1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 14 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 19 20 using namespace clang; 21 using namespace ento; 22 23 namespace { 24 class SimpleSValBuilder : public SValBuilder { 25 protected: 26 SVal dispatchCast(SVal val, QualType castTy) override; 27 SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override; 28 SVal evalCastFromLoc(Loc val, QualType castTy) override; 29 30 public: 31 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 32 ProgramStateManager &stateMgr) 33 : SValBuilder(alloc, context, stateMgr) {} 34 ~SimpleSValBuilder() override {} 35 36 SVal evalMinus(NonLoc val) override; 37 SVal evalComplement(NonLoc val) override; 38 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 39 NonLoc lhs, NonLoc rhs, QualType resultTy) override; 40 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 41 Loc lhs, Loc rhs, QualType resultTy) override; 42 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 43 Loc lhs, NonLoc rhs, QualType resultTy) override; 44 45 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible 46 /// (integer) value, that value is returned. Otherwise, returns NULL. 47 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; 48 49 /// Recursively descends into symbolic expressions and replaces symbols 50 /// with their known values (in the sense of the getKnownValue() method). 51 SVal simplifySVal(ProgramStateRef State, SVal V) override; 52 53 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 54 const llvm::APSInt &RHS, QualType resultTy); 55 }; 56 } // end anonymous namespace 57 58 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 59 ASTContext &context, 60 ProgramStateManager &stateMgr) { 61 return new SimpleSValBuilder(alloc, context, stateMgr); 62 } 63 64 //===----------------------------------------------------------------------===// 65 // Transfer function for Casts. 66 //===----------------------------------------------------------------------===// 67 68 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) { 69 assert(Val.getAs<Loc>() || Val.getAs<NonLoc>()); 70 return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy) 71 : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy); 72 } 73 74 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) { 75 bool isLocType = Loc::isLocType(castTy); 76 if (val.getAs<nonloc::PointerToMember>()) 77 return val; 78 79 if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) { 80 if (isLocType) 81 return LI->getLoc(); 82 // FIXME: Correctly support promotions/truncations. 83 unsigned castSize = Context.getIntWidth(castTy); 84 if (castSize == LI->getNumBits()) 85 return val; 86 return makeLocAsInteger(LI->getLoc(), castSize); 87 } 88 89 if (const SymExpr *se = val.getAsSymbolicExpression()) { 90 QualType T = Context.getCanonicalType(se->getType()); 91 // If types are the same or both are integers, ignore the cast. 92 // FIXME: Remove this hack when we support symbolic truncation/extension. 93 // HACK: If both castTy and T are integers, ignore the cast. This is 94 // not a permanent solution. Eventually we want to precisely handle 95 // extension/truncation of symbolic integers. This prevents us from losing 96 // precision when we assign 'x = y' and 'y' is symbolic and x and y are 97 // different integer types. 98 if (haveSameType(T, castTy)) 99 return val; 100 101 if (!isLocType) 102 return makeNonLoc(se, T, castTy); 103 return UnknownVal(); 104 } 105 106 // If value is a non-integer constant, produce unknown. 107 if (!val.getAs<nonloc::ConcreteInt>()) 108 return UnknownVal(); 109 110 // Handle casts to a boolean type. 111 if (castTy->isBooleanType()) { 112 bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue(); 113 return makeTruthVal(b, castTy); 114 } 115 116 // Only handle casts from integers to integers - if val is an integer constant 117 // being cast to a non-integer type, produce unknown. 118 if (!isLocType && !castTy->isIntegralOrEnumerationType()) 119 return UnknownVal(); 120 121 llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue(); 122 BasicVals.getAPSIntType(castTy).apply(i); 123 124 if (isLocType) 125 return makeIntLocVal(i); 126 else 127 return makeIntVal(i); 128 } 129 130 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) { 131 132 // Casts from pointers -> pointers, just return the lval. 133 // 134 // Casts from pointers -> references, just return the lval. These 135 // can be introduced by the frontend for corner cases, e.g 136 // casting from va_list* to __builtin_va_list&. 137 // 138 if (Loc::isLocType(castTy) || castTy->isReferenceType()) 139 return val; 140 141 // FIXME: Handle transparent unions where a value can be "transparently" 142 // lifted into a union type. 143 if (castTy->isUnionType()) 144 return UnknownVal(); 145 146 // Casting a Loc to a bool will almost always be true, 147 // unless this is a weak function or a symbolic region. 148 if (castTy->isBooleanType()) { 149 switch (val.getSubKind()) { 150 case loc::MemRegionValKind: { 151 const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion(); 152 if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R)) 153 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl())) 154 if (FD->isWeak()) 155 // FIXME: Currently we are using an extent symbol here, 156 // because there are no generic region address metadata 157 // symbols to use, only content metadata. 158 return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR)); 159 160 if (const SymbolicRegion *SymR = R->getSymbolicBase()) 161 return makeNonLoc(SymR->getSymbol(), BO_NE, 162 BasicVals.getZeroWithPtrWidth(), castTy); 163 164 // FALL-THROUGH 165 LLVM_FALLTHROUGH; 166 } 167 168 case loc::GotoLabelKind: 169 // Labels and non-symbolic memory regions are always true. 170 return makeTruthVal(true, castTy); 171 } 172 } 173 174 if (castTy->isIntegralOrEnumerationType()) { 175 unsigned BitWidth = Context.getIntWidth(castTy); 176 177 if (!val.getAs<loc::ConcreteInt>()) 178 return makeLocAsInteger(val, BitWidth); 179 180 llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue(); 181 BasicVals.getAPSIntType(castTy).apply(i); 182 return makeIntVal(i); 183 } 184 185 // All other cases: return 'UnknownVal'. This includes casting pointers 186 // to floats, which is probably badness it itself, but this is a good 187 // intermediate solution until we do something better. 188 return UnknownVal(); 189 } 190 191 //===----------------------------------------------------------------------===// 192 // Transfer function for unary operators. 193 //===----------------------------------------------------------------------===// 194 195 SVal SimpleSValBuilder::evalMinus(NonLoc val) { 196 switch (val.getSubKind()) { 197 case nonloc::ConcreteIntKind: 198 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this); 199 default: 200 return UnknownVal(); 201 } 202 } 203 204 SVal SimpleSValBuilder::evalComplement(NonLoc X) { 205 switch (X.getSubKind()) { 206 case nonloc::ConcreteIntKind: 207 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this); 208 default: 209 return UnknownVal(); 210 } 211 } 212 213 //===----------------------------------------------------------------------===// 214 // Transfer function for binary operators. 215 //===----------------------------------------------------------------------===// 216 217 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 218 BinaryOperator::Opcode op, 219 const llvm::APSInt &RHS, 220 QualType resultTy) { 221 bool isIdempotent = false; 222 223 // Check for a few special cases with known reductions first. 224 switch (op) { 225 default: 226 // We can't reduce this case; just treat it normally. 227 break; 228 case BO_Mul: 229 // a*0 and a*1 230 if (RHS == 0) 231 return makeIntVal(0, resultTy); 232 else if (RHS == 1) 233 isIdempotent = true; 234 break; 235 case BO_Div: 236 // a/0 and a/1 237 if (RHS == 0) 238 // This is also handled elsewhere. 239 return UndefinedVal(); 240 else if (RHS == 1) 241 isIdempotent = true; 242 break; 243 case BO_Rem: 244 // a%0 and a%1 245 if (RHS == 0) 246 // This is also handled elsewhere. 247 return UndefinedVal(); 248 else if (RHS == 1) 249 return makeIntVal(0, resultTy); 250 break; 251 case BO_Add: 252 case BO_Sub: 253 case BO_Shl: 254 case BO_Shr: 255 case BO_Xor: 256 // a+0, a-0, a<<0, a>>0, a^0 257 if (RHS == 0) 258 isIdempotent = true; 259 break; 260 case BO_And: 261 // a&0 and a&(~0) 262 if (RHS == 0) 263 return makeIntVal(0, resultTy); 264 else if (RHS.isAllOnesValue()) 265 isIdempotent = true; 266 break; 267 case BO_Or: 268 // a|0 and a|(~0) 269 if (RHS == 0) 270 isIdempotent = true; 271 else if (RHS.isAllOnesValue()) { 272 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); 273 return nonloc::ConcreteInt(Result); 274 } 275 break; 276 } 277 278 // Idempotent ops (like a*1) can still change the type of an expression. 279 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the 280 // dirty work. 281 if (isIdempotent) 282 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy); 283 284 // If we reach this point, the expression cannot be simplified. 285 // Make a SymbolVal for the entire expression, after converting the RHS. 286 const llvm::APSInt *ConvertedRHS = &RHS; 287 if (BinaryOperator::isComparisonOp(op)) { 288 // We're looking for a type big enough to compare the symbolic value 289 // with the given constant. 290 // FIXME: This is an approximation of Sema::UsualArithmeticConversions. 291 ASTContext &Ctx = getContext(); 292 QualType SymbolType = LHS->getType(); 293 uint64_t ValWidth = RHS.getBitWidth(); 294 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); 295 296 if (ValWidth < TypeWidth) { 297 // If the value is too small, extend it. 298 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 299 } else if (ValWidth == TypeWidth) { 300 // If the value is signed but the symbol is unsigned, do the comparison 301 // in unsigned space. [C99 6.3.1.8] 302 // (For the opposite case, the value is already unsigned.) 303 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) 304 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 305 } 306 } else 307 ConvertedRHS = &BasicVals.Convert(resultTy, RHS); 308 309 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); 310 } 311 312 // See if Sym is known to be a relation Rel with Bound. 313 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, 314 llvm::APSInt Bound, ProgramStateRef State) { 315 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 316 SVal Result = 317 SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), 318 nonloc::ConcreteInt(Bound), SVB.getConditionType()); 319 if (auto DV = Result.getAs<DefinedSVal>()) { 320 return !State->assume(*DV, false); 321 } 322 return false; 323 } 324 325 // See if Sym is known to be within [min/4, max/4], where min and max 326 // are the bounds of the symbol's integral type. With such symbols, 327 // some manipulations can be performed without the risk of overflow. 328 // assume() doesn't cause infinite recursion because we should be dealing 329 // with simpler symbols on every recursive call. 330 static bool isWithinConstantOverflowBounds(SymbolRef Sym, 331 ProgramStateRef State) { 332 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 333 BasicValueFactory &BV = SVB.getBasicValueFactory(); 334 335 QualType T = Sym->getType(); 336 assert(T->isSignedIntegerOrEnumerationType() && 337 "This only works with signed integers!"); 338 APSIntType AT = BV.getAPSIntType(T); 339 340 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 341 return isInRelation(BO_LE, Sym, Max, State) && 342 isInRelation(BO_GE, Sym, Min, State); 343 } 344 345 // Same for the concrete integers: see if I is within [min/4, max/4]. 346 static bool isWithinConstantOverflowBounds(llvm::APSInt I) { 347 APSIntType AT(I); 348 assert(!AT.isUnsigned() && 349 "This only works with signed integers!"); 350 351 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 352 return (I <= Max) && (I >= -Max); 353 } 354 355 static std::pair<SymbolRef, llvm::APSInt> 356 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) { 357 if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) 358 if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) 359 return std::make_pair(SymInt->getLHS(), 360 (SymInt->getOpcode() == BO_Add) ? 361 (SymInt->getRHS()) : 362 (-SymInt->getRHS())); 363 364 // Fail to decompose: "reduce" the problem to the "$x + 0" case. 365 return std::make_pair(Sym, BV.getValue(0, Sym->getType())); 366 } 367 368 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the 369 // same signed integral type and no overflows occur (which should be checked 370 // by the caller). 371 static NonLoc doRearrangeUnchecked(ProgramStateRef State, 372 BinaryOperator::Opcode Op, 373 SymbolRef LSym, llvm::APSInt LInt, 374 SymbolRef RSym, llvm::APSInt RInt) { 375 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 376 BasicValueFactory &BV = SVB.getBasicValueFactory(); 377 SymbolManager &SymMgr = SVB.getSymbolManager(); 378 379 QualType SymTy = LSym->getType(); 380 assert(SymTy == RSym->getType() && 381 "Symbols are not of the same type!"); 382 assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && 383 "Integers are not of the same type as symbols!"); 384 assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && 385 "Integers are not of the same type as symbols!"); 386 387 QualType ResultTy; 388 if (BinaryOperator::isComparisonOp(Op)) 389 ResultTy = SVB.getConditionType(); 390 else if (BinaryOperator::isAdditiveOp(Op)) 391 ResultTy = SymTy; 392 else 393 llvm_unreachable("Operation not suitable for unchecked rearrangement!"); 394 395 // FIXME: Can we use assume() without getting into an infinite recursion? 396 if (LSym == RSym) 397 return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt), 398 nonloc::ConcreteInt(RInt), ResultTy) 399 .castAs<NonLoc>(); 400 401 SymbolRef ResultSym = nullptr; 402 BinaryOperator::Opcode ResultOp; 403 llvm::APSInt ResultInt; 404 if (BinaryOperator::isComparisonOp(Op)) { 405 // Prefer comparing to a non-negative number. 406 // FIXME: Maybe it'd be better to have consistency in 407 // "$x - $y" vs. "$y - $x" because those are solver's keys. 408 if (LInt > RInt) { 409 ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy); 410 ResultOp = BinaryOperator::reverseComparisonOp(Op); 411 ResultInt = LInt - RInt; // Opposite order! 412 } else { 413 ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy); 414 ResultOp = Op; 415 ResultInt = RInt - LInt; // Opposite order! 416 } 417 } else { 418 ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy); 419 ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt); 420 ResultOp = BO_Add; 421 // Bring back the cosmetic difference. 422 if (ResultInt < 0) { 423 ResultInt = -ResultInt; 424 ResultOp = BO_Sub; 425 } else if (ResultInt == 0) { 426 // Shortcut: Simplify "$x + 0" to "$x". 427 return nonloc::SymbolVal(ResultSym); 428 } 429 } 430 const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt); 431 return nonloc::SymbolVal( 432 SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy)); 433 } 434 435 // Rearrange if symbol type matches the result type and if the operator is a 436 // comparison operator, both symbol and constant must be within constant 437 // overflow bounds. 438 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, 439 SymbolRef Sym, llvm::APSInt Int, QualType Ty) { 440 return Sym->getType() == Ty && 441 (!BinaryOperator::isComparisonOp(Op) || 442 (isWithinConstantOverflowBounds(Sym, State) && 443 isWithinConstantOverflowBounds(Int))); 444 } 445 446 static Optional<NonLoc> tryRearrange(ProgramStateRef State, 447 BinaryOperator::Opcode Op, NonLoc Lhs, 448 NonLoc Rhs, QualType ResultTy) { 449 ProgramStateManager &StateMgr = State->getStateManager(); 450 SValBuilder &SVB = StateMgr.getSValBuilder(); 451 452 // We expect everything to be of the same type - this type. 453 QualType SingleTy; 454 455 auto &Opts = 456 StateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions(); 457 458 // FIXME: After putting complexity threshold to the symbols we can always 459 // rearrange additive operations but rearrange comparisons only if 460 // option is set. 461 if(!Opts.ShouldAggressivelySimplifyBinaryOperation) 462 return None; 463 464 SymbolRef LSym = Lhs.getAsSymbol(); 465 if (!LSym) 466 return None; 467 468 if (BinaryOperator::isComparisonOp(Op)) { 469 SingleTy = LSym->getType(); 470 if (ResultTy != SVB.getConditionType()) 471 return None; 472 // Initialize SingleTy later with a symbol's type. 473 } else if (BinaryOperator::isAdditiveOp(Op)) { 474 SingleTy = ResultTy; 475 if (LSym->getType() != SingleTy) 476 return None; 477 } else { 478 // Don't rearrange other operations. 479 return None; 480 } 481 482 assert(!SingleTy.isNull() && "We should have figured out the type by now!"); 483 484 // Rearrange signed symbolic expressions only 485 if (!SingleTy->isSignedIntegerOrEnumerationType()) 486 return None; 487 488 SymbolRef RSym = Rhs.getAsSymbol(); 489 if (!RSym || RSym->getType() != SingleTy) 490 return None; 491 492 BasicValueFactory &BV = State->getBasicVals(); 493 llvm::APSInt LInt, RInt; 494 std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); 495 std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); 496 if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || 497 !shouldRearrange(State, Op, RSym, RInt, SingleTy)) 498 return None; 499 500 // We know that no overflows can occur anymore. 501 return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); 502 } 503 504 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 505 BinaryOperator::Opcode op, 506 NonLoc lhs, NonLoc rhs, 507 QualType resultTy) { 508 NonLoc InputLHS = lhs; 509 NonLoc InputRHS = rhs; 510 511 // Handle trivial case where left-side and right-side are the same. 512 if (lhs == rhs) 513 switch (op) { 514 default: 515 break; 516 case BO_EQ: 517 case BO_LE: 518 case BO_GE: 519 return makeTruthVal(true, resultTy); 520 case BO_LT: 521 case BO_GT: 522 case BO_NE: 523 return makeTruthVal(false, resultTy); 524 case BO_Xor: 525 case BO_Sub: 526 if (resultTy->isIntegralOrEnumerationType()) 527 return makeIntVal(0, resultTy); 528 return evalCastFromNonLoc(makeIntVal(0, /*isUnsigned=*/false), resultTy); 529 case BO_Or: 530 case BO_And: 531 return evalCastFromNonLoc(lhs, resultTy); 532 } 533 534 while (1) { 535 switch (lhs.getSubKind()) { 536 default: 537 return makeSymExprValNN(op, lhs, rhs, resultTy); 538 case nonloc::PointerToMemberKind: { 539 assert(rhs.getSubKind() == nonloc::PointerToMemberKind && 540 "Both SVals should have pointer-to-member-type"); 541 auto LPTM = lhs.castAs<nonloc::PointerToMember>(), 542 RPTM = rhs.castAs<nonloc::PointerToMember>(); 543 auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); 544 switch (op) { 545 case BO_EQ: 546 return makeTruthVal(LPTMD == RPTMD, resultTy); 547 case BO_NE: 548 return makeTruthVal(LPTMD != RPTMD, resultTy); 549 default: 550 return UnknownVal(); 551 } 552 } 553 case nonloc::LocAsIntegerKind: { 554 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); 555 switch (rhs.getSubKind()) { 556 case nonloc::LocAsIntegerKind: 557 // FIXME: at the moment the implementation 558 // of modeling "pointers as integers" is not complete. 559 if (!BinaryOperator::isComparisonOp(op)) 560 return UnknownVal(); 561 return evalBinOpLL(state, op, lhsL, 562 rhs.castAs<nonloc::LocAsInteger>().getLoc(), 563 resultTy); 564 case nonloc::ConcreteIntKind: { 565 // FIXME: at the moment the implementation 566 // of modeling "pointers as integers" is not complete. 567 if (!BinaryOperator::isComparisonOp(op)) 568 return UnknownVal(); 569 // Transform the integer into a location and compare. 570 // FIXME: This only makes sense for comparisons. If we want to, say, 571 // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, 572 // then pack it back into a LocAsInteger. 573 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); 574 // If the region has a symbolic base, pay attention to the type; it 575 // might be coming from a non-default address space. For non-symbolic 576 // regions it doesn't matter that much because such comparisons would 577 // most likely evaluate to concrete false anyway. FIXME: We might 578 // still need to handle the non-comparison case. 579 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) 580 BasicVals.getAPSIntType(lSym->getType()).apply(i); 581 else 582 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); 583 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 584 } 585 default: 586 switch (op) { 587 case BO_EQ: 588 return makeTruthVal(false, resultTy); 589 case BO_NE: 590 return makeTruthVal(true, resultTy); 591 default: 592 // This case also handles pointer arithmetic. 593 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 594 } 595 } 596 } 597 case nonloc::ConcreteIntKind: { 598 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); 599 600 // If we're dealing with two known constants, just perform the operation. 601 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) { 602 llvm::APSInt RHSValue = *KnownRHSValue; 603 if (BinaryOperator::isComparisonOp(op)) { 604 // We're looking for a type big enough to compare the two values. 605 // FIXME: This is not correct. char + short will result in a promotion 606 // to int. Unfortunately we have lost types by this point. 607 APSIntType CompareType = std::max(APSIntType(LHSValue), 608 APSIntType(RHSValue)); 609 CompareType.apply(LHSValue); 610 CompareType.apply(RHSValue); 611 } else if (!BinaryOperator::isShiftOp(op)) { 612 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 613 IntType.apply(LHSValue); 614 IntType.apply(RHSValue); 615 } 616 617 const llvm::APSInt *Result = 618 BasicVals.evalAPSInt(op, LHSValue, RHSValue); 619 if (!Result) 620 return UndefinedVal(); 621 622 return nonloc::ConcreteInt(*Result); 623 } 624 625 // Swap the left and right sides and flip the operator if doing so 626 // allows us to better reason about the expression (this is a form 627 // of expression canonicalization). 628 // While we're at it, catch some special cases for non-commutative ops. 629 switch (op) { 630 case BO_LT: 631 case BO_GT: 632 case BO_LE: 633 case BO_GE: 634 op = BinaryOperator::reverseComparisonOp(op); 635 LLVM_FALLTHROUGH; 636 case BO_EQ: 637 case BO_NE: 638 case BO_Add: 639 case BO_Mul: 640 case BO_And: 641 case BO_Xor: 642 case BO_Or: 643 std::swap(lhs, rhs); 644 continue; 645 case BO_Shr: 646 // (~0)>>a 647 if (LHSValue.isAllOnesValue() && LHSValue.isSigned()) 648 return evalCastFromNonLoc(lhs, resultTy); 649 LLVM_FALLTHROUGH; 650 case BO_Shl: 651 // 0<<a and 0>>a 652 if (LHSValue == 0) 653 return evalCastFromNonLoc(lhs, resultTy); 654 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 655 case BO_Rem: 656 // 0 % x == 0 657 if (LHSValue == 0) 658 return makeZeroVal(resultTy); 659 LLVM_FALLTHROUGH; 660 default: 661 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 662 } 663 } 664 case nonloc::SymbolValKind: { 665 // We only handle LHS as simple symbols or SymIntExprs. 666 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); 667 668 // LHS is a symbolic expression. 669 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { 670 671 // Is this a logical not? (!x is represented as x == 0.) 672 if (op == BO_EQ && rhs.isZeroConstant()) { 673 // We know how to negate certain expressions. Simplify them here. 674 675 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 676 switch (opc) { 677 default: 678 // We don't know how to negate this operation. 679 // Just handle it as if it were a normal comparison to 0. 680 break; 681 case BO_LAnd: 682 case BO_LOr: 683 llvm_unreachable("Logical operators handled by branching logic."); 684 case BO_Assign: 685 case BO_MulAssign: 686 case BO_DivAssign: 687 case BO_RemAssign: 688 case BO_AddAssign: 689 case BO_SubAssign: 690 case BO_ShlAssign: 691 case BO_ShrAssign: 692 case BO_AndAssign: 693 case BO_XorAssign: 694 case BO_OrAssign: 695 case BO_Comma: 696 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 697 case BO_PtrMemD: 698 case BO_PtrMemI: 699 llvm_unreachable("Pointer arithmetic not handled here."); 700 case BO_LT: 701 case BO_GT: 702 case BO_LE: 703 case BO_GE: 704 case BO_EQ: 705 case BO_NE: 706 assert(resultTy->isBooleanType() || 707 resultTy == getConditionType()); 708 assert(symIntExpr->getType()->isBooleanType() || 709 getContext().hasSameUnqualifiedType(symIntExpr->getType(), 710 getConditionType())); 711 // Negate the comparison and make a value. 712 opc = BinaryOperator::negateComparisonOp(opc); 713 return makeNonLoc(symIntExpr->getLHS(), opc, 714 symIntExpr->getRHS(), resultTy); 715 } 716 } 717 718 // For now, only handle expressions whose RHS is a constant. 719 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) { 720 // If both the LHS and the current expression are additive, 721 // fold their constants and try again. 722 if (BinaryOperator::isAdditiveOp(op)) { 723 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 724 if (BinaryOperator::isAdditiveOp(lop)) { 725 // Convert the two constants to a common type, then combine them. 726 727 // resultTy may not be the best type to convert to, but it's 728 // probably the best choice in expressions with mixed type 729 // (such as x+1U+2LL). The rules for implicit conversions should 730 // choose a reasonable type to preserve the expression, and will 731 // at least match how the value is going to be used. 732 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 733 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); 734 const llvm::APSInt &second = IntType.convert(*RHSValue); 735 736 const llvm::APSInt *newRHS; 737 if (lop == op) 738 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 739 else 740 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 741 742 assert(newRHS && "Invalid operation despite common type!"); 743 rhs = nonloc::ConcreteInt(*newRHS); 744 lhs = nonloc::SymbolVal(symIntExpr->getLHS()); 745 op = lop; 746 continue; 747 } 748 } 749 750 // Otherwise, make a SymIntExpr out of the expression. 751 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); 752 } 753 } 754 755 // Does the symbolic expression simplify to a constant? 756 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt 757 // and try again. 758 SVal simplifiedLhs = simplifySVal(state, lhs); 759 if (simplifiedLhs != lhs) 760 if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) { 761 lhs = *simplifiedLhsAsNonLoc; 762 continue; 763 } 764 765 // Is the RHS a constant? 766 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) 767 return MakeSymIntVal(Sym, op, *RHSValue, resultTy); 768 769 if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) 770 return *V; 771 772 // Give up -- this is not a symbolic expression we can handle. 773 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 774 } 775 } 776 } 777 } 778 779 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, 780 const FieldRegion *RightFR, 781 BinaryOperator::Opcode op, 782 QualType resultTy, 783 SimpleSValBuilder &SVB) { 784 // Only comparisons are meaningful here! 785 if (!BinaryOperator::isComparisonOp(op)) 786 return UnknownVal(); 787 788 // Next, see if the two FRs have the same super-region. 789 // FIXME: This doesn't handle casts yet, and simply stripping the casts 790 // doesn't help. 791 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 792 return UnknownVal(); 793 794 const FieldDecl *LeftFD = LeftFR->getDecl(); 795 const FieldDecl *RightFD = RightFR->getDecl(); 796 const RecordDecl *RD = LeftFD->getParent(); 797 798 // Make sure the two FRs are from the same kind of record. Just in case! 799 // FIXME: This is probably where inheritance would be a problem. 800 if (RD != RightFD->getParent()) 801 return UnknownVal(); 802 803 // We know for sure that the two fields are not the same, since that 804 // would have given us the same SVal. 805 if (op == BO_EQ) 806 return SVB.makeTruthVal(false, resultTy); 807 if (op == BO_NE) 808 return SVB.makeTruthVal(true, resultTy); 809 810 // Iterate through the fields and see which one comes first. 811 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 812 // members and the units in which bit-fields reside have addresses that 813 // increase in the order in which they are declared." 814 bool leftFirst = (op == BO_LT || op == BO_LE); 815 for (const auto *I : RD->fields()) { 816 if (I == LeftFD) 817 return SVB.makeTruthVal(leftFirst, resultTy); 818 if (I == RightFD) 819 return SVB.makeTruthVal(!leftFirst, resultTy); 820 } 821 822 llvm_unreachable("Fields not found in parent record's definition"); 823 } 824 825 // FIXME: all this logic will change if/when we have MemRegion::getLocation(). 826 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 827 BinaryOperator::Opcode op, 828 Loc lhs, Loc rhs, 829 QualType resultTy) { 830 // Only comparisons and subtractions are valid operations on two pointers. 831 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 832 // However, if a pointer is casted to an integer, evalBinOpNN may end up 833 // calling this function with another operation (PR7527). We don't attempt to 834 // model this for now, but it could be useful, particularly when the 835 // "location" is actually an integer value that's been passed through a void*. 836 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 837 return UnknownVal(); 838 839 // Special cases for when both sides are identical. 840 if (lhs == rhs) { 841 switch (op) { 842 default: 843 llvm_unreachable("Unimplemented operation for two identical values"); 844 case BO_Sub: 845 return makeZeroVal(resultTy); 846 case BO_EQ: 847 case BO_LE: 848 case BO_GE: 849 return makeTruthVal(true, resultTy); 850 case BO_NE: 851 case BO_LT: 852 case BO_GT: 853 return makeTruthVal(false, resultTy); 854 } 855 } 856 857 switch (lhs.getSubKind()) { 858 default: 859 llvm_unreachable("Ordering not implemented for this Loc."); 860 861 case loc::GotoLabelKind: 862 // The only thing we know about labels is that they're non-null. 863 if (rhs.isZeroConstant()) { 864 switch (op) { 865 default: 866 break; 867 case BO_Sub: 868 return evalCastFromLoc(lhs, resultTy); 869 case BO_EQ: 870 case BO_LE: 871 case BO_LT: 872 return makeTruthVal(false, resultTy); 873 case BO_NE: 874 case BO_GT: 875 case BO_GE: 876 return makeTruthVal(true, resultTy); 877 } 878 } 879 // There may be two labels for the same location, and a function region may 880 // have the same address as a label at the start of the function (depending 881 // on the ABI). 882 // FIXME: we can probably do a comparison against other MemRegions, though. 883 // FIXME: is there a way to tell if two labels refer to the same location? 884 return UnknownVal(); 885 886 case loc::ConcreteIntKind: { 887 // If one of the operands is a symbol and the other is a constant, 888 // build an expression for use by the constraint manager. 889 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 890 // We can only build expressions with symbols on the left, 891 // so we need a reversible operator. 892 if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp) 893 return UnknownVal(); 894 895 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue(); 896 op = BinaryOperator::reverseComparisonOp(op); 897 return makeNonLoc(rSym, op, lVal, resultTy); 898 } 899 900 // If both operands are constants, just perform the operation. 901 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 902 SVal ResultVal = 903 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt); 904 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>()) 905 return evalCastFromNonLoc(*Result, resultTy); 906 907 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs"); 908 return UnknownVal(); 909 } 910 911 // Special case comparisons against NULL. 912 // This must come after the test if the RHS is a symbol, which is used to 913 // build constraints. The address of any non-symbolic region is guaranteed 914 // to be non-NULL, as is any label. 915 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>()); 916 if (lhs.isZeroConstant()) { 917 switch (op) { 918 default: 919 break; 920 case BO_EQ: 921 case BO_GT: 922 case BO_GE: 923 return makeTruthVal(false, resultTy); 924 case BO_NE: 925 case BO_LT: 926 case BO_LE: 927 return makeTruthVal(true, resultTy); 928 } 929 } 930 931 // Comparing an arbitrary integer to a region or label address is 932 // completely unknowable. 933 return UnknownVal(); 934 } 935 case loc::MemRegionValKind: { 936 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 937 // If one of the operands is a symbol and the other is a constant, 938 // build an expression for use by the constraint manager. 939 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { 940 if (BinaryOperator::isComparisonOp(op)) 941 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 942 return UnknownVal(); 943 } 944 // Special case comparisons to NULL. 945 // This must come after the test if the LHS is a symbol, which is used to 946 // build constraints. The address of any non-symbolic region is guaranteed 947 // to be non-NULL. 948 if (rInt->isZeroConstant()) { 949 if (op == BO_Sub) 950 return evalCastFromLoc(lhs, resultTy); 951 952 if (BinaryOperator::isComparisonOp(op)) { 953 QualType boolType = getContext().BoolTy; 954 NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>(); 955 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); 956 return evalBinOpNN(state, op, l, r, resultTy); 957 } 958 } 959 960 // Comparing a region to an arbitrary integer is completely unknowable. 961 return UnknownVal(); 962 } 963 964 // Get both values as regions, if possible. 965 const MemRegion *LeftMR = lhs.getAsRegion(); 966 assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); 967 968 const MemRegion *RightMR = rhs.getAsRegion(); 969 if (!RightMR) 970 // The RHS is probably a label, which in theory could address a region. 971 // FIXME: we can probably make a more useful statement about non-code 972 // regions, though. 973 return UnknownVal(); 974 975 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 976 const MemRegion *RightBase = RightMR->getBaseRegion(); 977 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 978 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 979 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); 980 981 // If the two regions are from different known memory spaces they cannot be 982 // equal. Also, assume that no symbolic region (whose memory space is 983 // unknown) is on the stack. 984 if (LeftMS != RightMS && 985 ((LeftMS != UnknownMS && RightMS != UnknownMS) || 986 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { 987 switch (op) { 988 default: 989 return UnknownVal(); 990 case BO_EQ: 991 return makeTruthVal(false, resultTy); 992 case BO_NE: 993 return makeTruthVal(true, resultTy); 994 } 995 } 996 997 // If both values wrap regions, see if they're from different base regions. 998 // Note, heap base symbolic regions are assumed to not alias with 999 // each other; for example, we assume that malloc returns different address 1000 // on each invocation. 1001 // FIXME: ObjC object pointers always reside on the heap, but currently 1002 // we treat their memory space as unknown, because symbolic pointers 1003 // to ObjC objects may alias. There should be a way to construct 1004 // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker 1005 // guesses memory space for ObjC object pointers manually instead of 1006 // relying on us. 1007 if (LeftBase != RightBase && 1008 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || 1009 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ 1010 switch (op) { 1011 default: 1012 return UnknownVal(); 1013 case BO_EQ: 1014 return makeTruthVal(false, resultTy); 1015 case BO_NE: 1016 return makeTruthVal(true, resultTy); 1017 } 1018 } 1019 1020 // Handle special cases for when both regions are element regions. 1021 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 1022 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); 1023 if (RightER && LeftER) { 1024 // Next, see if the two ERs have the same super-region and matching types. 1025 // FIXME: This should do something useful even if the types don't match, 1026 // though if both indexes are constant the RegionRawOffset path will 1027 // give the correct answer. 1028 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 1029 LeftER->getElementType() == RightER->getElementType()) { 1030 // Get the left index and cast it to the correct type. 1031 // If the index is unknown or undefined, bail out here. 1032 SVal LeftIndexVal = LeftER->getIndex(); 1033 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1034 if (!LeftIndex) 1035 return UnknownVal(); 1036 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy); 1037 LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1038 if (!LeftIndex) 1039 return UnknownVal(); 1040 1041 // Do the same for the right index. 1042 SVal RightIndexVal = RightER->getIndex(); 1043 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); 1044 if (!RightIndex) 1045 return UnknownVal(); 1046 RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy); 1047 RightIndex = RightIndexVal.getAs<NonLoc>(); 1048 if (!RightIndex) 1049 return UnknownVal(); 1050 1051 // Actually perform the operation. 1052 // evalBinOpNN expects the two indexes to already be the right type. 1053 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 1054 } 1055 } 1056 1057 // Special handling of the FieldRegions, even with symbolic offsets. 1058 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 1059 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); 1060 if (RightFR && LeftFR) { 1061 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, 1062 *this); 1063 if (!R.isUnknown()) 1064 return R; 1065 } 1066 1067 // Compare the regions using the raw offsets. 1068 RegionOffset LeftOffset = LeftMR->getAsOffset(); 1069 RegionOffset RightOffset = RightMR->getAsOffset(); 1070 1071 if (LeftOffset.getRegion() != nullptr && 1072 LeftOffset.getRegion() == RightOffset.getRegion() && 1073 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { 1074 int64_t left = LeftOffset.getOffset(); 1075 int64_t right = RightOffset.getOffset(); 1076 1077 switch (op) { 1078 default: 1079 return UnknownVal(); 1080 case BO_LT: 1081 return makeTruthVal(left < right, resultTy); 1082 case BO_GT: 1083 return makeTruthVal(left > right, resultTy); 1084 case BO_LE: 1085 return makeTruthVal(left <= right, resultTy); 1086 case BO_GE: 1087 return makeTruthVal(left >= right, resultTy); 1088 case BO_EQ: 1089 return makeTruthVal(left == right, resultTy); 1090 case BO_NE: 1091 return makeTruthVal(left != right, resultTy); 1092 } 1093 } 1094 1095 // At this point we're not going to get a good answer, but we can try 1096 // conjuring an expression instead. 1097 SymbolRef LHSSym = lhs.getAsLocSymbol(); 1098 SymbolRef RHSSym = rhs.getAsLocSymbol(); 1099 if (LHSSym && RHSSym) 1100 return makeNonLoc(LHSSym, op, RHSSym, resultTy); 1101 1102 // If we get here, we have no way of comparing the regions. 1103 return UnknownVal(); 1104 } 1105 } 1106 } 1107 1108 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 1109 BinaryOperator::Opcode op, 1110 Loc lhs, NonLoc rhs, QualType resultTy) { 1111 if (op >= BO_PtrMemD && op <= BO_PtrMemI) { 1112 if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { 1113 if (PTMSV->isNullMemberPointer()) 1114 return UndefinedVal(); 1115 if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) { 1116 SVal Result = lhs; 1117 1118 for (const auto &I : *PTMSV) 1119 Result = StateMgr.getStoreManager().evalDerivedToBase( 1120 Result, I->getType(),I->isVirtual()); 1121 return state->getLValue(FD, Result); 1122 } 1123 } 1124 1125 return rhs; 1126 } 1127 1128 assert(!BinaryOperator::isComparisonOp(op) && 1129 "arguments to comparison ops must be of the same type"); 1130 1131 // Special case: rhs is a zero constant. 1132 if (rhs.isZeroConstant()) 1133 return lhs; 1134 1135 // Perserve the null pointer so that it can be found by the DerefChecker. 1136 if (lhs.isZeroConstant()) 1137 return lhs; 1138 1139 // We are dealing with pointer arithmetic. 1140 1141 // Handle pointer arithmetic on constant values. 1142 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) { 1143 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) { 1144 const llvm::APSInt &leftI = lhsInt->getValue(); 1145 assert(leftI.isUnsigned()); 1146 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 1147 1148 // Convert the bitwidth of rightI. This should deal with overflow 1149 // since we are dealing with concrete values. 1150 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 1151 1152 // Offset the increment by the pointer size. 1153 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 1154 QualType pointeeType = resultTy->getPointeeType(); 1155 Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); 1156 rightI *= Multiplicand; 1157 1158 // Compute the adjusted pointer. 1159 switch (op) { 1160 case BO_Add: 1161 rightI = leftI + rightI; 1162 break; 1163 case BO_Sub: 1164 rightI = leftI - rightI; 1165 break; 1166 default: 1167 llvm_unreachable("Invalid pointer arithmetic operation"); 1168 } 1169 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 1170 } 1171 } 1172 1173 // Handle cases where 'lhs' is a region. 1174 if (const MemRegion *region = lhs.getAsRegion()) { 1175 rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); 1176 SVal index = UnknownVal(); 1177 const SubRegion *superR = nullptr; 1178 // We need to know the type of the pointer in order to add an integer to it. 1179 // Depending on the type, different amount of bytes is added. 1180 QualType elementType; 1181 1182 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 1183 assert(op == BO_Add || op == BO_Sub); 1184 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 1185 getArrayIndexType()); 1186 superR = cast<SubRegion>(elemReg->getSuperRegion()); 1187 elementType = elemReg->getElementType(); 1188 } 1189 else if (isa<SubRegion>(region)) { 1190 assert(op == BO_Add || op == BO_Sub); 1191 index = (op == BO_Add) ? rhs : evalMinus(rhs); 1192 superR = cast<SubRegion>(region); 1193 // TODO: Is this actually reliable? Maybe improving our MemRegion 1194 // hierarchy to provide typed regions for all non-void pointers would be 1195 // better. For instance, we cannot extend this towards LocAsInteger 1196 // operations, where result type of the expression is integer. 1197 if (resultTy->isAnyPointerType()) 1198 elementType = resultTy->getPointeeType(); 1199 } 1200 1201 // Represent arithmetic on void pointers as arithmetic on char pointers. 1202 // It is fine when a TypedValueRegion of char value type represents 1203 // a void pointer. Note that arithmetic on void pointers is a GCC extension. 1204 if (elementType->isVoidType()) 1205 elementType = getContext().CharTy; 1206 1207 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) { 1208 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 1209 superR, getContext())); 1210 } 1211 } 1212 return UnknownVal(); 1213 } 1214 1215 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 1216 SVal V) { 1217 V = simplifySVal(state, V); 1218 if (V.isUnknownOrUndef()) 1219 return nullptr; 1220 1221 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) 1222 return &X->getValue(); 1223 1224 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) 1225 return &X->getValue(); 1226 1227 if (SymbolRef Sym = V.getAsSymbol()) 1228 return state->getConstraintManager().getSymVal(state, Sym); 1229 1230 // FIXME: Add support for SymExprs. 1231 return nullptr; 1232 } 1233 1234 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { 1235 // For now, this function tries to constant-fold symbols inside a 1236 // nonloc::SymbolVal, and does nothing else. More simplifications should 1237 // be possible, such as constant-folding an index in an ElementRegion. 1238 1239 class Simplifier : public FullSValVisitor<Simplifier, SVal> { 1240 ProgramStateRef State; 1241 SValBuilder &SVB; 1242 1243 // Cache results for the lifetime of the Simplifier. Results change every 1244 // time new constraints are added to the program state, which is the whole 1245 // point of simplifying, and for that very reason it's pointless to maintain 1246 // the same cache for the duration of the whole analysis. 1247 llvm::DenseMap<SymbolRef, SVal> Cached; 1248 1249 static bool isUnchanged(SymbolRef Sym, SVal Val) { 1250 return Sym == Val.getAsSymbol(); 1251 } 1252 1253 SVal cache(SymbolRef Sym, SVal V) { 1254 Cached[Sym] = V; 1255 return V; 1256 } 1257 1258 SVal skip(SymbolRef Sym) { 1259 return cache(Sym, SVB.makeSymbolVal(Sym)); 1260 } 1261 1262 public: 1263 Simplifier(ProgramStateRef State) 1264 : State(State), SVB(State->getStateManager().getSValBuilder()) {} 1265 1266 SVal VisitSymbolData(const SymbolData *S) { 1267 // No cache here. 1268 if (const llvm::APSInt *I = 1269 SVB.getKnownValue(State, SVB.makeSymbolVal(S))) 1270 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I) 1271 : (SVal)SVB.makeIntVal(*I); 1272 return SVB.makeSymbolVal(S); 1273 } 1274 1275 // TODO: Support SymbolCast. Support IntSymExpr when/if we actually 1276 // start producing them. 1277 1278 SVal VisitSymIntExpr(const SymIntExpr *S) { 1279 auto I = Cached.find(S); 1280 if (I != Cached.end()) 1281 return I->second; 1282 1283 SVal LHS = Visit(S->getLHS()); 1284 if (isUnchanged(S->getLHS(), LHS)) 1285 return skip(S); 1286 1287 SVal RHS; 1288 // By looking at the APSInt in the right-hand side of S, we cannot 1289 // figure out if it should be treated as a Loc or as a NonLoc. 1290 // So make our guess by recalling that we cannot multiply pointers 1291 // or compare a pointer to an integer. 1292 if (Loc::isLocType(S->getLHS()->getType()) && 1293 BinaryOperator::isComparisonOp(S->getOpcode())) { 1294 // The usual conversion of $sym to &SymRegion{$sym}, as they have 1295 // the same meaning for Loc-type symbols, but the latter form 1296 // is preferred in SVal computations for being Loc itself. 1297 if (SymbolRef Sym = LHS.getAsSymbol()) { 1298 assert(Loc::isLocType(Sym->getType())); 1299 LHS = SVB.makeLoc(Sym); 1300 } 1301 RHS = SVB.makeIntLocVal(S->getRHS()); 1302 } else { 1303 RHS = SVB.makeIntVal(S->getRHS()); 1304 } 1305 1306 return cache( 1307 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1308 } 1309 1310 SVal VisitSymSymExpr(const SymSymExpr *S) { 1311 auto I = Cached.find(S); 1312 if (I != Cached.end()) 1313 return I->second; 1314 1315 // For now don't try to simplify mixed Loc/NonLoc expressions 1316 // because they often appear from LocAsInteger operations 1317 // and we don't know how to combine a LocAsInteger 1318 // with a concrete value. 1319 if (Loc::isLocType(S->getLHS()->getType()) != 1320 Loc::isLocType(S->getRHS()->getType())) 1321 return skip(S); 1322 1323 SVal LHS = Visit(S->getLHS()); 1324 SVal RHS = Visit(S->getRHS()); 1325 if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS)) 1326 return skip(S); 1327 1328 return cache( 1329 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1330 } 1331 1332 SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); } 1333 1334 SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); } 1335 1336 SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { 1337 // Simplification is much more costly than computing complexity. 1338 // For high complexity, it may be not worth it. 1339 return Visit(V.getSymbol()); 1340 } 1341 1342 SVal VisitSVal(SVal V) { return V; } 1343 }; 1344 1345 // A crude way of preventing this function from calling itself from evalBinOp. 1346 static bool isReentering = false; 1347 if (isReentering) 1348 return V; 1349 1350 isReentering = true; 1351 SVal SimplifiedV = Simplifier(State).Visit(V); 1352 isReentering = false; 1353 1354 return SimplifiedV; 1355 } 1356