xref: /openbsd-src/gnu/llvm/compiler-rt/lib/builtins/i386/moddi3.S (revision 3cab2bb3f667058bece8e38b12449a63a9d73c4b)
1*3cab2bb3Spatrick// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
2*3cab2bb3Spatrick// See https://llvm.org/LICENSE.txt for license information.
3*3cab2bb3Spatrick// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
4*3cab2bb3Spatrick
5*3cab2bb3Spatrick#include "../assembly.h"
6*3cab2bb3Spatrick
7*3cab2bb3Spatrick// di_int __moddi3(di_int a, di_int b);
8*3cab2bb3Spatrick
9*3cab2bb3Spatrick// result = remainder of a / b.
10*3cab2bb3Spatrick// both inputs and the output are 64-bit signed integers.
11*3cab2bb3Spatrick// This will do whatever the underlying hardware is set to do on division by zero.
12*3cab2bb3Spatrick// No other exceptions are generated, as the divide cannot overflow.
13*3cab2bb3Spatrick//
14*3cab2bb3Spatrick// This is targeted at 32-bit x86 *only*, as this can be done directly in hardware
15*3cab2bb3Spatrick// on x86_64.  The performance goal is ~40 cycles per divide, which is faster than
16*3cab2bb3Spatrick// currently possible via simulation of integer divides on the x87 unit.
17*3cab2bb3Spatrick//
18*3cab2bb3Spatrick
19*3cab2bb3Spatrick// Stephen Canon, December 2008
20*3cab2bb3Spatrick
21*3cab2bb3Spatrick#ifdef __i386__
22*3cab2bb3Spatrick
23*3cab2bb3Spatrick.text
24*3cab2bb3Spatrick.balign 4
25*3cab2bb3SpatrickDEFINE_COMPILERRT_FUNCTION(__moddi3)
26*3cab2bb3Spatrick
27*3cab2bb3Spatrick// This is currently implemented by wrapping the unsigned modulus up in an absolute
28*3cab2bb3Spatrick// value.  This could certainly be improved upon.
29*3cab2bb3Spatrick
30*3cab2bb3Spatrick	pushl		%esi
31*3cab2bb3Spatrick	movl	 20(%esp),			%edx	// high word of b
32*3cab2bb3Spatrick	movl	 16(%esp),			%eax	// low word of b
33*3cab2bb3Spatrick	movl		%edx,			%ecx
34*3cab2bb3Spatrick	sarl		$31,			%ecx	// (b < 0) ? -1 : 0
35*3cab2bb3Spatrick	xorl		%ecx,			%eax
36*3cab2bb3Spatrick	xorl		%ecx,			%edx	// EDX:EAX = (b < 0) ? not(b) : b
37*3cab2bb3Spatrick	subl		%ecx,			%eax
38*3cab2bb3Spatrick	sbbl		%ecx,			%edx	// EDX:EAX = abs(b)
39*3cab2bb3Spatrick	movl		%edx,		 20(%esp)
40*3cab2bb3Spatrick	movl		%eax,		 16(%esp)	// store abs(b) back to stack
41*3cab2bb3Spatrick
42*3cab2bb3Spatrick	movl	 12(%esp),			%edx	// high word of b
43*3cab2bb3Spatrick	movl	  8(%esp),			%eax	// low word of b
44*3cab2bb3Spatrick	movl		%edx,			%ecx
45*3cab2bb3Spatrick	sarl		$31,			%ecx	// (a < 0) ? -1 : 0
46*3cab2bb3Spatrick	xorl		%ecx,			%eax
47*3cab2bb3Spatrick	xorl		%ecx,			%edx	// EDX:EAX = (a < 0) ? not(a) : a
48*3cab2bb3Spatrick	subl		%ecx,			%eax
49*3cab2bb3Spatrick	sbbl		%ecx,			%edx	// EDX:EAX = abs(a)
50*3cab2bb3Spatrick	movl		%edx,		 12(%esp)
51*3cab2bb3Spatrick	movl		%eax,		  8(%esp)	// store abs(a) back to stack
52*3cab2bb3Spatrick	movl		%ecx,			%esi	// set aside sign of a
53*3cab2bb3Spatrick
54*3cab2bb3Spatrick	pushl		%ebx
55*3cab2bb3Spatrick	movl	 24(%esp),			%ebx	// Find the index i of the leading bit in b.
56*3cab2bb3Spatrick	bsrl		%ebx,			%ecx	// If the high word of b is zero, jump to
57*3cab2bb3Spatrick	jz			9f						// the code to handle that special case [9].
58*3cab2bb3Spatrick
59*3cab2bb3Spatrick	// High word of b is known to be non-zero on this branch
60*3cab2bb3Spatrick
61*3cab2bb3Spatrick	movl	 20(%esp),			%eax	// Construct bhi, containing bits [1+i:32+i] of b
62*3cab2bb3Spatrick
63*3cab2bb3Spatrick	shrl		%cl,			%eax	// Practically, this means that bhi is given by:
64*3cab2bb3Spatrick	shrl		%eax					//
65*3cab2bb3Spatrick	notl		%ecx					//		bhi = (high word of b) << (31 - i) |
66*3cab2bb3Spatrick	shll		%cl,			%ebx	//			  (low word of b) >> (1 + i)
67*3cab2bb3Spatrick	orl			%eax,			%ebx	//
68*3cab2bb3Spatrick	movl	 16(%esp),			%edx	// Load the high and low words of a, and jump
69*3cab2bb3Spatrick	movl	 12(%esp),			%eax	// to [2] if the high word is larger than bhi
70*3cab2bb3Spatrick	cmpl		%ebx,			%edx	// to avoid overflowing the upcoming divide.
71*3cab2bb3Spatrick	jae			2f
72*3cab2bb3Spatrick
73*3cab2bb3Spatrick	// High word of a is greater than or equal to (b >> (1 + i)) on this branch
74*3cab2bb3Spatrick
75*3cab2bb3Spatrick	divl		%ebx					// eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r
76*3cab2bb3Spatrick
77*3cab2bb3Spatrick	pushl		%edi
78*3cab2bb3Spatrick	notl		%ecx
79*3cab2bb3Spatrick	shrl		%eax
80*3cab2bb3Spatrick	shrl		%cl,			%eax	// q = qs >> (1 + i)
81*3cab2bb3Spatrick	movl		%eax,			%edi
82*3cab2bb3Spatrick	mull	 24(%esp)					// q*blo
83*3cab2bb3Spatrick	movl	 16(%esp),			%ebx
84*3cab2bb3Spatrick	movl	 20(%esp),			%ecx	// ECX:EBX = a
85*3cab2bb3Spatrick	subl		%eax,			%ebx
86*3cab2bb3Spatrick	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo
87*3cab2bb3Spatrick	movl	 28(%esp),			%eax
88*3cab2bb3Spatrick	imull		%edi,			%eax	// q*bhi
89*3cab2bb3Spatrick	subl		%eax,			%ecx	// ECX:EBX = a - q*b
90*3cab2bb3Spatrick
91*3cab2bb3Spatrick	jnc			1f						// if positive, this is the result.
92*3cab2bb3Spatrick	addl	 24(%esp),			%ebx	// otherwise
93*3cab2bb3Spatrick	adcl	 28(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result
94*3cab2bb3Spatrick1:	movl		%ebx,			%eax
95*3cab2bb3Spatrick	movl		%ecx,			%edx
96*3cab2bb3Spatrick
97*3cab2bb3Spatrick	addl		%esi,			%eax	// Restore correct sign to result
98*3cab2bb3Spatrick	adcl		%esi,			%edx
99*3cab2bb3Spatrick	xorl		%esi,			%eax
100*3cab2bb3Spatrick	xorl		%esi,			%edx
101*3cab2bb3Spatrick	popl		%edi					// Restore callee-save registers
102*3cab2bb3Spatrick	popl		%ebx
103*3cab2bb3Spatrick	popl		%esi
104*3cab2bb3Spatrick	retl								// Return
105*3cab2bb3Spatrick
106*3cab2bb3Spatrick2:	// High word of a is greater than or equal to (b >> (1 + i)) on this branch
107*3cab2bb3Spatrick
108*3cab2bb3Spatrick	subl		%ebx,			%edx	// subtract bhi from ahi so that divide will not
109*3cab2bb3Spatrick	divl		%ebx					// overflow, and find q and r such that
110*3cab2bb3Spatrick										//
111*3cab2bb3Spatrick										//		ahi:alo = (1:q)*bhi + r
112*3cab2bb3Spatrick										//
113*3cab2bb3Spatrick										// Note that q is a number in (31-i).(1+i)
114*3cab2bb3Spatrick										// fix point.
115*3cab2bb3Spatrick
116*3cab2bb3Spatrick	pushl		%edi
117*3cab2bb3Spatrick	notl		%ecx
118*3cab2bb3Spatrick	shrl		%eax
119*3cab2bb3Spatrick	orl			$0x80000000,	%eax
120*3cab2bb3Spatrick	shrl		%cl,			%eax	// q = (1:qs) >> (1 + i)
121*3cab2bb3Spatrick	movl		%eax,			%edi
122*3cab2bb3Spatrick	mull	 24(%esp)					// q*blo
123*3cab2bb3Spatrick	movl	 16(%esp),			%ebx
124*3cab2bb3Spatrick	movl	 20(%esp),			%ecx	// ECX:EBX = a
125*3cab2bb3Spatrick	subl		%eax,			%ebx
126*3cab2bb3Spatrick	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo
127*3cab2bb3Spatrick	movl	 28(%esp),			%eax
128*3cab2bb3Spatrick	imull		%edi,			%eax	// q*bhi
129*3cab2bb3Spatrick	subl		%eax,			%ecx	// ECX:EBX = a - q*b
130*3cab2bb3Spatrick
131*3cab2bb3Spatrick	jnc			3f						// if positive, this is the result.
132*3cab2bb3Spatrick	addl	 24(%esp),			%ebx	// otherwise
133*3cab2bb3Spatrick	adcl	 28(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result
134*3cab2bb3Spatrick3:	movl		%ebx,			%eax
135*3cab2bb3Spatrick	movl		%ecx,			%edx
136*3cab2bb3Spatrick
137*3cab2bb3Spatrick	addl		%esi,			%eax	// Restore correct sign to result
138*3cab2bb3Spatrick	adcl		%esi,			%edx
139*3cab2bb3Spatrick	xorl		%esi,			%eax
140*3cab2bb3Spatrick	xorl		%esi,			%edx
141*3cab2bb3Spatrick	popl		%edi					// Restore callee-save registers
142*3cab2bb3Spatrick	popl		%ebx
143*3cab2bb3Spatrick	popl		%esi
144*3cab2bb3Spatrick	retl								// Return
145*3cab2bb3Spatrick
146*3cab2bb3Spatrick9:	// High word of b is zero on this branch
147*3cab2bb3Spatrick
148*3cab2bb3Spatrick	movl	 16(%esp),			%eax	// Find qhi and rhi such that
149*3cab2bb3Spatrick	movl	 20(%esp),			%ecx	//
150*3cab2bb3Spatrick	xorl		%edx,			%edx	//		ahi = qhi*b + rhi	with	0 ≤ rhi < b
151*3cab2bb3Spatrick	divl		%ecx					//
152*3cab2bb3Spatrick	movl		%eax,			%ebx	//
153*3cab2bb3Spatrick	movl	 12(%esp),			%eax	// Find rlo such that
154*3cab2bb3Spatrick	divl		%ecx					//
155*3cab2bb3Spatrick	movl		%edx,			%eax	//		rhi:alo = qlo*b + rlo  with 0 ≤ rlo < b
156*3cab2bb3Spatrick	popl		%ebx					//
157*3cab2bb3Spatrick	xorl		%edx,			%edx	// and return 0:rlo
158*3cab2bb3Spatrick
159*3cab2bb3Spatrick	addl		%esi,			%eax	// Restore correct sign to result
160*3cab2bb3Spatrick	adcl		%esi,			%edx
161*3cab2bb3Spatrick	xorl		%esi,			%eax
162*3cab2bb3Spatrick	xorl		%esi,			%edx
163*3cab2bb3Spatrick	popl		%esi
164*3cab2bb3Spatrick	retl								// Return
165*3cab2bb3SpatrickEND_COMPILERRT_FUNCTION(__moddi3)
166*3cab2bb3Spatrick
167*3cab2bb3Spatrick#endif // __i386__
168*3cab2bb3Spatrick
169*3cab2bb3SpatrickNO_EXEC_STACK_DIRECTIVE
170*3cab2bb3Spatrick
171