1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/ComparisonCategories.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/AST/TypeLoc.h" 26 #include "clang/AST/TypeOrdering.h" 27 #include "clang/Basic/AttributeCommonInfo.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/LiteralSupport.h" 31 #include "clang/Lex/Preprocessor.h" 32 #include "clang/Sema/CXXFieldCollector.h" 33 #include "clang/Sema/DeclSpec.h" 34 #include "clang/Sema/Initialization.h" 35 #include "clang/Sema/Lookup.h" 36 #include "clang/Sema/ParsedTemplate.h" 37 #include "clang/Sema/Scope.h" 38 #include "clang/Sema/ScopeInfo.h" 39 #include "clang/Sema/SemaInternal.h" 40 #include "clang/Sema/Template.h" 41 #include "llvm/ADT/ScopeExit.h" 42 #include "llvm/ADT/SmallString.h" 43 #include "llvm/ADT/STLExtras.h" 44 #include "llvm/ADT/StringExtras.h" 45 #include <map> 46 #include <set> 47 48 using namespace clang; 49 50 //===----------------------------------------------------------------------===// 51 // CheckDefaultArgumentVisitor 52 //===----------------------------------------------------------------------===// 53 54 namespace { 55 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 56 /// the default argument of a parameter to determine whether it 57 /// contains any ill-formed subexpressions. For example, this will 58 /// diagnose the use of local variables or parameters within the 59 /// default argument expression. 60 class CheckDefaultArgumentVisitor 61 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { 62 Sema &S; 63 const Expr *DefaultArg; 64 65 public: 66 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) 67 : S(S), DefaultArg(DefaultArg) {} 68 69 bool VisitExpr(const Expr *Node); 70 bool VisitDeclRefExpr(const DeclRefExpr *DRE); 71 bool VisitCXXThisExpr(const CXXThisExpr *ThisE); 72 bool VisitLambdaExpr(const LambdaExpr *Lambda); 73 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); 74 }; 75 76 /// VisitExpr - Visit all of the children of this expression. 77 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { 78 bool IsInvalid = false; 79 for (const Stmt *SubStmt : Node->children()) 80 IsInvalid |= Visit(SubStmt); 81 return IsInvalid; 82 } 83 84 /// VisitDeclRefExpr - Visit a reference to a declaration, to 85 /// determine whether this declaration can be used in the default 86 /// argument expression. 87 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { 88 const NamedDecl *Decl = DRE->getDecl(); 89 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) { 90 // C++ [dcl.fct.default]p9: 91 // [...] parameters of a function shall not be used in default 92 // argument expressions, even if they are not evaluated. [...] 93 // 94 // C++17 [dcl.fct.default]p9 (by CWG 2082): 95 // [...] A parameter shall not appear as a potentially-evaluated 96 // expression in a default argument. [...] 97 // 98 if (DRE->isNonOdrUse() != NOUR_Unevaluated) 99 return S.Diag(DRE->getBeginLoc(), 100 diag::err_param_default_argument_references_param) 101 << Param->getDeclName() << DefaultArg->getSourceRange(); 102 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) { 103 // C++ [dcl.fct.default]p7: 104 // Local variables shall not be used in default argument 105 // expressions. 106 // 107 // C++17 [dcl.fct.default]p7 (by CWG 2082): 108 // A local variable shall not appear as a potentially-evaluated 109 // expression in a default argument. 110 // 111 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): 112 // Note: A local variable cannot be odr-used (6.3) in a default argument. 113 // 114 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse()) 115 return S.Diag(DRE->getBeginLoc(), 116 diag::err_param_default_argument_references_local) 117 << VDecl->getDeclName() << DefaultArg->getSourceRange(); 118 } 119 120 return false; 121 } 122 123 /// VisitCXXThisExpr - Visit a C++ "this" expression. 124 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { 125 // C++ [dcl.fct.default]p8: 126 // The keyword this shall not be used in a default argument of a 127 // member function. 128 return S.Diag(ThisE->getBeginLoc(), 129 diag::err_param_default_argument_references_this) 130 << ThisE->getSourceRange(); 131 } 132 133 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( 134 const PseudoObjectExpr *POE) { 135 bool Invalid = false; 136 for (const Expr *E : POE->semantics()) { 137 // Look through bindings. 138 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 139 E = OVE->getSourceExpr(); 140 assert(E && "pseudo-object binding without source expression?"); 141 } 142 143 Invalid |= Visit(E); 144 } 145 return Invalid; 146 } 147 148 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { 149 // C++11 [expr.lambda.prim]p13: 150 // A lambda-expression appearing in a default argument shall not 151 // implicitly or explicitly capture any entity. 152 if (Lambda->capture_begin() == Lambda->capture_end()) 153 return false; 154 155 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg); 156 } 157 } // namespace 158 159 void 160 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 161 const CXXMethodDecl *Method) { 162 // If we have an MSAny spec already, don't bother. 163 if (!Method || ComputedEST == EST_MSAny) 164 return; 165 166 const FunctionProtoType *Proto 167 = Method->getType()->getAs<FunctionProtoType>(); 168 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 169 if (!Proto) 170 return; 171 172 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 173 174 // If we have a throw-all spec at this point, ignore the function. 175 if (ComputedEST == EST_None) 176 return; 177 178 if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) 179 EST = EST_BasicNoexcept; 180 181 switch (EST) { 182 case EST_Unparsed: 183 case EST_Uninstantiated: 184 case EST_Unevaluated: 185 llvm_unreachable("should not see unresolved exception specs here"); 186 187 // If this function can throw any exceptions, make a note of that. 188 case EST_MSAny: 189 case EST_None: 190 // FIXME: Whichever we see last of MSAny and None determines our result. 191 // We should make a consistent, order-independent choice here. 192 ClearExceptions(); 193 ComputedEST = EST; 194 return; 195 case EST_NoexceptFalse: 196 ClearExceptions(); 197 ComputedEST = EST_None; 198 return; 199 // FIXME: If the call to this decl is using any of its default arguments, we 200 // need to search them for potentially-throwing calls. 201 // If this function has a basic noexcept, it doesn't affect the outcome. 202 case EST_BasicNoexcept: 203 case EST_NoexceptTrue: 204 case EST_NoThrow: 205 return; 206 // If we're still at noexcept(true) and there's a throw() callee, 207 // change to that specification. 208 case EST_DynamicNone: 209 if (ComputedEST == EST_BasicNoexcept) 210 ComputedEST = EST_DynamicNone; 211 return; 212 case EST_DependentNoexcept: 213 llvm_unreachable( 214 "should not generate implicit declarations for dependent cases"); 215 case EST_Dynamic: 216 break; 217 } 218 assert(EST == EST_Dynamic && "EST case not considered earlier."); 219 assert(ComputedEST != EST_None && 220 "Shouldn't collect exceptions when throw-all is guaranteed."); 221 ComputedEST = EST_Dynamic; 222 // Record the exceptions in this function's exception specification. 223 for (const auto &E : Proto->exceptions()) 224 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 225 Exceptions.push_back(E); 226 } 227 228 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { 229 if (!S || ComputedEST == EST_MSAny) 230 return; 231 232 // FIXME: 233 // 234 // C++0x [except.spec]p14: 235 // [An] implicit exception-specification specifies the type-id T if and 236 // only if T is allowed by the exception-specification of a function directly 237 // invoked by f's implicit definition; f shall allow all exceptions if any 238 // function it directly invokes allows all exceptions, and f shall allow no 239 // exceptions if every function it directly invokes allows no exceptions. 240 // 241 // Note in particular that if an implicit exception-specification is generated 242 // for a function containing a throw-expression, that specification can still 243 // be noexcept(true). 244 // 245 // Note also that 'directly invoked' is not defined in the standard, and there 246 // is no indication that we should only consider potentially-evaluated calls. 247 // 248 // Ultimately we should implement the intent of the standard: the exception 249 // specification should be the set of exceptions which can be thrown by the 250 // implicit definition. For now, we assume that any non-nothrow expression can 251 // throw any exception. 252 253 if (Self->canThrow(S)) 254 ComputedEST = EST_None; 255 } 256 257 ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 258 SourceLocation EqualLoc) { 259 if (RequireCompleteType(Param->getLocation(), Param->getType(), 260 diag::err_typecheck_decl_incomplete_type)) 261 return true; 262 263 // C++ [dcl.fct.default]p5 264 // A default argument expression is implicitly converted (clause 265 // 4) to the parameter type. The default argument expression has 266 // the same semantic constraints as the initializer expression in 267 // a declaration of a variable of the parameter type, using the 268 // copy-initialization semantics (8.5). 269 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 270 Param); 271 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 272 EqualLoc); 273 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 274 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 275 if (Result.isInvalid()) 276 return true; 277 Arg = Result.getAs<Expr>(); 278 279 CheckCompletedExpr(Arg, EqualLoc); 280 Arg = MaybeCreateExprWithCleanups(Arg); 281 282 return Arg; 283 } 284 285 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 286 SourceLocation EqualLoc) { 287 // Add the default argument to the parameter 288 Param->setDefaultArg(Arg); 289 290 // We have already instantiated this parameter; provide each of the 291 // instantiations with the uninstantiated default argument. 292 UnparsedDefaultArgInstantiationsMap::iterator InstPos 293 = UnparsedDefaultArgInstantiations.find(Param); 294 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 295 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 296 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 297 298 // We're done tracking this parameter's instantiations. 299 UnparsedDefaultArgInstantiations.erase(InstPos); 300 } 301 } 302 303 /// ActOnParamDefaultArgument - Check whether the default argument 304 /// provided for a function parameter is well-formed. If so, attach it 305 /// to the parameter declaration. 306 void 307 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 308 Expr *DefaultArg) { 309 if (!param || !DefaultArg) 310 return; 311 312 ParmVarDecl *Param = cast<ParmVarDecl>(param); 313 UnparsedDefaultArgLocs.erase(Param); 314 315 auto Fail = [&] { 316 Param->setInvalidDecl(); 317 Param->setDefaultArg(new (Context) OpaqueValueExpr( 318 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); 319 }; 320 321 // Default arguments are only permitted in C++ 322 if (!getLangOpts().CPlusPlus) { 323 Diag(EqualLoc, diag::err_param_default_argument) 324 << DefaultArg->getSourceRange(); 325 return Fail(); 326 } 327 328 // Check for unexpanded parameter packs. 329 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { 330 return Fail(); 331 } 332 333 // C++11 [dcl.fct.default]p3 334 // A default argument expression [...] shall not be specified for a 335 // parameter pack. 336 if (Param->isParameterPack()) { 337 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) 338 << DefaultArg->getSourceRange(); 339 // Recover by discarding the default argument. 340 Param->setDefaultArg(nullptr); 341 return; 342 } 343 344 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); 345 if (Result.isInvalid()) 346 return Fail(); 347 348 DefaultArg = Result.getAs<Expr>(); 349 350 // Check that the default argument is well-formed 351 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); 352 if (DefaultArgChecker.Visit(DefaultArg)) 353 return Fail(); 354 355 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 356 } 357 358 /// ActOnParamUnparsedDefaultArgument - We've seen a default 359 /// argument for a function parameter, but we can't parse it yet 360 /// because we're inside a class definition. Note that this default 361 /// argument will be parsed later. 362 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 363 SourceLocation EqualLoc, 364 SourceLocation ArgLoc) { 365 if (!param) 366 return; 367 368 ParmVarDecl *Param = cast<ParmVarDecl>(param); 369 Param->setUnparsedDefaultArg(); 370 UnparsedDefaultArgLocs[Param] = ArgLoc; 371 } 372 373 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of 374 /// the default argument for the parameter param failed. 375 void Sema::ActOnParamDefaultArgumentError(Decl *param, 376 SourceLocation EqualLoc) { 377 if (!param) 378 return; 379 380 ParmVarDecl *Param = cast<ParmVarDecl>(param); 381 Param->setInvalidDecl(); 382 UnparsedDefaultArgLocs.erase(Param); 383 Param->setDefaultArg(new (Context) OpaqueValueExpr( 384 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); 385 } 386 387 /// CheckExtraCXXDefaultArguments - Check for any extra default 388 /// arguments in the declarator, which is not a function declaration 389 /// or definition and therefore is not permitted to have default 390 /// arguments. This routine should be invoked for every declarator 391 /// that is not a function declaration or definition. 392 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 393 // C++ [dcl.fct.default]p3 394 // A default argument expression shall be specified only in the 395 // parameter-declaration-clause of a function declaration or in a 396 // template-parameter (14.1). It shall not be specified for a 397 // parameter pack. If it is specified in a 398 // parameter-declaration-clause, it shall not occur within a 399 // declarator or abstract-declarator of a parameter-declaration. 400 bool MightBeFunction = D.isFunctionDeclarationContext(); 401 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 402 DeclaratorChunk &chunk = D.getTypeObject(i); 403 if (chunk.Kind == DeclaratorChunk::Function) { 404 if (MightBeFunction) { 405 // This is a function declaration. It can have default arguments, but 406 // keep looking in case its return type is a function type with default 407 // arguments. 408 MightBeFunction = false; 409 continue; 410 } 411 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 412 ++argIdx) { 413 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 414 if (Param->hasUnparsedDefaultArg()) { 415 std::unique_ptr<CachedTokens> Toks = 416 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); 417 SourceRange SR; 418 if (Toks->size() > 1) 419 SR = SourceRange((*Toks)[1].getLocation(), 420 Toks->back().getLocation()); 421 else 422 SR = UnparsedDefaultArgLocs[Param]; 423 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 424 << SR; 425 } else if (Param->getDefaultArg()) { 426 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 427 << Param->getDefaultArg()->getSourceRange(); 428 Param->setDefaultArg(nullptr); 429 } 430 } 431 } else if (chunk.Kind != DeclaratorChunk::Paren) { 432 MightBeFunction = false; 433 } 434 } 435 } 436 437 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 438 return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) { 439 return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); 440 }); 441 } 442 443 /// MergeCXXFunctionDecl - Merge two declarations of the same C++ 444 /// function, once we already know that they have the same 445 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an 446 /// error, false otherwise. 447 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 448 Scope *S) { 449 bool Invalid = false; 450 451 // The declaration context corresponding to the scope is the semantic 452 // parent, unless this is a local function declaration, in which case 453 // it is that surrounding function. 454 DeclContext *ScopeDC = New->isLocalExternDecl() 455 ? New->getLexicalDeclContext() 456 : New->getDeclContext(); 457 458 // Find the previous declaration for the purpose of default arguments. 459 FunctionDecl *PrevForDefaultArgs = Old; 460 for (/**/; PrevForDefaultArgs; 461 // Don't bother looking back past the latest decl if this is a local 462 // extern declaration; nothing else could work. 463 PrevForDefaultArgs = New->isLocalExternDecl() 464 ? nullptr 465 : PrevForDefaultArgs->getPreviousDecl()) { 466 // Ignore hidden declarations. 467 if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) 468 continue; 469 470 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && 471 !New->isCXXClassMember()) { 472 // Ignore default arguments of old decl if they are not in 473 // the same scope and this is not an out-of-line definition of 474 // a member function. 475 continue; 476 } 477 478 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { 479 // If only one of these is a local function declaration, then they are 480 // declared in different scopes, even though isDeclInScope may think 481 // they're in the same scope. (If both are local, the scope check is 482 // sufficient, and if neither is local, then they are in the same scope.) 483 continue; 484 } 485 486 // We found the right previous declaration. 487 break; 488 } 489 490 // C++ [dcl.fct.default]p4: 491 // For non-template functions, default arguments can be added in 492 // later declarations of a function in the same 493 // scope. Declarations in different scopes have completely 494 // distinct sets of default arguments. That is, declarations in 495 // inner scopes do not acquire default arguments from 496 // declarations in outer scopes, and vice versa. In a given 497 // function declaration, all parameters subsequent to a 498 // parameter with a default argument shall have default 499 // arguments supplied in this or previous declarations. A 500 // default argument shall not be redefined by a later 501 // declaration (not even to the same value). 502 // 503 // C++ [dcl.fct.default]p6: 504 // Except for member functions of class templates, the default arguments 505 // in a member function definition that appears outside of the class 506 // definition are added to the set of default arguments provided by the 507 // member function declaration in the class definition. 508 for (unsigned p = 0, NumParams = PrevForDefaultArgs 509 ? PrevForDefaultArgs->getNumParams() 510 : 0; 511 p < NumParams; ++p) { 512 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 513 ParmVarDecl *NewParam = New->getParamDecl(p); 514 515 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 516 bool NewParamHasDfl = NewParam->hasDefaultArg(); 517 518 if (OldParamHasDfl && NewParamHasDfl) { 519 unsigned DiagDefaultParamID = 520 diag::err_param_default_argument_redefinition; 521 522 // MSVC accepts that default parameters be redefined for member functions 523 // of template class. The new default parameter's value is ignored. 524 Invalid = true; 525 if (getLangOpts().MicrosoftExt) { 526 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 527 if (MD && MD->getParent()->getDescribedClassTemplate()) { 528 // Merge the old default argument into the new parameter. 529 NewParam->setHasInheritedDefaultArg(); 530 if (OldParam->hasUninstantiatedDefaultArg()) 531 NewParam->setUninstantiatedDefaultArg( 532 OldParam->getUninstantiatedDefaultArg()); 533 else 534 NewParam->setDefaultArg(OldParam->getInit()); 535 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 536 Invalid = false; 537 } 538 } 539 540 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 541 // hint here. Alternatively, we could walk the type-source information 542 // for NewParam to find the last source location in the type... but it 543 // isn't worth the effort right now. This is the kind of test case that 544 // is hard to get right: 545 // int f(int); 546 // void g(int (*fp)(int) = f); 547 // void g(int (*fp)(int) = &f); 548 Diag(NewParam->getLocation(), DiagDefaultParamID) 549 << NewParam->getDefaultArgRange(); 550 551 // Look for the function declaration where the default argument was 552 // actually written, which may be a declaration prior to Old. 553 for (auto Older = PrevForDefaultArgs; 554 OldParam->hasInheritedDefaultArg(); /**/) { 555 Older = Older->getPreviousDecl(); 556 OldParam = Older->getParamDecl(p); 557 } 558 559 Diag(OldParam->getLocation(), diag::note_previous_definition) 560 << OldParam->getDefaultArgRange(); 561 } else if (OldParamHasDfl) { 562 // Merge the old default argument into the new parameter unless the new 563 // function is a friend declaration in a template class. In the latter 564 // case the default arguments will be inherited when the friend 565 // declaration will be instantiated. 566 if (New->getFriendObjectKind() == Decl::FOK_None || 567 !New->getLexicalDeclContext()->isDependentContext()) { 568 // It's important to use getInit() here; getDefaultArg() 569 // strips off any top-level ExprWithCleanups. 570 NewParam->setHasInheritedDefaultArg(); 571 if (OldParam->hasUnparsedDefaultArg()) 572 NewParam->setUnparsedDefaultArg(); 573 else if (OldParam->hasUninstantiatedDefaultArg()) 574 NewParam->setUninstantiatedDefaultArg( 575 OldParam->getUninstantiatedDefaultArg()); 576 else 577 NewParam->setDefaultArg(OldParam->getInit()); 578 } 579 } else if (NewParamHasDfl) { 580 if (New->getDescribedFunctionTemplate()) { 581 // Paragraph 4, quoted above, only applies to non-template functions. 582 Diag(NewParam->getLocation(), 583 diag::err_param_default_argument_template_redecl) 584 << NewParam->getDefaultArgRange(); 585 Diag(PrevForDefaultArgs->getLocation(), 586 diag::note_template_prev_declaration) 587 << false; 588 } else if (New->getTemplateSpecializationKind() 589 != TSK_ImplicitInstantiation && 590 New->getTemplateSpecializationKind() != TSK_Undeclared) { 591 // C++ [temp.expr.spec]p21: 592 // Default function arguments shall not be specified in a declaration 593 // or a definition for one of the following explicit specializations: 594 // - the explicit specialization of a function template; 595 // - the explicit specialization of a member function template; 596 // - the explicit specialization of a member function of a class 597 // template where the class template specialization to which the 598 // member function specialization belongs is implicitly 599 // instantiated. 600 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 601 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 602 << New->getDeclName() 603 << NewParam->getDefaultArgRange(); 604 } else if (New->getDeclContext()->isDependentContext()) { 605 // C++ [dcl.fct.default]p6 (DR217): 606 // Default arguments for a member function of a class template shall 607 // be specified on the initial declaration of the member function 608 // within the class template. 609 // 610 // Reading the tea leaves a bit in DR217 and its reference to DR205 611 // leads me to the conclusion that one cannot add default function 612 // arguments for an out-of-line definition of a member function of a 613 // dependent type. 614 int WhichKind = 2; 615 if (CXXRecordDecl *Record 616 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 617 if (Record->getDescribedClassTemplate()) 618 WhichKind = 0; 619 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 620 WhichKind = 1; 621 else 622 WhichKind = 2; 623 } 624 625 Diag(NewParam->getLocation(), 626 diag::err_param_default_argument_member_template_redecl) 627 << WhichKind 628 << NewParam->getDefaultArgRange(); 629 } 630 } 631 } 632 633 // DR1344: If a default argument is added outside a class definition and that 634 // default argument makes the function a special member function, the program 635 // is ill-formed. This can only happen for constructors. 636 if (isa<CXXConstructorDecl>(New) && 637 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 638 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 639 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 640 if (NewSM != OldSM) { 641 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 642 assert(NewParam->hasDefaultArg()); 643 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 644 << NewParam->getDefaultArgRange() << NewSM; 645 Diag(Old->getLocation(), diag::note_previous_declaration); 646 } 647 } 648 649 const FunctionDecl *Def; 650 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 651 // template has a constexpr specifier then all its declarations shall 652 // contain the constexpr specifier. 653 if (New->getConstexprKind() != Old->getConstexprKind()) { 654 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 655 << New << static_cast<int>(New->getConstexprKind()) 656 << static_cast<int>(Old->getConstexprKind()); 657 Diag(Old->getLocation(), diag::note_previous_declaration); 658 Invalid = true; 659 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 660 Old->isDefined(Def) && 661 // If a friend function is inlined but does not have 'inline' 662 // specifier, it is a definition. Do not report attribute conflict 663 // in this case, redefinition will be diagnosed later. 664 (New->isInlineSpecified() || 665 New->getFriendObjectKind() == Decl::FOK_None)) { 666 // C++11 [dcl.fcn.spec]p4: 667 // If the definition of a function appears in a translation unit before its 668 // first declaration as inline, the program is ill-formed. 669 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 670 Diag(Def->getLocation(), diag::note_previous_definition); 671 Invalid = true; 672 } 673 674 // C++17 [temp.deduct.guide]p3: 675 // Two deduction guide declarations in the same translation unit 676 // for the same class template shall not have equivalent 677 // parameter-declaration-clauses. 678 if (isa<CXXDeductionGuideDecl>(New) && 679 !New->isFunctionTemplateSpecialization() && isVisible(Old)) { 680 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 681 Diag(Old->getLocation(), diag::note_previous_declaration); 682 } 683 684 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 685 // argument expression, that declaration shall be a definition and shall be 686 // the only declaration of the function or function template in the 687 // translation unit. 688 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 689 functionDeclHasDefaultArgument(Old)) { 690 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 691 Diag(Old->getLocation(), diag::note_previous_declaration); 692 Invalid = true; 693 } 694 695 // C++11 [temp.friend]p4 (DR329): 696 // When a function is defined in a friend function declaration in a class 697 // template, the function is instantiated when the function is odr-used. 698 // The same restrictions on multiple declarations and definitions that 699 // apply to non-template function declarations and definitions also apply 700 // to these implicit definitions. 701 const FunctionDecl *OldDefinition = nullptr; 702 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && 703 Old->isDefined(OldDefinition, true)) 704 CheckForFunctionRedefinition(New, OldDefinition); 705 706 return Invalid; 707 } 708 709 NamedDecl * 710 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 711 MultiTemplateParamsArg TemplateParamLists) { 712 assert(D.isDecompositionDeclarator()); 713 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 714 715 // The syntax only allows a decomposition declarator as a simple-declaration, 716 // a for-range-declaration, or a condition in Clang, but we parse it in more 717 // cases than that. 718 if (!D.mayHaveDecompositionDeclarator()) { 719 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 720 << Decomp.getSourceRange(); 721 return nullptr; 722 } 723 724 if (!TemplateParamLists.empty()) { 725 // FIXME: There's no rule against this, but there are also no rules that 726 // would actually make it usable, so we reject it for now. 727 Diag(TemplateParamLists.front()->getTemplateLoc(), 728 diag::err_decomp_decl_template); 729 return nullptr; 730 } 731 732 Diag(Decomp.getLSquareLoc(), 733 !getLangOpts().CPlusPlus17 734 ? diag::ext_decomp_decl 735 : D.getContext() == DeclaratorContext::Condition 736 ? diag::ext_decomp_decl_cond 737 : diag::warn_cxx14_compat_decomp_decl) 738 << Decomp.getSourceRange(); 739 740 // The semantic context is always just the current context. 741 DeclContext *const DC = CurContext; 742 743 // C++17 [dcl.dcl]/8: 744 // The decl-specifier-seq shall contain only the type-specifier auto 745 // and cv-qualifiers. 746 // C++2a [dcl.dcl]/8: 747 // If decl-specifier-seq contains any decl-specifier other than static, 748 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 749 auto &DS = D.getDeclSpec(); 750 { 751 SmallVector<StringRef, 8> BadSpecifiers; 752 SmallVector<SourceLocation, 8> BadSpecifierLocs; 753 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 754 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 755 if (auto SCS = DS.getStorageClassSpec()) { 756 if (SCS == DeclSpec::SCS_static) { 757 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 758 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 759 } else { 760 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 761 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 762 } 763 } 764 if (auto TSCS = DS.getThreadStorageClassSpec()) { 765 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 766 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 767 } 768 if (DS.hasConstexprSpecifier()) { 769 BadSpecifiers.push_back( 770 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 771 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 772 } 773 if (DS.isInlineSpecified()) { 774 BadSpecifiers.push_back("inline"); 775 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 776 } 777 if (!BadSpecifiers.empty()) { 778 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 779 Err << (int)BadSpecifiers.size() 780 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 781 // Don't add FixItHints to remove the specifiers; we do still respect 782 // them when building the underlying variable. 783 for (auto Loc : BadSpecifierLocs) 784 Err << SourceRange(Loc, Loc); 785 } else if (!CPlusPlus20Specifiers.empty()) { 786 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 787 getLangOpts().CPlusPlus20 788 ? diag::warn_cxx17_compat_decomp_decl_spec 789 : diag::ext_decomp_decl_spec); 790 Warn << (int)CPlusPlus20Specifiers.size() 791 << llvm::join(CPlusPlus20Specifiers.begin(), 792 CPlusPlus20Specifiers.end(), " "); 793 for (auto Loc : CPlusPlus20SpecifierLocs) 794 Warn << SourceRange(Loc, Loc); 795 } 796 // We can't recover from it being declared as a typedef. 797 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 798 return nullptr; 799 } 800 801 // C++2a [dcl.struct.bind]p1: 802 // A cv that includes volatile is deprecated 803 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 804 getLangOpts().CPlusPlus20) 805 Diag(DS.getVolatileSpecLoc(), 806 diag::warn_deprecated_volatile_structured_binding); 807 808 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 809 QualType R = TInfo->getType(); 810 811 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 812 UPPC_DeclarationType)) 813 D.setInvalidType(); 814 815 // The syntax only allows a single ref-qualifier prior to the decomposition 816 // declarator. No other declarator chunks are permitted. Also check the type 817 // specifier here. 818 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 819 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 820 (D.getNumTypeObjects() == 1 && 821 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 822 Diag(Decomp.getLSquareLoc(), 823 (D.hasGroupingParens() || 824 (D.getNumTypeObjects() && 825 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 826 ? diag::err_decomp_decl_parens 827 : diag::err_decomp_decl_type) 828 << R; 829 830 // In most cases, there's no actual problem with an explicitly-specified 831 // type, but a function type won't work here, and ActOnVariableDeclarator 832 // shouldn't be called for such a type. 833 if (R->isFunctionType()) 834 D.setInvalidType(); 835 } 836 837 // Build the BindingDecls. 838 SmallVector<BindingDecl*, 8> Bindings; 839 840 // Build the BindingDecls. 841 for (auto &B : D.getDecompositionDeclarator().bindings()) { 842 // Check for name conflicts. 843 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 844 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 845 ForVisibleRedeclaration); 846 LookupName(Previous, S, 847 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 848 849 // It's not permitted to shadow a template parameter name. 850 if (Previous.isSingleResult() && 851 Previous.getFoundDecl()->isTemplateParameter()) { 852 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 853 Previous.getFoundDecl()); 854 Previous.clear(); 855 } 856 857 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); 858 859 // Find the shadowed declaration before filtering for scope. 860 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 861 ? getShadowedDeclaration(BD, Previous) 862 : nullptr; 863 864 bool ConsiderLinkage = DC->isFunctionOrMethod() && 865 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 866 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 867 /*AllowInlineNamespace*/false); 868 869 if (!Previous.empty()) { 870 auto *Old = Previous.getRepresentativeDecl(); 871 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 872 Diag(Old->getLocation(), diag::note_previous_definition); 873 } else if (ShadowedDecl && !D.isRedeclaration()) { 874 CheckShadow(BD, ShadowedDecl, Previous); 875 } 876 PushOnScopeChains(BD, S, true); 877 Bindings.push_back(BD); 878 ParsingInitForAutoVars.insert(BD); 879 } 880 881 // There are no prior lookup results for the variable itself, because it 882 // is unnamed. 883 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 884 Decomp.getLSquareLoc()); 885 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 886 ForVisibleRedeclaration); 887 888 // Build the variable that holds the non-decomposed object. 889 bool AddToScope = true; 890 NamedDecl *New = 891 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 892 MultiTemplateParamsArg(), AddToScope, Bindings); 893 if (AddToScope) { 894 S->AddDecl(New); 895 CurContext->addHiddenDecl(New); 896 } 897 898 if (isInOpenMPDeclareTargetContext()) 899 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 900 901 return New; 902 } 903 904 static bool checkSimpleDecomposition( 905 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 906 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 907 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 908 if ((int64_t)Bindings.size() != NumElems) { 909 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 910 << DecompType << (unsigned)Bindings.size() 911 << (unsigned)NumElems.getLimitedValue(UINT_MAX) 912 << toString(NumElems, 10) << (NumElems < Bindings.size()); 913 return true; 914 } 915 916 unsigned I = 0; 917 for (auto *B : Bindings) { 918 SourceLocation Loc = B->getLocation(); 919 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 920 if (E.isInvalid()) 921 return true; 922 E = GetInit(Loc, E.get(), I++); 923 if (E.isInvalid()) 924 return true; 925 B->setBinding(ElemType, E.get()); 926 } 927 928 return false; 929 } 930 931 static bool checkArrayLikeDecomposition(Sema &S, 932 ArrayRef<BindingDecl *> Bindings, 933 ValueDecl *Src, QualType DecompType, 934 const llvm::APSInt &NumElems, 935 QualType ElemType) { 936 return checkSimpleDecomposition( 937 S, Bindings, Src, DecompType, NumElems, ElemType, 938 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 939 ExprResult E = S.ActOnIntegerConstant(Loc, I); 940 if (E.isInvalid()) 941 return ExprError(); 942 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 943 }); 944 } 945 946 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 947 ValueDecl *Src, QualType DecompType, 948 const ConstantArrayType *CAT) { 949 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 950 llvm::APSInt(CAT->getSize()), 951 CAT->getElementType()); 952 } 953 954 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 955 ValueDecl *Src, QualType DecompType, 956 const VectorType *VT) { 957 return checkArrayLikeDecomposition( 958 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 959 S.Context.getQualifiedType(VT->getElementType(), 960 DecompType.getQualifiers())); 961 } 962 963 static bool checkComplexDecomposition(Sema &S, 964 ArrayRef<BindingDecl *> Bindings, 965 ValueDecl *Src, QualType DecompType, 966 const ComplexType *CT) { 967 return checkSimpleDecomposition( 968 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 969 S.Context.getQualifiedType(CT->getElementType(), 970 DecompType.getQualifiers()), 971 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 972 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 973 }); 974 } 975 976 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 977 TemplateArgumentListInfo &Args, 978 const TemplateParameterList *Params) { 979 SmallString<128> SS; 980 llvm::raw_svector_ostream OS(SS); 981 bool First = true; 982 unsigned I = 0; 983 for (auto &Arg : Args.arguments()) { 984 if (!First) 985 OS << ", "; 986 Arg.getArgument().print( 987 PrintingPolicy, OS, 988 TemplateParameterList::shouldIncludeTypeForArgument(Params, I)); 989 First = false; 990 I++; 991 } 992 return std::string(OS.str()); 993 } 994 995 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 996 SourceLocation Loc, StringRef Trait, 997 TemplateArgumentListInfo &Args, 998 unsigned DiagID) { 999 auto DiagnoseMissing = [&] { 1000 if (DiagID) 1001 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 1002 Args, /*Params*/ nullptr); 1003 return true; 1004 }; 1005 1006 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 1007 NamespaceDecl *Std = S.getStdNamespace(); 1008 if (!Std) 1009 return DiagnoseMissing(); 1010 1011 // Look up the trait itself, within namespace std. We can diagnose various 1012 // problems with this lookup even if we've been asked to not diagnose a 1013 // missing specialization, because this can only fail if the user has been 1014 // declaring their own names in namespace std or we don't support the 1015 // standard library implementation in use. 1016 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 1017 Loc, Sema::LookupOrdinaryName); 1018 if (!S.LookupQualifiedName(Result, Std)) 1019 return DiagnoseMissing(); 1020 if (Result.isAmbiguous()) 1021 return true; 1022 1023 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 1024 if (!TraitTD) { 1025 Result.suppressDiagnostics(); 1026 NamedDecl *Found = *Result.begin(); 1027 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 1028 S.Diag(Found->getLocation(), diag::note_declared_at); 1029 return true; 1030 } 1031 1032 // Build the template-id. 1033 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 1034 if (TraitTy.isNull()) 1035 return true; 1036 if (!S.isCompleteType(Loc, TraitTy)) { 1037 if (DiagID) 1038 S.RequireCompleteType( 1039 Loc, TraitTy, DiagID, 1040 printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1041 TraitTD->getTemplateParameters())); 1042 return true; 1043 } 1044 1045 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1046 assert(RD && "specialization of class template is not a class?"); 1047 1048 // Look up the member of the trait type. 1049 S.LookupQualifiedName(TraitMemberLookup, RD); 1050 return TraitMemberLookup.isAmbiguous(); 1051 } 1052 1053 static TemplateArgumentLoc 1054 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1055 uint64_t I) { 1056 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1057 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1058 } 1059 1060 static TemplateArgumentLoc 1061 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1062 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1063 } 1064 1065 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1066 1067 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1068 llvm::APSInt &Size) { 1069 EnterExpressionEvaluationContext ContextRAII( 1070 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1071 1072 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1073 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1074 1075 // Form template argument list for tuple_size<T>. 1076 TemplateArgumentListInfo Args(Loc, Loc); 1077 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1078 1079 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1080 // it's not tuple-like. 1081 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1082 R.empty()) 1083 return IsTupleLike::NotTupleLike; 1084 1085 // If we get this far, we've committed to the tuple interpretation, but 1086 // we can still fail if there actually isn't a usable ::value. 1087 1088 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1089 LookupResult &R; 1090 TemplateArgumentListInfo &Args; 1091 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1092 : R(R), Args(Args) {} 1093 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 1094 SourceLocation Loc) override { 1095 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1096 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1097 /*Params*/ nullptr); 1098 } 1099 } Diagnoser(R, Args); 1100 1101 ExprResult E = 1102 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1103 if (E.isInvalid()) 1104 return IsTupleLike::Error; 1105 1106 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); 1107 if (E.isInvalid()) 1108 return IsTupleLike::Error; 1109 1110 return IsTupleLike::TupleLike; 1111 } 1112 1113 /// \return std::tuple_element<I, T>::type. 1114 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1115 unsigned I, QualType T) { 1116 // Form template argument list for tuple_element<I, T>. 1117 TemplateArgumentListInfo Args(Loc, Loc); 1118 Args.addArgument( 1119 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1120 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1121 1122 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1123 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1124 if (lookupStdTypeTraitMember( 1125 S, R, Loc, "tuple_element", Args, 1126 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1127 return QualType(); 1128 1129 auto *TD = R.getAsSingle<TypeDecl>(); 1130 if (!TD) { 1131 R.suppressDiagnostics(); 1132 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1133 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1134 /*Params*/ nullptr); 1135 if (!R.empty()) 1136 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1137 return QualType(); 1138 } 1139 1140 return S.Context.getTypeDeclType(TD); 1141 } 1142 1143 namespace { 1144 struct InitializingBinding { 1145 Sema &S; 1146 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { 1147 Sema::CodeSynthesisContext Ctx; 1148 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; 1149 Ctx.PointOfInstantiation = BD->getLocation(); 1150 Ctx.Entity = BD; 1151 S.pushCodeSynthesisContext(Ctx); 1152 } 1153 ~InitializingBinding() { 1154 S.popCodeSynthesisContext(); 1155 } 1156 }; 1157 } 1158 1159 static bool checkTupleLikeDecomposition(Sema &S, 1160 ArrayRef<BindingDecl *> Bindings, 1161 VarDecl *Src, QualType DecompType, 1162 const llvm::APSInt &TupleSize) { 1163 if ((int64_t)Bindings.size() != TupleSize) { 1164 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1165 << DecompType << (unsigned)Bindings.size() 1166 << (unsigned)TupleSize.getLimitedValue(UINT_MAX) 1167 << toString(TupleSize, 10) << (TupleSize < Bindings.size()); 1168 return true; 1169 } 1170 1171 if (Bindings.empty()) 1172 return false; 1173 1174 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1175 1176 // [dcl.decomp]p3: 1177 // The unqualified-id get is looked up in the scope of E by class member 1178 // access lookup ... 1179 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1180 bool UseMemberGet = false; 1181 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1182 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1183 S.LookupQualifiedName(MemberGet, RD); 1184 if (MemberGet.isAmbiguous()) 1185 return true; 1186 // ... and if that finds at least one declaration that is a function 1187 // template whose first template parameter is a non-type parameter ... 1188 for (NamedDecl *D : MemberGet) { 1189 if (FunctionTemplateDecl *FTD = 1190 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1191 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1192 if (TPL->size() != 0 && 1193 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1194 // ... the initializer is e.get<i>(). 1195 UseMemberGet = true; 1196 break; 1197 } 1198 } 1199 } 1200 } 1201 1202 unsigned I = 0; 1203 for (auto *B : Bindings) { 1204 InitializingBinding InitContext(S, B); 1205 SourceLocation Loc = B->getLocation(); 1206 1207 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1208 if (E.isInvalid()) 1209 return true; 1210 1211 // e is an lvalue if the type of the entity is an lvalue reference and 1212 // an xvalue otherwise 1213 if (!Src->getType()->isLValueReferenceType()) 1214 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1215 E.get(), nullptr, VK_XValue, 1216 FPOptionsOverride()); 1217 1218 TemplateArgumentListInfo Args(Loc, Loc); 1219 Args.addArgument( 1220 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1221 1222 if (UseMemberGet) { 1223 // if [lookup of member get] finds at least one declaration, the 1224 // initializer is e.get<i-1>(). 1225 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1226 CXXScopeSpec(), SourceLocation(), nullptr, 1227 MemberGet, &Args, nullptr); 1228 if (E.isInvalid()) 1229 return true; 1230 1231 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); 1232 } else { 1233 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1234 // in the associated namespaces. 1235 Expr *Get = UnresolvedLookupExpr::Create( 1236 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1237 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, 1238 UnresolvedSetIterator(), UnresolvedSetIterator()); 1239 1240 Expr *Arg = E.get(); 1241 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1242 } 1243 if (E.isInvalid()) 1244 return true; 1245 Expr *Init = E.get(); 1246 1247 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1248 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1249 if (T.isNull()) 1250 return true; 1251 1252 // each vi is a variable of type "reference to T" initialized with the 1253 // initializer, where the reference is an lvalue reference if the 1254 // initializer is an lvalue and an rvalue reference otherwise 1255 QualType RefType = 1256 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1257 if (RefType.isNull()) 1258 return true; 1259 auto *RefVD = VarDecl::Create( 1260 S.Context, Src->getDeclContext(), Loc, Loc, 1261 B->getDeclName().getAsIdentifierInfo(), RefType, 1262 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1263 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1264 RefVD->setTSCSpec(Src->getTSCSpec()); 1265 RefVD->setImplicit(); 1266 if (Src->isInlineSpecified()) 1267 RefVD->setInlineSpecified(); 1268 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1269 1270 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1271 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1272 InitializationSequence Seq(S, Entity, Kind, Init); 1273 E = Seq.Perform(S, Entity, Kind, Init); 1274 if (E.isInvalid()) 1275 return true; 1276 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1277 if (E.isInvalid()) 1278 return true; 1279 RefVD->setInit(E.get()); 1280 S.CheckCompleteVariableDeclaration(RefVD); 1281 1282 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1283 DeclarationNameInfo(B->getDeclName(), Loc), 1284 RefVD); 1285 if (E.isInvalid()) 1286 return true; 1287 1288 B->setBinding(T, E.get()); 1289 I++; 1290 } 1291 1292 return false; 1293 } 1294 1295 /// Find the base class to decompose in a built-in decomposition of a class type. 1296 /// This base class search is, unfortunately, not quite like any other that we 1297 /// perform anywhere else in C++. 1298 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1299 const CXXRecordDecl *RD, 1300 CXXCastPath &BasePath) { 1301 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1302 CXXBasePath &Path) { 1303 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1304 }; 1305 1306 const CXXRecordDecl *ClassWithFields = nullptr; 1307 AccessSpecifier AS = AS_public; 1308 if (RD->hasDirectFields()) 1309 // [dcl.decomp]p4: 1310 // Otherwise, all of E's non-static data members shall be public direct 1311 // members of E ... 1312 ClassWithFields = RD; 1313 else { 1314 // ... or of ... 1315 CXXBasePaths Paths; 1316 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1317 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1318 // If no classes have fields, just decompose RD itself. (This will work 1319 // if and only if zero bindings were provided.) 1320 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1321 } 1322 1323 CXXBasePath *BestPath = nullptr; 1324 for (auto &P : Paths) { 1325 if (!BestPath) 1326 BestPath = &P; 1327 else if (!S.Context.hasSameType(P.back().Base->getType(), 1328 BestPath->back().Base->getType())) { 1329 // ... the same ... 1330 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1331 << false << RD << BestPath->back().Base->getType() 1332 << P.back().Base->getType(); 1333 return DeclAccessPair(); 1334 } else if (P.Access < BestPath->Access) { 1335 BestPath = &P; 1336 } 1337 } 1338 1339 // ... unambiguous ... 1340 QualType BaseType = BestPath->back().Base->getType(); 1341 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1342 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1343 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1344 return DeclAccessPair(); 1345 } 1346 1347 // ... [accessible, implied by other rules] base class of E. 1348 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1349 *BestPath, diag::err_decomp_decl_inaccessible_base); 1350 AS = BestPath->Access; 1351 1352 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1353 S.BuildBasePathArray(Paths, BasePath); 1354 } 1355 1356 // The above search did not check whether the selected class itself has base 1357 // classes with fields, so check that now. 1358 CXXBasePaths Paths; 1359 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1360 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1361 << (ClassWithFields == RD) << RD << ClassWithFields 1362 << Paths.front().back().Base->getType(); 1363 return DeclAccessPair(); 1364 } 1365 1366 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1367 } 1368 1369 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1370 ValueDecl *Src, QualType DecompType, 1371 const CXXRecordDecl *OrigRD) { 1372 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1373 diag::err_incomplete_type)) 1374 return true; 1375 1376 CXXCastPath BasePath; 1377 DeclAccessPair BasePair = 1378 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1379 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1380 if (!RD) 1381 return true; 1382 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1383 DecompType.getQualifiers()); 1384 1385 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1386 unsigned NumFields = 1387 std::count_if(RD->field_begin(), RD->field_end(), 1388 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); 1389 assert(Bindings.size() != NumFields); 1390 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1391 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields 1392 << (NumFields < Bindings.size()); 1393 return true; 1394 }; 1395 1396 // all of E's non-static data members shall be [...] well-formed 1397 // when named as e.name in the context of the structured binding, 1398 // E shall not have an anonymous union member, ... 1399 unsigned I = 0; 1400 for (auto *FD : RD->fields()) { 1401 if (FD->isUnnamedBitfield()) 1402 continue; 1403 1404 // All the non-static data members are required to be nameable, so they 1405 // must all have names. 1406 if (!FD->getDeclName()) { 1407 if (RD->isLambda()) { 1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); 1409 S.Diag(RD->getLocation(), diag::note_lambda_decl); 1410 return true; 1411 } 1412 1413 if (FD->isAnonymousStructOrUnion()) { 1414 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1415 << DecompType << FD->getType()->isUnionType(); 1416 S.Diag(FD->getLocation(), diag::note_declared_at); 1417 return true; 1418 } 1419 1420 // FIXME: Are there any other ways we could have an anonymous member? 1421 } 1422 1423 // We have a real field to bind. 1424 if (I >= Bindings.size()) 1425 return DiagnoseBadNumberOfBindings(); 1426 auto *B = Bindings[I++]; 1427 SourceLocation Loc = B->getLocation(); 1428 1429 // The field must be accessible in the context of the structured binding. 1430 // We already checked that the base class is accessible. 1431 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1432 // const_cast here. 1433 S.CheckStructuredBindingMemberAccess( 1434 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1435 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1436 BasePair.getAccess(), FD->getAccess()))); 1437 1438 // Initialize the binding to Src.FD. 1439 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1440 if (E.isInvalid()) 1441 return true; 1442 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1443 VK_LValue, &BasePath); 1444 if (E.isInvalid()) 1445 return true; 1446 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1447 CXXScopeSpec(), FD, 1448 DeclAccessPair::make(FD, FD->getAccess()), 1449 DeclarationNameInfo(FD->getDeclName(), Loc)); 1450 if (E.isInvalid()) 1451 return true; 1452 1453 // If the type of the member is T, the referenced type is cv T, where cv is 1454 // the cv-qualification of the decomposition expression. 1455 // 1456 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1457 // 'const' to the type of the field. 1458 Qualifiers Q = DecompType.getQualifiers(); 1459 if (FD->isMutable()) 1460 Q.removeConst(); 1461 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1462 } 1463 1464 if (I != Bindings.size()) 1465 return DiagnoseBadNumberOfBindings(); 1466 1467 return false; 1468 } 1469 1470 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1471 QualType DecompType = DD->getType(); 1472 1473 // If the type of the decomposition is dependent, then so is the type of 1474 // each binding. 1475 if (DecompType->isDependentType()) { 1476 for (auto *B : DD->bindings()) 1477 B->setType(Context.DependentTy); 1478 return; 1479 } 1480 1481 DecompType = DecompType.getNonReferenceType(); 1482 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1483 1484 // C++1z [dcl.decomp]/2: 1485 // If E is an array type [...] 1486 // As an extension, we also support decomposition of built-in complex and 1487 // vector types. 1488 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1489 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1490 DD->setInvalidDecl(); 1491 return; 1492 } 1493 if (auto *VT = DecompType->getAs<VectorType>()) { 1494 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1495 DD->setInvalidDecl(); 1496 return; 1497 } 1498 if (auto *CT = DecompType->getAs<ComplexType>()) { 1499 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1500 DD->setInvalidDecl(); 1501 return; 1502 } 1503 1504 // C++1z [dcl.decomp]/3: 1505 // if the expression std::tuple_size<E>::value is a well-formed integral 1506 // constant expression, [...] 1507 llvm::APSInt TupleSize(32); 1508 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1509 case IsTupleLike::Error: 1510 DD->setInvalidDecl(); 1511 return; 1512 1513 case IsTupleLike::TupleLike: 1514 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1515 DD->setInvalidDecl(); 1516 return; 1517 1518 case IsTupleLike::NotTupleLike: 1519 break; 1520 } 1521 1522 // C++1z [dcl.dcl]/8: 1523 // [E shall be of array or non-union class type] 1524 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1525 if (!RD || RD->isUnion()) { 1526 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1527 << DD << !RD << DecompType; 1528 DD->setInvalidDecl(); 1529 return; 1530 } 1531 1532 // C++1z [dcl.decomp]/4: 1533 // all of E's non-static data members shall be [...] direct members of 1534 // E or of the same unambiguous public base class of E, ... 1535 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1536 DD->setInvalidDecl(); 1537 } 1538 1539 /// Merge the exception specifications of two variable declarations. 1540 /// 1541 /// This is called when there's a redeclaration of a VarDecl. The function 1542 /// checks if the redeclaration might have an exception specification and 1543 /// validates compatibility and merges the specs if necessary. 1544 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1545 // Shortcut if exceptions are disabled. 1546 if (!getLangOpts().CXXExceptions) 1547 return; 1548 1549 assert(Context.hasSameType(New->getType(), Old->getType()) && 1550 "Should only be called if types are otherwise the same."); 1551 1552 QualType NewType = New->getType(); 1553 QualType OldType = Old->getType(); 1554 1555 // We're only interested in pointers and references to functions, as well 1556 // as pointers to member functions. 1557 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1558 NewType = R->getPointeeType(); 1559 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1560 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1561 NewType = P->getPointeeType(); 1562 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1563 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1564 NewType = M->getPointeeType(); 1565 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1566 } 1567 1568 if (!NewType->isFunctionProtoType()) 1569 return; 1570 1571 // There's lots of special cases for functions. For function pointers, system 1572 // libraries are hopefully not as broken so that we don't need these 1573 // workarounds. 1574 if (CheckEquivalentExceptionSpec( 1575 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1576 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1577 New->setInvalidDecl(); 1578 } 1579 } 1580 1581 /// CheckCXXDefaultArguments - Verify that the default arguments for a 1582 /// function declaration are well-formed according to C++ 1583 /// [dcl.fct.default]. 1584 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1585 unsigned NumParams = FD->getNumParams(); 1586 unsigned ParamIdx = 0; 1587 1588 // This checking doesn't make sense for explicit specializations; their 1589 // default arguments are determined by the declaration we're specializing, 1590 // not by FD. 1591 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 1592 return; 1593 if (auto *FTD = FD->getDescribedFunctionTemplate()) 1594 if (FTD->isMemberSpecialization()) 1595 return; 1596 1597 // Find first parameter with a default argument 1598 for (; ParamIdx < NumParams; ++ParamIdx) { 1599 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1600 if (Param->hasDefaultArg()) 1601 break; 1602 } 1603 1604 // C++20 [dcl.fct.default]p4: 1605 // In a given function declaration, each parameter subsequent to a parameter 1606 // with a default argument shall have a default argument supplied in this or 1607 // a previous declaration, unless the parameter was expanded from a 1608 // parameter pack, or shall be a function parameter pack. 1609 for (; ParamIdx < NumParams; ++ParamIdx) { 1610 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1611 if (!Param->hasDefaultArg() && !Param->isParameterPack() && 1612 !(CurrentInstantiationScope && 1613 CurrentInstantiationScope->isLocalPackExpansion(Param))) { 1614 if (Param->isInvalidDecl()) 1615 /* We already complained about this parameter. */; 1616 else if (Param->getIdentifier()) 1617 Diag(Param->getLocation(), 1618 diag::err_param_default_argument_missing_name) 1619 << Param->getIdentifier(); 1620 else 1621 Diag(Param->getLocation(), 1622 diag::err_param_default_argument_missing); 1623 } 1624 } 1625 } 1626 1627 /// Check that the given type is a literal type. Issue a diagnostic if not, 1628 /// if Kind is Diagnose. 1629 /// \return \c true if a problem has been found (and optionally diagnosed). 1630 template <typename... Ts> 1631 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1632 SourceLocation Loc, QualType T, unsigned DiagID, 1633 Ts &&...DiagArgs) { 1634 if (T->isDependentType()) 1635 return false; 1636 1637 switch (Kind) { 1638 case Sema::CheckConstexprKind::Diagnose: 1639 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1640 std::forward<Ts>(DiagArgs)...); 1641 1642 case Sema::CheckConstexprKind::CheckValid: 1643 return !T->isLiteralType(SemaRef.Context); 1644 } 1645 1646 llvm_unreachable("unknown CheckConstexprKind"); 1647 } 1648 1649 /// Determine whether a destructor cannot be constexpr due to 1650 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1651 const CXXDestructorDecl *DD, 1652 Sema::CheckConstexprKind Kind) { 1653 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1654 const CXXRecordDecl *RD = 1655 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1656 if (!RD || RD->hasConstexprDestructor()) 1657 return true; 1658 1659 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1660 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1661 << static_cast<int>(DD->getConstexprKind()) << !FD 1662 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1663 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1664 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1665 } 1666 return false; 1667 }; 1668 1669 const CXXRecordDecl *RD = DD->getParent(); 1670 for (const CXXBaseSpecifier &B : RD->bases()) 1671 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1672 return false; 1673 for (const FieldDecl *FD : RD->fields()) 1674 if (!Check(FD->getLocation(), FD->getType(), FD)) 1675 return false; 1676 return true; 1677 } 1678 1679 /// Check whether a function's parameter types are all literal types. If so, 1680 /// return true. If not, produce a suitable diagnostic and return false. 1681 static bool CheckConstexprParameterTypes(Sema &SemaRef, 1682 const FunctionDecl *FD, 1683 Sema::CheckConstexprKind Kind) { 1684 unsigned ArgIndex = 0; 1685 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1686 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1687 e = FT->param_type_end(); 1688 i != e; ++i, ++ArgIndex) { 1689 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1690 SourceLocation ParamLoc = PD->getLocation(); 1691 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1692 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1693 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1694 FD->isConsteval())) 1695 return false; 1696 } 1697 return true; 1698 } 1699 1700 /// Check whether a function's return type is a literal type. If so, return 1701 /// true. If not, produce a suitable diagnostic and return false. 1702 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1703 Sema::CheckConstexprKind Kind) { 1704 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1705 diag::err_constexpr_non_literal_return, 1706 FD->isConsteval())) 1707 return false; 1708 return true; 1709 } 1710 1711 /// Get diagnostic %select index for tag kind for 1712 /// record diagnostic message. 1713 /// WARNING: Indexes apply to particular diagnostics only! 1714 /// 1715 /// \returns diagnostic %select index. 1716 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1717 switch (Tag) { 1718 case TTK_Struct: return 0; 1719 case TTK_Interface: return 1; 1720 case TTK_Class: return 2; 1721 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 1722 } 1723 } 1724 1725 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1726 Stmt *Body, 1727 Sema::CheckConstexprKind Kind); 1728 1729 // Check whether a function declaration satisfies the requirements of a 1730 // constexpr function definition or a constexpr constructor definition. If so, 1731 // return true. If not, produce appropriate diagnostics (unless asked not to by 1732 // Kind) and return false. 1733 // 1734 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 1735 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1736 CheckConstexprKind Kind) { 1737 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1738 if (MD && MD->isInstance()) { 1739 // C++11 [dcl.constexpr]p4: 1740 // The definition of a constexpr constructor shall satisfy the following 1741 // constraints: 1742 // - the class shall not have any virtual base classes; 1743 // 1744 // FIXME: This only applies to constructors and destructors, not arbitrary 1745 // member functions. 1746 const CXXRecordDecl *RD = MD->getParent(); 1747 if (RD->getNumVBases()) { 1748 if (Kind == CheckConstexprKind::CheckValid) 1749 return false; 1750 1751 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1752 << isa<CXXConstructorDecl>(NewFD) 1753 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1754 for (const auto &I : RD->vbases()) 1755 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1756 << I.getSourceRange(); 1757 return false; 1758 } 1759 } 1760 1761 if (!isa<CXXConstructorDecl>(NewFD)) { 1762 // C++11 [dcl.constexpr]p3: 1763 // The definition of a constexpr function shall satisfy the following 1764 // constraints: 1765 // - it shall not be virtual; (removed in C++20) 1766 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1767 if (Method && Method->isVirtual()) { 1768 if (getLangOpts().CPlusPlus20) { 1769 if (Kind == CheckConstexprKind::Diagnose) 1770 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1771 } else { 1772 if (Kind == CheckConstexprKind::CheckValid) 1773 return false; 1774 1775 Method = Method->getCanonicalDecl(); 1776 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1777 1778 // If it's not obvious why this function is virtual, find an overridden 1779 // function which uses the 'virtual' keyword. 1780 const CXXMethodDecl *WrittenVirtual = Method; 1781 while (!WrittenVirtual->isVirtualAsWritten()) 1782 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1783 if (WrittenVirtual != Method) 1784 Diag(WrittenVirtual->getLocation(), 1785 diag::note_overridden_virtual_function); 1786 return false; 1787 } 1788 } 1789 1790 // - its return type shall be a literal type; 1791 if (!CheckConstexprReturnType(*this, NewFD, Kind)) 1792 return false; 1793 } 1794 1795 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1796 // A destructor can be constexpr only if the defaulted destructor could be; 1797 // we don't need to check the members and bases if we already know they all 1798 // have constexpr destructors. 1799 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1800 if (Kind == CheckConstexprKind::CheckValid) 1801 return false; 1802 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1803 return false; 1804 } 1805 } 1806 1807 // - each of its parameter types shall be a literal type; 1808 if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) 1809 return false; 1810 1811 Stmt *Body = NewFD->getBody(); 1812 assert(Body && 1813 "CheckConstexprFunctionDefinition called on function with no body"); 1814 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1815 } 1816 1817 /// Check the given declaration statement is legal within a constexpr function 1818 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1819 /// 1820 /// \return true if the body is OK (maybe only as an extension), false if we 1821 /// have diagnosed a problem. 1822 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1823 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1824 Sema::CheckConstexprKind Kind) { 1825 // C++11 [dcl.constexpr]p3 and p4: 1826 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1827 // contain only 1828 for (const auto *DclIt : DS->decls()) { 1829 switch (DclIt->getKind()) { 1830 case Decl::StaticAssert: 1831 case Decl::Using: 1832 case Decl::UsingShadow: 1833 case Decl::UsingDirective: 1834 case Decl::UnresolvedUsingTypename: 1835 case Decl::UnresolvedUsingValue: 1836 case Decl::UsingEnum: 1837 // - static_assert-declarations 1838 // - using-declarations, 1839 // - using-directives, 1840 // - using-enum-declaration 1841 continue; 1842 1843 case Decl::Typedef: 1844 case Decl::TypeAlias: { 1845 // - typedef declarations and alias-declarations that do not define 1846 // classes or enumerations, 1847 const auto *TN = cast<TypedefNameDecl>(DclIt); 1848 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1849 // Don't allow variably-modified types in constexpr functions. 1850 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1851 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1852 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1853 << TL.getSourceRange() << TL.getType() 1854 << isa<CXXConstructorDecl>(Dcl); 1855 } 1856 return false; 1857 } 1858 continue; 1859 } 1860 1861 case Decl::Enum: 1862 case Decl::CXXRecord: 1863 // C++1y allows types to be defined, not just declared. 1864 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1865 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1866 SemaRef.Diag(DS->getBeginLoc(), 1867 SemaRef.getLangOpts().CPlusPlus14 1868 ? diag::warn_cxx11_compat_constexpr_type_definition 1869 : diag::ext_constexpr_type_definition) 1870 << isa<CXXConstructorDecl>(Dcl); 1871 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1872 return false; 1873 } 1874 } 1875 continue; 1876 1877 case Decl::EnumConstant: 1878 case Decl::IndirectField: 1879 case Decl::ParmVar: 1880 // These can only appear with other declarations which are banned in 1881 // C++11 and permitted in C++1y, so ignore them. 1882 continue; 1883 1884 case Decl::Var: 1885 case Decl::Decomposition: { 1886 // C++1y [dcl.constexpr]p3 allows anything except: 1887 // a definition of a variable of non-literal type or of static or 1888 // thread storage duration or [before C++2a] for which no 1889 // initialization is performed. 1890 const auto *VD = cast<VarDecl>(DclIt); 1891 if (VD->isThisDeclarationADefinition()) { 1892 if (VD->isStaticLocal()) { 1893 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1894 SemaRef.Diag(VD->getLocation(), 1895 diag::err_constexpr_local_var_static) 1896 << isa<CXXConstructorDecl>(Dcl) 1897 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1898 } 1899 return false; 1900 } 1901 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1902 diag::err_constexpr_local_var_non_literal_type, 1903 isa<CXXConstructorDecl>(Dcl))) 1904 return false; 1905 if (!VD->getType()->isDependentType() && 1906 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1907 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1908 SemaRef.Diag( 1909 VD->getLocation(), 1910 SemaRef.getLangOpts().CPlusPlus20 1911 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1912 : diag::ext_constexpr_local_var_no_init) 1913 << isa<CXXConstructorDecl>(Dcl); 1914 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 1915 return false; 1916 } 1917 continue; 1918 } 1919 } 1920 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1921 SemaRef.Diag(VD->getLocation(), 1922 SemaRef.getLangOpts().CPlusPlus14 1923 ? diag::warn_cxx11_compat_constexpr_local_var 1924 : diag::ext_constexpr_local_var) 1925 << isa<CXXConstructorDecl>(Dcl); 1926 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1927 return false; 1928 } 1929 continue; 1930 } 1931 1932 case Decl::NamespaceAlias: 1933 case Decl::Function: 1934 // These are disallowed in C++11 and permitted in C++1y. Allow them 1935 // everywhere as an extension. 1936 if (!Cxx1yLoc.isValid()) 1937 Cxx1yLoc = DS->getBeginLoc(); 1938 continue; 1939 1940 default: 1941 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1942 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 1943 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 1944 } 1945 return false; 1946 } 1947 } 1948 1949 return true; 1950 } 1951 1952 /// Check that the given field is initialized within a constexpr constructor. 1953 /// 1954 /// \param Dcl The constexpr constructor being checked. 1955 /// \param Field The field being checked. This may be a member of an anonymous 1956 /// struct or union nested within the class being checked. 1957 /// \param Inits All declarations, including anonymous struct/union members and 1958 /// indirect members, for which any initialization was provided. 1959 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach 1960 /// multiple notes for different members to the same error. 1961 /// \param Kind Whether we're diagnosing a constructor as written or determining 1962 /// whether the formal requirements are satisfied. 1963 /// \return \c false if we're checking for validity and the constructor does 1964 /// not satisfy the requirements on a constexpr constructor. 1965 static bool CheckConstexprCtorInitializer(Sema &SemaRef, 1966 const FunctionDecl *Dcl, 1967 FieldDecl *Field, 1968 llvm::SmallSet<Decl*, 16> &Inits, 1969 bool &Diagnosed, 1970 Sema::CheckConstexprKind Kind) { 1971 // In C++20 onwards, there's nothing to check for validity. 1972 if (Kind == Sema::CheckConstexprKind::CheckValid && 1973 SemaRef.getLangOpts().CPlusPlus20) 1974 return true; 1975 1976 if (Field->isInvalidDecl()) 1977 return true; 1978 1979 if (Field->isUnnamedBitfield()) 1980 return true; 1981 1982 // Anonymous unions with no variant members and empty anonymous structs do not 1983 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 1984 // indirect fields don't need initializing. 1985 if (Field->isAnonymousStructOrUnion() && 1986 (Field->getType()->isUnionType() 1987 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 1988 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 1989 return true; 1990 1991 if (!Inits.count(Field)) { 1992 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1993 if (!Diagnosed) { 1994 SemaRef.Diag(Dcl->getLocation(), 1995 SemaRef.getLangOpts().CPlusPlus20 1996 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 1997 : diag::ext_constexpr_ctor_missing_init); 1998 Diagnosed = true; 1999 } 2000 SemaRef.Diag(Field->getLocation(), 2001 diag::note_constexpr_ctor_missing_init); 2002 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2003 return false; 2004 } 2005 } else if (Field->isAnonymousStructOrUnion()) { 2006 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 2007 for (auto *I : RD->fields()) 2008 // If an anonymous union contains an anonymous struct of which any member 2009 // is initialized, all members must be initialized. 2010 if (!RD->isUnion() || Inits.count(I)) 2011 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2012 Kind)) 2013 return false; 2014 } 2015 return true; 2016 } 2017 2018 /// Check the provided statement is allowed in a constexpr function 2019 /// definition. 2020 static bool 2021 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 2022 SmallVectorImpl<SourceLocation> &ReturnStmts, 2023 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 2024 Sema::CheckConstexprKind Kind) { 2025 // - its function-body shall be [...] a compound-statement that contains only 2026 switch (S->getStmtClass()) { 2027 case Stmt::NullStmtClass: 2028 // - null statements, 2029 return true; 2030 2031 case Stmt::DeclStmtClass: 2032 // - static_assert-declarations 2033 // - using-declarations, 2034 // - using-directives, 2035 // - typedef declarations and alias-declarations that do not define 2036 // classes or enumerations, 2037 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 2038 return false; 2039 return true; 2040 2041 case Stmt::ReturnStmtClass: 2042 // - and exactly one return statement; 2043 if (isa<CXXConstructorDecl>(Dcl)) { 2044 // C++1y allows return statements in constexpr constructors. 2045 if (!Cxx1yLoc.isValid()) 2046 Cxx1yLoc = S->getBeginLoc(); 2047 return true; 2048 } 2049 2050 ReturnStmts.push_back(S->getBeginLoc()); 2051 return true; 2052 2053 case Stmt::CompoundStmtClass: { 2054 // C++1y allows compound-statements. 2055 if (!Cxx1yLoc.isValid()) 2056 Cxx1yLoc = S->getBeginLoc(); 2057 2058 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2059 for (auto *BodyIt : CompStmt->body()) { 2060 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2061 Cxx1yLoc, Cxx2aLoc, Kind)) 2062 return false; 2063 } 2064 return true; 2065 } 2066 2067 case Stmt::AttributedStmtClass: 2068 if (!Cxx1yLoc.isValid()) 2069 Cxx1yLoc = S->getBeginLoc(); 2070 return true; 2071 2072 case Stmt::IfStmtClass: { 2073 // C++1y allows if-statements. 2074 if (!Cxx1yLoc.isValid()) 2075 Cxx1yLoc = S->getBeginLoc(); 2076 2077 IfStmt *If = cast<IfStmt>(S); 2078 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2079 Cxx1yLoc, Cxx2aLoc, Kind)) 2080 return false; 2081 if (If->getElse() && 2082 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2083 Cxx1yLoc, Cxx2aLoc, Kind)) 2084 return false; 2085 return true; 2086 } 2087 2088 case Stmt::WhileStmtClass: 2089 case Stmt::DoStmtClass: 2090 case Stmt::ForStmtClass: 2091 case Stmt::CXXForRangeStmtClass: 2092 case Stmt::ContinueStmtClass: 2093 // C++1y allows all of these. We don't allow them as extensions in C++11, 2094 // because they don't make sense without variable mutation. 2095 if (!SemaRef.getLangOpts().CPlusPlus14) 2096 break; 2097 if (!Cxx1yLoc.isValid()) 2098 Cxx1yLoc = S->getBeginLoc(); 2099 for (Stmt *SubStmt : S->children()) 2100 if (SubStmt && 2101 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2102 Cxx1yLoc, Cxx2aLoc, Kind)) 2103 return false; 2104 return true; 2105 2106 case Stmt::SwitchStmtClass: 2107 case Stmt::CaseStmtClass: 2108 case Stmt::DefaultStmtClass: 2109 case Stmt::BreakStmtClass: 2110 // C++1y allows switch-statements, and since they don't need variable 2111 // mutation, we can reasonably allow them in C++11 as an extension. 2112 if (!Cxx1yLoc.isValid()) 2113 Cxx1yLoc = S->getBeginLoc(); 2114 for (Stmt *SubStmt : S->children()) 2115 if (SubStmt && 2116 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2117 Cxx1yLoc, Cxx2aLoc, Kind)) 2118 return false; 2119 return true; 2120 2121 case Stmt::GCCAsmStmtClass: 2122 case Stmt::MSAsmStmtClass: 2123 // C++2a allows inline assembly statements. 2124 case Stmt::CXXTryStmtClass: 2125 if (Cxx2aLoc.isInvalid()) 2126 Cxx2aLoc = S->getBeginLoc(); 2127 for (Stmt *SubStmt : S->children()) { 2128 if (SubStmt && 2129 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2130 Cxx1yLoc, Cxx2aLoc, Kind)) 2131 return false; 2132 } 2133 return true; 2134 2135 case Stmt::CXXCatchStmtClass: 2136 // Do not bother checking the language mode (already covered by the 2137 // try block check). 2138 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, 2139 cast<CXXCatchStmt>(S)->getHandlerBlock(), 2140 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) 2141 return false; 2142 return true; 2143 2144 default: 2145 if (!isa<Expr>(S)) 2146 break; 2147 2148 // C++1y allows expression-statements. 2149 if (!Cxx1yLoc.isValid()) 2150 Cxx1yLoc = S->getBeginLoc(); 2151 return true; 2152 } 2153 2154 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2155 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2156 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2157 } 2158 return false; 2159 } 2160 2161 /// Check the body for the given constexpr function declaration only contains 2162 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2163 /// 2164 /// \return true if the body is OK, false if we have found or diagnosed a 2165 /// problem. 2166 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2167 Stmt *Body, 2168 Sema::CheckConstexprKind Kind) { 2169 SmallVector<SourceLocation, 4> ReturnStmts; 2170 2171 if (isa<CXXTryStmt>(Body)) { 2172 // C++11 [dcl.constexpr]p3: 2173 // The definition of a constexpr function shall satisfy the following 2174 // constraints: [...] 2175 // - its function-body shall be = delete, = default, or a 2176 // compound-statement 2177 // 2178 // C++11 [dcl.constexpr]p4: 2179 // In the definition of a constexpr constructor, [...] 2180 // - its function-body shall not be a function-try-block; 2181 // 2182 // This restriction is lifted in C++2a, as long as inner statements also 2183 // apply the general constexpr rules. 2184 switch (Kind) { 2185 case Sema::CheckConstexprKind::CheckValid: 2186 if (!SemaRef.getLangOpts().CPlusPlus20) 2187 return false; 2188 break; 2189 2190 case Sema::CheckConstexprKind::Diagnose: 2191 SemaRef.Diag(Body->getBeginLoc(), 2192 !SemaRef.getLangOpts().CPlusPlus20 2193 ? diag::ext_constexpr_function_try_block_cxx20 2194 : diag::warn_cxx17_compat_constexpr_function_try_block) 2195 << isa<CXXConstructorDecl>(Dcl); 2196 break; 2197 } 2198 } 2199 2200 // - its function-body shall be [...] a compound-statement that contains only 2201 // [... list of cases ...] 2202 // 2203 // Note that walking the children here is enough to properly check for 2204 // CompoundStmt and CXXTryStmt body. 2205 SourceLocation Cxx1yLoc, Cxx2aLoc; 2206 for (Stmt *SubStmt : Body->children()) { 2207 if (SubStmt && 2208 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2209 Cxx1yLoc, Cxx2aLoc, Kind)) 2210 return false; 2211 } 2212 2213 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2214 // If this is only valid as an extension, report that we don't satisfy the 2215 // constraints of the current language. 2216 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || 2217 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2218 return false; 2219 } else if (Cxx2aLoc.isValid()) { 2220 SemaRef.Diag(Cxx2aLoc, 2221 SemaRef.getLangOpts().CPlusPlus20 2222 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2223 : diag::ext_constexpr_body_invalid_stmt_cxx20) 2224 << isa<CXXConstructorDecl>(Dcl); 2225 } else if (Cxx1yLoc.isValid()) { 2226 SemaRef.Diag(Cxx1yLoc, 2227 SemaRef.getLangOpts().CPlusPlus14 2228 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2229 : diag::ext_constexpr_body_invalid_stmt) 2230 << isa<CXXConstructorDecl>(Dcl); 2231 } 2232 2233 if (const CXXConstructorDecl *Constructor 2234 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2235 const CXXRecordDecl *RD = Constructor->getParent(); 2236 // DR1359: 2237 // - every non-variant non-static data member and base class sub-object 2238 // shall be initialized; 2239 // DR1460: 2240 // - if the class is a union having variant members, exactly one of them 2241 // shall be initialized; 2242 if (RD->isUnion()) { 2243 if (Constructor->getNumCtorInitializers() == 0 && 2244 RD->hasVariantMembers()) { 2245 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2246 SemaRef.Diag( 2247 Dcl->getLocation(), 2248 SemaRef.getLangOpts().CPlusPlus20 2249 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2250 : diag::ext_constexpr_union_ctor_no_init); 2251 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2252 return false; 2253 } 2254 } 2255 } else if (!Constructor->isDependentContext() && 2256 !Constructor->isDelegatingConstructor()) { 2257 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 2258 2259 // Skip detailed checking if we have enough initializers, and we would 2260 // allow at most one initializer per member. 2261 bool AnyAnonStructUnionMembers = false; 2262 unsigned Fields = 0; 2263 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2264 E = RD->field_end(); I != E; ++I, ++Fields) { 2265 if (I->isAnonymousStructOrUnion()) { 2266 AnyAnonStructUnionMembers = true; 2267 break; 2268 } 2269 } 2270 // DR1460: 2271 // - if the class is a union-like class, but is not a union, for each of 2272 // its anonymous union members having variant members, exactly one of 2273 // them shall be initialized; 2274 if (AnyAnonStructUnionMembers || 2275 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2276 // Check initialization of non-static data members. Base classes are 2277 // always initialized so do not need to be checked. Dependent bases 2278 // might not have initializers in the member initializer list. 2279 llvm::SmallSet<Decl*, 16> Inits; 2280 for (const auto *I: Constructor->inits()) { 2281 if (FieldDecl *FD = I->getMember()) 2282 Inits.insert(FD); 2283 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2284 Inits.insert(ID->chain_begin(), ID->chain_end()); 2285 } 2286 2287 bool Diagnosed = false; 2288 for (auto *I : RD->fields()) 2289 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2290 Kind)) 2291 return false; 2292 } 2293 } 2294 } else { 2295 if (ReturnStmts.empty()) { 2296 // C++1y doesn't require constexpr functions to contain a 'return' 2297 // statement. We still do, unless the return type might be void, because 2298 // otherwise if there's no return statement, the function cannot 2299 // be used in a core constant expression. 2300 bool OK = SemaRef.getLangOpts().CPlusPlus14 && 2301 (Dcl->getReturnType()->isVoidType() || 2302 Dcl->getReturnType()->isDependentType()); 2303 switch (Kind) { 2304 case Sema::CheckConstexprKind::Diagnose: 2305 SemaRef.Diag(Dcl->getLocation(), 2306 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2307 : diag::err_constexpr_body_no_return) 2308 << Dcl->isConsteval(); 2309 if (!OK) 2310 return false; 2311 break; 2312 2313 case Sema::CheckConstexprKind::CheckValid: 2314 // The formal requirements don't include this rule in C++14, even 2315 // though the "must be able to produce a constant expression" rules 2316 // still imply it in some cases. 2317 if (!SemaRef.getLangOpts().CPlusPlus14) 2318 return false; 2319 break; 2320 } 2321 } else if (ReturnStmts.size() > 1) { 2322 switch (Kind) { 2323 case Sema::CheckConstexprKind::Diagnose: 2324 SemaRef.Diag( 2325 ReturnStmts.back(), 2326 SemaRef.getLangOpts().CPlusPlus14 2327 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2328 : diag::ext_constexpr_body_multiple_return); 2329 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2330 SemaRef.Diag(ReturnStmts[I], 2331 diag::note_constexpr_body_previous_return); 2332 break; 2333 2334 case Sema::CheckConstexprKind::CheckValid: 2335 if (!SemaRef.getLangOpts().CPlusPlus14) 2336 return false; 2337 break; 2338 } 2339 } 2340 } 2341 2342 // C++11 [dcl.constexpr]p5: 2343 // if no function argument values exist such that the function invocation 2344 // substitution would produce a constant expression, the program is 2345 // ill-formed; no diagnostic required. 2346 // C++11 [dcl.constexpr]p3: 2347 // - every constructor call and implicit conversion used in initializing the 2348 // return value shall be one of those allowed in a constant expression. 2349 // C++11 [dcl.constexpr]p4: 2350 // - every constructor involved in initializing non-static data members and 2351 // base class sub-objects shall be a constexpr constructor. 2352 // 2353 // Note that this rule is distinct from the "requirements for a constexpr 2354 // function", so is not checked in CheckValid mode. 2355 SmallVector<PartialDiagnosticAt, 8> Diags; 2356 if (Kind == Sema::CheckConstexprKind::Diagnose && 2357 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2358 SemaRef.Diag(Dcl->getLocation(), 2359 diag::ext_constexpr_function_never_constant_expr) 2360 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2361 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2362 SemaRef.Diag(Diags[I].first, Diags[I].second); 2363 // Don't return false here: we allow this for compatibility in 2364 // system headers. 2365 } 2366 2367 return true; 2368 } 2369 2370 /// Get the class that is directly named by the current context. This is the 2371 /// class for which an unqualified-id in this scope could name a constructor 2372 /// or destructor. 2373 /// 2374 /// If the scope specifier denotes a class, this will be that class. 2375 /// If the scope specifier is empty, this will be the class whose 2376 /// member-specification we are currently within. Otherwise, there 2377 /// is no such class. 2378 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2379 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2380 2381 if (SS && SS->isInvalid()) 2382 return nullptr; 2383 2384 if (SS && SS->isNotEmpty()) { 2385 DeclContext *DC = computeDeclContext(*SS, true); 2386 return dyn_cast_or_null<CXXRecordDecl>(DC); 2387 } 2388 2389 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2390 } 2391 2392 /// isCurrentClassName - Determine whether the identifier II is the 2393 /// name of the class type currently being defined. In the case of 2394 /// nested classes, this will only return true if II is the name of 2395 /// the innermost class. 2396 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2397 const CXXScopeSpec *SS) { 2398 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2399 return CurDecl && &II == CurDecl->getIdentifier(); 2400 } 2401 2402 /// Determine whether the identifier II is a typo for the name of 2403 /// the class type currently being defined. If so, update it to the identifier 2404 /// that should have been used. 2405 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2406 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2407 2408 if (!getLangOpts().SpellChecking) 2409 return false; 2410 2411 CXXRecordDecl *CurDecl; 2412 if (SS && SS->isSet() && !SS->isInvalid()) { 2413 DeclContext *DC = computeDeclContext(*SS, true); 2414 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2415 } else 2416 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2417 2418 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2419 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2420 < II->getLength()) { 2421 II = CurDecl->getIdentifier(); 2422 return true; 2423 } 2424 2425 return false; 2426 } 2427 2428 /// Determine whether the given class is a base class of the given 2429 /// class, including looking at dependent bases. 2430 static bool findCircularInheritance(const CXXRecordDecl *Class, 2431 const CXXRecordDecl *Current) { 2432 SmallVector<const CXXRecordDecl*, 8> Queue; 2433 2434 Class = Class->getCanonicalDecl(); 2435 while (true) { 2436 for (const auto &I : Current->bases()) { 2437 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 2438 if (!Base) 2439 continue; 2440 2441 Base = Base->getDefinition(); 2442 if (!Base) 2443 continue; 2444 2445 if (Base->getCanonicalDecl() == Class) 2446 return true; 2447 2448 Queue.push_back(Base); 2449 } 2450 2451 if (Queue.empty()) 2452 return false; 2453 2454 Current = Queue.pop_back_val(); 2455 } 2456 2457 return false; 2458 } 2459 2460 /// Check the validity of a C++ base class specifier. 2461 /// 2462 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 2463 /// and returns NULL otherwise. 2464 CXXBaseSpecifier * 2465 Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2466 SourceRange SpecifierRange, 2467 bool Virtual, AccessSpecifier Access, 2468 TypeSourceInfo *TInfo, 2469 SourceLocation EllipsisLoc) { 2470 QualType BaseType = TInfo->getType(); 2471 if (BaseType->containsErrors()) { 2472 // Already emitted a diagnostic when parsing the error type. 2473 return nullptr; 2474 } 2475 // C++ [class.union]p1: 2476 // A union shall not have base classes. 2477 if (Class->isUnion()) { 2478 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2479 << SpecifierRange; 2480 return nullptr; 2481 } 2482 2483 if (EllipsisLoc.isValid() && 2484 !TInfo->getType()->containsUnexpandedParameterPack()) { 2485 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2486 << TInfo->getTypeLoc().getSourceRange(); 2487 EllipsisLoc = SourceLocation(); 2488 } 2489 2490 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2491 2492 if (BaseType->isDependentType()) { 2493 // Make sure that we don't have circular inheritance among our dependent 2494 // bases. For non-dependent bases, the check for completeness below handles 2495 // this. 2496 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 2497 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 2498 ((BaseDecl = BaseDecl->getDefinition()) && 2499 findCircularInheritance(Class, BaseDecl))) { 2500 Diag(BaseLoc, diag::err_circular_inheritance) 2501 << BaseType << Context.getTypeDeclType(Class); 2502 2503 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 2504 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 2505 << BaseType; 2506 2507 return nullptr; 2508 } 2509 } 2510 2511 // Make sure that we don't make an ill-formed AST where the type of the 2512 // Class is non-dependent and its attached base class specifier is an 2513 // dependent type, which violates invariants in many clang code paths (e.g. 2514 // constexpr evaluator). If this case happens (in errory-recovery mode), we 2515 // explicitly mark the Class decl invalid. The diagnostic was already 2516 // emitted. 2517 if (!Class->getTypeForDecl()->isDependentType()) 2518 Class->setInvalidDecl(); 2519 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2520 Class->getTagKind() == TTK_Class, 2521 Access, TInfo, EllipsisLoc); 2522 } 2523 2524 // Base specifiers must be record types. 2525 if (!BaseType->isRecordType()) { 2526 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2527 return nullptr; 2528 } 2529 2530 // C++ [class.union]p1: 2531 // A union shall not be used as a base class. 2532 if (BaseType->isUnionType()) { 2533 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2534 return nullptr; 2535 } 2536 2537 // For the MS ABI, propagate DLL attributes to base class templates. 2538 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2539 if (Attr *ClassAttr = getDLLAttr(Class)) { 2540 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 2541 BaseType->getAsCXXRecordDecl())) { 2542 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, 2543 BaseLoc); 2544 } 2545 } 2546 } 2547 2548 // C++ [class.derived]p2: 2549 // The class-name in a base-specifier shall not be an incompletely 2550 // defined class. 2551 if (RequireCompleteType(BaseLoc, BaseType, 2552 diag::err_incomplete_base_class, SpecifierRange)) { 2553 Class->setInvalidDecl(); 2554 return nullptr; 2555 } 2556 2557 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 2558 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); 2559 assert(BaseDecl && "Record type has no declaration"); 2560 BaseDecl = BaseDecl->getDefinition(); 2561 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 2562 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 2563 assert(CXXBaseDecl && "Base type is not a C++ type"); 2564 2565 // Microsoft docs say: 2566 // "If a base-class has a code_seg attribute, derived classes must have the 2567 // same attribute." 2568 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); 2569 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2570 if ((DerivedCSA || BaseCSA) && 2571 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { 2572 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2573 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) 2574 << CXXBaseDecl; 2575 return nullptr; 2576 } 2577 2578 // A class which contains a flexible array member is not suitable for use as a 2579 // base class: 2580 // - If the layout determines that a base comes before another base, 2581 // the flexible array member would index into the subsequent base. 2582 // - If the layout determines that base comes before the derived class, 2583 // the flexible array member would index into the derived class. 2584 if (CXXBaseDecl->hasFlexibleArrayMember()) { 2585 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2586 << CXXBaseDecl->getDeclName(); 2587 return nullptr; 2588 } 2589 2590 // C++ [class]p3: 2591 // If a class is marked final and it appears as a base-type-specifier in 2592 // base-clause, the program is ill-formed. 2593 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 2594 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2595 << CXXBaseDecl->getDeclName() 2596 << FA->isSpelledAsSealed(); 2597 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 2598 << CXXBaseDecl->getDeclName() << FA->getRange(); 2599 return nullptr; 2600 } 2601 2602 if (BaseDecl->isInvalidDecl()) 2603 Class->setInvalidDecl(); 2604 2605 // Create the base specifier. 2606 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2607 Class->getTagKind() == TTK_Class, 2608 Access, TInfo, EllipsisLoc); 2609 } 2610 2611 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 2612 /// one entry in the base class list of a class specifier, for 2613 /// example: 2614 /// class foo : public bar, virtual private baz { 2615 /// 'public bar' and 'virtual private baz' are each base-specifiers. 2616 BaseResult 2617 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2618 ParsedAttributes &Attributes, 2619 bool Virtual, AccessSpecifier Access, 2620 ParsedType basetype, SourceLocation BaseLoc, 2621 SourceLocation EllipsisLoc) { 2622 if (!classdecl) 2623 return true; 2624 2625 AdjustDeclIfTemplate(classdecl); 2626 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2627 if (!Class) 2628 return true; 2629 2630 // We haven't yet attached the base specifiers. 2631 Class->setIsParsingBaseSpecifiers(); 2632 2633 // We do not support any C++11 attributes on base-specifiers yet. 2634 // Diagnose any attributes we see. 2635 for (const ParsedAttr &AL : Attributes) { 2636 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2637 continue; 2638 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute 2639 ? (unsigned)diag::warn_unknown_attribute_ignored 2640 : (unsigned)diag::err_base_specifier_attribute) 2641 << AL << AL.getRange(); 2642 } 2643 2644 TypeSourceInfo *TInfo = nullptr; 2645 GetTypeFromParser(basetype, &TInfo); 2646 2647 if (EllipsisLoc.isInvalid() && 2648 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2649 UPPC_BaseType)) 2650 return true; 2651 2652 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2653 Virtual, Access, TInfo, 2654 EllipsisLoc)) 2655 return BaseSpec; 2656 else 2657 Class->setInvalidDecl(); 2658 2659 return true; 2660 } 2661 2662 /// Use small set to collect indirect bases. As this is only used 2663 /// locally, there's no need to abstract the small size parameter. 2664 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2665 2666 /// Recursively add the bases of Type. Don't add Type itself. 2667 static void 2668 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2669 const QualType &Type) 2670 { 2671 // Even though the incoming type is a base, it might not be 2672 // a class -- it could be a template parm, for instance. 2673 if (auto Rec = Type->getAs<RecordType>()) { 2674 auto Decl = Rec->getAsCXXRecordDecl(); 2675 2676 // Iterate over its bases. 2677 for (const auto &BaseSpec : Decl->bases()) { 2678 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2679 .getUnqualifiedType(); 2680 if (Set.insert(Base).second) 2681 // If we've not already seen it, recurse. 2682 NoteIndirectBases(Context, Set, Base); 2683 } 2684 } 2685 } 2686 2687 /// Performs the actual work of attaching the given base class 2688 /// specifiers to a C++ class. 2689 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2690 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2691 if (Bases.empty()) 2692 return false; 2693 2694 // Used to keep track of which base types we have already seen, so 2695 // that we can properly diagnose redundant direct base types. Note 2696 // that the key is always the unqualified canonical type of the base 2697 // class. 2698 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2699 2700 // Used to track indirect bases so we can see if a direct base is 2701 // ambiguous. 2702 IndirectBaseSet IndirectBaseTypes; 2703 2704 // Copy non-redundant base specifiers into permanent storage. 2705 unsigned NumGoodBases = 0; 2706 bool Invalid = false; 2707 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2708 QualType NewBaseType 2709 = Context.getCanonicalType(Bases[idx]->getType()); 2710 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2711 2712 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2713 if (KnownBase) { 2714 // C++ [class.mi]p3: 2715 // A class shall not be specified as a direct base class of a 2716 // derived class more than once. 2717 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2718 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2719 2720 // Delete the duplicate base class specifier; we're going to 2721 // overwrite its pointer later. 2722 Context.Deallocate(Bases[idx]); 2723 2724 Invalid = true; 2725 } else { 2726 // Okay, add this new base class. 2727 KnownBase = Bases[idx]; 2728 Bases[NumGoodBases++] = Bases[idx]; 2729 2730 // Note this base's direct & indirect bases, if there could be ambiguity. 2731 if (Bases.size() > 1) 2732 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2733 2734 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2735 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2736 if (Class->isInterface() && 2737 (!RD->isInterfaceLike() || 2738 KnownBase->getAccessSpecifier() != AS_public)) { 2739 // The Microsoft extension __interface does not permit bases that 2740 // are not themselves public interfaces. 2741 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2742 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2743 << RD->getSourceRange(); 2744 Invalid = true; 2745 } 2746 if (RD->hasAttr<WeakAttr>()) 2747 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2748 } 2749 } 2750 } 2751 2752 // Attach the remaining base class specifiers to the derived class. 2753 Class->setBases(Bases.data(), NumGoodBases); 2754 2755 // Check that the only base classes that are duplicate are virtual. 2756 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2757 // Check whether this direct base is inaccessible due to ambiguity. 2758 QualType BaseType = Bases[idx]->getType(); 2759 2760 // Skip all dependent types in templates being used as base specifiers. 2761 // Checks below assume that the base specifier is a CXXRecord. 2762 if (BaseType->isDependentType()) 2763 continue; 2764 2765 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2766 .getUnqualifiedType(); 2767 2768 if (IndirectBaseTypes.count(CanonicalBase)) { 2769 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2770 /*DetectVirtual=*/true); 2771 bool found 2772 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2773 assert(found); 2774 (void)found; 2775 2776 if (Paths.isAmbiguous(CanonicalBase)) 2777 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2778 << BaseType << getAmbiguousPathsDisplayString(Paths) 2779 << Bases[idx]->getSourceRange(); 2780 else 2781 assert(Bases[idx]->isVirtual()); 2782 } 2783 2784 // Delete the base class specifier, since its data has been copied 2785 // into the CXXRecordDecl. 2786 Context.Deallocate(Bases[idx]); 2787 } 2788 2789 return Invalid; 2790 } 2791 2792 /// ActOnBaseSpecifiers - Attach the given base specifiers to the 2793 /// class, after checking whether there are any duplicate base 2794 /// classes. 2795 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2796 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2797 if (!ClassDecl || Bases.empty()) 2798 return; 2799 2800 AdjustDeclIfTemplate(ClassDecl); 2801 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2802 } 2803 2804 /// Determine whether the type \p Derived is a C++ class that is 2805 /// derived from the type \p Base. 2806 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2807 if (!getLangOpts().CPlusPlus) 2808 return false; 2809 2810 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2811 if (!DerivedRD) 2812 return false; 2813 2814 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2815 if (!BaseRD) 2816 return false; 2817 2818 // If either the base or the derived type is invalid, don't try to 2819 // check whether one is derived from the other. 2820 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 2821 return false; 2822 2823 // FIXME: In a modules build, do we need the entire path to be visible for us 2824 // to be able to use the inheritance relationship? 2825 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2826 return false; 2827 2828 return DerivedRD->isDerivedFrom(BaseRD); 2829 } 2830 2831 /// Determine whether the type \p Derived is a C++ class that is 2832 /// derived from the type \p Base. 2833 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 2834 CXXBasePaths &Paths) { 2835 if (!getLangOpts().CPlusPlus) 2836 return false; 2837 2838 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2839 if (!DerivedRD) 2840 return false; 2841 2842 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2843 if (!BaseRD) 2844 return false; 2845 2846 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2847 return false; 2848 2849 return DerivedRD->isDerivedFrom(BaseRD, Paths); 2850 } 2851 2852 static void BuildBasePathArray(const CXXBasePath &Path, 2853 CXXCastPath &BasePathArray) { 2854 // We first go backward and check if we have a virtual base. 2855 // FIXME: It would be better if CXXBasePath had the base specifier for 2856 // the nearest virtual base. 2857 unsigned Start = 0; 2858 for (unsigned I = Path.size(); I != 0; --I) { 2859 if (Path[I - 1].Base->isVirtual()) { 2860 Start = I - 1; 2861 break; 2862 } 2863 } 2864 2865 // Now add all bases. 2866 for (unsigned I = Start, E = Path.size(); I != E; ++I) 2867 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 2868 } 2869 2870 2871 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 2872 CXXCastPath &BasePathArray) { 2873 assert(BasePathArray.empty() && "Base path array must be empty!"); 2874 assert(Paths.isRecordingPaths() && "Must record paths!"); 2875 return ::BuildBasePathArray(Paths.front(), BasePathArray); 2876 } 2877 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 2878 /// conversion (where Derived and Base are class types) is 2879 /// well-formed, meaning that the conversion is unambiguous (and 2880 /// that all of the base classes are accessible). Returns true 2881 /// and emits a diagnostic if the code is ill-formed, returns false 2882 /// otherwise. Loc is the location where this routine should point to 2883 /// if there is an error, and Range is the source range to highlight 2884 /// if there is an error. 2885 /// 2886 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the 2887 /// diagnostic for the respective type of error will be suppressed, but the 2888 /// check for ill-formed code will still be performed. 2889 bool 2890 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2891 unsigned InaccessibleBaseID, 2892 unsigned AmbiguousBaseConvID, 2893 SourceLocation Loc, SourceRange Range, 2894 DeclarationName Name, 2895 CXXCastPath *BasePath, 2896 bool IgnoreAccess) { 2897 // First, determine whether the path from Derived to Base is 2898 // ambiguous. This is slightly more expensive than checking whether 2899 // the Derived to Base conversion exists, because here we need to 2900 // explore multiple paths to determine if there is an ambiguity. 2901 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2902 /*DetectVirtual=*/false); 2903 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2904 if (!DerivationOkay) 2905 return true; 2906 2907 const CXXBasePath *Path = nullptr; 2908 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 2909 Path = &Paths.front(); 2910 2911 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 2912 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 2913 // user to access such bases. 2914 if (!Path && getLangOpts().MSVCCompat) { 2915 for (const CXXBasePath &PossiblePath : Paths) { 2916 if (PossiblePath.size() == 1) { 2917 Path = &PossiblePath; 2918 if (AmbiguousBaseConvID) 2919 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 2920 << Base << Derived << Range; 2921 break; 2922 } 2923 } 2924 } 2925 2926 if (Path) { 2927 if (!IgnoreAccess) { 2928 // Check that the base class can be accessed. 2929 switch ( 2930 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 2931 case AR_inaccessible: 2932 return true; 2933 case AR_accessible: 2934 case AR_dependent: 2935 case AR_delayed: 2936 break; 2937 } 2938 } 2939 2940 // Build a base path if necessary. 2941 if (BasePath) 2942 ::BuildBasePathArray(*Path, *BasePath); 2943 return false; 2944 } 2945 2946 if (AmbiguousBaseConvID) { 2947 // We know that the derived-to-base conversion is ambiguous, and 2948 // we're going to produce a diagnostic. Perform the derived-to-base 2949 // search just one more time to compute all of the possible paths so 2950 // that we can print them out. This is more expensive than any of 2951 // the previous derived-to-base checks we've done, but at this point 2952 // performance isn't as much of an issue. 2953 Paths.clear(); 2954 Paths.setRecordingPaths(true); 2955 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2956 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 2957 (void)StillOkay; 2958 2959 // Build up a textual representation of the ambiguous paths, e.g., 2960 // D -> B -> A, that will be used to illustrate the ambiguous 2961 // conversions in the diagnostic. We only print one of the paths 2962 // to each base class subobject. 2963 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2964 2965 Diag(Loc, AmbiguousBaseConvID) 2966 << Derived << Base << PathDisplayStr << Range << Name; 2967 } 2968 return true; 2969 } 2970 2971 bool 2972 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2973 SourceLocation Loc, SourceRange Range, 2974 CXXCastPath *BasePath, 2975 bool IgnoreAccess) { 2976 return CheckDerivedToBaseConversion( 2977 Derived, Base, diag::err_upcast_to_inaccessible_base, 2978 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 2979 BasePath, IgnoreAccess); 2980 } 2981 2982 2983 /// Builds a string representing ambiguous paths from a 2984 /// specific derived class to different subobjects of the same base 2985 /// class. 2986 /// 2987 /// This function builds a string that can be used in error messages 2988 /// to show the different paths that one can take through the 2989 /// inheritance hierarchy to go from the derived class to different 2990 /// subobjects of a base class. The result looks something like this: 2991 /// @code 2992 /// struct D -> struct B -> struct A 2993 /// struct D -> struct C -> struct A 2994 /// @endcode 2995 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 2996 std::string PathDisplayStr; 2997 std::set<unsigned> DisplayedPaths; 2998 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 2999 Path != Paths.end(); ++Path) { 3000 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 3001 // We haven't displayed a path to this particular base 3002 // class subobject yet. 3003 PathDisplayStr += "\n "; 3004 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 3005 for (CXXBasePath::const_iterator Element = Path->begin(); 3006 Element != Path->end(); ++Element) 3007 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 3008 } 3009 } 3010 3011 return PathDisplayStr; 3012 } 3013 3014 //===----------------------------------------------------------------------===// 3015 // C++ class member Handling 3016 //===----------------------------------------------------------------------===// 3017 3018 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 3019 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 3020 SourceLocation ColonLoc, 3021 const ParsedAttributesView &Attrs) { 3022 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 3023 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 3024 ASLoc, ColonLoc); 3025 CurContext->addHiddenDecl(ASDecl); 3026 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 3027 } 3028 3029 /// CheckOverrideControl - Check C++11 override control semantics. 3030 void Sema::CheckOverrideControl(NamedDecl *D) { 3031 if (D->isInvalidDecl()) 3032 return; 3033 3034 // We only care about "override" and "final" declarations. 3035 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 3036 return; 3037 3038 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3039 3040 // We can't check dependent instance methods. 3041 if (MD && MD->isInstance() && 3042 (MD->getParent()->hasAnyDependentBases() || 3043 MD->getType()->isDependentType())) 3044 return; 3045 3046 if (MD && !MD->isVirtual()) { 3047 // If we have a non-virtual method, check if if hides a virtual method. 3048 // (In that case, it's most likely the method has the wrong type.) 3049 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3050 FindHiddenVirtualMethods(MD, OverloadedMethods); 3051 3052 if (!OverloadedMethods.empty()) { 3053 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3054 Diag(OA->getLocation(), 3055 diag::override_keyword_hides_virtual_member_function) 3056 << "override" << (OverloadedMethods.size() > 1); 3057 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3058 Diag(FA->getLocation(), 3059 diag::override_keyword_hides_virtual_member_function) 3060 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3061 << (OverloadedMethods.size() > 1); 3062 } 3063 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3064 MD->setInvalidDecl(); 3065 return; 3066 } 3067 // Fall through into the general case diagnostic. 3068 // FIXME: We might want to attempt typo correction here. 3069 } 3070 3071 if (!MD || !MD->isVirtual()) { 3072 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3073 Diag(OA->getLocation(), 3074 diag::override_keyword_only_allowed_on_virtual_member_functions) 3075 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3076 D->dropAttr<OverrideAttr>(); 3077 } 3078 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3079 Diag(FA->getLocation(), 3080 diag::override_keyword_only_allowed_on_virtual_member_functions) 3081 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3082 << FixItHint::CreateRemoval(FA->getLocation()); 3083 D->dropAttr<FinalAttr>(); 3084 } 3085 return; 3086 } 3087 3088 // C++11 [class.virtual]p5: 3089 // If a function is marked with the virt-specifier override and 3090 // does not override a member function of a base class, the program is 3091 // ill-formed. 3092 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3093 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3094 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3095 << MD->getDeclName(); 3096 } 3097 3098 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { 3099 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3100 return; 3101 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3102 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3103 return; 3104 3105 SourceLocation Loc = MD->getLocation(); 3106 SourceLocation SpellingLoc = Loc; 3107 if (getSourceManager().isMacroArgExpansion(Loc)) 3108 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3109 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3110 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3111 return; 3112 3113 if (MD->size_overridden_methods() > 0) { 3114 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { 3115 unsigned DiagID = 3116 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) 3117 ? DiagInconsistent 3118 : DiagSuggest; 3119 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3120 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3121 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3122 }; 3123 if (isa<CXXDestructorDecl>(MD)) 3124 EmitDiag( 3125 diag::warn_inconsistent_destructor_marked_not_override_overriding, 3126 diag::warn_suggest_destructor_marked_not_override_overriding); 3127 else 3128 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, 3129 diag::warn_suggest_function_marked_not_override_overriding); 3130 } 3131 } 3132 3133 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 3134 /// function overrides a virtual member function marked 'final', according to 3135 /// C++11 [class.virtual]p4. 3136 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3137 const CXXMethodDecl *Old) { 3138 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3139 if (!FA) 3140 return false; 3141 3142 Diag(New->getLocation(), diag::err_final_function_overridden) 3143 << New->getDeclName() 3144 << FA->isSpelledAsSealed(); 3145 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3146 return true; 3147 } 3148 3149 static bool InitializationHasSideEffects(const FieldDecl &FD) { 3150 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3151 // FIXME: Destruction of ObjC lifetime types has side-effects. 3152 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3153 return !RD->isCompleteDefinition() || 3154 !RD->hasTrivialDefaultConstructor() || 3155 !RD->hasTrivialDestructor(); 3156 return false; 3157 } 3158 3159 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { 3160 ParsedAttributesView::const_iterator Itr = 3161 llvm::find_if(list, [](const ParsedAttr &AL) { 3162 return AL.isDeclspecPropertyAttribute(); 3163 }); 3164 if (Itr != list.end()) 3165 return &*Itr; 3166 return nullptr; 3167 } 3168 3169 // Check if there is a field shadowing. 3170 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3171 DeclarationName FieldName, 3172 const CXXRecordDecl *RD, 3173 bool DeclIsField) { 3174 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3175 return; 3176 3177 // To record a shadowed field in a base 3178 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3179 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3180 CXXBasePath &Path) { 3181 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3182 // Record an ambiguous path directly 3183 if (Bases.find(Base) != Bases.end()) 3184 return true; 3185 for (const auto Field : Base->lookup(FieldName)) { 3186 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3187 Field->getAccess() != AS_private) { 3188 assert(Field->getAccess() != AS_none); 3189 assert(Bases.find(Base) == Bases.end()); 3190 Bases[Base] = Field; 3191 return true; 3192 } 3193 } 3194 return false; 3195 }; 3196 3197 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3198 /*DetectVirtual=*/true); 3199 if (!RD->lookupInBases(FieldShadowed, Paths)) 3200 return; 3201 3202 for (const auto &P : Paths) { 3203 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3204 auto It = Bases.find(Base); 3205 // Skip duplicated bases 3206 if (It == Bases.end()) 3207 continue; 3208 auto BaseField = It->second; 3209 assert(BaseField->getAccess() != AS_private); 3210 if (AS_none != 3211 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3212 Diag(Loc, diag::warn_shadow_field) 3213 << FieldName << RD << Base << DeclIsField; 3214 Diag(BaseField->getLocation(), diag::note_shadow_field); 3215 Bases.erase(It); 3216 } 3217 } 3218 } 3219 3220 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 3221 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 3222 /// bitfield width if there is one, 'InitExpr' specifies the initializer if 3223 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is 3224 /// present (but parsing it has been deferred). 3225 NamedDecl * 3226 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3227 MultiTemplateParamsArg TemplateParameterLists, 3228 Expr *BW, const VirtSpecifiers &VS, 3229 InClassInitStyle InitStyle) { 3230 const DeclSpec &DS = D.getDeclSpec(); 3231 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3232 DeclarationName Name = NameInfo.getName(); 3233 SourceLocation Loc = NameInfo.getLoc(); 3234 3235 // For anonymous bitfields, the location should point to the type. 3236 if (Loc.isInvalid()) 3237 Loc = D.getBeginLoc(); 3238 3239 Expr *BitWidth = static_cast<Expr*>(BW); 3240 3241 assert(isa<CXXRecordDecl>(CurContext)); 3242 assert(!DS.isFriendSpecified()); 3243 3244 bool isFunc = D.isDeclarationOfFunction(); 3245 const ParsedAttr *MSPropertyAttr = 3246 getMSPropertyAttr(D.getDeclSpec().getAttributes()); 3247 3248 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3249 // The Microsoft extension __interface only permits public member functions 3250 // and prohibits constructors, destructors, operators, non-public member 3251 // functions, static methods and data members. 3252 unsigned InvalidDecl; 3253 bool ShowDeclName = true; 3254 if (!isFunc && 3255 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3256 InvalidDecl = 0; 3257 else if (!isFunc) 3258 InvalidDecl = 1; 3259 else if (AS != AS_public) 3260 InvalidDecl = 2; 3261 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3262 InvalidDecl = 3; 3263 else switch (Name.getNameKind()) { 3264 case DeclarationName::CXXConstructorName: 3265 InvalidDecl = 4; 3266 ShowDeclName = false; 3267 break; 3268 3269 case DeclarationName::CXXDestructorName: 3270 InvalidDecl = 5; 3271 ShowDeclName = false; 3272 break; 3273 3274 case DeclarationName::CXXOperatorName: 3275 case DeclarationName::CXXConversionFunctionName: 3276 InvalidDecl = 6; 3277 break; 3278 3279 default: 3280 InvalidDecl = 0; 3281 break; 3282 } 3283 3284 if (InvalidDecl) { 3285 if (ShowDeclName) 3286 Diag(Loc, diag::err_invalid_member_in_interface) 3287 << (InvalidDecl-1) << Name; 3288 else 3289 Diag(Loc, diag::err_invalid_member_in_interface) 3290 << (InvalidDecl-1) << ""; 3291 return nullptr; 3292 } 3293 } 3294 3295 // C++ 9.2p6: A member shall not be declared to have automatic storage 3296 // duration (auto, register) or with the extern storage-class-specifier. 3297 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3298 // data members and cannot be applied to names declared const or static, 3299 // and cannot be applied to reference members. 3300 switch (DS.getStorageClassSpec()) { 3301 case DeclSpec::SCS_unspecified: 3302 case DeclSpec::SCS_typedef: 3303 case DeclSpec::SCS_static: 3304 break; 3305 case DeclSpec::SCS_mutable: 3306 if (isFunc) { 3307 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3308 3309 // FIXME: It would be nicer if the keyword was ignored only for this 3310 // declarator. Otherwise we could get follow-up errors. 3311 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3312 } 3313 break; 3314 default: 3315 Diag(DS.getStorageClassSpecLoc(), 3316 diag::err_storageclass_invalid_for_member); 3317 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3318 break; 3319 } 3320 3321 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3322 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3323 !isFunc); 3324 3325 if (DS.hasConstexprSpecifier() && isInstField) { 3326 SemaDiagnosticBuilder B = 3327 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3328 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3329 if (InitStyle == ICIS_NoInit) { 3330 B << 0 << 0; 3331 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3332 B << FixItHint::CreateRemoval(ConstexprLoc); 3333 else { 3334 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3335 D.getMutableDeclSpec().ClearConstexprSpec(); 3336 const char *PrevSpec; 3337 unsigned DiagID; 3338 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3339 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3340 (void)Failed; 3341 assert(!Failed && "Making a constexpr member const shouldn't fail"); 3342 } 3343 } else { 3344 B << 1; 3345 const char *PrevSpec; 3346 unsigned DiagID; 3347 if (D.getMutableDeclSpec().SetStorageClassSpec( 3348 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3349 Context.getPrintingPolicy())) { 3350 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 3351 "This is the only DeclSpec that should fail to be applied"); 3352 B << 1; 3353 } else { 3354 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3355 isInstField = false; 3356 } 3357 } 3358 } 3359 3360 NamedDecl *Member; 3361 if (isInstField) { 3362 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3363 3364 // Data members must have identifiers for names. 3365 if (!Name.isIdentifier()) { 3366 Diag(Loc, diag::err_bad_variable_name) 3367 << Name; 3368 return nullptr; 3369 } 3370 3371 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3372 3373 // Member field could not be with "template" keyword. 3374 // So TemplateParameterLists should be empty in this case. 3375 if (TemplateParameterLists.size()) { 3376 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 3377 if (TemplateParams->size()) { 3378 // There is no such thing as a member field template. 3379 Diag(D.getIdentifierLoc(), diag::err_template_member) 3380 << II 3381 << SourceRange(TemplateParams->getTemplateLoc(), 3382 TemplateParams->getRAngleLoc()); 3383 } else { 3384 // There is an extraneous 'template<>' for this member. 3385 Diag(TemplateParams->getTemplateLoc(), 3386 diag::err_template_member_noparams) 3387 << II 3388 << SourceRange(TemplateParams->getTemplateLoc(), 3389 TemplateParams->getRAngleLoc()); 3390 } 3391 return nullptr; 3392 } 3393 3394 if (SS.isSet() && !SS.isInvalid()) { 3395 // The user provided a superfluous scope specifier inside a class 3396 // definition: 3397 // 3398 // class X { 3399 // int X::member; 3400 // }; 3401 if (DeclContext *DC = computeDeclContext(SS, false)) 3402 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3403 D.getName().getKind() == 3404 UnqualifiedIdKind::IK_TemplateId); 3405 else 3406 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3407 << Name << SS.getRange(); 3408 3409 SS.clear(); 3410 } 3411 3412 if (MSPropertyAttr) { 3413 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3414 BitWidth, InitStyle, AS, *MSPropertyAttr); 3415 if (!Member) 3416 return nullptr; 3417 isInstField = false; 3418 } else { 3419 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3420 BitWidth, InitStyle, AS); 3421 if (!Member) 3422 return nullptr; 3423 } 3424 3425 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3426 } else { 3427 Member = HandleDeclarator(S, D, TemplateParameterLists); 3428 if (!Member) 3429 return nullptr; 3430 3431 // Non-instance-fields can't have a bitfield. 3432 if (BitWidth) { 3433 if (Member->isInvalidDecl()) { 3434 // don't emit another diagnostic. 3435 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3436 // C++ 9.6p3: A bit-field shall not be a static member. 3437 // "static member 'A' cannot be a bit-field" 3438 Diag(Loc, diag::err_static_not_bitfield) 3439 << Name << BitWidth->getSourceRange(); 3440 } else if (isa<TypedefDecl>(Member)) { 3441 // "typedef member 'x' cannot be a bit-field" 3442 Diag(Loc, diag::err_typedef_not_bitfield) 3443 << Name << BitWidth->getSourceRange(); 3444 } else { 3445 // A function typedef ("typedef int f(); f a;"). 3446 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3447 Diag(Loc, diag::err_not_integral_type_bitfield) 3448 << Name << cast<ValueDecl>(Member)->getType() 3449 << BitWidth->getSourceRange(); 3450 } 3451 3452 BitWidth = nullptr; 3453 Member->setInvalidDecl(); 3454 } 3455 3456 NamedDecl *NonTemplateMember = Member; 3457 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3458 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3459 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3460 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3461 3462 Member->setAccess(AS); 3463 3464 // If we have declared a member function template or static data member 3465 // template, set the access of the templated declaration as well. 3466 if (NonTemplateMember != Member) 3467 NonTemplateMember->setAccess(AS); 3468 3469 // C++ [temp.deduct.guide]p3: 3470 // A deduction guide [...] for a member class template [shall be 3471 // declared] with the same access [as the template]. 3472 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3473 auto *TD = DG->getDeducedTemplate(); 3474 // Access specifiers are only meaningful if both the template and the 3475 // deduction guide are from the same scope. 3476 if (AS != TD->getAccess() && 3477 TD->getDeclContext()->getRedeclContext()->Equals( 3478 DG->getDeclContext()->getRedeclContext())) { 3479 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3480 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3481 << TD->getAccess(); 3482 const AccessSpecDecl *LastAccessSpec = nullptr; 3483 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3484 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3485 LastAccessSpec = AccessSpec; 3486 } 3487 assert(LastAccessSpec && "differing access with no access specifier"); 3488 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3489 << AS; 3490 } 3491 } 3492 } 3493 3494 if (VS.isOverrideSpecified()) 3495 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), 3496 AttributeCommonInfo::AS_Keyword)); 3497 if (VS.isFinalSpecified()) 3498 Member->addAttr(FinalAttr::Create( 3499 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, 3500 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); 3501 3502 if (VS.getLastLocation().isValid()) { 3503 // Update the end location of a method that has a virt-specifiers. 3504 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3505 MD->setRangeEnd(VS.getLastLocation()); 3506 } 3507 3508 CheckOverrideControl(Member); 3509 3510 assert((Name || isInstField) && "No identifier for non-field ?"); 3511 3512 if (isInstField) { 3513 FieldDecl *FD = cast<FieldDecl>(Member); 3514 FieldCollector->Add(FD); 3515 3516 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3517 // Remember all explicit private FieldDecls that have a name, no side 3518 // effects and are not part of a dependent type declaration. 3519 if (!FD->isImplicit() && FD->getDeclName() && 3520 FD->getAccess() == AS_private && 3521 !FD->hasAttr<UnusedAttr>() && 3522 !FD->getParent()->isDependentContext() && 3523 !InitializationHasSideEffects(*FD)) 3524 UnusedPrivateFields.insert(FD); 3525 } 3526 } 3527 3528 return Member; 3529 } 3530 3531 namespace { 3532 class UninitializedFieldVisitor 3533 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3534 Sema &S; 3535 // List of Decls to generate a warning on. Also remove Decls that become 3536 // initialized. 3537 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3538 // List of base classes of the record. Classes are removed after their 3539 // initializers. 3540 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3541 // Vector of decls to be removed from the Decl set prior to visiting the 3542 // nodes. These Decls may have been initialized in the prior initializer. 3543 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3544 // If non-null, add a note to the warning pointing back to the constructor. 3545 const CXXConstructorDecl *Constructor; 3546 // Variables to hold state when processing an initializer list. When 3547 // InitList is true, special case initialization of FieldDecls matching 3548 // InitListFieldDecl. 3549 bool InitList; 3550 FieldDecl *InitListFieldDecl; 3551 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3552 3553 public: 3554 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3555 UninitializedFieldVisitor(Sema &S, 3556 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3557 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3558 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3559 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3560 3561 // Returns true if the use of ME is not an uninitialized use. 3562 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3563 bool CheckReferenceOnly) { 3564 llvm::SmallVector<FieldDecl*, 4> Fields; 3565 bool ReferenceField = false; 3566 while (ME) { 3567 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3568 if (!FD) 3569 return false; 3570 Fields.push_back(FD); 3571 if (FD->getType()->isReferenceType()) 3572 ReferenceField = true; 3573 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3574 } 3575 3576 // Binding a reference to an uninitialized field is not an 3577 // uninitialized use. 3578 if (CheckReferenceOnly && !ReferenceField) 3579 return true; 3580 3581 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3582 // Discard the first field since it is the field decl that is being 3583 // initialized. 3584 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { 3585 UsedFieldIndex.push_back((*I)->getFieldIndex()); 3586 } 3587 3588 for (auto UsedIter = UsedFieldIndex.begin(), 3589 UsedEnd = UsedFieldIndex.end(), 3590 OrigIter = InitFieldIndex.begin(), 3591 OrigEnd = InitFieldIndex.end(); 3592 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3593 if (*UsedIter < *OrigIter) 3594 return true; 3595 if (*UsedIter > *OrigIter) 3596 break; 3597 } 3598 3599 return false; 3600 } 3601 3602 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3603 bool AddressOf) { 3604 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3605 return; 3606 3607 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3608 // or union. 3609 MemberExpr *FieldME = ME; 3610 3611 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3612 3613 Expr *Base = ME; 3614 while (MemberExpr *SubME = 3615 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3616 3617 if (isa<VarDecl>(SubME->getMemberDecl())) 3618 return; 3619 3620 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3621 if (!FD->isAnonymousStructOrUnion()) 3622 FieldME = SubME; 3623 3624 if (!FieldME->getType().isPODType(S.Context)) 3625 AllPODFields = false; 3626 3627 Base = SubME->getBase(); 3628 } 3629 3630 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { 3631 Visit(Base); 3632 return; 3633 } 3634 3635 if (AddressOf && AllPODFields) 3636 return; 3637 3638 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3639 3640 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3641 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3642 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3643 } 3644 3645 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3646 QualType T = BaseCast->getType(); 3647 if (T->isPointerType() && 3648 BaseClasses.count(T->getPointeeType())) { 3649 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3650 << T->getPointeeType() << FoundVD; 3651 } 3652 } 3653 } 3654 3655 if (!Decls.count(FoundVD)) 3656 return; 3657 3658 const bool IsReference = FoundVD->getType()->isReferenceType(); 3659 3660 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3661 // Special checking for initializer lists. 3662 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3663 return; 3664 } 3665 } else { 3666 // Prevent double warnings on use of unbounded references. 3667 if (CheckReferenceOnly && !IsReference) 3668 return; 3669 } 3670 3671 unsigned diag = IsReference 3672 ? diag::warn_reference_field_is_uninit 3673 : diag::warn_field_is_uninit; 3674 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3675 if (Constructor) 3676 S.Diag(Constructor->getLocation(), 3677 diag::note_uninit_in_this_constructor) 3678 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3679 3680 } 3681 3682 void HandleValue(Expr *E, bool AddressOf) { 3683 E = E->IgnoreParens(); 3684 3685 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3686 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3687 AddressOf /*AddressOf*/); 3688 return; 3689 } 3690 3691 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3692 Visit(CO->getCond()); 3693 HandleValue(CO->getTrueExpr(), AddressOf); 3694 HandleValue(CO->getFalseExpr(), AddressOf); 3695 return; 3696 } 3697 3698 if (BinaryConditionalOperator *BCO = 3699 dyn_cast<BinaryConditionalOperator>(E)) { 3700 Visit(BCO->getCond()); 3701 HandleValue(BCO->getFalseExpr(), AddressOf); 3702 return; 3703 } 3704 3705 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3706 HandleValue(OVE->getSourceExpr(), AddressOf); 3707 return; 3708 } 3709 3710 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3711 switch (BO->getOpcode()) { 3712 default: 3713 break; 3714 case(BO_PtrMemD): 3715 case(BO_PtrMemI): 3716 HandleValue(BO->getLHS(), AddressOf); 3717 Visit(BO->getRHS()); 3718 return; 3719 case(BO_Comma): 3720 Visit(BO->getLHS()); 3721 HandleValue(BO->getRHS(), AddressOf); 3722 return; 3723 } 3724 } 3725 3726 Visit(E); 3727 } 3728 3729 void CheckInitListExpr(InitListExpr *ILE) { 3730 InitFieldIndex.push_back(0); 3731 for (auto Child : ILE->children()) { 3732 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3733 CheckInitListExpr(SubList); 3734 } else { 3735 Visit(Child); 3736 } 3737 ++InitFieldIndex.back(); 3738 } 3739 InitFieldIndex.pop_back(); 3740 } 3741 3742 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3743 FieldDecl *Field, const Type *BaseClass) { 3744 // Remove Decls that may have been initialized in the previous 3745 // initializer. 3746 for (ValueDecl* VD : DeclsToRemove) 3747 Decls.erase(VD); 3748 DeclsToRemove.clear(); 3749 3750 Constructor = FieldConstructor; 3751 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3752 3753 if (ILE && Field) { 3754 InitList = true; 3755 InitListFieldDecl = Field; 3756 InitFieldIndex.clear(); 3757 CheckInitListExpr(ILE); 3758 } else { 3759 InitList = false; 3760 Visit(E); 3761 } 3762 3763 if (Field) 3764 Decls.erase(Field); 3765 if (BaseClass) 3766 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3767 } 3768 3769 void VisitMemberExpr(MemberExpr *ME) { 3770 // All uses of unbounded reference fields will warn. 3771 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3772 } 3773 3774 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3775 if (E->getCastKind() == CK_LValueToRValue) { 3776 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3777 return; 3778 } 3779 3780 Inherited::VisitImplicitCastExpr(E); 3781 } 3782 3783 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3784 if (E->getConstructor()->isCopyConstructor()) { 3785 Expr *ArgExpr = E->getArg(0); 3786 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3787 if (ILE->getNumInits() == 1) 3788 ArgExpr = ILE->getInit(0); 3789 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3790 if (ICE->getCastKind() == CK_NoOp) 3791 ArgExpr = ICE->getSubExpr(); 3792 HandleValue(ArgExpr, false /*AddressOf*/); 3793 return; 3794 } 3795 Inherited::VisitCXXConstructExpr(E); 3796 } 3797 3798 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3799 Expr *Callee = E->getCallee(); 3800 if (isa<MemberExpr>(Callee)) { 3801 HandleValue(Callee, false /*AddressOf*/); 3802 for (auto Arg : E->arguments()) 3803 Visit(Arg); 3804 return; 3805 } 3806 3807 Inherited::VisitCXXMemberCallExpr(E); 3808 } 3809 3810 void VisitCallExpr(CallExpr *E) { 3811 // Treat std::move as a use. 3812 if (E->isCallToStdMove()) { 3813 HandleValue(E->getArg(0), /*AddressOf=*/false); 3814 return; 3815 } 3816 3817 Inherited::VisitCallExpr(E); 3818 } 3819 3820 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3821 Expr *Callee = E->getCallee(); 3822 3823 if (isa<UnresolvedLookupExpr>(Callee)) 3824 return Inherited::VisitCXXOperatorCallExpr(E); 3825 3826 Visit(Callee); 3827 for (auto Arg : E->arguments()) 3828 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3829 } 3830 3831 void VisitBinaryOperator(BinaryOperator *E) { 3832 // If a field assignment is detected, remove the field from the 3833 // uninitiailized field set. 3834 if (E->getOpcode() == BO_Assign) 3835 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3836 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3837 if (!FD->getType()->isReferenceType()) 3838 DeclsToRemove.push_back(FD); 3839 3840 if (E->isCompoundAssignmentOp()) { 3841 HandleValue(E->getLHS(), false /*AddressOf*/); 3842 Visit(E->getRHS()); 3843 return; 3844 } 3845 3846 Inherited::VisitBinaryOperator(E); 3847 } 3848 3849 void VisitUnaryOperator(UnaryOperator *E) { 3850 if (E->isIncrementDecrementOp()) { 3851 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3852 return; 3853 } 3854 if (E->getOpcode() == UO_AddrOf) { 3855 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 3856 HandleValue(ME->getBase(), true /*AddressOf*/); 3857 return; 3858 } 3859 } 3860 3861 Inherited::VisitUnaryOperator(E); 3862 } 3863 }; 3864 3865 // Diagnose value-uses of fields to initialize themselves, e.g. 3866 // foo(foo) 3867 // where foo is not also a parameter to the constructor. 3868 // Also diagnose across field uninitialized use such as 3869 // x(y), y(x) 3870 // TODO: implement -Wuninitialized and fold this into that framework. 3871 static void DiagnoseUninitializedFields( 3872 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 3873 3874 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 3875 Constructor->getLocation())) { 3876 return; 3877 } 3878 3879 if (Constructor->isInvalidDecl()) 3880 return; 3881 3882 const CXXRecordDecl *RD = Constructor->getParent(); 3883 3884 if (RD->isDependentContext()) 3885 return; 3886 3887 // Holds fields that are uninitialized. 3888 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 3889 3890 // At the beginning, all fields are uninitialized. 3891 for (auto *I : RD->decls()) { 3892 if (auto *FD = dyn_cast<FieldDecl>(I)) { 3893 UninitializedFields.insert(FD); 3894 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 3895 UninitializedFields.insert(IFD->getAnonField()); 3896 } 3897 } 3898 3899 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 3900 for (auto I : RD->bases()) 3901 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 3902 3903 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3904 return; 3905 3906 UninitializedFieldVisitor UninitializedChecker(SemaRef, 3907 UninitializedFields, 3908 UninitializedBaseClasses); 3909 3910 for (const auto *FieldInit : Constructor->inits()) { 3911 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3912 break; 3913 3914 Expr *InitExpr = FieldInit->getInit(); 3915 if (!InitExpr) 3916 continue; 3917 3918 if (CXXDefaultInitExpr *Default = 3919 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 3920 InitExpr = Default->getExpr(); 3921 if (!InitExpr) 3922 continue; 3923 // In class initializers will point to the constructor. 3924 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 3925 FieldInit->getAnyMember(), 3926 FieldInit->getBaseClass()); 3927 } else { 3928 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 3929 FieldInit->getAnyMember(), 3930 FieldInit->getBaseClass()); 3931 } 3932 } 3933 } 3934 } // namespace 3935 3936 /// Enter a new C++ default initializer scope. After calling this, the 3937 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 3938 /// parsing or instantiating the initializer failed. 3939 void Sema::ActOnStartCXXInClassMemberInitializer() { 3940 // Create a synthetic function scope to represent the call to the constructor 3941 // that notionally surrounds a use of this initializer. 3942 PushFunctionScope(); 3943 } 3944 3945 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 3946 if (!D.isFunctionDeclarator()) 3947 return; 3948 auto &FTI = D.getFunctionTypeInfo(); 3949 if (!FTI.Params) 3950 return; 3951 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 3952 FTI.NumParams)) { 3953 auto *ParamDecl = cast<NamedDecl>(Param.Param); 3954 if (ParamDecl->getDeclName()) 3955 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 3956 } 3957 } 3958 3959 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 3960 return ActOnRequiresClause(ConstraintExpr); 3961 } 3962 3963 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { 3964 if (ConstraintExpr.isInvalid()) 3965 return ExprError(); 3966 3967 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); 3968 if (ConstraintExpr.isInvalid()) 3969 return ExprError(); 3970 3971 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), 3972 UPPC_RequiresClause)) 3973 return ExprError(); 3974 3975 return ConstraintExpr; 3976 } 3977 3978 /// This is invoked after parsing an in-class initializer for a 3979 /// non-static C++ class member, and after instantiating an in-class initializer 3980 /// in a class template. Such actions are deferred until the class is complete. 3981 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 3982 SourceLocation InitLoc, 3983 Expr *InitExpr) { 3984 // Pop the notional constructor scope we created earlier. 3985 PopFunctionScopeInfo(nullptr, D); 3986 3987 FieldDecl *FD = dyn_cast<FieldDecl>(D); 3988 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && 3989 "must set init style when field is created"); 3990 3991 if (!InitExpr) { 3992 D->setInvalidDecl(); 3993 if (FD) 3994 FD->removeInClassInitializer(); 3995 return; 3996 } 3997 3998 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 3999 FD->setInvalidDecl(); 4000 FD->removeInClassInitializer(); 4001 return; 4002 } 4003 4004 ExprResult Init = InitExpr; 4005 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { 4006 InitializedEntity Entity = 4007 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 4008 InitializationKind Kind = 4009 FD->getInClassInitStyle() == ICIS_ListInit 4010 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 4011 InitExpr->getBeginLoc(), 4012 InitExpr->getEndLoc()) 4013 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 4014 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 4015 Init = Seq.Perform(*this, Entity, Kind, InitExpr); 4016 if (Init.isInvalid()) { 4017 FD->setInvalidDecl(); 4018 return; 4019 } 4020 } 4021 4022 // C++11 [class.base.init]p7: 4023 // The initialization of each base and member constitutes a 4024 // full-expression. 4025 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); 4026 if (Init.isInvalid()) { 4027 FD->setInvalidDecl(); 4028 return; 4029 } 4030 4031 InitExpr = Init.get(); 4032 4033 FD->setInClassInitializer(InitExpr); 4034 } 4035 4036 /// Find the direct and/or virtual base specifiers that 4037 /// correspond to the given base type, for use in base initialization 4038 /// within a constructor. 4039 static bool FindBaseInitializer(Sema &SemaRef, 4040 CXXRecordDecl *ClassDecl, 4041 QualType BaseType, 4042 const CXXBaseSpecifier *&DirectBaseSpec, 4043 const CXXBaseSpecifier *&VirtualBaseSpec) { 4044 // First, check for a direct base class. 4045 DirectBaseSpec = nullptr; 4046 for (const auto &Base : ClassDecl->bases()) { 4047 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 4048 // We found a direct base of this type. That's what we're 4049 // initializing. 4050 DirectBaseSpec = &Base; 4051 break; 4052 } 4053 } 4054 4055 // Check for a virtual base class. 4056 // FIXME: We might be able to short-circuit this if we know in advance that 4057 // there are no virtual bases. 4058 VirtualBaseSpec = nullptr; 4059 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 4060 // We haven't found a base yet; search the class hierarchy for a 4061 // virtual base class. 4062 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 4063 /*DetectVirtual=*/false); 4064 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 4065 SemaRef.Context.getTypeDeclType(ClassDecl), 4066 BaseType, Paths)) { 4067 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 4068 Path != Paths.end(); ++Path) { 4069 if (Path->back().Base->isVirtual()) { 4070 VirtualBaseSpec = Path->back().Base; 4071 break; 4072 } 4073 } 4074 } 4075 } 4076 4077 return DirectBaseSpec || VirtualBaseSpec; 4078 } 4079 4080 /// Handle a C++ member initializer using braced-init-list syntax. 4081 MemInitResult 4082 Sema::ActOnMemInitializer(Decl *ConstructorD, 4083 Scope *S, 4084 CXXScopeSpec &SS, 4085 IdentifierInfo *MemberOrBase, 4086 ParsedType TemplateTypeTy, 4087 const DeclSpec &DS, 4088 SourceLocation IdLoc, 4089 Expr *InitList, 4090 SourceLocation EllipsisLoc) { 4091 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4092 DS, IdLoc, InitList, 4093 EllipsisLoc); 4094 } 4095 4096 /// Handle a C++ member initializer using parentheses syntax. 4097 MemInitResult 4098 Sema::ActOnMemInitializer(Decl *ConstructorD, 4099 Scope *S, 4100 CXXScopeSpec &SS, 4101 IdentifierInfo *MemberOrBase, 4102 ParsedType TemplateTypeTy, 4103 const DeclSpec &DS, 4104 SourceLocation IdLoc, 4105 SourceLocation LParenLoc, 4106 ArrayRef<Expr *> Args, 4107 SourceLocation RParenLoc, 4108 SourceLocation EllipsisLoc) { 4109 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4110 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4111 DS, IdLoc, List, EllipsisLoc); 4112 } 4113 4114 namespace { 4115 4116 // Callback to only accept typo corrections that can be a valid C++ member 4117 // intializer: either a non-static field member or a base class. 4118 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4119 public: 4120 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4121 : ClassDecl(ClassDecl) {} 4122 4123 bool ValidateCandidate(const TypoCorrection &candidate) override { 4124 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4125 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4126 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4127 return isa<TypeDecl>(ND); 4128 } 4129 return false; 4130 } 4131 4132 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4133 return std::make_unique<MemInitializerValidatorCCC>(*this); 4134 } 4135 4136 private: 4137 CXXRecordDecl *ClassDecl; 4138 }; 4139 4140 } 4141 4142 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4143 CXXScopeSpec &SS, 4144 ParsedType TemplateTypeTy, 4145 IdentifierInfo *MemberOrBase) { 4146 if (SS.getScopeRep() || TemplateTypeTy) 4147 return nullptr; 4148 for (auto *D : ClassDecl->lookup(MemberOrBase)) 4149 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) 4150 return cast<ValueDecl>(D); 4151 return nullptr; 4152 } 4153 4154 /// Handle a C++ member initializer. 4155 MemInitResult 4156 Sema::BuildMemInitializer(Decl *ConstructorD, 4157 Scope *S, 4158 CXXScopeSpec &SS, 4159 IdentifierInfo *MemberOrBase, 4160 ParsedType TemplateTypeTy, 4161 const DeclSpec &DS, 4162 SourceLocation IdLoc, 4163 Expr *Init, 4164 SourceLocation EllipsisLoc) { 4165 ExprResult Res = CorrectDelayedTyposInExpr(Init); 4166 if (!Res.isUsable()) 4167 return true; 4168 Init = Res.get(); 4169 4170 if (!ConstructorD) 4171 return true; 4172 4173 AdjustDeclIfTemplate(ConstructorD); 4174 4175 CXXConstructorDecl *Constructor 4176 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4177 if (!Constructor) { 4178 // The user wrote a constructor initializer on a function that is 4179 // not a C++ constructor. Ignore the error for now, because we may 4180 // have more member initializers coming; we'll diagnose it just 4181 // once in ActOnMemInitializers. 4182 return true; 4183 } 4184 4185 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4186 4187 // C++ [class.base.init]p2: 4188 // Names in a mem-initializer-id are looked up in the scope of the 4189 // constructor's class and, if not found in that scope, are looked 4190 // up in the scope containing the constructor's definition. 4191 // [Note: if the constructor's class contains a member with the 4192 // same name as a direct or virtual base class of the class, a 4193 // mem-initializer-id naming the member or base class and composed 4194 // of a single identifier refers to the class member. A 4195 // mem-initializer-id for the hidden base class may be specified 4196 // using a qualified name. ] 4197 4198 // Look for a member, first. 4199 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4200 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4201 if (EllipsisLoc.isValid()) 4202 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4203 << MemberOrBase 4204 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4205 4206 return BuildMemberInitializer(Member, Init, IdLoc); 4207 } 4208 // It didn't name a member, so see if it names a class. 4209 QualType BaseType; 4210 TypeSourceInfo *TInfo = nullptr; 4211 4212 if (TemplateTypeTy) { 4213 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4214 if (BaseType.isNull()) 4215 return true; 4216 } else if (DS.getTypeSpecType() == TST_decltype) { 4217 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 4218 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4219 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4220 return true; 4221 } else { 4222 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4223 LookupParsedName(R, S, &SS); 4224 4225 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4226 if (!TyD) { 4227 if (R.isAmbiguous()) return true; 4228 4229 // We don't want access-control diagnostics here. 4230 R.suppressDiagnostics(); 4231 4232 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4233 bool NotUnknownSpecialization = false; 4234 DeclContext *DC = computeDeclContext(SS, false); 4235 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4236 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4237 4238 if (!NotUnknownSpecialization) { 4239 // When the scope specifier can refer to a member of an unknown 4240 // specialization, we take it as a type name. 4241 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 4242 SS.getWithLocInContext(Context), 4243 *MemberOrBase, IdLoc); 4244 if (BaseType.isNull()) 4245 return true; 4246 4247 TInfo = Context.CreateTypeSourceInfo(BaseType); 4248 DependentNameTypeLoc TL = 4249 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4250 if (!TL.isNull()) { 4251 TL.setNameLoc(IdLoc); 4252 TL.setElaboratedKeywordLoc(SourceLocation()); 4253 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4254 } 4255 4256 R.clear(); 4257 R.setLookupName(MemberOrBase); 4258 } 4259 } 4260 4261 // If no results were found, try to correct typos. 4262 TypoCorrection Corr; 4263 MemInitializerValidatorCCC CCC(ClassDecl); 4264 if (R.empty() && BaseType.isNull() && 4265 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4266 CCC, CTK_ErrorRecovery, ClassDecl))) { 4267 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4268 // We have found a non-static data member with a similar 4269 // name to what was typed; complain and initialize that 4270 // member. 4271 diagnoseTypo(Corr, 4272 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4273 << MemberOrBase << true); 4274 return BuildMemberInitializer(Member, Init, IdLoc); 4275 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4276 const CXXBaseSpecifier *DirectBaseSpec; 4277 const CXXBaseSpecifier *VirtualBaseSpec; 4278 if (FindBaseInitializer(*this, ClassDecl, 4279 Context.getTypeDeclType(Type), 4280 DirectBaseSpec, VirtualBaseSpec)) { 4281 // We have found a direct or virtual base class with a 4282 // similar name to what was typed; complain and initialize 4283 // that base class. 4284 diagnoseTypo(Corr, 4285 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4286 << MemberOrBase << false, 4287 PDiag() /*Suppress note, we provide our own.*/); 4288 4289 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4290 : VirtualBaseSpec; 4291 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4292 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4293 4294 TyD = Type; 4295 } 4296 } 4297 } 4298 4299 if (!TyD && BaseType.isNull()) { 4300 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4301 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4302 return true; 4303 } 4304 } 4305 4306 if (BaseType.isNull()) { 4307 BaseType = Context.getTypeDeclType(TyD); 4308 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4309 if (SS.isSet()) { 4310 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), 4311 BaseType); 4312 TInfo = Context.CreateTypeSourceInfo(BaseType); 4313 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4314 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4315 TL.setElaboratedKeywordLoc(SourceLocation()); 4316 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4317 } 4318 } 4319 } 4320 4321 if (!TInfo) 4322 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4323 4324 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4325 } 4326 4327 MemInitResult 4328 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4329 SourceLocation IdLoc) { 4330 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4331 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4332 assert((DirectMember || IndirectMember) && 4333 "Member must be a FieldDecl or IndirectFieldDecl"); 4334 4335 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4336 return true; 4337 4338 if (Member->isInvalidDecl()) 4339 return true; 4340 4341 MultiExprArg Args; 4342 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4343 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4344 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4345 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4346 } else { 4347 // Template instantiation doesn't reconstruct ParenListExprs for us. 4348 Args = Init; 4349 } 4350 4351 SourceRange InitRange = Init->getSourceRange(); 4352 4353 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4354 // Can't check initialization for a member of dependent type or when 4355 // any of the arguments are type-dependent expressions. 4356 DiscardCleanupsInEvaluationContext(); 4357 } else { 4358 bool InitList = false; 4359 if (isa<InitListExpr>(Init)) { 4360 InitList = true; 4361 Args = Init; 4362 } 4363 4364 // Initialize the member. 4365 InitializedEntity MemberEntity = 4366 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4367 : InitializedEntity::InitializeMember(IndirectMember, 4368 nullptr); 4369 InitializationKind Kind = 4370 InitList ? InitializationKind::CreateDirectList( 4371 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4372 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4373 InitRange.getEnd()); 4374 4375 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4376 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4377 nullptr); 4378 if (MemberInit.isInvalid()) 4379 return true; 4380 4381 // C++11 [class.base.init]p7: 4382 // The initialization of each base and member constitutes a 4383 // full-expression. 4384 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4385 /*DiscardedValue*/ false); 4386 if (MemberInit.isInvalid()) 4387 return true; 4388 4389 Init = MemberInit.get(); 4390 } 4391 4392 if (DirectMember) { 4393 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4394 InitRange.getBegin(), Init, 4395 InitRange.getEnd()); 4396 } else { 4397 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4398 InitRange.getBegin(), Init, 4399 InitRange.getEnd()); 4400 } 4401 } 4402 4403 MemInitResult 4404 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4405 CXXRecordDecl *ClassDecl) { 4406 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4407 if (!LangOpts.CPlusPlus11) 4408 return Diag(NameLoc, diag::err_delegating_ctor) 4409 << TInfo->getTypeLoc().getLocalSourceRange(); 4410 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4411 4412 bool InitList = true; 4413 MultiExprArg Args = Init; 4414 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4415 InitList = false; 4416 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4417 } 4418 4419 SourceRange InitRange = Init->getSourceRange(); 4420 // Initialize the object. 4421 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4422 QualType(ClassDecl->getTypeForDecl(), 0)); 4423 InitializationKind Kind = 4424 InitList ? InitializationKind::CreateDirectList( 4425 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4426 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4427 InitRange.getEnd()); 4428 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4429 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4430 Args, nullptr); 4431 if (DelegationInit.isInvalid()) 4432 return true; 4433 4434 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && 4435 "Delegating constructor with no target?"); 4436 4437 // C++11 [class.base.init]p7: 4438 // The initialization of each base and member constitutes a 4439 // full-expression. 4440 DelegationInit = ActOnFinishFullExpr( 4441 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4442 if (DelegationInit.isInvalid()) 4443 return true; 4444 4445 // If we are in a dependent context, template instantiation will 4446 // perform this type-checking again. Just save the arguments that we 4447 // received in a ParenListExpr. 4448 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4449 // of the information that we have about the base 4450 // initializer. However, deconstructing the ASTs is a dicey process, 4451 // and this approach is far more likely to get the corner cases right. 4452 if (CurContext->isDependentContext()) 4453 DelegationInit = Init; 4454 4455 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4456 DelegationInit.getAs<Expr>(), 4457 InitRange.getEnd()); 4458 } 4459 4460 MemInitResult 4461 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4462 Expr *Init, CXXRecordDecl *ClassDecl, 4463 SourceLocation EllipsisLoc) { 4464 SourceLocation BaseLoc 4465 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4466 4467 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4468 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4469 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4470 4471 // C++ [class.base.init]p2: 4472 // [...] Unless the mem-initializer-id names a nonstatic data 4473 // member of the constructor's class or a direct or virtual base 4474 // of that class, the mem-initializer is ill-formed. A 4475 // mem-initializer-list can initialize a base class using any 4476 // name that denotes that base class type. 4477 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); 4478 4479 SourceRange InitRange = Init->getSourceRange(); 4480 if (EllipsisLoc.isValid()) { 4481 // This is a pack expansion. 4482 if (!BaseType->containsUnexpandedParameterPack()) { 4483 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4484 << SourceRange(BaseLoc, InitRange.getEnd()); 4485 4486 EllipsisLoc = SourceLocation(); 4487 } 4488 } else { 4489 // Check for any unexpanded parameter packs. 4490 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4491 return true; 4492 4493 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4494 return true; 4495 } 4496 4497 // Check for direct and virtual base classes. 4498 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4499 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4500 if (!Dependent) { 4501 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4502 BaseType)) 4503 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4504 4505 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4506 VirtualBaseSpec); 4507 4508 // C++ [base.class.init]p2: 4509 // Unless the mem-initializer-id names a nonstatic data member of the 4510 // constructor's class or a direct or virtual base of that class, the 4511 // mem-initializer is ill-formed. 4512 if (!DirectBaseSpec && !VirtualBaseSpec) { 4513 // If the class has any dependent bases, then it's possible that 4514 // one of those types will resolve to the same type as 4515 // BaseType. Therefore, just treat this as a dependent base 4516 // class initialization. FIXME: Should we try to check the 4517 // initialization anyway? It seems odd. 4518 if (ClassDecl->hasAnyDependentBases()) 4519 Dependent = true; 4520 else 4521 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4522 << BaseType << Context.getTypeDeclType(ClassDecl) 4523 << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4524 } 4525 } 4526 4527 if (Dependent) { 4528 DiscardCleanupsInEvaluationContext(); 4529 4530 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4531 /*IsVirtual=*/false, 4532 InitRange.getBegin(), Init, 4533 InitRange.getEnd(), EllipsisLoc); 4534 } 4535 4536 // C++ [base.class.init]p2: 4537 // If a mem-initializer-id is ambiguous because it designates both 4538 // a direct non-virtual base class and an inherited virtual base 4539 // class, the mem-initializer is ill-formed. 4540 if (DirectBaseSpec && VirtualBaseSpec) 4541 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4542 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4543 4544 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4545 if (!BaseSpec) 4546 BaseSpec = VirtualBaseSpec; 4547 4548 // Initialize the base. 4549 bool InitList = true; 4550 MultiExprArg Args = Init; 4551 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4552 InitList = false; 4553 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4554 } 4555 4556 InitializedEntity BaseEntity = 4557 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4558 InitializationKind Kind = 4559 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4560 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4561 InitRange.getEnd()); 4562 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4563 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4564 if (BaseInit.isInvalid()) 4565 return true; 4566 4567 // C++11 [class.base.init]p7: 4568 // The initialization of each base and member constitutes a 4569 // full-expression. 4570 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4571 /*DiscardedValue*/ false); 4572 if (BaseInit.isInvalid()) 4573 return true; 4574 4575 // If we are in a dependent context, template instantiation will 4576 // perform this type-checking again. Just save the arguments that we 4577 // received in a ParenListExpr. 4578 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4579 // of the information that we have about the base 4580 // initializer. However, deconstructing the ASTs is a dicey process, 4581 // and this approach is far more likely to get the corner cases right. 4582 if (CurContext->isDependentContext()) 4583 BaseInit = Init; 4584 4585 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4586 BaseSpec->isVirtual(), 4587 InitRange.getBegin(), 4588 BaseInit.getAs<Expr>(), 4589 InitRange.getEnd(), EllipsisLoc); 4590 } 4591 4592 // Create a static_cast\<T&&>(expr). 4593 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { 4594 if (T.isNull()) T = E->getType(); 4595 QualType TargetType = SemaRef.BuildReferenceType( 4596 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); 4597 SourceLocation ExprLoc = E->getBeginLoc(); 4598 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4599 TargetType, ExprLoc); 4600 4601 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4602 SourceRange(ExprLoc, ExprLoc), 4603 E->getSourceRange()).get(); 4604 } 4605 4606 /// ImplicitInitializerKind - How an implicit base or member initializer should 4607 /// initialize its base or member. 4608 enum ImplicitInitializerKind { 4609 IIK_Default, 4610 IIK_Copy, 4611 IIK_Move, 4612 IIK_Inherit 4613 }; 4614 4615 static bool 4616 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4617 ImplicitInitializerKind ImplicitInitKind, 4618 CXXBaseSpecifier *BaseSpec, 4619 bool IsInheritedVirtualBase, 4620 CXXCtorInitializer *&CXXBaseInit) { 4621 InitializedEntity InitEntity 4622 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4623 IsInheritedVirtualBase); 4624 4625 ExprResult BaseInit; 4626 4627 switch (ImplicitInitKind) { 4628 case IIK_Inherit: 4629 case IIK_Default: { 4630 InitializationKind InitKind 4631 = InitializationKind::CreateDefault(Constructor->getLocation()); 4632 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4633 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4634 break; 4635 } 4636 4637 case IIK_Move: 4638 case IIK_Copy: { 4639 bool Moving = ImplicitInitKind == IIK_Move; 4640 ParmVarDecl *Param = Constructor->getParamDecl(0); 4641 QualType ParamType = Param->getType().getNonReferenceType(); 4642 4643 Expr *CopyCtorArg = 4644 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4645 SourceLocation(), Param, false, 4646 Constructor->getLocation(), ParamType, 4647 VK_LValue, nullptr); 4648 4649 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4650 4651 // Cast to the base class to avoid ambiguities. 4652 QualType ArgTy = 4653 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4654 ParamType.getQualifiers()); 4655 4656 if (Moving) { 4657 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4658 } 4659 4660 CXXCastPath BasePath; 4661 BasePath.push_back(BaseSpec); 4662 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4663 CK_UncheckedDerivedToBase, 4664 Moving ? VK_XValue : VK_LValue, 4665 &BasePath).get(); 4666 4667 InitializationKind InitKind 4668 = InitializationKind::CreateDirect(Constructor->getLocation(), 4669 SourceLocation(), SourceLocation()); 4670 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4671 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4672 break; 4673 } 4674 } 4675 4676 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4677 if (BaseInit.isInvalid()) 4678 return true; 4679 4680 CXXBaseInit = 4681 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4682 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4683 SourceLocation()), 4684 BaseSpec->isVirtual(), 4685 SourceLocation(), 4686 BaseInit.getAs<Expr>(), 4687 SourceLocation(), 4688 SourceLocation()); 4689 4690 return false; 4691 } 4692 4693 static bool RefersToRValueRef(Expr *MemRef) { 4694 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4695 return Referenced->getType()->isRValueReferenceType(); 4696 } 4697 4698 static bool 4699 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4700 ImplicitInitializerKind ImplicitInitKind, 4701 FieldDecl *Field, IndirectFieldDecl *Indirect, 4702 CXXCtorInitializer *&CXXMemberInit) { 4703 if (Field->isInvalidDecl()) 4704 return true; 4705 4706 SourceLocation Loc = Constructor->getLocation(); 4707 4708 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4709 bool Moving = ImplicitInitKind == IIK_Move; 4710 ParmVarDecl *Param = Constructor->getParamDecl(0); 4711 QualType ParamType = Param->getType().getNonReferenceType(); 4712 4713 // Suppress copying zero-width bitfields. 4714 if (Field->isZeroLengthBitField(SemaRef.Context)) 4715 return false; 4716 4717 Expr *MemberExprBase = 4718 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4719 SourceLocation(), Param, false, 4720 Loc, ParamType, VK_LValue, nullptr); 4721 4722 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4723 4724 if (Moving) { 4725 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4726 } 4727 4728 // Build a reference to this field within the parameter. 4729 CXXScopeSpec SS; 4730 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4731 Sema::LookupMemberName); 4732 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4733 : cast<ValueDecl>(Field), AS_public); 4734 MemberLookup.resolveKind(); 4735 ExprResult CtorArg 4736 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4737 ParamType, Loc, 4738 /*IsArrow=*/false, 4739 SS, 4740 /*TemplateKWLoc=*/SourceLocation(), 4741 /*FirstQualifierInScope=*/nullptr, 4742 MemberLookup, 4743 /*TemplateArgs=*/nullptr, 4744 /*S*/nullptr); 4745 if (CtorArg.isInvalid()) 4746 return true; 4747 4748 // C++11 [class.copy]p15: 4749 // - if a member m has rvalue reference type T&&, it is direct-initialized 4750 // with static_cast<T&&>(x.m); 4751 if (RefersToRValueRef(CtorArg.get())) { 4752 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4753 } 4754 4755 InitializedEntity Entity = 4756 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4757 /*Implicit*/ true) 4758 : InitializedEntity::InitializeMember(Field, nullptr, 4759 /*Implicit*/ true); 4760 4761 // Direct-initialize to use the copy constructor. 4762 InitializationKind InitKind = 4763 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4764 4765 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4766 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4767 ExprResult MemberInit = 4768 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4769 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4770 if (MemberInit.isInvalid()) 4771 return true; 4772 4773 if (Indirect) 4774 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4775 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4776 else 4777 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4778 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4779 return false; 4780 } 4781 4782 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 4783 "Unhandled implicit init kind!"); 4784 4785 QualType FieldBaseElementType = 4786 SemaRef.Context.getBaseElementType(Field->getType()); 4787 4788 if (FieldBaseElementType->isRecordType()) { 4789 InitializedEntity InitEntity = 4790 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4791 /*Implicit*/ true) 4792 : InitializedEntity::InitializeMember(Field, nullptr, 4793 /*Implicit*/ true); 4794 InitializationKind InitKind = 4795 InitializationKind::CreateDefault(Loc); 4796 4797 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4798 ExprResult MemberInit = 4799 InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4800 4801 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4802 if (MemberInit.isInvalid()) 4803 return true; 4804 4805 if (Indirect) 4806 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4807 Indirect, Loc, 4808 Loc, 4809 MemberInit.get(), 4810 Loc); 4811 else 4812 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4813 Field, Loc, Loc, 4814 MemberInit.get(), 4815 Loc); 4816 return false; 4817 } 4818 4819 if (!Field->getParent()->isUnion()) { 4820 if (FieldBaseElementType->isReferenceType()) { 4821 SemaRef.Diag(Constructor->getLocation(), 4822 diag::err_uninitialized_member_in_ctor) 4823 << (int)Constructor->isImplicit() 4824 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4825 << 0 << Field->getDeclName(); 4826 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4827 return true; 4828 } 4829 4830 if (FieldBaseElementType.isConstQualified()) { 4831 SemaRef.Diag(Constructor->getLocation(), 4832 diag::err_uninitialized_member_in_ctor) 4833 << (int)Constructor->isImplicit() 4834 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4835 << 1 << Field->getDeclName(); 4836 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4837 return true; 4838 } 4839 } 4840 4841 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 4842 // ARC and Weak: 4843 // Default-initialize Objective-C pointers to NULL. 4844 CXXMemberInit 4845 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 4846 Loc, Loc, 4847 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 4848 Loc); 4849 return false; 4850 } 4851 4852 // Nothing to initialize. 4853 CXXMemberInit = nullptr; 4854 return false; 4855 } 4856 4857 namespace { 4858 struct BaseAndFieldInfo { 4859 Sema &S; 4860 CXXConstructorDecl *Ctor; 4861 bool AnyErrorsInInits; 4862 ImplicitInitializerKind IIK; 4863 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 4864 SmallVector<CXXCtorInitializer*, 8> AllToInit; 4865 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 4866 4867 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 4868 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 4869 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 4870 if (Ctor->getInheritedConstructor()) 4871 IIK = IIK_Inherit; 4872 else if (Generated && Ctor->isCopyConstructor()) 4873 IIK = IIK_Copy; 4874 else if (Generated && Ctor->isMoveConstructor()) 4875 IIK = IIK_Move; 4876 else 4877 IIK = IIK_Default; 4878 } 4879 4880 bool isImplicitCopyOrMove() const { 4881 switch (IIK) { 4882 case IIK_Copy: 4883 case IIK_Move: 4884 return true; 4885 4886 case IIK_Default: 4887 case IIK_Inherit: 4888 return false; 4889 } 4890 4891 llvm_unreachable("Invalid ImplicitInitializerKind!"); 4892 } 4893 4894 bool addFieldInitializer(CXXCtorInitializer *Init) { 4895 AllToInit.push_back(Init); 4896 4897 // Check whether this initializer makes the field "used". 4898 if (Init->getInit()->HasSideEffects(S.Context)) 4899 S.UnusedPrivateFields.remove(Init->getAnyMember()); 4900 4901 return false; 4902 } 4903 4904 bool isInactiveUnionMember(FieldDecl *Field) { 4905 RecordDecl *Record = Field->getParent(); 4906 if (!Record->isUnion()) 4907 return false; 4908 4909 if (FieldDecl *Active = 4910 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 4911 return Active != Field->getCanonicalDecl(); 4912 4913 // In an implicit copy or move constructor, ignore any in-class initializer. 4914 if (isImplicitCopyOrMove()) 4915 return true; 4916 4917 // If there's no explicit initialization, the field is active only if it 4918 // has an in-class initializer... 4919 if (Field->hasInClassInitializer()) 4920 return false; 4921 // ... or it's an anonymous struct or union whose class has an in-class 4922 // initializer. 4923 if (!Field->isAnonymousStructOrUnion()) 4924 return true; 4925 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 4926 return !FieldRD->hasInClassInitializer(); 4927 } 4928 4929 /// Determine whether the given field is, or is within, a union member 4930 /// that is inactive (because there was an initializer given for a different 4931 /// member of the union, or because the union was not initialized at all). 4932 bool isWithinInactiveUnionMember(FieldDecl *Field, 4933 IndirectFieldDecl *Indirect) { 4934 if (!Indirect) 4935 return isInactiveUnionMember(Field); 4936 4937 for (auto *C : Indirect->chain()) { 4938 FieldDecl *Field = dyn_cast<FieldDecl>(C); 4939 if (Field && isInactiveUnionMember(Field)) 4940 return true; 4941 } 4942 return false; 4943 } 4944 }; 4945 } 4946 4947 /// Determine whether the given type is an incomplete or zero-lenfgth 4948 /// array type. 4949 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 4950 if (T->isIncompleteArrayType()) 4951 return true; 4952 4953 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 4954 if (!ArrayT->getSize()) 4955 return true; 4956 4957 T = ArrayT->getElementType(); 4958 } 4959 4960 return false; 4961 } 4962 4963 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 4964 FieldDecl *Field, 4965 IndirectFieldDecl *Indirect = nullptr) { 4966 if (Field->isInvalidDecl()) 4967 return false; 4968 4969 // Overwhelmingly common case: we have a direct initializer for this field. 4970 if (CXXCtorInitializer *Init = 4971 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 4972 return Info.addFieldInitializer(Init); 4973 4974 // C++11 [class.base.init]p8: 4975 // if the entity is a non-static data member that has a 4976 // brace-or-equal-initializer and either 4977 // -- the constructor's class is a union and no other variant member of that 4978 // union is designated by a mem-initializer-id or 4979 // -- the constructor's class is not a union, and, if the entity is a member 4980 // of an anonymous union, no other member of that union is designated by 4981 // a mem-initializer-id, 4982 // the entity is initialized as specified in [dcl.init]. 4983 // 4984 // We also apply the same rules to handle anonymous structs within anonymous 4985 // unions. 4986 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 4987 return false; 4988 4989 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 4990 ExprResult DIE = 4991 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 4992 if (DIE.isInvalid()) 4993 return true; 4994 4995 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 4996 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 4997 4998 CXXCtorInitializer *Init; 4999 if (Indirect) 5000 Init = new (SemaRef.Context) 5001 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 5002 SourceLocation(), DIE.get(), SourceLocation()); 5003 else 5004 Init = new (SemaRef.Context) 5005 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 5006 SourceLocation(), DIE.get(), SourceLocation()); 5007 return Info.addFieldInitializer(Init); 5008 } 5009 5010 // Don't initialize incomplete or zero-length arrays. 5011 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 5012 return false; 5013 5014 // Don't try to build an implicit initializer if there were semantic 5015 // errors in any of the initializers (and therefore we might be 5016 // missing some that the user actually wrote). 5017 if (Info.AnyErrorsInInits) 5018 return false; 5019 5020 CXXCtorInitializer *Init = nullptr; 5021 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 5022 Indirect, Init)) 5023 return true; 5024 5025 if (!Init) 5026 return false; 5027 5028 return Info.addFieldInitializer(Init); 5029 } 5030 5031 bool 5032 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 5033 CXXCtorInitializer *Initializer) { 5034 assert(Initializer->isDelegatingInitializer()); 5035 Constructor->setNumCtorInitializers(1); 5036 CXXCtorInitializer **initializer = 5037 new (Context) CXXCtorInitializer*[1]; 5038 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 5039 Constructor->setCtorInitializers(initializer); 5040 5041 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 5042 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 5043 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 5044 } 5045 5046 DelegatingCtorDecls.push_back(Constructor); 5047 5048 DiagnoseUninitializedFields(*this, Constructor); 5049 5050 return false; 5051 } 5052 5053 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 5054 ArrayRef<CXXCtorInitializer *> Initializers) { 5055 if (Constructor->isDependentContext()) { 5056 // Just store the initializers as written, they will be checked during 5057 // instantiation. 5058 if (!Initializers.empty()) { 5059 Constructor->setNumCtorInitializers(Initializers.size()); 5060 CXXCtorInitializer **baseOrMemberInitializers = 5061 new (Context) CXXCtorInitializer*[Initializers.size()]; 5062 memcpy(baseOrMemberInitializers, Initializers.data(), 5063 Initializers.size() * sizeof(CXXCtorInitializer*)); 5064 Constructor->setCtorInitializers(baseOrMemberInitializers); 5065 } 5066 5067 // Let template instantiation know whether we had errors. 5068 if (AnyErrors) 5069 Constructor->setInvalidDecl(); 5070 5071 return false; 5072 } 5073 5074 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 5075 5076 // We need to build the initializer AST according to order of construction 5077 // and not what user specified in the Initializers list. 5078 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 5079 if (!ClassDecl) 5080 return true; 5081 5082 bool HadError = false; 5083 5084 for (unsigned i = 0; i < Initializers.size(); i++) { 5085 CXXCtorInitializer *Member = Initializers[i]; 5086 5087 if (Member->isBaseInitializer()) 5088 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5089 else { 5090 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5091 5092 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5093 for (auto *C : F->chain()) { 5094 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5095 if (FD && FD->getParent()->isUnion()) 5096 Info.ActiveUnionMember.insert(std::make_pair( 5097 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5098 } 5099 } else if (FieldDecl *FD = Member->getMember()) { 5100 if (FD->getParent()->isUnion()) 5101 Info.ActiveUnionMember.insert(std::make_pair( 5102 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5103 } 5104 } 5105 } 5106 5107 // Keep track of the direct virtual bases. 5108 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5109 for (auto &I : ClassDecl->bases()) { 5110 if (I.isVirtual()) 5111 DirectVBases.insert(&I); 5112 } 5113 5114 // Push virtual bases before others. 5115 for (auto &VBase : ClassDecl->vbases()) { 5116 if (CXXCtorInitializer *Value 5117 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5118 // [class.base.init]p7, per DR257: 5119 // A mem-initializer where the mem-initializer-id names a virtual base 5120 // class is ignored during execution of a constructor of any class that 5121 // is not the most derived class. 5122 if (ClassDecl->isAbstract()) { 5123 // FIXME: Provide a fixit to remove the base specifier. This requires 5124 // tracking the location of the associated comma for a base specifier. 5125 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5126 << VBase.getType() << ClassDecl; 5127 DiagnoseAbstractType(ClassDecl); 5128 } 5129 5130 Info.AllToInit.push_back(Value); 5131 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5132 // [class.base.init]p8, per DR257: 5133 // If a given [...] base class is not named by a mem-initializer-id 5134 // [...] and the entity is not a virtual base class of an abstract 5135 // class, then [...] the entity is default-initialized. 5136 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5137 CXXCtorInitializer *CXXBaseInit; 5138 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5139 &VBase, IsInheritedVirtualBase, 5140 CXXBaseInit)) { 5141 HadError = true; 5142 continue; 5143 } 5144 5145 Info.AllToInit.push_back(CXXBaseInit); 5146 } 5147 } 5148 5149 // Non-virtual bases. 5150 for (auto &Base : ClassDecl->bases()) { 5151 // Virtuals are in the virtual base list and already constructed. 5152 if (Base.isVirtual()) 5153 continue; 5154 5155 if (CXXCtorInitializer *Value 5156 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5157 Info.AllToInit.push_back(Value); 5158 } else if (!AnyErrors) { 5159 CXXCtorInitializer *CXXBaseInit; 5160 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5161 &Base, /*IsInheritedVirtualBase=*/false, 5162 CXXBaseInit)) { 5163 HadError = true; 5164 continue; 5165 } 5166 5167 Info.AllToInit.push_back(CXXBaseInit); 5168 } 5169 } 5170 5171 // Fields. 5172 for (auto *Mem : ClassDecl->decls()) { 5173 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5174 // C++ [class.bit]p2: 5175 // A declaration for a bit-field that omits the identifier declares an 5176 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5177 // initialized. 5178 if (F->isUnnamedBitfield()) 5179 continue; 5180 5181 // If we're not generating the implicit copy/move constructor, then we'll 5182 // handle anonymous struct/union fields based on their individual 5183 // indirect fields. 5184 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5185 continue; 5186 5187 if (CollectFieldInitializer(*this, Info, F)) 5188 HadError = true; 5189 continue; 5190 } 5191 5192 // Beyond this point, we only consider default initialization. 5193 if (Info.isImplicitCopyOrMove()) 5194 continue; 5195 5196 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5197 if (F->getType()->isIncompleteArrayType()) { 5198 assert(ClassDecl->hasFlexibleArrayMember() && 5199 "Incomplete array type is not valid"); 5200 continue; 5201 } 5202 5203 // Initialize each field of an anonymous struct individually. 5204 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5205 HadError = true; 5206 5207 continue; 5208 } 5209 } 5210 5211 unsigned NumInitializers = Info.AllToInit.size(); 5212 if (NumInitializers > 0) { 5213 Constructor->setNumCtorInitializers(NumInitializers); 5214 CXXCtorInitializer **baseOrMemberInitializers = 5215 new (Context) CXXCtorInitializer*[NumInitializers]; 5216 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5217 NumInitializers * sizeof(CXXCtorInitializer*)); 5218 Constructor->setCtorInitializers(baseOrMemberInitializers); 5219 5220 // Constructors implicitly reference the base and member 5221 // destructors. 5222 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5223 Constructor->getParent()); 5224 } 5225 5226 return HadError; 5227 } 5228 5229 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5230 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5231 const RecordDecl *RD = RT->getDecl(); 5232 if (RD->isAnonymousStructOrUnion()) { 5233 for (auto *Field : RD->fields()) 5234 PopulateKeysForFields(Field, IdealInits); 5235 return; 5236 } 5237 } 5238 IdealInits.push_back(Field->getCanonicalDecl()); 5239 } 5240 5241 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5242 return Context.getCanonicalType(BaseType).getTypePtr(); 5243 } 5244 5245 static const void *GetKeyForMember(ASTContext &Context, 5246 CXXCtorInitializer *Member) { 5247 if (!Member->isAnyMemberInitializer()) 5248 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5249 5250 return Member->getAnyMember()->getCanonicalDecl(); 5251 } 5252 5253 static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, 5254 const CXXCtorInitializer *Previous, 5255 const CXXCtorInitializer *Current) { 5256 if (Previous->isAnyMemberInitializer()) 5257 Diag << 0 << Previous->getAnyMember(); 5258 else 5259 Diag << 1 << Previous->getTypeSourceInfo()->getType(); 5260 5261 if (Current->isAnyMemberInitializer()) 5262 Diag << 0 << Current->getAnyMember(); 5263 else 5264 Diag << 1 << Current->getTypeSourceInfo()->getType(); 5265 } 5266 5267 static void DiagnoseBaseOrMemInitializerOrder( 5268 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5269 ArrayRef<CXXCtorInitializer *> Inits) { 5270 if (Constructor->getDeclContext()->isDependentContext()) 5271 return; 5272 5273 // Don't check initializers order unless the warning is enabled at the 5274 // location of at least one initializer. 5275 bool ShouldCheckOrder = false; 5276 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5277 CXXCtorInitializer *Init = Inits[InitIndex]; 5278 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5279 Init->getSourceLocation())) { 5280 ShouldCheckOrder = true; 5281 break; 5282 } 5283 } 5284 if (!ShouldCheckOrder) 5285 return; 5286 5287 // Build the list of bases and members in the order that they'll 5288 // actually be initialized. The explicit initializers should be in 5289 // this same order but may be missing things. 5290 SmallVector<const void*, 32> IdealInitKeys; 5291 5292 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5293 5294 // 1. Virtual bases. 5295 for (const auto &VBase : ClassDecl->vbases()) 5296 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5297 5298 // 2. Non-virtual bases. 5299 for (const auto &Base : ClassDecl->bases()) { 5300 if (Base.isVirtual()) 5301 continue; 5302 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5303 } 5304 5305 // 3. Direct fields. 5306 for (auto *Field : ClassDecl->fields()) { 5307 if (Field->isUnnamedBitfield()) 5308 continue; 5309 5310 PopulateKeysForFields(Field, IdealInitKeys); 5311 } 5312 5313 unsigned NumIdealInits = IdealInitKeys.size(); 5314 unsigned IdealIndex = 0; 5315 5316 // Track initializers that are in an incorrect order for either a warning or 5317 // note if multiple ones occur. 5318 SmallVector<unsigned> WarnIndexes; 5319 // Correlates the index of an initializer in the init-list to the index of 5320 // the field/base in the class. 5321 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; 5322 5323 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5324 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); 5325 5326 // Scan forward to try to find this initializer in the idealized 5327 // initializers list. 5328 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5329 if (InitKey == IdealInitKeys[IdealIndex]) 5330 break; 5331 5332 // If we didn't find this initializer, it must be because we 5333 // scanned past it on a previous iteration. That can only 5334 // happen if we're out of order; emit a warning. 5335 if (IdealIndex == NumIdealInits && InitIndex) { 5336 WarnIndexes.push_back(InitIndex); 5337 5338 // Move back to the initializer's location in the ideal list. 5339 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5340 if (InitKey == IdealInitKeys[IdealIndex]) 5341 break; 5342 5343 assert(IdealIndex < NumIdealInits && 5344 "initializer not found in initializer list"); 5345 } 5346 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); 5347 } 5348 5349 if (WarnIndexes.empty()) 5350 return; 5351 5352 // Sort based on the ideal order, first in the pair. 5353 llvm::sort(CorrelatedInitOrder, 5354 [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; }); 5355 5356 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to 5357 // emit the diagnostic before we can try adding notes. 5358 { 5359 Sema::SemaDiagnosticBuilder D = SemaRef.Diag( 5360 Inits[WarnIndexes.front() - 1]->getSourceLocation(), 5361 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order 5362 : diag::warn_some_initializers_out_of_order); 5363 5364 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { 5365 if (CorrelatedInitOrder[I].second == I) 5366 continue; 5367 // Ideally we would be using InsertFromRange here, but clang doesn't 5368 // appear to handle InsertFromRange correctly when the source range is 5369 // modified by another fix-it. 5370 D << FixItHint::CreateReplacement( 5371 Inits[I]->getSourceRange(), 5372 Lexer::getSourceText( 5373 CharSourceRange::getTokenRange( 5374 Inits[CorrelatedInitOrder[I].second]->getSourceRange()), 5375 SemaRef.getSourceManager(), SemaRef.getLangOpts())); 5376 } 5377 5378 // If there is only 1 item out of order, the warning expects the name and 5379 // type of each being added to it. 5380 if (WarnIndexes.size() == 1) { 5381 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], 5382 Inits[WarnIndexes.front()]); 5383 return; 5384 } 5385 } 5386 // More than 1 item to warn, create notes letting the user know which ones 5387 // are bad. 5388 for (unsigned WarnIndex : WarnIndexes) { 5389 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; 5390 auto D = SemaRef.Diag(PrevInit->getSourceLocation(), 5391 diag::note_initializer_out_of_order); 5392 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); 5393 D << PrevInit->getSourceRange(); 5394 } 5395 } 5396 5397 namespace { 5398 bool CheckRedundantInit(Sema &S, 5399 CXXCtorInitializer *Init, 5400 CXXCtorInitializer *&PrevInit) { 5401 if (!PrevInit) { 5402 PrevInit = Init; 5403 return false; 5404 } 5405 5406 if (FieldDecl *Field = Init->getAnyMember()) 5407 S.Diag(Init->getSourceLocation(), 5408 diag::err_multiple_mem_initialization) 5409 << Field->getDeclName() 5410 << Init->getSourceRange(); 5411 else { 5412 const Type *BaseClass = Init->getBaseClass(); 5413 assert(BaseClass && "neither field nor base"); 5414 S.Diag(Init->getSourceLocation(), 5415 diag::err_multiple_base_initialization) 5416 << QualType(BaseClass, 0) 5417 << Init->getSourceRange(); 5418 } 5419 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5420 << 0 << PrevInit->getSourceRange(); 5421 5422 return true; 5423 } 5424 5425 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5426 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5427 5428 bool CheckRedundantUnionInit(Sema &S, 5429 CXXCtorInitializer *Init, 5430 RedundantUnionMap &Unions) { 5431 FieldDecl *Field = Init->getAnyMember(); 5432 RecordDecl *Parent = Field->getParent(); 5433 NamedDecl *Child = Field; 5434 5435 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5436 if (Parent->isUnion()) { 5437 UnionEntry &En = Unions[Parent]; 5438 if (En.first && En.first != Child) { 5439 S.Diag(Init->getSourceLocation(), 5440 diag::err_multiple_mem_union_initialization) 5441 << Field->getDeclName() 5442 << Init->getSourceRange(); 5443 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5444 << 0 << En.second->getSourceRange(); 5445 return true; 5446 } 5447 if (!En.first) { 5448 En.first = Child; 5449 En.second = Init; 5450 } 5451 if (!Parent->isAnonymousStructOrUnion()) 5452 return false; 5453 } 5454 5455 Child = Parent; 5456 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5457 } 5458 5459 return false; 5460 } 5461 } // namespace 5462 5463 /// ActOnMemInitializers - Handle the member initializers for a constructor. 5464 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5465 SourceLocation ColonLoc, 5466 ArrayRef<CXXCtorInitializer*> MemInits, 5467 bool AnyErrors) { 5468 if (!ConstructorDecl) 5469 return; 5470 5471 AdjustDeclIfTemplate(ConstructorDecl); 5472 5473 CXXConstructorDecl *Constructor 5474 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5475 5476 if (!Constructor) { 5477 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5478 return; 5479 } 5480 5481 // Mapping for the duplicate initializers check. 5482 // For member initializers, this is keyed with a FieldDecl*. 5483 // For base initializers, this is keyed with a Type*. 5484 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5485 5486 // Mapping for the inconsistent anonymous-union initializers check. 5487 RedundantUnionMap MemberUnions; 5488 5489 bool HadError = false; 5490 for (unsigned i = 0; i < MemInits.size(); i++) { 5491 CXXCtorInitializer *Init = MemInits[i]; 5492 5493 // Set the source order index. 5494 Init->setSourceOrder(i); 5495 5496 if (Init->isAnyMemberInitializer()) { 5497 const void *Key = GetKeyForMember(Context, Init); 5498 if (CheckRedundantInit(*this, Init, Members[Key]) || 5499 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5500 HadError = true; 5501 } else if (Init->isBaseInitializer()) { 5502 const void *Key = GetKeyForMember(Context, Init); 5503 if (CheckRedundantInit(*this, Init, Members[Key])) 5504 HadError = true; 5505 } else { 5506 assert(Init->isDelegatingInitializer()); 5507 // This must be the only initializer 5508 if (MemInits.size() != 1) { 5509 Diag(Init->getSourceLocation(), 5510 diag::err_delegating_initializer_alone) 5511 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5512 // We will treat this as being the only initializer. 5513 } 5514 SetDelegatingInitializer(Constructor, MemInits[i]); 5515 // Return immediately as the initializer is set. 5516 return; 5517 } 5518 } 5519 5520 if (HadError) 5521 return; 5522 5523 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5524 5525 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5526 5527 DiagnoseUninitializedFields(*this, Constructor); 5528 } 5529 5530 void 5531 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5532 CXXRecordDecl *ClassDecl) { 5533 // Ignore dependent contexts. Also ignore unions, since their members never 5534 // have destructors implicitly called. 5535 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5536 return; 5537 5538 // FIXME: all the access-control diagnostics are positioned on the 5539 // field/base declaration. That's probably good; that said, the 5540 // user might reasonably want to know why the destructor is being 5541 // emitted, and we currently don't say. 5542 5543 // Non-static data members. 5544 for (auto *Field : ClassDecl->fields()) { 5545 if (Field->isInvalidDecl()) 5546 continue; 5547 5548 // Don't destroy incomplete or zero-length arrays. 5549 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5550 continue; 5551 5552 QualType FieldType = Context.getBaseElementType(Field->getType()); 5553 5554 const RecordType* RT = FieldType->getAs<RecordType>(); 5555 if (!RT) 5556 continue; 5557 5558 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5559 if (FieldClassDecl->isInvalidDecl()) 5560 continue; 5561 if (FieldClassDecl->hasIrrelevantDestructor()) 5562 continue; 5563 // The destructor for an implicit anonymous union member is never invoked. 5564 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5565 continue; 5566 5567 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5568 assert(Dtor && "No dtor found for FieldClassDecl!"); 5569 CheckDestructorAccess(Field->getLocation(), Dtor, 5570 PDiag(diag::err_access_dtor_field) 5571 << Field->getDeclName() 5572 << FieldType); 5573 5574 MarkFunctionReferenced(Location, Dtor); 5575 DiagnoseUseOfDecl(Dtor, Location); 5576 } 5577 5578 // We only potentially invoke the destructors of potentially constructed 5579 // subobjects. 5580 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5581 5582 // If the destructor exists and has already been marked used in the MS ABI, 5583 // then virtual base destructors have already been checked and marked used. 5584 // Skip checking them again to avoid duplicate diagnostics. 5585 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5586 CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); 5587 if (Dtor && Dtor->isUsed()) 5588 VisitVirtualBases = false; 5589 } 5590 5591 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5592 5593 // Bases. 5594 for (const auto &Base : ClassDecl->bases()) { 5595 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5596 if (!RT) 5597 continue; 5598 5599 // Remember direct virtual bases. 5600 if (Base.isVirtual()) { 5601 if (!VisitVirtualBases) 5602 continue; 5603 DirectVirtualBases.insert(RT); 5604 } 5605 5606 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5607 // If our base class is invalid, we probably can't get its dtor anyway. 5608 if (BaseClassDecl->isInvalidDecl()) 5609 continue; 5610 if (BaseClassDecl->hasIrrelevantDestructor()) 5611 continue; 5612 5613 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5614 assert(Dtor && "No dtor found for BaseClassDecl!"); 5615 5616 // FIXME: caret should be on the start of the class name 5617 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5618 PDiag(diag::err_access_dtor_base) 5619 << Base.getType() << Base.getSourceRange(), 5620 Context.getTypeDeclType(ClassDecl)); 5621 5622 MarkFunctionReferenced(Location, Dtor); 5623 DiagnoseUseOfDecl(Dtor, Location); 5624 } 5625 5626 if (VisitVirtualBases) 5627 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, 5628 &DirectVirtualBases); 5629 } 5630 5631 void Sema::MarkVirtualBaseDestructorsReferenced( 5632 SourceLocation Location, CXXRecordDecl *ClassDecl, 5633 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { 5634 // Virtual bases. 5635 for (const auto &VBase : ClassDecl->vbases()) { 5636 // Bases are always records in a well-formed non-dependent class. 5637 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5638 5639 // Ignore already visited direct virtual bases. 5640 if (DirectVirtualBases && DirectVirtualBases->count(RT)) 5641 continue; 5642 5643 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5644 // If our base class is invalid, we probably can't get its dtor anyway. 5645 if (BaseClassDecl->isInvalidDecl()) 5646 continue; 5647 if (BaseClassDecl->hasIrrelevantDestructor()) 5648 continue; 5649 5650 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5651 assert(Dtor && "No dtor found for BaseClassDecl!"); 5652 if (CheckDestructorAccess( 5653 ClassDecl->getLocation(), Dtor, 5654 PDiag(diag::err_access_dtor_vbase) 5655 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5656 Context.getTypeDeclType(ClassDecl)) == 5657 AR_accessible) { 5658 CheckDerivedToBaseConversion( 5659 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5660 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5661 SourceRange(), DeclarationName(), nullptr); 5662 } 5663 5664 MarkFunctionReferenced(Location, Dtor); 5665 DiagnoseUseOfDecl(Dtor, Location); 5666 } 5667 } 5668 5669 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5670 if (!CDtorDecl) 5671 return; 5672 5673 if (CXXConstructorDecl *Constructor 5674 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5675 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5676 DiagnoseUninitializedFields(*this, Constructor); 5677 } 5678 } 5679 5680 bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5681 if (!getLangOpts().CPlusPlus) 5682 return false; 5683 5684 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5685 if (!RD) 5686 return false; 5687 5688 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5689 // class template specialization here, but doing so breaks a lot of code. 5690 5691 // We can't answer whether something is abstract until it has a 5692 // definition. If it's currently being defined, we'll walk back 5693 // over all the declarations when we have a full definition. 5694 const CXXRecordDecl *Def = RD->getDefinition(); 5695 if (!Def || Def->isBeingDefined()) 5696 return false; 5697 5698 return RD->isAbstract(); 5699 } 5700 5701 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5702 TypeDiagnoser &Diagnoser) { 5703 if (!isAbstractType(Loc, T)) 5704 return false; 5705 5706 T = Context.getBaseElementType(T); 5707 Diagnoser.diagnose(*this, Loc, T); 5708 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5709 return true; 5710 } 5711 5712 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5713 // Check if we've already emitted the list of pure virtual functions 5714 // for this class. 5715 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5716 return; 5717 5718 // If the diagnostic is suppressed, don't emit the notes. We're only 5719 // going to emit them once, so try to attach them to a diagnostic we're 5720 // actually going to show. 5721 if (Diags.isLastDiagnosticIgnored()) 5722 return; 5723 5724 CXXFinalOverriderMap FinalOverriders; 5725 RD->getFinalOverriders(FinalOverriders); 5726 5727 // Keep a set of seen pure methods so we won't diagnose the same method 5728 // more than once. 5729 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5730 5731 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5732 MEnd = FinalOverriders.end(); 5733 M != MEnd; 5734 ++M) { 5735 for (OverridingMethods::iterator SO = M->second.begin(), 5736 SOEnd = M->second.end(); 5737 SO != SOEnd; ++SO) { 5738 // C++ [class.abstract]p4: 5739 // A class is abstract if it contains or inherits at least one 5740 // pure virtual function for which the final overrider is pure 5741 // virtual. 5742 5743 // 5744 if (SO->second.size() != 1) 5745 continue; 5746 5747 if (!SO->second.front().Method->isPure()) 5748 continue; 5749 5750 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5751 continue; 5752 5753 Diag(SO->second.front().Method->getLocation(), 5754 diag::note_pure_virtual_function) 5755 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5756 } 5757 } 5758 5759 if (!PureVirtualClassDiagSet) 5760 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5761 PureVirtualClassDiagSet->insert(RD); 5762 } 5763 5764 namespace { 5765 struct AbstractUsageInfo { 5766 Sema &S; 5767 CXXRecordDecl *Record; 5768 CanQualType AbstractType; 5769 bool Invalid; 5770 5771 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5772 : S(S), Record(Record), 5773 AbstractType(S.Context.getCanonicalType( 5774 S.Context.getTypeDeclType(Record))), 5775 Invalid(false) {} 5776 5777 void DiagnoseAbstractType() { 5778 if (Invalid) return; 5779 S.DiagnoseAbstractType(Record); 5780 Invalid = true; 5781 } 5782 5783 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5784 }; 5785 5786 struct CheckAbstractUsage { 5787 AbstractUsageInfo &Info; 5788 const NamedDecl *Ctx; 5789 5790 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5791 : Info(Info), Ctx(Ctx) {} 5792 5793 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5794 switch (TL.getTypeLocClass()) { 5795 #define ABSTRACT_TYPELOC(CLASS, PARENT) 5796 #define TYPELOC(CLASS, PARENT) \ 5797 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5798 #include "clang/AST/TypeLocNodes.def" 5799 } 5800 } 5801 5802 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5803 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5804 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5805 if (!TL.getParam(I)) 5806 continue; 5807 5808 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5809 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5810 } 5811 } 5812 5813 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5814 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5815 } 5816 5817 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5818 // Visit the type parameters from a permissive context. 5819 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5820 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5821 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5822 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5823 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5824 // TODO: other template argument types? 5825 } 5826 } 5827 5828 // Visit pointee types from a permissive context. 5829 #define CheckPolymorphic(Type) \ 5830 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5831 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5832 } 5833 CheckPolymorphic(PointerTypeLoc) 5834 CheckPolymorphic(ReferenceTypeLoc) 5835 CheckPolymorphic(MemberPointerTypeLoc) 5836 CheckPolymorphic(BlockPointerTypeLoc) 5837 CheckPolymorphic(AtomicTypeLoc) 5838 5839 /// Handle all the types we haven't given a more specific 5840 /// implementation for above. 5841 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5842 // Every other kind of type that we haven't called out already 5843 // that has an inner type is either (1) sugar or (2) contains that 5844 // inner type in some way as a subobject. 5845 if (TypeLoc Next = TL.getNextTypeLoc()) 5846 return Visit(Next, Sel); 5847 5848 // If there's no inner type and we're in a permissive context, 5849 // don't diagnose. 5850 if (Sel == Sema::AbstractNone) return; 5851 5852 // Check whether the type matches the abstract type. 5853 QualType T = TL.getType(); 5854 if (T->isArrayType()) { 5855 Sel = Sema::AbstractArrayType; 5856 T = Info.S.Context.getBaseElementType(T); 5857 } 5858 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5859 if (CT != Info.AbstractType) return; 5860 5861 // It matched; do some magic. 5862 if (Sel == Sema::AbstractArrayType) { 5863 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5864 << T << TL.getSourceRange(); 5865 } else { 5866 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5867 << Sel << T << TL.getSourceRange(); 5868 } 5869 Info.DiagnoseAbstractType(); 5870 } 5871 }; 5872 5873 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 5874 Sema::AbstractDiagSelID Sel) { 5875 CheckAbstractUsage(*this, D).Visit(TL, Sel); 5876 } 5877 5878 } 5879 5880 /// Check for invalid uses of an abstract type in a method declaration. 5881 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5882 CXXMethodDecl *MD) { 5883 // No need to do the check on definitions, which require that 5884 // the return/param types be complete. 5885 if (MD->doesThisDeclarationHaveABody()) 5886 return; 5887 5888 // For safety's sake, just ignore it if we don't have type source 5889 // information. This should never happen for non-implicit methods, 5890 // but... 5891 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 5892 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); 5893 } 5894 5895 /// Check for invalid uses of an abstract type within a class definition. 5896 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5897 CXXRecordDecl *RD) { 5898 for (auto *D : RD->decls()) { 5899 if (D->isImplicit()) continue; 5900 5901 // Methods and method templates. 5902 if (isa<CXXMethodDecl>(D)) { 5903 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); 5904 } else if (isa<FunctionTemplateDecl>(D)) { 5905 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); 5906 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); 5907 5908 // Fields and static variables. 5909 } else if (isa<FieldDecl>(D)) { 5910 FieldDecl *FD = cast<FieldDecl>(D); 5911 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5912 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 5913 } else if (isa<VarDecl>(D)) { 5914 VarDecl *VD = cast<VarDecl>(D); 5915 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 5916 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); 5917 5918 // Nested classes and class templates. 5919 } else if (isa<CXXRecordDecl>(D)) { 5920 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); 5921 } else if (isa<ClassTemplateDecl>(D)) { 5922 CheckAbstractClassUsage(Info, 5923 cast<ClassTemplateDecl>(D)->getTemplatedDecl()); 5924 } 5925 } 5926 } 5927 5928 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 5929 Attr *ClassAttr = getDLLAttr(Class); 5930 if (!ClassAttr) 5931 return; 5932 5933 assert(ClassAttr->getKind() == attr::DLLExport); 5934 5935 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5936 5937 if (TSK == TSK_ExplicitInstantiationDeclaration) 5938 // Don't go any further if this is just an explicit instantiation 5939 // declaration. 5940 return; 5941 5942 // Add a context note to explain how we got to any diagnostics produced below. 5943 struct MarkingClassDllexported { 5944 Sema &S; 5945 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 5946 SourceLocation AttrLoc) 5947 : S(S) { 5948 Sema::CodeSynthesisContext Ctx; 5949 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 5950 Ctx.PointOfInstantiation = AttrLoc; 5951 Ctx.Entity = Class; 5952 S.pushCodeSynthesisContext(Ctx); 5953 } 5954 ~MarkingClassDllexported() { 5955 S.popCodeSynthesisContext(); 5956 } 5957 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 5958 5959 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 5960 S.MarkVTableUsed(Class->getLocation(), Class, true); 5961 5962 for (Decl *Member : Class->decls()) { 5963 // Defined static variables that are members of an exported base 5964 // class must be marked export too. 5965 auto *VD = dyn_cast<VarDecl>(Member); 5966 if (VD && Member->getAttr<DLLExportAttr>() && 5967 VD->getStorageClass() == SC_Static && 5968 TSK == TSK_ImplicitInstantiation) 5969 S.MarkVariableReferenced(VD->getLocation(), VD); 5970 5971 auto *MD = dyn_cast<CXXMethodDecl>(Member); 5972 if (!MD) 5973 continue; 5974 5975 if (Member->getAttr<DLLExportAttr>()) { 5976 if (MD->isUserProvided()) { 5977 // Instantiate non-default class member functions ... 5978 5979 // .. except for certain kinds of template specializations. 5980 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 5981 continue; 5982 5983 S.MarkFunctionReferenced(Class->getLocation(), MD); 5984 5985 // The function will be passed to the consumer when its definition is 5986 // encountered. 5987 } else if (MD->isExplicitlyDefaulted()) { 5988 // Synthesize and instantiate explicitly defaulted methods. 5989 S.MarkFunctionReferenced(Class->getLocation(), MD); 5990 5991 if (TSK != TSK_ExplicitInstantiationDefinition) { 5992 // Except for explicit instantiation defs, we will not see the 5993 // definition again later, so pass it to the consumer now. 5994 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 5995 } 5996 } else if (!MD->isTrivial() || 5997 MD->isCopyAssignmentOperator() || 5998 MD->isMoveAssignmentOperator()) { 5999 // Synthesize and instantiate non-trivial implicit methods, and the copy 6000 // and move assignment operators. The latter are exported even if they 6001 // are trivial, because the address of an operator can be taken and 6002 // should compare equal across libraries. 6003 S.MarkFunctionReferenced(Class->getLocation(), MD); 6004 6005 // There is no later point when we will see the definition of this 6006 // function, so pass it to the consumer now. 6007 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6008 } 6009 } 6010 } 6011 } 6012 6013 static void checkForMultipleExportedDefaultConstructors(Sema &S, 6014 CXXRecordDecl *Class) { 6015 // Only the MS ABI has default constructor closures, so we don't need to do 6016 // this semantic checking anywhere else. 6017 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 6018 return; 6019 6020 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 6021 for (Decl *Member : Class->decls()) { 6022 // Look for exported default constructors. 6023 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 6024 if (!CD || !CD->isDefaultConstructor()) 6025 continue; 6026 auto *Attr = CD->getAttr<DLLExportAttr>(); 6027 if (!Attr) 6028 continue; 6029 6030 // If the class is non-dependent, mark the default arguments as ODR-used so 6031 // that we can properly codegen the constructor closure. 6032 if (!Class->isDependentContext()) { 6033 for (ParmVarDecl *PD : CD->parameters()) { 6034 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 6035 S.DiscardCleanupsInEvaluationContext(); 6036 } 6037 } 6038 6039 if (LastExportedDefaultCtor) { 6040 S.Diag(LastExportedDefaultCtor->getLocation(), 6041 diag::err_attribute_dll_ambiguous_default_ctor) 6042 << Class; 6043 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 6044 << CD->getDeclName(); 6045 return; 6046 } 6047 LastExportedDefaultCtor = CD; 6048 } 6049 } 6050 6051 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 6052 CXXRecordDecl *Class) { 6053 bool ErrorReported = false; 6054 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6055 ClassTemplateDecl *TD) { 6056 if (ErrorReported) 6057 return; 6058 S.Diag(TD->getLocation(), 6059 diag::err_cuda_device_builtin_surftex_cls_template) 6060 << /*surface*/ 0 << TD; 6061 ErrorReported = true; 6062 }; 6063 6064 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6065 if (!TD) { 6066 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6067 if (!SD) { 6068 S.Diag(Class->getLocation(), 6069 diag::err_cuda_device_builtin_surftex_ref_decl) 6070 << /*surface*/ 0 << Class; 6071 S.Diag(Class->getLocation(), 6072 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6073 << Class; 6074 return; 6075 } 6076 TD = SD->getSpecializedTemplate(); 6077 } 6078 6079 TemplateParameterList *Params = TD->getTemplateParameters(); 6080 unsigned N = Params->size(); 6081 6082 if (N != 2) { 6083 reportIllegalClassTemplate(S, TD); 6084 S.Diag(TD->getLocation(), 6085 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6086 << TD << 2; 6087 } 6088 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6089 reportIllegalClassTemplate(S, TD); 6090 S.Diag(TD->getLocation(), 6091 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6092 << TD << /*1st*/ 0 << /*type*/ 0; 6093 } 6094 if (N > 1) { 6095 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6096 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6097 reportIllegalClassTemplate(S, TD); 6098 S.Diag(TD->getLocation(), 6099 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6100 << TD << /*2nd*/ 1 << /*integer*/ 1; 6101 } 6102 } 6103 } 6104 6105 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 6106 CXXRecordDecl *Class) { 6107 bool ErrorReported = false; 6108 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6109 ClassTemplateDecl *TD) { 6110 if (ErrorReported) 6111 return; 6112 S.Diag(TD->getLocation(), 6113 diag::err_cuda_device_builtin_surftex_cls_template) 6114 << /*texture*/ 1 << TD; 6115 ErrorReported = true; 6116 }; 6117 6118 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6119 if (!TD) { 6120 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6121 if (!SD) { 6122 S.Diag(Class->getLocation(), 6123 diag::err_cuda_device_builtin_surftex_ref_decl) 6124 << /*texture*/ 1 << Class; 6125 S.Diag(Class->getLocation(), 6126 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6127 << Class; 6128 return; 6129 } 6130 TD = SD->getSpecializedTemplate(); 6131 } 6132 6133 TemplateParameterList *Params = TD->getTemplateParameters(); 6134 unsigned N = Params->size(); 6135 6136 if (N != 3) { 6137 reportIllegalClassTemplate(S, TD); 6138 S.Diag(TD->getLocation(), 6139 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6140 << TD << 3; 6141 } 6142 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6143 reportIllegalClassTemplate(S, TD); 6144 S.Diag(TD->getLocation(), 6145 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6146 << TD << /*1st*/ 0 << /*type*/ 0; 6147 } 6148 if (N > 1) { 6149 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6150 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6151 reportIllegalClassTemplate(S, TD); 6152 S.Diag(TD->getLocation(), 6153 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6154 << TD << /*2nd*/ 1 << /*integer*/ 1; 6155 } 6156 } 6157 if (N > 2) { 6158 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6159 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6160 reportIllegalClassTemplate(S, TD); 6161 S.Diag(TD->getLocation(), 6162 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6163 << TD << /*3rd*/ 2 << /*integer*/ 1; 6164 } 6165 } 6166 } 6167 6168 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6169 // Mark any compiler-generated routines with the implicit code_seg attribute. 6170 for (auto *Method : Class->methods()) { 6171 if (Method->isUserProvided()) 6172 continue; 6173 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6174 Method->addAttr(A); 6175 } 6176 } 6177 6178 /// Check class-level dllimport/dllexport attribute. 6179 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6180 Attr *ClassAttr = getDLLAttr(Class); 6181 6182 // MSVC inherits DLL attributes to partial class template specializations. 6183 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { 6184 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6185 if (Attr *TemplateAttr = 6186 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6187 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6188 A->setInherited(true); 6189 ClassAttr = A; 6190 } 6191 } 6192 } 6193 6194 if (!ClassAttr) 6195 return; 6196 6197 if (!Class->isExternallyVisible()) { 6198 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6199 << Class << ClassAttr; 6200 return; 6201 } 6202 6203 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6204 !ClassAttr->isInherited()) { 6205 // Diagnose dll attributes on members of class with dll attribute. 6206 for (Decl *Member : Class->decls()) { 6207 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6208 continue; 6209 InheritableAttr *MemberAttr = getDLLAttr(Member); 6210 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6211 continue; 6212 6213 Diag(MemberAttr->getLocation(), 6214 diag::err_attribute_dll_member_of_dll_class) 6215 << MemberAttr << ClassAttr; 6216 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 6217 Member->setInvalidDecl(); 6218 } 6219 } 6220 6221 if (Class->getDescribedClassTemplate()) 6222 // Don't inherit dll attribute until the template is instantiated. 6223 return; 6224 6225 // The class is either imported or exported. 6226 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 6227 6228 // Check if this was a dllimport attribute propagated from a derived class to 6229 // a base class template specialization. We don't apply these attributes to 6230 // static data members. 6231 const bool PropagatedImport = 6232 !ClassExported && 6233 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 6234 6235 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6236 6237 // Ignore explicit dllexport on explicit class template instantiation 6238 // declarations, except in MinGW mode. 6239 if (ClassExported && !ClassAttr->isInherited() && 6240 TSK == TSK_ExplicitInstantiationDeclaration && 6241 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 6242 Class->dropAttr<DLLExportAttr>(); 6243 return; 6244 } 6245 6246 // Force declaration of implicit members so they can inherit the attribute. 6247 ForceDeclarationOfImplicitMembers(Class); 6248 6249 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 6250 // seem to be true in practice? 6251 6252 for (Decl *Member : Class->decls()) { 6253 VarDecl *VD = dyn_cast<VarDecl>(Member); 6254 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 6255 6256 // Only methods and static fields inherit the attributes. 6257 if (!VD && !MD) 6258 continue; 6259 6260 if (MD) { 6261 // Don't process deleted methods. 6262 if (MD->isDeleted()) 6263 continue; 6264 6265 if (MD->isInlined()) { 6266 // MinGW does not import or export inline methods. But do it for 6267 // template instantiations. 6268 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6269 TSK != TSK_ExplicitInstantiationDeclaration && 6270 TSK != TSK_ExplicitInstantiationDefinition) 6271 continue; 6272 6273 // MSVC versions before 2015 don't export the move assignment operators 6274 // and move constructor, so don't attempt to import/export them if 6275 // we have a definition. 6276 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 6277 if ((MD->isMoveAssignmentOperator() || 6278 (Ctor && Ctor->isMoveConstructor())) && 6279 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 6280 continue; 6281 6282 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 6283 // operator is exported anyway. 6284 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6285 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 6286 continue; 6287 } 6288 } 6289 6290 // Don't apply dllimport attributes to static data members of class template 6291 // instantiations when the attribute is propagated from a derived class. 6292 if (VD && PropagatedImport) 6293 continue; 6294 6295 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6296 continue; 6297 6298 if (!getDLLAttr(Member)) { 6299 InheritableAttr *NewAttr = nullptr; 6300 6301 // Do not export/import inline function when -fno-dllexport-inlines is 6302 // passed. But add attribute for later local static var check. 6303 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6304 TSK != TSK_ExplicitInstantiationDeclaration && 6305 TSK != TSK_ExplicitInstantiationDefinition) { 6306 if (ClassExported) { 6307 NewAttr = ::new (getASTContext()) 6308 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6309 } else { 6310 NewAttr = ::new (getASTContext()) 6311 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6312 } 6313 } else { 6314 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6315 } 6316 6317 NewAttr->setInherited(true); 6318 Member->addAttr(NewAttr); 6319 6320 if (MD) { 6321 // Propagate DLLAttr to friend re-declarations of MD that have already 6322 // been constructed. 6323 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6324 FD = FD->getPreviousDecl()) { 6325 if (FD->getFriendObjectKind() == Decl::FOK_None) 6326 continue; 6327 assert(!getDLLAttr(FD) && 6328 "friend re-decl should not already have a DLLAttr"); 6329 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6330 NewAttr->setInherited(true); 6331 FD->addAttr(NewAttr); 6332 } 6333 } 6334 } 6335 } 6336 6337 if (ClassExported) 6338 DelayedDllExportClasses.push_back(Class); 6339 } 6340 6341 /// Perform propagation of DLL attributes from a derived class to a 6342 /// templated base class for MS compatibility. 6343 void Sema::propagateDLLAttrToBaseClassTemplate( 6344 CXXRecordDecl *Class, Attr *ClassAttr, 6345 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6346 if (getDLLAttr( 6347 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6348 // If the base class template has a DLL attribute, don't try to change it. 6349 return; 6350 } 6351 6352 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6353 if (!getDLLAttr(BaseTemplateSpec) && 6354 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6355 TSK == TSK_ImplicitInstantiation)) { 6356 // The template hasn't been instantiated yet (or it has, but only as an 6357 // explicit instantiation declaration or implicit instantiation, which means 6358 // we haven't codegenned any members yet), so propagate the attribute. 6359 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6360 NewAttr->setInherited(true); 6361 BaseTemplateSpec->addAttr(NewAttr); 6362 6363 // If this was an import, mark that we propagated it from a derived class to 6364 // a base class template specialization. 6365 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6366 ImportAttr->setPropagatedToBaseTemplate(); 6367 6368 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6369 // needs to be run again to work see the new attribute. Otherwise this will 6370 // get run whenever the template is instantiated. 6371 if (TSK != TSK_Undeclared) 6372 checkClassLevelDLLAttribute(BaseTemplateSpec); 6373 6374 return; 6375 } 6376 6377 if (getDLLAttr(BaseTemplateSpec)) { 6378 // The template has already been specialized or instantiated with an 6379 // attribute, explicitly or through propagation. We should not try to change 6380 // it. 6381 return; 6382 } 6383 6384 // The template was previously instantiated or explicitly specialized without 6385 // a dll attribute, It's too late for us to add an attribute, so warn that 6386 // this is unsupported. 6387 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6388 << BaseTemplateSpec->isExplicitSpecialization(); 6389 Diag(ClassAttr->getLocation(), diag::note_attribute); 6390 if (BaseTemplateSpec->isExplicitSpecialization()) { 6391 Diag(BaseTemplateSpec->getLocation(), 6392 diag::note_template_class_explicit_specialization_was_here) 6393 << BaseTemplateSpec; 6394 } else { 6395 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6396 diag::note_template_class_instantiation_was_here) 6397 << BaseTemplateSpec; 6398 } 6399 } 6400 6401 /// Determine the kind of defaulting that would be done for a given function. 6402 /// 6403 /// If the function is both a default constructor and a copy / move constructor 6404 /// (due to having a default argument for the first parameter), this picks 6405 /// CXXDefaultConstructor. 6406 /// 6407 /// FIXME: Check that case is properly handled by all callers. 6408 Sema::DefaultedFunctionKind 6409 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6410 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6411 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6412 if (Ctor->isDefaultConstructor()) 6413 return Sema::CXXDefaultConstructor; 6414 6415 if (Ctor->isCopyConstructor()) 6416 return Sema::CXXCopyConstructor; 6417 6418 if (Ctor->isMoveConstructor()) 6419 return Sema::CXXMoveConstructor; 6420 } 6421 6422 if (MD->isCopyAssignmentOperator()) 6423 return Sema::CXXCopyAssignment; 6424 6425 if (MD->isMoveAssignmentOperator()) 6426 return Sema::CXXMoveAssignment; 6427 6428 if (isa<CXXDestructorDecl>(FD)) 6429 return Sema::CXXDestructor; 6430 } 6431 6432 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6433 case OO_EqualEqual: 6434 return DefaultedComparisonKind::Equal; 6435 6436 case OO_ExclaimEqual: 6437 return DefaultedComparisonKind::NotEqual; 6438 6439 case OO_Spaceship: 6440 // No point allowing this if <=> doesn't exist in the current language mode. 6441 if (!getLangOpts().CPlusPlus20) 6442 break; 6443 return DefaultedComparisonKind::ThreeWay; 6444 6445 case OO_Less: 6446 case OO_LessEqual: 6447 case OO_Greater: 6448 case OO_GreaterEqual: 6449 // No point allowing this if <=> doesn't exist in the current language mode. 6450 if (!getLangOpts().CPlusPlus20) 6451 break; 6452 return DefaultedComparisonKind::Relational; 6453 6454 default: 6455 break; 6456 } 6457 6458 // Not defaultable. 6459 return DefaultedFunctionKind(); 6460 } 6461 6462 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, 6463 SourceLocation DefaultLoc) { 6464 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); 6465 if (DFK.isComparison()) 6466 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); 6467 6468 switch (DFK.asSpecialMember()) { 6469 case Sema::CXXDefaultConstructor: 6470 S.DefineImplicitDefaultConstructor(DefaultLoc, 6471 cast<CXXConstructorDecl>(FD)); 6472 break; 6473 case Sema::CXXCopyConstructor: 6474 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6475 break; 6476 case Sema::CXXCopyAssignment: 6477 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6478 break; 6479 case Sema::CXXDestructor: 6480 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); 6481 break; 6482 case Sema::CXXMoveConstructor: 6483 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6484 break; 6485 case Sema::CXXMoveAssignment: 6486 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6487 break; 6488 case Sema::CXXInvalid: 6489 llvm_unreachable("Invalid special member."); 6490 } 6491 } 6492 6493 /// Determine whether a type is permitted to be passed or returned in 6494 /// registers, per C++ [class.temporary]p3. 6495 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6496 TargetInfo::CallingConvKind CCK) { 6497 if (D->isDependentType() || D->isInvalidDecl()) 6498 return false; 6499 6500 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6501 // The PS4 platform ABI follows the behavior of Clang 3.2. 6502 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6503 return !D->hasNonTrivialDestructorForCall() && 6504 !D->hasNonTrivialCopyConstructorForCall(); 6505 6506 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6507 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6508 bool DtorIsTrivialForCall = false; 6509 6510 // If a class has at least one non-deleted, trivial copy constructor, it 6511 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6512 // 6513 // Note: This permits classes with non-trivial copy or move ctors to be 6514 // passed in registers, so long as they *also* have a trivial copy ctor, 6515 // which is non-conforming. 6516 if (D->needsImplicitCopyConstructor()) { 6517 if (!D->defaultedCopyConstructorIsDeleted()) { 6518 if (D->hasTrivialCopyConstructor()) 6519 CopyCtorIsTrivial = true; 6520 if (D->hasTrivialCopyConstructorForCall()) 6521 CopyCtorIsTrivialForCall = true; 6522 } 6523 } else { 6524 for (const CXXConstructorDecl *CD : D->ctors()) { 6525 if (CD->isCopyConstructor() && !CD->isDeleted()) { 6526 if (CD->isTrivial()) 6527 CopyCtorIsTrivial = true; 6528 if (CD->isTrivialForCall()) 6529 CopyCtorIsTrivialForCall = true; 6530 } 6531 } 6532 } 6533 6534 if (D->needsImplicitDestructor()) { 6535 if (!D->defaultedDestructorIsDeleted() && 6536 D->hasTrivialDestructorForCall()) 6537 DtorIsTrivialForCall = true; 6538 } else if (const auto *DD = D->getDestructor()) { 6539 if (!DD->isDeleted() && DD->isTrivialForCall()) 6540 DtorIsTrivialForCall = true; 6541 } 6542 6543 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6544 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6545 return true; 6546 6547 // If a class has a destructor, we'd really like to pass it indirectly 6548 // because it allows us to elide copies. Unfortunately, MSVC makes that 6549 // impossible for small types, which it will pass in a single register or 6550 // stack slot. Most objects with dtors are large-ish, so handle that early. 6551 // We can't call out all large objects as being indirect because there are 6552 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6553 // how we pass large POD types. 6554 6555 // Note: This permits small classes with nontrivial destructors to be 6556 // passed in registers, which is non-conforming. 6557 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6558 uint64_t TypeSize = isAArch64 ? 128 : 64; 6559 6560 if (CopyCtorIsTrivial && 6561 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6562 return true; 6563 return false; 6564 } 6565 6566 // Per C++ [class.temporary]p3, the relevant condition is: 6567 // each copy constructor, move constructor, and destructor of X is 6568 // either trivial or deleted, and X has at least one non-deleted copy 6569 // or move constructor 6570 bool HasNonDeletedCopyOrMove = false; 6571 6572 if (D->needsImplicitCopyConstructor() && 6573 !D->defaultedCopyConstructorIsDeleted()) { 6574 if (!D->hasTrivialCopyConstructorForCall()) 6575 return false; 6576 HasNonDeletedCopyOrMove = true; 6577 } 6578 6579 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6580 !D->defaultedMoveConstructorIsDeleted()) { 6581 if (!D->hasTrivialMoveConstructorForCall()) 6582 return false; 6583 HasNonDeletedCopyOrMove = true; 6584 } 6585 6586 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6587 !D->hasTrivialDestructorForCall()) 6588 return false; 6589 6590 for (const CXXMethodDecl *MD : D->methods()) { 6591 if (MD->isDeleted()) 6592 continue; 6593 6594 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6595 if (CD && CD->isCopyOrMoveConstructor()) 6596 HasNonDeletedCopyOrMove = true; 6597 else if (!isa<CXXDestructorDecl>(MD)) 6598 continue; 6599 6600 if (!MD->isTrivialForCall()) 6601 return false; 6602 } 6603 6604 return HasNonDeletedCopyOrMove; 6605 } 6606 6607 /// Report an error regarding overriding, along with any relevant 6608 /// overridden methods. 6609 /// 6610 /// \param DiagID the primary error to report. 6611 /// \param MD the overriding method. 6612 static bool 6613 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, 6614 llvm::function_ref<bool(const CXXMethodDecl *)> Report) { 6615 bool IssuedDiagnostic = false; 6616 for (const CXXMethodDecl *O : MD->overridden_methods()) { 6617 if (Report(O)) { 6618 if (!IssuedDiagnostic) { 6619 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6620 IssuedDiagnostic = true; 6621 } 6622 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 6623 } 6624 } 6625 return IssuedDiagnostic; 6626 } 6627 6628 /// Perform semantic checks on a class definition that has been 6629 /// completing, introducing implicitly-declared members, checking for 6630 /// abstract types, etc. 6631 /// 6632 /// \param S The scope in which the class was parsed. Null if we didn't just 6633 /// parse a class definition. 6634 /// \param Record The completed class. 6635 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6636 if (!Record) 6637 return; 6638 6639 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6640 AbstractUsageInfo Info(*this, Record); 6641 CheckAbstractClassUsage(Info, Record); 6642 } 6643 6644 // If this is not an aggregate type and has no user-declared constructor, 6645 // complain about any non-static data members of reference or const scalar 6646 // type, since they will never get initializers. 6647 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6648 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6649 !Record->isLambda()) { 6650 bool Complained = false; 6651 for (const auto *F : Record->fields()) { 6652 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 6653 continue; 6654 6655 if (F->getType()->isReferenceType() || 6656 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6657 if (!Complained) { 6658 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6659 << Record->getTagKind() << Record; 6660 Complained = true; 6661 } 6662 6663 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6664 << F->getType()->isReferenceType() 6665 << F->getDeclName(); 6666 } 6667 } 6668 } 6669 6670 if (Record->getIdentifier()) { 6671 // C++ [class.mem]p13: 6672 // If T is the name of a class, then each of the following shall have a 6673 // name different from T: 6674 // - every member of every anonymous union that is a member of class T. 6675 // 6676 // C++ [class.mem]p14: 6677 // In addition, if class T has a user-declared constructor (12.1), every 6678 // non-static data member of class T shall have a name different from T. 6679 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6680 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6681 ++I) { 6682 NamedDecl *D = (*I)->getUnderlyingDecl(); 6683 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6684 Record->hasUserDeclaredConstructor()) || 6685 isa<IndirectFieldDecl>(D)) { 6686 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6687 << D->getDeclName(); 6688 break; 6689 } 6690 } 6691 } 6692 6693 // Warn if the class has virtual methods but non-virtual public destructor. 6694 if (Record->isPolymorphic() && !Record->isDependentType()) { 6695 CXXDestructorDecl *dtor = Record->getDestructor(); 6696 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6697 !Record->hasAttr<FinalAttr>()) 6698 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6699 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6700 } 6701 6702 if (Record->isAbstract()) { 6703 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6704 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6705 << FA->isSpelledAsSealed(); 6706 DiagnoseAbstractType(Record); 6707 } 6708 } 6709 6710 // Warn if the class has a final destructor but is not itself marked final. 6711 if (!Record->hasAttr<FinalAttr>()) { 6712 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6713 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6714 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6715 << FA->isSpelledAsSealed() 6716 << FixItHint::CreateInsertion( 6717 getLocForEndOfToken(Record->getLocation()), 6718 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6719 Diag(Record->getLocation(), 6720 diag::note_final_dtor_non_final_class_silence) 6721 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6722 } 6723 } 6724 } 6725 6726 // See if trivial_abi has to be dropped. 6727 if (Record->hasAttr<TrivialABIAttr>()) 6728 checkIllFormedTrivialABIStruct(*Record); 6729 6730 // Set HasTrivialSpecialMemberForCall if the record has attribute 6731 // "trivial_abi". 6732 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6733 6734 if (HasTrivialABI) 6735 Record->setHasTrivialSpecialMemberForCall(); 6736 6737 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 6738 // We check these last because they can depend on the properties of the 6739 // primary comparison functions (==, <=>). 6740 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 6741 6742 // Perform checks that can't be done until we know all the properties of a 6743 // member function (whether it's defaulted, deleted, virtual, overriding, 6744 // ...). 6745 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { 6746 // A static function cannot override anything. 6747 if (MD->getStorageClass() == SC_Static) { 6748 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, 6749 [](const CXXMethodDecl *) { return true; })) 6750 return; 6751 } 6752 6753 // A deleted function cannot override a non-deleted function and vice 6754 // versa. 6755 if (ReportOverrides(*this, 6756 MD->isDeleted() ? diag::err_deleted_override 6757 : diag::err_non_deleted_override, 6758 MD, [&](const CXXMethodDecl *V) { 6759 return MD->isDeleted() != V->isDeleted(); 6760 })) { 6761 if (MD->isDefaulted() && MD->isDeleted()) 6762 // Explain why this defaulted function was deleted. 6763 DiagnoseDeletedDefaultedFunction(MD); 6764 return; 6765 } 6766 6767 // A consteval function cannot override a non-consteval function and vice 6768 // versa. 6769 if (ReportOverrides(*this, 6770 MD->isConsteval() ? diag::err_consteval_override 6771 : diag::err_non_consteval_override, 6772 MD, [&](const CXXMethodDecl *V) { 6773 return MD->isConsteval() != V->isConsteval(); 6774 })) { 6775 if (MD->isDefaulted() && MD->isDeleted()) 6776 // Explain why this defaulted function was deleted. 6777 DiagnoseDeletedDefaultedFunction(MD); 6778 return; 6779 } 6780 }; 6781 6782 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { 6783 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 6784 return false; 6785 6786 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 6787 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 6788 DFK.asComparison() == DefaultedComparisonKind::Relational) { 6789 DefaultedSecondaryComparisons.push_back(FD); 6790 return true; 6791 } 6792 6793 CheckExplicitlyDefaultedFunction(S, FD); 6794 return false; 6795 }; 6796 6797 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 6798 // Check whether the explicitly-defaulted members are valid. 6799 bool Incomplete = CheckForDefaultedFunction(M); 6800 6801 // Skip the rest of the checks for a member of a dependent class. 6802 if (Record->isDependentType()) 6803 return; 6804 6805 // For an explicitly defaulted or deleted special member, we defer 6806 // determining triviality until the class is complete. That time is now! 6807 CXXSpecialMember CSM = getSpecialMember(M); 6808 if (!M->isImplicit() && !M->isUserProvided()) { 6809 if (CSM != CXXInvalid) { 6810 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 6811 // Inform the class that we've finished declaring this member. 6812 Record->finishedDefaultedOrDeletedMember(M); 6813 M->setTrivialForCall( 6814 HasTrivialABI || 6815 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 6816 Record->setTrivialForCallFlags(M); 6817 } 6818 } 6819 6820 // Set triviality for the purpose of calls if this is a user-provided 6821 // copy/move constructor or destructor. 6822 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || 6823 CSM == CXXDestructor) && M->isUserProvided()) { 6824 M->setTrivialForCall(HasTrivialABI); 6825 Record->setTrivialForCallFlags(M); 6826 } 6827 6828 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 6829 M->hasAttr<DLLExportAttr>()) { 6830 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6831 M->isTrivial() && 6832 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || 6833 CSM == CXXDestructor)) 6834 M->dropAttr<DLLExportAttr>(); 6835 6836 if (M->hasAttr<DLLExportAttr>()) { 6837 // Define after any fields with in-class initializers have been parsed. 6838 DelayedDllExportMemberFunctions.push_back(M); 6839 } 6840 } 6841 6842 // Define defaulted constexpr virtual functions that override a base class 6843 // function right away. 6844 // FIXME: We can defer doing this until the vtable is marked as used. 6845 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods()) 6846 DefineDefaultedFunction(*this, M, M->getLocation()); 6847 6848 if (!Incomplete) 6849 CheckCompletedMemberFunction(M); 6850 }; 6851 6852 // Check the destructor before any other member function. We need to 6853 // determine whether it's trivial in order to determine whether the claas 6854 // type is a literal type, which is a prerequisite for determining whether 6855 // other special member functions are valid and whether they're implicitly 6856 // 'constexpr'. 6857 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 6858 CompleteMemberFunction(Dtor); 6859 6860 bool HasMethodWithOverrideControl = false, 6861 HasOverridingMethodWithoutOverrideControl = false; 6862 for (auto *D : Record->decls()) { 6863 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 6864 // FIXME: We could do this check for dependent types with non-dependent 6865 // bases. 6866 if (!Record->isDependentType()) { 6867 // See if a method overloads virtual methods in a base 6868 // class without overriding any. 6869 if (!M->isStatic()) 6870 DiagnoseHiddenVirtualMethods(M); 6871 if (M->hasAttr<OverrideAttr>()) 6872 HasMethodWithOverrideControl = true; 6873 else if (M->size_overridden_methods() > 0) 6874 HasOverridingMethodWithoutOverrideControl = true; 6875 } 6876 6877 if (!isa<CXXDestructorDecl>(M)) 6878 CompleteMemberFunction(M); 6879 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 6880 CheckForDefaultedFunction( 6881 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 6882 } 6883 } 6884 6885 if (HasOverridingMethodWithoutOverrideControl) { 6886 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; 6887 for (auto *M : Record->methods()) 6888 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); 6889 } 6890 6891 // Check the defaulted secondary comparisons after any other member functions. 6892 for (FunctionDecl *FD : DefaultedSecondaryComparisons) { 6893 CheckExplicitlyDefaultedFunction(S, FD); 6894 6895 // If this is a member function, we deferred checking it until now. 6896 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) 6897 CheckCompletedMemberFunction(MD); 6898 } 6899 6900 // ms_struct is a request to use the same ABI rules as MSVC. Check 6901 // whether this class uses any C++ features that are implemented 6902 // completely differently in MSVC, and if so, emit a diagnostic. 6903 // That diagnostic defaults to an error, but we allow projects to 6904 // map it down to a warning (or ignore it). It's a fairly common 6905 // practice among users of the ms_struct pragma to mass-annotate 6906 // headers, sweeping up a bunch of types that the project doesn't 6907 // really rely on MSVC-compatible layout for. We must therefore 6908 // support "ms_struct except for C++ stuff" as a secondary ABI. 6909 // Don't emit this diagnostic if the feature was enabled as a 6910 // language option (as opposed to via a pragma or attribute), as 6911 // the option -mms-bitfields otherwise essentially makes it impossible 6912 // to build C++ code, unless this diagnostic is turned off. 6913 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && 6914 (Record->isPolymorphic() || Record->getNumBases())) { 6915 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 6916 } 6917 6918 checkClassLevelDLLAttribute(Record); 6919 checkClassLevelCodeSegAttribute(Record); 6920 6921 bool ClangABICompat4 = 6922 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 6923 TargetInfo::CallingConvKind CCK = 6924 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 6925 bool CanPass = canPassInRegisters(*this, Record, CCK); 6926 6927 // Do not change ArgPassingRestrictions if it has already been set to 6928 // APK_CanNeverPassInRegs. 6929 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) 6930 Record->setArgPassingRestrictions(CanPass 6931 ? RecordDecl::APK_CanPassInRegs 6932 : RecordDecl::APK_CannotPassInRegs); 6933 6934 // If canPassInRegisters returns true despite the record having a non-trivial 6935 // destructor, the record is destructed in the callee. This happens only when 6936 // the record or one of its subobjects has a field annotated with trivial_abi 6937 // or a field qualified with ObjC __strong/__weak. 6938 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 6939 Record->setParamDestroyedInCallee(true); 6940 else if (Record->hasNonTrivialDestructor()) 6941 Record->setParamDestroyedInCallee(CanPass); 6942 6943 if (getLangOpts().ForceEmitVTables) { 6944 // If we want to emit all the vtables, we need to mark it as used. This 6945 // is especially required for cases like vtable assumption loads. 6946 MarkVTableUsed(Record->getInnerLocStart(), Record); 6947 } 6948 6949 if (getLangOpts().CUDA) { 6950 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) 6951 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); 6952 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) 6953 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); 6954 } 6955 } 6956 6957 /// Look up the special member function that would be called by a special 6958 /// member function for a subobject of class type. 6959 /// 6960 /// \param Class The class type of the subobject. 6961 /// \param CSM The kind of special member function. 6962 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 6963 /// \param ConstRHS True if this is a copy operation with a const object 6964 /// on its RHS, that is, if the argument to the outer special member 6965 /// function is 'const' and this is not a field marked 'mutable'. 6966 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( 6967 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 6968 unsigned FieldQuals, bool ConstRHS) { 6969 unsigned LHSQuals = 0; 6970 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 6971 LHSQuals = FieldQuals; 6972 6973 unsigned RHSQuals = FieldQuals; 6974 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 6975 RHSQuals = 0; 6976 else if (ConstRHS) 6977 RHSQuals |= Qualifiers::Const; 6978 6979 return S.LookupSpecialMember(Class, CSM, 6980 RHSQuals & Qualifiers::Const, 6981 RHSQuals & Qualifiers::Volatile, 6982 false, 6983 LHSQuals & Qualifiers::Const, 6984 LHSQuals & Qualifiers::Volatile); 6985 } 6986 6987 class Sema::InheritedConstructorInfo { 6988 Sema &S; 6989 SourceLocation UseLoc; 6990 6991 /// A mapping from the base classes through which the constructor was 6992 /// inherited to the using shadow declaration in that base class (or a null 6993 /// pointer if the constructor was declared in that base class). 6994 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 6995 InheritedFromBases; 6996 6997 public: 6998 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 6999 ConstructorUsingShadowDecl *Shadow) 7000 : S(S), UseLoc(UseLoc) { 7001 bool DiagnosedMultipleConstructedBases = false; 7002 CXXRecordDecl *ConstructedBase = nullptr; 7003 BaseUsingDecl *ConstructedBaseIntroducer = nullptr; 7004 7005 // Find the set of such base class subobjects and check that there's a 7006 // unique constructed subobject. 7007 for (auto *D : Shadow->redecls()) { 7008 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 7009 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 7010 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 7011 7012 InheritedFromBases.insert( 7013 std::make_pair(DNominatedBase->getCanonicalDecl(), 7014 DShadow->getNominatedBaseClassShadowDecl())); 7015 if (DShadow->constructsVirtualBase()) 7016 InheritedFromBases.insert( 7017 std::make_pair(DConstructedBase->getCanonicalDecl(), 7018 DShadow->getConstructedBaseClassShadowDecl())); 7019 else 7020 assert(DNominatedBase == DConstructedBase); 7021 7022 // [class.inhctor.init]p2: 7023 // If the constructor was inherited from multiple base class subobjects 7024 // of type B, the program is ill-formed. 7025 if (!ConstructedBase) { 7026 ConstructedBase = DConstructedBase; 7027 ConstructedBaseIntroducer = D->getIntroducer(); 7028 } else if (ConstructedBase != DConstructedBase && 7029 !Shadow->isInvalidDecl()) { 7030 if (!DiagnosedMultipleConstructedBases) { 7031 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 7032 << Shadow->getTargetDecl(); 7033 S.Diag(ConstructedBaseIntroducer->getLocation(), 7034 diag::note_ambiguous_inherited_constructor_using) 7035 << ConstructedBase; 7036 DiagnosedMultipleConstructedBases = true; 7037 } 7038 S.Diag(D->getIntroducer()->getLocation(), 7039 diag::note_ambiguous_inherited_constructor_using) 7040 << DConstructedBase; 7041 } 7042 } 7043 7044 if (DiagnosedMultipleConstructedBases) 7045 Shadow->setInvalidDecl(); 7046 } 7047 7048 /// Find the constructor to use for inherited construction of a base class, 7049 /// and whether that base class constructor inherits the constructor from a 7050 /// virtual base class (in which case it won't actually invoke it). 7051 std::pair<CXXConstructorDecl *, bool> 7052 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 7053 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 7054 if (It == InheritedFromBases.end()) 7055 return std::make_pair(nullptr, false); 7056 7057 // This is an intermediary class. 7058 if (It->second) 7059 return std::make_pair( 7060 S.findInheritingConstructor(UseLoc, Ctor, It->second), 7061 It->second->constructsVirtualBase()); 7062 7063 // This is the base class from which the constructor was inherited. 7064 return std::make_pair(Ctor, false); 7065 } 7066 }; 7067 7068 /// Is the special member function which would be selected to perform the 7069 /// specified operation on the specified class type a constexpr constructor? 7070 static bool 7071 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 7072 Sema::CXXSpecialMember CSM, unsigned Quals, 7073 bool ConstRHS, 7074 CXXConstructorDecl *InheritedCtor = nullptr, 7075 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7076 // If we're inheriting a constructor, see if we need to call it for this base 7077 // class. 7078 if (InheritedCtor) { 7079 assert(CSM == Sema::CXXDefaultConstructor); 7080 auto BaseCtor = 7081 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 7082 if (BaseCtor) 7083 return BaseCtor->isConstexpr(); 7084 } 7085 7086 if (CSM == Sema::CXXDefaultConstructor) 7087 return ClassDecl->hasConstexprDefaultConstructor(); 7088 if (CSM == Sema::CXXDestructor) 7089 return ClassDecl->hasConstexprDestructor(); 7090 7091 Sema::SpecialMemberOverloadResult SMOR = 7092 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 7093 if (!SMOR.getMethod()) 7094 // A constructor we wouldn't select can't be "involved in initializing" 7095 // anything. 7096 return true; 7097 return SMOR.getMethod()->isConstexpr(); 7098 } 7099 7100 /// Determine whether the specified special member function would be constexpr 7101 /// if it were implicitly defined. 7102 static bool defaultedSpecialMemberIsConstexpr( 7103 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, 7104 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, 7105 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7106 if (!S.getLangOpts().CPlusPlus11) 7107 return false; 7108 7109 // C++11 [dcl.constexpr]p4: 7110 // In the definition of a constexpr constructor [...] 7111 bool Ctor = true; 7112 switch (CSM) { 7113 case Sema::CXXDefaultConstructor: 7114 if (Inherited) 7115 break; 7116 // Since default constructor lookup is essentially trivial (and cannot 7117 // involve, for instance, template instantiation), we compute whether a 7118 // defaulted default constructor is constexpr directly within CXXRecordDecl. 7119 // 7120 // This is important for performance; we need to know whether the default 7121 // constructor is constexpr to determine whether the type is a literal type. 7122 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 7123 7124 case Sema::CXXCopyConstructor: 7125 case Sema::CXXMoveConstructor: 7126 // For copy or move constructors, we need to perform overload resolution. 7127 break; 7128 7129 case Sema::CXXCopyAssignment: 7130 case Sema::CXXMoveAssignment: 7131 if (!S.getLangOpts().CPlusPlus14) 7132 return false; 7133 // In C++1y, we need to perform overload resolution. 7134 Ctor = false; 7135 break; 7136 7137 case Sema::CXXDestructor: 7138 return ClassDecl->defaultedDestructorIsConstexpr(); 7139 7140 case Sema::CXXInvalid: 7141 return false; 7142 } 7143 7144 // -- if the class is a non-empty union, or for each non-empty anonymous 7145 // union member of a non-union class, exactly one non-static data member 7146 // shall be initialized; [DR1359] 7147 // 7148 // If we squint, this is guaranteed, since exactly one non-static data member 7149 // will be initialized (if the constructor isn't deleted), we just don't know 7150 // which one. 7151 if (Ctor && ClassDecl->isUnion()) 7152 return CSM == Sema::CXXDefaultConstructor 7153 ? ClassDecl->hasInClassInitializer() || 7154 !ClassDecl->hasVariantMembers() 7155 : true; 7156 7157 // -- the class shall not have any virtual base classes; 7158 if (Ctor && ClassDecl->getNumVBases()) 7159 return false; 7160 7161 // C++1y [class.copy]p26: 7162 // -- [the class] is a literal type, and 7163 if (!Ctor && !ClassDecl->isLiteral()) 7164 return false; 7165 7166 // -- every constructor involved in initializing [...] base class 7167 // sub-objects shall be a constexpr constructor; 7168 // -- the assignment operator selected to copy/move each direct base 7169 // class is a constexpr function, and 7170 for (const auto &B : ClassDecl->bases()) { 7171 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 7172 if (!BaseType) continue; 7173 7174 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 7175 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 7176 InheritedCtor, Inherited)) 7177 return false; 7178 } 7179 7180 // -- every constructor involved in initializing non-static data members 7181 // [...] shall be a constexpr constructor; 7182 // -- every non-static data member and base class sub-object shall be 7183 // initialized 7184 // -- for each non-static data member of X that is of class type (or array 7185 // thereof), the assignment operator selected to copy/move that member is 7186 // a constexpr function 7187 for (const auto *F : ClassDecl->fields()) { 7188 if (F->isInvalidDecl()) 7189 continue; 7190 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) 7191 continue; 7192 QualType BaseType = S.Context.getBaseElementType(F->getType()); 7193 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 7194 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 7195 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 7196 BaseType.getCVRQualifiers(), 7197 ConstArg && !F->isMutable())) 7198 return false; 7199 } else if (CSM == Sema::CXXDefaultConstructor) { 7200 return false; 7201 } 7202 } 7203 7204 // All OK, it's constexpr! 7205 return true; 7206 } 7207 7208 namespace { 7209 /// RAII object to register a defaulted function as having its exception 7210 /// specification computed. 7211 struct ComputingExceptionSpec { 7212 Sema &S; 7213 7214 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 7215 : S(S) { 7216 Sema::CodeSynthesisContext Ctx; 7217 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 7218 Ctx.PointOfInstantiation = Loc; 7219 Ctx.Entity = FD; 7220 S.pushCodeSynthesisContext(Ctx); 7221 } 7222 ~ComputingExceptionSpec() { 7223 S.popCodeSynthesisContext(); 7224 } 7225 }; 7226 } 7227 7228 static Sema::ImplicitExceptionSpecification 7229 ComputeDefaultedSpecialMemberExceptionSpec( 7230 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 7231 Sema::InheritedConstructorInfo *ICI); 7232 7233 static Sema::ImplicitExceptionSpecification 7234 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 7235 FunctionDecl *FD, 7236 Sema::DefaultedComparisonKind DCK); 7237 7238 static Sema::ImplicitExceptionSpecification 7239 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 7240 auto DFK = S.getDefaultedFunctionKind(FD); 7241 if (DFK.isSpecialMember()) 7242 return ComputeDefaultedSpecialMemberExceptionSpec( 7243 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 7244 if (DFK.isComparison()) 7245 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 7246 DFK.asComparison()); 7247 7248 auto *CD = cast<CXXConstructorDecl>(FD); 7249 assert(CD->getInheritedConstructor() && 7250 "only defaulted functions and inherited constructors have implicit " 7251 "exception specs"); 7252 Sema::InheritedConstructorInfo ICI( 7253 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 7254 return ComputeDefaultedSpecialMemberExceptionSpec( 7255 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); 7256 } 7257 7258 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 7259 CXXMethodDecl *MD) { 7260 FunctionProtoType::ExtProtoInfo EPI; 7261 7262 // Build an exception specification pointing back at this member. 7263 EPI.ExceptionSpec.Type = EST_Unevaluated; 7264 EPI.ExceptionSpec.SourceDecl = MD; 7265 7266 // Set the calling convention to the default for C++ instance methods. 7267 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 7268 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 7269 /*IsCXXMethod=*/true)); 7270 return EPI; 7271 } 7272 7273 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 7274 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 7275 if (FPT->getExceptionSpecType() != EST_Unevaluated) 7276 return; 7277 7278 // Evaluate the exception specification. 7279 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 7280 auto ESI = IES.getExceptionSpec(); 7281 7282 // Update the type of the special member to use it. 7283 UpdateExceptionSpec(FD, ESI); 7284 } 7285 7286 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 7287 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); 7288 7289 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 7290 if (!DefKind) { 7291 assert(FD->getDeclContext()->isDependentContext()); 7292 return; 7293 } 7294 7295 if (DefKind.isComparison()) 7296 UnusedPrivateFields.clear(); 7297 7298 if (DefKind.isSpecialMember() 7299 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 7300 DefKind.asSpecialMember()) 7301 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 7302 FD->setInvalidDecl(); 7303 } 7304 7305 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 7306 CXXSpecialMember CSM) { 7307 CXXRecordDecl *RD = MD->getParent(); 7308 7309 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid && 7310 "not an explicitly-defaulted special member"); 7311 7312 // Defer all checking for special members of a dependent type. 7313 if (RD->isDependentType()) 7314 return false; 7315 7316 // Whether this was the first-declared instance of the constructor. 7317 // This affects whether we implicitly add an exception spec and constexpr. 7318 bool First = MD == MD->getCanonicalDecl(); 7319 7320 bool HadError = false; 7321 7322 // C++11 [dcl.fct.def.default]p1: 7323 // A function that is explicitly defaulted shall 7324 // -- be a special member function [...] (checked elsewhere), 7325 // -- have the same type (except for ref-qualifiers, and except that a 7326 // copy operation can take a non-const reference) as an implicit 7327 // declaration, and 7328 // -- not have default arguments. 7329 // C++2a changes the second bullet to instead delete the function if it's 7330 // defaulted on its first declaration, unless it's "an assignment operator, 7331 // and its return type differs or its parameter type is not a reference". 7332 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; 7333 bool ShouldDeleteForTypeMismatch = false; 7334 unsigned ExpectedParams = 1; 7335 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 7336 ExpectedParams = 0; 7337 if (MD->getNumParams() != ExpectedParams) { 7338 // This checks for default arguments: a copy or move constructor with a 7339 // default argument is classified as a default constructor, and assignment 7340 // operations and destructors can't have default arguments. 7341 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 7342 << CSM << MD->getSourceRange(); 7343 HadError = true; 7344 } else if (MD->isVariadic()) { 7345 if (DeleteOnTypeMismatch) 7346 ShouldDeleteForTypeMismatch = true; 7347 else { 7348 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 7349 << CSM << MD->getSourceRange(); 7350 HadError = true; 7351 } 7352 } 7353 7354 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); 7355 7356 bool CanHaveConstParam = false; 7357 if (CSM == CXXCopyConstructor) 7358 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 7359 else if (CSM == CXXCopyAssignment) 7360 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 7361 7362 QualType ReturnType = Context.VoidTy; 7363 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 7364 // Check for return type matching. 7365 ReturnType = Type->getReturnType(); 7366 7367 QualType DeclType = Context.getTypeDeclType(RD); 7368 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); 7369 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 7370 7371 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 7372 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 7373 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 7374 HadError = true; 7375 } 7376 7377 // A defaulted special member cannot have cv-qualifiers. 7378 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { 7379 if (DeleteOnTypeMismatch) 7380 ShouldDeleteForTypeMismatch = true; 7381 else { 7382 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7383 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 7384 HadError = true; 7385 } 7386 } 7387 } 7388 7389 // Check for parameter type matching. 7390 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 7391 bool HasConstParam = false; 7392 if (ExpectedParams && ArgType->isReferenceType()) { 7393 // Argument must be reference to possibly-const T. 7394 QualType ReferentType = ArgType->getPointeeType(); 7395 HasConstParam = ReferentType.isConstQualified(); 7396 7397 if (ReferentType.isVolatileQualified()) { 7398 if (DeleteOnTypeMismatch) 7399 ShouldDeleteForTypeMismatch = true; 7400 else { 7401 Diag(MD->getLocation(), 7402 diag::err_defaulted_special_member_volatile_param) << CSM; 7403 HadError = true; 7404 } 7405 } 7406 7407 if (HasConstParam && !CanHaveConstParam) { 7408 if (DeleteOnTypeMismatch) 7409 ShouldDeleteForTypeMismatch = true; 7410 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 7411 Diag(MD->getLocation(), 7412 diag::err_defaulted_special_member_copy_const_param) 7413 << (CSM == CXXCopyAssignment); 7414 // FIXME: Explain why this special member can't be const. 7415 HadError = true; 7416 } else { 7417 Diag(MD->getLocation(), 7418 diag::err_defaulted_special_member_move_const_param) 7419 << (CSM == CXXMoveAssignment); 7420 HadError = true; 7421 } 7422 } 7423 } else if (ExpectedParams) { 7424 // A copy assignment operator can take its argument by value, but a 7425 // defaulted one cannot. 7426 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument"); 7427 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7428 HadError = true; 7429 } 7430 7431 // C++11 [dcl.fct.def.default]p2: 7432 // An explicitly-defaulted function may be declared constexpr only if it 7433 // would have been implicitly declared as constexpr, 7434 // Do not apply this rule to members of class templates, since core issue 1358 7435 // makes such functions always instantiate to constexpr functions. For 7436 // functions which cannot be constexpr (for non-constructors in C++11 and for 7437 // destructors in C++14 and C++17), this is checked elsewhere. 7438 // 7439 // FIXME: This should not apply if the member is deleted. 7440 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7441 HasConstParam); 7442 if ((getLangOpts().CPlusPlus20 || 7443 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7444 : isa<CXXConstructorDecl>(MD))) && 7445 MD->isConstexpr() && !Constexpr && 7446 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7447 Diag(MD->getBeginLoc(), MD->isConsteval() 7448 ? diag::err_incorrect_defaulted_consteval 7449 : diag::err_incorrect_defaulted_constexpr) 7450 << CSM; 7451 // FIXME: Explain why the special member can't be constexpr. 7452 HadError = true; 7453 } 7454 7455 if (First) { 7456 // C++2a [dcl.fct.def.default]p3: 7457 // If a function is explicitly defaulted on its first declaration, it is 7458 // implicitly considered to be constexpr if the implicit declaration 7459 // would be. 7460 MD->setConstexprKind(Constexpr ? (MD->isConsteval() 7461 ? ConstexprSpecKind::Consteval 7462 : ConstexprSpecKind::Constexpr) 7463 : ConstexprSpecKind::Unspecified); 7464 7465 if (!Type->hasExceptionSpec()) { 7466 // C++2a [except.spec]p3: 7467 // If a declaration of a function does not have a noexcept-specifier 7468 // [and] is defaulted on its first declaration, [...] the exception 7469 // specification is as specified below 7470 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7471 EPI.ExceptionSpec.Type = EST_Unevaluated; 7472 EPI.ExceptionSpec.SourceDecl = MD; 7473 MD->setType(Context.getFunctionType(ReturnType, 7474 llvm::makeArrayRef(&ArgType, 7475 ExpectedParams), 7476 EPI)); 7477 } 7478 } 7479 7480 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7481 if (First) { 7482 SetDeclDeleted(MD, MD->getLocation()); 7483 if (!inTemplateInstantiation() && !HadError) { 7484 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; 7485 if (ShouldDeleteForTypeMismatch) { 7486 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; 7487 } else { 7488 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7489 } 7490 } 7491 if (ShouldDeleteForTypeMismatch && !HadError) { 7492 Diag(MD->getLocation(), 7493 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; 7494 } 7495 } else { 7496 // C++11 [dcl.fct.def.default]p4: 7497 // [For a] user-provided explicitly-defaulted function [...] if such a 7498 // function is implicitly defined as deleted, the program is ill-formed. 7499 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 7500 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); 7501 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7502 HadError = true; 7503 } 7504 } 7505 7506 return HadError; 7507 } 7508 7509 namespace { 7510 /// Helper class for building and checking a defaulted comparison. 7511 /// 7512 /// Defaulted functions are built in two phases: 7513 /// 7514 /// * First, the set of operations that the function will perform are 7515 /// identified, and some of them are checked. If any of the checked 7516 /// operations is invalid in certain ways, the comparison function is 7517 /// defined as deleted and no body is built. 7518 /// * Then, if the function is not defined as deleted, the body is built. 7519 /// 7520 /// This is accomplished by performing two visitation steps over the eventual 7521 /// body of the function. 7522 template<typename Derived, typename ResultList, typename Result, 7523 typename Subobject> 7524 class DefaultedComparisonVisitor { 7525 public: 7526 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7527 7528 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7529 DefaultedComparisonKind DCK) 7530 : S(S), RD(RD), FD(FD), DCK(DCK) { 7531 if (auto *Info = FD->getDefaultedFunctionInfo()) { 7532 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7533 // UnresolvedSet to avoid this copy. 7534 Fns.assign(Info->getUnqualifiedLookups().begin(), 7535 Info->getUnqualifiedLookups().end()); 7536 } 7537 } 7538 7539 ResultList visit() { 7540 // The type of an lvalue naming a parameter of this function. 7541 QualType ParamLvalType = 7542 FD->getParamDecl(0)->getType().getNonReferenceType(); 7543 7544 ResultList Results; 7545 7546 switch (DCK) { 7547 case DefaultedComparisonKind::None: 7548 llvm_unreachable("not a defaulted comparison"); 7549 7550 case DefaultedComparisonKind::Equal: 7551 case DefaultedComparisonKind::ThreeWay: 7552 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7553 return Results; 7554 7555 case DefaultedComparisonKind::NotEqual: 7556 case DefaultedComparisonKind::Relational: 7557 Results.add(getDerived().visitExpandedSubobject( 7558 ParamLvalType, getDerived().getCompleteObject())); 7559 return Results; 7560 } 7561 llvm_unreachable(""); 7562 } 7563 7564 protected: 7565 Derived &getDerived() { return static_cast<Derived&>(*this); } 7566 7567 /// Visit the expanded list of subobjects of the given type, as specified in 7568 /// C++2a [class.compare.default]. 7569 /// 7570 /// \return \c true if the ResultList object said we're done, \c false if not. 7571 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7572 Qualifiers Quals) { 7573 // C++2a [class.compare.default]p4: 7574 // The direct base class subobjects of C 7575 for (CXXBaseSpecifier &Base : Record->bases()) 7576 if (Results.add(getDerived().visitSubobject( 7577 S.Context.getQualifiedType(Base.getType(), Quals), 7578 getDerived().getBase(&Base)))) 7579 return true; 7580 7581 // followed by the non-static data members of C 7582 for (FieldDecl *Field : Record->fields()) { 7583 // Recursively expand anonymous structs. 7584 if (Field->isAnonymousStructOrUnion()) { 7585 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7586 Quals)) 7587 return true; 7588 continue; 7589 } 7590 7591 // Figure out the type of an lvalue denoting this field. 7592 Qualifiers FieldQuals = Quals; 7593 if (Field->isMutable()) 7594 FieldQuals.removeConst(); 7595 QualType FieldType = 7596 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7597 7598 if (Results.add(getDerived().visitSubobject( 7599 FieldType, getDerived().getField(Field)))) 7600 return true; 7601 } 7602 7603 // form a list of subobjects. 7604 return false; 7605 } 7606 7607 Result visitSubobject(QualType Type, Subobject Subobj) { 7608 // In that list, any subobject of array type is recursively expanded 7609 const ArrayType *AT = S.Context.getAsArrayType(Type); 7610 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7611 return getDerived().visitSubobjectArray(CAT->getElementType(), 7612 CAT->getSize(), Subobj); 7613 return getDerived().visitExpandedSubobject(Type, Subobj); 7614 } 7615 7616 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 7617 Subobject Subobj) { 7618 return getDerived().visitSubobject(Type, Subobj); 7619 } 7620 7621 protected: 7622 Sema &S; 7623 CXXRecordDecl *RD; 7624 FunctionDecl *FD; 7625 DefaultedComparisonKind DCK; 7626 UnresolvedSet<16> Fns; 7627 }; 7628 7629 /// Information about a defaulted comparison, as determined by 7630 /// DefaultedComparisonAnalyzer. 7631 struct DefaultedComparisonInfo { 7632 bool Deleted = false; 7633 bool Constexpr = true; 7634 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 7635 7636 static DefaultedComparisonInfo deleted() { 7637 DefaultedComparisonInfo Deleted; 7638 Deleted.Deleted = true; 7639 return Deleted; 7640 } 7641 7642 bool add(const DefaultedComparisonInfo &R) { 7643 Deleted |= R.Deleted; 7644 Constexpr &= R.Constexpr; 7645 Category = commonComparisonType(Category, R.Category); 7646 return Deleted; 7647 } 7648 }; 7649 7650 /// An element in the expanded list of subobjects of a defaulted comparison, as 7651 /// specified in C++2a [class.compare.default]p4. 7652 struct DefaultedComparisonSubobject { 7653 enum { CompleteObject, Member, Base } Kind; 7654 NamedDecl *Decl; 7655 SourceLocation Loc; 7656 }; 7657 7658 /// A visitor over the notional body of a defaulted comparison that determines 7659 /// whether that body would be deleted or constexpr. 7660 class DefaultedComparisonAnalyzer 7661 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 7662 DefaultedComparisonInfo, 7663 DefaultedComparisonInfo, 7664 DefaultedComparisonSubobject> { 7665 public: 7666 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 7667 7668 private: 7669 DiagnosticKind Diagnose; 7670 7671 public: 7672 using Base = DefaultedComparisonVisitor; 7673 using Result = DefaultedComparisonInfo; 7674 using Subobject = DefaultedComparisonSubobject; 7675 7676 friend Base; 7677 7678 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7679 DefaultedComparisonKind DCK, 7680 DiagnosticKind Diagnose = NoDiagnostics) 7681 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 7682 7683 Result visit() { 7684 if ((DCK == DefaultedComparisonKind::Equal || 7685 DCK == DefaultedComparisonKind::ThreeWay) && 7686 RD->hasVariantMembers()) { 7687 // C++2a [class.compare.default]p2 [P2002R0]: 7688 // A defaulted comparison operator function for class C is defined as 7689 // deleted if [...] C has variant members. 7690 if (Diagnose == ExplainDeleted) { 7691 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 7692 << FD << RD->isUnion() << RD; 7693 } 7694 return Result::deleted(); 7695 } 7696 7697 return Base::visit(); 7698 } 7699 7700 private: 7701 Subobject getCompleteObject() { 7702 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; 7703 } 7704 7705 Subobject getBase(CXXBaseSpecifier *Base) { 7706 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 7707 Base->getBaseTypeLoc()}; 7708 } 7709 7710 Subobject getField(FieldDecl *Field) { 7711 return Subobject{Subobject::Member, Field, Field->getLocation()}; 7712 } 7713 7714 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 7715 // C++2a [class.compare.default]p2 [P2002R0]: 7716 // A defaulted <=> or == operator function for class C is defined as 7717 // deleted if any non-static data member of C is of reference type 7718 if (Type->isReferenceType()) { 7719 if (Diagnose == ExplainDeleted) { 7720 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 7721 << FD << RD; 7722 } 7723 return Result::deleted(); 7724 } 7725 7726 // [...] Let xi be an lvalue denoting the ith element [...] 7727 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 7728 Expr *Args[] = {&Xi, &Xi}; 7729 7730 // All operators start by trying to apply that same operator recursively. 7731 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 7732 assert(OO != OO_None && "not an overloaded operator!"); 7733 return visitBinaryOperator(OO, Args, Subobj); 7734 } 7735 7736 Result 7737 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 7738 Subobject Subobj, 7739 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 7740 // Note that there is no need to consider rewritten candidates here if 7741 // we've already found there is no viable 'operator<=>' candidate (and are 7742 // considering synthesizing a '<=>' from '==' and '<'). 7743 OverloadCandidateSet CandidateSet( 7744 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 7745 OverloadCandidateSet::OperatorRewriteInfo( 7746 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 7747 7748 /// C++2a [class.compare.default]p1 [P2002R0]: 7749 /// [...] the defaulted function itself is never a candidate for overload 7750 /// resolution [...] 7751 CandidateSet.exclude(FD); 7752 7753 if (Args[0]->getType()->isOverloadableType()) 7754 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 7755 else 7756 // FIXME: We determine whether this is a valid expression by checking to 7757 // see if there's a viable builtin operator candidate for it. That isn't 7758 // really what the rules ask us to do, but should give the right results. 7759 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); 7760 7761 Result R; 7762 7763 OverloadCandidateSet::iterator Best; 7764 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 7765 case OR_Success: { 7766 // C++2a [class.compare.secondary]p2 [P2002R0]: 7767 // The operator function [...] is defined as deleted if [...] the 7768 // candidate selected by overload resolution is not a rewritten 7769 // candidate. 7770 if ((DCK == DefaultedComparisonKind::NotEqual || 7771 DCK == DefaultedComparisonKind::Relational) && 7772 !Best->RewriteKind) { 7773 if (Diagnose == ExplainDeleted) { 7774 S.Diag(Best->Function->getLocation(), 7775 diag::note_defaulted_comparison_not_rewritten_callee) 7776 << FD; 7777 } 7778 return Result::deleted(); 7779 } 7780 7781 // Throughout C++2a [class.compare]: if overload resolution does not 7782 // result in a usable function, the candidate function is defined as 7783 // deleted. This requires that we selected an accessible function. 7784 // 7785 // Note that this only considers the access of the function when named 7786 // within the type of the subobject, and not the access path for any 7787 // derived-to-base conversion. 7788 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 7789 if (ArgClass && Best->FoundDecl.getDecl() && 7790 Best->FoundDecl.getDecl()->isCXXClassMember()) { 7791 QualType ObjectType = Subobj.Kind == Subobject::Member 7792 ? Args[0]->getType() 7793 : S.Context.getRecordType(RD); 7794 if (!S.isMemberAccessibleForDeletion( 7795 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 7796 Diagnose == ExplainDeleted 7797 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 7798 << FD << Subobj.Kind << Subobj.Decl 7799 : S.PDiag())) 7800 return Result::deleted(); 7801 } 7802 7803 bool NeedsDeducing = 7804 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); 7805 7806 if (FunctionDecl *BestFD = Best->Function) { 7807 // C++2a [class.compare.default]p3 [P2002R0]: 7808 // A defaulted comparison function is constexpr-compatible if 7809 // [...] no overlod resolution performed [...] results in a 7810 // non-constexpr function. 7811 assert(!BestFD->isDeleted() && "wrong overload resolution result"); 7812 // If it's not constexpr, explain why not. 7813 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 7814 if (Subobj.Kind != Subobject::CompleteObject) 7815 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 7816 << Subobj.Kind << Subobj.Decl; 7817 S.Diag(BestFD->getLocation(), 7818 diag::note_defaulted_comparison_not_constexpr_here); 7819 // Bail out after explaining; we don't want any more notes. 7820 return Result::deleted(); 7821 } 7822 R.Constexpr &= BestFD->isConstexpr(); 7823 7824 if (NeedsDeducing) { 7825 // If any callee has an undeduced return type, deduce it now. 7826 // FIXME: It's not clear how a failure here should be handled. For 7827 // now, we produce an eager diagnostic, because that is forward 7828 // compatible with most (all?) other reasonable options. 7829 if (BestFD->getReturnType()->isUndeducedType() && 7830 S.DeduceReturnType(BestFD, FD->getLocation(), 7831 /*Diagnose=*/false)) { 7832 // Don't produce a duplicate error when asked to explain why the 7833 // comparison is deleted: we diagnosed that when initially checking 7834 // the defaulted operator. 7835 if (Diagnose == NoDiagnostics) { 7836 S.Diag( 7837 FD->getLocation(), 7838 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) 7839 << Subobj.Kind << Subobj.Decl; 7840 S.Diag( 7841 Subobj.Loc, 7842 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) 7843 << Subobj.Kind << Subobj.Decl; 7844 S.Diag(BestFD->getLocation(), 7845 diag::note_defaulted_comparison_cannot_deduce_callee) 7846 << Subobj.Kind << Subobj.Decl; 7847 } 7848 return Result::deleted(); 7849 } 7850 auto *Info = S.Context.CompCategories.lookupInfoForType( 7851 BestFD->getCallResultType()); 7852 if (!Info) { 7853 if (Diagnose == ExplainDeleted) { 7854 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 7855 << Subobj.Kind << Subobj.Decl 7856 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 7857 S.Diag(BestFD->getLocation(), 7858 diag::note_defaulted_comparison_cannot_deduce_callee) 7859 << Subobj.Kind << Subobj.Decl; 7860 } 7861 return Result::deleted(); 7862 } 7863 R.Category = Info->Kind; 7864 } 7865 } else { 7866 QualType T = Best->BuiltinParamTypes[0]; 7867 assert(T == Best->BuiltinParamTypes[1] && 7868 "builtin comparison for different types?"); 7869 assert(Best->BuiltinParamTypes[2].isNull() && 7870 "invalid builtin comparison"); 7871 7872 if (NeedsDeducing) { 7873 Optional<ComparisonCategoryType> Cat = 7874 getComparisonCategoryForBuiltinCmp(T); 7875 assert(Cat && "no category for builtin comparison?"); 7876 R.Category = *Cat; 7877 } 7878 } 7879 7880 // Note that we might be rewriting to a different operator. That call is 7881 // not considered until we come to actually build the comparison function. 7882 break; 7883 } 7884 7885 case OR_Ambiguous: 7886 if (Diagnose == ExplainDeleted) { 7887 unsigned Kind = 0; 7888 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 7889 Kind = OO == OO_EqualEqual ? 1 : 2; 7890 CandidateSet.NoteCandidates( 7891 PartialDiagnosticAt( 7892 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 7893 << FD << Kind << Subobj.Kind << Subobj.Decl), 7894 S, OCD_AmbiguousCandidates, Args); 7895 } 7896 R = Result::deleted(); 7897 break; 7898 7899 case OR_Deleted: 7900 if (Diagnose == ExplainDeleted) { 7901 if ((DCK == DefaultedComparisonKind::NotEqual || 7902 DCK == DefaultedComparisonKind::Relational) && 7903 !Best->RewriteKind) { 7904 S.Diag(Best->Function->getLocation(), 7905 diag::note_defaulted_comparison_not_rewritten_callee) 7906 << FD; 7907 } else { 7908 S.Diag(Subobj.Loc, 7909 diag::note_defaulted_comparison_calls_deleted) 7910 << FD << Subobj.Kind << Subobj.Decl; 7911 S.NoteDeletedFunction(Best->Function); 7912 } 7913 } 7914 R = Result::deleted(); 7915 break; 7916 7917 case OR_No_Viable_Function: 7918 // If there's no usable candidate, we're done unless we can rewrite a 7919 // '<=>' in terms of '==' and '<'. 7920 if (OO == OO_Spaceship && 7921 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 7922 // For any kind of comparison category return type, we need a usable 7923 // '==' and a usable '<'. 7924 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 7925 &CandidateSet))) 7926 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 7927 break; 7928 } 7929 7930 if (Diagnose == ExplainDeleted) { 7931 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 7932 << FD << Subobj.Kind << Subobj.Decl; 7933 7934 // For a three-way comparison, list both the candidates for the 7935 // original operator and the candidates for the synthesized operator. 7936 if (SpaceshipCandidates) { 7937 SpaceshipCandidates->NoteCandidates( 7938 S, Args, 7939 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 7940 Args, FD->getLocation())); 7941 S.Diag(Subobj.Loc, 7942 diag::note_defaulted_comparison_no_viable_function_synthesized) 7943 << (OO == OO_EqualEqual ? 0 : 1); 7944 } 7945 7946 CandidateSet.NoteCandidates( 7947 S, Args, 7948 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 7949 FD->getLocation())); 7950 } 7951 R = Result::deleted(); 7952 break; 7953 } 7954 7955 return R; 7956 } 7957 }; 7958 7959 /// A list of statements. 7960 struct StmtListResult { 7961 bool IsInvalid = false; 7962 llvm::SmallVector<Stmt*, 16> Stmts; 7963 7964 bool add(const StmtResult &S) { 7965 IsInvalid |= S.isInvalid(); 7966 if (IsInvalid) 7967 return true; 7968 Stmts.push_back(S.get()); 7969 return false; 7970 } 7971 }; 7972 7973 /// A visitor over the notional body of a defaulted comparison that synthesizes 7974 /// the actual body. 7975 class DefaultedComparisonSynthesizer 7976 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 7977 StmtListResult, StmtResult, 7978 std::pair<ExprResult, ExprResult>> { 7979 SourceLocation Loc; 7980 unsigned ArrayDepth = 0; 7981 7982 public: 7983 using Base = DefaultedComparisonVisitor; 7984 using ExprPair = std::pair<ExprResult, ExprResult>; 7985 7986 friend Base; 7987 7988 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7989 DefaultedComparisonKind DCK, 7990 SourceLocation BodyLoc) 7991 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 7992 7993 /// Build a suitable function body for this defaulted comparison operator. 7994 StmtResult build() { 7995 Sema::CompoundScopeRAII CompoundScope(S); 7996 7997 StmtListResult Stmts = visit(); 7998 if (Stmts.IsInvalid) 7999 return StmtError(); 8000 8001 ExprResult RetVal; 8002 switch (DCK) { 8003 case DefaultedComparisonKind::None: 8004 llvm_unreachable("not a defaulted comparison"); 8005 8006 case DefaultedComparisonKind::Equal: { 8007 // C++2a [class.eq]p3: 8008 // [...] compar[e] the corresponding elements [...] until the first 8009 // index i where xi == yi yields [...] false. If no such index exists, 8010 // V is true. Otherwise, V is false. 8011 // 8012 // Join the comparisons with '&&'s and return the result. Use a right 8013 // fold (traversing the conditions right-to-left), because that 8014 // short-circuits more naturally. 8015 auto OldStmts = std::move(Stmts.Stmts); 8016 Stmts.Stmts.clear(); 8017 ExprResult CmpSoFar; 8018 // Finish a particular comparison chain. 8019 auto FinishCmp = [&] { 8020 if (Expr *Prior = CmpSoFar.get()) { 8021 // Convert the last expression to 'return ...;' 8022 if (RetVal.isUnset() && Stmts.Stmts.empty()) 8023 RetVal = CmpSoFar; 8024 // Convert any prior comparison to 'if (!(...)) return false;' 8025 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 8026 return true; 8027 CmpSoFar = ExprResult(); 8028 } 8029 return false; 8030 }; 8031 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 8032 Expr *E = dyn_cast<Expr>(EAsStmt); 8033 if (!E) { 8034 // Found an array comparison. 8035 if (FinishCmp() || Stmts.add(EAsStmt)) 8036 return StmtError(); 8037 continue; 8038 } 8039 8040 if (CmpSoFar.isUnset()) { 8041 CmpSoFar = E; 8042 continue; 8043 } 8044 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 8045 if (CmpSoFar.isInvalid()) 8046 return StmtError(); 8047 } 8048 if (FinishCmp()) 8049 return StmtError(); 8050 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 8051 // If no such index exists, V is true. 8052 if (RetVal.isUnset()) 8053 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 8054 break; 8055 } 8056 8057 case DefaultedComparisonKind::ThreeWay: { 8058 // Per C++2a [class.spaceship]p3, as a fallback add: 8059 // return static_cast<R>(std::strong_ordering::equal); 8060 QualType StrongOrdering = S.CheckComparisonCategoryType( 8061 ComparisonCategoryType::StrongOrdering, Loc, 8062 Sema::ComparisonCategoryUsage::DefaultedOperator); 8063 if (StrongOrdering.isNull()) 8064 return StmtError(); 8065 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 8066 .getValueInfo(ComparisonCategoryResult::Equal) 8067 ->VD; 8068 RetVal = getDecl(EqualVD); 8069 if (RetVal.isInvalid()) 8070 return StmtError(); 8071 RetVal = buildStaticCastToR(RetVal.get()); 8072 break; 8073 } 8074 8075 case DefaultedComparisonKind::NotEqual: 8076 case DefaultedComparisonKind::Relational: 8077 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 8078 break; 8079 } 8080 8081 // Build the final return statement. 8082 if (RetVal.isInvalid()) 8083 return StmtError(); 8084 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 8085 if (ReturnStmt.isInvalid()) 8086 return StmtError(); 8087 Stmts.Stmts.push_back(ReturnStmt.get()); 8088 8089 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 8090 } 8091 8092 private: 8093 ExprResult getDecl(ValueDecl *VD) { 8094 return S.BuildDeclarationNameExpr( 8095 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 8096 } 8097 8098 ExprResult getParam(unsigned I) { 8099 ParmVarDecl *PD = FD->getParamDecl(I); 8100 return getDecl(PD); 8101 } 8102 8103 ExprPair getCompleteObject() { 8104 unsigned Param = 0; 8105 ExprResult LHS; 8106 if (isa<CXXMethodDecl>(FD)) { 8107 // LHS is '*this'. 8108 LHS = S.ActOnCXXThis(Loc); 8109 if (!LHS.isInvalid()) 8110 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 8111 } else { 8112 LHS = getParam(Param++); 8113 } 8114 ExprResult RHS = getParam(Param++); 8115 assert(Param == FD->getNumParams()); 8116 return {LHS, RHS}; 8117 } 8118 8119 ExprPair getBase(CXXBaseSpecifier *Base) { 8120 ExprPair Obj = getCompleteObject(); 8121 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8122 return {ExprError(), ExprError()}; 8123 CXXCastPath Path = {Base}; 8124 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), 8125 CK_DerivedToBase, VK_LValue, &Path), 8126 S.ImpCastExprToType(Obj.second.get(), Base->getType(), 8127 CK_DerivedToBase, VK_LValue, &Path)}; 8128 } 8129 8130 ExprPair getField(FieldDecl *Field) { 8131 ExprPair Obj = getCompleteObject(); 8132 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8133 return {ExprError(), ExprError()}; 8134 8135 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 8136 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 8137 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 8138 CXXScopeSpec(), Field, Found, NameInfo), 8139 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 8140 CXXScopeSpec(), Field, Found, NameInfo)}; 8141 } 8142 8143 // FIXME: When expanding a subobject, register a note in the code synthesis 8144 // stack to say which subobject we're comparing. 8145 8146 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 8147 if (Cond.isInvalid()) 8148 return StmtError(); 8149 8150 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 8151 if (NotCond.isInvalid()) 8152 return StmtError(); 8153 8154 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 8155 assert(!False.isInvalid() && "should never fail"); 8156 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 8157 if (ReturnFalse.isInvalid()) 8158 return StmtError(); 8159 8160 return S.ActOnIfStmt(Loc, false, Loc, nullptr, 8161 S.ActOnCondition(nullptr, Loc, NotCond.get(), 8162 Sema::ConditionKind::Boolean), 8163 Loc, ReturnFalse.get(), SourceLocation(), nullptr); 8164 } 8165 8166 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 8167 ExprPair Subobj) { 8168 QualType SizeType = S.Context.getSizeType(); 8169 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 8170 8171 // Build 'size_t i$n = 0'. 8172 IdentifierInfo *IterationVarName = nullptr; 8173 { 8174 SmallString<8> Str; 8175 llvm::raw_svector_ostream OS(Str); 8176 OS << "i" << ArrayDepth; 8177 IterationVarName = &S.Context.Idents.get(OS.str()); 8178 } 8179 VarDecl *IterationVar = VarDecl::Create( 8180 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 8181 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 8182 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 8183 IterationVar->setInit( 8184 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 8185 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 8186 8187 auto IterRef = [&] { 8188 ExprResult Ref = S.BuildDeclarationNameExpr( 8189 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 8190 IterationVar); 8191 assert(!Ref.isInvalid() && "can't reference our own variable?"); 8192 return Ref.get(); 8193 }; 8194 8195 // Build 'i$n != Size'. 8196 ExprResult Cond = S.CreateBuiltinBinOp( 8197 Loc, BO_NE, IterRef(), 8198 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 8199 assert(!Cond.isInvalid() && "should never fail"); 8200 8201 // Build '++i$n'. 8202 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 8203 assert(!Inc.isInvalid() && "should never fail"); 8204 8205 // Build 'a[i$n]' and 'b[i$n]'. 8206 auto Index = [&](ExprResult E) { 8207 if (E.isInvalid()) 8208 return ExprError(); 8209 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 8210 }; 8211 Subobj.first = Index(Subobj.first); 8212 Subobj.second = Index(Subobj.second); 8213 8214 // Compare the array elements. 8215 ++ArrayDepth; 8216 StmtResult Substmt = visitSubobject(Type, Subobj); 8217 --ArrayDepth; 8218 8219 if (Substmt.isInvalid()) 8220 return StmtError(); 8221 8222 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 8223 // For outer levels or for an 'operator<=>' we already have a suitable 8224 // statement that returns as necessary. 8225 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 8226 assert(DCK == DefaultedComparisonKind::Equal && 8227 "should have non-expression statement"); 8228 Substmt = buildIfNotCondReturnFalse(ElemCmp); 8229 if (Substmt.isInvalid()) 8230 return StmtError(); 8231 } 8232 8233 // Build 'for (...) ...' 8234 return S.ActOnForStmt(Loc, Loc, Init, 8235 S.ActOnCondition(nullptr, Loc, Cond.get(), 8236 Sema::ConditionKind::Boolean), 8237 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 8238 Substmt.get()); 8239 } 8240 8241 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 8242 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8243 return StmtError(); 8244 8245 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8246 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); 8247 ExprResult Op; 8248 if (Type->isOverloadableType()) 8249 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), 8250 Obj.second.get(), /*PerformADL=*/true, 8251 /*AllowRewrittenCandidates=*/true, FD); 8252 else 8253 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); 8254 if (Op.isInvalid()) 8255 return StmtError(); 8256 8257 switch (DCK) { 8258 case DefaultedComparisonKind::None: 8259 llvm_unreachable("not a defaulted comparison"); 8260 8261 case DefaultedComparisonKind::Equal: 8262 // Per C++2a [class.eq]p2, each comparison is individually contextually 8263 // converted to bool. 8264 Op = S.PerformContextuallyConvertToBool(Op.get()); 8265 if (Op.isInvalid()) 8266 return StmtError(); 8267 return Op.get(); 8268 8269 case DefaultedComparisonKind::ThreeWay: { 8270 // Per C++2a [class.spaceship]p3, form: 8271 // if (R cmp = static_cast<R>(op); cmp != 0) 8272 // return cmp; 8273 QualType R = FD->getReturnType(); 8274 Op = buildStaticCastToR(Op.get()); 8275 if (Op.isInvalid()) 8276 return StmtError(); 8277 8278 // R cmp = ...; 8279 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 8280 VarDecl *VD = 8281 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 8282 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 8283 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 8284 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 8285 8286 // cmp != 0 8287 ExprResult VDRef = getDecl(VD); 8288 if (VDRef.isInvalid()) 8289 return StmtError(); 8290 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 8291 Expr *Zero = 8292 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 8293 ExprResult Comp; 8294 if (VDRef.get()->getType()->isOverloadableType()) 8295 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, 8296 true, FD); 8297 else 8298 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); 8299 if (Comp.isInvalid()) 8300 return StmtError(); 8301 Sema::ConditionResult Cond = S.ActOnCondition( 8302 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 8303 if (Cond.isInvalid()) 8304 return StmtError(); 8305 8306 // return cmp; 8307 VDRef = getDecl(VD); 8308 if (VDRef.isInvalid()) 8309 return StmtError(); 8310 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 8311 if (ReturnStmt.isInvalid()) 8312 return StmtError(); 8313 8314 // if (...) 8315 return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, Loc, InitStmt, Cond, Loc, 8316 ReturnStmt.get(), 8317 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); 8318 } 8319 8320 case DefaultedComparisonKind::NotEqual: 8321 case DefaultedComparisonKind::Relational: 8322 // C++2a [class.compare.secondary]p2: 8323 // Otherwise, the operator function yields x @ y. 8324 return Op.get(); 8325 } 8326 llvm_unreachable(""); 8327 } 8328 8329 /// Build "static_cast<R>(E)". 8330 ExprResult buildStaticCastToR(Expr *E) { 8331 QualType R = FD->getReturnType(); 8332 assert(!R->isUndeducedType() && "type should have been deduced already"); 8333 8334 // Don't bother forming a no-op cast in the common case. 8335 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) 8336 return E; 8337 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 8338 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 8339 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 8340 } 8341 }; 8342 } 8343 8344 /// Perform the unqualified lookups that might be needed to form a defaulted 8345 /// comparison function for the given operator. 8346 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 8347 UnresolvedSetImpl &Operators, 8348 OverloadedOperatorKind Op) { 8349 auto Lookup = [&](OverloadedOperatorKind OO) { 8350 Self.LookupOverloadedOperatorName(OO, S, Operators); 8351 }; 8352 8353 // Every defaulted operator looks up itself. 8354 Lookup(Op); 8355 // ... and the rewritten form of itself, if any. 8356 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 8357 Lookup(ExtraOp); 8358 8359 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 8360 // synthesize a three-way comparison from '<' and '=='. In a dependent 8361 // context, we also need to look up '==' in case we implicitly declare a 8362 // defaulted 'operator=='. 8363 if (Op == OO_Spaceship) { 8364 Lookup(OO_ExclaimEqual); 8365 Lookup(OO_Less); 8366 Lookup(OO_EqualEqual); 8367 } 8368 } 8369 8370 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 8371 DefaultedComparisonKind DCK) { 8372 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); 8373 8374 // Perform any unqualified lookups we're going to need to default this 8375 // function. 8376 if (S) { 8377 UnresolvedSet<32> Operators; 8378 lookupOperatorsForDefaultedComparison(*this, S, Operators, 8379 FD->getOverloadedOperator()); 8380 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( 8381 Context, Operators.pairs())); 8382 } 8383 8384 // C++2a [class.compare.default]p1: 8385 // A defaulted comparison operator function for some class C shall be a 8386 // non-template function declared in the member-specification of C that is 8387 // -- a non-static const member of C having one parameter of type 8388 // const C&, or 8389 // -- a friend of C having two parameters of type const C& or two 8390 // parameters of type C. 8391 8392 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 8393 bool IsMethod = isa<CXXMethodDecl>(FD); 8394 if (IsMethod) { 8395 auto *MD = cast<CXXMethodDecl>(FD); 8396 assert(!MD->isStatic() && "comparison function cannot be a static member"); 8397 8398 // If we're out-of-class, this is the class we're comparing. 8399 if (!RD) 8400 RD = MD->getParent(); 8401 8402 if (!MD->isConst()) { 8403 SourceLocation InsertLoc; 8404 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8405 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc()); 8406 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8407 // corresponding defaulted 'operator<=>' already. 8408 if (!MD->isImplicit()) { 8409 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const) 8410 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8411 } 8412 8413 // Add the 'const' to the type to recover. 8414 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8415 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8416 EPI.TypeQuals.addConst(); 8417 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8418 FPT->getParamTypes(), EPI)); 8419 } 8420 } 8421 8422 if (FD->getNumParams() != (IsMethod ? 1 : 2)) { 8423 // Let's not worry about using a variadic template pack here -- who would do 8424 // such a thing? 8425 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args) 8426 << int(IsMethod) << int(DCK); 8427 return true; 8428 } 8429 8430 const ParmVarDecl *KnownParm = nullptr; 8431 for (const ParmVarDecl *Param : FD->parameters()) { 8432 QualType ParmTy = Param->getType(); 8433 if (ParmTy->isDependentType()) 8434 continue; 8435 if (!KnownParm) { 8436 auto CTy = ParmTy; 8437 // Is it `T const &`? 8438 bool Ok = !IsMethod; 8439 QualType ExpectedTy; 8440 if (RD) 8441 ExpectedTy = Context.getRecordType(RD); 8442 if (auto *Ref = CTy->getAs<ReferenceType>()) { 8443 CTy = Ref->getPointeeType(); 8444 if (RD) 8445 ExpectedTy.addConst(); 8446 Ok = true; 8447 } 8448 8449 // Is T a class? 8450 if (!Ok) { 8451 } else if (RD) { 8452 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy)) 8453 Ok = false; 8454 } else if (auto *CRD = CTy->getAsRecordDecl()) { 8455 RD = cast<CXXRecordDecl>(CRD); 8456 } else { 8457 Ok = false; 8458 } 8459 8460 if (Ok) { 8461 KnownParm = Param; 8462 } else { 8463 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8464 // corresponding defaulted 'operator<=>' already. 8465 if (!FD->isImplicit()) { 8466 if (RD) { 8467 QualType PlainTy = Context.getRecordType(RD); 8468 QualType RefTy = 8469 Context.getLValueReferenceType(PlainTy.withConst()); 8470 if (IsMethod) 8471 PlainTy = QualType(); 8472 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 8473 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy 8474 << Param->getSourceRange(); 8475 } else { 8476 assert(!IsMethod && "should know expected type for method"); 8477 Diag(FD->getLocation(), 8478 diag::err_defaulted_comparison_param_unknown) 8479 << int(DCK) << ParmTy << Param->getSourceRange(); 8480 } 8481 } 8482 return true; 8483 } 8484 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) { 8485 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 8486 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange() 8487 << ParmTy << Param->getSourceRange(); 8488 return true; 8489 } 8490 } 8491 8492 assert(RD && "must have determined class"); 8493 if (IsMethod) { 8494 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 8495 // In-class, must be a friend decl. 8496 assert(FD->getFriendObjectKind() && "expected a friend declaration"); 8497 } else { 8498 // Out of class, require the defaulted comparison to be a friend (of a 8499 // complete type). 8500 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD), 8501 diag::err_defaulted_comparison_not_friend, int(DCK), 8502 int(1))) 8503 return true; 8504 8505 if (llvm::find_if(RD->friends(), [&](const FriendDecl *F) { 8506 return FD->getCanonicalDecl() == 8507 F->getFriendDecl()->getCanonicalDecl(); 8508 }) == RD->friends().end()) { 8509 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend) 8510 << int(DCK) << int(0) << RD; 8511 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at); 8512 return true; 8513 } 8514 } 8515 8516 // C++2a [class.eq]p1, [class.rel]p1: 8517 // A [defaulted comparison other than <=>] shall have a declared return 8518 // type bool. 8519 if (DCK != DefaultedComparisonKind::ThreeWay && 8520 !FD->getDeclaredReturnType()->isDependentType() && 8521 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8522 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8523 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8524 << FD->getReturnTypeSourceRange(); 8525 return true; 8526 } 8527 // C++2a [class.spaceship]p2 [P2002R0]: 8528 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8529 // R shall not contain a placeholder type. 8530 if (DCK == DefaultedComparisonKind::ThreeWay && 8531 FD->getDeclaredReturnType()->getContainedDeducedType() && 8532 !Context.hasSameType(FD->getDeclaredReturnType(), 8533 Context.getAutoDeductType())) { 8534 Diag(FD->getLocation(), 8535 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8536 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8537 << FD->getReturnTypeSourceRange(); 8538 return true; 8539 } 8540 8541 // For a defaulted function in a dependent class, defer all remaining checks 8542 // until instantiation. 8543 if (RD->isDependentType()) 8544 return false; 8545 8546 // Determine whether the function should be defined as deleted. 8547 DefaultedComparisonInfo Info = 8548 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8549 8550 bool First = FD == FD->getCanonicalDecl(); 8551 8552 // If we want to delete the function, then do so; there's nothing else to 8553 // check in that case. 8554 if (Info.Deleted) { 8555 if (!First) { 8556 // C++11 [dcl.fct.def.default]p4: 8557 // [For a] user-provided explicitly-defaulted function [...] if such a 8558 // function is implicitly defined as deleted, the program is ill-formed. 8559 // 8560 // This is really just a consequence of the general rule that you can 8561 // only delete a function on its first declaration. 8562 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8563 << FD->isImplicit() << (int)DCK; 8564 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8565 DefaultedComparisonAnalyzer::ExplainDeleted) 8566 .visit(); 8567 return true; 8568 } 8569 8570 SetDeclDeleted(FD, FD->getLocation()); 8571 if (!inTemplateInstantiation() && !FD->isImplicit()) { 8572 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 8573 << (int)DCK; 8574 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8575 DefaultedComparisonAnalyzer::ExplainDeleted) 8576 .visit(); 8577 } 8578 return false; 8579 } 8580 8581 // C++2a [class.spaceship]p2: 8582 // The return type is deduced as the common comparison type of R0, R1, ... 8583 if (DCK == DefaultedComparisonKind::ThreeWay && 8584 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 8585 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 8586 if (RetLoc.isInvalid()) 8587 RetLoc = FD->getBeginLoc(); 8588 // FIXME: Should we really care whether we have the complete type and the 8589 // 'enumerator' constants here? A forward declaration seems sufficient. 8590 QualType Cat = CheckComparisonCategoryType( 8591 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 8592 if (Cat.isNull()) 8593 return true; 8594 Context.adjustDeducedFunctionResultType( 8595 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 8596 } 8597 8598 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8599 // An explicitly-defaulted function that is not defined as deleted may be 8600 // declared constexpr or consteval only if it is constexpr-compatible. 8601 // C++2a [class.compare.default]p3 [P2002R0]: 8602 // A defaulted comparison function is constexpr-compatible if it satisfies 8603 // the requirements for a constexpr function [...] 8604 // The only relevant requirements are that the parameter and return types are 8605 // literal types. The remaining conditions are checked by the analyzer. 8606 if (FD->isConstexpr()) { 8607 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 8608 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 8609 !Info.Constexpr) { 8610 Diag(FD->getBeginLoc(), 8611 diag::err_incorrect_defaulted_comparison_constexpr) 8612 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 8613 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8614 DefaultedComparisonAnalyzer::ExplainConstexpr) 8615 .visit(); 8616 } 8617 } 8618 8619 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8620 // If a constexpr-compatible function is explicitly defaulted on its first 8621 // declaration, it is implicitly considered to be constexpr. 8622 // FIXME: Only applying this to the first declaration seems problematic, as 8623 // simple reorderings can affect the meaning of the program. 8624 if (First && !FD->isConstexpr() && Info.Constexpr) 8625 FD->setConstexprKind(ConstexprSpecKind::Constexpr); 8626 8627 // C++2a [except.spec]p3: 8628 // If a declaration of a function does not have a noexcept-specifier 8629 // [and] is defaulted on its first declaration, [...] the exception 8630 // specification is as specified below 8631 if (FD->getExceptionSpecType() == EST_None) { 8632 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 8633 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8634 EPI.ExceptionSpec.Type = EST_Unevaluated; 8635 EPI.ExceptionSpec.SourceDecl = FD; 8636 FD->setType(Context.getFunctionType(FPT->getReturnType(), 8637 FPT->getParamTypes(), EPI)); 8638 } 8639 8640 return false; 8641 } 8642 8643 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 8644 FunctionDecl *Spaceship) { 8645 Sema::CodeSynthesisContext Ctx; 8646 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 8647 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 8648 Ctx.Entity = Spaceship; 8649 pushCodeSynthesisContext(Ctx); 8650 8651 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 8652 EqualEqual->setImplicit(); 8653 8654 popCodeSynthesisContext(); 8655 } 8656 8657 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 8658 DefaultedComparisonKind DCK) { 8659 assert(FD->isDefaulted() && !FD->isDeleted() && 8660 !FD->doesThisDeclarationHaveABody()); 8661 if (FD->willHaveBody() || FD->isInvalidDecl()) 8662 return; 8663 8664 SynthesizedFunctionScope Scope(*this, FD); 8665 8666 // Add a context note for diagnostics produced after this point. 8667 Scope.addContextNote(UseLoc); 8668 8669 { 8670 // Build and set up the function body. 8671 // The first parameter has type maybe-ref-to maybe-const T, use that to get 8672 // the type of the class being compared. 8673 auto PT = FD->getParamDecl(0)->getType(); 8674 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl(); 8675 SourceLocation BodyLoc = 8676 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8677 StmtResult Body = 8678 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 8679 if (Body.isInvalid()) { 8680 FD->setInvalidDecl(); 8681 return; 8682 } 8683 FD->setBody(Body.get()); 8684 FD->markUsed(Context); 8685 } 8686 8687 // The exception specification is needed because we are defining the 8688 // function. Note that this will reuse the body we just built. 8689 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 8690 8691 if (ASTMutationListener *L = getASTMutationListener()) 8692 L->CompletedImplicitDefinition(FD); 8693 } 8694 8695 static Sema::ImplicitExceptionSpecification 8696 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 8697 FunctionDecl *FD, 8698 Sema::DefaultedComparisonKind DCK) { 8699 ComputingExceptionSpec CES(S, FD, Loc); 8700 Sema::ImplicitExceptionSpecification ExceptSpec(S); 8701 8702 if (FD->isInvalidDecl()) 8703 return ExceptSpec; 8704 8705 // The common case is that we just defined the comparison function. In that 8706 // case, just look at whether the body can throw. 8707 if (FD->hasBody()) { 8708 ExceptSpec.CalledStmt(FD->getBody()); 8709 } else { 8710 // Otherwise, build a body so we can check it. This should ideally only 8711 // happen when we're not actually marking the function referenced. (This is 8712 // only really important for efficiency: we don't want to build and throw 8713 // away bodies for comparison functions more than we strictly need to.) 8714 8715 // Pretend to synthesize the function body in an unevaluated context. 8716 // Note that we can't actually just go ahead and define the function here: 8717 // we are not permitted to mark its callees as referenced. 8718 Sema::SynthesizedFunctionScope Scope(S, FD); 8719 EnterExpressionEvaluationContext Context( 8720 S, Sema::ExpressionEvaluationContext::Unevaluated); 8721 8722 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8723 SourceLocation BodyLoc = 8724 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8725 StmtResult Body = 8726 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 8727 if (!Body.isInvalid()) 8728 ExceptSpec.CalledStmt(Body.get()); 8729 8730 // FIXME: Can we hold onto this body and just transform it to potentially 8731 // evaluated when we're asked to define the function rather than rebuilding 8732 // it? Either that, or we should only build the bits of the body that we 8733 // need (the expressions, not the statements). 8734 } 8735 8736 return ExceptSpec; 8737 } 8738 8739 void Sema::CheckDelayedMemberExceptionSpecs() { 8740 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 8741 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 8742 8743 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 8744 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 8745 8746 // Perform any deferred checking of exception specifications for virtual 8747 // destructors. 8748 for (auto &Check : Overriding) 8749 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 8750 8751 // Perform any deferred checking of exception specifications for befriended 8752 // special members. 8753 for (auto &Check : Equivalent) 8754 CheckEquivalentExceptionSpec(Check.second, Check.first); 8755 } 8756 8757 namespace { 8758 /// CRTP base class for visiting operations performed by a special member 8759 /// function (or inherited constructor). 8760 template<typename Derived> 8761 struct SpecialMemberVisitor { 8762 Sema &S; 8763 CXXMethodDecl *MD; 8764 Sema::CXXSpecialMember CSM; 8765 Sema::InheritedConstructorInfo *ICI; 8766 8767 // Properties of the special member, computed for convenience. 8768 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 8769 8770 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 8771 Sema::InheritedConstructorInfo *ICI) 8772 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 8773 switch (CSM) { 8774 case Sema::CXXDefaultConstructor: 8775 case Sema::CXXCopyConstructor: 8776 case Sema::CXXMoveConstructor: 8777 IsConstructor = true; 8778 break; 8779 case Sema::CXXCopyAssignment: 8780 case Sema::CXXMoveAssignment: 8781 IsAssignment = true; 8782 break; 8783 case Sema::CXXDestructor: 8784 break; 8785 case Sema::CXXInvalid: 8786 llvm_unreachable("invalid special member kind"); 8787 } 8788 8789 if (MD->getNumParams()) { 8790 if (const ReferenceType *RT = 8791 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 8792 ConstArg = RT->getPointeeType().isConstQualified(); 8793 } 8794 } 8795 8796 Derived &getDerived() { return static_cast<Derived&>(*this); } 8797 8798 /// Is this a "move" special member? 8799 bool isMove() const { 8800 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; 8801 } 8802 8803 /// Look up the corresponding special member in the given class. 8804 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 8805 unsigned Quals, bool IsMutable) { 8806 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 8807 ConstArg && !IsMutable); 8808 } 8809 8810 /// Look up the constructor for the specified base class to see if it's 8811 /// overridden due to this being an inherited constructor. 8812 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 8813 if (!ICI) 8814 return {}; 8815 assert(CSM == Sema::CXXDefaultConstructor); 8816 auto *BaseCtor = 8817 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 8818 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 8819 return MD; 8820 return {}; 8821 } 8822 8823 /// A base or member subobject. 8824 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 8825 8826 /// Get the location to use for a subobject in diagnostics. 8827 static SourceLocation getSubobjectLoc(Subobject Subobj) { 8828 // FIXME: For an indirect virtual base, the direct base leading to 8829 // the indirect virtual base would be a more useful choice. 8830 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 8831 return B->getBaseTypeLoc(); 8832 else 8833 return Subobj.get<FieldDecl*>()->getLocation(); 8834 } 8835 8836 enum BasesToVisit { 8837 /// Visit all non-virtual (direct) bases. 8838 VisitNonVirtualBases, 8839 /// Visit all direct bases, virtual or not. 8840 VisitDirectBases, 8841 /// Visit all non-virtual bases, and all virtual bases if the class 8842 /// is not abstract. 8843 VisitPotentiallyConstructedBases, 8844 /// Visit all direct or virtual bases. 8845 VisitAllBases 8846 }; 8847 8848 // Visit the bases and members of the class. 8849 bool visit(BasesToVisit Bases) { 8850 CXXRecordDecl *RD = MD->getParent(); 8851 8852 if (Bases == VisitPotentiallyConstructedBases) 8853 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 8854 8855 for (auto &B : RD->bases()) 8856 if ((Bases == VisitDirectBases || !B.isVirtual()) && 8857 getDerived().visitBase(&B)) 8858 return true; 8859 8860 if (Bases == VisitAllBases) 8861 for (auto &B : RD->vbases()) 8862 if (getDerived().visitBase(&B)) 8863 return true; 8864 8865 for (auto *F : RD->fields()) 8866 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && 8867 getDerived().visitField(F)) 8868 return true; 8869 8870 return false; 8871 } 8872 }; 8873 } 8874 8875 namespace { 8876 struct SpecialMemberDeletionInfo 8877 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 8878 bool Diagnose; 8879 8880 SourceLocation Loc; 8881 8882 bool AllFieldsAreConst; 8883 8884 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 8885 Sema::CXXSpecialMember CSM, 8886 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 8887 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 8888 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 8889 8890 bool inUnion() const { return MD->getParent()->isUnion(); } 8891 8892 Sema::CXXSpecialMember getEffectiveCSM() { 8893 return ICI ? Sema::CXXInvalid : CSM; 8894 } 8895 8896 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 8897 8898 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 8899 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 8900 8901 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 8902 bool shouldDeleteForField(FieldDecl *FD); 8903 bool shouldDeleteForAllConstMembers(); 8904 8905 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 8906 unsigned Quals); 8907 bool shouldDeleteForSubobjectCall(Subobject Subobj, 8908 Sema::SpecialMemberOverloadResult SMOR, 8909 bool IsDtorCallInCtor); 8910 8911 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 8912 }; 8913 } 8914 8915 /// Is the given special member inaccessible when used on the given 8916 /// sub-object. 8917 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 8918 CXXMethodDecl *target) { 8919 /// If we're operating on a base class, the object type is the 8920 /// type of this special member. 8921 QualType objectTy; 8922 AccessSpecifier access = target->getAccess(); 8923 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 8924 objectTy = S.Context.getTypeDeclType(MD->getParent()); 8925 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 8926 8927 // If we're operating on a field, the object type is the type of the field. 8928 } else { 8929 objectTy = S.Context.getTypeDeclType(target->getParent()); 8930 } 8931 8932 return S.isMemberAccessibleForDeletion( 8933 target->getParent(), DeclAccessPair::make(target, access), objectTy); 8934 } 8935 8936 /// Check whether we should delete a special member due to the implicit 8937 /// definition containing a call to a special member of a subobject. 8938 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 8939 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 8940 bool IsDtorCallInCtor) { 8941 CXXMethodDecl *Decl = SMOR.getMethod(); 8942 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8943 8944 int DiagKind = -1; 8945 8946 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 8947 DiagKind = !Decl ? 0 : 1; 8948 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 8949 DiagKind = 2; 8950 else if (!isAccessible(Subobj, Decl)) 8951 DiagKind = 3; 8952 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 8953 !Decl->isTrivial()) { 8954 // A member of a union must have a trivial corresponding special member. 8955 // As a weird special case, a destructor call from a union's constructor 8956 // must be accessible and non-deleted, but need not be trivial. Such a 8957 // destructor is never actually called, but is semantically checked as 8958 // if it were. 8959 DiagKind = 4; 8960 } 8961 8962 if (DiagKind == -1) 8963 return false; 8964 8965 if (Diagnose) { 8966 if (Field) { 8967 S.Diag(Field->getLocation(), 8968 diag::note_deleted_special_member_class_subobject) 8969 << getEffectiveCSM() << MD->getParent() << /*IsField*/true 8970 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; 8971 } else { 8972 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 8973 S.Diag(Base->getBeginLoc(), 8974 diag::note_deleted_special_member_class_subobject) 8975 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 8976 << Base->getType() << DiagKind << IsDtorCallInCtor 8977 << /*IsObjCPtr*/false; 8978 } 8979 8980 if (DiagKind == 1) 8981 S.NoteDeletedFunction(Decl); 8982 // FIXME: Explain inaccessibility if DiagKind == 3. 8983 } 8984 8985 return true; 8986 } 8987 8988 /// Check whether we should delete a special member function due to having a 8989 /// direct or virtual base class or non-static data member of class type M. 8990 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 8991 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 8992 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8993 bool IsMutable = Field && Field->isMutable(); 8994 8995 // C++11 [class.ctor]p5: 8996 // -- any direct or virtual base class, or non-static data member with no 8997 // brace-or-equal-initializer, has class type M (or array thereof) and 8998 // either M has no default constructor or overload resolution as applied 8999 // to M's default constructor results in an ambiguity or in a function 9000 // that is deleted or inaccessible 9001 // C++11 [class.copy]p11, C++11 [class.copy]p23: 9002 // -- a direct or virtual base class B that cannot be copied/moved because 9003 // overload resolution, as applied to B's corresponding special member, 9004 // results in an ambiguity or a function that is deleted or inaccessible 9005 // from the defaulted special member 9006 // C++11 [class.dtor]p5: 9007 // -- any direct or virtual base class [...] has a type with a destructor 9008 // that is deleted or inaccessible 9009 if (!(CSM == Sema::CXXDefaultConstructor && 9010 Field && Field->hasInClassInitializer()) && 9011 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 9012 false)) 9013 return true; 9014 9015 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 9016 // -- any direct or virtual base class or non-static data member has a 9017 // type with a destructor that is deleted or inaccessible 9018 if (IsConstructor) { 9019 Sema::SpecialMemberOverloadResult SMOR = 9020 S.LookupSpecialMember(Class, Sema::CXXDestructor, 9021 false, false, false, false, false); 9022 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 9023 return true; 9024 } 9025 9026 return false; 9027 } 9028 9029 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 9030 FieldDecl *FD, QualType FieldType) { 9031 // The defaulted special functions are defined as deleted if this is a variant 9032 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 9033 // type under ARC. 9034 if (!FieldType.hasNonTrivialObjCLifetime()) 9035 return false; 9036 9037 // Don't make the defaulted default constructor defined as deleted if the 9038 // member has an in-class initializer. 9039 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) 9040 return false; 9041 9042 if (Diagnose) { 9043 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 9044 S.Diag(FD->getLocation(), 9045 diag::note_deleted_special_member_class_subobject) 9046 << getEffectiveCSM() << ParentClass << /*IsField*/true 9047 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; 9048 } 9049 9050 return true; 9051 } 9052 9053 /// Check whether we should delete a special member function due to the class 9054 /// having a particular direct or virtual base class. 9055 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 9056 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 9057 // If program is correct, BaseClass cannot be null, but if it is, the error 9058 // must be reported elsewhere. 9059 if (!BaseClass) 9060 return false; 9061 // If we have an inheriting constructor, check whether we're calling an 9062 // inherited constructor instead of a default constructor. 9063 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 9064 if (auto *BaseCtor = SMOR.getMethod()) { 9065 // Note that we do not check access along this path; other than that, 9066 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 9067 // FIXME: Check that the base has a usable destructor! Sink this into 9068 // shouldDeleteForClassSubobject. 9069 if (BaseCtor->isDeleted() && Diagnose) { 9070 S.Diag(Base->getBeginLoc(), 9071 diag::note_deleted_special_member_class_subobject) 9072 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 9073 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false 9074 << /*IsObjCPtr*/false; 9075 S.NoteDeletedFunction(BaseCtor); 9076 } 9077 return BaseCtor->isDeleted(); 9078 } 9079 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 9080 } 9081 9082 /// Check whether we should delete a special member function due to the class 9083 /// having a particular non-static data member. 9084 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 9085 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 9086 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 9087 9088 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 9089 return true; 9090 9091 if (CSM == Sema::CXXDefaultConstructor) { 9092 // For a default constructor, all references must be initialized in-class 9093 // and, if a union, it must have a non-const member. 9094 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 9095 if (Diagnose) 9096 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9097 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 9098 return true; 9099 } 9100 // C++11 [class.ctor]p5: any non-variant non-static data member of 9101 // const-qualified type (or array thereof) with no 9102 // brace-or-equal-initializer does not have a user-provided default 9103 // constructor. 9104 if (!inUnion() && FieldType.isConstQualified() && 9105 !FD->hasInClassInitializer() && 9106 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) { 9107 if (Diagnose) 9108 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9109 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 9110 return true; 9111 } 9112 9113 if (inUnion() && !FieldType.isConstQualified()) 9114 AllFieldsAreConst = false; 9115 } else if (CSM == Sema::CXXCopyConstructor) { 9116 // For a copy constructor, data members must not be of rvalue reference 9117 // type. 9118 if (FieldType->isRValueReferenceType()) { 9119 if (Diagnose) 9120 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 9121 << MD->getParent() << FD << FieldType; 9122 return true; 9123 } 9124 } else if (IsAssignment) { 9125 // For an assignment operator, data members must not be of reference type. 9126 if (FieldType->isReferenceType()) { 9127 if (Diagnose) 9128 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9129 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 9130 return true; 9131 } 9132 if (!FieldRecord && FieldType.isConstQualified()) { 9133 // C++11 [class.copy]p23: 9134 // -- a non-static data member of const non-class type (or array thereof) 9135 if (Diagnose) 9136 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9137 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 9138 return true; 9139 } 9140 } 9141 9142 if (FieldRecord) { 9143 // Some additional restrictions exist on the variant members. 9144 if (!inUnion() && FieldRecord->isUnion() && 9145 FieldRecord->isAnonymousStructOrUnion()) { 9146 bool AllVariantFieldsAreConst = true; 9147 9148 // FIXME: Handle anonymous unions declared within anonymous unions. 9149 for (auto *UI : FieldRecord->fields()) { 9150 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 9151 9152 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 9153 return true; 9154 9155 if (!UnionFieldType.isConstQualified()) 9156 AllVariantFieldsAreConst = false; 9157 9158 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 9159 if (UnionFieldRecord && 9160 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 9161 UnionFieldType.getCVRQualifiers())) 9162 return true; 9163 } 9164 9165 // At least one member in each anonymous union must be non-const 9166 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 9167 !FieldRecord->field_empty()) { 9168 if (Diagnose) 9169 S.Diag(FieldRecord->getLocation(), 9170 diag::note_deleted_default_ctor_all_const) 9171 << !!ICI << MD->getParent() << /*anonymous union*/1; 9172 return true; 9173 } 9174 9175 // Don't check the implicit member of the anonymous union type. 9176 // This is technically non-conformant, but sanity demands it. 9177 return false; 9178 } 9179 9180 if (shouldDeleteForClassSubobject(FieldRecord, FD, 9181 FieldType.getCVRQualifiers())) 9182 return true; 9183 } 9184 9185 return false; 9186 } 9187 9188 /// C++11 [class.ctor] p5: 9189 /// A defaulted default constructor for a class X is defined as deleted if 9190 /// X is a union and all of its variant members are of const-qualified type. 9191 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 9192 // This is a silly definition, because it gives an empty union a deleted 9193 // default constructor. Don't do that. 9194 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { 9195 bool AnyFields = false; 9196 for (auto *F : MD->getParent()->fields()) 9197 if ((AnyFields = !F->isUnnamedBitfield())) 9198 break; 9199 if (!AnyFields) 9200 return false; 9201 if (Diagnose) 9202 S.Diag(MD->getParent()->getLocation(), 9203 diag::note_deleted_default_ctor_all_const) 9204 << !!ICI << MD->getParent() << /*not anonymous union*/0; 9205 return true; 9206 } 9207 return false; 9208 } 9209 9210 /// Determine whether a defaulted special member function should be defined as 9211 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 9212 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 9213 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 9214 InheritedConstructorInfo *ICI, 9215 bool Diagnose) { 9216 if (MD->isInvalidDecl()) 9217 return false; 9218 CXXRecordDecl *RD = MD->getParent(); 9219 assert(!RD->isDependentType() && "do deletion after instantiation"); 9220 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 9221 return false; 9222 9223 // C++11 [expr.lambda.prim]p19: 9224 // The closure type associated with a lambda-expression has a 9225 // deleted (8.4.3) default constructor and a deleted copy 9226 // assignment operator. 9227 // C++2a adds back these operators if the lambda has no lambda-capture. 9228 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 9229 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 9230 if (Diagnose) 9231 Diag(RD->getLocation(), diag::note_lambda_decl); 9232 return true; 9233 } 9234 9235 // For an anonymous struct or union, the copy and assignment special members 9236 // will never be used, so skip the check. For an anonymous union declared at 9237 // namespace scope, the constructor and destructor are used. 9238 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 9239 RD->isAnonymousStructOrUnion()) 9240 return false; 9241 9242 // C++11 [class.copy]p7, p18: 9243 // If the class definition declares a move constructor or move assignment 9244 // operator, an implicitly declared copy constructor or copy assignment 9245 // operator is defined as deleted. 9246 if (MD->isImplicit() && 9247 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 9248 CXXMethodDecl *UserDeclaredMove = nullptr; 9249 9250 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 9251 // deletion of the corresponding copy operation, not both copy operations. 9252 // MSVC 2015 has adopted the standards conforming behavior. 9253 bool DeletesOnlyMatchingCopy = 9254 getLangOpts().MSVCCompat && 9255 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 9256 9257 if (RD->hasUserDeclaredMoveConstructor() && 9258 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { 9259 if (!Diagnose) return true; 9260 9261 // Find any user-declared move constructor. 9262 for (auto *I : RD->ctors()) { 9263 if (I->isMoveConstructor()) { 9264 UserDeclaredMove = I; 9265 break; 9266 } 9267 } 9268 assert(UserDeclaredMove); 9269 } else if (RD->hasUserDeclaredMoveAssignment() && 9270 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { 9271 if (!Diagnose) return true; 9272 9273 // Find any user-declared move assignment operator. 9274 for (auto *I : RD->methods()) { 9275 if (I->isMoveAssignmentOperator()) { 9276 UserDeclaredMove = I; 9277 break; 9278 } 9279 } 9280 assert(UserDeclaredMove); 9281 } 9282 9283 if (UserDeclaredMove) { 9284 Diag(UserDeclaredMove->getLocation(), 9285 diag::note_deleted_copy_user_declared_move) 9286 << (CSM == CXXCopyAssignment) << RD 9287 << UserDeclaredMove->isMoveAssignmentOperator(); 9288 return true; 9289 } 9290 } 9291 9292 // Do access control from the special member function 9293 ContextRAII MethodContext(*this, MD); 9294 9295 // C++11 [class.dtor]p5: 9296 // -- for a virtual destructor, lookup of the non-array deallocation function 9297 // results in an ambiguity or in a function that is deleted or inaccessible 9298 if (CSM == CXXDestructor && MD->isVirtual()) { 9299 FunctionDecl *OperatorDelete = nullptr; 9300 DeclarationName Name = 9301 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 9302 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 9303 OperatorDelete, /*Diagnose*/false)) { 9304 if (Diagnose) 9305 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 9306 return true; 9307 } 9308 } 9309 9310 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 9311 9312 // Per DR1611, do not consider virtual bases of constructors of abstract 9313 // classes, since we are not going to construct them. 9314 // Per DR1658, do not consider virtual bases of destructors of abstract 9315 // classes either. 9316 // Per DR2180, for assignment operators we only assign (and thus only 9317 // consider) direct bases. 9318 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 9319 : SMI.VisitPotentiallyConstructedBases)) 9320 return true; 9321 9322 if (SMI.shouldDeleteForAllConstMembers()) 9323 return true; 9324 9325 if (getLangOpts().CUDA) { 9326 // We should delete the special member in CUDA mode if target inference 9327 // failed. 9328 // For inherited constructors (non-null ICI), CSM may be passed so that MD 9329 // is treated as certain special member, which may not reflect what special 9330 // member MD really is. However inferCUDATargetForImplicitSpecialMember 9331 // expects CSM to match MD, therefore recalculate CSM. 9332 assert(ICI || CSM == getSpecialMember(MD)); 9333 auto RealCSM = CSM; 9334 if (ICI) 9335 RealCSM = getSpecialMember(MD); 9336 9337 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, 9338 SMI.ConstArg, Diagnose); 9339 } 9340 9341 return false; 9342 } 9343 9344 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 9345 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 9346 assert(DFK && "not a defaultable function"); 9347 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); 9348 9349 if (DFK.isSpecialMember()) { 9350 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 9351 nullptr, /*Diagnose=*/true); 9352 } else { 9353 DefaultedComparisonAnalyzer( 9354 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 9355 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 9356 .visit(); 9357 } 9358 } 9359 9360 /// Perform lookup for a special member of the specified kind, and determine 9361 /// whether it is trivial. If the triviality can be determined without the 9362 /// lookup, skip it. This is intended for use when determining whether a 9363 /// special member of a containing object is trivial, and thus does not ever 9364 /// perform overload resolution for default constructors. 9365 /// 9366 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 9367 /// member that was most likely to be intended to be trivial, if any. 9368 /// 9369 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 9370 /// determine whether the special member is trivial. 9371 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 9372 Sema::CXXSpecialMember CSM, unsigned Quals, 9373 bool ConstRHS, 9374 Sema::TrivialABIHandling TAH, 9375 CXXMethodDecl **Selected) { 9376 if (Selected) 9377 *Selected = nullptr; 9378 9379 switch (CSM) { 9380 case Sema::CXXInvalid: 9381 llvm_unreachable("not a special member"); 9382 9383 case Sema::CXXDefaultConstructor: 9384 // C++11 [class.ctor]p5: 9385 // A default constructor is trivial if: 9386 // - all the [direct subobjects] have trivial default constructors 9387 // 9388 // Note, no overload resolution is performed in this case. 9389 if (RD->hasTrivialDefaultConstructor()) 9390 return true; 9391 9392 if (Selected) { 9393 // If there's a default constructor which could have been trivial, dig it 9394 // out. Otherwise, if there's any user-provided default constructor, point 9395 // to that as an example of why there's not a trivial one. 9396 CXXConstructorDecl *DefCtor = nullptr; 9397 if (RD->needsImplicitDefaultConstructor()) 9398 S.DeclareImplicitDefaultConstructor(RD); 9399 for (auto *CI : RD->ctors()) { 9400 if (!CI->isDefaultConstructor()) 9401 continue; 9402 DefCtor = CI; 9403 if (!DefCtor->isUserProvided()) 9404 break; 9405 } 9406 9407 *Selected = DefCtor; 9408 } 9409 9410 return false; 9411 9412 case Sema::CXXDestructor: 9413 // C++11 [class.dtor]p5: 9414 // A destructor is trivial if: 9415 // - all the direct [subobjects] have trivial destructors 9416 if (RD->hasTrivialDestructor() || 9417 (TAH == Sema::TAH_ConsiderTrivialABI && 9418 RD->hasTrivialDestructorForCall())) 9419 return true; 9420 9421 if (Selected) { 9422 if (RD->needsImplicitDestructor()) 9423 S.DeclareImplicitDestructor(RD); 9424 *Selected = RD->getDestructor(); 9425 } 9426 9427 return false; 9428 9429 case Sema::CXXCopyConstructor: 9430 // C++11 [class.copy]p12: 9431 // A copy constructor is trivial if: 9432 // - the constructor selected to copy each direct [subobject] is trivial 9433 if (RD->hasTrivialCopyConstructor() || 9434 (TAH == Sema::TAH_ConsiderTrivialABI && 9435 RD->hasTrivialCopyConstructorForCall())) { 9436 if (Quals == Qualifiers::Const) 9437 // We must either select the trivial copy constructor or reach an 9438 // ambiguity; no need to actually perform overload resolution. 9439 return true; 9440 } else if (!Selected) { 9441 return false; 9442 } 9443 // In C++98, we are not supposed to perform overload resolution here, but we 9444 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 9445 // cases like B as having a non-trivial copy constructor: 9446 // struct A { template<typename T> A(T&); }; 9447 // struct B { mutable A a; }; 9448 goto NeedOverloadResolution; 9449 9450 case Sema::CXXCopyAssignment: 9451 // C++11 [class.copy]p25: 9452 // A copy assignment operator is trivial if: 9453 // - the assignment operator selected to copy each direct [subobject] is 9454 // trivial 9455 if (RD->hasTrivialCopyAssignment()) { 9456 if (Quals == Qualifiers::Const) 9457 return true; 9458 } else if (!Selected) { 9459 return false; 9460 } 9461 // In C++98, we are not supposed to perform overload resolution here, but we 9462 // treat that as a language defect. 9463 goto NeedOverloadResolution; 9464 9465 case Sema::CXXMoveConstructor: 9466 case Sema::CXXMoveAssignment: 9467 NeedOverloadResolution: 9468 Sema::SpecialMemberOverloadResult SMOR = 9469 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 9470 9471 // The standard doesn't describe how to behave if the lookup is ambiguous. 9472 // We treat it as not making the member non-trivial, just like the standard 9473 // mandates for the default constructor. This should rarely matter, because 9474 // the member will also be deleted. 9475 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9476 return true; 9477 9478 if (!SMOR.getMethod()) { 9479 assert(SMOR.getKind() == 9480 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 9481 return false; 9482 } 9483 9484 // We deliberately don't check if we found a deleted special member. We're 9485 // not supposed to! 9486 if (Selected) 9487 *Selected = SMOR.getMethod(); 9488 9489 if (TAH == Sema::TAH_ConsiderTrivialABI && 9490 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) 9491 return SMOR.getMethod()->isTrivialForCall(); 9492 return SMOR.getMethod()->isTrivial(); 9493 } 9494 9495 llvm_unreachable("unknown special method kind"); 9496 } 9497 9498 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9499 for (auto *CI : RD->ctors()) 9500 if (!CI->isImplicit()) 9501 return CI; 9502 9503 // Look for constructor templates. 9504 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9505 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9506 if (CXXConstructorDecl *CD = 9507 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9508 return CD; 9509 } 9510 9511 return nullptr; 9512 } 9513 9514 /// The kind of subobject we are checking for triviality. The values of this 9515 /// enumeration are used in diagnostics. 9516 enum TrivialSubobjectKind { 9517 /// The subobject is a base class. 9518 TSK_BaseClass, 9519 /// The subobject is a non-static data member. 9520 TSK_Field, 9521 /// The object is actually the complete object. 9522 TSK_CompleteObject 9523 }; 9524 9525 /// Check whether the special member selected for a given type would be trivial. 9526 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 9527 QualType SubType, bool ConstRHS, 9528 Sema::CXXSpecialMember CSM, 9529 TrivialSubobjectKind Kind, 9530 Sema::TrivialABIHandling TAH, bool Diagnose) { 9531 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 9532 if (!SubRD) 9533 return true; 9534 9535 CXXMethodDecl *Selected; 9536 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 9537 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 9538 return true; 9539 9540 if (Diagnose) { 9541 if (ConstRHS) 9542 SubType.addConst(); 9543 9544 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 9545 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 9546 << Kind << SubType.getUnqualifiedType(); 9547 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 9548 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 9549 } else if (!Selected) 9550 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 9551 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 9552 else if (Selected->isUserProvided()) { 9553 if (Kind == TSK_CompleteObject) 9554 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 9555 << Kind << SubType.getUnqualifiedType() << CSM; 9556 else { 9557 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 9558 << Kind << SubType.getUnqualifiedType() << CSM; 9559 S.Diag(Selected->getLocation(), diag::note_declared_at); 9560 } 9561 } else { 9562 if (Kind != TSK_CompleteObject) 9563 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 9564 << Kind << SubType.getUnqualifiedType() << CSM; 9565 9566 // Explain why the defaulted or deleted special member isn't trivial. 9567 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 9568 Diagnose); 9569 } 9570 } 9571 9572 return false; 9573 } 9574 9575 /// Check whether the members of a class type allow a special member to be 9576 /// trivial. 9577 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 9578 Sema::CXXSpecialMember CSM, 9579 bool ConstArg, 9580 Sema::TrivialABIHandling TAH, 9581 bool Diagnose) { 9582 for (const auto *FI : RD->fields()) { 9583 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 9584 continue; 9585 9586 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 9587 9588 // Pretend anonymous struct or union members are members of this class. 9589 if (FI->isAnonymousStructOrUnion()) { 9590 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 9591 CSM, ConstArg, TAH, Diagnose)) 9592 return false; 9593 continue; 9594 } 9595 9596 // C++11 [class.ctor]p5: 9597 // A default constructor is trivial if [...] 9598 // -- no non-static data member of its class has a 9599 // brace-or-equal-initializer 9600 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 9601 if (Diagnose) 9602 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) 9603 << FI; 9604 return false; 9605 } 9606 9607 // Objective C ARC 4.3.5: 9608 // [...] nontrivally ownership-qualified types are [...] not trivially 9609 // default constructible, copy constructible, move constructible, copy 9610 // assignable, move assignable, or destructible [...] 9611 if (FieldType.hasNonTrivialObjCLifetime()) { 9612 if (Diagnose) 9613 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 9614 << RD << FieldType.getObjCLifetime(); 9615 return false; 9616 } 9617 9618 bool ConstRHS = ConstArg && !FI->isMutable(); 9619 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 9620 CSM, TSK_Field, TAH, Diagnose)) 9621 return false; 9622 } 9623 9624 return true; 9625 } 9626 9627 /// Diagnose why the specified class does not have a trivial special member of 9628 /// the given kind. 9629 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 9630 QualType Ty = Context.getRecordType(RD); 9631 9632 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 9633 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 9634 TSK_CompleteObject, TAH_IgnoreTrivialABI, 9635 /*Diagnose*/true); 9636 } 9637 9638 /// Determine whether a defaulted or deleted special member function is trivial, 9639 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 9640 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 9641 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 9642 TrivialABIHandling TAH, bool Diagnose) { 9643 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough"); 9644 9645 CXXRecordDecl *RD = MD->getParent(); 9646 9647 bool ConstArg = false; 9648 9649 // C++11 [class.copy]p12, p25: [DR1593] 9650 // A [special member] is trivial if [...] its parameter-type-list is 9651 // equivalent to the parameter-type-list of an implicit declaration [...] 9652 switch (CSM) { 9653 case CXXDefaultConstructor: 9654 case CXXDestructor: 9655 // Trivial default constructors and destructors cannot have parameters. 9656 break; 9657 9658 case CXXCopyConstructor: 9659 case CXXCopyAssignment: { 9660 // Trivial copy operations always have const, non-volatile parameter types. 9661 ConstArg = true; 9662 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9663 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 9664 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) { 9665 if (Diagnose) 9666 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9667 << Param0->getSourceRange() << Param0->getType() 9668 << Context.getLValueReferenceType( 9669 Context.getRecordType(RD).withConst()); 9670 return false; 9671 } 9672 break; 9673 } 9674 9675 case CXXMoveConstructor: 9676 case CXXMoveAssignment: { 9677 // Trivial move operations always have non-cv-qualified parameters. 9678 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9679 const RValueReferenceType *RT = 9680 Param0->getType()->getAs<RValueReferenceType>(); 9681 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 9682 if (Diagnose) 9683 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9684 << Param0->getSourceRange() << Param0->getType() 9685 << Context.getRValueReferenceType(Context.getRecordType(RD)); 9686 return false; 9687 } 9688 break; 9689 } 9690 9691 case CXXInvalid: 9692 llvm_unreachable("not a special member"); 9693 } 9694 9695 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 9696 if (Diagnose) 9697 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 9698 diag::note_nontrivial_default_arg) 9699 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 9700 return false; 9701 } 9702 if (MD->isVariadic()) { 9703 if (Diagnose) 9704 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 9705 return false; 9706 } 9707 9708 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9709 // A copy/move [constructor or assignment operator] is trivial if 9710 // -- the [member] selected to copy/move each direct base class subobject 9711 // is trivial 9712 // 9713 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9714 // A [default constructor or destructor] is trivial if 9715 // -- all the direct base classes have trivial [default constructors or 9716 // destructors] 9717 for (const auto &BI : RD->bases()) 9718 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 9719 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 9720 return false; 9721 9722 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9723 // A copy/move [constructor or assignment operator] for a class X is 9724 // trivial if 9725 // -- for each non-static data member of X that is of class type (or array 9726 // thereof), the constructor selected to copy/move that member is 9727 // trivial 9728 // 9729 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9730 // A [default constructor or destructor] is trivial if 9731 // -- for all of the non-static data members of its class that are of class 9732 // type (or array thereof), each such class has a trivial [default 9733 // constructor or destructor] 9734 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 9735 return false; 9736 9737 // C++11 [class.dtor]p5: 9738 // A destructor is trivial if [...] 9739 // -- the destructor is not virtual 9740 if (CSM == CXXDestructor && MD->isVirtual()) { 9741 if (Diagnose) 9742 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 9743 return false; 9744 } 9745 9746 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 9747 // A [special member] for class X is trivial if [...] 9748 // -- class X has no virtual functions and no virtual base classes 9749 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 9750 if (!Diagnose) 9751 return false; 9752 9753 if (RD->getNumVBases()) { 9754 // Check for virtual bases. We already know that the corresponding 9755 // member in all bases is trivial, so vbases must all be direct. 9756 CXXBaseSpecifier &BS = *RD->vbases_begin(); 9757 assert(BS.isVirtual()); 9758 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 9759 return false; 9760 } 9761 9762 // Must have a virtual method. 9763 for (const auto *MI : RD->methods()) { 9764 if (MI->isVirtual()) { 9765 SourceLocation MLoc = MI->getBeginLoc(); 9766 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 9767 return false; 9768 } 9769 } 9770 9771 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 9772 } 9773 9774 // Looks like it's trivial! 9775 return true; 9776 } 9777 9778 namespace { 9779 struct FindHiddenVirtualMethod { 9780 Sema *S; 9781 CXXMethodDecl *Method; 9782 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 9783 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9784 9785 private: 9786 /// Check whether any most overridden method from MD in Methods 9787 static bool CheckMostOverridenMethods( 9788 const CXXMethodDecl *MD, 9789 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 9790 if (MD->size_overridden_methods() == 0) 9791 return Methods.count(MD->getCanonicalDecl()); 9792 for (const CXXMethodDecl *O : MD->overridden_methods()) 9793 if (CheckMostOverridenMethods(O, Methods)) 9794 return true; 9795 return false; 9796 } 9797 9798 public: 9799 /// Member lookup function that determines whether a given C++ 9800 /// method overloads virtual methods in a base class without overriding any, 9801 /// to be used with CXXRecordDecl::lookupInBases(). 9802 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 9803 RecordDecl *BaseRecord = 9804 Specifier->getType()->castAs<RecordType>()->getDecl(); 9805 9806 DeclarationName Name = Method->getDeclName(); 9807 assert(Name.getNameKind() == DeclarationName::Identifier); 9808 9809 bool foundSameNameMethod = false; 9810 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 9811 for (Path.Decls = BaseRecord->lookup(Name).begin(); 9812 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { 9813 NamedDecl *D = *Path.Decls; 9814 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 9815 MD = MD->getCanonicalDecl(); 9816 foundSameNameMethod = true; 9817 // Interested only in hidden virtual methods. 9818 if (!MD->isVirtual()) 9819 continue; 9820 // If the method we are checking overrides a method from its base 9821 // don't warn about the other overloaded methods. Clang deviates from 9822 // GCC by only diagnosing overloads of inherited virtual functions that 9823 // do not override any other virtual functions in the base. GCC's 9824 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 9825 // function from a base class. These cases may be better served by a 9826 // warning (not specific to virtual functions) on call sites when the 9827 // call would select a different function from the base class, were it 9828 // visible. 9829 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 9830 if (!S->IsOverload(Method, MD, false)) 9831 return true; 9832 // Collect the overload only if its hidden. 9833 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 9834 overloadedMethods.push_back(MD); 9835 } 9836 } 9837 9838 if (foundSameNameMethod) 9839 OverloadedMethods.append(overloadedMethods.begin(), 9840 overloadedMethods.end()); 9841 return foundSameNameMethod; 9842 } 9843 }; 9844 } // end anonymous namespace 9845 9846 /// Add the most overriden methods from MD to Methods 9847 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 9848 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 9849 if (MD->size_overridden_methods() == 0) 9850 Methods.insert(MD->getCanonicalDecl()); 9851 else 9852 for (const CXXMethodDecl *O : MD->overridden_methods()) 9853 AddMostOverridenMethods(O, Methods); 9854 } 9855 9856 /// Check if a method overloads virtual methods in a base class without 9857 /// overriding any. 9858 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 9859 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9860 if (!MD->getDeclName().isIdentifier()) 9861 return; 9862 9863 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 9864 /*bool RecordPaths=*/false, 9865 /*bool DetectVirtual=*/false); 9866 FindHiddenVirtualMethod FHVM; 9867 FHVM.Method = MD; 9868 FHVM.S = this; 9869 9870 // Keep the base methods that were overridden or introduced in the subclass 9871 // by 'using' in a set. A base method not in this set is hidden. 9872 CXXRecordDecl *DC = MD->getParent(); 9873 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 9874 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 9875 NamedDecl *ND = *I; 9876 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 9877 ND = shad->getTargetDecl(); 9878 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 9879 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 9880 } 9881 9882 if (DC->lookupInBases(FHVM, Paths)) 9883 OverloadedMethods = FHVM.OverloadedMethods; 9884 } 9885 9886 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 9887 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9888 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 9889 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 9890 PartialDiagnostic PD = PDiag( 9891 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 9892 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 9893 Diag(overloadedMD->getLocation(), PD); 9894 } 9895 } 9896 9897 /// Diagnose methods which overload virtual methods in a base class 9898 /// without overriding any. 9899 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 9900 if (MD->isInvalidDecl()) 9901 return; 9902 9903 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 9904 return; 9905 9906 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9907 FindHiddenVirtualMethods(MD, OverloadedMethods); 9908 if (!OverloadedMethods.empty()) { 9909 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 9910 << MD << (OverloadedMethods.size() > 1); 9911 9912 NoteHiddenVirtualMethods(MD, OverloadedMethods); 9913 } 9914 } 9915 9916 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 9917 auto PrintDiagAndRemoveAttr = [&](unsigned N) { 9918 // No diagnostics if this is a template instantiation. 9919 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { 9920 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 9921 diag::ext_cannot_use_trivial_abi) << &RD; 9922 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 9923 diag::note_cannot_use_trivial_abi_reason) << &RD << N; 9924 } 9925 RD.dropAttr<TrivialABIAttr>(); 9926 }; 9927 9928 // Ill-formed if the copy and move constructors are deleted. 9929 auto HasNonDeletedCopyOrMoveConstructor = [&]() { 9930 // If the type is dependent, then assume it might have 9931 // implicit copy or move ctor because we won't know yet at this point. 9932 if (RD.isDependentType()) 9933 return true; 9934 if (RD.needsImplicitCopyConstructor() && 9935 !RD.defaultedCopyConstructorIsDeleted()) 9936 return true; 9937 if (RD.needsImplicitMoveConstructor() && 9938 !RD.defaultedMoveConstructorIsDeleted()) 9939 return true; 9940 for (const CXXConstructorDecl *CD : RD.ctors()) 9941 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) 9942 return true; 9943 return false; 9944 }; 9945 9946 if (!HasNonDeletedCopyOrMoveConstructor()) { 9947 PrintDiagAndRemoveAttr(0); 9948 return; 9949 } 9950 9951 // Ill-formed if the struct has virtual functions. 9952 if (RD.isPolymorphic()) { 9953 PrintDiagAndRemoveAttr(1); 9954 return; 9955 } 9956 9957 for (const auto &B : RD.bases()) { 9958 // Ill-formed if the base class is non-trivial for the purpose of calls or a 9959 // virtual base. 9960 if (!B.getType()->isDependentType() && 9961 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { 9962 PrintDiagAndRemoveAttr(2); 9963 return; 9964 } 9965 9966 if (B.isVirtual()) { 9967 PrintDiagAndRemoveAttr(3); 9968 return; 9969 } 9970 } 9971 9972 for (const auto *FD : RD.fields()) { 9973 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 9974 // non-trivial for the purpose of calls. 9975 QualType FT = FD->getType(); 9976 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 9977 PrintDiagAndRemoveAttr(4); 9978 return; 9979 } 9980 9981 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 9982 if (!RT->isDependentType() && 9983 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 9984 PrintDiagAndRemoveAttr(5); 9985 return; 9986 } 9987 } 9988 } 9989 9990 void Sema::ActOnFinishCXXMemberSpecification( 9991 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 9992 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 9993 if (!TagDecl) 9994 return; 9995 9996 AdjustDeclIfTemplate(TagDecl); 9997 9998 for (const ParsedAttr &AL : AttrList) { 9999 if (AL.getKind() != ParsedAttr::AT_Visibility) 10000 continue; 10001 AL.setInvalid(); 10002 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 10003 } 10004 10005 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( 10006 // strict aliasing violation! 10007 reinterpret_cast<Decl**>(FieldCollector->getCurFields()), 10008 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); 10009 10010 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 10011 } 10012 10013 /// Find the equality comparison functions that should be implicitly declared 10014 /// in a given class definition, per C++2a [class.compare.default]p3. 10015 static void findImplicitlyDeclaredEqualityComparisons( 10016 ASTContext &Ctx, CXXRecordDecl *RD, 10017 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 10018 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 10019 if (!RD->lookup(EqEq).empty()) 10020 // Member operator== explicitly declared: no implicit operator==s. 10021 return; 10022 10023 // Traverse friends looking for an '==' or a '<=>'. 10024 for (FriendDecl *Friend : RD->friends()) { 10025 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 10026 if (!FD) continue; 10027 10028 if (FD->getOverloadedOperator() == OO_EqualEqual) { 10029 // Friend operator== explicitly declared: no implicit operator==s. 10030 Spaceships.clear(); 10031 return; 10032 } 10033 10034 if (FD->getOverloadedOperator() == OO_Spaceship && 10035 FD->isExplicitlyDefaulted()) 10036 Spaceships.push_back(FD); 10037 } 10038 10039 // Look for members named 'operator<=>'. 10040 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 10041 for (NamedDecl *ND : RD->lookup(Cmp)) { 10042 // Note that we could find a non-function here (either a function template 10043 // or a using-declaration). Neither case results in an implicit 10044 // 'operator=='. 10045 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10046 if (FD->isExplicitlyDefaulted()) 10047 Spaceships.push_back(FD); 10048 } 10049 } 10050 10051 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 10052 /// special functions, such as the default constructor, copy 10053 /// constructor, or destructor, to the given C++ class (C++ 10054 /// [special]p1). This routine can only be executed just before the 10055 /// definition of the class is complete. 10056 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 10057 // Don't add implicit special members to templated classes. 10058 // FIXME: This means unqualified lookups for 'operator=' within a class 10059 // template don't work properly. 10060 if (!ClassDecl->isDependentType()) { 10061 if (ClassDecl->needsImplicitDefaultConstructor()) { 10062 ++getASTContext().NumImplicitDefaultConstructors; 10063 10064 if (ClassDecl->hasInheritedConstructor()) 10065 DeclareImplicitDefaultConstructor(ClassDecl); 10066 } 10067 10068 if (ClassDecl->needsImplicitCopyConstructor()) { 10069 ++getASTContext().NumImplicitCopyConstructors; 10070 10071 // If the properties or semantics of the copy constructor couldn't be 10072 // determined while the class was being declared, force a declaration 10073 // of it now. 10074 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 10075 ClassDecl->hasInheritedConstructor()) 10076 DeclareImplicitCopyConstructor(ClassDecl); 10077 // For the MS ABI we need to know whether the copy ctor is deleted. A 10078 // prerequisite for deleting the implicit copy ctor is that the class has 10079 // a move ctor or move assignment that is either user-declared or whose 10080 // semantics are inherited from a subobject. FIXME: We should provide a 10081 // more direct way for CodeGen to ask whether the constructor was deleted. 10082 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 10083 (ClassDecl->hasUserDeclaredMoveConstructor() || 10084 ClassDecl->needsOverloadResolutionForMoveConstructor() || 10085 ClassDecl->hasUserDeclaredMoveAssignment() || 10086 ClassDecl->needsOverloadResolutionForMoveAssignment())) 10087 DeclareImplicitCopyConstructor(ClassDecl); 10088 } 10089 10090 if (getLangOpts().CPlusPlus11 && 10091 ClassDecl->needsImplicitMoveConstructor()) { 10092 ++getASTContext().NumImplicitMoveConstructors; 10093 10094 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 10095 ClassDecl->hasInheritedConstructor()) 10096 DeclareImplicitMoveConstructor(ClassDecl); 10097 } 10098 10099 if (ClassDecl->needsImplicitCopyAssignment()) { 10100 ++getASTContext().NumImplicitCopyAssignmentOperators; 10101 10102 // If we have a dynamic class, then the copy assignment operator may be 10103 // virtual, so we have to declare it immediately. This ensures that, e.g., 10104 // it shows up in the right place in the vtable and that we diagnose 10105 // problems with the implicit exception specification. 10106 if (ClassDecl->isDynamicClass() || 10107 ClassDecl->needsOverloadResolutionForCopyAssignment() || 10108 ClassDecl->hasInheritedAssignment()) 10109 DeclareImplicitCopyAssignment(ClassDecl); 10110 } 10111 10112 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 10113 ++getASTContext().NumImplicitMoveAssignmentOperators; 10114 10115 // Likewise for the move assignment operator. 10116 if (ClassDecl->isDynamicClass() || 10117 ClassDecl->needsOverloadResolutionForMoveAssignment() || 10118 ClassDecl->hasInheritedAssignment()) 10119 DeclareImplicitMoveAssignment(ClassDecl); 10120 } 10121 10122 if (ClassDecl->needsImplicitDestructor()) { 10123 ++getASTContext().NumImplicitDestructors; 10124 10125 // If we have a dynamic class, then the destructor may be virtual, so we 10126 // have to declare the destructor immediately. This ensures that, e.g., it 10127 // shows up in the right place in the vtable and that we diagnose problems 10128 // with the implicit exception specification. 10129 if (ClassDecl->isDynamicClass() || 10130 ClassDecl->needsOverloadResolutionForDestructor()) 10131 DeclareImplicitDestructor(ClassDecl); 10132 } 10133 } 10134 10135 // C++2a [class.compare.default]p3: 10136 // If the member-specification does not explicitly declare any member or 10137 // friend named operator==, an == operator function is declared implicitly 10138 // for each defaulted three-way comparison operator function defined in 10139 // the member-specification 10140 // FIXME: Consider doing this lazily. 10141 // We do this during the initial parse for a class template, not during 10142 // instantiation, so that we can handle unqualified lookups for 'operator==' 10143 // when parsing the template. 10144 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { 10145 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; 10146 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 10147 DefaultedSpaceships); 10148 for (auto *FD : DefaultedSpaceships) 10149 DeclareImplicitEqualityComparison(ClassDecl, FD); 10150 } 10151 } 10152 10153 unsigned 10154 Sema::ActOnReenterTemplateScope(Decl *D, 10155 llvm::function_ref<Scope *()> EnterScope) { 10156 if (!D) 10157 return 0; 10158 AdjustDeclIfTemplate(D); 10159 10160 // In order to get name lookup right, reenter template scopes in order from 10161 // outermost to innermost. 10162 SmallVector<TemplateParameterList *, 4> ParameterLists; 10163 DeclContext *LookupDC = dyn_cast<DeclContext>(D); 10164 10165 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 10166 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 10167 ParameterLists.push_back(DD->getTemplateParameterList(i)); 10168 10169 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10170 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 10171 ParameterLists.push_back(FTD->getTemplateParameters()); 10172 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 10173 LookupDC = VD->getDeclContext(); 10174 10175 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) 10176 ParameterLists.push_back(VTD->getTemplateParameters()); 10177 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) 10178 ParameterLists.push_back(PSD->getTemplateParameters()); 10179 } 10180 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 10181 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 10182 ParameterLists.push_back(TD->getTemplateParameterList(i)); 10183 10184 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 10185 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 10186 ParameterLists.push_back(CTD->getTemplateParameters()); 10187 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 10188 ParameterLists.push_back(PSD->getTemplateParameters()); 10189 } 10190 } 10191 // FIXME: Alias declarations and concepts. 10192 10193 unsigned Count = 0; 10194 Scope *InnermostTemplateScope = nullptr; 10195 for (TemplateParameterList *Params : ParameterLists) { 10196 // Ignore explicit specializations; they don't contribute to the template 10197 // depth. 10198 if (Params->size() == 0) 10199 continue; 10200 10201 InnermostTemplateScope = EnterScope(); 10202 for (NamedDecl *Param : *Params) { 10203 if (Param->getDeclName()) { 10204 InnermostTemplateScope->AddDecl(Param); 10205 IdResolver.AddDecl(Param); 10206 } 10207 } 10208 ++Count; 10209 } 10210 10211 // Associate the new template scopes with the corresponding entities. 10212 if (InnermostTemplateScope) { 10213 assert(LookupDC && "no enclosing DeclContext for template lookup"); 10214 EnterTemplatedContext(InnermostTemplateScope, LookupDC); 10215 } 10216 10217 return Count; 10218 } 10219 10220 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10221 if (!RecordD) return; 10222 AdjustDeclIfTemplate(RecordD); 10223 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 10224 PushDeclContext(S, Record); 10225 } 10226 10227 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10228 if (!RecordD) return; 10229 PopDeclContext(); 10230 } 10231 10232 /// This is used to implement the constant expression evaluation part of the 10233 /// attribute enable_if extension. There is nothing in standard C++ which would 10234 /// require reentering parameters. 10235 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 10236 if (!Param) 10237 return; 10238 10239 S->AddDecl(Param); 10240 if (Param->getDeclName()) 10241 IdResolver.AddDecl(Param); 10242 } 10243 10244 /// ActOnStartDelayedCXXMethodDeclaration - We have completed 10245 /// parsing a top-level (non-nested) C++ class, and we are now 10246 /// parsing those parts of the given Method declaration that could 10247 /// not be parsed earlier (C++ [class.mem]p2), such as default 10248 /// arguments. This action should enter the scope of the given 10249 /// Method declaration as if we had just parsed the qualified method 10250 /// name. However, it should not bring the parameters into scope; 10251 /// that will be performed by ActOnDelayedCXXMethodParameter. 10252 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10253 } 10254 10255 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 10256 /// C++ method declaration. We're (re-)introducing the given 10257 /// function parameter into scope for use in parsing later parts of 10258 /// the method declaration. For example, we could see an 10259 /// ActOnParamDefaultArgument event for this parameter. 10260 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 10261 if (!ParamD) 10262 return; 10263 10264 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 10265 10266 S->AddDecl(Param); 10267 if (Param->getDeclName()) 10268 IdResolver.AddDecl(Param); 10269 } 10270 10271 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished 10272 /// processing the delayed method declaration for Method. The method 10273 /// declaration is now considered finished. There may be a separate 10274 /// ActOnStartOfFunctionDef action later (not necessarily 10275 /// immediately!) for this method, if it was also defined inside the 10276 /// class body. 10277 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10278 if (!MethodD) 10279 return; 10280 10281 AdjustDeclIfTemplate(MethodD); 10282 10283 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 10284 10285 // Now that we have our default arguments, check the constructor 10286 // again. It could produce additional diagnostics or affect whether 10287 // the class has implicitly-declared destructors, among other 10288 // things. 10289 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 10290 CheckConstructor(Constructor); 10291 10292 // Check the default arguments, which we may have added. 10293 if (!Method->isInvalidDecl()) 10294 CheckCXXDefaultArguments(Method); 10295 } 10296 10297 // Emit the given diagnostic for each non-address-space qualifier. 10298 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 10299 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 10300 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10301 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 10302 bool DiagOccured = false; 10303 FTI.MethodQualifiers->forEachQualifier( 10304 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 10305 SourceLocation SL) { 10306 // This diagnostic should be emitted on any qualifier except an addr 10307 // space qualifier. However, forEachQualifier currently doesn't visit 10308 // addr space qualifiers, so there's no way to write this condition 10309 // right now; we just diagnose on everything. 10310 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 10311 DiagOccured = true; 10312 }); 10313 if (DiagOccured) 10314 D.setInvalidType(); 10315 } 10316 } 10317 10318 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check 10319 /// the well-formedness of the constructor declarator @p D with type @p 10320 /// R. If there are any errors in the declarator, this routine will 10321 /// emit diagnostics and set the invalid bit to true. In any case, the type 10322 /// will be updated to reflect a well-formed type for the constructor and 10323 /// returned. 10324 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 10325 StorageClass &SC) { 10326 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 10327 10328 // C++ [class.ctor]p3: 10329 // A constructor shall not be virtual (10.3) or static (9.4). A 10330 // constructor can be invoked for a const, volatile or const 10331 // volatile object. A constructor shall not be declared const, 10332 // volatile, or const volatile (9.3.2). 10333 if (isVirtual) { 10334 if (!D.isInvalidType()) 10335 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10336 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 10337 << SourceRange(D.getIdentifierLoc()); 10338 D.setInvalidType(); 10339 } 10340 if (SC == SC_Static) { 10341 if (!D.isInvalidType()) 10342 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10343 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10344 << SourceRange(D.getIdentifierLoc()); 10345 D.setInvalidType(); 10346 SC = SC_None; 10347 } 10348 10349 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10350 diagnoseIgnoredQualifiers( 10351 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 10352 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 10353 D.getDeclSpec().getRestrictSpecLoc(), 10354 D.getDeclSpec().getAtomicSpecLoc()); 10355 D.setInvalidType(); 10356 } 10357 10358 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 10359 10360 // C++0x [class.ctor]p4: 10361 // A constructor shall not be declared with a ref-qualifier. 10362 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10363 if (FTI.hasRefQualifier()) { 10364 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 10365 << FTI.RefQualifierIsLValueRef 10366 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10367 D.setInvalidType(); 10368 } 10369 10370 // Rebuild the function type "R" without any type qualifiers (in 10371 // case any of the errors above fired) and with "void" as the 10372 // return type, since constructors don't have return types. 10373 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10374 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 10375 return R; 10376 10377 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10378 EPI.TypeQuals = Qualifiers(); 10379 EPI.RefQualifier = RQ_None; 10380 10381 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 10382 } 10383 10384 /// CheckConstructor - Checks a fully-formed constructor for 10385 /// well-formedness, issuing any diagnostics required. Returns true if 10386 /// the constructor declarator is invalid. 10387 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 10388 CXXRecordDecl *ClassDecl 10389 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 10390 if (!ClassDecl) 10391 return Constructor->setInvalidDecl(); 10392 10393 // C++ [class.copy]p3: 10394 // A declaration of a constructor for a class X is ill-formed if 10395 // its first parameter is of type (optionally cv-qualified) X and 10396 // either there are no other parameters or else all other 10397 // parameters have default arguments. 10398 if (!Constructor->isInvalidDecl() && 10399 Constructor->hasOneParamOrDefaultArgs() && 10400 Constructor->getTemplateSpecializationKind() != 10401 TSK_ImplicitInstantiation) { 10402 QualType ParamType = Constructor->getParamDecl(0)->getType(); 10403 QualType ClassTy = Context.getTagDeclType(ClassDecl); 10404 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 10405 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 10406 const char *ConstRef 10407 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 10408 : " const &"; 10409 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 10410 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 10411 10412 // FIXME: Rather that making the constructor invalid, we should endeavor 10413 // to fix the type. 10414 Constructor->setInvalidDecl(); 10415 } 10416 } 10417 } 10418 10419 /// CheckDestructor - Checks a fully-formed destructor definition for 10420 /// well-formedness, issuing any diagnostics required. Returns true 10421 /// on error. 10422 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 10423 CXXRecordDecl *RD = Destructor->getParent(); 10424 10425 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 10426 SourceLocation Loc; 10427 10428 if (!Destructor->isImplicit()) 10429 Loc = Destructor->getLocation(); 10430 else 10431 Loc = RD->getLocation(); 10432 10433 // If we have a virtual destructor, look up the deallocation function 10434 if (FunctionDecl *OperatorDelete = 10435 FindDeallocationFunctionForDestructor(Loc, RD)) { 10436 Expr *ThisArg = nullptr; 10437 10438 // If the notional 'delete this' expression requires a non-trivial 10439 // conversion from 'this' to the type of a destroying operator delete's 10440 // first parameter, perform that conversion now. 10441 if (OperatorDelete->isDestroyingOperatorDelete()) { 10442 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 10443 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 10444 // C++ [class.dtor]p13: 10445 // ... as if for the expression 'delete this' appearing in a 10446 // non-virtual destructor of the destructor's class. 10447 ContextRAII SwitchContext(*this, Destructor); 10448 ExprResult This = 10449 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 10450 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); 10451 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 10452 if (This.isInvalid()) { 10453 // FIXME: Register this as a context note so that it comes out 10454 // in the right order. 10455 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 10456 return true; 10457 } 10458 ThisArg = This.get(); 10459 } 10460 } 10461 10462 DiagnoseUseOfDecl(OperatorDelete, Loc); 10463 MarkFunctionReferenced(Loc, OperatorDelete); 10464 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 10465 } 10466 } 10467 10468 return false; 10469 } 10470 10471 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check 10472 /// the well-formednes of the destructor declarator @p D with type @p 10473 /// R. If there are any errors in the declarator, this routine will 10474 /// emit diagnostics and set the declarator to invalid. Even if this happens, 10475 /// will be updated to reflect a well-formed type for the destructor and 10476 /// returned. 10477 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 10478 StorageClass& SC) { 10479 // C++ [class.dtor]p1: 10480 // [...] A typedef-name that names a class is a class-name 10481 // (7.1.3); however, a typedef-name that names a class shall not 10482 // be used as the identifier in the declarator for a destructor 10483 // declaration. 10484 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 10485 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 10486 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10487 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 10488 else if (const TemplateSpecializationType *TST = 10489 DeclaratorType->getAs<TemplateSpecializationType>()) 10490 if (TST->isTypeAlias()) 10491 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10492 << DeclaratorType << 1; 10493 10494 // C++ [class.dtor]p2: 10495 // A destructor is used to destroy objects of its class type. A 10496 // destructor takes no parameters, and no return type can be 10497 // specified for it (not even void). The address of a destructor 10498 // shall not be taken. A destructor shall not be static. A 10499 // destructor can be invoked for a const, volatile or const 10500 // volatile object. A destructor shall not be declared const, 10501 // volatile or const volatile (9.3.2). 10502 if (SC == SC_Static) { 10503 if (!D.isInvalidType()) 10504 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 10505 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10506 << SourceRange(D.getIdentifierLoc()) 10507 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10508 10509 SC = SC_None; 10510 } 10511 if (!D.isInvalidType()) { 10512 // Destructors don't have return types, but the parser will 10513 // happily parse something like: 10514 // 10515 // class X { 10516 // float ~X(); 10517 // }; 10518 // 10519 // The return type will be eliminated later. 10520 if (D.getDeclSpec().hasTypeSpecifier()) 10521 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 10522 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 10523 << SourceRange(D.getIdentifierLoc()); 10524 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10525 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 10526 SourceLocation(), 10527 D.getDeclSpec().getConstSpecLoc(), 10528 D.getDeclSpec().getVolatileSpecLoc(), 10529 D.getDeclSpec().getRestrictSpecLoc(), 10530 D.getDeclSpec().getAtomicSpecLoc()); 10531 D.setInvalidType(); 10532 } 10533 } 10534 10535 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 10536 10537 // C++0x [class.dtor]p2: 10538 // A destructor shall not be declared with a ref-qualifier. 10539 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10540 if (FTI.hasRefQualifier()) { 10541 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 10542 << FTI.RefQualifierIsLValueRef 10543 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10544 D.setInvalidType(); 10545 } 10546 10547 // Make sure we don't have any parameters. 10548 if (FTIHasNonVoidParameters(FTI)) { 10549 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 10550 10551 // Delete the parameters. 10552 FTI.freeParams(); 10553 D.setInvalidType(); 10554 } 10555 10556 // Make sure the destructor isn't variadic. 10557 if (FTI.isVariadic) { 10558 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 10559 D.setInvalidType(); 10560 } 10561 10562 // Rebuild the function type "R" without any type qualifiers or 10563 // parameters (in case any of the errors above fired) and with 10564 // "void" as the return type, since destructors don't have return 10565 // types. 10566 if (!D.isInvalidType()) 10567 return R; 10568 10569 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10570 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10571 EPI.Variadic = false; 10572 EPI.TypeQuals = Qualifiers(); 10573 EPI.RefQualifier = RQ_None; 10574 return Context.getFunctionType(Context.VoidTy, None, EPI); 10575 } 10576 10577 static void extendLeft(SourceRange &R, SourceRange Before) { 10578 if (Before.isInvalid()) 10579 return; 10580 R.setBegin(Before.getBegin()); 10581 if (R.getEnd().isInvalid()) 10582 R.setEnd(Before.getEnd()); 10583 } 10584 10585 static void extendRight(SourceRange &R, SourceRange After) { 10586 if (After.isInvalid()) 10587 return; 10588 if (R.getBegin().isInvalid()) 10589 R.setBegin(After.getBegin()); 10590 R.setEnd(After.getEnd()); 10591 } 10592 10593 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the 10594 /// well-formednes of the conversion function declarator @p D with 10595 /// type @p R. If there are any errors in the declarator, this routine 10596 /// will emit diagnostics and return true. Otherwise, it will return 10597 /// false. Either way, the type @p R will be updated to reflect a 10598 /// well-formed type for the conversion operator. 10599 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 10600 StorageClass& SC) { 10601 // C++ [class.conv.fct]p1: 10602 // Neither parameter types nor return type can be specified. The 10603 // type of a conversion function (8.3.5) is "function taking no 10604 // parameter returning conversion-type-id." 10605 if (SC == SC_Static) { 10606 if (!D.isInvalidType()) 10607 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 10608 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10609 << D.getName().getSourceRange(); 10610 D.setInvalidType(); 10611 SC = SC_None; 10612 } 10613 10614 TypeSourceInfo *ConvTSI = nullptr; 10615 QualType ConvType = 10616 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 10617 10618 const DeclSpec &DS = D.getDeclSpec(); 10619 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 10620 // Conversion functions don't have return types, but the parser will 10621 // happily parse something like: 10622 // 10623 // class X { 10624 // float operator bool(); 10625 // }; 10626 // 10627 // The return type will be changed later anyway. 10628 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 10629 << SourceRange(DS.getTypeSpecTypeLoc()) 10630 << SourceRange(D.getIdentifierLoc()); 10631 D.setInvalidType(); 10632 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 10633 // It's also plausible that the user writes type qualifiers in the wrong 10634 // place, such as: 10635 // struct S { const operator int(); }; 10636 // FIXME: we could provide a fixit to move the qualifiers onto the 10637 // conversion type. 10638 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 10639 << SourceRange(D.getIdentifierLoc()) << 0; 10640 D.setInvalidType(); 10641 } 10642 10643 const auto *Proto = R->castAs<FunctionProtoType>(); 10644 10645 // Make sure we don't have any parameters. 10646 if (Proto->getNumParams() > 0) { 10647 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 10648 10649 // Delete the parameters. 10650 D.getFunctionTypeInfo().freeParams(); 10651 D.setInvalidType(); 10652 } else if (Proto->isVariadic()) { 10653 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 10654 D.setInvalidType(); 10655 } 10656 10657 // Diagnose "&operator bool()" and other such nonsense. This 10658 // is actually a gcc extension which we don't support. 10659 if (Proto->getReturnType() != ConvType) { 10660 bool NeedsTypedef = false; 10661 SourceRange Before, After; 10662 10663 // Walk the chunks and extract information on them for our diagnostic. 10664 bool PastFunctionChunk = false; 10665 for (auto &Chunk : D.type_objects()) { 10666 switch (Chunk.Kind) { 10667 case DeclaratorChunk::Function: 10668 if (!PastFunctionChunk) { 10669 if (Chunk.Fun.HasTrailingReturnType) { 10670 TypeSourceInfo *TRT = nullptr; 10671 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 10672 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 10673 } 10674 PastFunctionChunk = true; 10675 break; 10676 } 10677 LLVM_FALLTHROUGH; 10678 case DeclaratorChunk::Array: 10679 NeedsTypedef = true; 10680 extendRight(After, Chunk.getSourceRange()); 10681 break; 10682 10683 case DeclaratorChunk::Pointer: 10684 case DeclaratorChunk::BlockPointer: 10685 case DeclaratorChunk::Reference: 10686 case DeclaratorChunk::MemberPointer: 10687 case DeclaratorChunk::Pipe: 10688 extendLeft(Before, Chunk.getSourceRange()); 10689 break; 10690 10691 case DeclaratorChunk::Paren: 10692 extendLeft(Before, Chunk.Loc); 10693 extendRight(After, Chunk.EndLoc); 10694 break; 10695 } 10696 } 10697 10698 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 10699 After.isValid() ? After.getBegin() : 10700 D.getIdentifierLoc(); 10701 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 10702 DB << Before << After; 10703 10704 if (!NeedsTypedef) { 10705 DB << /*don't need a typedef*/0; 10706 10707 // If we can provide a correct fix-it hint, do so. 10708 if (After.isInvalid() && ConvTSI) { 10709 SourceLocation InsertLoc = 10710 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 10711 DB << FixItHint::CreateInsertion(InsertLoc, " ") 10712 << FixItHint::CreateInsertionFromRange( 10713 InsertLoc, CharSourceRange::getTokenRange(Before)) 10714 << FixItHint::CreateRemoval(Before); 10715 } 10716 } else if (!Proto->getReturnType()->isDependentType()) { 10717 DB << /*typedef*/1 << Proto->getReturnType(); 10718 } else if (getLangOpts().CPlusPlus11) { 10719 DB << /*alias template*/2 << Proto->getReturnType(); 10720 } else { 10721 DB << /*might not be fixable*/3; 10722 } 10723 10724 // Recover by incorporating the other type chunks into the result type. 10725 // Note, this does *not* change the name of the function. This is compatible 10726 // with the GCC extension: 10727 // struct S { &operator int(); } s; 10728 // int &r = s.operator int(); // ok in GCC 10729 // S::operator int&() {} // error in GCC, function name is 'operator int'. 10730 ConvType = Proto->getReturnType(); 10731 } 10732 10733 // C++ [class.conv.fct]p4: 10734 // The conversion-type-id shall not represent a function type nor 10735 // an array type. 10736 if (ConvType->isArrayType()) { 10737 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 10738 ConvType = Context.getPointerType(ConvType); 10739 D.setInvalidType(); 10740 } else if (ConvType->isFunctionType()) { 10741 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 10742 ConvType = Context.getPointerType(ConvType); 10743 D.setInvalidType(); 10744 } 10745 10746 // Rebuild the function type "R" without any parameters (in case any 10747 // of the errors above fired) and with the conversion type as the 10748 // return type. 10749 if (D.isInvalidType()) 10750 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); 10751 10752 // C++0x explicit conversion operators. 10753 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) 10754 Diag(DS.getExplicitSpecLoc(), 10755 getLangOpts().CPlusPlus11 10756 ? diag::warn_cxx98_compat_explicit_conversion_functions 10757 : diag::ext_explicit_conversion_functions) 10758 << SourceRange(DS.getExplicitSpecRange()); 10759 } 10760 10761 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 10762 /// the declaration of the given C++ conversion function. This routine 10763 /// is responsible for recording the conversion function in the C++ 10764 /// class, if possible. 10765 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 10766 assert(Conversion && "Expected to receive a conversion function declaration"); 10767 10768 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 10769 10770 // Make sure we aren't redeclaring the conversion function. 10771 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 10772 // C++ [class.conv.fct]p1: 10773 // [...] A conversion function is never used to convert a 10774 // (possibly cv-qualified) object to the (possibly cv-qualified) 10775 // same object type (or a reference to it), to a (possibly 10776 // cv-qualified) base class of that type (or a reference to it), 10777 // or to (possibly cv-qualified) void. 10778 QualType ClassType 10779 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 10780 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 10781 ConvType = ConvTypeRef->getPointeeType(); 10782 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 10783 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 10784 /* Suppress diagnostics for instantiations. */; 10785 else if (Conversion->size_overridden_methods() != 0) 10786 /* Suppress diagnostics for overriding virtual function in a base class. */; 10787 else if (ConvType->isRecordType()) { 10788 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 10789 if (ConvType == ClassType) 10790 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 10791 << ClassType; 10792 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 10793 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 10794 << ClassType << ConvType; 10795 } else if (ConvType->isVoidType()) { 10796 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 10797 << ClassType << ConvType; 10798 } 10799 10800 if (FunctionTemplateDecl *ConversionTemplate 10801 = Conversion->getDescribedFunctionTemplate()) 10802 return ConversionTemplate; 10803 10804 return Conversion; 10805 } 10806 10807 namespace { 10808 /// Utility class to accumulate and print a diagnostic listing the invalid 10809 /// specifier(s) on a declaration. 10810 struct BadSpecifierDiagnoser { 10811 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 10812 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 10813 ~BadSpecifierDiagnoser() { 10814 Diagnostic << Specifiers; 10815 } 10816 10817 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 10818 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 10819 } 10820 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 10821 return check(SpecLoc, 10822 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 10823 } 10824 void check(SourceLocation SpecLoc, const char *Spec) { 10825 if (SpecLoc.isInvalid()) return; 10826 Diagnostic << SourceRange(SpecLoc, SpecLoc); 10827 if (!Specifiers.empty()) Specifiers += " "; 10828 Specifiers += Spec; 10829 } 10830 10831 Sema &S; 10832 Sema::SemaDiagnosticBuilder Diagnostic; 10833 std::string Specifiers; 10834 }; 10835 } 10836 10837 /// Check the validity of a declarator that we parsed for a deduction-guide. 10838 /// These aren't actually declarators in the grammar, so we need to check that 10839 /// the user didn't specify any pieces that are not part of the deduction-guide 10840 /// grammar. 10841 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 10842 StorageClass &SC) { 10843 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 10844 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 10845 assert(GuidedTemplateDecl && "missing template decl for deduction guide"); 10846 10847 // C++ [temp.deduct.guide]p3: 10848 // A deduction-gide shall be declared in the same scope as the 10849 // corresponding class template. 10850 if (!CurContext->getRedeclContext()->Equals( 10851 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 10852 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 10853 << GuidedTemplateDecl; 10854 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); 10855 } 10856 10857 auto &DS = D.getMutableDeclSpec(); 10858 // We leave 'friend' and 'virtual' to be rejected in the normal way. 10859 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 10860 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 10861 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 10862 BadSpecifierDiagnoser Diagnoser( 10863 *this, D.getIdentifierLoc(), 10864 diag::err_deduction_guide_invalid_specifier); 10865 10866 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 10867 DS.ClearStorageClassSpecs(); 10868 SC = SC_None; 10869 10870 // 'explicit' is permitted. 10871 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 10872 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 10873 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 10874 DS.ClearConstexprSpec(); 10875 10876 Diagnoser.check(DS.getConstSpecLoc(), "const"); 10877 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 10878 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 10879 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 10880 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 10881 DS.ClearTypeQualifiers(); 10882 10883 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 10884 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 10885 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 10886 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 10887 DS.ClearTypeSpecType(); 10888 } 10889 10890 if (D.isInvalidType()) 10891 return; 10892 10893 // Check the declarator is simple enough. 10894 bool FoundFunction = false; 10895 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 10896 if (Chunk.Kind == DeclaratorChunk::Paren) 10897 continue; 10898 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 10899 Diag(D.getDeclSpec().getBeginLoc(), 10900 diag::err_deduction_guide_with_complex_decl) 10901 << D.getSourceRange(); 10902 break; 10903 } 10904 if (!Chunk.Fun.hasTrailingReturnType()) { 10905 Diag(D.getName().getBeginLoc(), 10906 diag::err_deduction_guide_no_trailing_return_type); 10907 break; 10908 } 10909 10910 // Check that the return type is written as a specialization of 10911 // the template specified as the deduction-guide's name. 10912 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 10913 TypeSourceInfo *TSI = nullptr; 10914 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 10915 assert(TSI && "deduction guide has valid type but invalid return type?"); 10916 bool AcceptableReturnType = false; 10917 bool MightInstantiateToSpecialization = false; 10918 if (auto RetTST = 10919 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) { 10920 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 10921 bool TemplateMatches = 10922 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 10923 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches) 10924 AcceptableReturnType = true; 10925 else { 10926 // This could still instantiate to the right type, unless we know it 10927 // names the wrong class template. 10928 auto *TD = SpecifiedName.getAsTemplateDecl(); 10929 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 10930 !TemplateMatches); 10931 } 10932 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 10933 MightInstantiateToSpecialization = true; 10934 } 10935 10936 if (!AcceptableReturnType) { 10937 Diag(TSI->getTypeLoc().getBeginLoc(), 10938 diag::err_deduction_guide_bad_trailing_return_type) 10939 << GuidedTemplate << TSI->getType() 10940 << MightInstantiateToSpecialization 10941 << TSI->getTypeLoc().getSourceRange(); 10942 } 10943 10944 // Keep going to check that we don't have any inner declarator pieces (we 10945 // could still have a function returning a pointer to a function). 10946 FoundFunction = true; 10947 } 10948 10949 if (D.isFunctionDefinition()) 10950 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 10951 } 10952 10953 //===----------------------------------------------------------------------===// 10954 // Namespace Handling 10955 //===----------------------------------------------------------------------===// 10956 10957 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is 10958 /// reopened. 10959 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 10960 SourceLocation Loc, 10961 IdentifierInfo *II, bool *IsInline, 10962 NamespaceDecl *PrevNS) { 10963 assert(*IsInline != PrevNS->isInline()); 10964 10965 if (PrevNS->isInline()) 10966 // The user probably just forgot the 'inline', so suggest that it 10967 // be added back. 10968 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 10969 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 10970 else 10971 S.Diag(Loc, diag::err_inline_namespace_mismatch); 10972 10973 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 10974 *IsInline = PrevNS->isInline(); 10975 } 10976 10977 /// ActOnStartNamespaceDef - This is called at the start of a namespace 10978 /// definition. 10979 Decl *Sema::ActOnStartNamespaceDef( 10980 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, 10981 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, 10982 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) { 10983 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 10984 // For anonymous namespace, take the location of the left brace. 10985 SourceLocation Loc = II ? IdentLoc : LBrace; 10986 bool IsInline = InlineLoc.isValid(); 10987 bool IsInvalid = false; 10988 bool IsStd = false; 10989 bool AddToKnown = false; 10990 Scope *DeclRegionScope = NamespcScope->getParent(); 10991 10992 NamespaceDecl *PrevNS = nullptr; 10993 if (II) { 10994 // C++ [namespace.def]p2: 10995 // The identifier in an original-namespace-definition shall not 10996 // have been previously defined in the declarative region in 10997 // which the original-namespace-definition appears. The 10998 // identifier in an original-namespace-definition is the name of 10999 // the namespace. Subsequently in that declarative region, it is 11000 // treated as an original-namespace-name. 11001 // 11002 // Since namespace names are unique in their scope, and we don't 11003 // look through using directives, just look for any ordinary names 11004 // as if by qualified name lookup. 11005 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 11006 ForExternalRedeclaration); 11007 LookupQualifiedName(R, CurContext->getRedeclContext()); 11008 NamedDecl *PrevDecl = 11009 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 11010 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 11011 11012 if (PrevNS) { 11013 // This is an extended namespace definition. 11014 if (IsInline != PrevNS->isInline()) 11015 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 11016 &IsInline, PrevNS); 11017 } else if (PrevDecl) { 11018 // This is an invalid name redefinition. 11019 Diag(Loc, diag::err_redefinition_different_kind) 11020 << II; 11021 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11022 IsInvalid = true; 11023 // Continue on to push Namespc as current DeclContext and return it. 11024 } else if (II->isStr("std") && 11025 CurContext->getRedeclContext()->isTranslationUnit()) { 11026 // This is the first "real" definition of the namespace "std", so update 11027 // our cache of the "std" namespace to point at this definition. 11028 PrevNS = getStdNamespace(); 11029 IsStd = true; 11030 AddToKnown = !IsInline; 11031 } else { 11032 // We've seen this namespace for the first time. 11033 AddToKnown = !IsInline; 11034 } 11035 } else { 11036 // Anonymous namespaces. 11037 11038 // Determine whether the parent already has an anonymous namespace. 11039 DeclContext *Parent = CurContext->getRedeclContext(); 11040 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11041 PrevNS = TU->getAnonymousNamespace(); 11042 } else { 11043 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 11044 PrevNS = ND->getAnonymousNamespace(); 11045 } 11046 11047 if (PrevNS && IsInline != PrevNS->isInline()) 11048 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 11049 &IsInline, PrevNS); 11050 } 11051 11052 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, 11053 StartLoc, Loc, II, PrevNS); 11054 if (IsInvalid) 11055 Namespc->setInvalidDecl(); 11056 11057 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 11058 AddPragmaAttributes(DeclRegionScope, Namespc); 11059 11060 // FIXME: Should we be merging attributes? 11061 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 11062 PushNamespaceVisibilityAttr(Attr, Loc); 11063 11064 if (IsStd) 11065 StdNamespace = Namespc; 11066 if (AddToKnown) 11067 KnownNamespaces[Namespc] = false; 11068 11069 if (II) { 11070 PushOnScopeChains(Namespc, DeclRegionScope); 11071 } else { 11072 // Link the anonymous namespace into its parent. 11073 DeclContext *Parent = CurContext->getRedeclContext(); 11074 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11075 TU->setAnonymousNamespace(Namespc); 11076 } else { 11077 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 11078 } 11079 11080 CurContext->addDecl(Namespc); 11081 11082 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 11083 // behaves as if it were replaced by 11084 // namespace unique { /* empty body */ } 11085 // using namespace unique; 11086 // namespace unique { namespace-body } 11087 // where all occurrences of 'unique' in a translation unit are 11088 // replaced by the same identifier and this identifier differs 11089 // from all other identifiers in the entire program. 11090 11091 // We just create the namespace with an empty name and then add an 11092 // implicit using declaration, just like the standard suggests. 11093 // 11094 // CodeGen enforces the "universally unique" aspect by giving all 11095 // declarations semantically contained within an anonymous 11096 // namespace internal linkage. 11097 11098 if (!PrevNS) { 11099 UD = UsingDirectiveDecl::Create(Context, Parent, 11100 /* 'using' */ LBrace, 11101 /* 'namespace' */ SourceLocation(), 11102 /* qualifier */ NestedNameSpecifierLoc(), 11103 /* identifier */ SourceLocation(), 11104 Namespc, 11105 /* Ancestor */ Parent); 11106 UD->setImplicit(); 11107 Parent->addDecl(UD); 11108 } 11109 } 11110 11111 ActOnDocumentableDecl(Namespc); 11112 11113 // Although we could have an invalid decl (i.e. the namespace name is a 11114 // redefinition), push it as current DeclContext and try to continue parsing. 11115 // FIXME: We should be able to push Namespc here, so that the each DeclContext 11116 // for the namespace has the declarations that showed up in that particular 11117 // namespace definition. 11118 PushDeclContext(NamespcScope, Namespc); 11119 return Namespc; 11120 } 11121 11122 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 11123 /// is a namespace alias, returns the namespace it points to. 11124 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 11125 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 11126 return AD->getNamespace(); 11127 return dyn_cast_or_null<NamespaceDecl>(D); 11128 } 11129 11130 /// ActOnFinishNamespaceDef - This callback is called after a namespace is 11131 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 11132 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 11133 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 11134 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 11135 Namespc->setRBraceLoc(RBrace); 11136 PopDeclContext(); 11137 if (Namespc->hasAttr<VisibilityAttr>()) 11138 PopPragmaVisibility(true, RBrace); 11139 // If this namespace contains an export-declaration, export it now. 11140 if (DeferredExportedNamespaces.erase(Namespc)) 11141 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 11142 } 11143 11144 CXXRecordDecl *Sema::getStdBadAlloc() const { 11145 return cast_or_null<CXXRecordDecl>( 11146 StdBadAlloc.get(Context.getExternalSource())); 11147 } 11148 11149 EnumDecl *Sema::getStdAlignValT() const { 11150 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 11151 } 11152 11153 NamespaceDecl *Sema::getStdNamespace() const { 11154 return cast_or_null<NamespaceDecl>( 11155 StdNamespace.get(Context.getExternalSource())); 11156 } 11157 11158 NamespaceDecl *Sema::lookupStdExperimentalNamespace() { 11159 if (!StdExperimentalNamespaceCache) { 11160 if (auto Std = getStdNamespace()) { 11161 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), 11162 SourceLocation(), LookupNamespaceName); 11163 if (!LookupQualifiedName(Result, Std) || 11164 !(StdExperimentalNamespaceCache = 11165 Result.getAsSingle<NamespaceDecl>())) 11166 Result.suppressDiagnostics(); 11167 } 11168 } 11169 return StdExperimentalNamespaceCache; 11170 } 11171 11172 namespace { 11173 11174 enum UnsupportedSTLSelect { 11175 USS_InvalidMember, 11176 USS_MissingMember, 11177 USS_NonTrivial, 11178 USS_Other 11179 }; 11180 11181 struct InvalidSTLDiagnoser { 11182 Sema &S; 11183 SourceLocation Loc; 11184 QualType TyForDiags; 11185 11186 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 11187 const VarDecl *VD = nullptr) { 11188 { 11189 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 11190 << TyForDiags << ((int)Sel); 11191 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 11192 assert(!Name.empty()); 11193 D << Name; 11194 } 11195 } 11196 if (Sel == USS_InvalidMember) { 11197 S.Diag(VD->getLocation(), diag::note_var_declared_here) 11198 << VD << VD->getSourceRange(); 11199 } 11200 return QualType(); 11201 } 11202 }; 11203 } // namespace 11204 11205 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 11206 SourceLocation Loc, 11207 ComparisonCategoryUsage Usage) { 11208 assert(getLangOpts().CPlusPlus && 11209 "Looking for comparison category type outside of C++."); 11210 11211 // Use an elaborated type for diagnostics which has a name containing the 11212 // prepended 'std' namespace but not any inline namespace names. 11213 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 11214 auto *NNS = 11215 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 11216 return Context.getElaboratedType(ETK_None, NNS, Info->getType()); 11217 }; 11218 11219 // Check if we've already successfully checked the comparison category type 11220 // before. If so, skip checking it again. 11221 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 11222 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 11223 // The only thing we need to check is that the type has a reachable 11224 // definition in the current context. 11225 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11226 return QualType(); 11227 11228 return Info->getType(); 11229 } 11230 11231 // If lookup failed 11232 if (!Info) { 11233 std::string NameForDiags = "std::"; 11234 NameForDiags += ComparisonCategories::getCategoryString(Kind); 11235 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 11236 << NameForDiags << (int)Usage; 11237 return QualType(); 11238 } 11239 11240 assert(Info->Kind == Kind); 11241 assert(Info->Record); 11242 11243 // Update the Record decl in case we encountered a forward declaration on our 11244 // first pass. FIXME: This is a bit of a hack. 11245 if (Info->Record->hasDefinition()) 11246 Info->Record = Info->Record->getDefinition(); 11247 11248 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11249 return QualType(); 11250 11251 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 11252 11253 if (!Info->Record->isTriviallyCopyable()) 11254 return UnsupportedSTLError(USS_NonTrivial); 11255 11256 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 11257 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 11258 // Tolerate empty base classes. 11259 if (Base->isEmpty()) 11260 continue; 11261 // Reject STL implementations which have at least one non-empty base. 11262 return UnsupportedSTLError(); 11263 } 11264 11265 // Check that the STL has implemented the types using a single integer field. 11266 // This expectation allows better codegen for builtin operators. We require: 11267 // (1) The class has exactly one field. 11268 // (2) The field is an integral or enumeration type. 11269 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 11270 if (std::distance(FIt, FEnd) != 1 || 11271 !FIt->getType()->isIntegralOrEnumerationType()) { 11272 return UnsupportedSTLError(); 11273 } 11274 11275 // Build each of the require values and store them in Info. 11276 for (ComparisonCategoryResult CCR : 11277 ComparisonCategories::getPossibleResultsForType(Kind)) { 11278 StringRef MemName = ComparisonCategories::getResultString(CCR); 11279 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 11280 11281 if (!ValInfo) 11282 return UnsupportedSTLError(USS_MissingMember, MemName); 11283 11284 VarDecl *VD = ValInfo->VD; 11285 assert(VD && "should not be null!"); 11286 11287 // Attempt to diagnose reasons why the STL definition of this type 11288 // might be foobar, including it failing to be a constant expression. 11289 // TODO Handle more ways the lookup or result can be invalid. 11290 if (!VD->isStaticDataMember() || 11291 !VD->isUsableInConstantExpressions(Context)) 11292 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 11293 11294 // Attempt to evaluate the var decl as a constant expression and extract 11295 // the value of its first field as a ICE. If this fails, the STL 11296 // implementation is not supported. 11297 if (!ValInfo->hasValidIntValue()) 11298 return UnsupportedSTLError(); 11299 11300 MarkVariableReferenced(Loc, VD); 11301 } 11302 11303 // We've successfully built the required types and expressions. Update 11304 // the cache and return the newly cached value. 11305 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 11306 return Info->getType(); 11307 } 11308 11309 /// Retrieve the special "std" namespace, which may require us to 11310 /// implicitly define the namespace. 11311 NamespaceDecl *Sema::getOrCreateStdNamespace() { 11312 if (!StdNamespace) { 11313 // The "std" namespace has not yet been defined, so build one implicitly. 11314 StdNamespace = NamespaceDecl::Create(Context, 11315 Context.getTranslationUnitDecl(), 11316 /*Inline=*/false, 11317 SourceLocation(), SourceLocation(), 11318 &PP.getIdentifierTable().get("std"), 11319 /*PrevDecl=*/nullptr); 11320 getStdNamespace()->setImplicit(true); 11321 } 11322 11323 return getStdNamespace(); 11324 } 11325 11326 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 11327 assert(getLangOpts().CPlusPlus && 11328 "Looking for std::initializer_list outside of C++."); 11329 11330 // We're looking for implicit instantiations of 11331 // template <typename E> class std::initializer_list. 11332 11333 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 11334 return false; 11335 11336 ClassTemplateDecl *Template = nullptr; 11337 const TemplateArgument *Arguments = nullptr; 11338 11339 if (const RecordType *RT = Ty->getAs<RecordType>()) { 11340 11341 ClassTemplateSpecializationDecl *Specialization = 11342 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 11343 if (!Specialization) 11344 return false; 11345 11346 Template = Specialization->getSpecializedTemplate(); 11347 Arguments = Specialization->getTemplateArgs().data(); 11348 } else if (const TemplateSpecializationType *TST = 11349 Ty->getAs<TemplateSpecializationType>()) { 11350 Template = dyn_cast_or_null<ClassTemplateDecl>( 11351 TST->getTemplateName().getAsTemplateDecl()); 11352 Arguments = TST->getArgs(); 11353 } 11354 if (!Template) 11355 return false; 11356 11357 if (!StdInitializerList) { 11358 // Haven't recognized std::initializer_list yet, maybe this is it. 11359 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 11360 if (TemplateClass->getIdentifier() != 11361 &PP.getIdentifierTable().get("initializer_list") || 11362 !getStdNamespace()->InEnclosingNamespaceSetOf( 11363 TemplateClass->getDeclContext())) 11364 return false; 11365 // This is a template called std::initializer_list, but is it the right 11366 // template? 11367 TemplateParameterList *Params = Template->getTemplateParameters(); 11368 if (Params->getMinRequiredArguments() != 1) 11369 return false; 11370 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 11371 return false; 11372 11373 // It's the right template. 11374 StdInitializerList = Template; 11375 } 11376 11377 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 11378 return false; 11379 11380 // This is an instance of std::initializer_list. Find the argument type. 11381 if (Element) 11382 *Element = Arguments[0].getAsType(); 11383 return true; 11384 } 11385 11386 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 11387 NamespaceDecl *Std = S.getStdNamespace(); 11388 if (!Std) { 11389 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11390 return nullptr; 11391 } 11392 11393 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 11394 Loc, Sema::LookupOrdinaryName); 11395 if (!S.LookupQualifiedName(Result, Std)) { 11396 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11397 return nullptr; 11398 } 11399 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 11400 if (!Template) { 11401 Result.suppressDiagnostics(); 11402 // We found something weird. Complain about the first thing we found. 11403 NamedDecl *Found = *Result.begin(); 11404 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 11405 return nullptr; 11406 } 11407 11408 // We found some template called std::initializer_list. Now verify that it's 11409 // correct. 11410 TemplateParameterList *Params = Template->getTemplateParameters(); 11411 if (Params->getMinRequiredArguments() != 1 || 11412 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 11413 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 11414 return nullptr; 11415 } 11416 11417 return Template; 11418 } 11419 11420 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 11421 if (!StdInitializerList) { 11422 StdInitializerList = LookupStdInitializerList(*this, Loc); 11423 if (!StdInitializerList) 11424 return QualType(); 11425 } 11426 11427 TemplateArgumentListInfo Args(Loc, Loc); 11428 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 11429 Context.getTrivialTypeSourceInfo(Element, 11430 Loc))); 11431 return Context.getCanonicalType( 11432 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 11433 } 11434 11435 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 11436 // C++ [dcl.init.list]p2: 11437 // A constructor is an initializer-list constructor if its first parameter 11438 // is of type std::initializer_list<E> or reference to possibly cv-qualified 11439 // std::initializer_list<E> for some type E, and either there are no other 11440 // parameters or else all other parameters have default arguments. 11441 if (!Ctor->hasOneParamOrDefaultArgs()) 11442 return false; 11443 11444 QualType ArgType = Ctor->getParamDecl(0)->getType(); 11445 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 11446 ArgType = RT->getPointeeType().getUnqualifiedType(); 11447 11448 return isStdInitializerList(ArgType, nullptr); 11449 } 11450 11451 /// Determine whether a using statement is in a context where it will be 11452 /// apply in all contexts. 11453 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 11454 switch (CurContext->getDeclKind()) { 11455 case Decl::TranslationUnit: 11456 return true; 11457 case Decl::LinkageSpec: 11458 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 11459 default: 11460 return false; 11461 } 11462 } 11463 11464 namespace { 11465 11466 // Callback to only accept typo corrections that are namespaces. 11467 class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 11468 public: 11469 bool ValidateCandidate(const TypoCorrection &candidate) override { 11470 if (NamedDecl *ND = candidate.getCorrectionDecl()) 11471 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 11472 return false; 11473 } 11474 11475 std::unique_ptr<CorrectionCandidateCallback> clone() override { 11476 return std::make_unique<NamespaceValidatorCCC>(*this); 11477 } 11478 }; 11479 11480 } 11481 11482 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 11483 CXXScopeSpec &SS, 11484 SourceLocation IdentLoc, 11485 IdentifierInfo *Ident) { 11486 R.clear(); 11487 NamespaceValidatorCCC CCC{}; 11488 if (TypoCorrection Corrected = 11489 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 11490 Sema::CTK_ErrorRecovery)) { 11491 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 11492 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 11493 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 11494 Ident->getName().equals(CorrectedStr); 11495 S.diagnoseTypo(Corrected, 11496 S.PDiag(diag::err_using_directive_member_suggest) 11497 << Ident << DC << DroppedSpecifier << SS.getRange(), 11498 S.PDiag(diag::note_namespace_defined_here)); 11499 } else { 11500 S.diagnoseTypo(Corrected, 11501 S.PDiag(diag::err_using_directive_suggest) << Ident, 11502 S.PDiag(diag::note_namespace_defined_here)); 11503 } 11504 R.addDecl(Corrected.getFoundDecl()); 11505 return true; 11506 } 11507 return false; 11508 } 11509 11510 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 11511 SourceLocation NamespcLoc, CXXScopeSpec &SS, 11512 SourceLocation IdentLoc, 11513 IdentifierInfo *NamespcName, 11514 const ParsedAttributesView &AttrList) { 11515 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 11516 assert(NamespcName && "Invalid NamespcName."); 11517 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 11518 11519 // This can only happen along a recovery path. 11520 while (S->isTemplateParamScope()) 11521 S = S->getParent(); 11522 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11523 11524 UsingDirectiveDecl *UDir = nullptr; 11525 NestedNameSpecifier *Qualifier = nullptr; 11526 if (SS.isSet()) 11527 Qualifier = SS.getScopeRep(); 11528 11529 // Lookup namespace name. 11530 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 11531 LookupParsedName(R, S, &SS); 11532 if (R.isAmbiguous()) 11533 return nullptr; 11534 11535 if (R.empty()) { 11536 R.clear(); 11537 // Allow "using namespace std;" or "using namespace ::std;" even if 11538 // "std" hasn't been defined yet, for GCC compatibility. 11539 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 11540 NamespcName->isStr("std")) { 11541 Diag(IdentLoc, diag::ext_using_undefined_std); 11542 R.addDecl(getOrCreateStdNamespace()); 11543 R.resolveKind(); 11544 } 11545 // Otherwise, attempt typo correction. 11546 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 11547 } 11548 11549 if (!R.empty()) { 11550 NamedDecl *Named = R.getRepresentativeDecl(); 11551 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 11552 assert(NS && "expected namespace decl"); 11553 11554 // The use of a nested name specifier may trigger deprecation warnings. 11555 DiagnoseUseOfDecl(Named, IdentLoc); 11556 11557 // C++ [namespace.udir]p1: 11558 // A using-directive specifies that the names in the nominated 11559 // namespace can be used in the scope in which the 11560 // using-directive appears after the using-directive. During 11561 // unqualified name lookup (3.4.1), the names appear as if they 11562 // were declared in the nearest enclosing namespace which 11563 // contains both the using-directive and the nominated 11564 // namespace. [Note: in this context, "contains" means "contains 11565 // directly or indirectly". ] 11566 11567 // Find enclosing context containing both using-directive and 11568 // nominated namespace. 11569 DeclContext *CommonAncestor = NS; 11570 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 11571 CommonAncestor = CommonAncestor->getParent(); 11572 11573 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 11574 SS.getWithLocInContext(Context), 11575 IdentLoc, Named, CommonAncestor); 11576 11577 if (IsUsingDirectiveInToplevelContext(CurContext) && 11578 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 11579 Diag(IdentLoc, diag::warn_using_directive_in_header); 11580 } 11581 11582 PushUsingDirective(S, UDir); 11583 } else { 11584 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 11585 } 11586 11587 if (UDir) 11588 ProcessDeclAttributeList(S, UDir, AttrList); 11589 11590 return UDir; 11591 } 11592 11593 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 11594 // If the scope has an associated entity and the using directive is at 11595 // namespace or translation unit scope, add the UsingDirectiveDecl into 11596 // its lookup structure so qualified name lookup can find it. 11597 DeclContext *Ctx = S->getEntity(); 11598 if (Ctx && !Ctx->isFunctionOrMethod()) 11599 Ctx->addDecl(UDir); 11600 else 11601 // Otherwise, it is at block scope. The using-directives will affect lookup 11602 // only to the end of the scope. 11603 S->PushUsingDirective(UDir); 11604 } 11605 11606 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 11607 SourceLocation UsingLoc, 11608 SourceLocation TypenameLoc, CXXScopeSpec &SS, 11609 UnqualifiedId &Name, 11610 SourceLocation EllipsisLoc, 11611 const ParsedAttributesView &AttrList) { 11612 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 11613 11614 if (SS.isEmpty()) { 11615 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 11616 return nullptr; 11617 } 11618 11619 switch (Name.getKind()) { 11620 case UnqualifiedIdKind::IK_ImplicitSelfParam: 11621 case UnqualifiedIdKind::IK_Identifier: 11622 case UnqualifiedIdKind::IK_OperatorFunctionId: 11623 case UnqualifiedIdKind::IK_LiteralOperatorId: 11624 case UnqualifiedIdKind::IK_ConversionFunctionId: 11625 break; 11626 11627 case UnqualifiedIdKind::IK_ConstructorName: 11628 case UnqualifiedIdKind::IK_ConstructorTemplateId: 11629 // C++11 inheriting constructors. 11630 Diag(Name.getBeginLoc(), 11631 getLangOpts().CPlusPlus11 11632 ? diag::warn_cxx98_compat_using_decl_constructor 11633 : diag::err_using_decl_constructor) 11634 << SS.getRange(); 11635 11636 if (getLangOpts().CPlusPlus11) break; 11637 11638 return nullptr; 11639 11640 case UnqualifiedIdKind::IK_DestructorName: 11641 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 11642 return nullptr; 11643 11644 case UnqualifiedIdKind::IK_TemplateId: 11645 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 11646 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 11647 return nullptr; 11648 11649 case UnqualifiedIdKind::IK_DeductionGuideName: 11650 llvm_unreachable("cannot parse qualified deduction guide name"); 11651 } 11652 11653 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 11654 DeclarationName TargetName = TargetNameInfo.getName(); 11655 if (!TargetName) 11656 return nullptr; 11657 11658 // Warn about access declarations. 11659 if (UsingLoc.isInvalid()) { 11660 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 11661 ? diag::err_access_decl 11662 : diag::warn_access_decl_deprecated) 11663 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 11664 } 11665 11666 if (EllipsisLoc.isInvalid()) { 11667 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 11668 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 11669 return nullptr; 11670 } else { 11671 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 11672 !TargetNameInfo.containsUnexpandedParameterPack()) { 11673 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 11674 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 11675 EllipsisLoc = SourceLocation(); 11676 } 11677 } 11678 11679 NamedDecl *UD = 11680 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 11681 SS, TargetNameInfo, EllipsisLoc, AttrList, 11682 /*IsInstantiation*/ false, 11683 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); 11684 if (UD) 11685 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11686 11687 return UD; 11688 } 11689 11690 Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 11691 SourceLocation UsingLoc, 11692 SourceLocation EnumLoc, 11693 const DeclSpec &DS) { 11694 switch (DS.getTypeSpecType()) { 11695 case DeclSpec::TST_error: 11696 // This will already have been diagnosed 11697 return nullptr; 11698 11699 case DeclSpec::TST_enum: 11700 break; 11701 11702 case DeclSpec::TST_typename: 11703 Diag(DS.getTypeSpecTypeLoc(), diag::err_using_enum_is_dependent); 11704 return nullptr; 11705 11706 default: 11707 llvm_unreachable("unexpected DeclSpec type"); 11708 } 11709 11710 // As with enum-decls, we ignore attributes for now. 11711 auto *Enum = cast<EnumDecl>(DS.getRepAsDecl()); 11712 if (auto *Def = Enum->getDefinition()) 11713 Enum = Def; 11714 11715 auto *UD = BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, 11716 DS.getTypeSpecTypeNameLoc(), Enum); 11717 if (UD) 11718 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11719 11720 return UD; 11721 } 11722 11723 /// Determine whether a using declaration considers the given 11724 /// declarations as "equivalent", e.g., if they are redeclarations of 11725 /// the same entity or are both typedefs of the same type. 11726 static bool 11727 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 11728 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 11729 return true; 11730 11731 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 11732 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 11733 return Context.hasSameType(TD1->getUnderlyingType(), 11734 TD2->getUnderlyingType()); 11735 11736 // Two using_if_exists using-declarations are equivalent if both are 11737 // unresolved. 11738 if (isa<UnresolvedUsingIfExistsDecl>(D1) && 11739 isa<UnresolvedUsingIfExistsDecl>(D2)) 11740 return true; 11741 11742 return false; 11743 } 11744 11745 11746 /// Determines whether to create a using shadow decl for a particular 11747 /// decl, given the set of decls existing prior to this using lookup. 11748 bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, 11749 const LookupResult &Previous, 11750 UsingShadowDecl *&PrevShadow) { 11751 // Diagnose finding a decl which is not from a base class of the 11752 // current class. We do this now because there are cases where this 11753 // function will silently decide not to build a shadow decl, which 11754 // will pre-empt further diagnostics. 11755 // 11756 // We don't need to do this in C++11 because we do the check once on 11757 // the qualifier. 11758 // 11759 // FIXME: diagnose the following if we care enough: 11760 // struct A { int foo; }; 11761 // struct B : A { using A::foo; }; 11762 // template <class T> struct C : A {}; 11763 // template <class T> struct D : C<T> { using B::foo; } // <--- 11764 // This is invalid (during instantiation) in C++03 because B::foo 11765 // resolves to the using decl in B, which is not a base class of D<T>. 11766 // We can't diagnose it immediately because C<T> is an unknown 11767 // specialization. The UsingShadowDecl in D<T> then points directly 11768 // to A::foo, which will look well-formed when we instantiate. 11769 // The right solution is to not collapse the shadow-decl chain. 11770 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) 11771 if (auto *Using = dyn_cast<UsingDecl>(BUD)) { 11772 DeclContext *OrigDC = Orig->getDeclContext(); 11773 11774 // Handle enums and anonymous structs. 11775 if (isa<EnumDecl>(OrigDC)) 11776 OrigDC = OrigDC->getParent(); 11777 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 11778 while (OrigRec->isAnonymousStructOrUnion()) 11779 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 11780 11781 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 11782 if (OrigDC == CurContext) { 11783 Diag(Using->getLocation(), 11784 diag::err_using_decl_nested_name_specifier_is_current_class) 11785 << Using->getQualifierLoc().getSourceRange(); 11786 Diag(Orig->getLocation(), diag::note_using_decl_target); 11787 Using->setInvalidDecl(); 11788 return true; 11789 } 11790 11791 Diag(Using->getQualifierLoc().getBeginLoc(), 11792 diag::err_using_decl_nested_name_specifier_is_not_base_class) 11793 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) 11794 << Using->getQualifierLoc().getSourceRange(); 11795 Diag(Orig->getLocation(), diag::note_using_decl_target); 11796 Using->setInvalidDecl(); 11797 return true; 11798 } 11799 } 11800 11801 if (Previous.empty()) return false; 11802 11803 NamedDecl *Target = Orig; 11804 if (isa<UsingShadowDecl>(Target)) 11805 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11806 11807 // If the target happens to be one of the previous declarations, we 11808 // don't have a conflict. 11809 // 11810 // FIXME: but we might be increasing its access, in which case we 11811 // should redeclare it. 11812 NamedDecl *NonTag = nullptr, *Tag = nullptr; 11813 bool FoundEquivalentDecl = false; 11814 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 11815 I != E; ++I) { 11816 NamedDecl *D = (*I)->getUnderlyingDecl(); 11817 // We can have UsingDecls in our Previous results because we use the same 11818 // LookupResult for checking whether the UsingDecl itself is a valid 11819 // redeclaration. 11820 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D)) 11821 continue; 11822 11823 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 11824 // C++ [class.mem]p19: 11825 // If T is the name of a class, then [every named member other than 11826 // a non-static data member] shall have a name different from T 11827 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 11828 !isa<IndirectFieldDecl>(Target) && 11829 !isa<UnresolvedUsingValueDecl>(Target) && 11830 DiagnoseClassNameShadow( 11831 CurContext, 11832 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) 11833 return true; 11834 } 11835 11836 if (IsEquivalentForUsingDecl(Context, D, Target)) { 11837 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 11838 PrevShadow = Shadow; 11839 FoundEquivalentDecl = true; 11840 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 11841 // We don't conflict with an existing using shadow decl of an equivalent 11842 // declaration, but we're not a redeclaration of it. 11843 FoundEquivalentDecl = true; 11844 } 11845 11846 if (isVisible(D)) 11847 (isa<TagDecl>(D) ? Tag : NonTag) = D; 11848 } 11849 11850 if (FoundEquivalentDecl) 11851 return false; 11852 11853 // Always emit a diagnostic for a mismatch between an unresolved 11854 // using_if_exists and a resolved using declaration in either direction. 11855 if (isa<UnresolvedUsingIfExistsDecl>(Target) != 11856 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) { 11857 if (!NonTag && !Tag) 11858 return false; 11859 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11860 Diag(Target->getLocation(), diag::note_using_decl_target); 11861 Diag((NonTag ? NonTag : Tag)->getLocation(), 11862 diag::note_using_decl_conflict); 11863 BUD->setInvalidDecl(); 11864 return true; 11865 } 11866 11867 if (FunctionDecl *FD = Target->getAsFunction()) { 11868 NamedDecl *OldDecl = nullptr; 11869 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 11870 /*IsForUsingDecl*/ true)) { 11871 case Ovl_Overload: 11872 return false; 11873 11874 case Ovl_NonFunction: 11875 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11876 break; 11877 11878 // We found a decl with the exact signature. 11879 case Ovl_Match: 11880 // If we're in a record, we want to hide the target, so we 11881 // return true (without a diagnostic) to tell the caller not to 11882 // build a shadow decl. 11883 if (CurContext->isRecord()) 11884 return true; 11885 11886 // If we're not in a record, this is an error. 11887 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11888 break; 11889 } 11890 11891 Diag(Target->getLocation(), diag::note_using_decl_target); 11892 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 11893 BUD->setInvalidDecl(); 11894 return true; 11895 } 11896 11897 // Target is not a function. 11898 11899 if (isa<TagDecl>(Target)) { 11900 // No conflict between a tag and a non-tag. 11901 if (!Tag) return false; 11902 11903 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11904 Diag(Target->getLocation(), diag::note_using_decl_target); 11905 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 11906 BUD->setInvalidDecl(); 11907 return true; 11908 } 11909 11910 // No conflict between a tag and a non-tag. 11911 if (!NonTag) return false; 11912 11913 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11914 Diag(Target->getLocation(), diag::note_using_decl_target); 11915 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 11916 BUD->setInvalidDecl(); 11917 return true; 11918 } 11919 11920 /// Determine whether a direct base class is a virtual base class. 11921 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 11922 if (!Derived->getNumVBases()) 11923 return false; 11924 for (auto &B : Derived->bases()) 11925 if (B.getType()->getAsCXXRecordDecl() == Base) 11926 return B.isVirtual(); 11927 llvm_unreachable("not a direct base class"); 11928 } 11929 11930 /// Builds a shadow declaration corresponding to a 'using' declaration. 11931 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, 11932 NamedDecl *Orig, 11933 UsingShadowDecl *PrevDecl) { 11934 // If we resolved to another shadow declaration, just coalesce them. 11935 NamedDecl *Target = Orig; 11936 if (isa<UsingShadowDecl>(Target)) { 11937 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11938 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 11939 } 11940 11941 NamedDecl *NonTemplateTarget = Target; 11942 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 11943 NonTemplateTarget = TargetTD->getTemplatedDecl(); 11944 11945 UsingShadowDecl *Shadow; 11946 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 11947 UsingDecl *Using = cast<UsingDecl>(BUD); 11948 bool IsVirtualBase = 11949 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 11950 Using->getQualifier()->getAsRecordDecl()); 11951 Shadow = ConstructorUsingShadowDecl::Create( 11952 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); 11953 } else { 11954 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), 11955 Target->getDeclName(), BUD, Target); 11956 } 11957 BUD->addShadowDecl(Shadow); 11958 11959 Shadow->setAccess(BUD->getAccess()); 11960 if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) 11961 Shadow->setInvalidDecl(); 11962 11963 Shadow->setPreviousDecl(PrevDecl); 11964 11965 if (S) 11966 PushOnScopeChains(Shadow, S); 11967 else 11968 CurContext->addDecl(Shadow); 11969 11970 11971 return Shadow; 11972 } 11973 11974 /// Hides a using shadow declaration. This is required by the current 11975 /// using-decl implementation when a resolvable using declaration in a 11976 /// class is followed by a declaration which would hide or override 11977 /// one or more of the using decl's targets; for example: 11978 /// 11979 /// struct Base { void foo(int); }; 11980 /// struct Derived : Base { 11981 /// using Base::foo; 11982 /// void foo(int); 11983 /// }; 11984 /// 11985 /// The governing language is C++03 [namespace.udecl]p12: 11986 /// 11987 /// When a using-declaration brings names from a base class into a 11988 /// derived class scope, member functions in the derived class 11989 /// override and/or hide member functions with the same name and 11990 /// parameter types in a base class (rather than conflicting). 11991 /// 11992 /// There are two ways to implement this: 11993 /// (1) optimistically create shadow decls when they're not hidden 11994 /// by existing declarations, or 11995 /// (2) don't create any shadow decls (or at least don't make them 11996 /// visible) until we've fully parsed/instantiated the class. 11997 /// The problem with (1) is that we might have to retroactively remove 11998 /// a shadow decl, which requires several O(n) operations because the 11999 /// decl structures are (very reasonably) not designed for removal. 12000 /// (2) avoids this but is very fiddly and phase-dependent. 12001 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 12002 if (Shadow->getDeclName().getNameKind() == 12003 DeclarationName::CXXConversionFunctionName) 12004 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 12005 12006 // Remove it from the DeclContext... 12007 Shadow->getDeclContext()->removeDecl(Shadow); 12008 12009 // ...and the scope, if applicable... 12010 if (S) { 12011 S->RemoveDecl(Shadow); 12012 IdResolver.RemoveDecl(Shadow); 12013 } 12014 12015 // ...and the using decl. 12016 Shadow->getIntroducer()->removeShadowDecl(Shadow); 12017 12018 // TODO: complain somehow if Shadow was used. It shouldn't 12019 // be possible for this to happen, because...? 12020 } 12021 12022 /// Find the base specifier for a base class with the given type. 12023 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 12024 QualType DesiredBase, 12025 bool &AnyDependentBases) { 12026 // Check whether the named type is a direct base class. 12027 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 12028 .getUnqualifiedType(); 12029 for (auto &Base : Derived->bases()) { 12030 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 12031 if (CanonicalDesiredBase == BaseType) 12032 return &Base; 12033 if (BaseType->isDependentType()) 12034 AnyDependentBases = true; 12035 } 12036 return nullptr; 12037 } 12038 12039 namespace { 12040 class UsingValidatorCCC final : public CorrectionCandidateCallback { 12041 public: 12042 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 12043 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 12044 : HasTypenameKeyword(HasTypenameKeyword), 12045 IsInstantiation(IsInstantiation), OldNNS(NNS), 12046 RequireMemberOf(RequireMemberOf) {} 12047 12048 bool ValidateCandidate(const TypoCorrection &Candidate) override { 12049 NamedDecl *ND = Candidate.getCorrectionDecl(); 12050 12051 // Keywords are not valid here. 12052 if (!ND || isa<NamespaceDecl>(ND)) 12053 return false; 12054 12055 // Completely unqualified names are invalid for a 'using' declaration. 12056 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 12057 return false; 12058 12059 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 12060 // reject. 12061 12062 if (RequireMemberOf) { 12063 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12064 if (FoundRecord && FoundRecord->isInjectedClassName()) { 12065 // No-one ever wants a using-declaration to name an injected-class-name 12066 // of a base class, unless they're declaring an inheriting constructor. 12067 ASTContext &Ctx = ND->getASTContext(); 12068 if (!Ctx.getLangOpts().CPlusPlus11) 12069 return false; 12070 QualType FoundType = Ctx.getRecordType(FoundRecord); 12071 12072 // Check that the injected-class-name is named as a member of its own 12073 // type; we don't want to suggest 'using Derived::Base;', since that 12074 // means something else. 12075 NestedNameSpecifier *Specifier = 12076 Candidate.WillReplaceSpecifier() 12077 ? Candidate.getCorrectionSpecifier() 12078 : OldNNS; 12079 if (!Specifier->getAsType() || 12080 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 12081 return false; 12082 12083 // Check that this inheriting constructor declaration actually names a 12084 // direct base class of the current class. 12085 bool AnyDependentBases = false; 12086 if (!findDirectBaseWithType(RequireMemberOf, 12087 Ctx.getRecordType(FoundRecord), 12088 AnyDependentBases) && 12089 !AnyDependentBases) 12090 return false; 12091 } else { 12092 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 12093 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 12094 return false; 12095 12096 // FIXME: Check that the base class member is accessible? 12097 } 12098 } else { 12099 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12100 if (FoundRecord && FoundRecord->isInjectedClassName()) 12101 return false; 12102 } 12103 12104 if (isa<TypeDecl>(ND)) 12105 return HasTypenameKeyword || !IsInstantiation; 12106 12107 return !HasTypenameKeyword; 12108 } 12109 12110 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12111 return std::make_unique<UsingValidatorCCC>(*this); 12112 } 12113 12114 private: 12115 bool HasTypenameKeyword; 12116 bool IsInstantiation; 12117 NestedNameSpecifier *OldNNS; 12118 CXXRecordDecl *RequireMemberOf; 12119 }; 12120 } // end anonymous namespace 12121 12122 /// Remove decls we can't actually see from a lookup being used to declare 12123 /// shadow using decls. 12124 /// 12125 /// \param S - The scope of the potential shadow decl 12126 /// \param Previous - The lookup of a potential shadow decl's name. 12127 void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { 12128 // It is really dumb that we have to do this. 12129 LookupResult::Filter F = Previous.makeFilter(); 12130 while (F.hasNext()) { 12131 NamedDecl *D = F.next(); 12132 if (!isDeclInScope(D, CurContext, S)) 12133 F.erase(); 12134 // If we found a local extern declaration that's not ordinarily visible, 12135 // and this declaration is being added to a non-block scope, ignore it. 12136 // We're only checking for scope conflicts here, not also for violations 12137 // of the linkage rules. 12138 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 12139 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 12140 F.erase(); 12141 } 12142 F.done(); 12143 } 12144 12145 /// Builds a using declaration. 12146 /// 12147 /// \param IsInstantiation - Whether this call arises from an 12148 /// instantiation of an unresolved using declaration. We treat 12149 /// the lookup differently for these declarations. 12150 NamedDecl *Sema::BuildUsingDeclaration( 12151 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 12152 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 12153 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 12154 const ParsedAttributesView &AttrList, bool IsInstantiation, 12155 bool IsUsingIfExists) { 12156 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 12157 SourceLocation IdentLoc = NameInfo.getLoc(); 12158 assert(IdentLoc.isValid() && "Invalid TargetName location."); 12159 12160 // FIXME: We ignore attributes for now. 12161 12162 // For an inheriting constructor declaration, the name of the using 12163 // declaration is the name of a constructor in this class, not in the 12164 // base class. 12165 DeclarationNameInfo UsingName = NameInfo; 12166 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 12167 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 12168 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12169 Context.getCanonicalType(Context.getRecordType(RD)))); 12170 12171 // Do the redeclaration lookup in the current scope. 12172 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 12173 ForVisibleRedeclaration); 12174 Previous.setHideTags(false); 12175 if (S) { 12176 LookupName(Previous, S); 12177 12178 FilterUsingLookup(S, Previous); 12179 } else { 12180 assert(IsInstantiation && "no scope in non-instantiation"); 12181 if (CurContext->isRecord()) 12182 LookupQualifiedName(Previous, CurContext); 12183 else { 12184 // No redeclaration check is needed here; in non-member contexts we 12185 // diagnosed all possible conflicts with other using-declarations when 12186 // building the template: 12187 // 12188 // For a dependent non-type using declaration, the only valid case is 12189 // if we instantiate to a single enumerator. We check for conflicts 12190 // between shadow declarations we introduce, and we check in the template 12191 // definition for conflicts between a non-type using declaration and any 12192 // other declaration, which together covers all cases. 12193 // 12194 // A dependent typename using declaration will never successfully 12195 // instantiate, since it will always name a class member, so we reject 12196 // that in the template definition. 12197 } 12198 } 12199 12200 // Check for invalid redeclarations. 12201 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 12202 SS, IdentLoc, Previous)) 12203 return nullptr; 12204 12205 // 'using_if_exists' doesn't make sense on an inherited constructor. 12206 if (IsUsingIfExists && UsingName.getName().getNameKind() == 12207 DeclarationName::CXXConstructorName) { 12208 Diag(UsingLoc, diag::err_using_if_exists_on_ctor); 12209 return nullptr; 12210 } 12211 12212 DeclContext *LookupContext = computeDeclContext(SS); 12213 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 12214 if (!LookupContext || EllipsisLoc.isValid()) { 12215 NamedDecl *D; 12216 // Dependent scope, or an unexpanded pack 12217 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, 12218 SS, NameInfo, IdentLoc)) 12219 return nullptr; 12220 12221 if (HasTypenameKeyword) { 12222 // FIXME: not all declaration name kinds are legal here 12223 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 12224 UsingLoc, TypenameLoc, 12225 QualifierLoc, 12226 IdentLoc, NameInfo.getName(), 12227 EllipsisLoc); 12228 } else { 12229 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 12230 QualifierLoc, NameInfo, EllipsisLoc); 12231 } 12232 D->setAccess(AS); 12233 CurContext->addDecl(D); 12234 ProcessDeclAttributeList(S, D, AttrList); 12235 return D; 12236 } 12237 12238 auto Build = [&](bool Invalid) { 12239 UsingDecl *UD = 12240 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 12241 UsingName, HasTypenameKeyword); 12242 UD->setAccess(AS); 12243 CurContext->addDecl(UD); 12244 ProcessDeclAttributeList(S, UD, AttrList); 12245 UD->setInvalidDecl(Invalid); 12246 return UD; 12247 }; 12248 auto BuildInvalid = [&]{ return Build(true); }; 12249 auto BuildValid = [&]{ return Build(false); }; 12250 12251 if (RequireCompleteDeclContext(SS, LookupContext)) 12252 return BuildInvalid(); 12253 12254 // Look up the target name. 12255 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12256 12257 // Unlike most lookups, we don't always want to hide tag 12258 // declarations: tag names are visible through the using declaration 12259 // even if hidden by ordinary names, *except* in a dependent context 12260 // where it's important for the sanity of two-phase lookup. 12261 if (!IsInstantiation) 12262 R.setHideTags(false); 12263 12264 // For the purposes of this lookup, we have a base object type 12265 // equal to that of the current context. 12266 if (CurContext->isRecord()) { 12267 R.setBaseObjectType( 12268 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 12269 } 12270 12271 LookupQualifiedName(R, LookupContext); 12272 12273 // Validate the context, now we have a lookup 12274 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 12275 IdentLoc, &R)) 12276 return nullptr; 12277 12278 if (R.empty() && IsUsingIfExists) 12279 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, 12280 UsingName.getName()), 12281 AS_public); 12282 12283 // Try to correct typos if possible. If constructor name lookup finds no 12284 // results, that means the named class has no explicit constructors, and we 12285 // suppressed declaring implicit ones (probably because it's dependent or 12286 // invalid). 12287 if (R.empty() && 12288 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 12289 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of 12290 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where 12291 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. 12292 auto *II = NameInfo.getName().getAsIdentifierInfo(); 12293 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 12294 CurContext->isStdNamespace() && 12295 isa<TranslationUnitDecl>(LookupContext) && 12296 getSourceManager().isInSystemHeader(UsingLoc)) 12297 return nullptr; 12298 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 12299 dyn_cast<CXXRecordDecl>(CurContext)); 12300 if (TypoCorrection Corrected = 12301 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 12302 CTK_ErrorRecovery)) { 12303 // We reject candidates where DroppedSpecifier == true, hence the 12304 // literal '0' below. 12305 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 12306 << NameInfo.getName() << LookupContext << 0 12307 << SS.getRange()); 12308 12309 // If we picked a correction with no attached Decl we can't do anything 12310 // useful with it, bail out. 12311 NamedDecl *ND = Corrected.getCorrectionDecl(); 12312 if (!ND) 12313 return BuildInvalid(); 12314 12315 // If we corrected to an inheriting constructor, handle it as one. 12316 auto *RD = dyn_cast<CXXRecordDecl>(ND); 12317 if (RD && RD->isInjectedClassName()) { 12318 // The parent of the injected class name is the class itself. 12319 RD = cast<CXXRecordDecl>(RD->getParent()); 12320 12321 // Fix up the information we'll use to build the using declaration. 12322 if (Corrected.WillReplaceSpecifier()) { 12323 NestedNameSpecifierLocBuilder Builder; 12324 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 12325 QualifierLoc.getSourceRange()); 12326 QualifierLoc = Builder.getWithLocInContext(Context); 12327 } 12328 12329 // In this case, the name we introduce is the name of a derived class 12330 // constructor. 12331 auto *CurClass = cast<CXXRecordDecl>(CurContext); 12332 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12333 Context.getCanonicalType(Context.getRecordType(CurClass)))); 12334 UsingName.setNamedTypeInfo(nullptr); 12335 for (auto *Ctor : LookupConstructors(RD)) 12336 R.addDecl(Ctor); 12337 R.resolveKind(); 12338 } else { 12339 // FIXME: Pick up all the declarations if we found an overloaded 12340 // function. 12341 UsingName.setName(ND->getDeclName()); 12342 R.addDecl(ND); 12343 } 12344 } else { 12345 Diag(IdentLoc, diag::err_no_member) 12346 << NameInfo.getName() << LookupContext << SS.getRange(); 12347 return BuildInvalid(); 12348 } 12349 } 12350 12351 if (R.isAmbiguous()) 12352 return BuildInvalid(); 12353 12354 if (HasTypenameKeyword) { 12355 // If we asked for a typename and got a non-type decl, error out. 12356 if (!R.getAsSingle<TypeDecl>() && 12357 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { 12358 Diag(IdentLoc, diag::err_using_typename_non_type); 12359 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12360 Diag((*I)->getUnderlyingDecl()->getLocation(), 12361 diag::note_using_decl_target); 12362 return BuildInvalid(); 12363 } 12364 } else { 12365 // If we asked for a non-typename and we got a type, error out, 12366 // but only if this is an instantiation of an unresolved using 12367 // decl. Otherwise just silently find the type name. 12368 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 12369 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 12370 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 12371 return BuildInvalid(); 12372 } 12373 } 12374 12375 // C++14 [namespace.udecl]p6: 12376 // A using-declaration shall not name a namespace. 12377 if (R.getAsSingle<NamespaceDecl>()) { 12378 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 12379 << SS.getRange(); 12380 return BuildInvalid(); 12381 } 12382 12383 UsingDecl *UD = BuildValid(); 12384 12385 // Some additional rules apply to inheriting constructors. 12386 if (UsingName.getName().getNameKind() == 12387 DeclarationName::CXXConstructorName) { 12388 // Suppress access diagnostics; the access check is instead performed at the 12389 // point of use for an inheriting constructor. 12390 R.suppressDiagnostics(); 12391 if (CheckInheritingConstructorUsingDecl(UD)) 12392 return UD; 12393 } 12394 12395 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 12396 UsingShadowDecl *PrevDecl = nullptr; 12397 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 12398 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 12399 } 12400 12401 return UD; 12402 } 12403 12404 NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12405 SourceLocation UsingLoc, 12406 SourceLocation EnumLoc, 12407 SourceLocation NameLoc, 12408 EnumDecl *ED) { 12409 bool Invalid = false; 12410 12411 if (CurContext->getRedeclContext()->isRecord()) { 12412 /// In class scope, check if this is a duplicate, for better a diagnostic. 12413 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); 12414 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, 12415 ForVisibleRedeclaration); 12416 12417 LookupName(Previous, S); 12418 12419 for (NamedDecl *D : Previous) 12420 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) 12421 if (UED->getEnumDecl() == ED) { 12422 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) 12423 << SourceRange(EnumLoc, NameLoc); 12424 Diag(D->getLocation(), diag::note_using_enum_decl) << 1; 12425 Invalid = true; 12426 break; 12427 } 12428 } 12429 12430 if (RequireCompleteEnumDecl(ED, NameLoc)) 12431 Invalid = true; 12432 12433 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, 12434 EnumLoc, NameLoc, ED); 12435 UD->setAccess(AS); 12436 CurContext->addDecl(UD); 12437 12438 if (Invalid) { 12439 UD->setInvalidDecl(); 12440 return UD; 12441 } 12442 12443 // Create the shadow decls for each enumerator 12444 for (EnumConstantDecl *EC : ED->enumerators()) { 12445 UsingShadowDecl *PrevDecl = nullptr; 12446 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); 12447 LookupResult Previous(*this, DNI, LookupOrdinaryName, 12448 ForVisibleRedeclaration); 12449 LookupName(Previous, S); 12450 FilterUsingLookup(S, Previous); 12451 12452 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) 12453 BuildUsingShadowDecl(S, UD, EC, PrevDecl); 12454 } 12455 12456 return UD; 12457 } 12458 12459 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 12460 ArrayRef<NamedDecl *> Expansions) { 12461 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || 12462 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || 12463 isa<UsingPackDecl>(InstantiatedFrom)); 12464 12465 auto *UPD = 12466 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 12467 UPD->setAccess(InstantiatedFrom->getAccess()); 12468 CurContext->addDecl(UPD); 12469 return UPD; 12470 } 12471 12472 /// Additional checks for a using declaration referring to a constructor name. 12473 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 12474 assert(!UD->hasTypename() && "expecting a constructor name"); 12475 12476 const Type *SourceType = UD->getQualifier()->getAsType(); 12477 assert(SourceType && 12478 "Using decl naming constructor doesn't have type in scope spec."); 12479 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 12480 12481 // Check whether the named type is a direct base class. 12482 bool AnyDependentBases = false; 12483 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 12484 AnyDependentBases); 12485 if (!Base && !AnyDependentBases) { 12486 Diag(UD->getUsingLoc(), 12487 diag::err_using_decl_constructor_not_in_direct_base) 12488 << UD->getNameInfo().getSourceRange() 12489 << QualType(SourceType, 0) << TargetClass; 12490 UD->setInvalidDecl(); 12491 return true; 12492 } 12493 12494 if (Base) 12495 Base->setInheritConstructors(); 12496 12497 return false; 12498 } 12499 12500 /// Checks that the given using declaration is not an invalid 12501 /// redeclaration. Note that this is checking only for the using decl 12502 /// itself, not for any ill-formedness among the UsingShadowDecls. 12503 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 12504 bool HasTypenameKeyword, 12505 const CXXScopeSpec &SS, 12506 SourceLocation NameLoc, 12507 const LookupResult &Prev) { 12508 NestedNameSpecifier *Qual = SS.getScopeRep(); 12509 12510 // C++03 [namespace.udecl]p8: 12511 // C++0x [namespace.udecl]p10: 12512 // A using-declaration is a declaration and can therefore be used 12513 // repeatedly where (and only where) multiple declarations are 12514 // allowed. 12515 // 12516 // That's in non-member contexts. 12517 if (!CurContext->getRedeclContext()->isRecord()) { 12518 // A dependent qualifier outside a class can only ever resolve to an 12519 // enumeration type. Therefore it conflicts with any other non-type 12520 // declaration in the same scope. 12521 // FIXME: How should we check for dependent type-type conflicts at block 12522 // scope? 12523 if (Qual->isDependent() && !HasTypenameKeyword) { 12524 for (auto *D : Prev) { 12525 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 12526 bool OldCouldBeEnumerator = 12527 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 12528 Diag(NameLoc, 12529 OldCouldBeEnumerator ? diag::err_redefinition 12530 : diag::err_redefinition_different_kind) 12531 << Prev.getLookupName(); 12532 Diag(D->getLocation(), diag::note_previous_definition); 12533 return true; 12534 } 12535 } 12536 } 12537 return false; 12538 } 12539 12540 const NestedNameSpecifier *CNNS = 12541 Context.getCanonicalNestedNameSpecifier(Qual); 12542 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 12543 NamedDecl *D = *I; 12544 12545 bool DTypename; 12546 NestedNameSpecifier *DQual; 12547 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 12548 DTypename = UD->hasTypename(); 12549 DQual = UD->getQualifier(); 12550 } else if (UnresolvedUsingValueDecl *UD 12551 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 12552 DTypename = false; 12553 DQual = UD->getQualifier(); 12554 } else if (UnresolvedUsingTypenameDecl *UD 12555 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 12556 DTypename = true; 12557 DQual = UD->getQualifier(); 12558 } else continue; 12559 12560 // using decls differ if one says 'typename' and the other doesn't. 12561 // FIXME: non-dependent using decls? 12562 if (HasTypenameKeyword != DTypename) continue; 12563 12564 // using decls differ if they name different scopes (but note that 12565 // template instantiation can cause this check to trigger when it 12566 // didn't before instantiation). 12567 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) 12568 continue; 12569 12570 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 12571 Diag(D->getLocation(), diag::note_using_decl) << 1; 12572 return true; 12573 } 12574 12575 return false; 12576 } 12577 12578 /// Checks that the given nested-name qualifier used in a using decl 12579 /// in the current context is appropriately related to the current 12580 /// scope. If an error is found, diagnoses it and returns true. 12581 /// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the 12582 /// result of that lookup. UD is likewise nullptr, except when we have an 12583 /// already-populated UsingDecl whose shadow decls contain the same information 12584 /// (i.e. we're instantiating a UsingDecl with non-dependent scope). 12585 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, 12586 const CXXScopeSpec &SS, 12587 const DeclarationNameInfo &NameInfo, 12588 SourceLocation NameLoc, 12589 const LookupResult *R, const UsingDecl *UD) { 12590 DeclContext *NamedContext = computeDeclContext(SS); 12591 assert(bool(NamedContext) == (R || UD) && !(R && UD) && 12592 "resolvable context must have exactly one set of decls"); 12593 12594 // C++ 20 permits using an enumerator that does not have a class-hierarchy 12595 // relationship. 12596 bool Cxx20Enumerator = false; 12597 if (NamedContext) { 12598 EnumConstantDecl *EC = nullptr; 12599 if (R) 12600 EC = R->getAsSingle<EnumConstantDecl>(); 12601 else if (UD && UD->shadow_size() == 1) 12602 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); 12603 if (EC) 12604 Cxx20Enumerator = getLangOpts().CPlusPlus20; 12605 12606 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) { 12607 // C++14 [namespace.udecl]p7: 12608 // A using-declaration shall not name a scoped enumerator. 12609 // C++20 p1099 permits enumerators. 12610 if (EC && R && ED->isScoped()) 12611 Diag(SS.getBeginLoc(), 12612 getLangOpts().CPlusPlus20 12613 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator 12614 : diag::ext_using_decl_scoped_enumerator) 12615 << SS.getRange(); 12616 12617 // We want to consider the scope of the enumerator 12618 NamedContext = ED->getDeclContext(); 12619 } 12620 } 12621 12622 if (!CurContext->isRecord()) { 12623 // C++03 [namespace.udecl]p3: 12624 // C++0x [namespace.udecl]p8: 12625 // A using-declaration for a class member shall be a member-declaration. 12626 // C++20 [namespace.udecl]p7 12627 // ... other than an enumerator ... 12628 12629 // If we weren't able to compute a valid scope, it might validly be a 12630 // dependent class or enumeration scope. If we have a 'typename' keyword, 12631 // the scope must resolve to a class type. 12632 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() 12633 : !HasTypename) 12634 return false; // OK 12635 12636 Diag(NameLoc, 12637 Cxx20Enumerator 12638 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator 12639 : diag::err_using_decl_can_not_refer_to_class_member) 12640 << SS.getRange(); 12641 12642 if (Cxx20Enumerator) 12643 return false; // OK 12644 12645 auto *RD = NamedContext 12646 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 12647 : nullptr; 12648 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { 12649 // See if there's a helpful fixit 12650 12651 if (!R) { 12652 // We will have already diagnosed the problem on the template 12653 // definition, Maybe we should do so again? 12654 } else if (R->getAsSingle<TypeDecl>()) { 12655 if (getLangOpts().CPlusPlus11) { 12656 // Convert 'using X::Y;' to 'using Y = X::Y;'. 12657 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 12658 << 0 // alias declaration 12659 << FixItHint::CreateInsertion(SS.getBeginLoc(), 12660 NameInfo.getName().getAsString() + 12661 " = "); 12662 } else { 12663 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 12664 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 12665 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 12666 << 1 // typedef declaration 12667 << FixItHint::CreateReplacement(UsingLoc, "typedef") 12668 << FixItHint::CreateInsertion( 12669 InsertLoc, " " + NameInfo.getName().getAsString()); 12670 } 12671 } else if (R->getAsSingle<VarDecl>()) { 12672 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12673 // repeating the type of the static data member here. 12674 FixItHint FixIt; 12675 if (getLangOpts().CPlusPlus11) { 12676 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12677 FixIt = FixItHint::CreateReplacement( 12678 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 12679 } 12680 12681 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12682 << 2 // reference declaration 12683 << FixIt; 12684 } else if (R->getAsSingle<EnumConstantDecl>()) { 12685 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12686 // repeating the type of the enumeration here, and we can't do so if 12687 // the type is anonymous. 12688 FixItHint FixIt; 12689 if (getLangOpts().CPlusPlus11) { 12690 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12691 FixIt = FixItHint::CreateReplacement( 12692 UsingLoc, 12693 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 12694 } 12695 12696 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12697 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 12698 << FixIt; 12699 } 12700 } 12701 12702 return true; // Fail 12703 } 12704 12705 // If the named context is dependent, we can't decide much. 12706 if (!NamedContext) { 12707 // FIXME: in C++0x, we can diagnose if we can prove that the 12708 // nested-name-specifier does not refer to a base class, which is 12709 // still possible in some cases. 12710 12711 // Otherwise we have to conservatively report that things might be 12712 // okay. 12713 return false; 12714 } 12715 12716 // The current scope is a record. 12717 if (!NamedContext->isRecord()) { 12718 // Ideally this would point at the last name in the specifier, 12719 // but we don't have that level of source info. 12720 Diag(SS.getBeginLoc(), 12721 Cxx20Enumerator 12722 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator 12723 : diag::err_using_decl_nested_name_specifier_is_not_class) 12724 << SS.getScopeRep() << SS.getRange(); 12725 12726 if (Cxx20Enumerator) 12727 return false; // OK 12728 12729 return true; 12730 } 12731 12732 if (!NamedContext->isDependentContext() && 12733 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 12734 return true; 12735 12736 if (getLangOpts().CPlusPlus11) { 12737 // C++11 [namespace.udecl]p3: 12738 // In a using-declaration used as a member-declaration, the 12739 // nested-name-specifier shall name a base class of the class 12740 // being defined. 12741 12742 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 12743 cast<CXXRecordDecl>(NamedContext))) { 12744 12745 if (Cxx20Enumerator) { 12746 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) 12747 << SS.getRange(); 12748 return false; 12749 } 12750 12751 if (CurContext == NamedContext) { 12752 Diag(SS.getBeginLoc(), 12753 diag::err_using_decl_nested_name_specifier_is_current_class) 12754 << SS.getRange(); 12755 return !getLangOpts().CPlusPlus20; 12756 } 12757 12758 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 12759 Diag(SS.getBeginLoc(), 12760 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12761 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) 12762 << SS.getRange(); 12763 } 12764 return true; 12765 } 12766 12767 return false; 12768 } 12769 12770 // C++03 [namespace.udecl]p4: 12771 // A using-declaration used as a member-declaration shall refer 12772 // to a member of a base class of the class being defined [etc.]. 12773 12774 // Salient point: SS doesn't have to name a base class as long as 12775 // lookup only finds members from base classes. Therefore we can 12776 // diagnose here only if we can prove that that can't happen, 12777 // i.e. if the class hierarchies provably don't intersect. 12778 12779 // TODO: it would be nice if "definitely valid" results were cached 12780 // in the UsingDecl and UsingShadowDecl so that these checks didn't 12781 // need to be repeated. 12782 12783 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 12784 auto Collect = [&Bases](const CXXRecordDecl *Base) { 12785 Bases.insert(Base); 12786 return true; 12787 }; 12788 12789 // Collect all bases. Return false if we find a dependent base. 12790 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 12791 return false; 12792 12793 // Returns true if the base is dependent or is one of the accumulated base 12794 // classes. 12795 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 12796 return !Bases.count(Base); 12797 }; 12798 12799 // Return false if the class has a dependent base or if it or one 12800 // of its bases is present in the base set of the current context. 12801 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 12802 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 12803 return false; 12804 12805 Diag(SS.getRange().getBegin(), 12806 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12807 << SS.getScopeRep() 12808 << cast<CXXRecordDecl>(CurContext) 12809 << SS.getRange(); 12810 12811 return true; 12812 } 12813 12814 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 12815 MultiTemplateParamsArg TemplateParamLists, 12816 SourceLocation UsingLoc, UnqualifiedId &Name, 12817 const ParsedAttributesView &AttrList, 12818 TypeResult Type, Decl *DeclFromDeclSpec) { 12819 // Skip up to the relevant declaration scope. 12820 while (S->isTemplateParamScope()) 12821 S = S->getParent(); 12822 assert((S->getFlags() & Scope::DeclScope) && 12823 "got alias-declaration outside of declaration scope"); 12824 12825 if (Type.isInvalid()) 12826 return nullptr; 12827 12828 bool Invalid = false; 12829 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 12830 TypeSourceInfo *TInfo = nullptr; 12831 GetTypeFromParser(Type.get(), &TInfo); 12832 12833 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 12834 return nullptr; 12835 12836 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 12837 UPPC_DeclarationType)) { 12838 Invalid = true; 12839 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 12840 TInfo->getTypeLoc().getBeginLoc()); 12841 } 12842 12843 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 12844 TemplateParamLists.size() 12845 ? forRedeclarationInCurContext() 12846 : ForVisibleRedeclaration); 12847 LookupName(Previous, S); 12848 12849 // Warn about shadowing the name of a template parameter. 12850 if (Previous.isSingleResult() && 12851 Previous.getFoundDecl()->isTemplateParameter()) { 12852 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 12853 Previous.clear(); 12854 } 12855 12856 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier && 12857 "name in alias declaration must be an identifier"); 12858 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 12859 Name.StartLocation, 12860 Name.Identifier, TInfo); 12861 12862 NewTD->setAccess(AS); 12863 12864 if (Invalid) 12865 NewTD->setInvalidDecl(); 12866 12867 ProcessDeclAttributeList(S, NewTD, AttrList); 12868 AddPragmaAttributes(S, NewTD); 12869 12870 CheckTypedefForVariablyModifiedType(S, NewTD); 12871 Invalid |= NewTD->isInvalidDecl(); 12872 12873 bool Redeclaration = false; 12874 12875 NamedDecl *NewND; 12876 if (TemplateParamLists.size()) { 12877 TypeAliasTemplateDecl *OldDecl = nullptr; 12878 TemplateParameterList *OldTemplateParams = nullptr; 12879 12880 if (TemplateParamLists.size() != 1) { 12881 Diag(UsingLoc, diag::err_alias_template_extra_headers) 12882 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 12883 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 12884 } 12885 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 12886 12887 // Check that we can declare a template here. 12888 if (CheckTemplateDeclScope(S, TemplateParams)) 12889 return nullptr; 12890 12891 // Only consider previous declarations in the same scope. 12892 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 12893 /*ExplicitInstantiationOrSpecialization*/false); 12894 if (!Previous.empty()) { 12895 Redeclaration = true; 12896 12897 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 12898 if (!OldDecl && !Invalid) { 12899 Diag(UsingLoc, diag::err_redefinition_different_kind) 12900 << Name.Identifier; 12901 12902 NamedDecl *OldD = Previous.getRepresentativeDecl(); 12903 if (OldD->getLocation().isValid()) 12904 Diag(OldD->getLocation(), diag::note_previous_definition); 12905 12906 Invalid = true; 12907 } 12908 12909 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 12910 if (TemplateParameterListsAreEqual(TemplateParams, 12911 OldDecl->getTemplateParameters(), 12912 /*Complain=*/true, 12913 TPL_TemplateMatch)) 12914 OldTemplateParams = 12915 OldDecl->getMostRecentDecl()->getTemplateParameters(); 12916 else 12917 Invalid = true; 12918 12919 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 12920 if (!Invalid && 12921 !Context.hasSameType(OldTD->getUnderlyingType(), 12922 NewTD->getUnderlyingType())) { 12923 // FIXME: The C++0x standard does not clearly say this is ill-formed, 12924 // but we can't reasonably accept it. 12925 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 12926 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 12927 if (OldTD->getLocation().isValid()) 12928 Diag(OldTD->getLocation(), diag::note_previous_definition); 12929 Invalid = true; 12930 } 12931 } 12932 } 12933 12934 // Merge any previous default template arguments into our parameters, 12935 // and check the parameter list. 12936 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 12937 TPC_TypeAliasTemplate)) 12938 return nullptr; 12939 12940 TypeAliasTemplateDecl *NewDecl = 12941 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 12942 Name.Identifier, TemplateParams, 12943 NewTD); 12944 NewTD->setDescribedAliasTemplate(NewDecl); 12945 12946 NewDecl->setAccess(AS); 12947 12948 if (Invalid) 12949 NewDecl->setInvalidDecl(); 12950 else if (OldDecl) { 12951 NewDecl->setPreviousDecl(OldDecl); 12952 CheckRedeclarationModuleOwnership(NewDecl, OldDecl); 12953 } 12954 12955 NewND = NewDecl; 12956 } else { 12957 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 12958 setTagNameForLinkagePurposes(TD, NewTD); 12959 handleTagNumbering(TD, S); 12960 } 12961 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 12962 NewND = NewTD; 12963 } 12964 12965 PushOnScopeChains(NewND, S); 12966 ActOnDocumentableDecl(NewND); 12967 return NewND; 12968 } 12969 12970 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 12971 SourceLocation AliasLoc, 12972 IdentifierInfo *Alias, CXXScopeSpec &SS, 12973 SourceLocation IdentLoc, 12974 IdentifierInfo *Ident) { 12975 12976 // Lookup the namespace name. 12977 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 12978 LookupParsedName(R, S, &SS); 12979 12980 if (R.isAmbiguous()) 12981 return nullptr; 12982 12983 if (R.empty()) { 12984 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 12985 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 12986 return nullptr; 12987 } 12988 } 12989 assert(!R.isAmbiguous() && !R.empty()); 12990 NamedDecl *ND = R.getRepresentativeDecl(); 12991 12992 // Check if we have a previous declaration with the same name. 12993 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 12994 ForVisibleRedeclaration); 12995 LookupName(PrevR, S); 12996 12997 // Check we're not shadowing a template parameter. 12998 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 12999 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 13000 PrevR.clear(); 13001 } 13002 13003 // Filter out any other lookup result from an enclosing scope. 13004 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 13005 /*AllowInlineNamespace*/false); 13006 13007 // Find the previous declaration and check that we can redeclare it. 13008 NamespaceAliasDecl *Prev = nullptr; 13009 if (PrevR.isSingleResult()) { 13010 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 13011 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 13012 // We already have an alias with the same name that points to the same 13013 // namespace; check that it matches. 13014 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 13015 Prev = AD; 13016 } else if (isVisible(PrevDecl)) { 13017 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 13018 << Alias; 13019 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 13020 << AD->getNamespace(); 13021 return nullptr; 13022 } 13023 } else if (isVisible(PrevDecl)) { 13024 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 13025 ? diag::err_redefinition 13026 : diag::err_redefinition_different_kind; 13027 Diag(AliasLoc, DiagID) << Alias; 13028 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 13029 return nullptr; 13030 } 13031 } 13032 13033 // The use of a nested name specifier may trigger deprecation warnings. 13034 DiagnoseUseOfDecl(ND, IdentLoc); 13035 13036 NamespaceAliasDecl *AliasDecl = 13037 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 13038 Alias, SS.getWithLocInContext(Context), 13039 IdentLoc, ND); 13040 if (Prev) 13041 AliasDecl->setPreviousDecl(Prev); 13042 13043 PushOnScopeChains(AliasDecl, S); 13044 return AliasDecl; 13045 } 13046 13047 namespace { 13048 struct SpecialMemberExceptionSpecInfo 13049 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 13050 SourceLocation Loc; 13051 Sema::ImplicitExceptionSpecification ExceptSpec; 13052 13053 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 13054 Sema::CXXSpecialMember CSM, 13055 Sema::InheritedConstructorInfo *ICI, 13056 SourceLocation Loc) 13057 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 13058 13059 bool visitBase(CXXBaseSpecifier *Base); 13060 bool visitField(FieldDecl *FD); 13061 13062 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 13063 unsigned Quals); 13064 13065 void visitSubobjectCall(Subobject Subobj, 13066 Sema::SpecialMemberOverloadResult SMOR); 13067 }; 13068 } 13069 13070 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 13071 auto *RT = Base->getType()->getAs<RecordType>(); 13072 if (!RT) 13073 return false; 13074 13075 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 13076 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 13077 if (auto *BaseCtor = SMOR.getMethod()) { 13078 visitSubobjectCall(Base, BaseCtor); 13079 return false; 13080 } 13081 13082 visitClassSubobject(BaseClass, Base, 0); 13083 return false; 13084 } 13085 13086 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 13087 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { 13088 Expr *E = FD->getInClassInitializer(); 13089 if (!E) 13090 // FIXME: It's a little wasteful to build and throw away a 13091 // CXXDefaultInitExpr here. 13092 // FIXME: We should have a single context note pointing at Loc, and 13093 // this location should be MD->getLocation() instead, since that's 13094 // the location where we actually use the default init expression. 13095 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 13096 if (E) 13097 ExceptSpec.CalledExpr(E); 13098 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 13099 ->getAs<RecordType>()) { 13100 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 13101 FD->getType().getCVRQualifiers()); 13102 } 13103 return false; 13104 } 13105 13106 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 13107 Subobject Subobj, 13108 unsigned Quals) { 13109 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 13110 bool IsMutable = Field && Field->isMutable(); 13111 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 13112 } 13113 13114 void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 13115 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 13116 // Note, if lookup fails, it doesn't matter what exception specification we 13117 // choose because the special member will be deleted. 13118 if (CXXMethodDecl *MD = SMOR.getMethod()) 13119 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 13120 } 13121 13122 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 13123 llvm::APSInt Result; 13124 ExprResult Converted = CheckConvertedConstantExpression( 13125 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 13126 ExplicitSpec.setExpr(Converted.get()); 13127 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 13128 ExplicitSpec.setKind(Result.getBoolValue() 13129 ? ExplicitSpecKind::ResolvedTrue 13130 : ExplicitSpecKind::ResolvedFalse); 13131 return true; 13132 } 13133 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 13134 return false; 13135 } 13136 13137 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 13138 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 13139 if (!ExplicitExpr->isTypeDependent()) 13140 tryResolveExplicitSpecifier(ES); 13141 return ES; 13142 } 13143 13144 static Sema::ImplicitExceptionSpecification 13145 ComputeDefaultedSpecialMemberExceptionSpec( 13146 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 13147 Sema::InheritedConstructorInfo *ICI) { 13148 ComputingExceptionSpec CES(S, MD, Loc); 13149 13150 CXXRecordDecl *ClassDecl = MD->getParent(); 13151 13152 // C++ [except.spec]p14: 13153 // An implicitly declared special member function (Clause 12) shall have an 13154 // exception-specification. [...] 13155 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 13156 if (ClassDecl->isInvalidDecl()) 13157 return Info.ExceptSpec; 13158 13159 // FIXME: If this diagnostic fires, we're probably missing a check for 13160 // attempting to resolve an exception specification before it's known 13161 // at a higher level. 13162 if (S.RequireCompleteType(MD->getLocation(), 13163 S.Context.getRecordType(ClassDecl), 13164 diag::err_exception_spec_incomplete_type)) 13165 return Info.ExceptSpec; 13166 13167 // C++1z [except.spec]p7: 13168 // [Look for exceptions thrown by] a constructor selected [...] to 13169 // initialize a potentially constructed subobject, 13170 // C++1z [except.spec]p8: 13171 // The exception specification for an implicitly-declared destructor, or a 13172 // destructor without a noexcept-specifier, is potentially-throwing if and 13173 // only if any of the destructors for any of its potentially constructed 13174 // subojects is potentially throwing. 13175 // FIXME: We respect the first rule but ignore the "potentially constructed" 13176 // in the second rule to resolve a core issue (no number yet) that would have 13177 // us reject: 13178 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 13179 // struct B : A {}; 13180 // struct C : B { void f(); }; 13181 // ... due to giving B::~B() a non-throwing exception specification. 13182 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 13183 : Info.VisitAllBases); 13184 13185 return Info.ExceptSpec; 13186 } 13187 13188 namespace { 13189 /// RAII object to register a special member as being currently declared. 13190 struct DeclaringSpecialMember { 13191 Sema &S; 13192 Sema::SpecialMemberDecl D; 13193 Sema::ContextRAII SavedContext; 13194 bool WasAlreadyBeingDeclared; 13195 13196 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 13197 : S(S), D(RD, CSM), SavedContext(S, RD) { 13198 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 13199 if (WasAlreadyBeingDeclared) 13200 // This almost never happens, but if it does, ensure that our cache 13201 // doesn't contain a stale result. 13202 S.SpecialMemberCache.clear(); 13203 else { 13204 // Register a note to be produced if we encounter an error while 13205 // declaring the special member. 13206 Sema::CodeSynthesisContext Ctx; 13207 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 13208 // FIXME: We don't have a location to use here. Using the class's 13209 // location maintains the fiction that we declare all special members 13210 // with the class, but (1) it's not clear that lying about that helps our 13211 // users understand what's going on, and (2) there may be outer contexts 13212 // on the stack (some of which are relevant) and printing them exposes 13213 // our lies. 13214 Ctx.PointOfInstantiation = RD->getLocation(); 13215 Ctx.Entity = RD; 13216 Ctx.SpecialMember = CSM; 13217 S.pushCodeSynthesisContext(Ctx); 13218 } 13219 } 13220 ~DeclaringSpecialMember() { 13221 if (!WasAlreadyBeingDeclared) { 13222 S.SpecialMembersBeingDeclared.erase(D); 13223 S.popCodeSynthesisContext(); 13224 } 13225 } 13226 13227 /// Are we already trying to declare this special member? 13228 bool isAlreadyBeingDeclared() const { 13229 return WasAlreadyBeingDeclared; 13230 } 13231 }; 13232 } 13233 13234 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 13235 // Look up any existing declarations, but don't trigger declaration of all 13236 // implicit special members with this name. 13237 DeclarationName Name = FD->getDeclName(); 13238 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 13239 ForExternalRedeclaration); 13240 for (auto *D : FD->getParent()->lookup(Name)) 13241 if (auto *Acceptable = R.getAcceptableDecl(D)) 13242 R.addDecl(Acceptable); 13243 R.resolveKind(); 13244 R.suppressDiagnostics(); 13245 13246 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false); 13247 } 13248 13249 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 13250 QualType ResultTy, 13251 ArrayRef<QualType> Args) { 13252 // Build an exception specification pointing back at this constructor. 13253 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 13254 13255 LangAS AS = getDefaultCXXMethodAddrSpace(); 13256 if (AS != LangAS::Default) { 13257 EPI.TypeQuals.addAddressSpace(AS); 13258 } 13259 13260 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 13261 SpecialMem->setType(QT); 13262 13263 // During template instantiation of implicit special member functions we need 13264 // a reliable TypeSourceInfo for the function prototype in order to allow 13265 // functions to be substituted. 13266 if (inTemplateInstantiation() && 13267 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) { 13268 TypeSourceInfo *TSI = 13269 Context.getTrivialTypeSourceInfo(SpecialMem->getType()); 13270 SpecialMem->setTypeSourceInfo(TSI); 13271 } 13272 } 13273 13274 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 13275 CXXRecordDecl *ClassDecl) { 13276 // C++ [class.ctor]p5: 13277 // A default constructor for a class X is a constructor of class X 13278 // that can be called without an argument. If there is no 13279 // user-declared constructor for class X, a default constructor is 13280 // implicitly declared. An implicitly-declared default constructor 13281 // is an inline public member of its class. 13282 assert(ClassDecl->needsImplicitDefaultConstructor() && 13283 "Should not build implicit default constructor!"); 13284 13285 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 13286 if (DSM.isAlreadyBeingDeclared()) 13287 return nullptr; 13288 13289 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13290 CXXDefaultConstructor, 13291 false); 13292 13293 // Create the actual constructor declaration. 13294 CanQualType ClassType 13295 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13296 SourceLocation ClassLoc = ClassDecl->getLocation(); 13297 DeclarationName Name 13298 = Context.DeclarationNames.getCXXConstructorName(ClassType); 13299 DeclarationNameInfo NameInfo(Name, ClassLoc); 13300 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 13301 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 13302 /*TInfo=*/nullptr, ExplicitSpecifier(), 13303 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 13304 Constexpr ? ConstexprSpecKind::Constexpr 13305 : ConstexprSpecKind::Unspecified); 13306 DefaultCon->setAccess(AS_public); 13307 DefaultCon->setDefaulted(); 13308 13309 if (getLangOpts().CUDA) { 13310 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 13311 DefaultCon, 13312 /* ConstRHS */ false, 13313 /* Diagnose */ false); 13314 } 13315 13316 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None); 13317 13318 // We don't need to use SpecialMemberIsTrivial here; triviality for default 13319 // constructors is easy to compute. 13320 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 13321 13322 // Note that we have declared this constructor. 13323 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 13324 13325 Scope *S = getScopeForContext(ClassDecl); 13326 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 13327 13328 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 13329 SetDeclDeleted(DefaultCon, ClassLoc); 13330 13331 if (S) 13332 PushOnScopeChains(DefaultCon, S, false); 13333 ClassDecl->addDecl(DefaultCon); 13334 13335 return DefaultCon; 13336 } 13337 13338 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 13339 CXXConstructorDecl *Constructor) { 13340 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 13341 !Constructor->doesThisDeclarationHaveABody() && 13342 !Constructor->isDeleted()) && 13343 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 13344 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13345 return; 13346 13347 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13348 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 13349 13350 SynthesizedFunctionScope Scope(*this, Constructor); 13351 13352 // The exception specification is needed because we are defining the 13353 // function. 13354 ResolveExceptionSpec(CurrentLocation, 13355 Constructor->getType()->castAs<FunctionProtoType>()); 13356 MarkVTableUsed(CurrentLocation, ClassDecl); 13357 13358 // Add a context note for diagnostics produced after this point. 13359 Scope.addContextNote(CurrentLocation); 13360 13361 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 13362 Constructor->setInvalidDecl(); 13363 return; 13364 } 13365 13366 SourceLocation Loc = Constructor->getEndLoc().isValid() 13367 ? Constructor->getEndLoc() 13368 : Constructor->getLocation(); 13369 Constructor->setBody(new (Context) CompoundStmt(Loc)); 13370 Constructor->markUsed(Context); 13371 13372 if (ASTMutationListener *L = getASTMutationListener()) { 13373 L->CompletedImplicitDefinition(Constructor); 13374 } 13375 13376 DiagnoseUninitializedFields(*this, Constructor); 13377 } 13378 13379 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 13380 // Perform any delayed checks on exception specifications. 13381 CheckDelayedMemberExceptionSpecs(); 13382 } 13383 13384 /// Find or create the fake constructor we synthesize to model constructing an 13385 /// object of a derived class via a constructor of a base class. 13386 CXXConstructorDecl * 13387 Sema::findInheritingConstructor(SourceLocation Loc, 13388 CXXConstructorDecl *BaseCtor, 13389 ConstructorUsingShadowDecl *Shadow) { 13390 CXXRecordDecl *Derived = Shadow->getParent(); 13391 SourceLocation UsingLoc = Shadow->getLocation(); 13392 13393 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 13394 // For now we use the name of the base class constructor as a member of the 13395 // derived class to indicate a (fake) inherited constructor name. 13396 DeclarationName Name = BaseCtor->getDeclName(); 13397 13398 // Check to see if we already have a fake constructor for this inherited 13399 // constructor call. 13400 for (NamedDecl *Ctor : Derived->lookup(Name)) 13401 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 13402 ->getInheritedConstructor() 13403 .getConstructor(), 13404 BaseCtor)) 13405 return cast<CXXConstructorDecl>(Ctor); 13406 13407 DeclarationNameInfo NameInfo(Name, UsingLoc); 13408 TypeSourceInfo *TInfo = 13409 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 13410 FunctionProtoTypeLoc ProtoLoc = 13411 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 13412 13413 // Check the inherited constructor is valid and find the list of base classes 13414 // from which it was inherited. 13415 InheritedConstructorInfo ICI(*this, Loc, Shadow); 13416 13417 bool Constexpr = 13418 BaseCtor->isConstexpr() && 13419 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, 13420 false, BaseCtor, &ICI); 13421 13422 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 13423 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 13424 BaseCtor->getExplicitSpecifier(), /*isInline=*/true, 13425 /*isImplicitlyDeclared=*/true, 13426 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, 13427 InheritedConstructor(Shadow, BaseCtor), 13428 BaseCtor->getTrailingRequiresClause()); 13429 if (Shadow->isInvalidDecl()) 13430 DerivedCtor->setInvalidDecl(); 13431 13432 // Build an unevaluated exception specification for this fake constructor. 13433 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 13434 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 13435 EPI.ExceptionSpec.Type = EST_Unevaluated; 13436 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 13437 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 13438 FPT->getParamTypes(), EPI)); 13439 13440 // Build the parameter declarations. 13441 SmallVector<ParmVarDecl *, 16> ParamDecls; 13442 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 13443 TypeSourceInfo *TInfo = 13444 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 13445 ParmVarDecl *PD = ParmVarDecl::Create( 13446 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 13447 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 13448 PD->setScopeInfo(0, I); 13449 PD->setImplicit(); 13450 // Ensure attributes are propagated onto parameters (this matters for 13451 // format, pass_object_size, ...). 13452 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 13453 ParamDecls.push_back(PD); 13454 ProtoLoc.setParam(I, PD); 13455 } 13456 13457 // Set up the new constructor. 13458 assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); 13459 DerivedCtor->setAccess(BaseCtor->getAccess()); 13460 DerivedCtor->setParams(ParamDecls); 13461 Derived->addDecl(DerivedCtor); 13462 13463 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) 13464 SetDeclDeleted(DerivedCtor, UsingLoc); 13465 13466 return DerivedCtor; 13467 } 13468 13469 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 13470 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 13471 Ctor->getInheritedConstructor().getShadowDecl()); 13472 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, 13473 /*Diagnose*/true); 13474 } 13475 13476 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 13477 CXXConstructorDecl *Constructor) { 13478 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13479 assert(Constructor->getInheritedConstructor() && 13480 !Constructor->doesThisDeclarationHaveABody() && 13481 !Constructor->isDeleted()); 13482 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13483 return; 13484 13485 // Initializations are performed "as if by a defaulted default constructor", 13486 // so enter the appropriate scope. 13487 SynthesizedFunctionScope Scope(*this, Constructor); 13488 13489 // The exception specification is needed because we are defining the 13490 // function. 13491 ResolveExceptionSpec(CurrentLocation, 13492 Constructor->getType()->castAs<FunctionProtoType>()); 13493 MarkVTableUsed(CurrentLocation, ClassDecl); 13494 13495 // Add a context note for diagnostics produced after this point. 13496 Scope.addContextNote(CurrentLocation); 13497 13498 ConstructorUsingShadowDecl *Shadow = 13499 Constructor->getInheritedConstructor().getShadowDecl(); 13500 CXXConstructorDecl *InheritedCtor = 13501 Constructor->getInheritedConstructor().getConstructor(); 13502 13503 // [class.inhctor.init]p1: 13504 // initialization proceeds as if a defaulted default constructor is used to 13505 // initialize the D object and each base class subobject from which the 13506 // constructor was inherited 13507 13508 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 13509 CXXRecordDecl *RD = Shadow->getParent(); 13510 SourceLocation InitLoc = Shadow->getLocation(); 13511 13512 // Build explicit initializers for all base classes from which the 13513 // constructor was inherited. 13514 SmallVector<CXXCtorInitializer*, 8> Inits; 13515 for (bool VBase : {false, true}) { 13516 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 13517 if (B.isVirtual() != VBase) 13518 continue; 13519 13520 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 13521 if (!BaseRD) 13522 continue; 13523 13524 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 13525 if (!BaseCtor.first) 13526 continue; 13527 13528 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 13529 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 13530 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 13531 13532 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 13533 Inits.push_back(new (Context) CXXCtorInitializer( 13534 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 13535 SourceLocation())); 13536 } 13537 } 13538 13539 // We now proceed as if for a defaulted default constructor, with the relevant 13540 // initializers replaced. 13541 13542 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 13543 Constructor->setInvalidDecl(); 13544 return; 13545 } 13546 13547 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 13548 Constructor->markUsed(Context); 13549 13550 if (ASTMutationListener *L = getASTMutationListener()) { 13551 L->CompletedImplicitDefinition(Constructor); 13552 } 13553 13554 DiagnoseUninitializedFields(*this, Constructor); 13555 } 13556 13557 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 13558 // C++ [class.dtor]p2: 13559 // If a class has no user-declared destructor, a destructor is 13560 // declared implicitly. An implicitly-declared destructor is an 13561 // inline public member of its class. 13562 assert(ClassDecl->needsImplicitDestructor()); 13563 13564 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 13565 if (DSM.isAlreadyBeingDeclared()) 13566 return nullptr; 13567 13568 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13569 CXXDestructor, 13570 false); 13571 13572 // Create the actual destructor declaration. 13573 CanQualType ClassType 13574 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13575 SourceLocation ClassLoc = ClassDecl->getLocation(); 13576 DeclarationName Name 13577 = Context.DeclarationNames.getCXXDestructorName(ClassType); 13578 DeclarationNameInfo NameInfo(Name, ClassLoc); 13579 CXXDestructorDecl *Destructor = 13580 CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, 13581 QualType(), nullptr, /*isInline=*/true, 13582 /*isImplicitlyDeclared=*/true, 13583 Constexpr ? ConstexprSpecKind::Constexpr 13584 : ConstexprSpecKind::Unspecified); 13585 Destructor->setAccess(AS_public); 13586 Destructor->setDefaulted(); 13587 13588 if (getLangOpts().CUDA) { 13589 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 13590 Destructor, 13591 /* ConstRHS */ false, 13592 /* Diagnose */ false); 13593 } 13594 13595 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None); 13596 13597 // We don't need to use SpecialMemberIsTrivial here; triviality for 13598 // destructors is easy to compute. 13599 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 13600 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 13601 ClassDecl->hasTrivialDestructorForCall()); 13602 13603 // Note that we have declared this destructor. 13604 ++getASTContext().NumImplicitDestructorsDeclared; 13605 13606 Scope *S = getScopeForContext(ClassDecl); 13607 CheckImplicitSpecialMemberDeclaration(S, Destructor); 13608 13609 // We can't check whether an implicit destructor is deleted before we complete 13610 // the definition of the class, because its validity depends on the alignment 13611 // of the class. We'll check this from ActOnFields once the class is complete. 13612 if (ClassDecl->isCompleteDefinition() && 13613 ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 13614 SetDeclDeleted(Destructor, ClassLoc); 13615 13616 // Introduce this destructor into its scope. 13617 if (S) 13618 PushOnScopeChains(Destructor, S, false); 13619 ClassDecl->addDecl(Destructor); 13620 13621 return Destructor; 13622 } 13623 13624 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 13625 CXXDestructorDecl *Destructor) { 13626 assert((Destructor->isDefaulted() && 13627 !Destructor->doesThisDeclarationHaveABody() && 13628 !Destructor->isDeleted()) && 13629 "DefineImplicitDestructor - call it for implicit default dtor"); 13630 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 13631 return; 13632 13633 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13634 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 13635 13636 SynthesizedFunctionScope Scope(*this, Destructor); 13637 13638 // The exception specification is needed because we are defining the 13639 // function. 13640 ResolveExceptionSpec(CurrentLocation, 13641 Destructor->getType()->castAs<FunctionProtoType>()); 13642 MarkVTableUsed(CurrentLocation, ClassDecl); 13643 13644 // Add a context note for diagnostics produced after this point. 13645 Scope.addContextNote(CurrentLocation); 13646 13647 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 13648 Destructor->getParent()); 13649 13650 if (CheckDestructor(Destructor)) { 13651 Destructor->setInvalidDecl(); 13652 return; 13653 } 13654 13655 SourceLocation Loc = Destructor->getEndLoc().isValid() 13656 ? Destructor->getEndLoc() 13657 : Destructor->getLocation(); 13658 Destructor->setBody(new (Context) CompoundStmt(Loc)); 13659 Destructor->markUsed(Context); 13660 13661 if (ASTMutationListener *L = getASTMutationListener()) { 13662 L->CompletedImplicitDefinition(Destructor); 13663 } 13664 } 13665 13666 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, 13667 CXXDestructorDecl *Destructor) { 13668 if (Destructor->isInvalidDecl()) 13669 return; 13670 13671 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13672 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 13673 "implicit complete dtors unneeded outside MS ABI"); 13674 assert(ClassDecl->getNumVBases() > 0 && 13675 "complete dtor only exists for classes with vbases"); 13676 13677 SynthesizedFunctionScope Scope(*this, Destructor); 13678 13679 // Add a context note for diagnostics produced after this point. 13680 Scope.addContextNote(CurrentLocation); 13681 13682 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); 13683 } 13684 13685 /// Perform any semantic analysis which needs to be delayed until all 13686 /// pending class member declarations have been parsed. 13687 void Sema::ActOnFinishCXXMemberDecls() { 13688 // If the context is an invalid C++ class, just suppress these checks. 13689 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 13690 if (Record->isInvalidDecl()) { 13691 DelayedOverridingExceptionSpecChecks.clear(); 13692 DelayedEquivalentExceptionSpecChecks.clear(); 13693 return; 13694 } 13695 checkForMultipleExportedDefaultConstructors(*this, Record); 13696 } 13697 } 13698 13699 void Sema::ActOnFinishCXXNonNestedClass() { 13700 referenceDLLExportedClassMethods(); 13701 13702 if (!DelayedDllExportMemberFunctions.empty()) { 13703 SmallVector<CXXMethodDecl*, 4> WorkList; 13704 std::swap(DelayedDllExportMemberFunctions, WorkList); 13705 for (CXXMethodDecl *M : WorkList) { 13706 DefineDefaultedFunction(*this, M, M->getLocation()); 13707 13708 // Pass the method to the consumer to get emitted. This is not necessary 13709 // for explicit instantiation definitions, as they will get emitted 13710 // anyway. 13711 if (M->getParent()->getTemplateSpecializationKind() != 13712 TSK_ExplicitInstantiationDefinition) 13713 ActOnFinishInlineFunctionDef(M); 13714 } 13715 } 13716 } 13717 13718 void Sema::referenceDLLExportedClassMethods() { 13719 if (!DelayedDllExportClasses.empty()) { 13720 // Calling ReferenceDllExportedMembers might cause the current function to 13721 // be called again, so use a local copy of DelayedDllExportClasses. 13722 SmallVector<CXXRecordDecl *, 4> WorkList; 13723 std::swap(DelayedDllExportClasses, WorkList); 13724 for (CXXRecordDecl *Class : WorkList) 13725 ReferenceDllExportedMembers(*this, Class); 13726 } 13727 } 13728 13729 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 13730 assert(getLangOpts().CPlusPlus11 && 13731 "adjusting dtor exception specs was introduced in c++11"); 13732 13733 if (Destructor->isDependentContext()) 13734 return; 13735 13736 // C++11 [class.dtor]p3: 13737 // A declaration of a destructor that does not have an exception- 13738 // specification is implicitly considered to have the same exception- 13739 // specification as an implicit declaration. 13740 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 13741 if (DtorType->hasExceptionSpec()) 13742 return; 13743 13744 // Replace the destructor's type, building off the existing one. Fortunately, 13745 // the only thing of interest in the destructor type is its extended info. 13746 // The return and arguments are fixed. 13747 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 13748 EPI.ExceptionSpec.Type = EST_Unevaluated; 13749 EPI.ExceptionSpec.SourceDecl = Destructor; 13750 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 13751 13752 // FIXME: If the destructor has a body that could throw, and the newly created 13753 // spec doesn't allow exceptions, we should emit a warning, because this 13754 // change in behavior can break conforming C++03 programs at runtime. 13755 // However, we don't have a body or an exception specification yet, so it 13756 // needs to be done somewhere else. 13757 } 13758 13759 namespace { 13760 /// An abstract base class for all helper classes used in building the 13761 // copy/move operators. These classes serve as factory functions and help us 13762 // avoid using the same Expr* in the AST twice. 13763 class ExprBuilder { 13764 ExprBuilder(const ExprBuilder&) = delete; 13765 ExprBuilder &operator=(const ExprBuilder&) = delete; 13766 13767 protected: 13768 static Expr *assertNotNull(Expr *E) { 13769 assert(E && "Expression construction must not fail."); 13770 return E; 13771 } 13772 13773 public: 13774 ExprBuilder() {} 13775 virtual ~ExprBuilder() {} 13776 13777 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 13778 }; 13779 13780 class RefBuilder: public ExprBuilder { 13781 VarDecl *Var; 13782 QualType VarType; 13783 13784 public: 13785 Expr *build(Sema &S, SourceLocation Loc) const override { 13786 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 13787 } 13788 13789 RefBuilder(VarDecl *Var, QualType VarType) 13790 : Var(Var), VarType(VarType) {} 13791 }; 13792 13793 class ThisBuilder: public ExprBuilder { 13794 public: 13795 Expr *build(Sema &S, SourceLocation Loc) const override { 13796 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 13797 } 13798 }; 13799 13800 class CastBuilder: public ExprBuilder { 13801 const ExprBuilder &Builder; 13802 QualType Type; 13803 ExprValueKind Kind; 13804 const CXXCastPath &Path; 13805 13806 public: 13807 Expr *build(Sema &S, SourceLocation Loc) const override { 13808 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 13809 CK_UncheckedDerivedToBase, Kind, 13810 &Path).get()); 13811 } 13812 13813 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 13814 const CXXCastPath &Path) 13815 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 13816 }; 13817 13818 class DerefBuilder: public ExprBuilder { 13819 const ExprBuilder &Builder; 13820 13821 public: 13822 Expr *build(Sema &S, SourceLocation Loc) const override { 13823 return assertNotNull( 13824 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 13825 } 13826 13827 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13828 }; 13829 13830 class MemberBuilder: public ExprBuilder { 13831 const ExprBuilder &Builder; 13832 QualType Type; 13833 CXXScopeSpec SS; 13834 bool IsArrow; 13835 LookupResult &MemberLookup; 13836 13837 public: 13838 Expr *build(Sema &S, SourceLocation Loc) const override { 13839 return assertNotNull(S.BuildMemberReferenceExpr( 13840 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 13841 nullptr, MemberLookup, nullptr, nullptr).get()); 13842 } 13843 13844 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 13845 LookupResult &MemberLookup) 13846 : Builder(Builder), Type(Type), IsArrow(IsArrow), 13847 MemberLookup(MemberLookup) {} 13848 }; 13849 13850 class MoveCastBuilder: public ExprBuilder { 13851 const ExprBuilder &Builder; 13852 13853 public: 13854 Expr *build(Sema &S, SourceLocation Loc) const override { 13855 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 13856 } 13857 13858 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13859 }; 13860 13861 class LvalueConvBuilder: public ExprBuilder { 13862 const ExprBuilder &Builder; 13863 13864 public: 13865 Expr *build(Sema &S, SourceLocation Loc) const override { 13866 return assertNotNull( 13867 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 13868 } 13869 13870 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13871 }; 13872 13873 class SubscriptBuilder: public ExprBuilder { 13874 const ExprBuilder &Base; 13875 const ExprBuilder &Index; 13876 13877 public: 13878 Expr *build(Sema &S, SourceLocation Loc) const override { 13879 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 13880 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 13881 } 13882 13883 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 13884 : Base(Base), Index(Index) {} 13885 }; 13886 13887 } // end anonymous namespace 13888 13889 /// When generating a defaulted copy or move assignment operator, if a field 13890 /// should be copied with __builtin_memcpy rather than via explicit assignments, 13891 /// do so. This optimization only applies for arrays of scalars, and for arrays 13892 /// of class type where the selected copy/move-assignment operator is trivial. 13893 static StmtResult 13894 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 13895 const ExprBuilder &ToB, const ExprBuilder &FromB) { 13896 // Compute the size of the memory buffer to be copied. 13897 QualType SizeType = S.Context.getSizeType(); 13898 llvm::APInt Size(S.Context.getTypeSize(SizeType), 13899 S.Context.getTypeSizeInChars(T).getQuantity()); 13900 13901 // Take the address of the field references for "from" and "to". We 13902 // directly construct UnaryOperators here because semantic analysis 13903 // does not permit us to take the address of an xvalue. 13904 Expr *From = FromB.build(S, Loc); 13905 From = UnaryOperator::Create( 13906 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), 13907 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 13908 Expr *To = ToB.build(S, Loc); 13909 To = UnaryOperator::Create( 13910 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), 13911 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 13912 13913 const Type *E = T->getBaseElementTypeUnsafe(); 13914 bool NeedsCollectableMemCpy = 13915 E->isRecordType() && 13916 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 13917 13918 // Create a reference to the __builtin_objc_memmove_collectable function 13919 StringRef MemCpyName = NeedsCollectableMemCpy ? 13920 "__builtin_objc_memmove_collectable" : 13921 "__builtin_memcpy"; 13922 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 13923 Sema::LookupOrdinaryName); 13924 S.LookupName(R, S.TUScope, true); 13925 13926 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 13927 if (!MemCpy) 13928 // Something went horribly wrong earlier, and we will have complained 13929 // about it. 13930 return StmtError(); 13931 13932 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 13933 VK_PRValue, Loc, nullptr); 13934 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 13935 13936 Expr *CallArgs[] = { 13937 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 13938 }; 13939 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 13940 Loc, CallArgs, Loc); 13941 13942 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 13943 return Call.getAs<Stmt>(); 13944 } 13945 13946 /// Builds a statement that copies/moves the given entity from \p From to 13947 /// \c To. 13948 /// 13949 /// This routine is used to copy/move the members of a class with an 13950 /// implicitly-declared copy/move assignment operator. When the entities being 13951 /// copied are arrays, this routine builds for loops to copy them. 13952 /// 13953 /// \param S The Sema object used for type-checking. 13954 /// 13955 /// \param Loc The location where the implicit copy/move is being generated. 13956 /// 13957 /// \param T The type of the expressions being copied/moved. Both expressions 13958 /// must have this type. 13959 /// 13960 /// \param To The expression we are copying/moving to. 13961 /// 13962 /// \param From The expression we are copying/moving from. 13963 /// 13964 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 13965 /// Otherwise, it's a non-static member subobject. 13966 /// 13967 /// \param Copying Whether we're copying or moving. 13968 /// 13969 /// \param Depth Internal parameter recording the depth of the recursion. 13970 /// 13971 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 13972 /// if a memcpy should be used instead. 13973 static StmtResult 13974 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 13975 const ExprBuilder &To, const ExprBuilder &From, 13976 bool CopyingBaseSubobject, bool Copying, 13977 unsigned Depth = 0) { 13978 // C++11 [class.copy]p28: 13979 // Each subobject is assigned in the manner appropriate to its type: 13980 // 13981 // - if the subobject is of class type, as if by a call to operator= with 13982 // the subobject as the object expression and the corresponding 13983 // subobject of x as a single function argument (as if by explicit 13984 // qualification; that is, ignoring any possible virtual overriding 13985 // functions in more derived classes); 13986 // 13987 // C++03 [class.copy]p13: 13988 // - if the subobject is of class type, the copy assignment operator for 13989 // the class is used (as if by explicit qualification; that is, 13990 // ignoring any possible virtual overriding functions in more derived 13991 // classes); 13992 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 13993 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 13994 13995 // Look for operator=. 13996 DeclarationName Name 13997 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 13998 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 13999 S.LookupQualifiedName(OpLookup, ClassDecl, false); 14000 14001 // Prior to C++11, filter out any result that isn't a copy/move-assignment 14002 // operator. 14003 if (!S.getLangOpts().CPlusPlus11) { 14004 LookupResult::Filter F = OpLookup.makeFilter(); 14005 while (F.hasNext()) { 14006 NamedDecl *D = F.next(); 14007 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 14008 if (Method->isCopyAssignmentOperator() || 14009 (!Copying && Method->isMoveAssignmentOperator())) 14010 continue; 14011 14012 F.erase(); 14013 } 14014 F.done(); 14015 } 14016 14017 // Suppress the protected check (C++ [class.protected]) for each of the 14018 // assignment operators we found. This strange dance is required when 14019 // we're assigning via a base classes's copy-assignment operator. To 14020 // ensure that we're getting the right base class subobject (without 14021 // ambiguities), we need to cast "this" to that subobject type; to 14022 // ensure that we don't go through the virtual call mechanism, we need 14023 // to qualify the operator= name with the base class (see below). However, 14024 // this means that if the base class has a protected copy assignment 14025 // operator, the protected member access check will fail. So, we 14026 // rewrite "protected" access to "public" access in this case, since we 14027 // know by construction that we're calling from a derived class. 14028 if (CopyingBaseSubobject) { 14029 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 14030 L != LEnd; ++L) { 14031 if (L.getAccess() == AS_protected) 14032 L.setAccess(AS_public); 14033 } 14034 } 14035 14036 // Create the nested-name-specifier that will be used to qualify the 14037 // reference to operator=; this is required to suppress the virtual 14038 // call mechanism. 14039 CXXScopeSpec SS; 14040 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 14041 SS.MakeTrivial(S.Context, 14042 NestedNameSpecifier::Create(S.Context, nullptr, false, 14043 CanonicalT), 14044 Loc); 14045 14046 // Create the reference to operator=. 14047 ExprResult OpEqualRef 14048 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 14049 SS, /*TemplateKWLoc=*/SourceLocation(), 14050 /*FirstQualifierInScope=*/nullptr, 14051 OpLookup, 14052 /*TemplateArgs=*/nullptr, /*S*/nullptr, 14053 /*SuppressQualifierCheck=*/true); 14054 if (OpEqualRef.isInvalid()) 14055 return StmtError(); 14056 14057 // Build the call to the assignment operator. 14058 14059 Expr *FromInst = From.build(S, Loc); 14060 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 14061 OpEqualRef.getAs<Expr>(), 14062 Loc, FromInst, Loc); 14063 if (Call.isInvalid()) 14064 return StmtError(); 14065 14066 // If we built a call to a trivial 'operator=' while copying an array, 14067 // bail out. We'll replace the whole shebang with a memcpy. 14068 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 14069 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 14070 return StmtResult((Stmt*)nullptr); 14071 14072 // Convert to an expression-statement, and clean up any produced 14073 // temporaries. 14074 return S.ActOnExprStmt(Call); 14075 } 14076 14077 // - if the subobject is of scalar type, the built-in assignment 14078 // operator is used. 14079 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 14080 if (!ArrayTy) { 14081 ExprResult Assignment = S.CreateBuiltinBinOp( 14082 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 14083 if (Assignment.isInvalid()) 14084 return StmtError(); 14085 return S.ActOnExprStmt(Assignment); 14086 } 14087 14088 // - if the subobject is an array, each element is assigned, in the 14089 // manner appropriate to the element type; 14090 14091 // Construct a loop over the array bounds, e.g., 14092 // 14093 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 14094 // 14095 // that will copy each of the array elements. 14096 QualType SizeType = S.Context.getSizeType(); 14097 14098 // Create the iteration variable. 14099 IdentifierInfo *IterationVarName = nullptr; 14100 { 14101 SmallString<8> Str; 14102 llvm::raw_svector_ostream OS(Str); 14103 OS << "__i" << Depth; 14104 IterationVarName = &S.Context.Idents.get(OS.str()); 14105 } 14106 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 14107 IterationVarName, SizeType, 14108 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 14109 SC_None); 14110 14111 // Initialize the iteration variable to zero. 14112 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 14113 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 14114 14115 // Creates a reference to the iteration variable. 14116 RefBuilder IterationVarRef(IterationVar, SizeType); 14117 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 14118 14119 // Create the DeclStmt that holds the iteration variable. 14120 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 14121 14122 // Subscript the "from" and "to" expressions with the iteration variable. 14123 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 14124 MoveCastBuilder FromIndexMove(FromIndexCopy); 14125 const ExprBuilder *FromIndex; 14126 if (Copying) 14127 FromIndex = &FromIndexCopy; 14128 else 14129 FromIndex = &FromIndexMove; 14130 14131 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 14132 14133 // Build the copy/move for an individual element of the array. 14134 StmtResult Copy = 14135 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 14136 ToIndex, *FromIndex, CopyingBaseSubobject, 14137 Copying, Depth + 1); 14138 // Bail out if copying fails or if we determined that we should use memcpy. 14139 if (Copy.isInvalid() || !Copy.get()) 14140 return Copy; 14141 14142 // Create the comparison against the array bound. 14143 llvm::APInt Upper 14144 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 14145 Expr *Comparison = BinaryOperator::Create( 14146 S.Context, IterationVarRefRVal.build(S, Loc), 14147 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, 14148 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, 14149 S.CurFPFeatureOverrides()); 14150 14151 // Create the pre-increment of the iteration variable. We can determine 14152 // whether the increment will overflow based on the value of the array 14153 // bound. 14154 Expr *Increment = UnaryOperator::Create( 14155 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, 14156 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); 14157 14158 // Construct the loop that copies all elements of this array. 14159 return S.ActOnForStmt( 14160 Loc, Loc, InitStmt, 14161 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 14162 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 14163 } 14164 14165 static StmtResult 14166 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 14167 const ExprBuilder &To, const ExprBuilder &From, 14168 bool CopyingBaseSubobject, bool Copying) { 14169 // Maybe we should use a memcpy? 14170 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 14171 T.isTriviallyCopyableType(S.Context)) 14172 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14173 14174 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 14175 CopyingBaseSubobject, 14176 Copying, 0)); 14177 14178 // If we ended up picking a trivial assignment operator for an array of a 14179 // non-trivially-copyable class type, just emit a memcpy. 14180 if (!Result.isInvalid() && !Result.get()) 14181 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14182 14183 return Result; 14184 } 14185 14186 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 14187 // Note: The following rules are largely analoguous to the copy 14188 // constructor rules. Note that virtual bases are not taken into account 14189 // for determining the argument type of the operator. Note also that 14190 // operators taking an object instead of a reference are allowed. 14191 assert(ClassDecl->needsImplicitCopyAssignment()); 14192 14193 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 14194 if (DSM.isAlreadyBeingDeclared()) 14195 return nullptr; 14196 14197 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14198 LangAS AS = getDefaultCXXMethodAddrSpace(); 14199 if (AS != LangAS::Default) 14200 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14201 QualType RetType = Context.getLValueReferenceType(ArgType); 14202 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 14203 if (Const) 14204 ArgType = ArgType.withConst(); 14205 14206 ArgType = Context.getLValueReferenceType(ArgType); 14207 14208 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14209 CXXCopyAssignment, 14210 Const); 14211 14212 // An implicitly-declared copy assignment operator is an inline public 14213 // member of its class. 14214 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14215 SourceLocation ClassLoc = ClassDecl->getLocation(); 14216 DeclarationNameInfo NameInfo(Name, ClassLoc); 14217 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 14218 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14219 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14220 /*isInline=*/true, 14221 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14222 SourceLocation()); 14223 CopyAssignment->setAccess(AS_public); 14224 CopyAssignment->setDefaulted(); 14225 CopyAssignment->setImplicit(); 14226 14227 if (getLangOpts().CUDA) { 14228 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 14229 CopyAssignment, 14230 /* ConstRHS */ Const, 14231 /* Diagnose */ false); 14232 } 14233 14234 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 14235 14236 // Add the parameter to the operator. 14237 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 14238 ClassLoc, ClassLoc, 14239 /*Id=*/nullptr, ArgType, 14240 /*TInfo=*/nullptr, SC_None, 14241 nullptr); 14242 CopyAssignment->setParams(FromParam); 14243 14244 CopyAssignment->setTrivial( 14245 ClassDecl->needsOverloadResolutionForCopyAssignment() 14246 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 14247 : ClassDecl->hasTrivialCopyAssignment()); 14248 14249 // Note that we have added this copy-assignment operator. 14250 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 14251 14252 Scope *S = getScopeForContext(ClassDecl); 14253 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 14254 14255 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) { 14256 ClassDecl->setImplicitCopyAssignmentIsDeleted(); 14257 SetDeclDeleted(CopyAssignment, ClassLoc); 14258 } 14259 14260 if (S) 14261 PushOnScopeChains(CopyAssignment, S, false); 14262 ClassDecl->addDecl(CopyAssignment); 14263 14264 return CopyAssignment; 14265 } 14266 14267 /// Diagnose an implicit copy operation for a class which is odr-used, but 14268 /// which is deprecated because the class has a user-declared copy constructor, 14269 /// copy assignment operator, or destructor. 14270 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 14271 assert(CopyOp->isImplicit()); 14272 14273 CXXRecordDecl *RD = CopyOp->getParent(); 14274 CXXMethodDecl *UserDeclaredOperation = nullptr; 14275 14276 // In Microsoft mode, assignment operations don't affect constructors and 14277 // vice versa. 14278 if (RD->hasUserDeclaredDestructor()) { 14279 UserDeclaredOperation = RD->getDestructor(); 14280 } else if (!isa<CXXConstructorDecl>(CopyOp) && 14281 RD->hasUserDeclaredCopyConstructor() && 14282 !S.getLangOpts().MSVCCompat) { 14283 // Find any user-declared copy constructor. 14284 for (auto *I : RD->ctors()) { 14285 if (I->isCopyConstructor()) { 14286 UserDeclaredOperation = I; 14287 break; 14288 } 14289 } 14290 assert(UserDeclaredOperation); 14291 } else if (isa<CXXConstructorDecl>(CopyOp) && 14292 RD->hasUserDeclaredCopyAssignment() && 14293 !S.getLangOpts().MSVCCompat) { 14294 // Find any user-declared move assignment operator. 14295 for (auto *I : RD->methods()) { 14296 if (I->isCopyAssignmentOperator()) { 14297 UserDeclaredOperation = I; 14298 break; 14299 } 14300 } 14301 assert(UserDeclaredOperation); 14302 } 14303 14304 if (UserDeclaredOperation) { 14305 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); 14306 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation); 14307 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp); 14308 unsigned DiagID = 14309 (UDOIsUserProvided && UDOIsDestructor) 14310 ? diag::warn_deprecated_copy_with_user_provided_dtor 14311 : (UDOIsUserProvided && !UDOIsDestructor) 14312 ? diag::warn_deprecated_copy_with_user_provided_copy 14313 : (!UDOIsUserProvided && UDOIsDestructor) 14314 ? diag::warn_deprecated_copy_with_dtor 14315 : diag::warn_deprecated_copy; 14316 S.Diag(UserDeclaredOperation->getLocation(), DiagID) 14317 << RD << IsCopyAssignment; 14318 } 14319 } 14320 14321 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 14322 CXXMethodDecl *CopyAssignOperator) { 14323 assert((CopyAssignOperator->isDefaulted() && 14324 CopyAssignOperator->isOverloadedOperator() && 14325 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 14326 !CopyAssignOperator->doesThisDeclarationHaveABody() && 14327 !CopyAssignOperator->isDeleted()) && 14328 "DefineImplicitCopyAssignment called for wrong function"); 14329 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 14330 return; 14331 14332 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 14333 if (ClassDecl->isInvalidDecl()) { 14334 CopyAssignOperator->setInvalidDecl(); 14335 return; 14336 } 14337 14338 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 14339 14340 // The exception specification is needed because we are defining the 14341 // function. 14342 ResolveExceptionSpec(CurrentLocation, 14343 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 14344 14345 // Add a context note for diagnostics produced after this point. 14346 Scope.addContextNote(CurrentLocation); 14347 14348 // C++11 [class.copy]p18: 14349 // The [definition of an implicitly declared copy assignment operator] is 14350 // deprecated if the class has a user-declared copy constructor or a 14351 // user-declared destructor. 14352 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 14353 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 14354 14355 // C++0x [class.copy]p30: 14356 // The implicitly-defined or explicitly-defaulted copy assignment operator 14357 // for a non-union class X performs memberwise copy assignment of its 14358 // subobjects. The direct base classes of X are assigned first, in the 14359 // order of their declaration in the base-specifier-list, and then the 14360 // immediate non-static data members of X are assigned, in the order in 14361 // which they were declared in the class definition. 14362 14363 // The statements that form the synthesized function body. 14364 SmallVector<Stmt*, 8> Statements; 14365 14366 // The parameter for the "other" object, which we are copying from. 14367 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 14368 Qualifiers OtherQuals = Other->getType().getQualifiers(); 14369 QualType OtherRefType = Other->getType(); 14370 if (const LValueReferenceType *OtherRef 14371 = OtherRefType->getAs<LValueReferenceType>()) { 14372 OtherRefType = OtherRef->getPointeeType(); 14373 OtherQuals = OtherRefType.getQualifiers(); 14374 } 14375 14376 // Our location for everything implicitly-generated. 14377 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 14378 ? CopyAssignOperator->getEndLoc() 14379 : CopyAssignOperator->getLocation(); 14380 14381 // Builds a DeclRefExpr for the "other" object. 14382 RefBuilder OtherRef(Other, OtherRefType); 14383 14384 // Builds the "this" pointer. 14385 ThisBuilder This; 14386 14387 // Assign base classes. 14388 bool Invalid = false; 14389 for (auto &Base : ClassDecl->bases()) { 14390 // Form the assignment: 14391 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 14392 QualType BaseType = Base.getType().getUnqualifiedType(); 14393 if (!BaseType->isRecordType()) { 14394 Invalid = true; 14395 continue; 14396 } 14397 14398 CXXCastPath BasePath; 14399 BasePath.push_back(&Base); 14400 14401 // Construct the "from" expression, which is an implicit cast to the 14402 // appropriately-qualified base type. 14403 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 14404 VK_LValue, BasePath); 14405 14406 // Dereference "this". 14407 DerefBuilder DerefThis(This); 14408 CastBuilder To(DerefThis, 14409 Context.getQualifiedType( 14410 BaseType, CopyAssignOperator->getMethodQualifiers()), 14411 VK_LValue, BasePath); 14412 14413 // Build the copy. 14414 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 14415 To, From, 14416 /*CopyingBaseSubobject=*/true, 14417 /*Copying=*/true); 14418 if (Copy.isInvalid()) { 14419 CopyAssignOperator->setInvalidDecl(); 14420 return; 14421 } 14422 14423 // Success! Record the copy. 14424 Statements.push_back(Copy.getAs<Expr>()); 14425 } 14426 14427 // Assign non-static members. 14428 for (auto *Field : ClassDecl->fields()) { 14429 // FIXME: We should form some kind of AST representation for the implied 14430 // memcpy in a union copy operation. 14431 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14432 continue; 14433 14434 if (Field->isInvalidDecl()) { 14435 Invalid = true; 14436 continue; 14437 } 14438 14439 // Check for members of reference type; we can't copy those. 14440 if (Field->getType()->isReferenceType()) { 14441 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14442 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14443 Diag(Field->getLocation(), diag::note_declared_at); 14444 Invalid = true; 14445 continue; 14446 } 14447 14448 // Check for members of const-qualified, non-class type. 14449 QualType BaseType = Context.getBaseElementType(Field->getType()); 14450 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14451 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14452 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14453 Diag(Field->getLocation(), diag::note_declared_at); 14454 Invalid = true; 14455 continue; 14456 } 14457 14458 // Suppress assigning zero-width bitfields. 14459 if (Field->isZeroLengthBitField(Context)) 14460 continue; 14461 14462 QualType FieldType = Field->getType().getNonReferenceType(); 14463 if (FieldType->isIncompleteArrayType()) { 14464 assert(ClassDecl->hasFlexibleArrayMember() && 14465 "Incomplete array type is not valid"); 14466 continue; 14467 } 14468 14469 // Build references to the field in the object we're copying from and to. 14470 CXXScopeSpec SS; // Intentionally empty 14471 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14472 LookupMemberName); 14473 MemberLookup.addDecl(Field); 14474 MemberLookup.resolveKind(); 14475 14476 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 14477 14478 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); 14479 14480 // Build the copy of this field. 14481 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 14482 To, From, 14483 /*CopyingBaseSubobject=*/false, 14484 /*Copying=*/true); 14485 if (Copy.isInvalid()) { 14486 CopyAssignOperator->setInvalidDecl(); 14487 return; 14488 } 14489 14490 // Success! Record the copy. 14491 Statements.push_back(Copy.getAs<Stmt>()); 14492 } 14493 14494 if (!Invalid) { 14495 // Add a "return *this;" 14496 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14497 14498 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14499 if (Return.isInvalid()) 14500 Invalid = true; 14501 else 14502 Statements.push_back(Return.getAs<Stmt>()); 14503 } 14504 14505 if (Invalid) { 14506 CopyAssignOperator->setInvalidDecl(); 14507 return; 14508 } 14509 14510 StmtResult Body; 14511 { 14512 CompoundScopeRAII CompoundScope(*this); 14513 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14514 /*isStmtExpr=*/false); 14515 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 14516 } 14517 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 14518 CopyAssignOperator->markUsed(Context); 14519 14520 if (ASTMutationListener *L = getASTMutationListener()) { 14521 L->CompletedImplicitDefinition(CopyAssignOperator); 14522 } 14523 } 14524 14525 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 14526 assert(ClassDecl->needsImplicitMoveAssignment()); 14527 14528 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 14529 if (DSM.isAlreadyBeingDeclared()) 14530 return nullptr; 14531 14532 // Note: The following rules are largely analoguous to the move 14533 // constructor rules. 14534 14535 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14536 LangAS AS = getDefaultCXXMethodAddrSpace(); 14537 if (AS != LangAS::Default) 14538 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14539 QualType RetType = Context.getLValueReferenceType(ArgType); 14540 ArgType = Context.getRValueReferenceType(ArgType); 14541 14542 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14543 CXXMoveAssignment, 14544 false); 14545 14546 // An implicitly-declared move assignment operator is an inline public 14547 // member of its class. 14548 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14549 SourceLocation ClassLoc = ClassDecl->getLocation(); 14550 DeclarationNameInfo NameInfo(Name, ClassLoc); 14551 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 14552 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14553 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14554 /*isInline=*/true, 14555 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14556 SourceLocation()); 14557 MoveAssignment->setAccess(AS_public); 14558 MoveAssignment->setDefaulted(); 14559 MoveAssignment->setImplicit(); 14560 14561 if (getLangOpts().CUDA) { 14562 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 14563 MoveAssignment, 14564 /* ConstRHS */ false, 14565 /* Diagnose */ false); 14566 } 14567 14568 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); 14569 14570 // Add the parameter to the operator. 14571 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 14572 ClassLoc, ClassLoc, 14573 /*Id=*/nullptr, ArgType, 14574 /*TInfo=*/nullptr, SC_None, 14575 nullptr); 14576 MoveAssignment->setParams(FromParam); 14577 14578 MoveAssignment->setTrivial( 14579 ClassDecl->needsOverloadResolutionForMoveAssignment() 14580 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 14581 : ClassDecl->hasTrivialMoveAssignment()); 14582 14583 // Note that we have added this copy-assignment operator. 14584 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 14585 14586 Scope *S = getScopeForContext(ClassDecl); 14587 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 14588 14589 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 14590 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 14591 SetDeclDeleted(MoveAssignment, ClassLoc); 14592 } 14593 14594 if (S) 14595 PushOnScopeChains(MoveAssignment, S, false); 14596 ClassDecl->addDecl(MoveAssignment); 14597 14598 return MoveAssignment; 14599 } 14600 14601 /// Check if we're implicitly defining a move assignment operator for a class 14602 /// with virtual bases. Such a move assignment might move-assign the virtual 14603 /// base multiple times. 14604 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 14605 SourceLocation CurrentLocation) { 14606 assert(!Class->isDependentContext() && "should not define dependent move"); 14607 14608 // Only a virtual base could get implicitly move-assigned multiple times. 14609 // Only a non-trivial move assignment can observe this. We only want to 14610 // diagnose if we implicitly define an assignment operator that assigns 14611 // two base classes, both of which move-assign the same virtual base. 14612 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 14613 Class->getNumBases() < 2) 14614 return; 14615 14616 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 14617 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 14618 VBaseMap VBases; 14619 14620 for (auto &BI : Class->bases()) { 14621 Worklist.push_back(&BI); 14622 while (!Worklist.empty()) { 14623 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 14624 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 14625 14626 // If the base has no non-trivial move assignment operators, 14627 // we don't care about moves from it. 14628 if (!Base->hasNonTrivialMoveAssignment()) 14629 continue; 14630 14631 // If there's nothing virtual here, skip it. 14632 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 14633 continue; 14634 14635 // If we're not actually going to call a move assignment for this base, 14636 // or the selected move assignment is trivial, skip it. 14637 Sema::SpecialMemberOverloadResult SMOR = 14638 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 14639 /*ConstArg*/false, /*VolatileArg*/false, 14640 /*RValueThis*/true, /*ConstThis*/false, 14641 /*VolatileThis*/false); 14642 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 14643 !SMOR.getMethod()->isMoveAssignmentOperator()) 14644 continue; 14645 14646 if (BaseSpec->isVirtual()) { 14647 // We're going to move-assign this virtual base, and its move 14648 // assignment operator is not trivial. If this can happen for 14649 // multiple distinct direct bases of Class, diagnose it. (If it 14650 // only happens in one base, we'll diagnose it when synthesizing 14651 // that base class's move assignment operator.) 14652 CXXBaseSpecifier *&Existing = 14653 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 14654 .first->second; 14655 if (Existing && Existing != &BI) { 14656 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 14657 << Class << Base; 14658 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 14659 << (Base->getCanonicalDecl() == 14660 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14661 << Base << Existing->getType() << Existing->getSourceRange(); 14662 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 14663 << (Base->getCanonicalDecl() == 14664 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14665 << Base << BI.getType() << BaseSpec->getSourceRange(); 14666 14667 // Only diagnose each vbase once. 14668 Existing = nullptr; 14669 } 14670 } else { 14671 // Only walk over bases that have defaulted move assignment operators. 14672 // We assume that any user-provided move assignment operator handles 14673 // the multiple-moves-of-vbase case itself somehow. 14674 if (!SMOR.getMethod()->isDefaulted()) 14675 continue; 14676 14677 // We're going to move the base classes of Base. Add them to the list. 14678 for (auto &BI : Base->bases()) 14679 Worklist.push_back(&BI); 14680 } 14681 } 14682 } 14683 } 14684 14685 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 14686 CXXMethodDecl *MoveAssignOperator) { 14687 assert((MoveAssignOperator->isDefaulted() && 14688 MoveAssignOperator->isOverloadedOperator() && 14689 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 14690 !MoveAssignOperator->doesThisDeclarationHaveABody() && 14691 !MoveAssignOperator->isDeleted()) && 14692 "DefineImplicitMoveAssignment called for wrong function"); 14693 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 14694 return; 14695 14696 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 14697 if (ClassDecl->isInvalidDecl()) { 14698 MoveAssignOperator->setInvalidDecl(); 14699 return; 14700 } 14701 14702 // C++0x [class.copy]p28: 14703 // The implicitly-defined or move assignment operator for a non-union class 14704 // X performs memberwise move assignment of its subobjects. The direct base 14705 // classes of X are assigned first, in the order of their declaration in the 14706 // base-specifier-list, and then the immediate non-static data members of X 14707 // are assigned, in the order in which they were declared in the class 14708 // definition. 14709 14710 // Issue a warning if our implicit move assignment operator will move 14711 // from a virtual base more than once. 14712 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 14713 14714 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 14715 14716 // The exception specification is needed because we are defining the 14717 // function. 14718 ResolveExceptionSpec(CurrentLocation, 14719 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 14720 14721 // Add a context note for diagnostics produced after this point. 14722 Scope.addContextNote(CurrentLocation); 14723 14724 // The statements that form the synthesized function body. 14725 SmallVector<Stmt*, 8> Statements; 14726 14727 // The parameter for the "other" object, which we are move from. 14728 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 14729 QualType OtherRefType = 14730 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 14731 14732 // Our location for everything implicitly-generated. 14733 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 14734 ? MoveAssignOperator->getEndLoc() 14735 : MoveAssignOperator->getLocation(); 14736 14737 // Builds a reference to the "other" object. 14738 RefBuilder OtherRef(Other, OtherRefType); 14739 // Cast to rvalue. 14740 MoveCastBuilder MoveOther(OtherRef); 14741 14742 // Builds the "this" pointer. 14743 ThisBuilder This; 14744 14745 // Assign base classes. 14746 bool Invalid = false; 14747 for (auto &Base : ClassDecl->bases()) { 14748 // C++11 [class.copy]p28: 14749 // It is unspecified whether subobjects representing virtual base classes 14750 // are assigned more than once by the implicitly-defined copy assignment 14751 // operator. 14752 // FIXME: Do not assign to a vbase that will be assigned by some other base 14753 // class. For a move-assignment, this can result in the vbase being moved 14754 // multiple times. 14755 14756 // Form the assignment: 14757 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 14758 QualType BaseType = Base.getType().getUnqualifiedType(); 14759 if (!BaseType->isRecordType()) { 14760 Invalid = true; 14761 continue; 14762 } 14763 14764 CXXCastPath BasePath; 14765 BasePath.push_back(&Base); 14766 14767 // Construct the "from" expression, which is an implicit cast to the 14768 // appropriately-qualified base type. 14769 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 14770 14771 // Dereference "this". 14772 DerefBuilder DerefThis(This); 14773 14774 // Implicitly cast "this" to the appropriately-qualified base type. 14775 CastBuilder To(DerefThis, 14776 Context.getQualifiedType( 14777 BaseType, MoveAssignOperator->getMethodQualifiers()), 14778 VK_LValue, BasePath); 14779 14780 // Build the move. 14781 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 14782 To, From, 14783 /*CopyingBaseSubobject=*/true, 14784 /*Copying=*/false); 14785 if (Move.isInvalid()) { 14786 MoveAssignOperator->setInvalidDecl(); 14787 return; 14788 } 14789 14790 // Success! Record the move. 14791 Statements.push_back(Move.getAs<Expr>()); 14792 } 14793 14794 // Assign non-static members. 14795 for (auto *Field : ClassDecl->fields()) { 14796 // FIXME: We should form some kind of AST representation for the implied 14797 // memcpy in a union copy operation. 14798 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14799 continue; 14800 14801 if (Field->isInvalidDecl()) { 14802 Invalid = true; 14803 continue; 14804 } 14805 14806 // Check for members of reference type; we can't move those. 14807 if (Field->getType()->isReferenceType()) { 14808 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14809 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14810 Diag(Field->getLocation(), diag::note_declared_at); 14811 Invalid = true; 14812 continue; 14813 } 14814 14815 // Check for members of const-qualified, non-class type. 14816 QualType BaseType = Context.getBaseElementType(Field->getType()); 14817 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14818 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14819 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14820 Diag(Field->getLocation(), diag::note_declared_at); 14821 Invalid = true; 14822 continue; 14823 } 14824 14825 // Suppress assigning zero-width bitfields. 14826 if (Field->isZeroLengthBitField(Context)) 14827 continue; 14828 14829 QualType FieldType = Field->getType().getNonReferenceType(); 14830 if (FieldType->isIncompleteArrayType()) { 14831 assert(ClassDecl->hasFlexibleArrayMember() && 14832 "Incomplete array type is not valid"); 14833 continue; 14834 } 14835 14836 // Build references to the field in the object we're copying from and to. 14837 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14838 LookupMemberName); 14839 MemberLookup.addDecl(Field); 14840 MemberLookup.resolveKind(); 14841 MemberBuilder From(MoveOther, OtherRefType, 14842 /*IsArrow=*/false, MemberLookup); 14843 MemberBuilder To(This, getCurrentThisType(), 14844 /*IsArrow=*/true, MemberLookup); 14845 14846 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 14847 "Member reference with rvalue base must be rvalue except for reference " 14848 "members, which aren't allowed for move assignment."); 14849 14850 // Build the move of this field. 14851 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 14852 To, From, 14853 /*CopyingBaseSubobject=*/false, 14854 /*Copying=*/false); 14855 if (Move.isInvalid()) { 14856 MoveAssignOperator->setInvalidDecl(); 14857 return; 14858 } 14859 14860 // Success! Record the copy. 14861 Statements.push_back(Move.getAs<Stmt>()); 14862 } 14863 14864 if (!Invalid) { 14865 // Add a "return *this;" 14866 ExprResult ThisObj = 14867 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14868 14869 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14870 if (Return.isInvalid()) 14871 Invalid = true; 14872 else 14873 Statements.push_back(Return.getAs<Stmt>()); 14874 } 14875 14876 if (Invalid) { 14877 MoveAssignOperator->setInvalidDecl(); 14878 return; 14879 } 14880 14881 StmtResult Body; 14882 { 14883 CompoundScopeRAII CompoundScope(*this); 14884 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14885 /*isStmtExpr=*/false); 14886 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 14887 } 14888 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 14889 MoveAssignOperator->markUsed(Context); 14890 14891 if (ASTMutationListener *L = getASTMutationListener()) { 14892 L->CompletedImplicitDefinition(MoveAssignOperator); 14893 } 14894 } 14895 14896 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 14897 CXXRecordDecl *ClassDecl) { 14898 // C++ [class.copy]p4: 14899 // If the class definition does not explicitly declare a copy 14900 // constructor, one is declared implicitly. 14901 assert(ClassDecl->needsImplicitCopyConstructor()); 14902 14903 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 14904 if (DSM.isAlreadyBeingDeclared()) 14905 return nullptr; 14906 14907 QualType ClassType = Context.getTypeDeclType(ClassDecl); 14908 QualType ArgType = ClassType; 14909 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 14910 if (Const) 14911 ArgType = ArgType.withConst(); 14912 14913 LangAS AS = getDefaultCXXMethodAddrSpace(); 14914 if (AS != LangAS::Default) 14915 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14916 14917 ArgType = Context.getLValueReferenceType(ArgType); 14918 14919 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14920 CXXCopyConstructor, 14921 Const); 14922 14923 DeclarationName Name 14924 = Context.DeclarationNames.getCXXConstructorName( 14925 Context.getCanonicalType(ClassType)); 14926 SourceLocation ClassLoc = ClassDecl->getLocation(); 14927 DeclarationNameInfo NameInfo(Name, ClassLoc); 14928 14929 // An implicitly-declared copy constructor is an inline public 14930 // member of its class. 14931 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 14932 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 14933 ExplicitSpecifier(), 14934 /*isInline=*/true, 14935 /*isImplicitlyDeclared=*/true, 14936 Constexpr ? ConstexprSpecKind::Constexpr 14937 : ConstexprSpecKind::Unspecified); 14938 CopyConstructor->setAccess(AS_public); 14939 CopyConstructor->setDefaulted(); 14940 14941 if (getLangOpts().CUDA) { 14942 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 14943 CopyConstructor, 14944 /* ConstRHS */ Const, 14945 /* Diagnose */ false); 14946 } 14947 14948 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 14949 14950 // During template instantiation of special member functions we need a 14951 // reliable TypeSourceInfo for the parameter types in order to allow functions 14952 // to be substituted. 14953 TypeSourceInfo *TSI = nullptr; 14954 if (inTemplateInstantiation() && ClassDecl->isLambda()) 14955 TSI = Context.getTrivialTypeSourceInfo(ArgType); 14956 14957 // Add the parameter to the constructor. 14958 ParmVarDecl *FromParam = 14959 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, 14960 /*IdentifierInfo=*/nullptr, ArgType, 14961 /*TInfo=*/TSI, SC_None, nullptr); 14962 CopyConstructor->setParams(FromParam); 14963 14964 CopyConstructor->setTrivial( 14965 ClassDecl->needsOverloadResolutionForCopyConstructor() 14966 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 14967 : ClassDecl->hasTrivialCopyConstructor()); 14968 14969 CopyConstructor->setTrivialForCall( 14970 ClassDecl->hasAttr<TrivialABIAttr>() || 14971 (ClassDecl->needsOverloadResolutionForCopyConstructor() 14972 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, 14973 TAH_ConsiderTrivialABI) 14974 : ClassDecl->hasTrivialCopyConstructorForCall())); 14975 14976 // Note that we have declared this constructor. 14977 ++getASTContext().NumImplicitCopyConstructorsDeclared; 14978 14979 Scope *S = getScopeForContext(ClassDecl); 14980 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 14981 14982 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { 14983 ClassDecl->setImplicitCopyConstructorIsDeleted(); 14984 SetDeclDeleted(CopyConstructor, ClassLoc); 14985 } 14986 14987 if (S) 14988 PushOnScopeChains(CopyConstructor, S, false); 14989 ClassDecl->addDecl(CopyConstructor); 14990 14991 return CopyConstructor; 14992 } 14993 14994 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 14995 CXXConstructorDecl *CopyConstructor) { 14996 assert((CopyConstructor->isDefaulted() && 14997 CopyConstructor->isCopyConstructor() && 14998 !CopyConstructor->doesThisDeclarationHaveABody() && 14999 !CopyConstructor->isDeleted()) && 15000 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 15001 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 15002 return; 15003 15004 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 15005 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 15006 15007 SynthesizedFunctionScope Scope(*this, CopyConstructor); 15008 15009 // The exception specification is needed because we are defining the 15010 // function. 15011 ResolveExceptionSpec(CurrentLocation, 15012 CopyConstructor->getType()->castAs<FunctionProtoType>()); 15013 MarkVTableUsed(CurrentLocation, ClassDecl); 15014 15015 // Add a context note for diagnostics produced after this point. 15016 Scope.addContextNote(CurrentLocation); 15017 15018 // C++11 [class.copy]p7: 15019 // The [definition of an implicitly declared copy constructor] is 15020 // deprecated if the class has a user-declared copy assignment operator 15021 // or a user-declared destructor. 15022 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 15023 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 15024 15025 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 15026 CopyConstructor->setInvalidDecl(); 15027 } else { 15028 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 15029 ? CopyConstructor->getEndLoc() 15030 : CopyConstructor->getLocation(); 15031 Sema::CompoundScopeRAII CompoundScope(*this); 15032 CopyConstructor->setBody( 15033 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); 15034 CopyConstructor->markUsed(Context); 15035 } 15036 15037 if (ASTMutationListener *L = getASTMutationListener()) { 15038 L->CompletedImplicitDefinition(CopyConstructor); 15039 } 15040 } 15041 15042 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 15043 CXXRecordDecl *ClassDecl) { 15044 assert(ClassDecl->needsImplicitMoveConstructor()); 15045 15046 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 15047 if (DSM.isAlreadyBeingDeclared()) 15048 return nullptr; 15049 15050 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15051 15052 QualType ArgType = ClassType; 15053 LangAS AS = getDefaultCXXMethodAddrSpace(); 15054 if (AS != LangAS::Default) 15055 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 15056 ArgType = Context.getRValueReferenceType(ArgType); 15057 15058 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 15059 CXXMoveConstructor, 15060 false); 15061 15062 DeclarationName Name 15063 = Context.DeclarationNames.getCXXConstructorName( 15064 Context.getCanonicalType(ClassType)); 15065 SourceLocation ClassLoc = ClassDecl->getLocation(); 15066 DeclarationNameInfo NameInfo(Name, ClassLoc); 15067 15068 // C++11 [class.copy]p11: 15069 // An implicitly-declared copy/move constructor is an inline public 15070 // member of its class. 15071 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 15072 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15073 ExplicitSpecifier(), 15074 /*isInline=*/true, 15075 /*isImplicitlyDeclared=*/true, 15076 Constexpr ? ConstexprSpecKind::Constexpr 15077 : ConstexprSpecKind::Unspecified); 15078 MoveConstructor->setAccess(AS_public); 15079 MoveConstructor->setDefaulted(); 15080 15081 if (getLangOpts().CUDA) { 15082 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 15083 MoveConstructor, 15084 /* ConstRHS */ false, 15085 /* Diagnose */ false); 15086 } 15087 15088 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 15089 15090 // Add the parameter to the constructor. 15091 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 15092 ClassLoc, ClassLoc, 15093 /*IdentifierInfo=*/nullptr, 15094 ArgType, /*TInfo=*/nullptr, 15095 SC_None, nullptr); 15096 MoveConstructor->setParams(FromParam); 15097 15098 MoveConstructor->setTrivial( 15099 ClassDecl->needsOverloadResolutionForMoveConstructor() 15100 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 15101 : ClassDecl->hasTrivialMoveConstructor()); 15102 15103 MoveConstructor->setTrivialForCall( 15104 ClassDecl->hasAttr<TrivialABIAttr>() || 15105 (ClassDecl->needsOverloadResolutionForMoveConstructor() 15106 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, 15107 TAH_ConsiderTrivialABI) 15108 : ClassDecl->hasTrivialMoveConstructorForCall())); 15109 15110 // Note that we have declared this constructor. 15111 ++getASTContext().NumImplicitMoveConstructorsDeclared; 15112 15113 Scope *S = getScopeForContext(ClassDecl); 15114 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 15115 15116 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 15117 ClassDecl->setImplicitMoveConstructorIsDeleted(); 15118 SetDeclDeleted(MoveConstructor, ClassLoc); 15119 } 15120 15121 if (S) 15122 PushOnScopeChains(MoveConstructor, S, false); 15123 ClassDecl->addDecl(MoveConstructor); 15124 15125 return MoveConstructor; 15126 } 15127 15128 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 15129 CXXConstructorDecl *MoveConstructor) { 15130 assert((MoveConstructor->isDefaulted() && 15131 MoveConstructor->isMoveConstructor() && 15132 !MoveConstructor->doesThisDeclarationHaveABody() && 15133 !MoveConstructor->isDeleted()) && 15134 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 15135 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 15136 return; 15137 15138 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 15139 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 15140 15141 SynthesizedFunctionScope Scope(*this, MoveConstructor); 15142 15143 // The exception specification is needed because we are defining the 15144 // function. 15145 ResolveExceptionSpec(CurrentLocation, 15146 MoveConstructor->getType()->castAs<FunctionProtoType>()); 15147 MarkVTableUsed(CurrentLocation, ClassDecl); 15148 15149 // Add a context note for diagnostics produced after this point. 15150 Scope.addContextNote(CurrentLocation); 15151 15152 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 15153 MoveConstructor->setInvalidDecl(); 15154 } else { 15155 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 15156 ? MoveConstructor->getEndLoc() 15157 : MoveConstructor->getLocation(); 15158 Sema::CompoundScopeRAII CompoundScope(*this); 15159 MoveConstructor->setBody(ActOnCompoundStmt( 15160 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); 15161 MoveConstructor->markUsed(Context); 15162 } 15163 15164 if (ASTMutationListener *L = getASTMutationListener()) { 15165 L->CompletedImplicitDefinition(MoveConstructor); 15166 } 15167 } 15168 15169 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 15170 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 15171 } 15172 15173 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 15174 SourceLocation CurrentLocation, 15175 CXXConversionDecl *Conv) { 15176 SynthesizedFunctionScope Scope(*this, Conv); 15177 assert(!Conv->getReturnType()->isUndeducedType()); 15178 15179 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); 15180 CallingConv CC = 15181 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); 15182 15183 CXXRecordDecl *Lambda = Conv->getParent(); 15184 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 15185 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC); 15186 15187 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 15188 CallOp = InstantiateFunctionDeclaration( 15189 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15190 if (!CallOp) 15191 return; 15192 15193 Invoker = InstantiateFunctionDeclaration( 15194 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15195 if (!Invoker) 15196 return; 15197 } 15198 15199 if (CallOp->isInvalidDecl()) 15200 return; 15201 15202 // Mark the call operator referenced (and add to pending instantiations 15203 // if necessary). 15204 // For both the conversion and static-invoker template specializations 15205 // we construct their body's in this function, so no need to add them 15206 // to the PendingInstantiations. 15207 MarkFunctionReferenced(CurrentLocation, CallOp); 15208 15209 // Fill in the __invoke function with a dummy implementation. IR generation 15210 // will fill in the actual details. Update its type in case it contained 15211 // an 'auto'. 15212 Invoker->markUsed(Context); 15213 Invoker->setReferenced(); 15214 Invoker->setType(Conv->getReturnType()->getPointeeType()); 15215 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 15216 15217 // Construct the body of the conversion function { return __invoke; }. 15218 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), 15219 VK_LValue, Conv->getLocation()); 15220 assert(FunctionRef && "Can't refer to __invoke function?"); 15221 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 15222 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(), 15223 Conv->getLocation())); 15224 Conv->markUsed(Context); 15225 Conv->setReferenced(); 15226 15227 if (ASTMutationListener *L = getASTMutationListener()) { 15228 L->CompletedImplicitDefinition(Conv); 15229 L->CompletedImplicitDefinition(Invoker); 15230 } 15231 } 15232 15233 15234 15235 void Sema::DefineImplicitLambdaToBlockPointerConversion( 15236 SourceLocation CurrentLocation, 15237 CXXConversionDecl *Conv) 15238 { 15239 assert(!Conv->getParent()->isGenericLambda()); 15240 15241 SynthesizedFunctionScope Scope(*this, Conv); 15242 15243 // Copy-initialize the lambda object as needed to capture it. 15244 Expr *This = ActOnCXXThis(CurrentLocation).get(); 15245 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 15246 15247 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 15248 Conv->getLocation(), 15249 Conv, DerefThis); 15250 15251 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 15252 // behavior. Note that only the general conversion function does this 15253 // (since it's unusable otherwise); in the case where we inline the 15254 // block literal, it has block literal lifetime semantics. 15255 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 15256 BuildBlock = ImplicitCastExpr::Create( 15257 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, 15258 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); 15259 15260 if (BuildBlock.isInvalid()) { 15261 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15262 Conv->setInvalidDecl(); 15263 return; 15264 } 15265 15266 // Create the return statement that returns the block from the conversion 15267 // function. 15268 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 15269 if (Return.isInvalid()) { 15270 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15271 Conv->setInvalidDecl(); 15272 return; 15273 } 15274 15275 // Set the body of the conversion function. 15276 Stmt *ReturnS = Return.get(); 15277 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(), 15278 Conv->getLocation())); 15279 Conv->markUsed(Context); 15280 15281 // We're done; notify the mutation listener, if any. 15282 if (ASTMutationListener *L = getASTMutationListener()) { 15283 L->CompletedImplicitDefinition(Conv); 15284 } 15285 } 15286 15287 /// Determine whether the given list arguments contains exactly one 15288 /// "real" (non-default) argument. 15289 static bool hasOneRealArgument(MultiExprArg Args) { 15290 switch (Args.size()) { 15291 case 0: 15292 return false; 15293 15294 default: 15295 if (!Args[1]->isDefaultArgument()) 15296 return false; 15297 15298 LLVM_FALLTHROUGH; 15299 case 1: 15300 return !Args[0]->isDefaultArgument(); 15301 } 15302 15303 return false; 15304 } 15305 15306 ExprResult 15307 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15308 NamedDecl *FoundDecl, 15309 CXXConstructorDecl *Constructor, 15310 MultiExprArg ExprArgs, 15311 bool HadMultipleCandidates, 15312 bool IsListInitialization, 15313 bool IsStdInitListInitialization, 15314 bool RequiresZeroInit, 15315 unsigned ConstructKind, 15316 SourceRange ParenRange) { 15317 bool Elidable = false; 15318 15319 // C++0x [class.copy]p34: 15320 // When certain criteria are met, an implementation is allowed to 15321 // omit the copy/move construction of a class object, even if the 15322 // copy/move constructor and/or destructor for the object have 15323 // side effects. [...] 15324 // - when a temporary class object that has not been bound to a 15325 // reference (12.2) would be copied/moved to a class object 15326 // with the same cv-unqualified type, the copy/move operation 15327 // can be omitted by constructing the temporary object 15328 // directly into the target of the omitted copy/move 15329 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && 15330 // FIXME: Converting constructors should also be accepted. 15331 // But to fix this, the logic that digs down into a CXXConstructExpr 15332 // to find the source object needs to handle it. 15333 // Right now it assumes the source object is passed directly as the 15334 // first argument. 15335 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 15336 Expr *SubExpr = ExprArgs[0]; 15337 // FIXME: Per above, this is also incorrect if we want to accept 15338 // converting constructors, as isTemporaryObject will 15339 // reject temporaries with different type from the 15340 // CXXRecord itself. 15341 Elidable = SubExpr->isTemporaryObject( 15342 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 15343 } 15344 15345 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 15346 FoundDecl, Constructor, 15347 Elidable, ExprArgs, HadMultipleCandidates, 15348 IsListInitialization, 15349 IsStdInitListInitialization, RequiresZeroInit, 15350 ConstructKind, ParenRange); 15351 } 15352 15353 ExprResult 15354 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15355 NamedDecl *FoundDecl, 15356 CXXConstructorDecl *Constructor, 15357 bool Elidable, 15358 MultiExprArg ExprArgs, 15359 bool HadMultipleCandidates, 15360 bool IsListInitialization, 15361 bool IsStdInitListInitialization, 15362 bool RequiresZeroInit, 15363 unsigned ConstructKind, 15364 SourceRange ParenRange) { 15365 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 15366 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 15367 if (DiagnoseUseOfDecl(Constructor, ConstructLoc)) 15368 return ExprError(); 15369 } 15370 15371 return BuildCXXConstructExpr( 15372 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 15373 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 15374 RequiresZeroInit, ConstructKind, ParenRange); 15375 } 15376 15377 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 15378 /// including handling of its default argument expressions. 15379 ExprResult 15380 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15381 CXXConstructorDecl *Constructor, 15382 bool Elidable, 15383 MultiExprArg ExprArgs, 15384 bool HadMultipleCandidates, 15385 bool IsListInitialization, 15386 bool IsStdInitListInitialization, 15387 bool RequiresZeroInit, 15388 unsigned ConstructKind, 15389 SourceRange ParenRange) { 15390 assert(declaresSameEntity( 15391 Constructor->getParent(), 15392 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && 15393 "given constructor for wrong type"); 15394 MarkFunctionReferenced(ConstructLoc, Constructor); 15395 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) 15396 return ExprError(); 15397 if (getLangOpts().SYCLIsDevice && 15398 !checkSYCLDeviceFunction(ConstructLoc, Constructor)) 15399 return ExprError(); 15400 15401 return CheckForImmediateInvocation( 15402 CXXConstructExpr::Create( 15403 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 15404 HadMultipleCandidates, IsListInitialization, 15405 IsStdInitListInitialization, RequiresZeroInit, 15406 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 15407 ParenRange), 15408 Constructor); 15409 } 15410 15411 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { 15412 assert(Field->hasInClassInitializer()); 15413 15414 // If we already have the in-class initializer nothing needs to be done. 15415 if (Field->getInClassInitializer()) 15416 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15417 15418 // If we might have already tried and failed to instantiate, don't try again. 15419 if (Field->isInvalidDecl()) 15420 return ExprError(); 15421 15422 // Maybe we haven't instantiated the in-class initializer. Go check the 15423 // pattern FieldDecl to see if it has one. 15424 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); 15425 15426 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { 15427 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); 15428 DeclContext::lookup_result Lookup = 15429 ClassPattern->lookup(Field->getDeclName()); 15430 15431 FieldDecl *Pattern = nullptr; 15432 for (auto L : Lookup) { 15433 if (isa<FieldDecl>(L)) { 15434 Pattern = cast<FieldDecl>(L); 15435 break; 15436 } 15437 } 15438 assert(Pattern && "We must have set the Pattern!"); 15439 15440 if (!Pattern->hasInClassInitializer() || 15441 InstantiateInClassInitializer(Loc, Field, Pattern, 15442 getTemplateInstantiationArgs(Field))) { 15443 // Don't diagnose this again. 15444 Field->setInvalidDecl(); 15445 return ExprError(); 15446 } 15447 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15448 } 15449 15450 // DR1351: 15451 // If the brace-or-equal-initializer of a non-static data member 15452 // invokes a defaulted default constructor of its class or of an 15453 // enclosing class in a potentially evaluated subexpression, the 15454 // program is ill-formed. 15455 // 15456 // This resolution is unworkable: the exception specification of the 15457 // default constructor can be needed in an unevaluated context, in 15458 // particular, in the operand of a noexcept-expression, and we can be 15459 // unable to compute an exception specification for an enclosed class. 15460 // 15461 // Any attempt to resolve the exception specification of a defaulted default 15462 // constructor before the initializer is lexically complete will ultimately 15463 // come here at which point we can diagnose it. 15464 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); 15465 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed) 15466 << OutermostClass << Field; 15467 Diag(Field->getEndLoc(), 15468 diag::note_default_member_initializer_not_yet_parsed); 15469 // Recover by marking the field invalid, unless we're in a SFINAE context. 15470 if (!isSFINAEContext()) 15471 Field->setInvalidDecl(); 15472 return ExprError(); 15473 } 15474 15475 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 15476 if (VD->isInvalidDecl()) return; 15477 // If initializing the variable failed, don't also diagnose problems with 15478 // the desctructor, they're likely related. 15479 if (VD->getInit() && VD->getInit()->containsErrors()) 15480 return; 15481 15482 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 15483 if (ClassDecl->isInvalidDecl()) return; 15484 if (ClassDecl->hasIrrelevantDestructor()) return; 15485 if (ClassDecl->isDependentContext()) return; 15486 15487 if (VD->isNoDestroy(getASTContext())) 15488 return; 15489 15490 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 15491 15492 // If this is an array, we'll require the destructor during initialization, so 15493 // we can skip over this. We still want to emit exit-time destructor warnings 15494 // though. 15495 if (!VD->getType()->isArrayType()) { 15496 MarkFunctionReferenced(VD->getLocation(), Destructor); 15497 CheckDestructorAccess(VD->getLocation(), Destructor, 15498 PDiag(diag::err_access_dtor_var) 15499 << VD->getDeclName() << VD->getType()); 15500 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 15501 } 15502 15503 if (Destructor->isTrivial()) return; 15504 15505 // If the destructor is constexpr, check whether the variable has constant 15506 // destruction now. 15507 if (Destructor->isConstexpr()) { 15508 bool HasConstantInit = false; 15509 if (VD->getInit() && !VD->getInit()->isValueDependent()) 15510 HasConstantInit = VD->evaluateValue(); 15511 SmallVector<PartialDiagnosticAt, 8> Notes; 15512 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && 15513 HasConstantInit) { 15514 Diag(VD->getLocation(), 15515 diag::err_constexpr_var_requires_const_destruction) << VD; 15516 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 15517 Diag(Notes[I].first, Notes[I].second); 15518 } 15519 } 15520 15521 if (!VD->hasGlobalStorage()) return; 15522 15523 // Emit warning for non-trivial dtor in global scope (a real global, 15524 // class-static, function-static). 15525 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 15526 15527 // TODO: this should be re-enabled for static locals by !CXAAtExit 15528 if (!VD->isStaticLocal()) 15529 Diag(VD->getLocation(), diag::warn_global_destructor); 15530 } 15531 15532 /// Given a constructor and the set of arguments provided for the 15533 /// constructor, convert the arguments and add any required default arguments 15534 /// to form a proper call to this constructor. 15535 /// 15536 /// \returns true if an error occurred, false otherwise. 15537 bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 15538 QualType DeclInitType, MultiExprArg ArgsPtr, 15539 SourceLocation Loc, 15540 SmallVectorImpl<Expr *> &ConvertedArgs, 15541 bool AllowExplicit, 15542 bool IsListInitialization) { 15543 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 15544 unsigned NumArgs = ArgsPtr.size(); 15545 Expr **Args = ArgsPtr.data(); 15546 15547 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 15548 unsigned NumParams = Proto->getNumParams(); 15549 15550 // If too few arguments are available, we'll fill in the rest with defaults. 15551 if (NumArgs < NumParams) 15552 ConvertedArgs.reserve(NumParams); 15553 else 15554 ConvertedArgs.reserve(NumArgs); 15555 15556 VariadicCallType CallType = 15557 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 15558 SmallVector<Expr *, 8> AllArgs; 15559 bool Invalid = GatherArgumentsForCall(Loc, Constructor, 15560 Proto, 0, 15561 llvm::makeArrayRef(Args, NumArgs), 15562 AllArgs, 15563 CallType, AllowExplicit, 15564 IsListInitialization); 15565 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 15566 15567 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 15568 15569 CheckConstructorCall(Constructor, DeclInitType, 15570 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), 15571 Proto, Loc); 15572 15573 return Invalid; 15574 } 15575 15576 static inline bool 15577 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 15578 const FunctionDecl *FnDecl) { 15579 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 15580 if (isa<NamespaceDecl>(DC)) { 15581 return SemaRef.Diag(FnDecl->getLocation(), 15582 diag::err_operator_new_delete_declared_in_namespace) 15583 << FnDecl->getDeclName(); 15584 } 15585 15586 if (isa<TranslationUnitDecl>(DC) && 15587 FnDecl->getStorageClass() == SC_Static) { 15588 return SemaRef.Diag(FnDecl->getLocation(), 15589 diag::err_operator_new_delete_declared_static) 15590 << FnDecl->getDeclName(); 15591 } 15592 15593 return false; 15594 } 15595 15596 static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, 15597 const PointerType *PtrTy) { 15598 auto &Ctx = SemaRef.Context; 15599 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); 15600 PtrQuals.removeAddressSpace(); 15601 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( 15602 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); 15603 } 15604 15605 static inline bool 15606 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 15607 CanQualType ExpectedResultType, 15608 CanQualType ExpectedFirstParamType, 15609 unsigned DependentParamTypeDiag, 15610 unsigned InvalidParamTypeDiag) { 15611 QualType ResultType = 15612 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 15613 15614 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15615 // The operator is valid on any address space for OpenCL. 15616 // Drop address space from actual and expected result types. 15617 if (const auto *PtrTy = ResultType->getAs<PointerType>()) 15618 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15619 15620 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>()) 15621 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15622 } 15623 15624 // Check that the result type is what we expect. 15625 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { 15626 // Reject even if the type is dependent; an operator delete function is 15627 // required to have a non-dependent result type. 15628 return SemaRef.Diag( 15629 FnDecl->getLocation(), 15630 ResultType->isDependentType() 15631 ? diag::err_operator_new_delete_dependent_result_type 15632 : diag::err_operator_new_delete_invalid_result_type) 15633 << FnDecl->getDeclName() << ExpectedResultType; 15634 } 15635 15636 // A function template must have at least 2 parameters. 15637 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 15638 return SemaRef.Diag(FnDecl->getLocation(), 15639 diag::err_operator_new_delete_template_too_few_parameters) 15640 << FnDecl->getDeclName(); 15641 15642 // The function decl must have at least 1 parameter. 15643 if (FnDecl->getNumParams() == 0) 15644 return SemaRef.Diag(FnDecl->getLocation(), 15645 diag::err_operator_new_delete_too_few_parameters) 15646 << FnDecl->getDeclName(); 15647 15648 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 15649 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15650 // The operator is valid on any address space for OpenCL. 15651 // Drop address space from actual and expected first parameter types. 15652 if (const auto *PtrTy = 15653 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) 15654 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15655 15656 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>()) 15657 ExpectedFirstParamType = 15658 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15659 } 15660 15661 // Check that the first parameter type is what we expect. 15662 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 15663 ExpectedFirstParamType) { 15664 // The first parameter type is not allowed to be dependent. As a tentative 15665 // DR resolution, we allow a dependent parameter type if it is the right 15666 // type anyway, to allow destroying operator delete in class templates. 15667 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() 15668 ? DependentParamTypeDiag 15669 : InvalidParamTypeDiag) 15670 << FnDecl->getDeclName() << ExpectedFirstParamType; 15671 } 15672 15673 return false; 15674 } 15675 15676 static bool 15677 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 15678 // C++ [basic.stc.dynamic.allocation]p1: 15679 // A program is ill-formed if an allocation function is declared in a 15680 // namespace scope other than global scope or declared static in global 15681 // scope. 15682 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15683 return true; 15684 15685 CanQualType SizeTy = 15686 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 15687 15688 // C++ [basic.stc.dynamic.allocation]p1: 15689 // The return type shall be void*. The first parameter shall have type 15690 // std::size_t. 15691 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 15692 SizeTy, 15693 diag::err_operator_new_dependent_param_type, 15694 diag::err_operator_new_param_type)) 15695 return true; 15696 15697 // C++ [basic.stc.dynamic.allocation]p1: 15698 // The first parameter shall not have an associated default argument. 15699 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 15700 return SemaRef.Diag(FnDecl->getLocation(), 15701 diag::err_operator_new_default_arg) 15702 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 15703 15704 return false; 15705 } 15706 15707 static bool 15708 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 15709 // C++ [basic.stc.dynamic.deallocation]p1: 15710 // A program is ill-formed if deallocation functions are declared in a 15711 // namespace scope other than global scope or declared static in global 15712 // scope. 15713 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15714 return true; 15715 15716 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 15717 15718 // C++ P0722: 15719 // Within a class C, the first parameter of a destroying operator delete 15720 // shall be of type C *. The first parameter of any other deallocation 15721 // function shall be of type void *. 15722 CanQualType ExpectedFirstParamType = 15723 MD && MD->isDestroyingOperatorDelete() 15724 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 15725 SemaRef.Context.getRecordType(MD->getParent()))) 15726 : SemaRef.Context.VoidPtrTy; 15727 15728 // C++ [basic.stc.dynamic.deallocation]p2: 15729 // Each deallocation function shall return void 15730 if (CheckOperatorNewDeleteTypes( 15731 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 15732 diag::err_operator_delete_dependent_param_type, 15733 diag::err_operator_delete_param_type)) 15734 return true; 15735 15736 // C++ P0722: 15737 // A destroying operator delete shall be a usual deallocation function. 15738 if (MD && !MD->getParent()->isDependentContext() && 15739 MD->isDestroyingOperatorDelete() && 15740 !SemaRef.isUsualDeallocationFunction(MD)) { 15741 SemaRef.Diag(MD->getLocation(), 15742 diag::err_destroying_operator_delete_not_usual); 15743 return true; 15744 } 15745 15746 return false; 15747 } 15748 15749 /// CheckOverloadedOperatorDeclaration - Check whether the declaration 15750 /// of this overloaded operator is well-formed. If so, returns false; 15751 /// otherwise, emits appropriate diagnostics and returns true. 15752 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 15753 assert(FnDecl && FnDecl->isOverloadedOperator() && 15754 "Expected an overloaded operator declaration"); 15755 15756 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 15757 15758 // C++ [over.oper]p5: 15759 // The allocation and deallocation functions, operator new, 15760 // operator new[], operator delete and operator delete[], are 15761 // described completely in 3.7.3. The attributes and restrictions 15762 // found in the rest of this subclause do not apply to them unless 15763 // explicitly stated in 3.7.3. 15764 if (Op == OO_Delete || Op == OO_Array_Delete) 15765 return CheckOperatorDeleteDeclaration(*this, FnDecl); 15766 15767 if (Op == OO_New || Op == OO_Array_New) 15768 return CheckOperatorNewDeclaration(*this, FnDecl); 15769 15770 // C++ [over.oper]p6: 15771 // An operator function shall either be a non-static member 15772 // function or be a non-member function and have at least one 15773 // parameter whose type is a class, a reference to a class, an 15774 // enumeration, or a reference to an enumeration. 15775 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 15776 if (MethodDecl->isStatic()) 15777 return Diag(FnDecl->getLocation(), 15778 diag::err_operator_overload_static) << FnDecl->getDeclName(); 15779 } else { 15780 bool ClassOrEnumParam = false; 15781 for (auto Param : FnDecl->parameters()) { 15782 QualType ParamType = Param->getType().getNonReferenceType(); 15783 if (ParamType->isDependentType() || ParamType->isRecordType() || 15784 ParamType->isEnumeralType()) { 15785 ClassOrEnumParam = true; 15786 break; 15787 } 15788 } 15789 15790 if (!ClassOrEnumParam) 15791 return Diag(FnDecl->getLocation(), 15792 diag::err_operator_overload_needs_class_or_enum) 15793 << FnDecl->getDeclName(); 15794 } 15795 15796 // C++ [over.oper]p8: 15797 // An operator function cannot have default arguments (8.3.6), 15798 // except where explicitly stated below. 15799 // 15800 // Only the function-call operator allows default arguments 15801 // (C++ [over.call]p1). 15802 if (Op != OO_Call) { 15803 for (auto Param : FnDecl->parameters()) { 15804 if (Param->hasDefaultArg()) 15805 return Diag(Param->getLocation(), 15806 diag::err_operator_overload_default_arg) 15807 << FnDecl->getDeclName() << Param->getDefaultArgRange(); 15808 } 15809 } 15810 15811 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 15812 { false, false, false } 15813 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 15814 , { Unary, Binary, MemberOnly } 15815 #include "clang/Basic/OperatorKinds.def" 15816 }; 15817 15818 bool CanBeUnaryOperator = OperatorUses[Op][0]; 15819 bool CanBeBinaryOperator = OperatorUses[Op][1]; 15820 bool MustBeMemberOperator = OperatorUses[Op][2]; 15821 15822 // C++ [over.oper]p8: 15823 // [...] Operator functions cannot have more or fewer parameters 15824 // than the number required for the corresponding operator, as 15825 // described in the rest of this subclause. 15826 unsigned NumParams = FnDecl->getNumParams() 15827 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 15828 if (Op != OO_Call && 15829 ((NumParams == 1 && !CanBeUnaryOperator) || 15830 (NumParams == 2 && !CanBeBinaryOperator) || 15831 (NumParams < 1) || (NumParams > 2))) { 15832 // We have the wrong number of parameters. 15833 unsigned ErrorKind; 15834 if (CanBeUnaryOperator && CanBeBinaryOperator) { 15835 ErrorKind = 2; // 2 -> unary or binary. 15836 } else if (CanBeUnaryOperator) { 15837 ErrorKind = 0; // 0 -> unary 15838 } else { 15839 assert(CanBeBinaryOperator && 15840 "All non-call overloaded operators are unary or binary!"); 15841 ErrorKind = 1; // 1 -> binary 15842 } 15843 15844 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 15845 << FnDecl->getDeclName() << NumParams << ErrorKind; 15846 } 15847 15848 // Overloaded operators other than operator() cannot be variadic. 15849 if (Op != OO_Call && 15850 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 15851 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 15852 << FnDecl->getDeclName(); 15853 } 15854 15855 // Some operators must be non-static member functions. 15856 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 15857 return Diag(FnDecl->getLocation(), 15858 diag::err_operator_overload_must_be_member) 15859 << FnDecl->getDeclName(); 15860 } 15861 15862 // C++ [over.inc]p1: 15863 // The user-defined function called operator++ implements the 15864 // prefix and postfix ++ operator. If this function is a member 15865 // function with no parameters, or a non-member function with one 15866 // parameter of class or enumeration type, it defines the prefix 15867 // increment operator ++ for objects of that type. If the function 15868 // is a member function with one parameter (which shall be of type 15869 // int) or a non-member function with two parameters (the second 15870 // of which shall be of type int), it defines the postfix 15871 // increment operator ++ for objects of that type. 15872 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 15873 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 15874 QualType ParamType = LastParam->getType(); 15875 15876 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 15877 !ParamType->isDependentType()) 15878 return Diag(LastParam->getLocation(), 15879 diag::err_operator_overload_post_incdec_must_be_int) 15880 << LastParam->getType() << (Op == OO_MinusMinus); 15881 } 15882 15883 return false; 15884 } 15885 15886 static bool 15887 checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 15888 FunctionTemplateDecl *TpDecl) { 15889 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 15890 15891 // Must have one or two template parameters. 15892 if (TemplateParams->size() == 1) { 15893 NonTypeTemplateParmDecl *PmDecl = 15894 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 15895 15896 // The template parameter must be a char parameter pack. 15897 if (PmDecl && PmDecl->isTemplateParameterPack() && 15898 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 15899 return false; 15900 15901 // C++20 [over.literal]p5: 15902 // A string literal operator template is a literal operator template 15903 // whose template-parameter-list comprises a single non-type 15904 // template-parameter of class type. 15905 // 15906 // As a DR resolution, we also allow placeholders for deduced class 15907 // template specializations. 15908 if (SemaRef.getLangOpts().CPlusPlus20 && 15909 !PmDecl->isTemplateParameterPack() && 15910 (PmDecl->getType()->isRecordType() || 15911 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) 15912 return false; 15913 } else if (TemplateParams->size() == 2) { 15914 TemplateTypeParmDecl *PmType = 15915 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 15916 NonTypeTemplateParmDecl *PmArgs = 15917 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 15918 15919 // The second template parameter must be a parameter pack with the 15920 // first template parameter as its type. 15921 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 15922 PmArgs->isTemplateParameterPack()) { 15923 const TemplateTypeParmType *TArgs = 15924 PmArgs->getType()->getAs<TemplateTypeParmType>(); 15925 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 15926 TArgs->getIndex() == PmType->getIndex()) { 15927 if (!SemaRef.inTemplateInstantiation()) 15928 SemaRef.Diag(TpDecl->getLocation(), 15929 diag::ext_string_literal_operator_template); 15930 return false; 15931 } 15932 } 15933 } 15934 15935 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 15936 diag::err_literal_operator_template) 15937 << TpDecl->getTemplateParameters()->getSourceRange(); 15938 return true; 15939 } 15940 15941 /// CheckLiteralOperatorDeclaration - Check whether the declaration 15942 /// of this literal operator function is well-formed. If so, returns 15943 /// false; otherwise, emits appropriate diagnostics and returns true. 15944 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 15945 if (isa<CXXMethodDecl>(FnDecl)) { 15946 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 15947 << FnDecl->getDeclName(); 15948 return true; 15949 } 15950 15951 if (FnDecl->isExternC()) { 15952 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 15953 if (const LinkageSpecDecl *LSD = 15954 FnDecl->getDeclContext()->getExternCContext()) 15955 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 15956 return true; 15957 } 15958 15959 // This might be the definition of a literal operator template. 15960 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 15961 15962 // This might be a specialization of a literal operator template. 15963 if (!TpDecl) 15964 TpDecl = FnDecl->getPrimaryTemplate(); 15965 15966 // template <char...> type operator "" name() and 15967 // template <class T, T...> type operator "" name() are the only valid 15968 // template signatures, and the only valid signatures with no parameters. 15969 // 15970 // C++20 also allows template <SomeClass T> type operator "" name(). 15971 if (TpDecl) { 15972 if (FnDecl->param_size() != 0) { 15973 Diag(FnDecl->getLocation(), 15974 diag::err_literal_operator_template_with_params); 15975 return true; 15976 } 15977 15978 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 15979 return true; 15980 15981 } else if (FnDecl->param_size() == 1) { 15982 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 15983 15984 QualType ParamType = Param->getType().getUnqualifiedType(); 15985 15986 // Only unsigned long long int, long double, any character type, and const 15987 // char * are allowed as the only parameters. 15988 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 15989 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 15990 Context.hasSameType(ParamType, Context.CharTy) || 15991 Context.hasSameType(ParamType, Context.WideCharTy) || 15992 Context.hasSameType(ParamType, Context.Char8Ty) || 15993 Context.hasSameType(ParamType, Context.Char16Ty) || 15994 Context.hasSameType(ParamType, Context.Char32Ty)) { 15995 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 15996 QualType InnerType = Ptr->getPointeeType(); 15997 15998 // Pointer parameter must be a const char *. 15999 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 16000 Context.CharTy) && 16001 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 16002 Diag(Param->getSourceRange().getBegin(), 16003 diag::err_literal_operator_param) 16004 << ParamType << "'const char *'" << Param->getSourceRange(); 16005 return true; 16006 } 16007 16008 } else if (ParamType->isRealFloatingType()) { 16009 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16010 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 16011 return true; 16012 16013 } else if (ParamType->isIntegerType()) { 16014 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16015 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 16016 return true; 16017 16018 } else { 16019 Diag(Param->getSourceRange().getBegin(), 16020 diag::err_literal_operator_invalid_param) 16021 << ParamType << Param->getSourceRange(); 16022 return true; 16023 } 16024 16025 } else if (FnDecl->param_size() == 2) { 16026 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 16027 16028 // First, verify that the first parameter is correct. 16029 16030 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 16031 16032 // Two parameter function must have a pointer to const as a 16033 // first parameter; let's strip those qualifiers. 16034 const PointerType *PT = FirstParamType->getAs<PointerType>(); 16035 16036 if (!PT) { 16037 Diag((*Param)->getSourceRange().getBegin(), 16038 diag::err_literal_operator_param) 16039 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16040 return true; 16041 } 16042 16043 QualType PointeeType = PT->getPointeeType(); 16044 // First parameter must be const 16045 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 16046 Diag((*Param)->getSourceRange().getBegin(), 16047 diag::err_literal_operator_param) 16048 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16049 return true; 16050 } 16051 16052 QualType InnerType = PointeeType.getUnqualifiedType(); 16053 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 16054 // const char32_t* are allowed as the first parameter to a two-parameter 16055 // function 16056 if (!(Context.hasSameType(InnerType, Context.CharTy) || 16057 Context.hasSameType(InnerType, Context.WideCharTy) || 16058 Context.hasSameType(InnerType, Context.Char8Ty) || 16059 Context.hasSameType(InnerType, Context.Char16Ty) || 16060 Context.hasSameType(InnerType, Context.Char32Ty))) { 16061 Diag((*Param)->getSourceRange().getBegin(), 16062 diag::err_literal_operator_param) 16063 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16064 return true; 16065 } 16066 16067 // Move on to the second and final parameter. 16068 ++Param; 16069 16070 // The second parameter must be a std::size_t. 16071 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 16072 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 16073 Diag((*Param)->getSourceRange().getBegin(), 16074 diag::err_literal_operator_param) 16075 << SecondParamType << Context.getSizeType() 16076 << (*Param)->getSourceRange(); 16077 return true; 16078 } 16079 } else { 16080 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 16081 return true; 16082 } 16083 16084 // Parameters are good. 16085 16086 // A parameter-declaration-clause containing a default argument is not 16087 // equivalent to any of the permitted forms. 16088 for (auto Param : FnDecl->parameters()) { 16089 if (Param->hasDefaultArg()) { 16090 Diag(Param->getDefaultArgRange().getBegin(), 16091 diag::err_literal_operator_default_argument) 16092 << Param->getDefaultArgRange(); 16093 break; 16094 } 16095 } 16096 16097 StringRef LiteralName 16098 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); 16099 if (LiteralName[0] != '_' && 16100 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 16101 // C++11 [usrlit.suffix]p1: 16102 // Literal suffix identifiers that do not start with an underscore 16103 // are reserved for future standardization. 16104 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 16105 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); 16106 } 16107 16108 return false; 16109 } 16110 16111 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 16112 /// linkage specification, including the language and (if present) 16113 /// the '{'. ExternLoc is the location of the 'extern', Lang is the 16114 /// language string literal. LBraceLoc, if valid, provides the location of 16115 /// the '{' brace. Otherwise, this linkage specification does not 16116 /// have any braces. 16117 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 16118 Expr *LangStr, 16119 SourceLocation LBraceLoc) { 16120 StringLiteral *Lit = cast<StringLiteral>(LangStr); 16121 if (!Lit->isAscii()) { 16122 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) 16123 << LangStr->getSourceRange(); 16124 return nullptr; 16125 } 16126 16127 StringRef Lang = Lit->getString(); 16128 LinkageSpecDecl::LanguageIDs Language; 16129 if (Lang == "C") 16130 Language = LinkageSpecDecl::lang_c; 16131 else if (Lang == "C++") 16132 Language = LinkageSpecDecl::lang_cxx; 16133 else { 16134 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 16135 << LangStr->getSourceRange(); 16136 return nullptr; 16137 } 16138 16139 // FIXME: Add all the various semantics of linkage specifications 16140 16141 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 16142 LangStr->getExprLoc(), Language, 16143 LBraceLoc.isValid()); 16144 CurContext->addDecl(D); 16145 PushDeclContext(S, D); 16146 return D; 16147 } 16148 16149 /// ActOnFinishLinkageSpecification - Complete the definition of 16150 /// the C++ linkage specification LinkageSpec. If RBraceLoc is 16151 /// valid, it's the position of the closing '}' brace in a linkage 16152 /// specification that uses braces. 16153 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 16154 Decl *LinkageSpec, 16155 SourceLocation RBraceLoc) { 16156 if (RBraceLoc.isValid()) { 16157 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 16158 LSDecl->setRBraceLoc(RBraceLoc); 16159 } 16160 PopDeclContext(); 16161 return LinkageSpec; 16162 } 16163 16164 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 16165 const ParsedAttributesView &AttrList, 16166 SourceLocation SemiLoc) { 16167 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 16168 // Attribute declarations appertain to empty declaration so we handle 16169 // them here. 16170 ProcessDeclAttributeList(S, ED, AttrList); 16171 16172 CurContext->addDecl(ED); 16173 return ED; 16174 } 16175 16176 /// Perform semantic analysis for the variable declaration that 16177 /// occurs within a C++ catch clause, returning the newly-created 16178 /// variable. 16179 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 16180 TypeSourceInfo *TInfo, 16181 SourceLocation StartLoc, 16182 SourceLocation Loc, 16183 IdentifierInfo *Name) { 16184 bool Invalid = false; 16185 QualType ExDeclType = TInfo->getType(); 16186 16187 // Arrays and functions decay. 16188 if (ExDeclType->isArrayType()) 16189 ExDeclType = Context.getArrayDecayedType(ExDeclType); 16190 else if (ExDeclType->isFunctionType()) 16191 ExDeclType = Context.getPointerType(ExDeclType); 16192 16193 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 16194 // The exception-declaration shall not denote a pointer or reference to an 16195 // incomplete type, other than [cv] void*. 16196 // N2844 forbids rvalue references. 16197 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 16198 Diag(Loc, diag::err_catch_rvalue_ref); 16199 Invalid = true; 16200 } 16201 16202 if (ExDeclType->isVariablyModifiedType()) { 16203 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 16204 Invalid = true; 16205 } 16206 16207 QualType BaseType = ExDeclType; 16208 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 16209 unsigned DK = diag::err_catch_incomplete; 16210 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 16211 BaseType = Ptr->getPointeeType(); 16212 Mode = 1; 16213 DK = diag::err_catch_incomplete_ptr; 16214 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 16215 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 16216 BaseType = Ref->getPointeeType(); 16217 Mode = 2; 16218 DK = diag::err_catch_incomplete_ref; 16219 } 16220 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 16221 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 16222 Invalid = true; 16223 16224 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { 16225 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; 16226 Invalid = true; 16227 } 16228 16229 if (!Invalid && !ExDeclType->isDependentType() && 16230 RequireNonAbstractType(Loc, ExDeclType, 16231 diag::err_abstract_type_in_decl, 16232 AbstractVariableType)) 16233 Invalid = true; 16234 16235 // Only the non-fragile NeXT runtime currently supports C++ catches 16236 // of ObjC types, and no runtime supports catching ObjC types by value. 16237 if (!Invalid && getLangOpts().ObjC) { 16238 QualType T = ExDeclType; 16239 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 16240 T = RT->getPointeeType(); 16241 16242 if (T->isObjCObjectType()) { 16243 Diag(Loc, diag::err_objc_object_catch); 16244 Invalid = true; 16245 } else if (T->isObjCObjectPointerType()) { 16246 // FIXME: should this be a test for macosx-fragile specifically? 16247 if (getLangOpts().ObjCRuntime.isFragile()) 16248 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 16249 } 16250 } 16251 16252 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 16253 ExDeclType, TInfo, SC_None); 16254 ExDecl->setExceptionVariable(true); 16255 16256 // In ARC, infer 'retaining' for variables of retainable type. 16257 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 16258 Invalid = true; 16259 16260 if (!Invalid && !ExDeclType->isDependentType()) { 16261 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 16262 // Insulate this from anything else we might currently be parsing. 16263 EnterExpressionEvaluationContext scope( 16264 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 16265 16266 // C++ [except.handle]p16: 16267 // The object declared in an exception-declaration or, if the 16268 // exception-declaration does not specify a name, a temporary (12.2) is 16269 // copy-initialized (8.5) from the exception object. [...] 16270 // The object is destroyed when the handler exits, after the destruction 16271 // of any automatic objects initialized within the handler. 16272 // 16273 // We just pretend to initialize the object with itself, then make sure 16274 // it can be destroyed later. 16275 QualType initType = Context.getExceptionObjectType(ExDeclType); 16276 16277 InitializedEntity entity = 16278 InitializedEntity::InitializeVariable(ExDecl); 16279 InitializationKind initKind = 16280 InitializationKind::CreateCopy(Loc, SourceLocation()); 16281 16282 Expr *opaqueValue = 16283 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 16284 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 16285 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 16286 if (result.isInvalid()) 16287 Invalid = true; 16288 else { 16289 // If the constructor used was non-trivial, set this as the 16290 // "initializer". 16291 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 16292 if (!construct->getConstructor()->isTrivial()) { 16293 Expr *init = MaybeCreateExprWithCleanups(construct); 16294 ExDecl->setInit(init); 16295 } 16296 16297 // And make sure it's destructable. 16298 FinalizeVarWithDestructor(ExDecl, recordType); 16299 } 16300 } 16301 } 16302 16303 if (Invalid) 16304 ExDecl->setInvalidDecl(); 16305 16306 return ExDecl; 16307 } 16308 16309 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 16310 /// handler. 16311 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 16312 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16313 bool Invalid = D.isInvalidType(); 16314 16315 // Check for unexpanded parameter packs. 16316 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16317 UPPC_ExceptionType)) { 16318 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 16319 D.getIdentifierLoc()); 16320 Invalid = true; 16321 } 16322 16323 IdentifierInfo *II = D.getIdentifier(); 16324 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 16325 LookupOrdinaryName, 16326 ForVisibleRedeclaration)) { 16327 // The scope should be freshly made just for us. There is just no way 16328 // it contains any previous declaration, except for function parameters in 16329 // a function-try-block's catch statement. 16330 assert(!S->isDeclScope(PrevDecl)); 16331 if (isDeclInScope(PrevDecl, CurContext, S)) { 16332 Diag(D.getIdentifierLoc(), diag::err_redefinition) 16333 << D.getIdentifier(); 16334 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 16335 Invalid = true; 16336 } else if (PrevDecl->isTemplateParameter()) 16337 // Maybe we will complain about the shadowed template parameter. 16338 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16339 } 16340 16341 if (D.getCXXScopeSpec().isSet() && !Invalid) { 16342 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 16343 << D.getCXXScopeSpec().getRange(); 16344 Invalid = true; 16345 } 16346 16347 VarDecl *ExDecl = BuildExceptionDeclaration( 16348 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 16349 if (Invalid) 16350 ExDecl->setInvalidDecl(); 16351 16352 // Add the exception declaration into this scope. 16353 if (II) 16354 PushOnScopeChains(ExDecl, S); 16355 else 16356 CurContext->addDecl(ExDecl); 16357 16358 ProcessDeclAttributes(S, ExDecl, D); 16359 return ExDecl; 16360 } 16361 16362 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16363 Expr *AssertExpr, 16364 Expr *AssertMessageExpr, 16365 SourceLocation RParenLoc) { 16366 StringLiteral *AssertMessage = 16367 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; 16368 16369 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 16370 return nullptr; 16371 16372 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 16373 AssertMessage, RParenLoc, false); 16374 } 16375 16376 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16377 Expr *AssertExpr, 16378 StringLiteral *AssertMessage, 16379 SourceLocation RParenLoc, 16380 bool Failed) { 16381 assert(AssertExpr != nullptr && "Expected non-null condition"); 16382 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 16383 !Failed) { 16384 // In a static_assert-declaration, the constant-expression shall be a 16385 // constant expression that can be contextually converted to bool. 16386 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 16387 if (Converted.isInvalid()) 16388 Failed = true; 16389 16390 ExprResult FullAssertExpr = 16391 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 16392 /*DiscardedValue*/ false, 16393 /*IsConstexpr*/ true); 16394 if (FullAssertExpr.isInvalid()) 16395 Failed = true; 16396 else 16397 AssertExpr = FullAssertExpr.get(); 16398 16399 llvm::APSInt Cond; 16400 if (!Failed && VerifyIntegerConstantExpression( 16401 AssertExpr, &Cond, 16402 diag::err_static_assert_expression_is_not_constant) 16403 .isInvalid()) 16404 Failed = true; 16405 16406 if (!Failed && !Cond) { 16407 SmallString<256> MsgBuffer; 16408 llvm::raw_svector_ostream Msg(MsgBuffer); 16409 if (AssertMessage) 16410 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy()); 16411 16412 Expr *InnerCond = nullptr; 16413 std::string InnerCondDescription; 16414 std::tie(InnerCond, InnerCondDescription) = 16415 findFailedBooleanCondition(Converted.get()); 16416 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 16417 // Drill down into concept specialization expressions to see why they 16418 // weren't satisfied. 16419 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16420 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16421 ConstraintSatisfaction Satisfaction; 16422 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 16423 DiagnoseUnsatisfiedConstraint(Satisfaction); 16424 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 16425 && !isa<IntegerLiteral>(InnerCond)) { 16426 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) 16427 << InnerCondDescription << !AssertMessage 16428 << Msg.str() << InnerCond->getSourceRange(); 16429 } else { 16430 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16431 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16432 } 16433 Failed = true; 16434 } 16435 } else { 16436 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 16437 /*DiscardedValue*/false, 16438 /*IsConstexpr*/true); 16439 if (FullAssertExpr.isInvalid()) 16440 Failed = true; 16441 else 16442 AssertExpr = FullAssertExpr.get(); 16443 } 16444 16445 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 16446 AssertExpr, AssertMessage, RParenLoc, 16447 Failed); 16448 16449 CurContext->addDecl(Decl); 16450 return Decl; 16451 } 16452 16453 /// Perform semantic analysis of the given friend type declaration. 16454 /// 16455 /// \returns A friend declaration that. 16456 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 16457 SourceLocation FriendLoc, 16458 TypeSourceInfo *TSInfo) { 16459 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); 16460 16461 QualType T = TSInfo->getType(); 16462 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); 16463 16464 // C++03 [class.friend]p2: 16465 // An elaborated-type-specifier shall be used in a friend declaration 16466 // for a class.* 16467 // 16468 // * The class-key of the elaborated-type-specifier is required. 16469 if (!CodeSynthesisContexts.empty()) { 16470 // Do not complain about the form of friend template types during any kind 16471 // of code synthesis. For template instantiation, we will have complained 16472 // when the template was defined. 16473 } else { 16474 if (!T->isElaboratedTypeSpecifier()) { 16475 // If we evaluated the type to a record type, suggest putting 16476 // a tag in front. 16477 if (const RecordType *RT = T->getAs<RecordType>()) { 16478 RecordDecl *RD = RT->getDecl(); 16479 16480 SmallString<16> InsertionText(" "); 16481 InsertionText += RD->getKindName(); 16482 16483 Diag(TypeRange.getBegin(), 16484 getLangOpts().CPlusPlus11 ? 16485 diag::warn_cxx98_compat_unelaborated_friend_type : 16486 diag::ext_unelaborated_friend_type) 16487 << (unsigned) RD->getTagKind() 16488 << T 16489 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 16490 InsertionText); 16491 } else { 16492 Diag(FriendLoc, 16493 getLangOpts().CPlusPlus11 ? 16494 diag::warn_cxx98_compat_nonclass_type_friend : 16495 diag::ext_nonclass_type_friend) 16496 << T 16497 << TypeRange; 16498 } 16499 } else if (T->getAs<EnumType>()) { 16500 Diag(FriendLoc, 16501 getLangOpts().CPlusPlus11 ? 16502 diag::warn_cxx98_compat_enum_friend : 16503 diag::ext_enum_friend) 16504 << T 16505 << TypeRange; 16506 } 16507 16508 // C++11 [class.friend]p3: 16509 // A friend declaration that does not declare a function shall have one 16510 // of the following forms: 16511 // friend elaborated-type-specifier ; 16512 // friend simple-type-specifier ; 16513 // friend typename-specifier ; 16514 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 16515 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 16516 } 16517 16518 // If the type specifier in a friend declaration designates a (possibly 16519 // cv-qualified) class type, that class is declared as a friend; otherwise, 16520 // the friend declaration is ignored. 16521 return FriendDecl::Create(Context, CurContext, 16522 TSInfo->getTypeLoc().getBeginLoc(), TSInfo, 16523 FriendLoc); 16524 } 16525 16526 /// Handle a friend tag declaration where the scope specifier was 16527 /// templated. 16528 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, 16529 unsigned TagSpec, SourceLocation TagLoc, 16530 CXXScopeSpec &SS, IdentifierInfo *Name, 16531 SourceLocation NameLoc, 16532 const ParsedAttributesView &Attr, 16533 MultiTemplateParamsArg TempParamLists) { 16534 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 16535 16536 bool IsMemberSpecialization = false; 16537 bool Invalid = false; 16538 16539 if (TemplateParameterList *TemplateParams = 16540 MatchTemplateParametersToScopeSpecifier( 16541 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 16542 IsMemberSpecialization, Invalid)) { 16543 if (TemplateParams->size() > 0) { 16544 // This is a declaration of a class template. 16545 if (Invalid) 16546 return nullptr; 16547 16548 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 16549 NameLoc, Attr, TemplateParams, AS_public, 16550 /*ModulePrivateLoc=*/SourceLocation(), 16551 FriendLoc, TempParamLists.size() - 1, 16552 TempParamLists.data()).get(); 16553 } else { 16554 // The "template<>" header is extraneous. 16555 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 16556 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 16557 IsMemberSpecialization = true; 16558 } 16559 } 16560 16561 if (Invalid) return nullptr; 16562 16563 bool isAllExplicitSpecializations = true; 16564 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 16565 if (TempParamLists[I]->size()) { 16566 isAllExplicitSpecializations = false; 16567 break; 16568 } 16569 } 16570 16571 // FIXME: don't ignore attributes. 16572 16573 // If it's explicit specializations all the way down, just forget 16574 // about the template header and build an appropriate non-templated 16575 // friend. TODO: for source fidelity, remember the headers. 16576 if (isAllExplicitSpecializations) { 16577 if (SS.isEmpty()) { 16578 bool Owned = false; 16579 bool IsDependent = false; 16580 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, 16581 Attr, AS_public, 16582 /*ModulePrivateLoc=*/SourceLocation(), 16583 MultiTemplateParamsArg(), Owned, IsDependent, 16584 /*ScopedEnumKWLoc=*/SourceLocation(), 16585 /*ScopedEnumUsesClassTag=*/false, 16586 /*UnderlyingType=*/TypeResult(), 16587 /*IsTypeSpecifier=*/false, 16588 /*IsTemplateParamOrArg=*/false); 16589 } 16590 16591 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 16592 ElaboratedTypeKeyword Keyword 16593 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16594 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 16595 *Name, NameLoc); 16596 if (T.isNull()) 16597 return nullptr; 16598 16599 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16600 if (isa<DependentNameType>(T)) { 16601 DependentNameTypeLoc TL = 16602 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16603 TL.setElaboratedKeywordLoc(TagLoc); 16604 TL.setQualifierLoc(QualifierLoc); 16605 TL.setNameLoc(NameLoc); 16606 } else { 16607 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 16608 TL.setElaboratedKeywordLoc(TagLoc); 16609 TL.setQualifierLoc(QualifierLoc); 16610 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 16611 } 16612 16613 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16614 TSI, FriendLoc, TempParamLists); 16615 Friend->setAccess(AS_public); 16616 CurContext->addDecl(Friend); 16617 return Friend; 16618 } 16619 16620 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 16621 16622 16623 16624 // Handle the case of a templated-scope friend class. e.g. 16625 // template <class T> class A<T>::B; 16626 // FIXME: we don't support these right now. 16627 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 16628 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 16629 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16630 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 16631 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16632 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16633 TL.setElaboratedKeywordLoc(TagLoc); 16634 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 16635 TL.setNameLoc(NameLoc); 16636 16637 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16638 TSI, FriendLoc, TempParamLists); 16639 Friend->setAccess(AS_public); 16640 Friend->setUnsupportedFriend(true); 16641 CurContext->addDecl(Friend); 16642 return Friend; 16643 } 16644 16645 /// Handle a friend type declaration. This works in tandem with 16646 /// ActOnTag. 16647 /// 16648 /// Notes on friend class templates: 16649 /// 16650 /// We generally treat friend class declarations as if they were 16651 /// declaring a class. So, for example, the elaborated type specifier 16652 /// in a friend declaration is required to obey the restrictions of a 16653 /// class-head (i.e. no typedefs in the scope chain), template 16654 /// parameters are required to match up with simple template-ids, &c. 16655 /// However, unlike when declaring a template specialization, it's 16656 /// okay to refer to a template specialization without an empty 16657 /// template parameter declaration, e.g. 16658 /// friend class A<T>::B<unsigned>; 16659 /// We permit this as a special case; if there are any template 16660 /// parameters present at all, require proper matching, i.e. 16661 /// template <> template \<class T> friend class A<int>::B; 16662 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 16663 MultiTemplateParamsArg TempParams) { 16664 SourceLocation Loc = DS.getBeginLoc(); 16665 16666 assert(DS.isFriendSpecified()); 16667 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 16668 16669 // C++ [class.friend]p3: 16670 // A friend declaration that does not declare a function shall have one of 16671 // the following forms: 16672 // friend elaborated-type-specifier ; 16673 // friend simple-type-specifier ; 16674 // friend typename-specifier ; 16675 // 16676 // Any declaration with a type qualifier does not have that form. (It's 16677 // legal to specify a qualified type as a friend, you just can't write the 16678 // keywords.) 16679 if (DS.getTypeQualifiers()) { 16680 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 16681 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 16682 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 16683 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 16684 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 16685 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 16686 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 16687 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 16688 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 16689 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 16690 } 16691 16692 // Try to convert the decl specifier to a type. This works for 16693 // friend templates because ActOnTag never produces a ClassTemplateDecl 16694 // for a TUK_Friend. 16695 Declarator TheDeclarator(DS, DeclaratorContext::Member); 16696 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 16697 QualType T = TSI->getType(); 16698 if (TheDeclarator.isInvalidType()) 16699 return nullptr; 16700 16701 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 16702 return nullptr; 16703 16704 // This is definitely an error in C++98. It's probably meant to 16705 // be forbidden in C++0x, too, but the specification is just 16706 // poorly written. 16707 // 16708 // The problem is with declarations like the following: 16709 // template <T> friend A<T>::foo; 16710 // where deciding whether a class C is a friend or not now hinges 16711 // on whether there exists an instantiation of A that causes 16712 // 'foo' to equal C. There are restrictions on class-heads 16713 // (which we declare (by fiat) elaborated friend declarations to 16714 // be) that makes this tractable. 16715 // 16716 // FIXME: handle "template <> friend class A<T>;", which 16717 // is possibly well-formed? Who even knows? 16718 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 16719 Diag(Loc, diag::err_tagless_friend_type_template) 16720 << DS.getSourceRange(); 16721 return nullptr; 16722 } 16723 16724 // C++98 [class.friend]p1: A friend of a class is a function 16725 // or class that is not a member of the class . . . 16726 // This is fixed in DR77, which just barely didn't make the C++03 16727 // deadline. It's also a very silly restriction that seriously 16728 // affects inner classes and which nobody else seems to implement; 16729 // thus we never diagnose it, not even in -pedantic. 16730 // 16731 // But note that we could warn about it: it's always useless to 16732 // friend one of your own members (it's not, however, worthless to 16733 // friend a member of an arbitrary specialization of your template). 16734 16735 Decl *D; 16736 if (!TempParams.empty()) 16737 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 16738 TempParams, 16739 TSI, 16740 DS.getFriendSpecLoc()); 16741 else 16742 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 16743 16744 if (!D) 16745 return nullptr; 16746 16747 D->setAccess(AS_public); 16748 CurContext->addDecl(D); 16749 16750 return D; 16751 } 16752 16753 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 16754 MultiTemplateParamsArg TemplateParams) { 16755 const DeclSpec &DS = D.getDeclSpec(); 16756 16757 assert(DS.isFriendSpecified()); 16758 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 16759 16760 SourceLocation Loc = D.getIdentifierLoc(); 16761 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16762 16763 // C++ [class.friend]p1 16764 // A friend of a class is a function or class.... 16765 // Note that this sees through typedefs, which is intended. 16766 // It *doesn't* see through dependent types, which is correct 16767 // according to [temp.arg.type]p3: 16768 // If a declaration acquires a function type through a 16769 // type dependent on a template-parameter and this causes 16770 // a declaration that does not use the syntactic form of a 16771 // function declarator to have a function type, the program 16772 // is ill-formed. 16773 if (!TInfo->getType()->isFunctionType()) { 16774 Diag(Loc, diag::err_unexpected_friend); 16775 16776 // It might be worthwhile to try to recover by creating an 16777 // appropriate declaration. 16778 return nullptr; 16779 } 16780 16781 // C++ [namespace.memdef]p3 16782 // - If a friend declaration in a non-local class first declares a 16783 // class or function, the friend class or function is a member 16784 // of the innermost enclosing namespace. 16785 // - The name of the friend is not found by simple name lookup 16786 // until a matching declaration is provided in that namespace 16787 // scope (either before or after the class declaration granting 16788 // friendship). 16789 // - If a friend function is called, its name may be found by the 16790 // name lookup that considers functions from namespaces and 16791 // classes associated with the types of the function arguments. 16792 // - When looking for a prior declaration of a class or a function 16793 // declared as a friend, scopes outside the innermost enclosing 16794 // namespace scope are not considered. 16795 16796 CXXScopeSpec &SS = D.getCXXScopeSpec(); 16797 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 16798 assert(NameInfo.getName()); 16799 16800 // Check for unexpanded parameter packs. 16801 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 16802 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 16803 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 16804 return nullptr; 16805 16806 // The context we found the declaration in, or in which we should 16807 // create the declaration. 16808 DeclContext *DC; 16809 Scope *DCScope = S; 16810 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 16811 ForExternalRedeclaration); 16812 16813 // There are five cases here. 16814 // - There's no scope specifier and we're in a local class. Only look 16815 // for functions declared in the immediately-enclosing block scope. 16816 // We recover from invalid scope qualifiers as if they just weren't there. 16817 FunctionDecl *FunctionContainingLocalClass = nullptr; 16818 if ((SS.isInvalid() || !SS.isSet()) && 16819 (FunctionContainingLocalClass = 16820 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 16821 // C++11 [class.friend]p11: 16822 // If a friend declaration appears in a local class and the name 16823 // specified is an unqualified name, a prior declaration is 16824 // looked up without considering scopes that are outside the 16825 // innermost enclosing non-class scope. For a friend function 16826 // declaration, if there is no prior declaration, the program is 16827 // ill-formed. 16828 16829 // Find the innermost enclosing non-class scope. This is the block 16830 // scope containing the local class definition (or for a nested class, 16831 // the outer local class). 16832 DCScope = S->getFnParent(); 16833 16834 // Look up the function name in the scope. 16835 Previous.clear(LookupLocalFriendName); 16836 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 16837 16838 if (!Previous.empty()) { 16839 // All possible previous declarations must have the same context: 16840 // either they were declared at block scope or they are members of 16841 // one of the enclosing local classes. 16842 DC = Previous.getRepresentativeDecl()->getDeclContext(); 16843 } else { 16844 // This is ill-formed, but provide the context that we would have 16845 // declared the function in, if we were permitted to, for error recovery. 16846 DC = FunctionContainingLocalClass; 16847 } 16848 adjustContextForLocalExternDecl(DC); 16849 16850 // C++ [class.friend]p6: 16851 // A function can be defined in a friend declaration of a class if and 16852 // only if the class is a non-local class (9.8), the function name is 16853 // unqualified, and the function has namespace scope. 16854 if (D.isFunctionDefinition()) { 16855 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 16856 } 16857 16858 // - There's no scope specifier, in which case we just go to the 16859 // appropriate scope and look for a function or function template 16860 // there as appropriate. 16861 } else if (SS.isInvalid() || !SS.isSet()) { 16862 // C++11 [namespace.memdef]p3: 16863 // If the name in a friend declaration is neither qualified nor 16864 // a template-id and the declaration is a function or an 16865 // elaborated-type-specifier, the lookup to determine whether 16866 // the entity has been previously declared shall not consider 16867 // any scopes outside the innermost enclosing namespace. 16868 bool isTemplateId = 16869 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 16870 16871 // Find the appropriate context according to the above. 16872 DC = CurContext; 16873 16874 // Skip class contexts. If someone can cite chapter and verse 16875 // for this behavior, that would be nice --- it's what GCC and 16876 // EDG do, and it seems like a reasonable intent, but the spec 16877 // really only says that checks for unqualified existing 16878 // declarations should stop at the nearest enclosing namespace, 16879 // not that they should only consider the nearest enclosing 16880 // namespace. 16881 while (DC->isRecord()) 16882 DC = DC->getParent(); 16883 16884 DeclContext *LookupDC = DC; 16885 while (LookupDC->isTransparentContext()) 16886 LookupDC = LookupDC->getParent(); 16887 16888 while (true) { 16889 LookupQualifiedName(Previous, LookupDC); 16890 16891 if (!Previous.empty()) { 16892 DC = LookupDC; 16893 break; 16894 } 16895 16896 if (isTemplateId) { 16897 if (isa<TranslationUnitDecl>(LookupDC)) break; 16898 } else { 16899 if (LookupDC->isFileContext()) break; 16900 } 16901 LookupDC = LookupDC->getParent(); 16902 } 16903 16904 DCScope = getScopeForDeclContext(S, DC); 16905 16906 // - There's a non-dependent scope specifier, in which case we 16907 // compute it and do a previous lookup there for a function 16908 // or function template. 16909 } else if (!SS.getScopeRep()->isDependent()) { 16910 DC = computeDeclContext(SS); 16911 if (!DC) return nullptr; 16912 16913 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 16914 16915 LookupQualifiedName(Previous, DC); 16916 16917 // C++ [class.friend]p1: A friend of a class is a function or 16918 // class that is not a member of the class . . . 16919 if (DC->Equals(CurContext)) 16920 Diag(DS.getFriendSpecLoc(), 16921 getLangOpts().CPlusPlus11 ? 16922 diag::warn_cxx98_compat_friend_is_member : 16923 diag::err_friend_is_member); 16924 16925 if (D.isFunctionDefinition()) { 16926 // C++ [class.friend]p6: 16927 // A function can be defined in a friend declaration of a class if and 16928 // only if the class is a non-local class (9.8), the function name is 16929 // unqualified, and the function has namespace scope. 16930 // 16931 // FIXME: We should only do this if the scope specifier names the 16932 // innermost enclosing namespace; otherwise the fixit changes the 16933 // meaning of the code. 16934 SemaDiagnosticBuilder DB 16935 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 16936 16937 DB << SS.getScopeRep(); 16938 if (DC->isFileContext()) 16939 DB << FixItHint::CreateRemoval(SS.getRange()); 16940 SS.clear(); 16941 } 16942 16943 // - There's a scope specifier that does not match any template 16944 // parameter lists, in which case we use some arbitrary context, 16945 // create a method or method template, and wait for instantiation. 16946 // - There's a scope specifier that does match some template 16947 // parameter lists, which we don't handle right now. 16948 } else { 16949 if (D.isFunctionDefinition()) { 16950 // C++ [class.friend]p6: 16951 // A function can be defined in a friend declaration of a class if and 16952 // only if the class is a non-local class (9.8), the function name is 16953 // unqualified, and the function has namespace scope. 16954 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 16955 << SS.getScopeRep(); 16956 } 16957 16958 DC = CurContext; 16959 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 16960 } 16961 16962 if (!DC->isRecord()) { 16963 int DiagArg = -1; 16964 switch (D.getName().getKind()) { 16965 case UnqualifiedIdKind::IK_ConstructorTemplateId: 16966 case UnqualifiedIdKind::IK_ConstructorName: 16967 DiagArg = 0; 16968 break; 16969 case UnqualifiedIdKind::IK_DestructorName: 16970 DiagArg = 1; 16971 break; 16972 case UnqualifiedIdKind::IK_ConversionFunctionId: 16973 DiagArg = 2; 16974 break; 16975 case UnqualifiedIdKind::IK_DeductionGuideName: 16976 DiagArg = 3; 16977 break; 16978 case UnqualifiedIdKind::IK_Identifier: 16979 case UnqualifiedIdKind::IK_ImplicitSelfParam: 16980 case UnqualifiedIdKind::IK_LiteralOperatorId: 16981 case UnqualifiedIdKind::IK_OperatorFunctionId: 16982 case UnqualifiedIdKind::IK_TemplateId: 16983 break; 16984 } 16985 // This implies that it has to be an operator or function. 16986 if (DiagArg >= 0) { 16987 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 16988 return nullptr; 16989 } 16990 } 16991 16992 // FIXME: This is an egregious hack to cope with cases where the scope stack 16993 // does not contain the declaration context, i.e., in an out-of-line 16994 // definition of a class. 16995 Scope FakeDCScope(S, Scope::DeclScope, Diags); 16996 if (!DCScope) { 16997 FakeDCScope.setEntity(DC); 16998 DCScope = &FakeDCScope; 16999 } 17000 17001 bool AddToScope = true; 17002 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 17003 TemplateParams, AddToScope); 17004 if (!ND) return nullptr; 17005 17006 assert(ND->getLexicalDeclContext() == CurContext); 17007 17008 // If we performed typo correction, we might have added a scope specifier 17009 // and changed the decl context. 17010 DC = ND->getDeclContext(); 17011 17012 // Add the function declaration to the appropriate lookup tables, 17013 // adjusting the redeclarations list as necessary. We don't 17014 // want to do this yet if the friending class is dependent. 17015 // 17016 // Also update the scope-based lookup if the target context's 17017 // lookup context is in lexical scope. 17018 if (!CurContext->isDependentContext()) { 17019 DC = DC->getRedeclContext(); 17020 DC->makeDeclVisibleInContext(ND); 17021 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 17022 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 17023 } 17024 17025 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 17026 D.getIdentifierLoc(), ND, 17027 DS.getFriendSpecLoc()); 17028 FrD->setAccess(AS_public); 17029 CurContext->addDecl(FrD); 17030 17031 if (ND->isInvalidDecl()) { 17032 FrD->setInvalidDecl(); 17033 } else { 17034 if (DC->isRecord()) CheckFriendAccess(ND); 17035 17036 FunctionDecl *FD; 17037 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 17038 FD = FTD->getTemplatedDecl(); 17039 else 17040 FD = cast<FunctionDecl>(ND); 17041 17042 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 17043 // default argument expression, that declaration shall be a definition 17044 // and shall be the only declaration of the function or function 17045 // template in the translation unit. 17046 if (functionDeclHasDefaultArgument(FD)) { 17047 // We can't look at FD->getPreviousDecl() because it may not have been set 17048 // if we're in a dependent context. If the function is known to be a 17049 // redeclaration, we will have narrowed Previous down to the right decl. 17050 if (D.isRedeclaration()) { 17051 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 17052 Diag(Previous.getRepresentativeDecl()->getLocation(), 17053 diag::note_previous_declaration); 17054 } else if (!D.isFunctionDefinition()) 17055 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 17056 } 17057 17058 // Mark templated-scope function declarations as unsupported. 17059 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 17060 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 17061 << SS.getScopeRep() << SS.getRange() 17062 << cast<CXXRecordDecl>(CurContext); 17063 FrD->setUnsupportedFriend(true); 17064 } 17065 } 17066 17067 warnOnReservedIdentifier(ND); 17068 17069 return ND; 17070 } 17071 17072 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 17073 AdjustDeclIfTemplate(Dcl); 17074 17075 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 17076 if (!Fn) { 17077 Diag(DelLoc, diag::err_deleted_non_function); 17078 return; 17079 } 17080 17081 // Deleted function does not have a body. 17082 Fn->setWillHaveBody(false); 17083 17084 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 17085 // Don't consider the implicit declaration we generate for explicit 17086 // specializations. FIXME: Do not generate these implicit declarations. 17087 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 17088 Prev->getPreviousDecl()) && 17089 !Prev->isDefined()) { 17090 Diag(DelLoc, diag::err_deleted_decl_not_first); 17091 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 17092 Prev->isImplicit() ? diag::note_previous_implicit_declaration 17093 : diag::note_previous_declaration); 17094 // We can't recover from this; the declaration might have already 17095 // been used. 17096 Fn->setInvalidDecl(); 17097 return; 17098 } 17099 17100 // To maintain the invariant that functions are only deleted on their first 17101 // declaration, mark the implicitly-instantiated declaration of the 17102 // explicitly-specialized function as deleted instead of marking the 17103 // instantiated redeclaration. 17104 Fn = Fn->getCanonicalDecl(); 17105 } 17106 17107 // dllimport/dllexport cannot be deleted. 17108 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 17109 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 17110 Fn->setInvalidDecl(); 17111 } 17112 17113 // C++11 [basic.start.main]p3: 17114 // A program that defines main as deleted [...] is ill-formed. 17115 if (Fn->isMain()) 17116 Diag(DelLoc, diag::err_deleted_main); 17117 17118 // C++11 [dcl.fct.def.delete]p4: 17119 // A deleted function is implicitly inline. 17120 Fn->setImplicitlyInline(); 17121 Fn->setDeletedAsWritten(); 17122 } 17123 17124 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 17125 if (!Dcl || Dcl->isInvalidDecl()) 17126 return; 17127 17128 auto *FD = dyn_cast<FunctionDecl>(Dcl); 17129 if (!FD) { 17130 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 17131 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 17132 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 17133 return; 17134 } 17135 } 17136 17137 Diag(DefaultLoc, diag::err_default_special_members) 17138 << getLangOpts().CPlusPlus20; 17139 return; 17140 } 17141 17142 // Reject if this can't possibly be a defaultable function. 17143 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 17144 if (!DefKind && 17145 // A dependent function that doesn't locally look defaultable can 17146 // still instantiate to a defaultable function if it's a constructor 17147 // or assignment operator. 17148 (!FD->isDependentContext() || 17149 (!isa<CXXConstructorDecl>(FD) && 17150 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 17151 Diag(DefaultLoc, diag::err_default_special_members) 17152 << getLangOpts().CPlusPlus20; 17153 return; 17154 } 17155 17156 // Issue compatibility warning. We already warned if the operator is 17157 // 'operator<=>' when parsing the '<=>' token. 17158 if (DefKind.isComparison() && 17159 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 17160 Diag(DefaultLoc, getLangOpts().CPlusPlus20 17161 ? diag::warn_cxx17_compat_defaulted_comparison 17162 : diag::ext_defaulted_comparison); 17163 } 17164 17165 FD->setDefaulted(); 17166 FD->setExplicitlyDefaulted(); 17167 17168 // Defer checking functions that are defaulted in a dependent context. 17169 if (FD->isDependentContext()) 17170 return; 17171 17172 // Unset that we will have a body for this function. We might not, 17173 // if it turns out to be trivial, and we don't need this marking now 17174 // that we've marked it as defaulted. 17175 FD->setWillHaveBody(false); 17176 17177 // If this is a comparison's defaulted definition within the record, do 17178 // the checking when the record is complete. 17179 if (DefKind.isComparison() && isa<CXXRecordDecl>(FD->getLexicalDeclContext())) 17180 return; 17181 17182 // If this member fn was defaulted on its first declaration, we will have 17183 // already performed the checking in CheckCompletedCXXClass. Such a 17184 // declaration doesn't trigger an implicit definition. 17185 if (isa<CXXMethodDecl>(FD)) { 17186 const FunctionDecl *Primary = FD; 17187 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 17188 // Ask the template instantiation pattern that actually had the 17189 // '= default' on it. 17190 Primary = Pattern; 17191 if (Primary->getCanonicalDecl()->isDefaulted()) 17192 return; 17193 } 17194 17195 if (DefKind.isComparison()) { 17196 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison())) 17197 FD->setInvalidDecl(); 17198 else 17199 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison()); 17200 } else { 17201 auto *MD = cast<CXXMethodDecl>(FD); 17202 17203 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember())) 17204 MD->setInvalidDecl(); 17205 else 17206 DefineDefaultedFunction(*this, MD, DefaultLoc); 17207 } 17208 } 17209 17210 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 17211 for (Stmt *SubStmt : S->children()) { 17212 if (!SubStmt) 17213 continue; 17214 if (isa<ReturnStmt>(SubStmt)) 17215 Self.Diag(SubStmt->getBeginLoc(), 17216 diag::err_return_in_constructor_handler); 17217 if (!isa<Expr>(SubStmt)) 17218 SearchForReturnInStmt(Self, SubStmt); 17219 } 17220 } 17221 17222 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 17223 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 17224 CXXCatchStmt *Handler = TryBlock->getHandler(I); 17225 SearchForReturnInStmt(*this, Handler); 17226 } 17227 } 17228 17229 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 17230 const CXXMethodDecl *Old) { 17231 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 17232 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 17233 17234 if (OldFT->hasExtParameterInfos()) { 17235 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 17236 // A parameter of the overriding method should be annotated with noescape 17237 // if the corresponding parameter of the overridden method is annotated. 17238 if (OldFT->getExtParameterInfo(I).isNoEscape() && 17239 !NewFT->getExtParameterInfo(I).isNoEscape()) { 17240 Diag(New->getParamDecl(I)->getLocation(), 17241 diag::warn_overriding_method_missing_noescape); 17242 Diag(Old->getParamDecl(I)->getLocation(), 17243 diag::note_overridden_marked_noescape); 17244 } 17245 } 17246 17247 // Virtual overrides must have the same code_seg. 17248 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 17249 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 17250 if ((NewCSA || OldCSA) && 17251 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 17252 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 17253 Diag(Old->getLocation(), diag::note_previous_declaration); 17254 return true; 17255 } 17256 17257 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 17258 17259 // If the calling conventions match, everything is fine 17260 if (NewCC == OldCC) 17261 return false; 17262 17263 // If the calling conventions mismatch because the new function is static, 17264 // suppress the calling convention mismatch error; the error about static 17265 // function override (err_static_overrides_virtual from 17266 // Sema::CheckFunctionDeclaration) is more clear. 17267 if (New->getStorageClass() == SC_Static) 17268 return false; 17269 17270 Diag(New->getLocation(), 17271 diag::err_conflicting_overriding_cc_attributes) 17272 << New->getDeclName() << New->getType() << Old->getType(); 17273 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 17274 return true; 17275 } 17276 17277 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 17278 const CXXMethodDecl *Old) { 17279 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 17280 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 17281 17282 if (Context.hasSameType(NewTy, OldTy) || 17283 NewTy->isDependentType() || OldTy->isDependentType()) 17284 return false; 17285 17286 // Check if the return types are covariant 17287 QualType NewClassTy, OldClassTy; 17288 17289 /// Both types must be pointers or references to classes. 17290 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 17291 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 17292 NewClassTy = NewPT->getPointeeType(); 17293 OldClassTy = OldPT->getPointeeType(); 17294 } 17295 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 17296 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 17297 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 17298 NewClassTy = NewRT->getPointeeType(); 17299 OldClassTy = OldRT->getPointeeType(); 17300 } 17301 } 17302 } 17303 17304 // The return types aren't either both pointers or references to a class type. 17305 if (NewClassTy.isNull()) { 17306 Diag(New->getLocation(), 17307 diag::err_different_return_type_for_overriding_virtual_function) 17308 << New->getDeclName() << NewTy << OldTy 17309 << New->getReturnTypeSourceRange(); 17310 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17311 << Old->getReturnTypeSourceRange(); 17312 17313 return true; 17314 } 17315 17316 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 17317 // C++14 [class.virtual]p8: 17318 // If the class type in the covariant return type of D::f differs from 17319 // that of B::f, the class type in the return type of D::f shall be 17320 // complete at the point of declaration of D::f or shall be the class 17321 // type D. 17322 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 17323 if (!RT->isBeingDefined() && 17324 RequireCompleteType(New->getLocation(), NewClassTy, 17325 diag::err_covariant_return_incomplete, 17326 New->getDeclName())) 17327 return true; 17328 } 17329 17330 // Check if the new class derives from the old class. 17331 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 17332 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 17333 << New->getDeclName() << NewTy << OldTy 17334 << New->getReturnTypeSourceRange(); 17335 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17336 << Old->getReturnTypeSourceRange(); 17337 return true; 17338 } 17339 17340 // Check if we the conversion from derived to base is valid. 17341 if (CheckDerivedToBaseConversion( 17342 NewClassTy, OldClassTy, 17343 diag::err_covariant_return_inaccessible_base, 17344 diag::err_covariant_return_ambiguous_derived_to_base_conv, 17345 New->getLocation(), New->getReturnTypeSourceRange(), 17346 New->getDeclName(), nullptr)) { 17347 // FIXME: this note won't trigger for delayed access control 17348 // diagnostics, and it's impossible to get an undelayed error 17349 // here from access control during the original parse because 17350 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 17351 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17352 << Old->getReturnTypeSourceRange(); 17353 return true; 17354 } 17355 } 17356 17357 // The qualifiers of the return types must be the same. 17358 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 17359 Diag(New->getLocation(), 17360 diag::err_covariant_return_type_different_qualifications) 17361 << New->getDeclName() << NewTy << OldTy 17362 << New->getReturnTypeSourceRange(); 17363 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17364 << Old->getReturnTypeSourceRange(); 17365 return true; 17366 } 17367 17368 17369 // The new class type must have the same or less qualifiers as the old type. 17370 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 17371 Diag(New->getLocation(), 17372 diag::err_covariant_return_type_class_type_more_qualified) 17373 << New->getDeclName() << NewTy << OldTy 17374 << New->getReturnTypeSourceRange(); 17375 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17376 << Old->getReturnTypeSourceRange(); 17377 return true; 17378 } 17379 17380 return false; 17381 } 17382 17383 /// Mark the given method pure. 17384 /// 17385 /// \param Method the method to be marked pure. 17386 /// 17387 /// \param InitRange the source range that covers the "0" initializer. 17388 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 17389 SourceLocation EndLoc = InitRange.getEnd(); 17390 if (EndLoc.isValid()) 17391 Method->setRangeEnd(EndLoc); 17392 17393 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 17394 Method->setPure(); 17395 return false; 17396 } 17397 17398 if (!Method->isInvalidDecl()) 17399 Diag(Method->getLocation(), diag::err_non_virtual_pure) 17400 << Method->getDeclName() << InitRange; 17401 return true; 17402 } 17403 17404 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 17405 if (D->getFriendObjectKind()) 17406 Diag(D->getLocation(), diag::err_pure_friend); 17407 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 17408 CheckPureMethod(M, ZeroLoc); 17409 else 17410 Diag(D->getLocation(), diag::err_illegal_initializer); 17411 } 17412 17413 /// Determine whether the given declaration is a global variable or 17414 /// static data member. 17415 static bool isNonlocalVariable(const Decl *D) { 17416 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 17417 return Var->hasGlobalStorage(); 17418 17419 return false; 17420 } 17421 17422 /// Invoked when we are about to parse an initializer for the declaration 17423 /// 'Dcl'. 17424 /// 17425 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 17426 /// static data member of class X, names should be looked up in the scope of 17427 /// class X. If the declaration had a scope specifier, a scope will have 17428 /// been created and passed in for this purpose. Otherwise, S will be null. 17429 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 17430 // If there is no declaration, there was an error parsing it. 17431 if (!D || D->isInvalidDecl()) 17432 return; 17433 17434 // We will always have a nested name specifier here, but this declaration 17435 // might not be out of line if the specifier names the current namespace: 17436 // extern int n; 17437 // int ::n = 0; 17438 if (S && D->isOutOfLine()) 17439 EnterDeclaratorContext(S, D->getDeclContext()); 17440 17441 // If we are parsing the initializer for a static data member, push a 17442 // new expression evaluation context that is associated with this static 17443 // data member. 17444 if (isNonlocalVariable(D)) 17445 PushExpressionEvaluationContext( 17446 ExpressionEvaluationContext::PotentiallyEvaluated, D); 17447 } 17448 17449 /// Invoked after we are finished parsing an initializer for the declaration D. 17450 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 17451 // If there is no declaration, there was an error parsing it. 17452 if (!D || D->isInvalidDecl()) 17453 return; 17454 17455 if (isNonlocalVariable(D)) 17456 PopExpressionEvaluationContext(); 17457 17458 if (S && D->isOutOfLine()) 17459 ExitDeclaratorContext(S); 17460 } 17461 17462 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 17463 /// C++ if/switch/while/for statement. 17464 /// e.g: "if (int x = f()) {...}" 17465 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 17466 // C++ 6.4p2: 17467 // The declarator shall not specify a function or an array. 17468 // The type-specifier-seq shall not contain typedef and shall not declare a 17469 // new class or enumeration. 17470 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 17471 "Parser allowed 'typedef' as storage class of condition decl."); 17472 17473 Decl *Dcl = ActOnDeclarator(S, D); 17474 if (!Dcl) 17475 return true; 17476 17477 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 17478 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 17479 << D.getSourceRange(); 17480 return true; 17481 } 17482 17483 return Dcl; 17484 } 17485 17486 void Sema::LoadExternalVTableUses() { 17487 if (!ExternalSource) 17488 return; 17489 17490 SmallVector<ExternalVTableUse, 4> VTables; 17491 ExternalSource->ReadUsedVTables(VTables); 17492 SmallVector<VTableUse, 4> NewUses; 17493 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 17494 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 17495 = VTablesUsed.find(VTables[I].Record); 17496 // Even if a definition wasn't required before, it may be required now. 17497 if (Pos != VTablesUsed.end()) { 17498 if (!Pos->second && VTables[I].DefinitionRequired) 17499 Pos->second = true; 17500 continue; 17501 } 17502 17503 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 17504 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 17505 } 17506 17507 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 17508 } 17509 17510 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 17511 bool DefinitionRequired) { 17512 // Ignore any vtable uses in unevaluated operands or for classes that do 17513 // not have a vtable. 17514 if (!Class->isDynamicClass() || Class->isDependentContext() || 17515 CurContext->isDependentContext() || isUnevaluatedContext()) 17516 return; 17517 // Do not mark as used if compiling for the device outside of the target 17518 // region. 17519 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice && 17520 !isInOpenMPDeclareTargetContext() && 17521 !isInOpenMPTargetExecutionDirective()) { 17522 if (!DefinitionRequired) 17523 MarkVirtualMembersReferenced(Loc, Class); 17524 return; 17525 } 17526 17527 // Try to insert this class into the map. 17528 LoadExternalVTableUses(); 17529 Class = Class->getCanonicalDecl(); 17530 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 17531 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 17532 if (!Pos.second) { 17533 // If we already had an entry, check to see if we are promoting this vtable 17534 // to require a definition. If so, we need to reappend to the VTableUses 17535 // list, since we may have already processed the first entry. 17536 if (DefinitionRequired && !Pos.first->second) { 17537 Pos.first->second = true; 17538 } else { 17539 // Otherwise, we can early exit. 17540 return; 17541 } 17542 } else { 17543 // The Microsoft ABI requires that we perform the destructor body 17544 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 17545 // the deleting destructor is emitted with the vtable, not with the 17546 // destructor definition as in the Itanium ABI. 17547 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 17548 CXXDestructorDecl *DD = Class->getDestructor(); 17549 if (DD && DD->isVirtual() && !DD->isDeleted()) { 17550 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 17551 // If this is an out-of-line declaration, marking it referenced will 17552 // not do anything. Manually call CheckDestructor to look up operator 17553 // delete(). 17554 ContextRAII SavedContext(*this, DD); 17555 CheckDestructor(DD); 17556 } else { 17557 MarkFunctionReferenced(Loc, Class->getDestructor()); 17558 } 17559 } 17560 } 17561 } 17562 17563 // Local classes need to have their virtual members marked 17564 // immediately. For all other classes, we mark their virtual members 17565 // at the end of the translation unit. 17566 if (Class->isLocalClass()) 17567 MarkVirtualMembersReferenced(Loc, Class); 17568 else 17569 VTableUses.push_back(std::make_pair(Class, Loc)); 17570 } 17571 17572 bool Sema::DefineUsedVTables() { 17573 LoadExternalVTableUses(); 17574 if (VTableUses.empty()) 17575 return false; 17576 17577 // Note: The VTableUses vector could grow as a result of marking 17578 // the members of a class as "used", so we check the size each 17579 // time through the loop and prefer indices (which are stable) to 17580 // iterators (which are not). 17581 bool DefinedAnything = false; 17582 for (unsigned I = 0; I != VTableUses.size(); ++I) { 17583 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 17584 if (!Class) 17585 continue; 17586 TemplateSpecializationKind ClassTSK = 17587 Class->getTemplateSpecializationKind(); 17588 17589 SourceLocation Loc = VTableUses[I].second; 17590 17591 bool DefineVTable = true; 17592 17593 // If this class has a key function, but that key function is 17594 // defined in another translation unit, we don't need to emit the 17595 // vtable even though we're using it. 17596 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 17597 if (KeyFunction && !KeyFunction->hasBody()) { 17598 // The key function is in another translation unit. 17599 DefineVTable = false; 17600 TemplateSpecializationKind TSK = 17601 KeyFunction->getTemplateSpecializationKind(); 17602 assert(TSK != TSK_ExplicitInstantiationDefinition && 17603 TSK != TSK_ImplicitInstantiation && 17604 "Instantiations don't have key functions"); 17605 (void)TSK; 17606 } else if (!KeyFunction) { 17607 // If we have a class with no key function that is the subject 17608 // of an explicit instantiation declaration, suppress the 17609 // vtable; it will live with the explicit instantiation 17610 // definition. 17611 bool IsExplicitInstantiationDeclaration = 17612 ClassTSK == TSK_ExplicitInstantiationDeclaration; 17613 for (auto R : Class->redecls()) { 17614 TemplateSpecializationKind TSK 17615 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 17616 if (TSK == TSK_ExplicitInstantiationDeclaration) 17617 IsExplicitInstantiationDeclaration = true; 17618 else if (TSK == TSK_ExplicitInstantiationDefinition) { 17619 IsExplicitInstantiationDeclaration = false; 17620 break; 17621 } 17622 } 17623 17624 if (IsExplicitInstantiationDeclaration) 17625 DefineVTable = false; 17626 } 17627 17628 // The exception specifications for all virtual members may be needed even 17629 // if we are not providing an authoritative form of the vtable in this TU. 17630 // We may choose to emit it available_externally anyway. 17631 if (!DefineVTable) { 17632 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 17633 continue; 17634 } 17635 17636 // Mark all of the virtual members of this class as referenced, so 17637 // that we can build a vtable. Then, tell the AST consumer that a 17638 // vtable for this class is required. 17639 DefinedAnything = true; 17640 MarkVirtualMembersReferenced(Loc, Class); 17641 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 17642 if (VTablesUsed[Canonical]) 17643 Consumer.HandleVTable(Class); 17644 17645 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 17646 // no key function or the key function is inlined. Don't warn in C++ ABIs 17647 // that lack key functions, since the user won't be able to make one. 17648 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 17649 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) { 17650 const FunctionDecl *KeyFunctionDef = nullptr; 17651 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 17652 KeyFunctionDef->isInlined())) { 17653 Diag(Class->getLocation(), 17654 ClassTSK == TSK_ExplicitInstantiationDefinition 17655 ? diag::warn_weak_template_vtable 17656 : diag::warn_weak_vtable) 17657 << Class; 17658 } 17659 } 17660 } 17661 VTableUses.clear(); 17662 17663 return DefinedAnything; 17664 } 17665 17666 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 17667 const CXXRecordDecl *RD) { 17668 for (const auto *I : RD->methods()) 17669 if (I->isVirtual() && !I->isPure()) 17670 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 17671 } 17672 17673 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 17674 const CXXRecordDecl *RD, 17675 bool ConstexprOnly) { 17676 // Mark all functions which will appear in RD's vtable as used. 17677 CXXFinalOverriderMap FinalOverriders; 17678 RD->getFinalOverriders(FinalOverriders); 17679 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 17680 E = FinalOverriders.end(); 17681 I != E; ++I) { 17682 for (OverridingMethods::const_iterator OI = I->second.begin(), 17683 OE = I->second.end(); 17684 OI != OE; ++OI) { 17685 assert(OI->second.size() > 0 && "no final overrider"); 17686 CXXMethodDecl *Overrider = OI->second.front().Method; 17687 17688 // C++ [basic.def.odr]p2: 17689 // [...] A virtual member function is used if it is not pure. [...] 17690 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) 17691 MarkFunctionReferenced(Loc, Overrider); 17692 } 17693 } 17694 17695 // Only classes that have virtual bases need a VTT. 17696 if (RD->getNumVBases() == 0) 17697 return; 17698 17699 for (const auto &I : RD->bases()) { 17700 const auto *Base = 17701 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 17702 if (Base->getNumVBases() == 0) 17703 continue; 17704 MarkVirtualMembersReferenced(Loc, Base); 17705 } 17706 } 17707 17708 /// SetIvarInitializers - This routine builds initialization ASTs for the 17709 /// Objective-C implementation whose ivars need be initialized. 17710 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 17711 if (!getLangOpts().CPlusPlus) 17712 return; 17713 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 17714 SmallVector<ObjCIvarDecl*, 8> ivars; 17715 CollectIvarsToConstructOrDestruct(OID, ivars); 17716 if (ivars.empty()) 17717 return; 17718 SmallVector<CXXCtorInitializer*, 32> AllToInit; 17719 for (unsigned i = 0; i < ivars.size(); i++) { 17720 FieldDecl *Field = ivars[i]; 17721 if (Field->isInvalidDecl()) 17722 continue; 17723 17724 CXXCtorInitializer *Member; 17725 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 17726 InitializationKind InitKind = 17727 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 17728 17729 InitializationSequence InitSeq(*this, InitEntity, InitKind, None); 17730 ExprResult MemberInit = 17731 InitSeq.Perform(*this, InitEntity, InitKind, None); 17732 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 17733 // Note, MemberInit could actually come back empty if no initialization 17734 // is required (e.g., because it would call a trivial default constructor) 17735 if (!MemberInit.get() || MemberInit.isInvalid()) 17736 continue; 17737 17738 Member = 17739 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 17740 SourceLocation(), 17741 MemberInit.getAs<Expr>(), 17742 SourceLocation()); 17743 AllToInit.push_back(Member); 17744 17745 // Be sure that the destructor is accessible and is marked as referenced. 17746 if (const RecordType *RecordTy = 17747 Context.getBaseElementType(Field->getType()) 17748 ->getAs<RecordType>()) { 17749 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 17750 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 17751 MarkFunctionReferenced(Field->getLocation(), Destructor); 17752 CheckDestructorAccess(Field->getLocation(), Destructor, 17753 PDiag(diag::err_access_dtor_ivar) 17754 << Context.getBaseElementType(Field->getType())); 17755 } 17756 } 17757 } 17758 ObjCImplementation->setIvarInitializers(Context, 17759 AllToInit.data(), AllToInit.size()); 17760 } 17761 } 17762 17763 static 17764 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 17765 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 17766 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 17767 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 17768 Sema &S) { 17769 if (Ctor->isInvalidDecl()) 17770 return; 17771 17772 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 17773 17774 // Target may not be determinable yet, for instance if this is a dependent 17775 // call in an uninstantiated template. 17776 if (Target) { 17777 const FunctionDecl *FNTarget = nullptr; 17778 (void)Target->hasBody(FNTarget); 17779 Target = const_cast<CXXConstructorDecl*>( 17780 cast_or_null<CXXConstructorDecl>(FNTarget)); 17781 } 17782 17783 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 17784 // Avoid dereferencing a null pointer here. 17785 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 17786 17787 if (!Current.insert(Canonical).second) 17788 return; 17789 17790 // We know that beyond here, we aren't chaining into a cycle. 17791 if (!Target || !Target->isDelegatingConstructor() || 17792 Target->isInvalidDecl() || Valid.count(TCanonical)) { 17793 Valid.insert(Current.begin(), Current.end()); 17794 Current.clear(); 17795 // We've hit a cycle. 17796 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 17797 Current.count(TCanonical)) { 17798 // If we haven't diagnosed this cycle yet, do so now. 17799 if (!Invalid.count(TCanonical)) { 17800 S.Diag((*Ctor->init_begin())->getSourceLocation(), 17801 diag::warn_delegating_ctor_cycle) 17802 << Ctor; 17803 17804 // Don't add a note for a function delegating directly to itself. 17805 if (TCanonical != Canonical) 17806 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 17807 17808 CXXConstructorDecl *C = Target; 17809 while (C->getCanonicalDecl() != Canonical) { 17810 const FunctionDecl *FNTarget = nullptr; 17811 (void)C->getTargetConstructor()->hasBody(FNTarget); 17812 assert(FNTarget && "Ctor cycle through bodiless function"); 17813 17814 C = const_cast<CXXConstructorDecl*>( 17815 cast<CXXConstructorDecl>(FNTarget)); 17816 S.Diag(C->getLocation(), diag::note_which_delegates_to); 17817 } 17818 } 17819 17820 Invalid.insert(Current.begin(), Current.end()); 17821 Current.clear(); 17822 } else { 17823 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 17824 } 17825 } 17826 17827 17828 void Sema::CheckDelegatingCtorCycles() { 17829 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 17830 17831 for (DelegatingCtorDeclsType::iterator 17832 I = DelegatingCtorDecls.begin(ExternalSource), 17833 E = DelegatingCtorDecls.end(); 17834 I != E; ++I) 17835 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 17836 17837 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 17838 (*CI)->setInvalidDecl(); 17839 } 17840 17841 namespace { 17842 /// AST visitor that finds references to the 'this' expression. 17843 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 17844 Sema &S; 17845 17846 public: 17847 explicit FindCXXThisExpr(Sema &S) : S(S) { } 17848 17849 bool VisitCXXThisExpr(CXXThisExpr *E) { 17850 S.Diag(E->getLocation(), diag::err_this_static_member_func) 17851 << E->isImplicit(); 17852 return false; 17853 } 17854 }; 17855 } 17856 17857 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 17858 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17859 if (!TSInfo) 17860 return false; 17861 17862 TypeLoc TL = TSInfo->getTypeLoc(); 17863 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17864 if (!ProtoTL) 17865 return false; 17866 17867 // C++11 [expr.prim.general]p3: 17868 // [The expression this] shall not appear before the optional 17869 // cv-qualifier-seq and it shall not appear within the declaration of a 17870 // static member function (although its type and value category are defined 17871 // within a static member function as they are within a non-static member 17872 // function). [ Note: this is because declaration matching does not occur 17873 // until the complete declarator is known. - end note ] 17874 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17875 FindCXXThisExpr Finder(*this); 17876 17877 // If the return type came after the cv-qualifier-seq, check it now. 17878 if (Proto->hasTrailingReturn() && 17879 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 17880 return true; 17881 17882 // Check the exception specification. 17883 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 17884 return true; 17885 17886 // Check the trailing requires clause 17887 if (Expr *E = Method->getTrailingRequiresClause()) 17888 if (!Finder.TraverseStmt(E)) 17889 return true; 17890 17891 return checkThisInStaticMemberFunctionAttributes(Method); 17892 } 17893 17894 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 17895 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17896 if (!TSInfo) 17897 return false; 17898 17899 TypeLoc TL = TSInfo->getTypeLoc(); 17900 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17901 if (!ProtoTL) 17902 return false; 17903 17904 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17905 FindCXXThisExpr Finder(*this); 17906 17907 switch (Proto->getExceptionSpecType()) { 17908 case EST_Unparsed: 17909 case EST_Uninstantiated: 17910 case EST_Unevaluated: 17911 case EST_BasicNoexcept: 17912 case EST_NoThrow: 17913 case EST_DynamicNone: 17914 case EST_MSAny: 17915 case EST_None: 17916 break; 17917 17918 case EST_DependentNoexcept: 17919 case EST_NoexceptFalse: 17920 case EST_NoexceptTrue: 17921 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 17922 return true; 17923 LLVM_FALLTHROUGH; 17924 17925 case EST_Dynamic: 17926 for (const auto &E : Proto->exceptions()) { 17927 if (!Finder.TraverseType(E)) 17928 return true; 17929 } 17930 break; 17931 } 17932 17933 return false; 17934 } 17935 17936 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 17937 FindCXXThisExpr Finder(*this); 17938 17939 // Check attributes. 17940 for (const auto *A : Method->attrs()) { 17941 // FIXME: This should be emitted by tblgen. 17942 Expr *Arg = nullptr; 17943 ArrayRef<Expr *> Args; 17944 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 17945 Arg = G->getArg(); 17946 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 17947 Arg = G->getArg(); 17948 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 17949 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); 17950 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 17951 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); 17952 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 17953 Arg = ETLF->getSuccessValue(); 17954 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); 17955 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 17956 Arg = STLF->getSuccessValue(); 17957 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); 17958 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 17959 Arg = LR->getArg(); 17960 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 17961 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); 17962 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 17963 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17964 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 17965 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17966 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 17967 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17968 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 17969 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17970 17971 if (Arg && !Finder.TraverseStmt(Arg)) 17972 return true; 17973 17974 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 17975 if (!Finder.TraverseStmt(Args[I])) 17976 return true; 17977 } 17978 } 17979 17980 return false; 17981 } 17982 17983 void Sema::checkExceptionSpecification( 17984 bool IsTopLevel, ExceptionSpecificationType EST, 17985 ArrayRef<ParsedType> DynamicExceptions, 17986 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 17987 SmallVectorImpl<QualType> &Exceptions, 17988 FunctionProtoType::ExceptionSpecInfo &ESI) { 17989 Exceptions.clear(); 17990 ESI.Type = EST; 17991 if (EST == EST_Dynamic) { 17992 Exceptions.reserve(DynamicExceptions.size()); 17993 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 17994 // FIXME: Preserve type source info. 17995 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 17996 17997 if (IsTopLevel) { 17998 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 17999 collectUnexpandedParameterPacks(ET, Unexpanded); 18000 if (!Unexpanded.empty()) { 18001 DiagnoseUnexpandedParameterPacks( 18002 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 18003 Unexpanded); 18004 continue; 18005 } 18006 } 18007 18008 // Check that the type is valid for an exception spec, and 18009 // drop it if not. 18010 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 18011 Exceptions.push_back(ET); 18012 } 18013 ESI.Exceptions = Exceptions; 18014 return; 18015 } 18016 18017 if (isComputedNoexcept(EST)) { 18018 assert((NoexceptExpr->isTypeDependent() || 18019 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 18020 Context.BoolTy) && 18021 "Parser should have made sure that the expression is boolean"); 18022 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 18023 ESI.Type = EST_BasicNoexcept; 18024 return; 18025 } 18026 18027 ESI.NoexceptExpr = NoexceptExpr; 18028 return; 18029 } 18030 } 18031 18032 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 18033 ExceptionSpecificationType EST, 18034 SourceRange SpecificationRange, 18035 ArrayRef<ParsedType> DynamicExceptions, 18036 ArrayRef<SourceRange> DynamicExceptionRanges, 18037 Expr *NoexceptExpr) { 18038 if (!MethodD) 18039 return; 18040 18041 // Dig out the method we're referring to. 18042 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 18043 MethodD = FunTmpl->getTemplatedDecl(); 18044 18045 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 18046 if (!Method) 18047 return; 18048 18049 // Check the exception specification. 18050 llvm::SmallVector<QualType, 4> Exceptions; 18051 FunctionProtoType::ExceptionSpecInfo ESI; 18052 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 18053 DynamicExceptionRanges, NoexceptExpr, Exceptions, 18054 ESI); 18055 18056 // Update the exception specification on the function type. 18057 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 18058 18059 if (Method->isStatic()) 18060 checkThisInStaticMemberFunctionExceptionSpec(Method); 18061 18062 if (Method->isVirtual()) { 18063 // Check overrides, which we previously had to delay. 18064 for (const CXXMethodDecl *O : Method->overridden_methods()) 18065 CheckOverridingFunctionExceptionSpec(Method, O); 18066 } 18067 } 18068 18069 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 18070 /// 18071 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 18072 SourceLocation DeclStart, Declarator &D, 18073 Expr *BitWidth, 18074 InClassInitStyle InitStyle, 18075 AccessSpecifier AS, 18076 const ParsedAttr &MSPropertyAttr) { 18077 IdentifierInfo *II = D.getIdentifier(); 18078 if (!II) { 18079 Diag(DeclStart, diag::err_anonymous_property); 18080 return nullptr; 18081 } 18082 SourceLocation Loc = D.getIdentifierLoc(); 18083 18084 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 18085 QualType T = TInfo->getType(); 18086 if (getLangOpts().CPlusPlus) { 18087 CheckExtraCXXDefaultArguments(D); 18088 18089 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 18090 UPPC_DataMemberType)) { 18091 D.setInvalidType(); 18092 T = Context.IntTy; 18093 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 18094 } 18095 } 18096 18097 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 18098 18099 if (D.getDeclSpec().isInlineSpecified()) 18100 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 18101 << getLangOpts().CPlusPlus17; 18102 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 18103 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 18104 diag::err_invalid_thread) 18105 << DeclSpec::getSpecifierName(TSCS); 18106 18107 // Check to see if this name was declared as a member previously 18108 NamedDecl *PrevDecl = nullptr; 18109 LookupResult Previous(*this, II, Loc, LookupMemberName, 18110 ForVisibleRedeclaration); 18111 LookupName(Previous, S); 18112 switch (Previous.getResultKind()) { 18113 case LookupResult::Found: 18114 case LookupResult::FoundUnresolvedValue: 18115 PrevDecl = Previous.getAsSingle<NamedDecl>(); 18116 break; 18117 18118 case LookupResult::FoundOverloaded: 18119 PrevDecl = Previous.getRepresentativeDecl(); 18120 break; 18121 18122 case LookupResult::NotFound: 18123 case LookupResult::NotFoundInCurrentInstantiation: 18124 case LookupResult::Ambiguous: 18125 break; 18126 } 18127 18128 if (PrevDecl && PrevDecl->isTemplateParameter()) { 18129 // Maybe we will complain about the shadowed template parameter. 18130 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 18131 // Just pretend that we didn't see the previous declaration. 18132 PrevDecl = nullptr; 18133 } 18134 18135 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 18136 PrevDecl = nullptr; 18137 18138 SourceLocation TSSL = D.getBeginLoc(); 18139 MSPropertyDecl *NewPD = 18140 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 18141 MSPropertyAttr.getPropertyDataGetter(), 18142 MSPropertyAttr.getPropertyDataSetter()); 18143 ProcessDeclAttributes(TUScope, NewPD, D); 18144 NewPD->setAccess(AS); 18145 18146 if (NewPD->isInvalidDecl()) 18147 Record->setInvalidDecl(); 18148 18149 if (D.getDeclSpec().isModulePrivateSpecified()) 18150 NewPD->setModulePrivate(); 18151 18152 if (NewPD->isInvalidDecl() && PrevDecl) { 18153 // Don't introduce NewFD into scope; there's already something 18154 // with the same name in the same scope. 18155 } else if (II) { 18156 PushOnScopeChains(NewPD, S); 18157 } else 18158 Record->addDecl(NewPD); 18159 18160 return NewPD; 18161 } 18162 18163 void Sema::ActOnStartFunctionDeclarationDeclarator( 18164 Declarator &Declarator, unsigned TemplateParameterDepth) { 18165 auto &Info = InventedParameterInfos.emplace_back(); 18166 TemplateParameterList *ExplicitParams = nullptr; 18167 ArrayRef<TemplateParameterList *> ExplicitLists = 18168 Declarator.getTemplateParameterLists(); 18169 if (!ExplicitLists.empty()) { 18170 bool IsMemberSpecialization, IsInvalid; 18171 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 18172 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 18173 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 18174 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 18175 /*SuppressDiagnostic=*/true); 18176 } 18177 if (ExplicitParams) { 18178 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 18179 for (NamedDecl *Param : *ExplicitParams) 18180 Info.TemplateParams.push_back(Param); 18181 Info.NumExplicitTemplateParams = ExplicitParams->size(); 18182 } else { 18183 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 18184 Info.NumExplicitTemplateParams = 0; 18185 } 18186 } 18187 18188 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 18189 auto &FSI = InventedParameterInfos.back(); 18190 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 18191 if (FSI.NumExplicitTemplateParams != 0) { 18192 TemplateParameterList *ExplicitParams = 18193 Declarator.getTemplateParameterLists().back(); 18194 Declarator.setInventedTemplateParameterList( 18195 TemplateParameterList::Create( 18196 Context, ExplicitParams->getTemplateLoc(), 18197 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 18198 ExplicitParams->getRAngleLoc(), 18199 ExplicitParams->getRequiresClause())); 18200 } else { 18201 Declarator.setInventedTemplateParameterList( 18202 TemplateParameterList::Create( 18203 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 18204 SourceLocation(), /*RequiresClause=*/nullptr)); 18205 } 18206 } 18207 InventedParameterInfos.pop_back(); 18208 } 18209