWIND_TARGET_I386) 1093 compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { 1094 return UNWIND_X86_MODE_DWARF; 1095 } 1096 #endif 1097 1098 #if defined(_LIBUNWIND_TARGET_PPC) 1099 compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { 1100 return 0; 1101 } 1102 #endif 1103 1104 #if defined(_LIBUNWIND_TARGET_PPC64) 1105 compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { 1106 return 0; 1107 } 1108 #endif 1109 1110 #if defined(_LIBUNWIND_TARGET_AARCH64) 1111 compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { 1112 return UNWIND_ARM64_MODE_DWARF; 1113 } 1114 #endif 1115 1116 #if defined(_LIBUNWIND_TARGET_ARM) 1117 compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { 1118 return 0; 1119 } 1120 #endif 1121 1122 #if defined (_LIBUNWIND_TARGET_OR1K) 1123 compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { 1124 return 0; 1125 } 1126 #endif 1127 1128 #if defined (_LIBUNWIND_TARGET_HEXAGON) 1129 compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const { 1130 return 0; 1131 } 1132 #endif 1133 1134 #if defined (_LIBUNWIND_TARGET_MIPS_O32) 1135 compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { 1136 return 0; 1137 } 1138 #endif 1139 1140 #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) 1141 compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { 1142 return 0; 1143 } 1144 #endif 1145 1146 #if defined(_LIBUNWIND_TARGET_SPARC) 1147 compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; } 1148 #endif 1149 1150 #if defined (_LIBUNWIND_TARGET_SPARC64) 1151 compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const { 1152 return 0; 1153 } 1154 #endif 1155 1156 #if defined (_LIBUNWIND_TARGET_RISCV) 1157 compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const { 1158 return 0; 1159 } 1160 #endif 1161 1162 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1163 1164 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1165 // For runtime environments using SEH unwind data without Windows runtime 1166 // support. 1167 pint_t getLastPC() const { /* FIXME: Implement */ return 0; } 1168 void setLastPC(pint_t pc) { /* FIXME: Implement */ } 1169 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 1170 /* FIXME: Implement */ 1171 *base = 0; 1172 return nullptr; 1173 } 1174 bool getInfoFromSEH(pint_t pc); 1175 int stepWithSEHData() { /* FIXME: Implement */ return 0; } 1176 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1177 1178 1179 A &_addressSpace; 1180 R _registers; 1181 unw_proc_info_t _info; 1182 bool _unwindInfoMissing; 1183 bool _isSignalFrame; 1184 }; 1185 1186 1187 template <typename A, typename R> 1188 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 1189 : _addressSpace(as), _registers(context), _unwindInfoMissing(false), 1190 _isSignalFrame(false) { 1191 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 1192 "UnwindCursor<> does not fit in unw_cursor_t"); 1193 memset(&_info, 0, sizeof(_info)); 1194 } 1195 1196 template <typename A, typename R> 1197 UnwindCursor<A, R>::UnwindCursor(A &as, void *) 1198 : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { 1199 memset(&_info, 0, sizeof(_info)); 1200 // FIXME 1201 // fill in _registers from thread arg 1202 } 1203 1204 1205 template <typename A, typename R> 1206 bool UnwindCursor<A, R>::validReg(int regNum) { 1207 return _registers.validRegister(regNum); 1208 } 1209 1210 template <typename A, typename R> 1211 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 1212 return _registers.getRegister(regNum); 1213 } 1214 1215 template <typename A, typename R> 1216 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 1217 _registers.setRegister(regNum, (typename A::pint_t)value); 1218 } 1219 1220 template <typename A, typename R> 1221 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 1222 return _registers.validFloatRegister(regNum); 1223 } 1224 1225 template <typename A, typename R> 1226 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 1227 return _registers.getFloatRegister(regNum); 1228 } 1229 1230 template <typename A, typename R> 1231 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 1232 _registers.setFloatRegister(regNum, value); 1233 } 1234 1235 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 1236 _registers.jumpto(); 1237 } 1238 1239 #ifdef __arm__ 1240 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { 1241 _registers.saveVFPAsX(); 1242 } 1243 #endif 1244 1245 template <typename A, typename R> 1246 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 1247 return _registers.getRegisterName(regNum); 1248 } 1249 1250 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 1251 return _isSignalFrame; 1252 } 1253 1254 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1255 1256 #if defined(_LIBUNWIND_ARM_EHABI) 1257 template<typename A> 1258 struct EHABISectionIterator { 1259 typedef EHABISectionIterator _Self; 1260 1261 typedef typename A::pint_t value_type; 1262 typedef typename A::pint_t* pointer; 1263 typedef typename A::pint_t& reference; 1264 typedef size_t size_type; 1265 typedef size_t difference_type; 1266 1267 static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { 1268 return _Self(addressSpace, sects, 0); 1269 } 1270 static _Self end(A& addressSpace, const UnwindInfoSections& sects) { 1271 return _Self(addressSpace, sects, 1272 sects.arm_section_length / sizeof(EHABIIndexEntry)); 1273 } 1274 1275 EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) 1276 : _i(i), _addressSpace(&addressSpace), _sects(§s) {} 1277 1278 _Self& operator++() { ++_i; return *this; } 1279 _Self& operator+=(size_t a) { _i += a; return *this; } 1280 _Self& operator--() { assert(_i > 0); --_i; return *this; } 1281 _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } 1282 1283 _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } 1284 _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } 1285 1286 size_t operator-(const _Self& other) const { return _i - other._i; } 1287 1288 bool operator==(const _Self& other) const { 1289 assert(_addressSpace == other._addressSpace); 1290 assert(_sects == other._sects); 1291 return _i == other._i; 1292 } 1293 1294 bool operator!=(const _Self& other) const { 1295 assert(_addressSpace == other._addressSpace); 1296 assert(_sects == other._sects); 1297 return _i != other._i; 1298 } 1299 1300 typename A::pint_t operator*() const { return functionAddress(); } 1301 1302 typename A::pint_t functionAddress() const { 1303 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1304 EHABIIndexEntry, _i, functionOffset); 1305 return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); 1306 } 1307 1308 typename A::pint_t dataAddress() { 1309 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1310 EHABIIndexEntry, _i, data); 1311 return indexAddr; 1312 } 1313 1314 private: 1315 size_t _i; 1316 A* _addressSpace; 1317 const UnwindInfoSections* _sects; 1318 }; 1319 1320 namespace { 1321 1322 template <typename A> 1323 EHABISectionIterator<A> EHABISectionUpperBound( 1324 EHABISectionIterator<A> first, 1325 EHABISectionIterator<A> last, 1326 typename A::pint_t value) { 1327 size_t len = last - first; 1328 while (len > 0) { 1329 size_t l2 = len / 2; 1330 EHABISectionIterator<A> m = first + l2; 1331 if (value < *m) { 1332 len = l2; 1333 } else { 1334 first = ++m; 1335 len -= l2 + 1; 1336 } 1337 } 1338 return first; 1339 } 1340 1341 } 1342 1343 template <typename A, typename R> 1344 bool UnwindCursor<A, R>::getInfoFromEHABISection( 1345 pint_t pc, 1346 const UnwindInfoSections §s) { 1347 EHABISectionIterator<A> begin = 1348 EHABISectionIterator<A>::begin(_addressSpace, sects); 1349 EHABISectionIterator<A> end = 1350 EHABISectionIterator<A>::end(_addressSpace, sects); 1351 if (begin == end) 1352 return false; 1353 1354 EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc); 1355 if (itNextPC == begin) 1356 return false; 1357 EHABISectionIterator<A> itThisPC = itNextPC - 1; 1358 1359 pint_t thisPC = itThisPC.functionAddress(); 1360 // If an exception is thrown from a function, corresponding to the last entry 1361 // in the table, we don't really know the function extent and have to choose a 1362 // value for nextPC. Choosing max() will allow the range check during trace to 1363 // succeed. 1364 pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress(); 1365 pint_t indexDataAddr = itThisPC.dataAddress(); 1366 1367 if (indexDataAddr == 0) 1368 return false; 1369 1370 uint32_t indexData = _addressSpace.get32(indexDataAddr); 1371 if (indexData == UNW_EXIDX_CANTUNWIND) 1372 return false; 1373 1374 // If the high bit is set, the exception handling table entry is inline inside 1375 // the index table entry on the second word (aka |indexDataAddr|). Otherwise, 1376 // the table points at an offset in the exception handling table (section 5 1377 // EHABI). 1378 pint_t exceptionTableAddr; 1379 uint32_t exceptionTableData; 1380 bool isSingleWordEHT; 1381 if (indexData & 0x80000000) { 1382 exceptionTableAddr = indexDataAddr; 1383 // TODO(ajwong): Should this data be 0? 1384 exceptionTableData = indexData; 1385 isSingleWordEHT = true; 1386 } else { 1387 exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); 1388 exceptionTableData = _addressSpace.get32(exceptionTableAddr); 1389 isSingleWordEHT = false; 1390 } 1391 1392 // Now we know the 3 things: 1393 // exceptionTableAddr -- exception handler table entry. 1394 // exceptionTableData -- the data inside the first word of the eht entry. 1395 // isSingleWordEHT -- whether the entry is in the index. 1396 unw_word_t personalityRoutine = 0xbadf00d; 1397 bool scope32 = false; 1398 uintptr_t lsda; 1399 1400 // If the high bit in the exception handling table entry is set, the entry is 1401 // in compact form (section 6.3 EHABI). 1402 if (exceptionTableData & 0x80000000) { 1403 // Grab the index of the personality routine from the compact form. 1404 uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; 1405 uint32_t extraWords = 0; 1406 switch (choice) { 1407 case 0: 1408 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; 1409 extraWords = 0; 1410 scope32 = false; 1411 lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); 1412 break; 1413 case 1: 1414 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; 1415 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1416 scope32 = false; 1417 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1418 break; 1419 case 2: 1420 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; 1421 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1422 scope32 = true; 1423 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1424 break; 1425 default: 1426 _LIBUNWIND_ABORT("unknown personality routine"); 1427 return false; 1428 } 1429 1430 if (isSingleWordEHT) { 1431 if (extraWords != 0) { 1432 _LIBUNWIND_ABORT("index inlined table detected but pr function " 1433 "requires extra words"); 1434 return false; 1435 } 1436 } 1437 } else { 1438 pint_t personalityAddr = 1439 exceptionTableAddr + signExtendPrel31(exceptionTableData); 1440 personalityRoutine = personalityAddr; 1441 1442 // ARM EHABI # 6.2, # 9.2 1443 // 1444 // +---- ehtp 1445 // v 1446 // +--------------------------------------+ 1447 // | +--------+--------+--------+-------+ | 1448 // | |0| prel31 to personalityRoutine | | 1449 // | +--------+--------+--------+-------+ | 1450 // | | N | unwind opcodes | | <-- UnwindData 1451 // | +--------+--------+--------+-------+ | 1452 // | | Word 2 unwind opcodes | | 1453 // | +--------+--------+--------+-------+ | 1454 // | ... | 1455 // | +--------+--------+--------+-------+ | 1456 // | | Word N unwind opcodes | | 1457 // | +--------+--------+--------+-------+ | 1458 // | | LSDA | | <-- lsda 1459 // | | ... | | 1460 // | +--------+--------+--------+-------+ | 1461 // +--------------------------------------+ 1462 1463 uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; 1464 uint32_t FirstDataWord = *UnwindData; 1465 size_t N = ((FirstDataWord >> 24) & 0xff); 1466 size_t NDataWords = N + 1; 1467 lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); 1468 } 1469 1470 _info.start_ip = thisPC; 1471 _info.end_ip = nextPC; 1472 _info.handler = personalityRoutine; 1473 _info.unwind_info = exceptionTableAddr; 1474 _info.lsda = lsda; 1475 // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. 1476 _info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0); // Use enum? 1477 1478 return true; 1479 } 1480 #endif 1481 1482 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1483 template <typename A, typename R> 1484 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, 1485 const UnwindInfoSections §s, 1486 uint32_t fdeSectionOffsetHint) { 1487 typename CFI_Parser<A>::FDE_Info fdeInfo; 1488 typename CFI_Parser<A>::CIE_Info cieInfo; 1489 bool foundFDE = false; 1490 bool foundInCache = false; 1491 // If compact encoding table gave offset into dwarf section, go directly there 1492 if (fdeSectionOffsetHint != 0) { 1493 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1494 (uint32_t)sects.dwarf_section_length, 1495 sects.dwarf_section + fdeSectionOffsetHint, 1496 &fdeInfo, &cieInfo); 1497 } 1498 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1499 if (!foundFDE && (sects.dwarf_index_section != 0)) { 1500 foundFDE = EHHeaderParser<A>::findFDE( 1501 _addressSpace, pc, sects.dwarf_index_section, 1502 (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); 1503 } 1504 #endif 1505 if (!foundFDE) { 1506 // otherwise, search cache of previously found FDEs. 1507 pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); 1508 if (cachedFDE != 0) { 1509 foundFDE = 1510 CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1511 (uint32_t)sects.dwarf_section_length, 1512 cachedFDE, &fdeInfo, &cieInfo); 1513 foundInCache = foundFDE; 1514 } 1515 } 1516 if (!foundFDE) { 1517 // Still not found, do full scan of __eh_frame section. 1518 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1519 (uint32_t)sects.dwarf_section_length, 0, 1520 &fdeInfo, &cieInfo); 1521 } 1522 if (foundFDE) { 1523 typename CFI_Parser<A>::PrologInfo prolog; 1524 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, 1525 R::getArch(), &prolog)) { 1526 // Save off parsed FDE info 1527 _info.start_ip = fdeInfo.pcStart; 1528 _info.end_ip = fdeInfo.pcEnd; 1529 _info.lsda = fdeInfo.lsda; 1530 _info.handler = cieInfo.personality; 1531 _info.gp = prolog.spExtraArgSize; 1532 _info.flags = 0; 1533 _info.format = dwarfEncoding(); 1534 _info.unwind_info = fdeInfo.fdeStart; 1535 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; 1536 _info.extra = (unw_word_t) sects.dso_base; 1537 1538 // Add to cache (to make next lookup faster) if we had no hint 1539 // and there was no index. 1540 if (!foundInCache && (fdeSectionOffsetHint == 0)) { 1541 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1542 if (sects.dwarf_index_section == 0) 1543 #endif 1544 DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, 1545 fdeInfo.fdeStart); 1546 } 1547 return true; 1548 } 1549 } 1550 //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); 1551 return false; 1552 } 1553 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1554 1555 1556 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1557 template <typename A, typename R> 1558 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, 1559 const UnwindInfoSections §s) { 1560 const bool log = false; 1561 if (log) 1562 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", 1563 (uint64_t)pc, (uint64_t)sects.dso_base); 1564 1565 const UnwindSectionHeader<A> sectionHeader(_addressSpace, 1566 sects.compact_unwind_section); 1567 if (sectionHeader.version() != UNWIND_SECTION_VERSION) 1568 return false; 1569 1570 // do a binary search of top level index to find page with unwind info 1571 pint_t targetFunctionOffset = pc - sects.dso_base; 1572 const UnwindSectionIndexArray<A> topIndex(_addressSpace, 1573 sects.compact_unwind_section 1574 + sectionHeader.indexSectionOffset()); 1575 uint32_t low = 0; 1576 uint32_t high = sectionHeader.indexCount(); 1577 uint32_t last = high - 1; 1578 while (low < high) { 1579 uint32_t mid = (low + high) / 2; 1580 //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", 1581 //mid, low, high, topIndex.functionOffset(mid)); 1582 if (topIndex.functionOffset(mid) <= targetFunctionOffset) { 1583 if ((mid == last) || 1584 (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { 1585 low = mid; 1586 break; 1587 } else { 1588 low = mid + 1; 1589 } 1590 } else { 1591 high = mid; 1592 } 1593 } 1594 const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); 1595 const uint32_t firstLevelNextPageFunctionOffset = 1596 topIndex.functionOffset(low + 1); 1597 const pint_t secondLevelAddr = 1598 sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); 1599 const pint_t lsdaArrayStartAddr = 1600 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); 1601 const pint_t lsdaArrayEndAddr = 1602 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); 1603 if (log) 1604 fprintf(stderr, "\tfirst level search for result index=%d " 1605 "to secondLevelAddr=0x%llX\n", 1606 low, (uint64_t) secondLevelAddr); 1607 // do a binary search of second level page index 1608 uint32_t encoding = 0; 1609 pint_t funcStart = 0; 1610 pint_t funcEnd = 0; 1611 pint_t lsda = 0; 1612 pint_t personality = 0; 1613 uint32_t pageKind = _addressSpace.get32(secondLevelAddr); 1614 if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { 1615 // regular page 1616 UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, 1617 secondLevelAddr); 1618 UnwindSectionRegularArray<A> pageIndex( 1619 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1620 // binary search looks for entry with e where index[e].offset <= pc < 1621 // index[e+1].offset 1622 if (log) 1623 fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " 1624 "regular page starting at secondLevelAddr=0x%llX\n", 1625 (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); 1626 low = 0; 1627 high = pageHeader.entryCount(); 1628 while (low < high) { 1629 uint32_t mid = (low + high) / 2; 1630 if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { 1631 if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { 1632 // at end of table 1633 low = mid; 1634 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1635 break; 1636 } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { 1637 // next is too big, so we found it 1638 low = mid; 1639 funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; 1640 break; 1641 } else { 1642 low = mid + 1; 1643 } 1644 } else { 1645 high = mid; 1646 } 1647 } 1648 encoding = pageIndex.encoding(low); 1649 funcStart = pageIndex.functionOffset(low) + sects.dso_base; 1650 if (pc < funcStart) { 1651 if (log) 1652 fprintf( 1653 stderr, 1654 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1655 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1656 return false; 1657 } 1658 if (pc > funcEnd) { 1659 if (log) 1660 fprintf( 1661 stderr, 1662 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1663 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1664 return false; 1665 } 1666 } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { 1667 // compressed page 1668 UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, 1669 secondLevelAddr); 1670 UnwindSectionCompressedArray<A> pageIndex( 1671 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1672 const uint32_t targetFunctionPageOffset = 1673 (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); 1674 // binary search looks for entry with e where index[e].offset <= pc < 1675 // index[e+1].offset 1676 if (log) 1677 fprintf(stderr, "\tbinary search of compressed page starting at " 1678 "secondLevelAddr=0x%llX\n", 1679 (uint64_t) secondLevelAddr); 1680 low = 0; 1681 last = pageHeader.entryCount() - 1; 1682 high = pageHeader.entryCount(); 1683 while (low < high) { 1684 uint32_t mid = (low + high) / 2; 1685 if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { 1686 if ((mid == last) || 1687 (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { 1688 low = mid; 1689 break; 1690 } else { 1691 low = mid + 1; 1692 } 1693 } else { 1694 high = mid; 1695 } 1696 } 1697 funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset 1698 + sects.dso_base; 1699 if (low < last) 1700 funcEnd = 1701 pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset 1702 + sects.dso_base; 1703 else 1704 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1705 if (pc < funcStart) { 1706 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " 1707 "level compressed unwind table. funcStart=0x%llX", 1708 (uint64_t) pc, (uint64_t) funcStart); 1709 return false; 1710 } 1711 if (pc > funcEnd) { 1712 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " 1713 "level compressed unwind table. funcEnd=0x%llX", 1714 (uint64_t) pc, (uint64_t) funcEnd); 1715 return false; 1716 } 1717 uint16_t encodingIndex = pageIndex.encodingIndex(low); 1718 if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { 1719 // encoding is in common table in section header 1720 encoding = _addressSpace.get32( 1721 sects.compact_unwind_section + 1722 sectionHeader.commonEncodingsArraySectionOffset() + 1723 encodingIndex * sizeof(uint32_t)); 1724 } else { 1725 // encoding is in page specific table 1726 uint16_t pageEncodingIndex = 1727 encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); 1728 encoding = _addressSpace.get32(secondLevelAddr + 1729 pageHeader.encodingsPageOffset() + 1730 pageEncodingIndex * sizeof(uint32_t)); 1731 } 1732 } else { 1733 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second " 1734 "level page", 1735 (uint64_t) sects.compact_unwind_section); 1736 return false; 1737 } 1738 1739 // look up LSDA, if encoding says function has one 1740 if (encoding & UNWIND_HAS_LSDA) { 1741 UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); 1742 uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); 1743 low = 0; 1744 high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / 1745 sizeof(unwind_info_section_header_lsda_index_entry); 1746 // binary search looks for entry with exact match for functionOffset 1747 if (log) 1748 fprintf(stderr, 1749 "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", 1750 funcStartOffset); 1751 while (low < high) { 1752 uint32_t mid = (low + high) / 2; 1753 if (lsdaIndex.functionOffset(mid) == funcStartOffset) { 1754 lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; 1755 break; 1756 } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { 1757 low = mid + 1; 1758 } else { 1759 high = mid; 1760 } 1761 } 1762 if (lsda == 0) { 1763 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " 1764 "pc=0x%0llX, but lsda table has no entry", 1765 encoding, (uint64_t) pc); 1766 return false; 1767 } 1768 } 1769 1770 // extact personality routine, if encoding says function has one 1771 uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> 1772 (__builtin_ctz(UNWIND_PERSONALITY_MASK)); 1773 if (personalityIndex != 0) { 1774 --personalityIndex; // change 1-based to zero-based index 1775 if (personalityIndex > sectionHeader.personalityArrayCount()) { 1776 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " 1777 "but personality table has only %d entries", 1778 encoding, personalityIndex, 1779 sectionHeader.personalityArrayCount()); 1780 return false; 1781 } 1782 int32_t personalityDelta = (int32_t)_addressSpace.get32( 1783 sects.compact_unwind_section + 1784 sectionHeader.personalityArraySectionOffset() + 1785 personalityIndex * sizeof(uint32_t)); 1786 pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; 1787 personality = _addressSpace.getP(personalityPointer); 1788 if (log) 1789 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1790 "personalityDelta=0x%08X, personality=0x%08llX\n", 1791 (uint64_t) pc, personalityDelta, (uint64_t) personality); 1792 } 1793 1794 if (log) 1795 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1796 "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", 1797 (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); 1798 _info.start_ip = funcStart; 1799 _info.end_ip = funcEnd; 1800 _info.lsda = lsda; 1801 _info.handler = personality; 1802 _info.gp = 0; 1803 _info.flags = 0; 1804 _info.format = encoding; 1805 _info.unwind_info = 0; 1806 _info.unwind_info_size = 0; 1807 _info.extra = sects.dso_base; 1808 return true; 1809 } 1810 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1811 1812 1813 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1814 template <typename A, typename R> 1815 bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) { 1816 pint_t base; 1817 RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base); 1818 if (!unwindEntry) { 1819 _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc); 1820 return false; 1821 } 1822 _info.gp = 0; 1823 _info.flags = 0; 1824 _info.format = 0; 1825 _info.unwind_info_size = sizeof(RUNTIME_FUNCTION); 1826 _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry); 1827 _info.extra = base; 1828 _info.start_ip = base + unwindEntry->BeginAddress; 1829 #ifdef _LIBUNWIND_TARGET_X86_64 1830 _info.end_ip = base + unwindEntry->EndAddress; 1831 // Only fill in the handler and LSDA if they're stale. 1832 if (pc != getLastPC()) { 1833 UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData); 1834 if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) { 1835 // The personality is given in the UNWIND_INFO itself. The LSDA immediately 1836 // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit 1837 // these structures.) 1838 // N.B. UNWIND_INFO structs are DWORD-aligned. 1839 uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1; 1840 const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]); 1841 _info.lsda = reinterpret_cast<unw_word_t>(handler+1); 1842 if (*handler) { 1843 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 1844 } else 1845 _info.handler = 0; 1846 } else { 1847 _info.lsda = 0; 1848 _info.handler = 0; 1849 } 1850 } 1851 #elif defined(_LIBUNWIND_TARGET_ARM) 1852 _info.end_ip = _info.start_ip + unwindEntry->FunctionLength; 1853 _info.lsda = 0; // FIXME 1854 _info.handler = 0; // FIXME 1855 #endif 1856 setLastPC(pc); 1857 return true; 1858 } 1859 #endif 1860 1861 1862 template <typename A, typename R> 1863 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { 1864 pint_t pc = (pint_t)this->getReg(UNW_REG_IP); 1865 #if defined(_LIBUNWIND_ARM_EHABI) 1866 // Remove the thumb bit so the IP represents the actual instruction address. 1867 // This matches the behaviour of _Unwind_GetIP on arm. 1868 pc &= (pint_t)~0x1; 1869 #endif 1870 1871 // Exit early if at the top of the stack. 1872 if (pc == 0) { 1873 _unwindInfoMissing = true; 1874 return; 1875 } 1876 1877 // If the last line of a function is a "throw" the compiler sometimes 1878 // emits no instructions after the call to __cxa_throw. This means 1879 // the return address is actually the start of the next function. 1880 // To disambiguate this, back up the pc when we know it is a return 1881 // address. 1882 if (isReturnAddress) 1883 --pc; 1884 1885 // Ask address space object to find unwind sections for this pc. 1886 UnwindInfoSections sects; 1887 bool have_sects = false; 1888 if (uwis_cache.getUnwindInfoSectionsForPC(pc, sects)) 1889 have_sects = true; 1890 else if (_addressSpace.findUnwindSections(pc, sects)) { 1891 uwis_cache.setUnwindInfoSectionsForPC(pc, sects); 1892 have_sects = true; 1893 } 1894 if (have_sects) { 1895 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1896 // If there is a compact unwind encoding table, look there first. 1897 if (sects.compact_unwind_section != 0) { 1898 if (this->getInfoFromCompactEncodingSection(pc, sects)) { 1899 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1900 // Found info in table, done unless encoding says to use dwarf. 1901 uint32_t dwarfOffset; 1902 if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { 1903 if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { 1904 // found info in dwarf, done 1905 return; 1906 } 1907 } 1908 #endif 1909 // If unwind table has entry, but entry says there is no unwind info, 1910 // record that we have no unwind info. 1911 if (_info.format == 0) 1912 _unwindInfoMissing = true; 1913 return; 1914 } 1915 } 1916 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1917 1918 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1919 // If there is SEH unwind info, look there next. 1920 if (this->getInfoFromSEH(pc)) 1921 return; 1922 #endif 1923 1924 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1925 // If there is dwarf unwind info, look there next. 1926 if (sects.dwarf_section != 0) { 1927 if (this->getInfoFromDwarfSection(pc, sects)) { 1928 // found info in dwarf, done 1929 return; 1930 } 1931 } 1932 #endif 1933 1934 #if defined(_LIBUNWIND_ARM_EHABI) 1935 // If there is ARM EHABI unwind info, look there next. 1936 if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) 1937 return; 1938 #endif 1939 } 1940 1941 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1942 // There is no static unwind info for this pc. Look to see if an FDE was 1943 // dynamically registered for it. 1944 pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc); 1945 if (cachedFDE != 0) { 1946 CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; 1947 CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; 1948 const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace, 1949 cachedFDE, &fdeInfo, &cieInfo); 1950 if (msg == NULL) { 1951 typename CFI_Parser<A>::PrologInfo prolog; 1952 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, 1953 pc, R::getArch(), &prolog)) { 1954 // save off parsed FDE info 1955 _info.start_ip = fdeInfo.pcStart; 1956 _info.end_ip = fdeInfo.pcEnd; 1957 _info.lsda = fdeInfo.lsda; 1958 _info.handler = cieInfo.personality; 1959 _info.gp = prolog.spExtraArgSize; 1960 // Some frameless functions need SP 1961 // altered when resuming in function. 1962 _info.flags = 0; 1963 _info.format = dwarfEncoding(); 1964 _info.unwind_info = fdeInfo.fdeStart; 1965 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; 1966 _info.extra = 0; 1967 return; 1968 } 1969 } 1970 } 1971 1972 // Lastly, ask AddressSpace object about platform specific ways to locate 1973 // other FDEs. 1974 pint_t fde; 1975 if (_addressSpace.findOtherFDE(pc, fde)) { 1976 CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; 1977 CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; 1978 if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { 1979 // Double check this FDE is for a function that includes the pc. 1980 if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) { 1981 typename CFI_Parser<A>::PrologInfo prolog; 1982 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, 1983 pc, R::getArch(), &prolog)) { 1984 // save off parsed FDE info 1985 _info.start_ip = fdeInfo.pcStart; 1986 _info.end_ip = fdeInfo.pcEnd; 1987 _info.lsda = fdeInfo.lsda; 1988 _info.handler = cieInfo.personality; 1989 _info.gp = prolog.spExtraArgSize; 1990 _info.flags = 0; 1991 _info.format = dwarfEncoding(); 1992 _info.unwind_info = fdeInfo.fdeStart; 1993 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; 1994 _info.extra = 0; 1995 return; 1996 } 1997 } 1998 } 1999 } 2000 #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 2001 2002 // no unwind info, flag that we can't reliably unwind 2003 _unwindInfoMissing = true; 2004 } 2005 2006 template <typename A, typename R> 2007 int UnwindCursor<A, R>::step() { 2008 // Bottom of stack is defined is when unwind info cannot be found. 2009 if (_unwindInfoMissing) 2010 return UNW_STEP_END; 2011 2012 // Use unwinding info to modify register set as if function returned. 2013 int result; 2014 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 2015 result = this->stepWithCompactEncoding(); 2016 #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 2017 result = this->stepWithSEHData(); 2018 #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 2019 result = this->stepWithDwarfFDE(); 2020 #elif defined(_LIBUNWIND_ARM_EHABI) 2021 result = this->stepWithEHABI(); 2022 #else 2023 #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ 2024 _LIBUNWIND_SUPPORT_SEH_UNWIND or \ 2025 _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ 2026 _LIBUNWIND_ARM_EHABI 2027 #endif 2028 2029 // update info based on new PC 2030 if (result == UNW_STEP_SUCCESS) { 2031 this->setInfoBasedOnIPRegister(true); 2032 if (_unwindInfoMissing) 2033 return UNW_STEP_END; 2034 } 2035 2036 return result; 2037 } 2038 2039 template <typename A, typename R> 2040 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { 2041 if (_unwindInfoMissing) 2042 memset(info, 0, sizeof(*info)); 2043 else 2044 *info = _info; 2045 } 2046 2047 template <typename A, typename R> 2048 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, 2049 unw_word_t *offset) { 2050 return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), 2051 buf, bufLen, offset); 2052 } 2053 2054 } // namespace libunwind 2055 2056 #endif // __UNWINDCURSOR_HPP__ 2057